WO2017183666A1 - 酸化鉱石の製錬方法 - Google Patents

酸化鉱石の製錬方法 Download PDF

Info

Publication number
WO2017183666A1
WO2017183666A1 PCT/JP2017/015776 JP2017015776W WO2017183666A1 WO 2017183666 A1 WO2017183666 A1 WO 2017183666A1 JP 2017015776 W JP2017015776 W JP 2017015776W WO 2017183666 A1 WO2017183666 A1 WO 2017183666A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
oxide
mass
reduction
metal
Prior art date
Application number
PCT/JP2017/015776
Other languages
English (en)
French (fr)
Inventor
井関 隆士
幸弘 合田
純一 小林
岡田 修二
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016085963A external-priority patent/JP6780284B2/ja
Priority claimed from JP2016089470A external-priority patent/JP6780285B2/ja
Priority claimed from JP2017082195A external-priority patent/JP6855897B2/ja
Priority to CA3021181A priority Critical patent/CA3021181C/en
Priority to CN201780022808.1A priority patent/CN108884516B/zh
Priority to EP17786003.8A priority patent/EP3447157B1/en
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP20197857.4A priority patent/EP3778938A1/en
Priority to AU2017253321A priority patent/AU2017253321B2/en
Priority to EP20197570.3A priority patent/EP3778937A1/en
Priority to US16/093,339 priority patent/US11479832B2/en
Publication of WO2017183666A1 publication Critical patent/WO2017183666A1/ja
Priority to PH12018502219A priority patent/PH12018502219A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • C21B13/0053On a massing grate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for smelting oxide ore. More specifically, the present invention relates to an oxide ore that obtains a reduced product containing metal by mixing an oxide ore such as nickel oxide ore with a reducing agent and reducing it at a high temperature. It relates to the smelting method.
  • limonite or saprolite which is a kind of oxide ore
  • dry smelting method to produce nickel matte using smelting furnace, iron and nickel using rotary kiln or moving hearth furnace Known are a dry smelting method for producing ferronickel, an alloy of the above, a hydrometallurgical method for producing mixed sulfide using an autoclave, and the like.
  • the raw material nickel oxide ore is crushed to an appropriate size in order to proceed with the reaction.
  • a process of forming a lump is performed as a pretreatment.
  • nickel oxide ore when nickel oxide ore is agglomerated, that is, when powdered or finely divided ore is agglomerated, the nickel oxide ore is mixed with other components such as binders and coke reducing agents. The mixture is further adjusted for moisture, etc., and then charged into a lump manufacturing machine, for example, a lump (pellet, briquette, etc. having a side or diameter of about 10 to 30 mm. Hereinafter, simply referred to as “pellet”. ).
  • Patent Document 1 discloses that a granular metal is produced by heating an agglomerate containing a metal oxide and a carbonaceous reducing agent and reducing and melting the metal oxide contained in the agglomerate. Techniques aimed at further improving productivity are disclosed. Specifically, an agglomerate containing a metal oxide and a carbonaceous reducing agent is supplied onto a hearth of a moving bed type reduction melting furnace and heated to reduce and melt the metal oxide. A method for producing a granular metal that is cooled and discharged to the outside of the furnace and recovered is disclosed. In this technique, the furnace temperature in the first half region of the furnace for solid-reducing iron oxide in the agglomerate is 1300 ° C.
  • the furnace temperature is 1400 ° C. to 1550 ° C.
  • the maximum projected area ratio of the agglomerate on the hearth when the distance between the agglomerates spread on the hearth is 0 is When the relative value of the projected area ratio of the agglomerate spread on the floor to the hearth is the floor density, when heating the floor density of the agglomerate on the hearth to 0.5 to 0.8, It is characterized by supplying an agglomerate having an average diameter of 19.5 mm or more and 32 mm or less onto the hearth, and according to such a method, by controlling together with the bed density and the average diameter of the agglomerate, It is said that productivity of granular metallic iron can be improved.
  • the reaction efficiency can be further increased, and the reduction reaction can be uniformly generated, so that it is possible to produce a high-quality metal.
  • the present invention has been proposed in view of such circumstances, and in a smelting method for producing metal by reducing a mixture containing oxide ore such as nickel oxide ore, the metal recovery rate is increased and the productivity is increased.
  • An object of the present invention is to provide a method capable of producing a high-quality metal at low cost and efficiently.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, a specific compound is attached to the surface of the mixture obtained by mixing the raw material oxide ore and the reducing agent, and the mixture is subjected to reduction treatment in this state, thereby producing high quality metal with high nickel quality. It discovered that it could manufacture efficiently and came to complete this invention.
  • the first invention of the present invention is a smelting process in which an oxidized ore and a carbonaceous reducing agent are mixed, and the resulting mixture is heated and subjected to a reduction treatment to obtain reduced metal and slag.
  • the oxide ore is a nickel oxide ore
  • at least the carbonaceous reducing agent is used as the surface deposit, and the oxidation contained in the mixture
  • the amount of the carbonaceous reducing agent necessary for reducing nickel and iron oxide without excess or deficiency is 100% by mass
  • the amount of the carbonaceous reducing agent attached to the surface of the mixture is 0.1% by mass or more. This is a method for smelting oxide ore with a ratio of 20.0 mass% or less.
  • the amount of the carbonaceous reducing agent necessary to reduce nickel oxide and iron oxide contained in the mixture without excess or deficiency is 100% by mass.
  • the amount of carbonaceous reducing agent present in the mixture together with the oxide ore is 40.0% by mass or less.
  • the metal oxide is used as the surface deposit, and the metal oxide is nickel oxide and / or iron oxide. It is a smelting method.
  • the oxide ore is a nickel oxide ore, and when the total amount of nickel and iron contained in the mixture is 100% by mass, the metal oxide is attached to the surface of the mixture so that the amount of metal contained in the metal oxide is 0.03% by mass or more and 8.0% by mass or less.
  • the amount of the carbonaceous reducing agent necessary to reduce nickel oxide and iron oxide contained in the mixture without excess or deficiency is 100% by mass.
  • the amount of the carbonaceous reducing agent present in the mixture together with the oxide ore is 12.0% by mass or more and 35.0% by mass or less.
  • the amount of metal contained in the metal oxide is 0.00.
  • the metal oxide is attached to the surface of the mixture so as to have a ratio of 1% by mass or more and 2.0% by mass or less.
  • the oxidation inhibitor in the first aspect, is used as the surface deposit, and the oxidation inhibitor has an oxide content of 90% by mass or more. This is a method for smelting oxide ore, which is a mixture of materials.
  • the oxidation inhibitor is used as the surface deposit, and the oxidation inhibitor has an oxide content of 90% by mass or more.
  • This is a method for smelting an oxidized ore, which is an oxidation-inhibiting mixture containing a product mixture and a carbonaceous reduct.
  • the tenth aspect of the present invention is the method of smelting ore according to the ninth aspect, wherein the carbonaceous reductant contained in the oxidation-inhibiting mixture is coal and / or coke.
  • the eleventh invention of the present invention is a method for smelting ore oxide according to any one of the eighth to tenth inventions, wherein the surface deposit is placed on an upper surface of the mixture and subjected to a reduction treatment.
  • the twelfth invention of the present invention is a method for smelting ore oxide according to any of the eighth to tenth inventions, wherein the mixture is surrounded by the surface deposit and subjected to a reduction treatment.
  • the smelting method of oxidized ore wherein at least part of the ash of the carbonaceous reducing agent is used as the oxidation inhibitor. It is.
  • any one of the eighth to thirteenth aspects at least a part selected from coal ash, charcoal ash, and bamboo charcoal ash is used as the oxidation inhibitor. This is a method for smelting oxide ore.
  • the oxidation inhibitor is selected from alumina, alumina cement, magnesia, magnesia cement, zirconia, zirconia cement, and mullite. This is a method for refining oxide ore using at least one of the above-described one or more types.
  • the mixture in the reduction treatment, is charged into a reduction furnace in which a carbonaceous reducing agent is previously laid on the hearth.
  • the seventeenth invention of the present invention is the method of smelting ore according to any one of the first to sixteenth inventions, wherein the reduction temperature in the reduction treatment is 1200 ° C. or higher and 1450 ° C. or lower.
  • the metal recovery rate is increased to improve productivity, and high quality metal is inexpensively produced. And it can manufacture efficiently.
  • the present embodiment a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.
  • the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
  • the method for smelting oxide ore according to the present invention comprises using an oxide ore as a raw material, mixing the oxide ore and a carbonaceous reducing agent into a mixture, and subjecting the resulting mixture to a reduction treatment at a high temperature to obtain a reduced product. It is the method of manufacturing the metal which is. For example, nickel oxide ore containing nickel oxide, iron oxide, etc. is used as a raw material, and the nickel oxide ore is mixed with a carbonaceous reducing agent, and nickel contained in the mixture is preferentially reduced at high temperatures. In addition, there is a method for producing ferronickel, which is an alloy of iron and nickel, by partially reducing iron.
