RU2707867C2 - Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления - Google Patents

Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления Download PDF

Info

Publication number
RU2707867C2
RU2707867C2 RU2017146465A RU2017146465A RU2707867C2 RU 2707867 C2 RU2707867 C2 RU 2707867C2 RU 2017146465 A RU2017146465 A RU 2017146465A RU 2017146465 A RU2017146465 A RU 2017146465A RU 2707867 C2 RU2707867 C2 RU 2707867C2
Authority
RU
Russia
Prior art keywords
catalyst
carrier
vegetable
mixture
nickel
Prior art date
Application number
RU2017146465A
Other languages
English (en)
Other versions
RU2017146465A3 (ru
RU2017146465A (ru
Inventor
Александр Сергеевич Коклюхин
Дарья Игоревна Ишутенко
Виктор Александрович Сальников
Андрей Николаевич Варакин
Александр Владимирович Можаев
Андрей Алексеевич Пимерзин
Павел Анатольевич Никульшин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority to RU2017146465A priority Critical patent/RU2707867C2/ru
Publication of RU2017146465A publication Critical patent/RU2017146465A/ru
Publication of RU2017146465A3 publication Critical patent/RU2017146465A3/ru
Application granted granted Critical
Publication of RU2707867C2 publication Critical patent/RU2707867C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к катализатору совместной гидроочистки смеси растительного и нефтяного углеводородного сырья. Данный катализатор включает в свой состав кобальт, никель, молибден и оксид алюминия, причем он содержит в прокаленном при 550°С состоянии: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас. и Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м2/г, удельный объем пор 0,3-1,1 см3/г, средний диаметр пор 4,0-10,0 нм. Способ приготовления данного катализатора включает пропитку носителя по влагоемкости с последующей сушкой, причем вакуумированный носитель, содержащий оксид алюминия, однократно пропитывают водным раствором предшественников активных компонентов, содержащим молибденовую гетерополикислоту, комплексонат никеля или кобальта с карбоновой кислотой. Технический результат - увеличение активности и стабильности катализатора в процессе совместной гидроочистки смеси растительного и нефтяного углеводородного сырья. 2 н. и 3 з.п. ф-лы, 2 табл., 10 пр.

