WO2017212971A1 - 研摩液及び研摩物の製造方法 - Google Patents

研摩液及び研摩物の製造方法 Download PDF

Info

Publication number
WO2017212971A1
WO2017212971A1 PCT/JP2017/019901 JP2017019901W WO2017212971A1 WO 2017212971 A1 WO2017212971 A1 WO 2017212971A1 JP 2017019901 W JP2017019901 W JP 2017019901W WO 2017212971 A1 WO2017212971 A1 WO 2017212971A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing liquid
weak acid
acid
permanganate
Prior art date
Application number
PCT/JP2017/019901
Other languages
English (en)
French (fr)
Inventor
松尾 賢
雅之 松山
彰記 熊谷
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US16/305,266 priority Critical patent/US20200332163A1/en
Priority to CN201780031950.2A priority patent/CN109392311B/zh
Priority to JP2017553430A priority patent/JP6301571B1/ja
Publication of WO2017212971A1 publication Critical patent/WO2017212971A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a polishing liquid containing permanganate ions and a method for producing an abrasive using the polishing liquid.
  • power semiconductor elements called so-called power devices use silicon carbide, gallium nitride, diamond, etc. instead of silicon conventionally used as a substrate for the purpose of increasing the breakdown voltage and increasing the current. It has been proposed. Since these substrates made of silicon carbide or the like have a large band gap as compared with the silicon substrate, they can withstand higher voltages. The reason why the substrate made of silicon carbide, gallium nitride or the like has a high withstand voltage characteristic is considered to be derived from the fact that the atomic arrangement of atoms constituting silicon carbide or the like is denser than silicon.
  • a substrate made of silicon carbide, gallium nitride or the like has a problem that it cannot be polished with a conventionally used polishing material because of its particularly high hardness.
  • Silicon carbide or the like has a particularly high hardness because the atomic arrangement is dense as described above, and the hardness is Mohs hardness, which is about 9 for silicon carbide and gallium nitride and 10 for diamond. .
  • Mohs hardness which is about 9 for silicon carbide and gallium nitride and 10 for diamond.
  • polishing is performed using diamond or the like, only mechanical polishing proceeds, and defects and distortions are likely to occur in the substrate due to this, which may result in lack of device reliability. Such a tendency becomes more emphasized as the hardness of the substrate is higher.
  • U.S. Patent No. 6,057,049 contains an aqueous CMP composition containing a particulate silica abrasive present at a concentration in the range of about 0.1-5 weight percent and an acidic buffer that provides a pH in the range of about 2-7.
  • Patent Document 1 states that the polishing rate ratio (selectivity) of silicon carbide to silicon dioxide can be increased by an aqueous CMP composition comprising abrasive grains and an acidic buffer.
  • Patent Document 2 a polishing liquid containing permanganate ions and water is supplied to a polishing pad, the surface to be polished of a non-oxide single crystal substrate is brought into contact with the polishing pad, and polishing is performed by relative movement between the two.
  • the polishing liquid supplied to the polishing pad and used for polishing is recovered, and the polishing liquid is circulated by repeatedly performing the operation of supplying the recovered polishing liquid to the polishing pad again.
  • a non-oxide single crystal substrate polishing method is described in which the pH of the polishing liquid at the time of polishing a polished surface is adjusted to 5 or less. This document describes that this method can maintain a high polishing speed even if polishing is performed for a long time.
  • Patent Document 1 the polishing rate of the aqueous CMP composition is not sufficient in a method that does not use permanganate ions and does not use weak acid salts. Further, Patent Document 1 does not describe or suggest any problem of suppressing a decrease in polishing speed when polishing is performed for a long time by repeatedly using a polishing liquid. In addition, the method of Patent Document 2 has a problem in that the labor and cost of managing equipment and polishing liquid are large.
  • An object of the present invention is to provide a polishing liquid that can eliminate the various disadvantages of the above-described prior art and a method for producing an abrasive using the same.
  • the present invention provides a polishing liquid containing permanganate ions, a weak acid, and a soluble salt thereof.
  • the present invention also provides a method for producing an abrasive by polishing using the polishing liquid.
  • FIG. 1 is a graph showing changes over time in the pH of the polishing liquids of Comparative Example 1, Comparative Example 2, and Example 1.
  • FIG. 2 is a graph showing the change over time in the pH of the polishing liquids of Comparative Example 3 and Example 2.
  • FIG. 3 is a graph showing the change over time in the pH of the polishing liquids of Comparative Example 4 and Example 3.
  • the present embodiment relates to a polishing liquid containing permanganate ions and further containing a weak acid and a soluble salt thereof.
  • Permanganate ions are supplied from permanganate.
  • the permanganate include an alkali metal salt of permanganate, an alkaline earth metal salt of permanganate, and an ammonium salt of permanganate.
  • the permanganate serving as the source of permanganate ion (MnO 4 ⁇ ) is preferably an alkali metal salt of permanganate.
  • Sodium permanganate or potassium permanganate is more preferred. These may be used alone or in combination of two or more.
  • the amount of permanganate ion (MnO 4 ⁇ ) in the polishing liquid is 0.1% by mass or more in the polishing liquid from the viewpoint of sufficiently enhancing the effect of suppressing a reduction in polishing rate due to the use of a weak acid and its soluble salt. It is preferable that Further, the amount of permanganate ion (MnO 4 ⁇ ) in the polishing liquid is 20 from the viewpoint of ensuring the safety of handling of the polishing liquid and the point that the polishing speed tends to be saturated even if the addition amount is increased. More preferably, it is 0.0 mass% or less.
  • the amount of permanganate ion (MnO 4 ⁇ ) in the polishing liquid is more preferably 0.1% by mass or more and 20.0% by mass or less, and further preferably 0.2% by mass or more. 10 mass% or less, Furthermore, 0.5 mass% or more and 5 mass% or less are preferable.
  • the amount of permanganate ion (MnO 4 ⁇ ) can be measured by ion chromatography or absorptiometric analysis.
  • polishing start is demonstrated.
  • the polishing liquid of this embodiment contains a weak acid and a soluble salt thereof, so that a decrease in the polishing speed is suppressed, and a high polishing speed can be maintained even when the polishing liquid is used repeatedly for a long time.
  • polishing high hardness materials such as silicon carbide and gallium nitride
  • the present inventors have a high initial polishing speed, but as the polishing proceeds, the polishing speed increases. Has been found to decrease rapidly, particularly that this phenomenon is significant when the concentration of permanganate ions is high.
  • a weak acid and its soluble salt it was found that the rapid decrease in the polishing rate can be effectively suppressed by using a weak acid and its soluble salt.
  • the weak acid refers to an acid having a small acid dissociation constant, and preferably an acid having a pKa at 25 ° C. of 1.0 or more.
  • pKa here refers to pKa1.
  • pKan (n represents an arbitrary integer of 2 or more) is preferably 3.0 or more.
  • Acids having a pKa of 1.0 or more include acetic acid, phosphoric acid, formic acid, butyric acid, lauric acid, lactic acid, malic acid, citric acid, oleic acid, linoleic acid, benzoic acid, oxalic acid, succinic acid, malonic acid, maleic acid
  • organic acids having a carboxylic acid group such as acid and tartaric acid
  • inorganic acids such as boric acid, hypochlorous acid, hydrogen fluoride and hydrosulfuric acid can be mentioned.
  • an organic acid having a carboxylic acid group is preferable.
  • acetic acid, phosphoric acid, and formic acid are preferable because they have a high effect of preventing a reduction in the polishing speed in long-time polishing due to containing a combination of permanganate ions and weak acids and soluble salts thereof. It is preferable from the viewpoint of both cost and performance. These can be used alone or in combination of two or more.
  • the weak acid soluble salts include neutral salts with strong bases, such as alkali metal salts and alkaline earth metal salts.
  • an alkali metal salt is preferable from the viewpoint of availability and solubility.
  • a sodium salt and / or a potassium salt is more preferable, and a sodium salt is particularly preferable.
  • the soluble salt is preferably dissolved in an amount of 1.0 g or more with respect to 100 mL of water at 25 ° C., more preferably 10 g or more.
  • the present inventors considered that the sharp decrease in the polishing rate was caused by the excessive reaction of the reaction formula (1), and intensively studied a method for suppressing this phenomenon. And it thought that this phenomenon could be suppressed by including a weak acid and its soluble salt.
  • the polishing liquid contains a weak acid and its soluble salt in addition to permanganate ions, the following dissociation reaction occurs in the polishing liquid.
  • HA represents a weak acid
  • H + represents a hydrogen ion
  • a ⁇ represents an anion of the weak acid
  • BA represents a soluble salt of the weak acid
  • B + represents a cation of the soluble salt.
  • the dissociation reaction of the weak acid HA represented by the formula (2) is suppressed due to the presence of a certain amount of A ⁇ ions due to the dissociation of the soluble salt BA represented by the formula (3) in the polishing liquid.
  • the present inventors thought that excessive oxidation reaction of permanganate ions can be prevented by controlling the amount of hydrogen ions in the polishing liquid by the presence of a weak acid and a soluble salt. Then, when polishing with a polishing liquid containing permanganate ions in the presence of a weak acid and a soluble salt was actually performed, a pH increase during polishing occurred slowly, and at the same time, a decrease in polishing speed was effectively suppressed. I found out.
  • the polishing liquid of this embodiment compared to the case where no weak acid and its soluble salt are contained, for example, if the initial pH is 6 or less, the slope of the pH increase from pH 7 to 8 with respect to time is gradual. In addition, even when the polishing time further elapses, the change in the inclination hardly occurs. Therefore, in the polishing liquid of the present embodiment, the slope up to pH 7 to 8 is more gradual than when the weak acid and its soluble salt are not included, and the change in the slope is small even when the polishing time further elapses. Therefore, the graph of pH change is close to a straight line. As described above, for the first time, it has been clarified in the present invention that the decrease in the polishing rate can be effectively suppressed when the increase in pH is moderated.
  • the total content of the weak acid and the soluble salt thereof in the polishing liquid is preferably an amount that satisfies the pH and buffering capacity of the polishing liquid described later, but the number of moles of anions of the weak acid is, for example, 0. It is preferable that it is 0.001 mol / L or more from the viewpoint that an early decrease in the polishing rate can be effectively prevented. Further, the total content of the weak acid and its soluble salt in the polishing liquid is, for example, 1 mol / L or less in terms of the number of moles of the anion of the weak acid, which makes it easy to use the polishing liquid and suppresses the generation of odorous gas from the slurry. It is preferable from the point.
  • the total content of the weak acid and its soluble salt in the polishing liquid is more preferably 0.01 mol / L or more and 0.1 mol / L or less as the number of moles of anions of the weak acid.
  • the total content of the weak acid and its soluble salt in the polishing liquid can be measured, for example, by converting the weak acid to a soluble salt and then determining the concentration of the weak acid using potentiometric titration.
  • the content of the soluble salt of the weak acid in the polishing liquid is preferably 0.05 mol or more and 20 mol or less with respect to 1 mol of the weak acid. More preferably, it is 1 mol or more and 10 mol or less.
  • the content of the soluble salt in the polishing liquid can be measured using, for example, a potentiometric titration method.