  • the method for smelting oxidized ore comprises mixing an oxidized ore and a carbonaceous reducing agent, heating the resulting mixture as a raw material, subjecting it to a reduction treatment,
  • a carbonaceous reducing agent e.g., a carbonaceous reducing agent
  • a metal oxide e.g., a metal oxide
  • an oxidation inhibitor e.g., surface deposit
  • the present embodiment a method for smelting nickel oxide ore will be described as an example.
  • the nickel oxide ore that is a smelting raw material contains at least nickel oxide (NiO) and iron oxide (Fe 2 O 3 ), and the nickel oxide ore is reduced using the nickel oxide ore as a smelting raw material.
  • an iron-nickel alloy ferrronickel
  • the present invention is not limited to nickel oxide ore as an oxide ore, and the smelting method is not limited to a method for producing ferronickel from nickel oxide ore containing nickel oxide or the like.
  • Nickel oxide ore smelting method In the smelting method of nickel oxide ore according to the present embodiment, the nickel oxide ore is mixed with a carbonaceous reducing agent to form a mixture, and the mixture is subjected to a reduction treatment, whereby ferronickel that is a metal as a reduced product. And slag. In addition, the ferronickel which is a metal can be collect
  • FIG. 1 is a process diagram showing an example of the flow of a nickel oxide ore smelting method.
  • this smelting method includes a mixing treatment step S1 for mixing raw materials containing nickel oxide ore, a mixture forming step S2 for forming the obtained mixture into a predetermined shape, and a formed mixture ( A reduction step S3 for reducing and heating the pellet) at a predetermined reduction temperature, and a separation step S4 for separating the metal and slag generated in the reduction step S3 and recovering the metal.
  • the mixing treatment step S1 is a step of obtaining a mixture by mixing raw material powders containing nickel oxide ore. Specifically, in the mixing treatment step S1, a carbonaceous reducing agent is added to and mixed with nickel oxide ore which is a raw material ore, and optional additives such as iron ore, flux components, binders, etc. A powder having a particle size of about 0.1 mm to 0.8 mm is added and mixed to obtain a mixture.
  • the mixing process can be performed using a mixer or the like.
  • nickel oxide ore which is a raw material ore
  • Limonite ore a saprolite ore, etc.
  • the nickel oxide ore contains at least nickel oxide (NiO) and iron oxide (Fe 2 O 3 ).
  • the carbonaceous reducing agent has a particle size or particle size distribution equivalent to that of the nickel oxide ore that is the raw material ore because it is easy to mix uniformly and the reduction reaction easily proceeds uniformly.
  • the amount of carbonaceous reductant mixed is the chemical equivalent required to reduce the total amount of nickel oxide composing nickel oxide ore to nickel metal and necessary to reduce iron oxide (ferric oxide) to metallic iron.
  • the proportion of carbon content is preferably 5% by mass to 60% by mass, more preferably It can adjust so that it may become a ratio of the carbon amount of 10 mass% or more and 40 mass% or less.
  • the amount of the carbonaceous reducing agent is set to a ratio of 5% by mass or more and 60% by mass or less of the carbon component with respect to the total value of 100% by chemical equivalent, so that the metal component is added to the surface of the mixture
  • the shell (metal shell) produced by the above can be uniformly produced to improve productivity, and high quality ferronickel with high nickel quality can be obtained, which is preferable.
  • the carbonaceous reducing agent is attached to the surface of the mixture obtained by mixing the nickel oxide ore and the carbonaceous reducing agent as a surface deposit, and the reduction treatment is performed in that state.
  • the total value of the chemical equivalents described above is 100% by mass, it is preferable that the amount of the carbonaceous reducing agent present in the mixture is 40% by mass or less.
  • the carbonaceous reducing agent attached to the surface of the mixture subjected to the reduction treatment is referred to as “surface-attached carbon” for convenience. It is also called “quality reducing agent”.
  • the ratio is 40% by mass or less with respect to 100% by mass of the total value of chemical equivalents.
  • a metal shell can be uniformly formed on the surface of the mixture (pellet) by the reduction treatment. Moreover, it can suppress that metalization of iron advances excessively by reduction reaction and the amount of metallic iron increases, and the fall of the nickel quality in ferronickel can be prevented.
  • the subsequent reduction step S3 at least a metal oxide is attached as a surface deposit on the surface of a mixture obtained by mixing nickel oxide ore and a carbonaceous reducing agent, and reduction treatment is performed in that state.
  • the amount of the carbonaceous reducing agent present in the mixture may be 12% by mass to 35% by mass. preferable.
  • a ratio of 12% by mass to 35% by mass with respect to 100% by mass of the total value of chemical equivalents is adjusted by adjusting the amount (mixing amount) of the carbonaceous reducing agent to be included in the mixture, a metal shell can be uniformly formed on the surface of the mixture (pellet) by reduction treatment. . More preferably, the amount (mixing amount) of the carbonaceous reducing agent to be contained in the mixture is such that the ratio is 13% by mass or more and 30% by mass or less with respect to 100% by mass of the total value of chemical equivalents. adjust.
  • iron ore which is an additive as an optional component for example, iron ore having an iron grade of about 50% or more, hematite obtained by wet refining of nickel oxide ore, or the like can be used.
  • examples of the flux component include calcium oxide, calcium hydroxide, calcium carbonate, silicon dioxide and the like.
  • examples of the binder include bentonite, polysaccharides, resins, water glass, and dehydrated cake.
  • a mixture is obtained by uniformly mixing the raw material powder containing the nickel oxide ore as described above.
  • kneading may be performed at the same time in order to improve the mixing property, or kneading may be performed after mixing.
  • the kneading can be performed using, for example, a twin-screw kneader or the like.
  • the reduction reaction can easily occur and the reaction can be performed uniformly, and the reaction time of the reduction reaction can be shortened.
  • quality variations can be suppressed.
  • highly productive processing can be performed, and high quality ferronickel can be produced.
  • composition of the raw material powder is not limited to this.
  • the mixture forming step S2 is a step of forming the mixture obtained in the mixing process step S1. Specifically, the mixture obtained by mixing the raw material powders is formed into a lump (agglomerated product, hereinafter also referred to as “pellet”) having a certain size or larger. Therefore, the mixture forming step S2 can also be referred to as a pellet manufacturing step.
  • agglomerated product hereinafter also referred to as “pellet”
  • the molding method is not particularly limited, but an amount of water necessary to agglomerate the mixture is added.
  • a mass production apparatus such as a rolling granulator, a compression molding machine, an extrusion molding machine, or a pelletizer
  • the shape of the agglomerated product (pellet) obtained by molding the mixture can be, for example, a rectangular parallelepiped shape, a cylindrical shape, a spherical shape, or the like. By setting it as such a shape, it becomes easy to shape
  • the pellets can be processed in a stacked state in the treatment in the subsequent reduction step, and even in this respect, if the pellet is a rectangular parallelepiped shape, a cylindrical shape, a spherical shape, It can be easily stacked and placed in a reduction furnace, and the amount of treatment used for reduction treatment can be increased. In addition, by stacking and subjecting to reduction treatment in this way, the amount of treatment during reduction can be increased without enlarging one pellet, making it easy to handle and falling apart when moving. The occurrence of defects and the like can be suppressed.
  • molded mixture pellet
  • it does not specifically limit as a volume of the shape
  • it is 8000 mm ⁇ 3 > or more. If the volume of the pellet is too small, the molding cost becomes high, and it takes time to put it into the reduction furnace. In addition, if the volume of the pellet is small, the ratio of the surface area to the whole pellet becomes large, so a difference in the degree of reduction between the surface of the pellet and the inside tends to appear, and it may be difficult to promote the reduction uniformly. It becomes difficult to produce high quality ferronickel. On the other hand, if the volume of the pellet made of the mixture is 8000 mm 3 or more, the molding cost can be effectively suppressed and the handling becomes easy. Moreover, high quality fernickel can be obtained stably.
  • the mixture After forming the mixture, the mixture may be dried. There is a case where a predetermined amount of moisture is contained in the mixture, and there is a concern that the mixture may be shattered when the internal moisture is vaporized and expanded due to a rapid temperature rise during the reduction treatment. From the viewpoint of preventing such expansion, a step of subjecting the molded mixture to a drying treatment can be provided.
  • the treatment can be performed so that the solid content of the pellet is about 70% by weight and the moisture is about 30% by weight.
  • hot air of 150 ° C. to 400 ° C. is blown onto the pellets and dried.
  • the mixture before and after the drying treatment may be cracked or cracked.
  • the lump is large, even if the surface area is increased due to cracking or the like, the influence is slight and does not cause a big problem. For this reason, there is no particular problem even if there are cracks or the like in the molded pellets subjected to the reduction treatment.
  • Table 2 below shows an example of the composition (parts by weight) in the solid content of the mixture after the drying treatment.
  • the composition of the mixture is not limited to this.
  • the mixture formed through the mixture forming step S2 is charged into a reduction furnace and reduced and heated at a predetermined reduction temperature. Due to the reduction heat treatment in the reduction step S3, a smelting reaction (reduction reaction) proceeds, and reduced metal and slag are generated.