Description

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для гидроочистки растительного и нефтяного углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.
В связи с ростом потребления энергоресурсов в мире и необходимостью поиска их возобновляемых источников все большее внимание привлекают процессы получения топлив и органических соединений на базе растительного углеводородного сырья [Bahadar A., BilalKhan М. // Renew. Sust. Energ. Rev. 2013. V. 27. P. 128, Кохберг Л.М. Прогноз научно-технологического развития России: 2030. Министерство образования и науки Российской Федерации, Национальный исследовательский университет «Высшая школа экономики». Москва, 2014. 244 с]. Экономически оправданным способом получения новых топлив является совместная гидропереработка растительного и нефтяного углеводородного сырья, так как она может осуществляться на действующих мощностях нефтеперерабатывающих заводов (НПЗ) без значительных капитальных затрат. Однако при совместной гидроочистке растительных масел и нефтяных фракций возникает существенная проблема ингибирования целевых реакций кислородсодержащими соединениями растительного происхождения [Kubicka D., Kaluza L. // Appl. Catal. A. 2010. V. 372. P. 199, Philippe M., Richard F., Hudebine D., Brunet S. // Appl. Catal. A. 2010. V. 383. P. 14, Badawi M., Paul J., Cristol S., Payen E. // Catal. Commun. 2011. V. 12. P. 901, Egeberg R., Michaelsen N., Skyum L., Zeuthen P. // Petroleum Technology Quarterly. 2010. P. 101, Deliy I.V., Vlasova E.N., Nuzhdin A.L., Gerasimov E.Yu., Bukhtiyarova G.A. // RSC Adv. 2014. V. 4. P. 2242].
В качестве катализаторов гидродеоксигенации традиционно применяют оксиды щелочных и благородных металлов, нанесенные на мезопористые носители со слабыми или среднекислотными свойствами [RU 2602278 С1 от 11.11.2015, RU 2356629 С1 от 22.08.2007, RU 2335340 С1 от 22.08.2007, RU 2356629 С1 от 22.08.2007, RU 2472764 С1 от 28.11.2011, RU 2397199 С2 от 16.01.2006, RU 2440847 С1 от 30.08.2010, RU 2472584 С1 от 25.10.2011, CN 105903465, CN 105921160, CN 105935589, CN 105983409 и др.]. Процесс гидродеоксигенации на таких системах осуществляют при давлении водорода от 0,1-15 МПа, температуре 200-400°С, объемной скорости подачи сырья от 1,0 ч-1, объемном соотношении водород/сырье - от 400 нм33. Указанный процесс отличается высокой эффективностью и обеспечивает полное превращение кислородсодержащих соединений. Однако, применительно к совместной гидроочистке растительного и нефтяного углеводородного сырья использования подобных каталитических систем является нецелесообразным из-за значительного количества серо- и азотсодержащих соединений в сырье, которые являются каталитическими ядами для благородных металлов, что приводит к быстрой дезактивации используемого катализатора и, как следствие, потере активности.
Другим направлением в разработке катализаторов гидродеоксигенации является использование систем на основе сульфидов переходных металлов, широко используемых в гидроочистке и гидрокрекинге. Традиционно для этого используют сульфиды молибдена или вольфрама, промотированные никелем или кобальтом, нанесенные на мезопористый Al2O3 [Furimsky Е., AppliedCatalysisA: General, 2000, 199, 147-190]. В таких системах состав катализатора оказывает существенное влияние на протекание реакций гидродесульфуризации (ГДС) и гидрирования (ГИД), а также гидродеоксигенации (ГДО), при чем каталитические системы, промотированные Ni, являются более активными в реакциях гидрирования ароматических углеводородов и удалении кислородсодержащих органических соединений, а катализаторы, допированные кобальтом, находят большее применение для реакций удаления сернистых компонентов [Nikul'shin Р.А., Mozhaev A.V., Ishutenko D.I., Minaev P.P., Lyashenko A.I., Pimerzin A.A. // Kinetics and Catalysis. 2012. V. 53. №5. P. 620; Kogan V.M., Nikul'Shin P.A., Dorokhov V.S., Permyakov E.A., Mozhaev A.V., Ishutenko D.I., Eliseev O.L., Rozhdestvenskaya N.N., Lapidusa, A.L. // Russian Chemical Bulletin. 2014. V. 63 P. 332; Nikul'Shin P.A., Sal'Nikov V.A., Gilkina E.O., Pimerzin A.A. // Catalysis in Industry. 2014. №4. P. 63; Brillouet S., Baltag E., Brunet S., Richard F. // Appl. Catal. B. 2014. V. 148-149. P. 201; Nikulshin P.A., Salnikov V.A., Varakin A.N., Kogan V.M. // Catal. Today. 2016. V. 271. P. 45; Egeberg R., Michaelsen N., Skyum L., Zeuthen P. // Petroleum Technology Quarterly. 2010. P. 101; Deliy I.V, Vlasova E.N., Nuzhdin A.L., Gerasimov E.Yu., Bukhtiyarova G.A. // RSC Adv. 2014. V. 4. P. 2242; US 2007090024 25.10.2006; JP 2006346631 28.12.2006; US 2007010682 11.01.2007, RU 2013143688 27.09.2013, RU 2385764 C2 07.07.2008, RU 2626398 C1 09.11.2016, RU 2620089 C1 08.04.2016, RU 2626399 C1 09.11.2016 и др.].
Общим недостатком данных катализаторов является узкая сырьевая направленность вследствие высокой активности в каком-либо одном типе целевых реакций и меньшей активности - в другом, что не позволяет эффективно использовать их при совместной переработке растительного и нефтяного сырья. Техническим решением настоящего изобретения является применение одновременно и кобальта, и никеля в качестве промоторов активной фазы, что позволит совместить в одном катализаторе как активные СоМо центры ГДС, так и активные NiMo центры ГДО.
Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, описанный в патенте RU 2492922 C1, B01J 23/28 (2006.01), B01J 23/755 (2006.01), B01J 21/18 (2006.01), B11J 21/04 (2006.01), B01J 35/10 (2006.01), B01J 37/02 (2006.01). Данная система содержит соединения молибдена (15-25 мас. % МоО3) и никеля (4.0-6.0 мас. % NiO), диспергированные на поверхности модифицированного углеродным покрытием алюмооксидного носителя (содержание углерода 1-3 мас. %, удельная площадь поверхности не менее 200 м2/г, удельный объем пор 0.8-1.1 см3/г, средний диаметр пор не менее 10 нм). Основным недостатком указанного выше катализатора является использование в качестве промотора только оксида никеля, что приводит к недостаточно высокой каталитической активности в реакциях ГДС сероорганических соединений.
Техническим результатом настоящего изобретения является создание нового катализатора совместной гидроочистки нефтяного и растительного сырья, обладающего повышенной активностью в реакциях удаления серы и кислорода по сравнению с традиционными биметаллическим системами за счет использования в качестве промотора одновременно двух промотирующих металлов (Со и Ni). Технический результат достигается за счет катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья, содержащего в прокаленном при 550°С состоянии: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас., Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м2/г, удельный объем пор 0,3-1,1 см3/г, средний диаметр пор 4,0-10,0 нм.
Способ приготовления катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья включает однократную пропитку водным раствором предшественников активных компонентов, содержащим молибденовую гетерополикислоту и комплексонат никеля или кобальта с карбоновой кислотой, вакуумированного носителя по влагоемкости с последующей сушкой при температуре 100-160°С в потоке воздуха или азота. В качестве молибденовой гетерополикислоты используют одну из ряда H6[Co2Mo10O38H4], Н3[Со(ОН)6Mo6O18], Н4[Ni(ОН)6Mo6O18], Н7[PMo11CoO40], в качестве прекурсора комплексоната кобальта используется один из ряда кобальт углекислый CoCO3⋅nH2O (n=0-4), кобальт углекислый основной СоСО3⋅mCo(ОН)2⋅nH2O (m=0-2, n=0,5-4), в качестве прекурсора комплексоната никеля используется один из ряда никель углекислый NiCO3⋅nH2O (n=0-4), никель углекислый основной NiCO3⋅mNi(OH)2⋅nH2O (m=0-2, n=0,5-4), в качестве карбоновой кислоты используют как минимум одну из следующего ряда: лимонная кислота С6Н8С7, молочная кислота С3Н6О3, винная кислота C4H6O6, гликолевая кислота С2Н4О3. В качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-5 мас. %.
Исходные соединения для приготовления пропиточного раствора, свойства носителя и состав катализаторов приведены в табл. 1.
Figure 00000001
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.
Для приготовления пропиточного раствора 22,0 г H4[Ni(OH)6Mo6O18], 4,7 г NiCO3⋅Н2О и 9,1 г лимонной кислоты C6H8O7⋅ последовательно растворяют в 57,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 76,5 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (98% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Ni - 3,1; носитель - остальное; имеет удельную поверхность 238 м2/г, объем пор 0,59 см3/г и средний диаметр пор 5,6 нм (табл. 1).
Примеры 2-10 иллюстрируют предлагаемое техническое решение.
Пример 2
Для приготовления пропиточного раствора 21,2 г Н7[PMo11CoO40], 5,6 г NiCO3⋅Н2О и 7,9 г винной кислоты C4H6O6⋅ последовательно растворяют в 66,8 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 89,0 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и SiO2 (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,1; Ni - 2,5; Со - 0,6; Р - 0,3; носитель - остальное; имеет удельную поверхность 240 м2/г, объем пор 0,68 см3/г и средний диаметр пор 6,2 нм (табл. 1).
Пример 3
Для приготовления пропиточного раствора 27,7 г H4[Ni(OH)6Mo6O18], 5,6 г. СоСО3⋅Со(ОН)2⋅H2O и 4,0 г. гликолевой кислоты C2H4O3⋅ последовательно растворяют в 71,8 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 95,7 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.) и SiO2 (10% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на в токе азота 140°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,2; Ni - 1,2; Со - 2,4; носитель - остальное; имеет удельную поверхность 233 м2/г, объем пор 0,74 см3/г и средний диаметр пор 6,4 нм (табл. 1).
Пример 4
Для приготовления пропиточного раствора 21,8 г. H6[Со2Мо10О38Н4], 4,3 г. NiCO3⋅Н2О и 3,6 г молочной кислоты С3Н6О3⋅ последовательно растворяют в 57,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 76,5 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (98% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 120°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Ni - 1,9; Со - 1,2; носитель - остальное; имеет удельную поверхность 238 м2/г, объем пор 0,59 см3/г и средний диаметр пор 5,6 нм (табл. 1).
Пример 5