  • the polishing liquid before the start of polishing is acidic from the viewpoint that the reaction of the above reaction formula (1) by permanganate ions is promoted and polishing is efficiently performed.
  • the pH of the polishing liquid before starting polishing is preferably 6 or less at 25 ° C., more preferably 5 or less, and particularly preferably 4 or less.
  • the pH of the polishing liquid before starting polishing is preferably 0.5 or more at 25 ° C., more preferably 1.0 or more from the viewpoint of handling safety and control of hydrogen ions in the polishing liquid. It is especially preferable that it is 1.5 or more.
  • the polishing liquid of the present embodiment has a high pH buffering ability, which effectively suppresses excessive oxidation of permanganate ions and suppresses a rapid decrease in polishing rate.
  • This buffer capacity is the pH adjusted at the time when a 0.1 mol / L sodium hydroxide aqueous solution was added to 100 mL of a polishing solution whose pH was adjusted to 3.0 or more and 4.0 or less at 25 ° C. It is an index measured as the addition amount of an aqueous solution of sodium hydroxide required to increase from 0.5 to 0.5.
  • the buffer capacity represented by the addition amount of the sodium hydroxide aqueous solution in the polishing liquid of this embodiment is preferably 0.1 mL or more and 100 mL or less, more preferably 1.0 mL or more and 50 mL or less. It is especially preferable that it is 0 mL or more and 10 mL or less.
  • the pH of the polishing liquid at the time of measuring the buffer capacity is adjusted by adding an aqueous solution of sodium hydroxide having a concentration of 0.1 mol / L, for example, when the pH of the polishing liquid is lower than 3.0. If it is higher than 0.0, it can be carried out by adding dilute sulfuric acid with a concentration of 0.05 mol / L. If the buffer capacity is within the above range, it may not be satisfied at any other pH in the range as long as the buffer capacity is satisfied at any one of the pHs in the range of 3.0 to 4.0. .
  • the polishing liquid of the present embodiment may or may not contain abrasive grains. Even if this polishing liquid of this embodiment is used repeatedly for a long time, the polishing force resulting from the strong oxidizing power by permanganate ions can be maintained at a high level, so that a high polishing power can be obtained without containing abrasive grains. Have. In addition, it is preferable that the abrasive grains are not contained in that the possibility of the abrasive grains being agglomerated and scratching the polished product depending on the type of abrasive grains due to the buffering ability against the pH change of the polishing liquid. .
  • the use of abrasive grains in the polishing liquid of the present embodiment works in the direction of improving the polishing speed, and can further enhance the effect of preventing the polishing speed from being lowered when the polishing liquid is continuously used cyclically.
  • the abrasive grains include alumina, silica, manganese oxide, cerium oxide, zirconium oxide, iron oxide, silicon carbide, and diamond.
  • manganese oxide manganese oxide (II) (MnO), dimanganese trioxide (III) (Mn 2 O 3 ), manganese dioxide (IV) (MnO 2 ), trimanganese tetroxide (II, III) (Mn 3 O 4 ) and the like can be applied.
  • cerium oxide a zirconium oxide, and an iron oxide
  • cerium oxide a zirconium oxide
  • iron oxide a well-known thing can be used. These may be used alone or in combination of two or more.
  • silica, manganese dioxide, or alumina because the effect of preventing a decrease in the polishing rate by using a weak acid and its soluble salt is effectively exhibited.
  • the average particle size of the abrasive grains is preferably 0.01 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle diameter of the abrasive grains made of metal oxide here refers to the diameter (d 50 ) at which the volume fraction is 50% in the particle size distribution measured by the laser diffraction / scattering method. Specifically, the average particle diameter is measured by the method of Examples described later.
  • the amount of the abrasive grains is intended to increase the polishing speed of the high-hardness material, to ensure suitable fluidity of the abrasive grains in the polishing liquid, and to prevent aggregation.
  • it is preferably 0.001% by mass or more and 50% by mass or less, more preferably 0.01% by mass or more and 30% by mass or less, and more preferably 0.1% by mass or more and 10% by mass in the polishing liquid. It is particularly preferable that the content is not more than mass%.
  • the polishing liquid of this embodiment may contain a specific inorganic compound in addition to permanganate ions, weak acids and soluble salts thereof.
  • the specific inorganic compound is added to a 1.0% by mass aqueous solution of permanganate contained in the polishing liquid so as to occupy 1.0% by mass in the aqueous solution of permanganate.
  • the reduction potential is higher than the redox potential of the aqueous permanganate solution before addition of the inorganic compound.
  • Such an inorganic compound is considered to be able to enhance the polishing rate by promoting the oxidation process of the high hardness material by permanganate ions.
  • the oxidation-reduction potential is measured at 25 ° C. based on a silver-silver chloride electrode. The oxidation-reduction potential can be measured, for example, by the method described in the examples below.
  • the specific inorganic compound has a redox potential of a solution obtained by adding 1.0% by mass to a 1.0% by mass aqueous solution of permanganate contained in the polishing liquid. It is preferably 10 mV or more higher than the oxidation-reduction potential of the aqueous manganate solution, more preferably 30 mV or more, and particularly preferably 50 mV.
  • a specific inorganic compound has a redox potential of a solution obtained by adding 1.0% by mass to a 1.0% by mass aqueous solution of permanganate,
  • the difference from the oxidation-reduction potential of the aqueous permanganate solution before adding the inorganic compound is preferably 700 mV or less.
  • the oxidation-reduction potential at 25 ° C. of a 1.0 mass% aqueous solution of potassium permanganate to which no inorganic compound has been added is usually about 770 mV.
  • An inorganic compound in which the redox potential of a solution obtained by adding 1.0% by mass in a 1.0% by mass aqueous solution of permanganate is higher than the redox potential of the permanganate aqueous solution examples include nitric acid, inorganic nitrate, transition metal salt, iron-containing complex, and peroxo acid salt. Any of these inorganic compounds is added in an amount of 0.01% by mass or more to a 1.0% by mass aqueous solution of permanganate, so that the oxidation-reduction potential of the resulting solution becomes an oxidation-reduction of the permanganate aqueous solution. It shows a property higher than the potential. By adding up to 1.0% by mass of the inorganic compound to the permanganate aqueous solution, the tendency to give to the redox potential in the solution can be clarified.
  • Examples of the inorganic nitrate include metal nitrates and metal nitrate complexes.
  • the metal nitrate include those represented by the general formula; M (NO 3 ) a (wherein M is a metal element, and a is the same number as the valence of the metal M).
  • Examples of the valence of the metal M in the general formula include a valence when the metal M acts as an oxidizing agent (electron acceptor). For example, if the metal M is iron, the valence is trivalent. If it is, it is tetravalent, However, It is not limited to this, Divalent iron, trivalent cerium, etc. are also included.
  • the metal nitrate complex examples include metal nitrate ammine complexes.
  • Examples of the valence of the metal M in the general formula include, but are not limited to, the valence when the metal M normally acts as an oxidizing agent (electron acceptor).
  • the inorganic nitrate preferably contains a transition metal.
  • transition metal nitrates containing transition metals include transition metal nitrates and transition metal nitrate complexes.
  • transition metal in the transition metal nitrate and transition metal nitrate complex include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium.
  • Rare earth elements such as iron (Fe), nickel (Ni) and cobalt (Co); copper group elements such as copper (Cu) and the like.
  • a rare earth element is more preferable, and cerium (Ce) is particularly preferable from the viewpoint of availability and a high effect of improving the polishing rate when used as a specific additive.
  • the metal nitrate include scandium nitrate (Sc (NO 3 ) 3 ), yttrium nitrate (Y (NO 3 ) 3 ), lanthanum nitrate (La (NO 3 ) 3 ), cerium nitrate (Ce (NO 3 ) 3 ), Praseodymium nitrate (Pr (NO 3 ) 3 ), neodymium nitrate (Nb (NO 3 ) 3 ), samarium nitrate (Sm (NO 3 ) 3 ), europium nitrate (Eu (NO 3 ) 3 ), gadolinium nitrate (Gd) (NO 3 ) 3 ), terbium nitrate (Tb (NO 3 ) 3 ), dysprosium nitrate (Dy (NO 3 ) 3 ), holmium nitrate (Ho (NO 3 ) 3 ), erbium nitrate (Er (NO 3 ) 3 ), hol
  • Copper group element nitrates are preferred, rare earth element nitrates are preferred, and preferred examples of metal nitrate complexes include cerium (IV) ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]) and the like. These may be anhydrous or hydrated.
  • the metal nitrate and metal nitrate complex refers to the metal nitrate and metal nitrate complex as the polishing liquid or described later.
  • Permanganic acid in the second agent It is oxidized those valences such metals were in the form of different compounds by changing the also included.
  • Transition metal salts other than nitrates include transition metal fluorides, transition metal chlorides, transition metal bromides, transition metal iodides, transition metal halides, transition metal sulfates, transition metal acetates, etc. Among these, transition metal chlorides and transition metal sulfates are preferred.
  • Examples of the valence of the transition metal in the transition metal salt other than nitrate include, but are not limited to, the valence when the transition metal normally acts as an oxidizing agent (electron acceptor).
  • Examples of the transition metal in the transition metal chloride and the transition metal sulfate include those mentioned above.
  • transition metal chlorides include scandium chloride (ScCl 3 ), yttrium chloride (YCl 3 ), lanthanum chloride (LaCl 3 ), cerium chloride (CeCl 3 ), praseodymium chloride (PrCl 3 ), neodymium chloride (NbCl 3 ), Samarium chloride (SmCl 3 ), europium chloride (EuCl 3 ), gadolinium chloride (GdCl 3 ), terbium chloride (TbCl 3 ), dysprosium chloride (DyCl 3 ), holmium chloride (HoCl 3 ), erbium chloride (ErCl 3 ), chloride thulium (TmCl 3), ytterbium chloride (YbCl 3), chlorides of rare earth elements such as lutetium chloride (LuCl 3); ferrous chloride (FeCl 2), ferric chloride (FeCl 3), ferr
  • Transition metal sulfates include scandium sulfate (Sc (SO 4 ) 3 ), yttrium sulfate (Y (SO 4 ) 3 ), lanthanum sulfate (La (SO 4 ) 3 ), cerium sulfate (III) (Ce 2 ( SO 4 ) 3 ), cerium sulfate (IV) (Ce (SO 4 ) 2 ), praseodymium sulfate (Pr (SO 4 ) 3 ), neodymium sulfate (Nb (SO 4 ) 3 ), samarium sulfate (Sm (SO 4 )) 3 ), europium sulfate (Eu (SO 4 ) 3 ), gadolinium sulfate (Gd (SO 4 ) 3 ), terbium sulfate (Tb (SO 4 ) 3 ), dysprosium sulfate (Dy (SO 4 ) 3 ),
  • iron-containing complex examples include ferricyanide salts such as potassium ferricyanide (K 3 [Fe (CN) 6 ]) and sodium ferricyanide (Na 3 [Fe (CN) 6 ]).
  • ferricyanide salts such as potassium ferricyanide (K 3 [Fe (CN) 6 ]) and sodium ferricyanide (Na 3 [Fe (CN) 6 ]).
  • peroxo acid salts include percarbonates, perborates, and persulfates.
  • the peroxoacid salt is preferably a persulfate from the viewpoint of further improving the polishing rate of the polishing material of the present embodiment, more preferably an alkali metal salt of a persulfate, especially potassium peroxodisulfate (K 2 S 2). O 8 ) or sodium peroxodisulfate (Na 2 S 2 O 8 ) is preferably used.
  • the inorganic compounds when an inorganic nitrate containing nitric acid or a transition metal is contained, when the high-hardness material is polished for a long time using the polishing liquid of the present embodiment, the effect of improving the polishing speed is further maintained for a long time. Therefore, it is preferable.
  • the content of the inorganic compound is 0.01% by mass or more and 10. It is preferably 0% by mass or less, more preferably 0.02% by mass or more and 4.0% by mass or less, and particularly preferably 0.05% by mass or more and 2.0% by mass or less.
  • the polishing liquid of this embodiment contains an inorganic nitrate containing a transition metal as the inorganic compound, the amount of inorganic nitrate is 0.02 in the polishing liquid from the viewpoint of increasing the polishing rate by the polishing liquid of this embodiment.