  • the slag in the mixture is melted to form a liquid phase, but the metal and slag that have already been separated and formed by the reduction treatment do not mix, and the metal solid phase is formed by subsequent cooling. It becomes a mixture mixed as a separate phase with the slag solid phase.
  • the volume of the mixture is contracted to a volume of about 50% to 60% as compared with the mixture to be charged.
  • the surface deposits will be specifically described below, but the materials are not limited to using each material alone as the surface deposits, and a plurality of types can be used in combination.
  • coal powder, coke powder, or the like can be used in the same manner as the carbonaceous reducing agent present in the mixture.
  • the size and shape of the surface-attached carbonaceous reducing agent are not particularly limited. For example, when the mixture is spherical with a diameter of several millimeters to several tens of millimeters, a size of several micrometers to several hundreds of micrometers is required. It is preferable to use it.
  • the amount of the surface-attached carbonaceous reducing agent (attachment amount to the mixture) is used to reduce nickel oxide and iron oxide contained in the mixture subjected to the reduction treatment without excess or deficiency.
  • the ratio be 0.1% by mass or more and 20.0% by mass or less.
  • the effect of adhering the carbonaceous reducing agent to the surface is sufficient when the amount of the carbonaceous reducing agent attached to the surface is less than 0.1% by mass relative to the total value of 100% by mass of the chemical equivalents described above. Therefore, the metal shell formation reaction does not proceed efficiently.
  • the adhesion amount is a ratio exceeding 20.0% by mass with respect to 100% by mass of the total value of chemical equivalents, reduction of iron oxide in the formed metal shell proceeds excessively. The nickel quality in the resulting ferronickel may be reduced.
  • the adhesion amount exceeds 20.0% by mass, it becomes excessive and disadvantageous in cost.
  • the method for attaching the surface-attached carbonaceous reducing agent to the surface of the mixture is not particularly limited, but it is preferable that the surface-attached carbonaceous reducing agent is uniformly present on the surface by applying to the surface of the mixture. .
  • the mixture is applied while being rolled on a surface-attached carbonaceous reducing agent spread on a flat surface. Or you may make it adhere so that a surface attachment carbonaceous reducing agent may be applied from the upper part of a mixture.
  • the mixture When the mixture is agglomerated into pellets, for example, about 50% by weight of excess water is contained and is in a sticky state. Therefore, by rolling the mixture (pellet) on the surface-attached carbonaceous reducing agent or applying the surface-attached carbonaceous reducing agent from above, it can be effectively attached to the surface. The same applies when a metal oxide described later is applied.
  • pellets can be produced by attaching a surface-attached carbonaceous reducing agent to the surface of the mixture, and the pellets can be charged into a reduction furnace for reduction treatment.
  • a surface-attached carbonaceous reducing agent may be attached to a part of the surface of the mixture, particularly the upper surface.
  • the mixture may be attached so as to be surrounded by a surface-attached carbonaceous reducing agent.
  • a surface-attached carbonaceous reducing agent is placed on the upper surface of the mixture (pellet) inside the reducing furnace, or a lump of surface-attached carbonaceous reducing agent is prepared in the reducing furnace in advance.
  • the mixture may be filled.
  • the metal oxide is not particularly limited, but is preferably at least one selected from nickel oxide and iron oxide. Further, the size and shape of the metal oxide are not particularly limited. For example, when the mixture is spherical with a diameter of several mm to several tens of mm, a metal oxide having a size of several ⁇ m to several 100 ⁇ m should be used. Is preferred. If the metal oxide particles are too large, it will be difficult to evenly adhere to the surface of the mixture. If the particles are too small, the metal oxide particles will rise during the adhesion work, resulting in a large loss. This can lead to breakdowns and increased cleaning costs.
  • the amount of the metal oxide (attachment amount to the mixture) is, when the total amount of nickel and iron contained in the mixture subjected to the reduction treatment is 100% by mass,
  • the amount of metal contained is preferably 0.03% by mass or more and 8.0% by mass or less, and more preferably 0.05% by mass or more and 5.0% by mass or less. preferable.
  • the amount of metal oxide deposited is less than 0.03% by mass with respect to 100% by mass of the total amount of nickel and iron contained in the mixture, the effect of adhering the metal oxide to the surface is sufficient. Therefore, the metal shell formation reaction does not proceed efficiently. On the other hand, if the amount of adhesion exceeds 5.0% by mass, the reduction of iron oxide proceeds too much in the formed metal shell, and the nickel quality in the resulting ferronickel is reduced. there is a possibility.
  • the mixing amount of the carbonaceous reducing agent that is, the amount of the carbonaceous reducing agent to be present inside the mixture is 12.0 masses with respect to the total value of 100 mass% of the chemical equivalents described above. % To 35.0% by mass or less, the amount of metal oxide attached to the mixture is metal oxide with respect to 100% by mass of the total amount of nickel and iron contained in the mixture. It is preferable that the amount of metal contained in the product is 0.1% by mass or more and 2.0% by mass or less. Thereby, a reduction reaction advances more efficiently and it becomes easy to form a metal shell uniformly.
  • the method for attaching the metal oxide to the surface of the mixture is not particularly limited, but it is preferable to apply the metal oxide to the surface of the mixture so that the metal oxide is uniformly present on the surface.
  • the mixture is applied while being rolled on a metal oxide spread on a flat surface.
  • the metal oxide may be deposited from above the mixture.
  • pellets can be produced by attaching metal oxides to the surface of the mixture, and the pellets can be charged into a reduction furnace for reduction treatment.
  • a metal oxide may be deposited on a part of the surface of the mixture, particularly on the upper surface.
  • the mixture may be attached so as to be surrounded by a metal oxide.
  • a metal oxide is placed on the upper surface of the mixture (pellet) inside the reduction furnace, or a lump of metal oxide is prepared in the reduction furnace in advance and the mixture is filled in the metal oxide. May be.
  • a heavy oil combustion atmosphere usually contains several percent of oxygen. For this reason, the reduced mixture may be oxidized and become an oxide again.
  • the oxidation of the mixture proceeds in this way, the reduction rate of the raw ore decreases, and the oxidation of nickel that is easier to oxidize than iron proceeds, and the nickel quality in the resulting ferronickel decreases.
  • the oxidation inhibitor attached to the surface of the mixture, it is possible to prevent the oxygen contained in the atmosphere from entering the mixture.
  • the oxidation proceeds from the surface of the mixture, it can be effectively prevented by adhering to the surface, and the reduction of the reduction rate and the deterioration of the nickel quality in the ferronickel based thereon are suppressed. be able to.
  • an oxide mixture having a composition with an oxide content of 90% by mass or more can be used.
  • an oxide mixture containing an oxide at a high ratio as an oxidation inhibitor, it is possible to effectively prevent oxygen from entering the mixture and to suppress oxidation more efficiently. it can.
  • the oxidation inhibitor a mixture in which an oxide mixture having a composition having an oxide content of 90% by mass or more and a carbonaceous reducing agent can be used.
  • This mixture is referred to as an “oxidation-inhibiting mixture”.
  • the carbonaceous reducing agent contained in the oxidation-inhibiting mixture is preferably at least one of coal and coke.
  • oxygen can be prevented from entering the mixture, and the invaded oxygen can be prevented. Can be actively removed. Even if oxygen is present in the vicinity of the mixture, the presence of coal and coke exerts the action of reacting with oxygen and suppressing oxidation of the mixture. Moreover, even when the oxidation of the mixture proceeds, the mixture can be reduced again by the presence of coal and coke on the surface of the mixture.
  • the oxidation inhibitor it is preferable to use at least a part of ash obtained from a carbonaceous reducing agent that constitutes the mixture together with the raw material nickel oxide ore. Moreover, it is preferable to use at least a part of one or more selected from coal ash, charcoal ash, and bamboo charcoal ash as the oxidation inhibitor. These are mainly oxides (oxide mixtures having an oxide content of 90% by mass), and oxidation can be effectively suppressed by coexisting around the mixture subjected to the reduction treatment. .
  • oxidation inhibitor one or more kinds selected from alumina, alumina cement, magnesia, magnesia cement, zirconia, zirconia cement, and mullite can be used at least in part.
  • oxide mixtures having an oxide content of 90% by mass, and oxidation can be effectively suppressed by being present on the surface of the mixture subjected to the reduction treatment. Moreover, even when the oxidation of the mixture proceeds, it also has an action of reducing the mixture again.
  • an oxidation inhibitor that is the surface deposit 11 is placed on the upper surface (upper surface) of the mixture 10. It can be in such a state.
  • the surface deposit is placed on the “surface” of the mixture 10 in this way, and the mixture 10 is allowed to exist in contact with the surface. Oxidation caused by atmospheric components can be effectively suppressed.
  • reference numeral 21 indicates a floor covering material (a carbonaceous reducing agent such as coal or a floor covering material such as alumina, zirconia, or magnesia) laid on the hearth. (The same applies to FIG. 3).
  • the oxidation of the mixture can be effectively suppressed if there is an oxidation inhibitor even in a part where the combustion gas directly hits. it can.