Для приготовления пропиточного раствора 36,9 г Н6[Co2Mo10O38H4], 6,8 г NiCO3⋅1,5Ni(ОН)2⋅2H2O и 13,4 г лимонной кислоты С6Н8О7⋅последовательно растворяют в 61,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 81,9 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (93% мас.), SiO2 (5% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 100°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 15,0; Ni - 2,7; Со - 1,8; носитель - остальное; имеет удельную поверхность 233 м2/г, объем пор 0,63 см3/г и средний диаметр пор 6,16 нм (табл. 1).
Пример 6
Для приготовления пропиточного раствора 27,7 г Н4[Ni(ОН)6Mo6O18], 5,9 г CoCO3⋅Н2О и 8,2 г винной кислоты С4Н6О6⋅ последовательно растворяют в 66,0 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 88,0 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (88% мас.), SiO2 (10% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,0; Ni - 1,2; Со - 2,5; носитель - остальное; имеет удельную поверхность 226 м2/г, объем пор 0,68 см3/г и средний диаметр пор 6,4 нм (табл. 1).
Пример 7
Для приготовления пропиточного раствора 27,4 г H6[Со2Мо10О38Н4], 5,2 г NiCO3⋅Ni(ОН)2⋅4Н2О и 3,7 г гликолевой кислоты C2H4O3⋅ последовательно растворяют в 49,9 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 66,6 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,1; Ni - 2,2; Со - 1,5; носитель - остальное; имеет удельную поверхность 232 м2/г, объем пор 0,51 см3/г и средний диаметр пор 5,5 нм (табл. 1).
Пример 8
Для приготовления пропиточного раствора 37,3 г Н3[Со(ОН)6Mo6O18], 7,6 г NiCO3⋅1,5Ni(ОН)2⋅Н2О и 10,6 г винной кислоты С4H6О6⋅ последовательно растворяют в 76,5 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 102,0 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.), SiO2 (5% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 150°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас.%: Мо - 15,0; Ni - 3,0; Со - 1,5; носитель - остальное; имеет удельную поверхность 228 м2/г, объем пор 0,55 см3/г и средний диаметр пор 6,1 нм (табл. 1).
Пример 9
Для приготовления пропиточного раствора 22,0 г Н4[Ni(ОН)6Mo6O18], 4,7 г Со(СО3)⋅Н2О и 9,2 г лимонной кислоты С6Н8О7⋅ последовательно растворяют в 53,0 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 70,7 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (85% мас.), SiO2 (10% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,6; Ni - 1,0; Со - 2,1; носитель - остальное; имеет удельную поверхность 221 м2/г, объем пор 0,59 см3/г и средний диаметр пор 6,4 нм (табл. 1).
Пример 10
Для приготовления пропиточного раствора 37,0 г H6[Со2Мо10О38Н4], 7,1 г Ni(СО3)⋅Н2О и 6,0 г молочной кислоты С3Н6О3⋅ последовательно растворяют в 62,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 83,2 см3. рН пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (100% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 15,0; Ni - 2,8; Со - 1,8; носитель - остальное; имеет удельную поверхность 245 м2/г, объем пор 0,64 см3/г и средний диаметр пор 5,6 нм (табл. 1).
Испытания катализаторов проводили в процессе гидроочистки растительного и нефтяного углеводородного сырья. В качестве смесевого сырья использовали: смесь прямогонной дизельной фракции (95%) и растительного масла (5%) (содержание серы 0,88% мас.); прямогонной дизельной фракции (85%) и растительного масла (15%) (содержание серы 0,79% мас.).
В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Сульфидирование проводили смесью диметилдисульфида и керосиновой фракции при 240°С в течение 10 ч и при 340°С в течение 10 ч.
Условия испытания: давление водорода 4.0 МПа, кратность циркуляции водорода 500 нл/л сырья, объемная скорость подачи сырья 1.5 ч-1 и 1.0 ч-1, температура в реакторе 340°С при испытании смеси с добавлением 5% растительного масла и 360°С при испытании смеси с добавлением 15% растительного масла. Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660. Стабильность работы катализатора оценивали в жестких условиях по ускоренной степени дезактивации: давление водорода 1.0 МПа, кратность циркуляции водорода 150 нл/л сырья, объемная скорость подачи сырья 2.0 ч-1, температура в реакторе 380°С, процесс вели в течение 50 ч. Активность катализаторов в ГДС оценивали по формуле:
Figure 00000002
где ГДС - степень гидрообессеривания (%);
Figure 00000003
- содержание серы в сырье, (ppm); Cs - содержание серы в гидрогенизате (ppm).
Стабильность работы катализатора оценивали по степени ускоренной дезактивации и рассчитывали по формуле:
Figure 00000004
где
Figure 00000005
- содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре Т°С до ускоренной дезактивации, ppm;
Figure 00000006
- содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре Т°С после ускоренной дезактивации, ppm; для сырья с 5% РМ Т=340°С, для сырья с 15% РМ Т=360°С.
Степень гидродеоксигенации (ГДО) растительных масел оценивали по изменению концентрации триглицеридов жирных кислот, определяемой методом ИК-спектроскопии.
Результаты испытаний катализаторов представлены в табл. 2.
Figure 00000007
Заявляемые катализаторы превосходят по активности и сравнимы по стабильности с прототипом, предлагаемые катализаторы позволяют получать гидрогенизат с содержанием серы менее 10 ppm при переработке смеси растительного и нефтяного сырья. Показатели процесса при гидроочистке растительного и нефтяного углеводородного сырья позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления.