  • the amount is preferably in an amount of not less than 1.0% by mass and not more than 1.0% by mass, and more preferably in an amount of not less than 0.05% by mass and not more than 0.5% by mass.
  • the amount of the inorganic compound is measured using fluorescent X-ray analysis (XRF), inductively coupled plasma (ICP) emission spectroscopy, or the like.
  • the polishing liquid of this embodiment contains a permanganate ion, a weak acid, a soluble salt thereof, and a dispersion medium for dissolving or dispersing the abrasive grains and the inorganic compound as necessary.
  • the dispersion medium include water, water-soluble organic solvents such as alcohol and ketone, or a mixture thereof from the viewpoint of enhancing the effect of improving the polishing rate by using a weak acid and a soluble salt.
  • the content of the dispersion medium in the polishing liquid is preferably 60% by mass or more and 99.9% by mass or less, and more preferably 80% by mass or more and 98% by mass or less.
  • the polishing liquid of the present embodiment can contain the above-described permanganate ions, weak acid, and soluble salts thereof, and optionally additives other than abrasive grains, the inorganic compound, and the dispersion medium.
  • optional additives include a dispersant, a pH adjuster, a viscosity adjuster, a chelating agent, and a rust preventive agent.
  • the content of permanganate, weak acid, and its soluble salt, abrasive grains and components other than the inorganic compound (excluding the dispersion medium) is preferably 40% by mass or less, and 20% by mass. % Or less is more preferable, and 10% by mass or less is particularly preferable.
  • the polishing liquid of the present embodiment is not limited to the preparation method thereof, and permanganate ions, weak acids and soluble salts thereof, and if necessary, abrasive grains, inorganic compounds, and a dispersion medium may be appropriately mixed.
  • the polishing liquid may be, for example, a kit in which the constituent components are divided into two or more agents.
  • the configuration of the kit in this case is appropriately configured in such a form that the polishing ability is sufficiently exhibited when the polishing liquid is prepared.
  • the permanganate ion, the weak acid and its soluble salt are preferably the same agent from the viewpoint of preventing deterioration due to permanganate ion decomposition during long-term storage.
  • the manufacturing method of the present embodiment is a method for polishing an object to be polished using the polishing liquid of the present embodiment to obtain an abrasive.
  • the Mohs hardness is a numerical value for hardness based on how the standard material is scratched.
  • standard materials from 1 to 10 are designated in order from soft ones.
  • Mohs hardness 1 is talc
  • 2 is gypsum
  • 3 is calcite
  • 4 is fluorite
  • 5 is Apatite
  • 6 plagioclase
  • 7 is quartz
  • 8 is topaz
  • 9 is corundum
  • 10 is diamond.
  • the Mohs hardness can be measured by a conventional method using a Mohs hardness meter.
  • the high hardness material having a Mohs hardness of 8 or more include silicon carbide, gallium nitride, and diamond.
  • Such a method of manufacturing an abrasive according to this embodiment can be applied to, for example, a finishing CMP (chemical mechanical polishing) process after lapping a substrate made of a high hardness material.
  • “abrasive object” means an object to be polished by the polishing liquid
  • abrasive object means an object obtained by polishing.
  • a polishing liquid containing permanganate ions and water is supplied to the polishing pad, the surface to be polished of the object to be polished and the polishing pad are brought into contact with each other, It is a method of polishing by exercise.
  • the polishing liquid may be poured, but the polishing liquid supplied to the polishing pad and used for polishing is recovered, and the recovered polishing liquid is again applied to the polishing pad. It is preferable to employ a method in which the polishing liquid is circulated by repeatedly performing the supplying operation.
  • the polishing liquid When the polishing liquid is circulated, the number of repetitions does not need to be many, and it is only necessary to have a step of reusing the polishing liquid used for the single polishing. Further, during the polishing process while circulating the polishing liquid, pH adjustment such as addition of acid may be performed, but the present invention can maintain the polishing speed without performing such adjustment. It is. In this embodiment, even when the polishing liquid is circulated and used repeatedly as described above, it is possible to prevent a reduction in the polishing speed, and to achieve both reduction in cost and polishing efficiency.
  • a polishing apparatus to be used a conventionally known apparatus is used, and may be a single-side polishing apparatus or a double-side polishing apparatus.
  • the polishing pad for example, a nonwoven fabric conventionally used in this field, a pad formed by impregnating a resin such as polyurethane or epoxy, and a suede material can be used.
  • the polishing pressure 10 g / cm 2 or more 10000 g / cm 2 or less, it is particularly 50 g / cm 2 or more 5000 g / cm 2 or less, from the viewpoint of handling easiness of the abrasive force and grinding jig.
  • Examples of polished articles manufactured using the polishing liquid of the present embodiment include, for example, SiC substrates for epitaxial growth, SiC thin films, SiC thin films epitaxially grown on Si substrates, SiC sintered bodies, GaN substrates, diamond substrates, and the like. Can be mentioned.
  • Example 1 Pure water, potassium permanganate (KMnO 4 ), acetic acid, and sodium acetate were mixed so that permanganate ions, acetic acid, and sodium acetate had the concentrations shown in Table 1 below, to prepare a polishing liquid.
  • the pH (25 ° C.) of the obtained polishing liquid before starting polishing was measured. This is shown in Table 1 as the initial pH.
  • the pH is increased by 0.5 when an aqueous solution of sodium hydroxide having a concentration of 0.1 mol / L is added to 100 mL of a polishing solution whose pH is adjusted to 3.0 or more and 4.0 or less at 25 ° C. as a buffer capacity.
  • the amount (mL) of an aqueous solution of sodium hydroxide required until the measurement was measured.
  • the pH of the polishing liquid is adjusted by adding an aqueous solution of sodium hydroxide having a concentration of 0.1 mol / L when the pH of the polishing liquid is lower than 3.0, and when the pH is higher than 4.0. This was performed by adding dilute sulfuric acid at a concentration of 0.05 mol / L.
  • Table 1 The adjusted pH and the obtained buffer capacity results are shown in Table 1 below.
  • the pH was measured using a pH electrode 9615S-10D manufactured by HORIBA, Ltd. (hereinafter the same applies to other examples and comparative examples).
  • the polishing liquids of Comparative Examples 1 and 2 and Example 1 were each subjected to the following ⁇ polishing test>, and the polishing rate (polishing rate) from the start of polishing to 24 hours later was measured.
  • Table 1 shows the polishing rate at the initial stage (2 hours from the start of polishing), the total polishing amount after 24 hours from the start of polishing, and the reduction rate of the polishing rate at 8 hours after the start of polishing with respect to the initial polishing rate.
  • FIG. 1 shows the pH at 25 ° C. of the polishing liquid at each time point 2, 4, 6, 8, and 24 hours after the start of polishing.
  • polishing was performed according to the following procedure.
  • a polishing target a lapped 4H—SiC substrate having a diameter of 3 inches and an off angle of 4 ° was used. Polishing was performed on the Si surface of the substrate.
  • a polishing apparatus a single-side polishing machine BC-15 manufactured by MT Corporation was used. SUBA # 600 manufactured by Nitta Haas was used as the polishing pad attached to the surface plate.
  • the rotation speed of the platen was set to 60 rpm, and the outer peripheral speed was set to 7163 cm / min.
  • the carrier rotation speed was set to 60 rpm, and the outer peripheral speed was set to 961 cm / min.
  • the polishing pressure was 210 g / cm 2 .
  • the supply amount of the polishing liquid was 200 mL / min. Under this condition, 1.0 L of polishing liquid was repeatedly used as described above.
  • the polishing rate ( ⁇ m / h) was measured from the difference in mass of the substrate before and after polishing and the density of SiC (3.10 g / cm 3 ).
  • the total polishing amount (thickness) after 24 hours from the start of polishing was also measured by the same calculation method as described above.
  • the polishing liquid of Example 1 shows that the increase in pH per hour is almost constant, and the hydrogen ion concentration is controlled. Further, as shown by the polishing rate reduction rate (8h) in Table 1, the polishing liquid of Example 1 is the conventional polishing liquid described in Comparative Example 1 which is composed of permanganate ions and does not contain weak acids and salts thereof. Further, as compared with the polishing liquid containing permanganate ions and acetic acid but not containing a weak acid salt as in Comparative Example 2, the polishing rate can be maintained for a long time. Therefore, the polishing liquid of the present invention can reduce the frequency of the polishing liquid exchange in the polishing work of high hardness materials such as silicon carbide and gallium nitride, and has the effect of further improving productivity.
  • the oxidation-reduction potential of a solution obtained by adding CAN to a 1.0% aqueous solution of permanganate to a concentration of 1.0% is 1291 mV at 25 ° C., and the permanganate before adding CAN
  • the redox potential of a 1.0% aqueous salt solution was 770 mV at 25 ° C.
  • the oxidation-reduction potential was measured by immersing an ORP electrode 9300-10D manufactured by HORIBA, Ltd. in these solutions at 25 ° C.
  • the polishing liquids of Comparative Example 3 and Example 2 were each subjected to the following ⁇ polishing test>, and the polishing rate was measured.
  • Table 2 shows the initial polishing rate (2 hours from the start of polishing), the total polishing amount 24 hours after the start of polishing, and the rate of decrease of the polishing rate 8 hours after the start of polishing with respect to the initial polishing rate.
  • FIG. 2 shows the pH of the polishing liquid at 25 ° C. at each time point 2, 4, 6, 8 and 24 hours after the start of polishing.
  • the polishing liquid of the present invention has a pH per hour of the polishing liquid even when a specific inorganic compound that becomes an oxidizing agent is used in addition to permanganate ions. Ascending was controlled at a constant level and a high polishing rate was maintained.
  • the average particle diameter d 50 is measured by carrying out ultrasonic dispersion treatment (30 W) for 3 minutes in order to disperse the oxide particles before the measurement, and by using a laser diffraction / scattering particle size distribution measuring device (Microtrac Bell Co., Ltd .: Microtrac MT3300EXII), particle permeability: refraction, true / non-spherical: non-spherical, particle refractive index: 1.46, solvent refractive index: 1.333 .
  • the polishing liquids of Comparative Example 4, Example 3 and 4 were each subjected to the following ⁇ polishing test>, and the polishing rate was measured.
  • Table 3 shows the polishing rate at the initial stage (2 hours from the start of polishing), the total polishing amount 24 hours after the start of polishing, and the decreasing rate of the polishing rate at 8 hours after the start of polishing with respect to the initial polishing rate. Further, FIG. 3 shows the pH at 25 ° C. of the polishing liquid at each time point 2, 4, 6, 8, and 24 hours after the start of polishing in Comparative Example 4 and Example 3.
  • the polishing liquid of the present invention is controlled to maintain a constant increase in the pH of the polishing liquid per hour and a decrease in the polishing rate even when abrasive grains are used.
  • the effect of preventing the polishing speed from being lowered when the polishing liquid is used for a long time can be exhibited.
  • a polishing liquid for polishing a high-hardness material such as silicon carbide or gallium nitride
  • a polishing liquid and a method for producing an abrasive using the polishing liquid can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明の研摩液は、過マンガン酸イオンと、弱酸と、その可溶性塩とを含む。研摩開始前におけるpHが25℃で0.5以上6.0以下であることが好ましい。25℃において、pHを3.0以上4.0以下に調整した前記研摩液100mLに、濃度0.1mol/Lの水酸化ナトリウムの水溶液を添加したときのpHが0.5上昇するまでに要する水酸化ナトリウムの水溶液の添加量が、0.1mL以上100mL以下であることも好ましい。弱酸が酢酸であることも好ましい。