  • the burner is often installed at the upper part of the processing object as a suitable place for equipment. Therefore, a relatively large amount of oxygen-containing gas is supplied from the upper part. Will be. For this reason, as shown in FIG. 2, it is possible to exert an effective oxidation inhibiting effect by adhering an oxidation inhibitor on the surface of the mixture, particularly on the upper surface thereof, which is preferable. .
  • the mixture 10 is wrapped with the oxidation inhibitor that is the surface adhesion substance 11, and the surface of the mixture 10 It can be set as the state which is surrounded so that may not be exposed.
  • it can also be expressed as “filling” the mixture 10 inside the lump of the surface deposit 11. In this way, by embedding and surrounding the mixture 10 in the surface deposit 11 and performing a reduction treatment, it is possible to construct a so-called anti-oxidation wall, and more effectively prevent oxygen from entering the mixture 10. Therefore, oxidation can be further suppressed.
  • the adhesion mode of the oxidation inhibitor is not limited to that shown in FIGS. 2 and 3, and any mode can be used as long as it can efficiently prevent oxidation by preventing oxygen from entering the mixture.
  • the method should be selected accordingly.
  • ABS processing Although it does not specifically limit as a reduction furnace used for reduction heat processing, for example, it is preferable to use a moving hearth furnace. By using a moving hearth furnace as the reduction furnace, the reduction reaction proceeds continuously and the reaction can be completed with one facility, and the processing temperature is higher than when each process is performed using separate furnaces. Can be accurately controlled.
  • heat loss heat loss
  • the temperature of the container is reduced temporarily by exposing the container filled with the mixture to the outside air or a state close to it when moving between the furnaces. Heat loss occurs and the reaction atmosphere changes. As a result, the reaction does not start immediately upon recharging the furnace to perform the next treatment.
  • a rotary hearth furnace having a circular shape and divided into a plurality of processing regions can be used.
  • each process is performed in each region while rotating in a predetermined direction.
  • the processing time in each area can be adjusted, and the rotary hearth furnace rotates once. Every time the mixture is smelted.
  • the moving hearth furnace may be a roller hearth kiln or the like.
  • nickel oxide contained in nickel oxide ore which is the raw ore, is reduced as completely as possible, while iron oxide contained in nickel oxide ore is partially reduced.
  • a so-called partial reduction is performed to obtain the desired high nickel grade ferronickel.
  • the reduction temperature is not particularly limited, but is preferably in the range of 1200 ° C. or higher and 1450 ° C. or lower, and more preferably in the range of 1300 ° C. or higher and 1400 ° C. or lower.
  • a reduction reaction can be caused uniformly and a metal (ferronickel) in which variation in quality is suppressed can be generated.
  • a metal ferrronickel
  • the internal temperature of the reduction furnace is increased by a burner or the like until the reduction temperature is within the above-described range, and the temperature is maintained after the temperature is raised.
  • a carbonaceous reducing agent (hereinafter also referred to as “furnace carbonaceous reducing agent”) is spread on the hearth of the reduction furnace in advance.
  • the mixture may be placed on the spread hearth carbonaceous reductant for treatment.
  • a floor covering material such as alumina, zirconia, or magnesia may be laid on the hearth, and the mixture may be placed thereon for processing.
  • a floor covering material what has an oxide as a main component can be used.
  • the separation step S4 the metal and slag generated in the reduction step S3 are separated and the metal is recovered. Specifically, the metal phase is separated and recovered from a mixture (mixture) containing a metal phase (metal solid phase) and a slag phase (slag solid phase) obtained by reduction heat treatment on the mixture.
  • the obtained metal phase and slag phase can be easily separated because of poor wettability.
  • a predetermined drop is obtained with respect to the large mixture obtained by the treatment in the reduction step S3 described above.
  • the metal phase and the slag phase can be easily separated from the mixture by providing an impact such as applying a predetermined vibration during sieving.
  • the metal phase is recovered by separating the metal phase and the slag phase.
  • Nickel oxide ore as raw material ore, iron ore, silica sand and limestone as flux components, binder, and carbonaceous reducing agent (coal powder, carbon content: 85% by weight, average particle size: about 200 ⁇ m) Were mixed to obtain a mixture.
  • the carbonaceous reducing agent is 100% by mass of the total amount necessary for reducing nickel oxide (NiO) and iron oxide (Fe 2 O 3 ) contained in nickel oxide ore as raw material ore without excess or deficiency. When added, it was contained in an amount of 17 to 50% by mass depending on the sample.
  • coal powder as a carbonaceous reducing agent (surface-attached carbonaceous reducing agent) was uniformly applied and adhered to the surface of the obtained spherical mixture.
  • the adhesion amount of the surface-attached carbonaceous reducing agent is 0% by mass to 15% depending on the sample when the amount necessary for reducing nickel oxide and iron oxide contained in the mixture without excess or deficiency is 100% by mass. It was set as the quantity used as the ratio of 0.0 mass%.
  • the mixture is then dried by blowing hot air at 300 ° C. to 400 ° C. so that the solid content of the mixture is about 70% by weight and the water content is about 30% by weight to produce a spherical shape (pellet, diameter: 17 mm). did.
  • Table 3 shows the solid content composition (excluding carbon) of the pellets after the drying treatment.
  • the manufactured pellets were charged into a reduction furnace and subjected to a reduction treatment. Specifically, in advance, the hearth of the reduction furnace, the main component is SiO 2, containing a small amount of Al 2 O 3, oxides such MgO as another component paved "ash", pellets thereon was placed. In addition, in the pellet with the carbonaceous reducing agent (coal powder) attached to the surface, the amount of the coal powder is large, and the amount not attached to the surface of the pellet is upward after placing the pellet on the hearth. It was made to adhere again like sprinkling.
  • the atmosphere was substantially nitrogen-free and the pellets were charged into a reduction furnace.
  • the temperature condition at the time of charging was 500 ⁇ 20 ° C.
  • the reduction temperature was set to 1400 ° C., and the pellet was reduced and heated in a reduction furnace.
  • the treatment time was set to 15 minutes so that a metal shell was generated on the surface of the pellet and the reduction in the pellet as a mixture proceeded efficiently.
  • the sample was quickly cooled to room temperature in a nitrogen atmosphere, and the sample was taken out into the atmosphere.
  • Nickel metal ratio Amount of metalized Ni in pellets ⁇ (Amount of all Ni in pellets) ⁇ 100 (%)
  • Nickel content in metal Amount of Ni metalized in pellets ⁇ (total amount of metalized Ni and Fe in the pellet) x 100 (%) (2) formula
  • Table 4 shows the amount of coal powder (carbonaceous reducing agent) attached to each pellet sample and the content of coal powder (carbonaceous reducing agent) contained inside the pellet. The measurement results measured by ICP analysis are also shown.
  • nickel in the pellets can be metalized satisfactorily by applying a reduction treatment to the pellets with the surface-attached carbonaceous reducing agent attached to the surface. It was found that high-quality ferronickel with a rate of 18.3% to 22.8% can be produced (Examples 1 to 13).
  • carbonaceous reducing agent coal powder, carbon content: 85% by weight, average particle size: about 200 ⁇ m
  • the amount of carbonaceous reducing agent required to reduce nickel oxide (NiO) and iron oxide (Fe 2 O 3 ) contained in nickel oxide ore as raw material ore without excess or deficiency is 100% by mass Depending on the sample, it was contained in an amount of 17 mass% to 41 mass%.
  • the resulting spherical mixture is rolled on a container laid with metal oxide nickel oxide (NiO) or iron oxide (FeO) to uniformly adhere the metal oxide to the surface of the mixture.
  • NiO nickel oxide
  • FeO iron oxide
  • the amount of metal oxide deposited is such that the total amount of nickel and iron contained in the formed pellets is 100% by mass, and the amount is 0% by mass to 8.0% by mass depending on the sample. did.
  • drying is performed by blowing hot air of 300 ° C. to 400 ° C. on the mixture so that the solid content of the mixture is about 70% by weight and the water content is about 30% by weight to form a spherical shape (pellet, diameter: 17 mm).
  • Table 5 shows the solid content composition (excluding carbon) of the pellets after the drying treatment.
  • the atmosphere was substantially nitrogen-free and the pellets were charged into a reduction furnace.
  • the temperature condition at the time of charging was 500 ⁇ 20 ° C.
  • the reduction temperature was set to 1400 ° C., and the pellet was reduced and heated in a reduction furnace.
  • the treatment time was set to 15 minutes so that a metal shell was generated on the surface of the pellet and the reduction in the pellet as a mixture proceeded efficiently.
  • the sample was quickly cooled to room temperature in a nitrogen atmosphere, and the sample was taken out into the atmosphere.
  • the nickel metal ratio and the nickel content in the metal were calculated by analyzing with an ICP emission spectroscopic analyzer (SHIMAZU S-8100 type).
  • the nickel metal ratio was determined by the above formula (1), and the nickel content in the metal was determined by the above formula (2).