Claims (5)

1. Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья, включающий в свой состав кобальт, никель, молибден и оксид алюминия, отличающийся тем, что он содержит в прокаленном при 550°С состоянии: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас. и Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м2/г, удельный объем пор 0,3-1,1 см3/г, средний диаметр пор 4,0-10,0 нм.
2. Катализатор по п. 1, отличающийся тем, что в качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-5 мас. %.
3. Способ приготовления катализатора совместной гидроочистки смеси растительного и нефтяного углеводородного сырья, включающий пропитку носителя по влагоемкости с последующей сушкой, отличающийся тем, что вакуумированный носитель, содержащий оксид алюминия, однократно пропитывают водным раствором предшественников активных компонентов, содержащим молибденовую гетерополикислоту, комплексонат никеля или кобальта с карбоновой кислотой; при этом в полученном катализаторе, прокаленном при 550°С, содержится: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас. и Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м2/г, удельный объем пор 0,3-1,1 см3/г, средний диаметр пор 4,0-10,0 нм.
4. Способ приготовления катализатора по п. 3, отличающийся тем, что в качестве молибденовой гетерополикислоты используют одну из ряда H6[Co2Mo10O38H4], Н3[Со(ОН)6Mo6O18], H4[Ni(OH)6Mo6O18], Н7[PMo11CoO40], в качестве прекурсора комплексоната кобальта используется один из ряда кобальт углекислый СоСО3⋅nH2O (n=0-4), кобальт углекислый основной СоСО3⋅mCo(ОН)2⋅nH2O (m=0-2, n=0,5-4), в качестве прекурсора комплексоната никеля используется один из ряда никель углекислый NiCO3⋅nH2O (n=0-4), никель углекислый основной NiCO3⋅mNi(OH)2⋅nH2O (m=0-2, n=0,5-4), в качестве карбоновой кислоты используют как минимум одну из следующего ряда: лимонная кислота C6H8O7, молочная кислота С3Н6О3, винная кислота С4Н6О6, гликолевая кислота С2Н4О3.
5. Способ приготовления катализатора по п. 3, отличающийся тем, что после пропитки катализатор сушат при температуре 100-160°С в потоке воздуха или азота.
RU2017146465A 2017-12-28 2017-12-28 Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления RU2707867C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146465A RU2707867C2 (ru) 2017-12-28 2017-12-28 Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146465A RU2707867C2 (ru) 2017-12-28 2017-12-28 Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Publications (3)