Description

研摩液及び研摩物の製造方法
 本発明は、過マンガン酸イオンを含む研摩液及びそれを用いた研摩物の製造方法に関する。
 半導体デバイスのうち、いわゆるパワーデバイスと呼ばれる電力用半導体素子においては、高耐圧化や大電流化の目的で、基板として従来用いられてきたシリコンに代えて、炭化ケイ素、窒化ガリウム、ダイヤモンド等を用いることが提案されている。これら炭化ケイ素等からなる基板は、シリコン基板と比較して大きなバンドギャップを持つため、より高い電圧に耐えられるものとなる。炭化ケイ素や窒化ガリウム等からなる基板が高耐圧な特性を有するのは、炭化ケイ素等を構成する原子の原子配列が、シリコンに比べて密であることに由来すると考えられる。
 一方、炭化ケイ素や窒化ガリウム等からなる基板は、特に硬度が高いため、従来用いられてきた研摩材では、ほとんど研摩できないという問題を有している。炭化ケイ素等は、上述のように原子配列が密であることから、特に硬度の高いものとなり、その硬度は、モース硬度で炭化ケイ素や窒化ガリウムは約9、ダイヤモンドは10という高硬度材料である。しかしながら、ダイヤモンド等を用いて研摩すると、メカニカルな研摩のみが進行し、そのことに起因して基板中に欠陥や歪みが生じやすくなり、デバイスの信頼性に欠けるおそれがある。このような傾向は、基板の硬度が高いほど、より強調されるものとなる。
 前記問題に対応すべく、高硬度材料の研摩効率を高める観点から種々の技術が提案されている。
 例えば特許文献1には、約0.1~5重量パーセントの範囲の濃度で存在する粒子状シリカ研磨剤と約2~7の範囲のpHを提供する酸性緩衝剤とを含有する水性CMP組成物が記載されている。特許文献1には、砥粒と酸性緩衝液からなる水性CMP組成物により二酸化ケイ素に対する炭化ケイ素の研摩速度の比(選択比)を高くすることができるとされている。
 また特許文献2には、研磨パッドに、過マンガン酸イオンと水を含む研磨液を供給し、非酸化物単結晶基板の被研磨面と前記研磨パッドを接触させ、両者間の相対運動により研磨する方法であり、前記研磨パッドに供給され研磨に使用された研磨液を回収し、前記回収した研磨液を再び研磨パッドに供給する操作を繰り返し行うことで前記研磨液を循環させるとともに、前記被研磨面を研磨する時点での前記研磨液のpHを5以下に調整する非酸化物単結晶基板の研磨方法が記載されている。同文献には、この方法によれば、長時間研摩しても高い研摩速度を維持できると記載されている。
米国特許出願公開第2010/114149号明細書 特開2014-168067号公報
 しかしながら特許文献1に記載のように、過マンガン酸イオンを使用せず、また弱酸塩も使用しない方法では、水性CMP組成物の研摩速度は十分なものではない。また、特許文献1には、研摩液を繰り返し使用して長時間研摩したときの研摩速度の低下を抑制するという課題についても、何ら記載も示唆もされていない。
 また特許文献2の方法では、設備や研摩液の管理の手間及びコストが大きいことが課題となっている。
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る研摩液及びそれを用いた研摩物の製造方法を提供することにある。
 本発明は、過マンガン酸イオンと、弱酸と、その可溶性塩とを含む研摩液を提供するものである。
 また本発明は、前記研摩液を用いて研摩を行うことで研摩物を製造する方法を提供するものである。
図1は、比較例1、比較例2、実施例1の研摩液のpHの経時変化を示すグラフである。 図2は、比較例3、実施例2の研摩液のpHの経時変化を示すグラフである。 図3は、比較例4、実施例3の研摩液のpHの経時変化を示すグラフである。
 以下本発明を、その好ましい実施形態に基づき説明する。本実施形態は、過マンガン酸イオンを含有し、更に、弱酸及びその可溶性塩を含有する研摩液に関するものである。
 過マンガン酸イオン(MnO )は、過マンガン酸塩から供給される。この過マンガン酸塩としては、過マンガン酸のアルカリ金属塩及び過マンガン酸のアルカリ土類金属塩、過マンガン酸のアンモニウム塩等が挙げられる。入手容易性の観点及び本実施形態の研摩液の研摩効率を向上させる観点から、過マンガン酸イオン(MnO )源となる過マンガン酸塩としては過マンガン酸のアルカリ金属塩が好ましく、特に過マンガン酸ナトリウム又は過マンガン酸カリウムがより好ましい。これらは1種又は2種以上を混合して用いることができる。
 研摩液中の過マンガン酸イオン(MnO )の量は、弱酸及びその可溶性塩を使用することによる研摩速度の低下を抑制する効果を十分高める観点から研摩液中、0.1質量%以上であることが好ましい。また研摩液中の過マンガン酸イオン(MnO )の量は、研摩液の取扱いの安全性を確保する観点や添加量を多くしても研摩速度は飽和する傾向にある点等から、20.0質量%以下であることがより好ましい。これらの観点から、研摩液中の過マンガン酸イオン(MnO )の量は、0.1質量%以上20.0質量%以下であることがより好ましく、さらに好ましくは0.2質量%以上10質量%以下、さらには0.5質量%以上5質量%以下が好ましい。過マンガン酸イオン(MnO )の量は、イオンクロマトグラフ法や吸光光度分析法により測定できる。なお、以下本実施形態の研摩液中の成分の量を述べる場合、特に断らない限り、研摩開始前の研摩液中における量を説明している。
 本実施形態の研摩液は、弱酸及びその可溶性塩を含有することにより、研摩速度の低下が抑制され、長時間繰り返し研摩液を使用した場合も、高い研摩速度を維持できるものである。本発明者らは、これまでの過マンガン酸イオンを含む研摩液で炭化ケイ素や窒化ガリウムといった高硬度材料を研摩する際には、初期の研摩速度は高いが、研摩を進めるうちに、研摩速度が急激に低減してしまうこと、特にこの現象は過マンガン酸イオンの濃度が高い場合に顕著であることを、知見した。そして、この研摩速度の急激な低下を抑制する方法を鋭意検討したところ、弱酸及びその可溶性塩を用いることにより、この研摩速度の急激な低下を効果的に抑制できることを知見した。
 弱酸とは、酸解離定数の小さい酸をいい、好ましくは25℃におけるpKaが1.0以上の酸である。多塩基酸の場合、ここでいうpKaはpKa1をさす。多塩基酸の場合のpKan(nは2以上の任意の整数を示す)は3.0以上であることが好ましい。pKaが1.0以上の酸としては、酢酸、リン酸、ギ酸、酪酸、ラウリン酸、乳酸、リンゴ酸、クエン酸、オレイン酸、リノール酸、安息香酸、シュウ酸、コハク酸、マロン酸、マレイン酸、酒石酸等のカルボン酸基を有する有機酸のほか、ホウ酸、次亜塩素酸、フッ化水素及び硫化水素酸などの無機酸が挙げられる。中でも、カルボン酸基を有する有機酸が好ましい。特に、酢酸、リン酸、ギ酸が、過マンガン酸イオンと弱酸及びその可溶性塩とを組み合わせて含有することによる長時間研摩における研摩速度の低下を防止する効果が高いために好ましく、とりわけ、酢酸がコスト及び性能の両方の観点から好ましい。これらは1種又は2種以上を組み合わせて用いることができる。
 弱酸の可溶性塩としては、強塩基との中和塩が挙げられ、例えばアルカリ金属塩及びアルカリ土類金属塩が挙げられる。特にアルカリ金属塩が入手容易性や可溶性の点で好ましく、この観点からナトリウム塩及び/又はカリウム塩がより好ましく、特にナトリウム塩が好ましい。これらは1種又は2種以上を組み合わせて用いることができる。本実施形態において、可溶性塩は、25℃の水100mLに対して1.0g以上溶解することが好ましく、10g以上溶解することがより好ましい。
 弱酸及びその可溶性塩を含有することで研摩速度の急激な減少が抑制される理由は、明確ではないが、本発明者は以下の理由があると考えている。つまり、過マンガン酸イオンを含み弱酸及びその可溶性塩を含まない研摩液が酸性である場合、この研摩液で被研摩材の研摩を進めると、過マンガン酸イオンによる被研摩材の酸化反応が過剰に起きる。酸性条件における過マンガン酸イオンによる酸化反応は、下記の反応式(1)で表される。前記の酸化反応が過剰に起こることは、下記反応式(1)における平衡が急激に右に偏ってしまうことを指す。
Figure JPOXMLDOC01-appb-M000001
 本発明者らは、研摩速度の急激な減少は、この反応式(1)の反応が過剰に起こるためであると考えて、この現象を抑制する方法について鋭意検討した。そして、弱酸及びその可溶性塩を含むことで、この現象を抑制できるのではないかと考えた。
 研摩液が過マンガン酸イオンに加えて弱酸及びその可溶性塩を含有していると研摩液中では以下の解離反応が起こる。なお、これらの式中、HAは弱酸、Hは水素イオン、Aは弱酸の陰イオン、BAは弱酸の可溶性塩、Bは可溶性塩のカチオンを表す。
Figure JPOXMLDOC01-appb-M000002
 ここで、通常、式(3)で示される可溶性塩BAの解離によるAイオンが研摩液に一定量存在することに起因して、式(2)で示される弱酸HAの解離反応は抑制される。本発明者らは、研摩液中の水素イオンの量を弱酸及び可溶性塩の存在によりコントロールすることで、過マンガン酸イオンの酸化反応が過剰に起こることが防止できると考えた。そして、実際に弱酸及び可溶性塩の存在下で過マンガン酸イオンを含む研摩液による研摩を行ったところ、研摩中におけるpH上昇が緩やかに起き、同時に、研摩速度の低下が効果的に抑制されることを見出した。研摩時の時間経過を横軸、pHを縦軸とすると、研摩液が弱酸及びその可溶性塩を含まず且つ酸性である場合、研摩時間が経過するにつれ、研摩当初は急激に研摩液のpH上昇が起こり、研摩時間が更に経過すると、時間経過に対するpH上昇の傾きは緩やかなものとなる。このために研摩液が弱酸及びその可溶性塩を含まない場合、時間経過を横軸、pHを縦軸としたpH変化のグラフは、pH7~8までの傾きが急な直線とそれ以降の傾きの緩やかな直線とを有する折り曲げ線となる。
 一方、本実施形態の研摩液では、弱酸及びその可溶性塩を含まない場合に比べて、例えば、仮に初期pHが6以下である場合は、時間経過に対するpH7~8までのpH上昇の傾きが緩やかであり、且つ研摩時間が更に経過する場合も、その傾きの変化が起こりにくい。従って、本実施形態の研摩液では、pH7~8までの前記の傾きが弱酸及びその可溶性塩を含まない場合よりも緩やかで、且つ研摩時間が更に経過する場合も、前記の傾きの変化が少ないため、pH変化のグラフが直線に近いものとなる。このようにpHの上昇を緩やかにした場合に、研摩速度の低下が効果的に抑制できることは、本発明において初めて明らかにされたものである。
 本実施形態において、研摩液中の弱酸及びその可溶性塩の合計の含有量は、後述する研摩液のpH及び緩衝能を満たす量であることが好ましいが、弱酸の陰イオンのモル数として例えば0.001mol/L以上であることが、研摩速度の早期の低下を効果的に防止できる点から好ましい。また研摩液中の弱酸及びその可溶性塩の合計の含有量は弱酸の陰イオンのモル数として例えば1mol/L以下であることが、研摩液の使用しやすさやスラリーからの臭気ガスの発生抑制の点から好ましい。研摩液中の弱酸及びその可溶性塩の合計の含有量は弱酸の陰イオンのモル数として0.01mol/L以上0.1mol/L以下であることが更に好ましい。
 研摩液中の弱酸及びその可溶性塩の合計の含有量は例えば弱酸をすべて可溶性塩に変換した後、電位差滴定法等を用いて弱酸の濃度を求めることで測定できる。
 また研摩速度の低下を効果的に抑制する観点から、研摩液中、弱酸の可溶性塩の含有量は、弱酸1モルに対して、0.05モル以上20モル以下であることが好ましく、0.1モル以上10モル以下であることがより好ましい。
 研摩液中の可溶性塩の含有量は例えば電位差滴定法等を用いて測定できる。
 過マンガン酸イオンによる前記反応式(1)の反応を促進して研摩を効率的に図る点から、研摩開始前の研摩液は、酸性であることが好ましい。この観点から研摩液の研摩開始前におけるpHは25℃で6以下であることが好ましく、5以下であることがより好ましく、4以下であることが特に好ましい。また研摩液の研摩開始前におけるpHは取扱いの安全性や研摩液中の水素イオンをコントロールする点から25℃で0.5以上であることが好ましく、1.0以上であることがより好ましく、1.5以上であることが特に好ましい。
 更に、本実施形態の研摩液は、pHの緩衝能が高いことが、過マンガン酸イオンの酸化反応が進行しすぎることを効果的に抑制して、研摩速度の急速な低下を抑制する点から好ましい。この緩衝能とは、25℃において、pHを3.0以上4.0以下に調整した研摩液100mLに、濃度0.1mol/Lの水酸化ナトリウム水溶液を添加したときのpHが、調整したpHから0.5上昇するまでに要する水酸化ナトリウムの水溶液の添加量として測定される指標である。本実施形態の研摩液における前記の水酸化ナトリウム水溶液の添加量で表された緩衝能は、0.1mL以上100mL以下であることが好ましく、1.0mL以上50mL以下であることがより好ましく、2.0mL以上10mL以下であることが特に好ましい。
 なお、前記緩衝能測定時の研摩液のpHの調整は、例えば、研摩液のpHが3.0より低い場合には濃度0.1mol/Lの水酸化ナトリウムの水溶液を添加することで、4.0より高い場合には濃度0.05mol/Lの希硫酸を添加することで行うことができる。前記の緩衝能が前記の範囲内であることは、前記pH3.0以上4.0以下の範囲のいずれか1のpHにおいて満たされれば、当該範囲の他のpHにおいて満たされていなくてもよい。
 本実施形態の研摩液は、砥粒を含有していてもよく、含有していなくても良い。本実施形態の研摩液は、これを長時間繰り返し使用しても、過マンガン酸イオンによる強い酸化力に起因する研摩力を高いレベルに維持できるため、砥粒を含有せずとも高い研摩力を有する。また砥粒を非含有であることは、研摩液のpH変化に対する緩衝能に起因して、砥粒の種類によっては砥粒が凝集して研摩物に傷が付く可能性を排除できる点で好ましい。一方、本実施形態の研摩液において砥粒を用いることは、研摩速度を向上させる方向に働き、研摩液を循環的に連続使用する際の研摩速度の低下防止の効果をより一層高く発揮できる。砥粒の種類としては、アルミナ、シリカ、酸化マンガン、酸化セリウム、酸化ジルコニウム、酸化鉄、炭化ケイ素、ダイヤモンドが好適に挙げられる。酸化マンガンとしては、酸化マンガン(II)(MnO)、三酸化二マンガン(III)(Mn)、二酸化マンガン(IV)(MnO)、四酸化三マンガン(II、III)(Mn)等を適用することができる。酸化セリウム、酸化ジルコニウム及び酸化鉄としては特に制限はなく公知のものが使用できる。これらは1種又は2種以上を混合して用いることができる。
 特に、本実施形態においては、シリカ、二酸化マンガン、アルミナを用いることが、弱酸及びその可溶性塩を用いることによる研摩速度の低下防止の効果が効果的に奏されるために好ましい。
 安定した研摩力を得る観点から、砥粒の平均粒径は、0.01μm以上3.0μm以下が好ましく、0.05μm以上1.0μm以下がより好ましい。ここでいう金属酸化物からなる砥粒の平均粒径は、レーザー回折・散乱法で測定される粒度径分布において体積分率が50%となる径(d50)を指す。平均粒径は具体的には、後述する実施例の方法で測定される。