  • Table 6 summarizes the types of metal oxides and their amounts attached to each pellet sample, the content of coal powder (carbonaceous reducing agent) contained in the pellets, and the presence or absence of the hearth carbonaceous reducing agent. Show. Moreover, the measurement result measured by ICP analysis is shown.
  • the nickel in the pellet can be well metallized by performing a reduction treatment on the pellet having the metal oxide adhered to the surface of the mixture, and the nickel content is It was found that high-quality ferronickel of 16.2% to 24.8% can be produced (Examples 14 to 49).
  • the reason why the ferronickel can be manufactured as a good ferronickel is that a metal oxide is uniformly and stably produced by attaching a metal oxide to the pellet surface. This is probably because the reduction reaction occurred uniformly and stably.
  • Nickel oxide ore as raw material ore, iron ore, silica sand and limestone as flux components, binder, and carbonaceous reducing agent (coal powder, carbon content: 85% by weight, average particle size: about 90 ⁇ m), appropriate amount
  • carbonaceous reducing agent coal powder, carbon content: 85% by weight, average particle size: about 90 ⁇ m
  • the carbonaceous reducing agent the total amount of nickel oxide (NiO) and iron oxide (Fe 2 O 3 ) contained in the nickel oxide ore that is the raw material ore is reduced to 100%. Occasionally, the amount was 25%.
  • Each mixture sample was dried by blowing hot air at 170 ° C. to 250 ° C. so that the solid content was about 70% by weight and the water content was about 30% by weight before the reduction treatment.
  • Table 7 below shows the solid content composition (excluding carbon) of the sample after the drying treatment.
  • coal ash coal ash
  • charcoal ash bamboo charcoal ash
  • alumina alumina cement
  • magnesia magnesia cement
  • zirconia zirconia cement
  • mullite mullite
  • the oxidation inhibitor is placed on the upper surface of the mixture (table). 3) or a mode of embedding the mixture in an oxidation inhibitor so that the surface is not visible as shown in FIG. 3 (denoted as “fill” in the table).
  • Comparative Examples 4 to 6 a mixture sample was prepared in the same manner as in Example, and the mixture sample was charged into a reduction furnace and subjected to reduction heat treatment. At this time, an oxidation inhibitor was not used. Processed. The reduction temperature and reduction time were in the same range as in the examples.
  • the nickel metal ratio and the nickel content in the metal were analyzed and calculated using an ICP emission spectrophotometer (SHIMAZU S-8100 type). Tables 8 to 10 below also show values calculated from the analysis results.
  • the nickel metal ratio was determined by the above formula (1), and the nickel content in the metal was determined by the above formula (2).
  • Ni metal recovery rate recovered Ni amount / (amount of ore input ⁇ Ni content ratio in ore) ⁇ 100 (3) formula
  • the nickel metalization rate was 85.0% to 85.5%, although the other reduction treatment conditions were the same.
  • the nickel content in the metal was 14.2% to 14.6%, and the metal recovery rate was 75.0% to 75.8%, both of which were clearly lower than the examples.
  • a nickel-containing metal can be obtained with high efficiency by applying a reduction treatment to a mixture containing nickel oxide ore as a raw material in the presence of an oxidation inhibitor.
  • Example 110 to Example 169> Nickel oxide ore as raw material ore, iron ore, silica sand and limestone as flux components, binder, and carbonaceous reducing agent (coal powder, carbon content: 85% by weight, average particle size: about 83 ⁇ m), appropriate amount The mixture was mixed using a mixer while adding water.
  • carbonaceous reducing agent the total amount of nickel oxide (NiO) and iron oxide (Fe 2 O 3 ) contained in the nickel oxide ore that is the raw material ore is reduced to 100%. Occasionally, the amount was 27%.
  • Each mixture sample was dried by blowing hot air at 170 ° C. to 250 ° C. so that the solid content was about 70% by weight and the water content was about 30% by weight before the reduction treatment.
  • the solid content composition of the sample after the drying treatment was the same as in Table 7 above.
  • an oxidation inhibitor mixture obtained by mixing an oxide mixture having an oxide content of 90% by mass or more and coal as a carbonaceous reducing agent was used.
  • the oxide mixture alumina, alumina cement, magnesia, magmesia cement, zirconia, zirconia cement, and mullite were selected and used in each example.
  • the mixing ratio of the oxide mixture and coal was 9: 1 by weight.
  • the oxidation inhibitor is placed on the upper surface of the mixture (table). 3) or a mode of embedding the mixture in an oxidation inhibitor so that the surface is not visible as shown in FIG. 3 (denoted as “fill” in the table).