Publication Number Publication Date
RU2017146465A RU2017146465A (ru) 2019-07-01
RU2017146465A3 RU2017146465A3 (ru) 2019-07-17
RU2707867C2 true RU2707867C2 (ru) 2019-12-02

Family

ID=67209930

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146465A RU2707867C2 (ru) 2017-12-28 2017-12-28 Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2707867C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741303C1 (ru) * 2019-12-27 2021-01-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243554A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Molybdenum disulfide catalyst and the preparation thereof
RU2534999C1 (ru) * 2013-09-27 2014-12-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ гидроочистки углеводородного сырья
RU2569682C2 (ru) * 2012-11-14 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
WO2016173759A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE DE y-VALEROLACTONE ET/OU DE SES PRODUITS D'HYDROLYSE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE
UZ5423C (ru) * 2013-07-12 2017-07-31

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243554A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Molybdenum disulfide catalyst and the preparation thereof
RU2569682C2 (ru) * 2012-11-14 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
UZ5423C (ru) * 2013-07-12 2017-07-31
RU2534999C1 (ru) * 2013-09-27 2014-12-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ гидроочистки углеводородного сырья
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
WO2016173759A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE DE y-VALEROLACTONE ET/OU DE SES PRODUITS D'HYDROLYSE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741303C1 (ru) * 2019-12-27 2021-01-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Also Published As

Publication number Publication date
RU2017146465A3 (ru) 2019-07-17
RU2017146465A (ru) 2019-07-01

Similar Documents

Publication Publication Date Title
Breysse et al. Overview of support effects in hydrotreating catalysts
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
TWI629100B (zh) 包含雜環極性化合物之氫化處理觸媒組合物、製造該觸媒之方法及使用該觸媒之方法
KR101521313B1 (ko) 탄화수소 공급원료의 촉매적 수소화처리에 유용한 조성물, 이 촉매의 제조방법 및 이 촉매의 사용방법
RU2573561C2 (ru) Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
RU2678578C2 (ru) Способ изготовления катализатора гидроочистки
US9586199B2 (en) Composition having an active metal or precursor, an amine component and a non-amine containing polar additive useful in the catalytic hydroprocessing of hydrocarbons, a method of making such catalyst, and a process of using such catalyst
RU2639159C2 (ru) Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья
TW201402208A (zh) 改良之含氧化鈦之殘餘氫化處理觸媒
CN101016479B (zh) 使用具有控制孔隙度的催化剂的选择性氢化方法
CN103769222A (zh) 一种馏分油加氢处理催化剂
KR20090026768A (ko) 수소화 정제방법
Vlasova et al. Co‐processing of rapeseed oil—straight run gas oil mixture: Comparative study of sulfide CoMo/Al2O3-SAPO-11 and NiMo/Al2O3-SAPO-11 catalysts
RU2707867C2 (ru) Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления
US9006126B2 (en) Additive impregnated composition useful in the catalytic hydroprocessing of hydrocarbons, a method of making such catalyst, and a process of using such catalyst
Zhang et al. Improving both the activity and selectivity of CoMo/δ-Al2O3 by phosphorous modification for the hydrodesulfurization of fluid catalytic cracking naphtha
Lee et al. Effects of transition metal addition to CoMo/γ-Al2O3 catalyst on the hydrotreating reactions of atmospheric residual oil
RU2689416C1 (ru) Способ гидрооблагораживания триглицеридов жирных кислот в смеси с нефтяными фракциями
RU2676260C2 (ru) Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления
CN109294613B (zh) 一种油脂类原料制备烃燃料的方法
RU2534999C1 (ru) Способ гидроочистки углеводородного сырья
JP2017125113A (ja) 炭化水素留分の製造方法
CN103801311B (zh) 一种加氢处理催化剂的制备方法
RU2602278C1 (ru) Катализатор и процесс гидродеоксигенации растительного сырья с его использованием

Legal Events

Date Code Title Description
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20190814

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210608

Effective date: 20210608