 本実施形態の研摩液が砥粒を含有する場合、砥粒の量は、高硬度材料の研摩速度を高める観点、及び研摩液中の砥粒の好適な流動性を確保する観点、また凝集防止等の観点等から、研摩液中、0.001質量%以上50質量%以下であることが好ましく、0.01質量%以上30質量%以下であることがより好ましく、0.1質量%以上10質量%以下であることが特に好ましい。
 本実施形態の研摩液は、過マンガン酸イオン、弱酸及びその可溶性塩に加えて、特定の無機化合物を含有してもよい。特定の無機化合物は、研摩液に含まれる過マンガン酸塩の1.0質量%水溶液にこれを該過マンガン酸塩の水溶液において1.0質量%を占めるように添加して得られる溶液の酸化還元電位が、無機化合物添加前の該過マンガン酸塩水溶液の酸化還元電位よりも高いものである。このような無機化合物は、過マンガン酸イオンによる高硬度材料の酸化過程を促進して研摩速度を向上できるものと考えられる。前記の酸化還元電位は、銀-塩化銀電極を基準とし、25℃で測定する。酸化還元電位は例えば後述の実施例に記載の方法で測定できる。
 特定の無機化合物は、研摩液に含まれる過マンガン酸塩の1.0質量%水溶液に、1.0質量%を占めるように添加して得られる溶液の酸化還元電位が、添加前の該過マンガン酸塩水溶液の酸化還元電位よりも10mV以上高いことが好ましく、30mV以上高いことがより好ましく、50mV高いことが特に好ましい。また、無機化合物の入手容易性及び材料コストの観点から、特定の無機化合物は、過マンガン酸塩の1.0質量%水溶液に1.0質量%添加して得られる溶液の酸化還元電位が、無機化合物を添加する前の該過マンガン酸塩水溶液の酸化還元電位との差が700mV以下であることが好ましい。無機化合物を未添加である過マンガン酸カリウムの1.0質量%水溶液の25℃での酸化還元電位は通常、770mV程度である。
 過マンガン酸塩の1.0質量%水溶液において1.0質量%の濃度を占めるように添加して得られる溶液の酸化還元電位が、該過マンガン酸塩水溶液の酸化還元電位よりも高い無機化合物としては、例えば硝酸、無機硝酸塩、遷移金属塩、鉄含有錯体、ペルオキソ酸塩が挙げられる。なおこれらの無機化合物はいずれも、過マンガン酸塩の1.0質量%水溶液中に0.01質量%以上添加することで、得られる溶液の酸化還元電位が該過マンガン酸塩水溶液の酸化還元電位より高い性質を示すものである。該無機化合物を該過マンガン酸塩水溶液中に1.0質量%まで添加することにより溶液における酸化還元電位に与える傾向を明確にすることができる。
 前記の無機硝酸塩としては、金属硝酸塩及び金属硝酸塩の錯体が挙げられる。金属硝酸塩としては、一般式;M(NO(式中、Mは金属元素であり、aは金属Mの価数と同じ数である)で表されるものが挙げられる。当該一般式における金属Mの価数の例としては、その金属Mが酸化剤(電子受容体)として作用する場合の価数が挙げられ、例えば金属Mが鉄であれば3価であり、セリウムであれば4価であるが、これに限定されず、2価の鉄や3価のセリウム等も含まれる。
 金属硝酸塩の錯体としては、金属硝酸塩のアンミン錯体等が挙げられる。金属硝酸塩のアンミン錯体は、例えば、一般式;(NH[M(NO](式中、Mは金属元素であり、qは4又は6であり、pはp=q-bを満たす数であり、bは金属Mの価数である)で表される。当該一般式における金属Mの価数は、通常その金属Mが酸化剤(電子受容体)として作用する場合の価数が挙げられるが、それに限定されない。
 無機硝酸塩は、遷移金属を含むものが好ましい。遷移金属を含む無機硝酸塩としては、遷移金属の硝酸塩及び遷移金属の硝酸塩の錯体が挙げられる。遷移金属の硝酸塩及び遷移金属の硝酸塩の錯体における遷移金属としては、例えば、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)等の希土類元素;鉄(Fe)、ニッケル(Ni)、コバルト(Co)等の鉄族元素;銅(Cu)等の銅族元素等が挙げられる。前記の遷移金属としては、入手の容易性や特定の添加剤として用いた場合の研摩速度の向上効果が高いという観点から、希土類元素がより好ましく、とりわけセリウム(Ce)が好ましい。
 金属硝酸塩の好ましい例としては、硝酸スカンジウム(Sc(NO)、硝酸イットリウム(Y(NO)、硝酸ランタン(La(NO)、硝酸セリウム(Ce(NO)、硝酸プラセオジム(Pr(NO)、硝酸ネオジム(Nb(NO)、硝酸サマリウム(Sm(NO)、硝酸ユーロピウム(Eu(NO)、硝酸ガドリニウム(Gd(NO)、硝酸テルビウム(Tb(NO)、硝酸ジスプロシウム(Dy(NO)、硝酸ホルミウム(Ho(NO)、硝酸エルビウム(Er(NO)、硝酸ツリウム(Tm(NO)、硝酸イッテルビウム(Yb(NO)、硝酸ルテチウム(Lu(NO等の希土類元素の硝酸塩;硝酸第一鉄(Fe(NO)、硝酸第二鉄(Fe(NO)、硝酸ニッケル(Ni(NO)、硝酸第一コバルト(Co(NO)、硝酸第二コバルト(Co(NO)等の鉄族元素の硝酸塩;硝酸第一銅(Cu(NO)、硝酸第二銅(Cu(NO)などの銅族元素の硝酸塩が挙げられる。中でも希土類元素の硝酸塩が好ましい。金属硝酸塩の錯体の好ましい例としては、硝酸セリウム(IV)アンモニウム((NH[Ce(NO])等が好ましく挙げられる。これらは無水物であってもよく含水物であってもよい。本明細書中で、金属硝酸塩及び金属硝酸塩の錯体とは、金属硝酸塩及び金属硝酸塩の錯体が研摩液又は後述する第2剤中で過マンガン酸塩に酸化されて金属の価数等が変化することにより異なる化合物の形態となったものも含まれる。
 硝酸塩以外の遷移金属塩としては、遷移金属のフッ化物や遷移金属の塩化物、遷移金属の臭化物、遷移金属のヨウ化物等といった遷移金属のハロゲン化物、遷移金属の硫酸塩、遷移金属の酢酸塩が挙げられ、中でも、遷移金属の塩化物及び遷移金属の硫酸塩が好ましい。硝酸塩以外の遷移金属塩における遷移金属の価数としては、通常その遷移金属が酸化剤(電子受容体)として作用する場合の価数が挙げられるが、それに限られない。遷移金属の塩化物及び遷移金属の硫酸塩における遷移金属の例としては、前記で挙げたものが挙げられる。遷移金属の塩化物としては、塩化スカンジウム(ScCl)、塩化イットリウム(YCl)、塩化ランタン(LaCl)、塩化セリウム(CeCl)、塩化プラセオジム(PrCl)、塩化ネオジム(NbCl)、塩化サマリウム(SmCl)、塩化ユーロピウム(EuCl)、塩化ガドリニウム(GdCl)、塩化テルビウム(TbCl)、塩化ジスプロシウム(DyCl)、塩化ホルミウム(HoCl)、塩化エルビウム(ErCl)、塩化ツリウム(TmCl)、塩化イッテルビウム(YbCl)、塩化ルテチウム(LuCl)等の希土類元素の塩化物;塩化第一鉄(FeCl)、塩化第二鉄(FeCl)、塩化ニッケル(NiCl)、塩化第一コバルト(CoCl)、塩化第二コバルト(CoCl)等の鉄族元素の塩化物;塩化第一銅(CuCl)、塩化第二銅(CuCl)等の銅族元素の塩化物が好ましく挙げられる。遷移金属の硫酸塩としては、硫酸スカンジウム(Sc(SO)、硫酸イットリウム(Y(SO)、硫酸ランタン(La(SO)、硫酸セリウム(III)(Ce(SO)、硫酸セリウム(IV)(Ce(SO)、硫酸プラセオジム(Pr(SO)、硫酸ネオジム(Nb(SO)、硫酸サマリウム(Sm(SO)、硫酸ユーロピウム(Eu(SO)、硫酸ガドリニウム(Gd(SO)、硫酸テルビウム(Tb(SO)、硫酸ジスプロシウム(Dy(SO)、硫酸ホルミウム(Ho(SO)、硫酸エルビウム(Er(SO)、硫酸ツリウム(Tm(SO)、硫酸イッテルビウム(Yb(SO)、硫酸ルテチウム(Lu(SO)等の希土類元素の硫酸塩;硫酸第一鉄(Fe(SO)、硫酸第二鉄(Fe(SO)、硫酸ニッケル(Ni(SO)、硫酸第一コバルト(Co(SO)、硫酸第二コバルト(Co(SO)等の鉄族元素の硫酸塩;硫酸第一銅(Cu(SO)、硫酸第二銅(Cu(SO)等の銅族元素の硫酸塩が好ましく挙げられる。これらは無水物であってもよく、含水物であってもよい。本明細書中で、硝酸塩以外の遷移金属塩とは、第2剤中で過マンガン酸塩に酸化されて金属の価数等が変化することにより異なる化合物の形態となったものも含まれる。
 鉄含有錯体としては、フェリシアン化塩が挙げられ、例えば、フェリシアン化カリウム(K[Fe(CN)])、フェリシアン化ナトリウム(Na[Fe(CN)])等が挙げられる。また、ペルオキソ酸塩としては、過炭酸塩、過硼酸塩及び過硫酸塩が挙げられる。
 ペルオキソ酸塩としては、本実施形態の研摩材による研摩速度を更に一層向上させる観点から、過硫酸塩が好ましく、特に過硫酸塩のアルカリ金属塩が好ましく、とりわけペルオキソ二硫酸カリウム(K)又はペルオキソ二硫酸ナトリウム(Na)が好ましく用いられる。
 前記無機化合物の中でも、硝酸又は遷移金属を含む無機硝酸塩を含有すると、本実施形態の研摩液を用いて高硬度材料を長時間研摩した場合に、研摩速度の向上効果がより一層長時間持続するため好ましい。
 前記無機化合物を用いることによる研摩速度の向上効果を高める観点及び、単位量当たりの酸化力向上作用を高める観点から、該無機化合物の含有量は、研摩液中、0.01質量%以上10.0質量%以下であることが好ましく、0.02質量%以上4.0質量%以下であることがより好ましく、0.05質量%以上2.0質量%以下であることが特に好ましい。とりわけ、本実施形態の研摩液が前記無機化合物として、遷移金属を含む無機硝酸塩を含有する場合、無機硝酸塩の量は、本実施形態の研摩液による研摩速度を高める観点から研摩液中0.02質量%以上1.0質量%以下となる量であることが好ましく、0.05質量%以上0.5質量%以下となる量であることがより好ましい。無機化合物の量は、蛍光X線分析法(XRF)や誘導結合プラズマ(ICP)発光分光分析法などを用いて測定される。
 本実施形態の研摩液は、過マンガン酸イオン、弱酸、及びその可溶性塩並びに必要に応じて砥粒や前記の無機化合物を溶解ないし分散させるための分散媒を含有する。分散媒としては、弱酸及び可溶性塩を用いることによる研摩速度の向上効果を高める観点から、水又はアルコール、ケトンなどの水溶性有機溶媒又はこれらの混合物が挙げられる。分散媒の含有量は、研摩液中、60質量%以上99.9質量%以下であることが好ましく、80質量%以上98質量%以下であることがより好ましい。
 本実施形態の研摩液は、上述した過マンガン酸イオン、弱酸、及びその可溶性塩並びに必要に応じて砥粒や前記無機化合物、分散媒以外の任意の添加剤を含有することができる。任意の添加剤としては、例えば、分散剤やpH調整剤、粘度調整剤、キレート剤、防錆剤などが挙げられる。研摩液中、過マンガン酸塩、弱酸、及びその可溶性塩、砥粒及び前記無機化合物以外の成分(ただし、分散媒を除く)の含有量は、40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。
 本実施形態の研摩液はその調製方法に限定されず、過マンガン酸イオン、弱酸及びその可溶性塩及び必要に応じて砥粒、無機化合物、分散媒を適宜混合すればよい。なお、研摩液は例えば、構成成分を2以上の剤に分けたキットとしてもよい。この場合のキットの構成は、研摩液を調製したときにその研摩能力が十分に発揮されるような形態で適宜構成される。この場合、過マンガン酸イオンと、弱酸及びその可溶性塩とは、長期保管時の過マンガン酸イオン分解による劣化を防ぐ観点から、同一剤であるほうが好ましい。
 次いで、本実施形態の研摩物の製造方法について説明する。本実施形態の製造方法は、本実施形態の研摩液を用いて被研摩物を研摩して研摩物を得るものである。本実施形態の製造方法は、被研摩物として、モース硬度が8以上の高硬度材料を研摩することが好ましい。モース硬度とは、標準物質に対しての傷の付き方を元に硬度を数値化するものである。モース硬度は、柔らかいものから順に1から10までの標準物質が指定されており、具体的な標準物質としては、モース硬度1がタルク、2が石こう、3が方解石、4が蛍石、5が燐灰石、6が正長石、7が石英、8がトパーズ、9がコランダム、及び10がダイヤモンドである。モース硬度はモース硬度計を用いて常法により測定できる。モース硬度で硬度8以上の高硬度材料としては、例えば、炭化ケイ素、窒化ガリウム、ダイヤモンド等が挙げられる。このような本実施形態の研摩物の製造方法は、例えば高硬度材料からなる基板のラッピング後の仕上げ用CMP(chemical mechanical polishing)工程等に適用することができる。なお、本明細書中、「被研摩物」とは研摩液により研摩がなされる対象物を意味し、「研摩物」とは研摩により得られた物を意味する。
 例えば、本実施形態の製造方法の例としては、研摩パッドに、過マンガン酸イオンと水を含む研摩液を供給し、被研摩物の被研摩面と前記研摩パッドを接触させ、両者間の相対運動により研摩する方法である。本実施形態の製造方法においては、研摩液をかけ流しするものであってもよいが、前記研摩パッドに供給され研摩に使用された研摩液を回収し、前記回収した研摩液を再び研摩パッドに供給する操作を繰り返し行うことで前記研摩液を循環させる方法を採用することが好ましい。研摩液を循環させる場合、繰り返しの回数が多数回である必要はなく、1度研摩に使用された研摩液を再度使用する工程を有すればよい。またこのように研摩液を循環させながら研摩する工程中、酸の添加等のpH調整は行ってもよいが、本発明はそのような調整を行わなくても研摩速度の維持を図ることが可能である。本実施形態においては、このように研摩液を循環させて繰り返し使用した場合も研摩速度の低下を防止でき、コストの低減と研摩効率との両立を図ることができる。使用する研摩装置としては、従来公知のものが用いられ、片面研摩装置であっても両面研摩装置であってもよい。研摩パッドとしては、例えば、従来からこの分野で用いられている不織布やこれにポリウレタンやエポキシ等の樹脂を含浸させてなるパッド、並びにスエード材などを用いることができる。研摩圧力としては、10g/cm以上10000g/cm以下、特に50g/cm以上5000g/cm以下であることが、研摩力及び研摩治具の取り扱いやすさ等の点から好ましい。
 本実施形態の研摩液を用いて製造される研摩物としては、例えば、エピタキシャル成長用SiC基板や、SiC基板又はSi基板上にエピタキシャル成長させたSiC薄膜、SiC焼結体、GaN基板、ダイヤモンド基板等を挙げることができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔比較例1及び2、実施例1〕
 純水、過マンガン酸カリウム(KMnO)、酢酸、及び酢酸ナトリウムを、過マンガン酸イオン、酢酸及び酢酸ナトリウムが下記表1の濃度となるように混合し、研摩液を調製した。得られた研摩液の研摩開始前のpH(25℃)を測定した。これを初期pHとして表1に示す。また、緩衝能として25℃において、pHを3.0以上4.0以下に調整した研摩液100mLに、濃度0.1mol/Lの水酸化ナトリウムの水溶液を添加したときのpHが0.5上昇するまでに要する水酸化ナトリウムの水溶液の添加量(mL)を測定した。この時、研摩液のpHの調整は、研摩液のpHが3.0より低い場合には濃度0.1mol/Lの水酸化ナトリウムの水溶液を添加することで、4.0より高い場合には濃度0.05mol/Lの希硫酸を添加することで行った。調整後のpH及び得られた緩衝能の結果を下記表1に示す。なおpHは堀場製作所製pH電極9615S-10Dを用いて測定した(以下、他の実施例及び比較例でも同様)。
Figure JPOXMLDOC01-appb-T000003
 