  • the nickel metalization rate As shown in the results of Tables 11 to 15, by reducing the mixture sample in the state where the oxidation inhibitor composed of the oxidation inhibition mixture coexists, the nickel metalization rate, the nickel content in the metal, and the metal recovery rate are reduced. Both values were high and good results were obtained. In particular, the nickel metal conversion rate was stably a high value of 94% or more as compared with Examples 50 to 109.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、メタル回収率を高めて生産性を向上させるとともに、高品質のメタルを安価にかつ効率的に製造することができる方法を提供する。 本発明は、酸化鉱石と炭素質還元剤とを混合し、得られた混合物を加熱して還元処理に付し、還元物であるメタルとスラグとを得る製錬方法であって、混合物の表面に、炭素質還元剤、金属酸化物、及び酸化抑制物から選ばれる1種以上の表面付着物を付着させた状態で還元処理を施すことを特徴とする。

Description

酸化鉱石の製錬方法
 本発明は、酸化鉱石の製錬方法に関するものであり、より詳しくは、ニッケル酸化鉱石等の酸化鉱石を還元剤と混合して高温下で還元することによってメタルを含む還元物を得る酸化鉱石の製錬方法に関する。
 酸化鉱石の一種であるリモナイトあるいはサプロライトと呼ばれるニッケル酸化鉱石の製錬方法として、熔錬炉を使用してニッケルマットを製造する乾式製錬方法、ロータリーキルンあるいは移動炉床炉を使用して鉄とニッケルの合金であるフェロニッケルを製造する乾式製錬方法、オートクレーブを使用してミックスサルファイドを製造する湿式製錬方法等が知られている。
 上述した様々な方法の中で、特に乾式製錬法を用いてニッケル酸化鉱石を還元して製錬する場合、反応を進めるために原料のニッケル酸化鉱石を適度な大きさに破砕する等して塊状物化する処理が前処理として行われる。
 具体的に、ニッケル酸化鉱石を塊状物化する、すなわち粉状や微粒状の鉱石を塊状にする際には、そのニッケル酸化鉱石と、それ以外の成分、例えばバインダーやコークス等の還元剤とを混合して混合物とし、さらに水分調整等を行った後に塊状物製造機に装入して、例えば一辺あるいは直径が10mm~30mm程度の塊状物(ペレット、ブリケット等を指す。以下、単に「ペレット」という)とするのが一般的である。
 塊状物化して得られるペレットには、含有する水分を「飛ばす」ために、ある程度の通気性が必要となる。さらに、その後の還元処理においてペレット内で均一に還元が進まないと、得られる還元物の組成が不均一になり、メタルが分散したり偏在したりする等の不都合が生じる。そのため、ペレットを作製する際には混合物を均一に混合したり、得られたペレットを還元する際には可能な限り均一な温度を維持することが重要となる。
 加えて、還元処理により生成するメタル(フェロニッケル)を粗大化させることも非常に重要な技術である。生成したフェロニッケルが、例えば数10μm~数100μm以下の細かな大きさであった場合、同時に生成するスラグと分離することが困難となり、フェロニッケルとしての回収率(収率)が大きく低下してしまう。そのため、還元後のフェロニッケルを粗大化する処理が必要となる。
 さらに、製錬コストをいかに低く抑えられるかも重要な技術的課題であり、コンパクトな設備で操業することができる連続処理が望まれている。
 例えば、特許文献1には、金属酸化物と炭素質還元剤とを含む塊成物を加熱し、塊成物に含まれる金属酸化物を還元溶融して粒状金属を製造するにあたり、粒状金属の生産性を一層高めることを目的とする技術が開示されている。具体的に、金属酸化物と炭素質還元剤とを含む塊成物を、移動床型還元溶融炉の炉床上に供給して加熱し、金属酸化物を還元溶融した後、得られる粒状金属を冷却してから炉外へ排出して回収する粒状金属の製造方法が開示されている。そして、この技術においては、塊成物中の酸化鉄を固体還元する炉の前半領域における炉内温度を1300℃~1450℃とし、塊成物中の還元鉄を浸炭、溶融させ、凝集させる炉の後半領域における炉内温度を1400℃~1550℃とするとともに、炉床上に敷き詰めた塊成物同士の距離を0としたときの塊成物の炉床への最大投影面積率に対し、炉床上に敷き詰めた塊成物の炉床への投影面積率の相対値を敷密度としたときに、炉床上における塊成物の敷密度を0.5以上0.8以下として加熱する際に、平均直径が19.5mm以上32mm以下の塊成物を炉床上に供給することを特徴としており、このような方法によれば、塊成物の敷密度と平均直径と併せて制御することで、粒状金属鉄の生産性を向上できるとしている。
 確かに、上述した特許文献1に開示の技術が提案された以前の技術と比較すれば、塊成物の敷密度と平均直径を制御することで、粒状金属鉄の生産性を向上できるとも考えられる。しかしながら、この技術は、あくまでも塊生物の外の反応についての技術であり、還元反応に最も重要な要素は還元反応が起きる塊生物内の状態である。
 すなわち、塊生物内の還元反応を制御することによって、例えば反応効率をより一層高めることができ、また均一に還元反応を生じさせることもでき、高品質のメタルを製造することが可能となると言える。
 また、特許文献1に開示の技術のように、塊生物の直径を決められた範囲にすることにより、塊生物の製造時の収率が下がってしまい、コストアップになる。さらに、塊成物の敷密度が0.5以上0.8以下の範囲とすると、最密充填でないうえに塊生物の積層もできなくなり、非常に効率の悪い処理工程となってしまい、製造コストの上昇に繋がる。
 さらに、特許文献1に開示の技術のように、原料全てを溶解して還元する、いわゆる全溶解法を用いたプロセスでは、操業コストの面でも大きな問題がある。例えば、原料のニッケル酸化鉱石を完全に溶融するには、1500℃以上もの高温にする必要があるが、このような高温条件とするには多大なエネルギーコストがかかり、またそのような高温で使用する炉は傷み易くなるため、補修費もかかる。またさらに、原料のニッケル酸化鉱石中にはニッケルが1%程度しか含まれていないため、そのニッケルに相応する鉄以外は回収する必要がないにもかかわらず、多量に含まれる回収不要な成分までもすべてを溶融することになり、著しく非効率となる。
 そのため、必要なニッケルだけを優先的に還元して、ニッケルよりもはるかに多量に含まれる鉄の還元は部分的にしか行わない部分溶解による還元方法が検討されてきた。しかしながら、このような部分還元法(あるいはニッケル優先還元法ともいう)では、原料を完全に溶解しない半固体状態に維持しながら還元反応を行うため、ニッケルを100%完全に還元しながら、一方で鉄の還元はごく一部分だけに留めるように反応を制御することは容易でない。そのことにより、原料内での還元に部分的なばらつきが生じ、ニッケル回収率の低下等、効率的な操業が難しいという問題がある。
 以上のように、原料のニッケル酸化鉱石を混合し、その混合物を還元して、メタルを製造するにあたり、生産性を向上させるとともに、製造コストを抑えながら高品質のメタルを製造するには、多くの問題があった。
特開2011-256414号公報
 本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、メタル回収率を高めて生産性を向上させるとともに、高品質のメタルを安価にかつ効率的に製造することができる方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、原料の酸化鉱石と還元剤とを混合して得られた混合物の表面に特定の化合物を付着させ、その状態で混合物の還元処理を施すことによって、ニッケル品位の高い高品質のメタルを効率的に製造できることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、酸化鉱石と炭素質還元剤とを混合し、得られた混合物を加熱して還元処理に付し、還元物であるメタルとスラグとを得る製錬方法であって、前記混合物の表面に、炭素質還元剤、金属酸化物、及び酸化抑制物から選ばれる1種以上の表面付着物を付着させた状態で還元処理を施す、酸化鉱石の製錬方法である。
 (2)本発明の第2の発明は、第1の発明において、前記酸化鉱石は、ニッケル酸化鉱石であり、前記表面付着物として少なくとも前記炭素質還元剤を用い、前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記混合物の表面に付着させる該炭素質還元剤の量を0.1質量%以上20.0質量%以下の割合とする、酸化鉱石の製錬方法である。
 (3)本発明の第3の発明は、第2の発明において、前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記酸化鉱石と共に該混合物の内部に存在する炭素質還元剤の量を40.0質量%以下の割合とする、酸化鉱石の製錬方法である。
 (4)本発明の第4の発明は、第1の発明において、前記表面付着物として少なくとも前記金属酸化物を用い、前記金属酸化物は、酸化ニッケル及び/又は酸化鉄である、酸化鉱石の製錬方法である。
 (5)本発明の第5の発明は、第4の発明において、前記酸化鉱石は、ニッケル酸化鉱石であり、前記混合物に含まれるニッケル及び鉄の金属合計量を100質量%としたとき、前記金属酸化物に含まれる金属量が0.03質量%以上8.0質量%以下の割合となるように、該金属酸化物を該混合物の表面に付着させる、酸化鉱石の製錬方法である。
 (6)本発明の第6の発明は、第5の発明において、前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記酸化鉱石と共に該混合物の内部に存在する炭素質還元剤の量を12.0質量%以上35.0質量%以下の割合とする、酸化鉱石の製錬方法である。
 (7)本発明の第7の発明は、第6の発明において、前記混合物に含まれるニッケル及び鉄の金属合計量を100質量%としたとき、前記金属酸化物に含まれる金属量が0.1質量%以上2.0質量%以下の割合となるように、該金属酸化物を該混合物の表面に付着させる、酸化鉱石の製錬方法である。
 (8)本発明の第8の発明は、第1の発明において、前記表面付着物として少なくとも前記酸化抑制物を用い、前記酸化抑制物は、酸化物の含有量が90質量%以上である酸化物混合物である、酸化鉱石の製錬方法である。