 比較例1及び2並びに実施例1の研摩液をそれぞれ以下の<研摩試験>に供し、研摩開始から24時間後までの研摩速度(研摩レート)を測定した。初期(研摩開始から2時間)の研摩速度、研摩開始から24時間後の総研摩量、及び、研摩開始から8時間後の研摩速度の初期研摩速度に対する減少率を表1に示す。また研摩開始から2、4、6、8及び24時間後の各時点での研摩液の25℃でのpHを図1に示す。
<研摩試験>
 前記研摩液を用いて、以下の手順で研摩を行った。研摩対象としては直径3インチ、オフ角が4°のラッピングされた4H-SiC基板を用いた。研摩は基板のSi面に対して行った。研摩装置として、エム・エー・ティー社製片面研摩機BC-15を用いた。定盤に取り付ける研摩パッドには、ニッタ・ハース社製SUBA#600を用いた。定盤の回転数は60rpm、外周部速度は7163cm/minに設定した。またキャリア回転数は60rpm、外周部速度は961cm/minに設定した。また、研摩圧力は210g/cmとした。研摩液の供給量は200mL/minとした。この条件で研摩液1.0Lを前記のように繰り返し使用して用いた。研摩速度(μm/h)は、研摩前後の基板の質量差とSiCの密度(3.10g/cm)とから測定した。
 また、研摩開始から24時間経過した後の総研摩量(厚さ)についても上記と同様の計算方法で測定した。
 図1に示す結果から明らかな通り、実施例1の研摩液は、時間当たりのpHの上昇がほぼ一定であり、水素イオン濃度がコントロールされていることが判る。また表1の研摩速度減少率(8h)が示すように実施例1の研摩液は、比較例1に記載された、過マンガン酸イオンからなり弱酸及びその塩を非含有である従来の研摩液、及び、比較例2のように過マンガン酸イオン及び酢酸を含有するが弱酸の塩を非含有の研摩液に比べて、研摩速度を長時間にわたり維持することができる。従って本発明の研摩液は炭化ケイ素、窒化ガリウム等の高硬度材料の研摩作業において研摩液交換の頻度を下げることが可能であって、より生産性を向上させる効果を有するものである。
  〔比較例3、実施例2〕
 純水、過マンガン酸カリウム(KMnO)、硝酸セリウム(IV)アンモニウム((NH[Ce(NO]、以下CANとも記載する)、酢酸、及び酢酸ナトリウムを、過マンガン酸イオン、酢酸、酢酸ナトリウム及びCANが下記表2の濃度となるように混合し、研摩液を調製した。得られた研摩液の研摩開始前のpH(25℃)を測定した。その結果を初期pHとして下記表2に示す。また得られた研摩液の前記の緩衝能を測定した。その結果を、調整後のpHとともに下記表2に示す。なお過マンガン酸塩の1.0%水溶液にCANを、1.0%濃度となるように添加して得られる溶液の酸化還元電位は25℃で1291mVであり、CANを添加前の過マンガン酸塩の1.0%水溶液の酸化還元電位は25℃で770mVであった。酸化還元電位は、堀場製作所製ORP電極9300-10Dを25℃のこれらの液に浸漬して測定した。
Figure JPOXMLDOC01-appb-T000004
 比較例3及び実施例2の研摩液をそれぞれ以下の<研摩試験>に供し、研摩速度を測定した。初期(研摩開始から2時間)の研摩速度、研摩開始から24時間後の総研摩量、及び、研摩開始から8時間後の研摩速度の初期研摩速度に対する減少率を表2に示す。また研摩開始から2、4、6、8及び24時間後の各時点での研摩液の25℃でのpHを図2に示す。
 表2、図2に示す結果から明らかな通り、本発明の研摩液は、過マンガン酸イオンに加えて酸化剤となる特定の無機化合物を用いた場合にも、研摩液のpHの時間当たりの上昇が一定でコントロールされており、高い研摩速度を維持していることから、実用に耐えることが分かった。
  〔比較例4、実施例3、4〕
 純水、過マンガン酸カリウム(KMnO)、シリカ粒子(平均粒径d500.34μm)、酢酸、及び酢酸ナトリウムを過マンガン酸イオン、酢酸、酢酸ナトリウム及びシリカ粒子が下記表3の濃度となるように混合し、研摩液を調製した。得られた研摩液の研摩開始前のpH(25℃)を測定した。その結果を初期pHとして下記表3に示す。また得られた研摩液の前記の緩衝能を測定した。その結果を、調整後のpHとともに下記表3に示す。なお前記平均粒径d50の測定は、測定前に酸化物粒子の分散を行うために超音波分散処理(30W)を3分間実施し、レーザー回折・散乱法粒子径分布測定装置(マイクロトラック・ベル(株)製:マイクロトラックMT3300EXII)を使用して、粒子透過性:屈折、真球/非球形:非球形、粒子屈折率:1.46、溶媒屈折率:1.333の条件で測定した。
Figure JPOXMLDOC01-appb-T000005
 比較例4、実施例3及び4の研摩液をそれぞれ以下の<研摩試験>に供し、研摩速度を測定した。初期(研摩開始から2時間)の研摩速度、研摩開始から24時間後の総研摩量、及び、研摩開始から8時間後の研摩速度の初期研摩速度に対する減少率を表3に示す。また比較例4、実施例3の研摩開始から2、4、6、8及び24時間後の各時点での研摩液の25℃でのpHを図3に示す。
 表3、図3に示す結果から明らかな通り、本発明の研摩液は、砥粒を用いた場合にも研摩液のpHの時間当たりの上昇、研摩レートの減少が一定でコントロールされており、研摩液を長時間使用した場合における研摩速度の低下防止効果を発揮できる。
 本発明によれば、炭化ケイ素や窒化ガリウム等の高硬度材料を研摩する研摩液として、従来に比べて長時間研摩した場合の研摩速度の低下を抑制でき、研摩効率の向上を図ることができる研摩液、及びそれを用いた研摩物の製造方法を提供することができる。
 

Claims (11)

  1.  過マンガン酸イオンと、弱酸と、その可溶性塩とを含む研摩液。
  2.  研摩開始前におけるpHが25℃で0.5以上6以下である、請求項1に記載の研摩液。
  3.  前記研摩液は、25℃においてpHを3.0以上4.0以下に調整した該研摩液100mLに、濃度0.1mol/Lの水酸化ナトリウムの水溶液を添加したときに、該研摩液のpHを0.5上昇させるのに要する水酸化ナトリウムの水溶液の添加量が、0.1mL以上100mL以下である緩衝能を有する、請求項1又は2に記載の研摩液。
  4.  弱酸が酢酸である、請求項1~3のいずれか1項に記載の研摩液。
  5.  研摩液中の弱酸及びその可溶性塩の合計の含有量が、弱酸の陰イオンのモル数として0.001mol/L以上1mol/L以下である、請求項1~4のいずれか1項に記載の研摩液。
  6.  研摩液中、弱酸の可溶性塩の含有量は、弱酸1モルに対して、0.05モル以上20モル以下である、請求項1~5のいずれか1項に記載の研摩液。
  7.  炭化ケイ素の研摩に用いられる請求項1~6のいずれか1項に記載の研摩液。
  8.  砥粒を含まない請求項1~7のいずれか1項に記載の研摩液。
  9.  砥粒を更に含む請求項1~7のいずれか1項に記載の研摩液。
  10.  砥粒がアルミナ、シリカ、酸化マンガン、酸化セリウム、酸化ジルコニウム、酸化鉄、炭化ケイ素及びダイヤモンドから選ばれる少なくとも一種である請求項9に記載の研摩液。
  11.  請求項1~10のいずれか1項に記載の研摩液を研摩に用いる研摩物の製造方法。
PCT/JP2017/019901 2016-06-08 2017-05-29 研摩液及び研摩物の製造方法 WO2017212971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/305,266 US20200332163A1 (en) 2016-06-08 2017-05-29 Polishing liquid and method for producing polished article
CN201780031950.2A CN109392311B (zh) 2016-06-08 2017-05-29 研磨液和研磨物的制造方法
JP2017553430A JP6301571B1 (ja) 2016-06-08 2017-05-29 研摩液及び研摩物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114160 2016-06-08
JP2016114160 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017212971A1 true WO2017212971A1 (ja) 2017-12-14