 (9)本発明の第9の発明は、第1の発明において、前記表面付着物として少なくとも前記酸化抑制物を用い、前記酸化抑制物は、酸化物の含有量が90質量%以上である酸化物混合物と、炭素質還元物とを含む酸化抑制混合物である、酸化鉱石の製錬方法である。
 (10)本発明の第10の発明は、第9の発明において、前記酸化抑制混合物に含まれる前記炭素質還元物は、石炭及び/又はコークスである、酸化鉱石の製錬方法である。
 (11)本発明の第11の発明は、第8乃至第10のいずれかの発明において、前記混合物の上面に前記表面付着物を載せて還元処理を施す、酸化鉱石の製錬方法である。
 (12)本発明の第12の発明は、第8乃至第10のいずれかの発明において、前記混合物を前記表面付着物で包囲して還元処理を施す、酸化鉱石の製錬方法である。
 (13)本発明の第13の発明は、第8乃至第12のいずれかの発明において、前記酸化抑制物として、前記炭素質還元剤の灰を少なくとも一部に用いる、酸化鉱石の製錬方法である。
 (14)本発明の第14の発明は、第8乃至第13のいずれかの発明において、前記酸化抑制物として、石炭灰、木炭灰、及び竹炭灰から選ばれる1種類以上を少なくとも一部に用いる、酸化鉱石の製錬方法である。
 (15)本発明の第15の発明は、第8乃至第12のいずれかの発明において、前記酸化抑制物として、アルミナ、アルミナセメント、マグネシア、マグメシアセメント、ジルコニア、ジルコニアセメント、及びムライトから選ばれる1種類以上を少なくとも一部に用いる、酸化鉱石の製錬方法である。
 (16)本発明の第16の発明は、第1乃至第15のいずれかの発明において、前記還元処理においては、予め炉床に炭素質還元剤を敷き詰めた還元炉に前記混合物を装入し、該炭素質還元剤上に該混合物を載置した状態で処理を施す、酸化鉱石の製錬方法である。
 (17)本発明の第17の発明は、第1乃至第16のいずれかの発明において、前記還元処理における還元温度を、1200℃以上1450℃以下とする、酸化鉱石の製錬方法である。
 本発明によれば、ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、メタル回収率を高めて生産性を向上させるとともに、高品質のメタルを安価にかつ効率的に製造することができる。
ニッケル酸化鉱石の製錬方法の流れの一例を示す工程図である。 還元処理に供する混合物の上面(上部表面)に表面付着物(特に、酸化抑制物)を載せて付着させたときの状態を模式的に示す図である。 還元処理に供する混合物を、表面付着物(特に、酸化抑制物)によって包囲するように付着させたときの状態を模式的に示す図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.本発明の概要≫
 本発明に係る酸化鉱石の製錬方法は、酸化鉱石を原料として、その酸化鉱石と炭素質還元剤とを混合して混合物とし、得られた混合物を高温下で還元処理に付して還元物であるメタルを製造する方法である。例えば、酸化鉱石として、酸化ニッケルや酸化鉄等を含有するニッケル酸化鉱石を原料とし、そのニッケル酸化鉱石を炭素質還元剤と混合して、高温下において、混合物に含まれるニッケルを優先的に還元し、また鉄を部分的に還元することで鉄とニッケルの合金であるフェロニッケルを製造する方法が挙げられる。
 具体的に、本発明に係る酸化鉱石の製錬方法は、酸化鉱石と炭素質還元剤とを混合し、得られた混合物を原料として加熱して還元処理に付し、還元物であるメタルとスラグとを得る方法において、その混合物の表面に、炭素質還元剤、金属酸化物、及び酸化抑制物から選ばれる1種以上の化合物(以下、これを「表面付着物」ともいう)を付着させた状態で、還元処理を施すことを特徴としている。
 このような製錬方法によれば、酸化鉱石と炭素質還元剤とを含む混合物の表面に表面付着物が付着した状態で還元処理を施すことによって、ニッケル等のメタル化率を高め、そのニッケル等の金属品位の高い高品質なメタルを製造することができる。また、表面付着物を、少なくとも酸化鉱石と炭素質還元剤とを混合して得られる混合物の表面に付着させるという極めて簡易な方法であるため、安価にかつ効率的に処理することができる。
 以下では、本発明の具体的な実施形態(以下、「本実施の形態」という)として、ニッケル酸化鉱石の製錬方法を例に挙げて説明する。上述したように、製錬原料であるニッケル酸化鉱石は、酸化ニッケル(NiO)と酸化鉄(Fe)とを少なくとも含むものであり、そのニッケル酸化鉱石を製錬原料として還元処理することすることで、メタルとして鉄-ニッケル合金(フェロニッケル)を製造することができる。
 なお、本発明は、酸化鉱石としてニッケル酸化鉱石に限定されるものではなく、製錬方法としても酸化ニッケル等を含むニッケル酸化鉱石からフェロニッケルを製造する方法に限られるものではない。
 ≪2.ニッケル酸化鉱石の製錬方法≫
 本実施の形態に係るニッケル酸化鉱石の製錬方法は、ニッケル酸化鉱石を炭素質還元剤と混合して混合物とし、その混合物に対して還元処理を施すことによって、還元物としてメタルであるフェロニッケルとスラグとを生成させる方法である。なお、メタルであるフェロニッケルは、還元処理を経て得られたメタルとスラグとを含む混合物から、そのメタルを分離することで回収することができる。
 図1は、ニッケル酸化鉱石の製錬方法の流れの一例を示す工程図である。図1に示すように、この製錬方法は、ニッケル酸化鉱石を含む原料を混合する混合処理工程S1と、得られた混合物を所定の形状に成形する混合物成形工程S2と、成形された混合物(ペレット)を所定の還元温度で還元加熱する還元工程S3と、還元工程S3にて生成したメタルとスラグとを分離してメタルを回収する分離工程S4と、を有する。
  <2-1.混合処理工程>
 混合処理工程S1は、ニッケル酸化鉱石を含む原料粉末を混合して混合物を得る工程である。具体的には、混合処理工程S1では、原料鉱石であるニッケル酸化鉱石に、炭素質還元剤を添加して混合し、また任意成分の添加剤として、鉄鉱石、フラックス成分、バインダー等の、例えば粒径が0.1mm~0.8mm程度の粉末を添加して混合し、混合物を得る。なお、混合処理は、混合機等を用いて行うことができる。
 原料鉱石であるニッケル酸化鉱石としては、特に限定されないが、リモナイト鉱、サプロライト鉱等を用いることができる。なお、ニッケル酸化鉱石は、酸化ニッケル(NiO)と、酸化鉄(Fe)とを少なくとも含有する。
 炭素質還元剤としては、特に限定されないが、例えば、石炭粉、コークス粉等が挙げられる。なお、この炭素質還元剤は、原料鉱石であるニッケル酸化鉱石の粒度や粒度分布と同等の大きさのものであると、均一に混合し易く、還元反応も均一に進みやすくなるため好ましい。
 炭素質還元剤の混合量としては、ニッケル酸化鉱石を構成する酸化ニッケルの全量をニッケルメタル還元するのに必要な化学当量と、酸化鉄(酸化第二鉄)を金属鉄に還元するのに必要な化学当量との両者合計値(便宜的に「化学当量の合計値」ともいう)を100質量%としたときに、好ましくは5質量%以上60質量%以下の炭素量の割合、より好ましくは10質量%以上40質量%以下の炭素量の割合となるように調整することができる。このように、炭素質還元剤の混合量を、化学当量の合計値100質量%に対して5質量%以上の割合とすることで、ニッケルの還元を効率的に進行させることができ生産性が向上する。一方で、化学当量の合計値100質量%に対して60質量%以下の割合とすることで、鉄の還元量を抑えて、ニッケル品位の低下を防ぎ、高品質のフェロニッケルを製造することができる。このように、好ましくは、炭素質還元剤の混合量を化学当量の合計値100質量%に対して5質量%以上60質量%以下の炭素量の割合とすることで、混合物の表面に金属成分により生成した殻(メタルシェル)を均一に生成させて生産性を向上させることができ、またニッケル品位の高い高品質なフェロニッケルを得ることができ、好ましい。
 また、後工程の還元工程S3において、ニッケル酸化鉱石と炭素質還元剤とを混合して得られる混合物の表面に、少なくとも炭素質還元剤を表面付着物として用いて付着させ、その状態で還元処理を施す場合には、上述した化学当量の合計値を100質量%としたとき、混合物の内部に存在する炭素質還元剤を量が40質量%以下の割合となるようにすることが好ましい。なお、ニッケル酸化鉱石と共に混合物を構成してその混合物の内部に存在する炭素質還元剤と区別するために、還元処理に供される混合物の表面に付着させる炭素質還元剤を便宜上「表面付着炭素質還元剤」ともいう。
 詳しくは後述するが、このように、混合物の表面に表面炭素質還元剤を付着させて還元処理を施す場合には、化学当量の合計値100質量%に対して40質量%以下の割合となるように、混合物に含まれることになる炭素質還元剤の量(混合量)を調整することで、還元処理により、その混合物(ペレット)の表面に均一にメタルシェルを形成させることができる。また、還元反応により鉄のメタル化が過剰に進行して金属鉄量の多くなることを抑えることができ、フェロニッケル中のニッケル品位の低下を防ぐことができる。
 また、後工程の還元工程S3において、ニッケル酸化鉱石と炭素質還元剤とを混合して得られる混合物の表面に、少なくとも金属酸化物を表面付着物として用いて付着させ、その状態で還元処理を施す場合には、上述した化学当量の合計値を100質量%としたとき、混合物の内部に存在する炭素質還元剤を量が12質量%以上35質量%以下の割合となるようにすることが好ましい。
 詳しくは後述するが、このように、混合物の表面に金属酸化物を付着させて還元処理を施す場合には、化学当量の合計値100質量%に対して12質量%以上35質量%以下の割合となるように、混合物に含まれることになる炭素質還元剤の量(混合量)を調整することで、還元処理により、その混合物(ペレット)の表面により均一にメタルシェルを形成させることができる。また、より好ましくは、化学当量の合計値100質量%に対して13質量%以上30質量%以下の割合となるように、混合物に含まれることになる炭素質還元剤の量(混合量)を調整する。
 また、任意成分の添加剤である鉄鉱石としては、例えば、鉄品位が50%程度以上の鉄鉱石、ニッケル酸化鉱石の湿式製錬により得られるヘマタイト等を用いることができる。
 また、フラックス成分としては、例えば、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、二酸化珪素等を挙げることができる。また、バインダーとしては、例えば、ベントナイト、多糖類、樹脂、水ガラス、脱水ケーキ等を挙げることができる。
 混合処理工程S1では、上述したようなニッケル酸化鉱石を含む原料粉末を均一に混合することによって混合物を得る。この混合に際しては、混合性を高めるために混練を同時に行ってもよく、混合後に混練を行ってもよい。具体的に、混練は、例えば二軸混練機等を用いて行うことができ、混合物を混練することによってその混合物にせん断力を加え、炭素質還元剤や原料粉末等の凝集を解いて、均一に混合できるとともに、各々の粒子の密着性を向上させ、また空隙を減少させることができる。これにより、還元反応が起りやすくなるとともに均一に反応させることができ、還元反応の反応時間を短縮することができる。また、品質のばらつきを抑えることができる。そして、結果として、生産性の高い処理を施すことができ、高い品質のフェロニッケルを製造することができる。