Family

ID=60578684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019901 WO2017212971A1 (ja) 2016-06-08 2017-05-29 研摩液及び研摩物の製造方法

Country Status (4)

Country Link
US (1) US20200332163A1 (ja)
JP (1) JP6301571B1 (ja)
CN (1) CN109392311B (ja)
WO (1) WO2017212971A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174008A1 (ja) * 2017-03-23 2018-09-27 株式会社フジミインコーポレーテッド 研磨用組成物
WO2019138846A1 (ja) * 2018-01-11 2019-07-18 株式会社フジミインコーポレーテッド 研磨用組成物
WO2021200148A1 (ja) * 2020-03-30 2021-10-07 株式会社フジミインコーポレーテッド 研磨用組成物
IT202000016279A1 (it) * 2020-07-06 2022-01-06 St Microelectronics Srl Procedimento di fabbricazione di un dispositivo semiconduttore in carburo di silicio con migliorate caratteristiche
JP2022545105A (ja) * 2019-08-30 2022-10-25 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 材料除去作業を行うための組成物及び方法
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561858B1 (en) * 2016-12-26 2022-10-19 Fujimi Incorporated Polishing composition and polishing method
JPWO2022168859A1 (ja) * 2021-02-04 2022-08-11
CN114227391B (zh) * 2021-12-21 2023-03-24 江西晶耀科技有限公司 一种用于制备金刚石涂层刀具的化学机械研磨预处理工艺
CN114410226A (zh) * 2022-01-27 2022-04-29 中国科学院上海微系统与信息技术研究所 一种抛光液及其制备方法和应用
CN115975511A (zh) * 2023-02-02 2023-04-18 张家港安储科技有限公司 一种碳化硅衬底研磨用抛光液、抛光液套剂及研磨方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088379A (ja) * 2005-09-26 2007-04-05 Fujifilm Corp 水系研磨液、及び、化学機械的研磨方法
JP2009272601A (ja) * 2008-04-09 2009-11-19 Hitachi Chem Co Ltd 研磨剤、これを用いた基板の研磨方法並びにこの研磨方法に用いる溶液及びスラリー

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535074B1 (ko) * 2001-06-26 2005-12-07 주식회사 하이닉스반도체 루테늄의 화학 기계적 연마용 슬러리 및 이를 이용한연마공정
KR100499403B1 (ko) * 2002-03-06 2005-07-07 주식회사 하이닉스반도체 슬러리 제조 방법
US20060000808A1 (en) * 2004-07-01 2006-01-05 Fuji Photo Film Co., Ltd. Polishing solution of metal and chemical mechanical polishing method
JP2006093580A (ja) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd 化学的機械的研磨方法
JP2006269600A (ja) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd 化学的機械的研磨方法及びこれに用いる研磨液
JP4448787B2 (ja) * 2005-03-25 2010-04-14 富士フイルム株式会社 金属用研磨液及び研磨方法
CN102863943B (zh) * 2005-08-30 2015-03-25 花王株式会社 硬盘用基板用研磨液组合物、基板的研磨方法和制造方法
JP2007088284A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp 水系研磨液及び化学機械的研磨方法
JP2007095840A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 化学的機械的研磨方法
JP2007095843A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 研磨方法
JP2007095842A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 半導体集積回路の化学的機械的平坦化方法
JP2007095841A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 化学的機械的研磨方法
JP2007095944A (ja) * 2005-09-28 2007-04-12 Fujifilm Corp 半導体集積回路の化学的機械的平坦化方法。
JP2007095945A (ja) * 2005-09-28 2007-04-12 Fujifilm Corp 化学的機械的平坦化方法
JP2007180448A (ja) * 2005-12-28 2007-07-12 Fujifilm Corp 研磨方法
JP2007194335A (ja) * 2006-01-18 2007-08-02 Fujifilm Corp 化学的機械的研磨方法
JP4920272B2 (ja) * 2006-03-06 2012-04-18 富士フイルム株式会社 金属用研磨液、及び化学的機械的研磨方法
JP2007227525A (ja) * 2006-02-22 2007-09-06 Fujifilm Corp 貴金属用研磨液、及び、化学的機械的研磨方法
JP2007251039A (ja) * 2006-03-17 2007-09-27 Fujifilm Corp 半導体デバイスの研磨方法
JP2007266507A (ja) * 2006-03-29 2007-10-11 Fujifilm Corp 研磨方法
JP2007273641A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 研磨方法
JP2008053371A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 半導体デバイスの研磨方法
JP2008060460A (ja) * 2006-09-01 2008-03-13 Fujifilm Corp 金属研磨方法
JP2008251939A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2008277723A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 金属用研磨液及び研磨方法
JP2010192556A (ja) * 2009-02-17 2010-09-02 Fujifilm Corp 金属用研磨液、および化学的機械的研磨方法
JP5554121B2 (ja) * 2010-03-31 2014-07-23 富士フイルム株式会社 研磨液及び研磨方法
JP5601922B2 (ja) * 2010-07-29 2014-10-08 富士フイルム株式会社 研磨液及び研磨方法
JP5925454B2 (ja) * 2010-12-16 2016-05-25 花王株式会社 磁気ディスク基板用研磨液組成物
CN103890127B (zh) * 2011-10-13 2015-09-09 三井金属矿业株式会社 研磨剂浆料及研磨方法
US10032644B2 (en) * 2015-06-05 2018-07-24 Versum Materials Us, Llc Barrier chemical mechanical planarization slurries using ceria-coated silica abrasives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088379A (ja) * 2005-09-26 2007-04-05 Fujifilm Corp 水系研磨液、及び、化学機械的研磨方法
JP2009272601A (ja) * 2008-04-09 2009-11-19 Hitachi Chem Co Ltd 研磨剤、これを用いた基板の研磨方法並びにこの研磨方法に用いる溶液及びスラリー

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174008A1 (ja) * 2017-03-23 2018-09-27 株式会社フジミインコーポレーテッド 研磨用組成物
JP7125386B2 (ja) 2017-03-23 2022-08-24 株式会社フジミインコーポレーテッド 研磨用組成物
JPWO2018174008A1 (ja) * 2017-03-23 2020-04-16 株式会社フジミインコーポレーテッド 研磨用組成物
US11319460B2 (en) 2017-03-23 2022-05-03 Fujimi Incorporated Polishing composition
CN111587279B (zh) * 2018-01-11 2022-04-19 福吉米株式会社 研磨用组合物
WO2019138846A1 (ja) * 2018-01-11 2019-07-18 株式会社フジミインコーポレーテッド 研磨用組成物
JP7373403B2 (ja) 2018-01-11 2023-11-02 株式会社フジミインコーポレーテッド 研磨用組成物
US11339311B2 (en) 2018-01-11 2022-05-24 Fujimi Incorporated Polishing composition
JPWO2019138846A1 (ja) * 2018-01-11 2021-01-28 株式会社フジミインコーポレーテッド 研磨用組成物
CN111587279A (zh) * 2018-01-11 2020-08-25 福吉米株式会社 研磨用组合物
JP2022545105A (ja) * 2019-08-30 2022-10-25 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 材料除去作業を行うための組成物及び方法
JP7368600B2 (ja) 2019-08-30 2023-10-24 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 材料除去作業を行うための組成物及び方法
US11851586B2 (en) 2019-08-30 2023-12-26 Saint-Gobain Ceramics & Plastics, Inc. Composition and method for conducting a material removing operation
WO2021200148A1 (ja) * 2020-03-30 2021-10-07 株式会社フジミインコーポレーテッド 研磨用組成物
EP3937209A1 (en) * 2020-07-06 2022-01-12 STMicroelectronics S.r.l. Process for manufacturing a silicon carbide semiconductor device having improved characteristics
IT202000016279A1 (it) * 2020-07-06 2022-01-06 St Microelectronics Srl Procedimento di fabbricazione di un dispositivo semiconduttore in carburo di silicio con migliorate caratteristiche
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物

Also Published As

Publication number Publication date
JPWO2017212971A1 (ja) 2018-06-14
JP6301571B1 (ja) 2018-03-28
CN109392311A (zh) 2019-02-26
CN109392311B (zh) 2023-08-15
US20200332163A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6301571B1 (ja) 研摩液及び研摩物の製造方法
JP6768717B2 (ja) 研摩スラリー及び研摩材
JP6611485B2 (ja) 研磨方法およびポリシング用組成物
TWI397578B (zh) 拋光鎳-磷的方法
KR102538575B1 (ko) 코발트 연마 가속화제
KR20170073628A (ko) 코발트 파임 제어제
EP2767568A1 (en) Polishing slurry, and polishing method
KR102589681B1 (ko) 연마용 조성물 및 연마 방법
JP6560155B2 (ja) 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法
JP2015229750A (ja) Cmp用研磨液
US10358579B2 (en) CMP compositions and methods for polishing nickel phosphorous surfaces
WO2017170062A1 (ja) 研磨用組成物
JP2023512216A (ja) 硬質材料研磨するためのcmp組成物
CN111094482A (zh) 硬质材料的无硬质研磨粒子抛光
CN110546233B (zh) 合成石英玻璃基板用研磨剂及其制备方法以及合成石英玻璃基板的研磨方法
JPWO2013133198A1 (ja) 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法
WO2015057433A1 (en) Polishing composition and method for nickel-phosphorous coated memory disks
JP2015229748A (ja) Cmp用研磨液
WO2023054385A1 (ja) 研磨用組成物
WO2023054386A1 (ja) 研磨用組成物
JP2015035522A (ja) Cmp用研磨液
KR102677819B1 (ko) 합성석영 유리기판용 연마제 및 합성석영 유리기판의 연마방법
JP7096884B2 (ja) 材料除去作業を実施するための組成物及びその形成方法
CN113661219A (zh) 用于改善化学机械抛光浆料的颗粒分散的添加剂
WO2022168858A1 (ja) 研磨用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553430

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810150

Country of ref document: EP

Kind code of ref document: A1