 また、混練した後、押出機を用いて押出してもよい。このように押出機で押出すことによって、より一層高い混練効果を得ることができる。
 なお、下記表1に、混合処理工程S1にて混合する、一部の原料粉末の組成(重量%)の一例を示すが、原料粉末の組成としてはこれに限定されない。
Figure JPOXMLDOC01-appb-T000001
  <2-2.混合物成形工程>
 混合物成形工程S2は、混合処理工程S1で得られた混合物を成形する工程である。具体的には、原料粉末を混合して得られた混合物を、ある程度の大きさ以上の塊(塊状化物、以下「ペレット」ともいう)に成形する。したがって、混合物成形工程S2は、ペレット製造工程とも換言することができる。
 成形方法としては、特に限定されないが、混合物を塊状物化するのに必要な量の水分を添加し、例えば塊状物製造装置(転動造粒機、圧縮成形機、押出成形機等、あるいはペレタイザーともいう)を用いて所定の形状のペレットに成形する。
 混合物を成形して得られる塊状化物(ペレット)の形状としては、例えば、直方体状、円柱、球状等とすることができる。このような形状とすることにより、混合物を成形し易くし、成形にかかるコストを抑えることができる。また、上述した形状は簡易な形状であって複雑なものではないため、不良品の発生を抑制することができ、得られるペレットの品質も均一にすることができる。
 また、塊状化物の形状としては、次工程の還元工程での処理において、ペレットを積層させた状態で処理できることが好ましく、その点においても、ペレットが直方体状、円柱状、球状等であれば、還元炉内に積層させて載置させ易く、還元処理に供する処理量を多くすることができる。また、このように積層させて還元処理に供することで、一つのペレットを巨大化しなくても還元時の処理量を増やすことができるため、取り扱いが容易となり、また移動時等に崩れ落ちたりすることがなく、不良等の発生を抑えることができる。
 成形した混合物(ペレット)の体積としては、特に限定されないが、8000mm以上であることが好ましい。ペレットの体積が小さすぎると、成形コストが高くなり、還元炉に投入するのに手間がかかる。また、ペレットの体積が小さいと、ペレット全体に占める表面積の割合が大きくなるため、ペレットの表面と内部での還元度の差が現れやすくなり、均一に還元を進めることが困難になる可能性があり、高品質のフェロニッケルを製造することが難くなる。一方で、混合物からなるペレットの体積が8000mm以上であれば、成形コストを有効に抑えることができ、取り扱いも容易となる。また、高品質のフェルニッケルを安定的に得ることができる。
 混合物を成形した後には、その混合物に対して乾燥処理を施すようにしてもよい。混合物中には所定量の水分が含まれていることがあり、還元処理に際して急激な昇温によって内部の水分が一気に気化して膨張すると、その混合物が粉々になってしまう懸念がある。このような膨張を防ぐ観点から、成形した混合物に対して乾燥処理を施す工程を設けることができる。
 具体的に、乾燥処理においては、例えばペレットの固形分が70重量%程度で、水分が30重量%程度となるように処理を施すことができる。例えば、150℃~400℃の熱風をペレットに吹き付けて乾燥させる。
 なお、比較的大きなペレットである場合、乾燥処理前や乾燥処理後の混合物にひびや割れが入っていてもよい。塊が大きい場合には、割れ等によって表面積が大きくなってもその影響は僅かであり、大きな問題にはならない。このため、還元処理に供される成形したペレットに割れ等があっても特に問題はない。
 下記表2に、乾燥処理後の混合物における固形分中組成(重量部)の一例を示す。なお、混合物の組成としては、これに限定されるものではない。
  <2-3.還元工程>
 還元工程S3では、混合物成形工程S2を経て成形された混合物を、還元炉内に装入して、所定の還元温度で還元加熱する。この還元工程S3における還元加熱処理により、製錬反応(還元反応)が進行して、還元物であるメタルとスラグとが生成する。
 還元工程S3において、混合物中のスラグは熔融して液相となっているが、還元処理により既に分離して生成したメタルとスラグとは、混ざり合うことがなく、その後の冷却によってメタル固相とスラグ固相との別相として混在する混合物となる。この混合物の体積は、装入する混合物と比較すると、50%~60%程度の体積に収縮している。
 (表面付着物について)
 さて、本実施の形態においては、還元炉内で混合物(ペレット)に対して還元処理を施すに際して、その混合物の表面に、炭素質還元剤(表面炭素質還元剤)、金属酸化物、及び酸化抑制物から選ばれる1種以上の材料を付着させた状態で処理することを特徴としている。ここで、混合物の表面に付着させる、表面付着炭素質還元剤、金属酸化物、及び酸化抑制物から選ばれる1種以上の材料を「表面付着物」と定義する。
 なお、以下に、表面付着物についてそれぞれ具体的に説明するが、表面付着物として各材料を単独で用いることに限られず、複数種類のものを併用することもできる。
  [表面付着炭素質還元剤の適用]
 具体的に、表面付着物として表面付着炭素質還元剤を用いた場合、混合物の表面に炭素質還元剤の層が形成されることになり、この状態で還元処理を施すことによって、その表面に金属成分により生成した殻(メタルシェル)を効果的に形成させることができる。これにより、混合物の内部に存在する炭素質還元剤(還元剤成分)が、その混合物から抜け出ることを防ぐことができ、安定的に還元反応を生じさせることができる。また、還元処理に供する混合物の強度を維持されるようになるため、還元加熱処理時における崩壊を抑制することができる。これらのようなことから、組成ずれや組成のばらつきを生じさせることなく、高品質のフェロニッケルを効率的に製造することができる。
 表面付着炭素質還元剤としては、混合物の内部に存在させている炭素質還元剤と同様に、石炭粉、コークス粉等を用いることができる。また、表面付着炭素質還元剤の大きさや形状についても特に限定されず、例えば混合物が直径数mm~数10mmの球状のものである場合には、数μm~数100μm程度の大きさのものを用いることが好ましい。
 表面付着炭素質還元剤を用いる場合、その表面付着炭素質還元剤の量(混合物に対する付着量)としては、還元処理に供する混合物に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の化学当量の合計値を100質量%としたとき、0.1質量%以上20.0質量%以下の割合とすることが好ましい。また、1.0質量%以上15.0質量%以下の割合とすることがより好ましく、3.0質量%以上10.0質量%以下の割合とすることがさらに好ましい。
 表面付着炭素質還元剤の付着量が、上述した化学当量の合計値100質量%に対して0.1質量%未満の割合であると、表面に炭素質還元剤を付着させることの効果が十分に得られない可能性があり、メタルシェルの生成反応が効率的に進行しない。一方で、その付着量が、化学当量の合計値100質量%に対して20.0質量%を超える割合であると、形成されたメタルシェルの中における酸化鉄の還元が進行しすぎてしまい、得られるフェロニッケル中のニッケル品位が低下する可能性がある。また、付着量が20.0質量%を超えると、過剰になり過ぎてしまいコスト的に不利になる。
 混合物表面への表面付着炭素質還元剤の付着方法としては、特に限定されないが、混合物の表面に塗布することで、その表面に均一に表面付着炭素質還元剤を存在させるようにすることが好ましい。例えば、平面上に敷き詰められた表面付着炭素質還元剤の上に混合物を転がしながら付着させて塗布する。または、混合物の上方から表面付着炭素質還元剤をまぶすように付着させてもよい。
 混合物を塊状化してペレットにすると、例えば50重量%程度の過剰な水分が含まれており、べたべたした状態となっている。したがって、表面付着炭素質還元剤の上に混合物(ペレット)を転がしたり、あるいは、上方から表面付着炭素質還元剤をまぶすようにすることで、その表面に効果的に付着させることができる。後述する金属酸化物を適用する場合も同様である。
 このように、混合物の表面に表面付着炭素質還元剤を付着させることによってペレットを製造し、そのペレットを還元炉に装入して還元処理を施すようにすることができる。
 また、例えば、後で詳述する図2に示すように、混合物の表面の一部、特に上部の表面に表面付着炭素質還元剤を載せるようにして付着させてもよい。さらに、後述する図3に示すように、混合物を表面付着炭素質還元剤で包囲するようにして付着させてもよい。なお、この場合、還元炉の内部で、混合物(ペレット)の上部表面に表面付着炭素質還元剤を載せたり、予め表面付着炭素質還元剤の塊を還元炉内に用意しておいてその中に混合物を埋めるようにしてもよい。
  [金属酸化物の適用]
 また、表面付着物として金属酸化物を用いた場合においても、混合物の表面に金属酸化物の層が形成されることになり、この状態で還元処理を施すことによって、その表面にメタルシェルを効果的に形成させることができる。これにより、混合物の内部に存在する炭素質還元剤(還元剤成分)が、その混合物から抜け出ることを防ぐことができ、安定的に還元反応を生じさせることができる。また、還元処理に供する混合物の強度を維持されるようになるため、還元加熱処理時における崩壊を抑制することができる。これらのようなことから、組成ずれや組成のばらつきを生じさせることなく、高品質のフェロニッケルを効率的に製造することができる。
 金属酸化物としては、特に限定されないが、酸化ニッケル、酸化鉄から選ばれる1種以上であることが好ましい。また、金属酸化物の大きさや形状としては、特に限定されず、例えば混合物が直径数mm~数10mmの球状のものである場合には、数μm~数100μm程度の大きさのものを用いることが好ましい。なお、金属酸化物の粒子が大きすぎると、混合物の表面に均一に付着し難くなり、粒子が小さすぎると、その金属酸化物の粒子が付着作業時に舞い上がってロス分が多くなり、また装置内に入り込んで故障の原因や掃除コストの上昇につながる。
 金属酸化物を用いる場合、その金属酸化物の量(混合物に対する付着量)としては、還元処理に供する混合物に含まれるニッケル及び鉄の金属合計量を100質量%としたとき、その金属酸化物に含まれる金属量が0.03質量%以上8.0質量%以下の割合となるようにすることが好ましく、0.05質量%以上5.0質量%以下の割合となるようにすることがより好ましい。
 金属酸化物の付着量が、混合物に含まれるニッケル及び鉄の金属合計量100質量%に対して0.03質量%未満の割合であると、表面に金属酸化物を付着させることの効果が十分に得られない可能性があり、メタルシェルの生成反応が効率的に進行しない。一方で、その付着量が、5.0質量%を超える割合であると、形成されたメタルシェルの中における酸化鉄の還元が進行しすぎてしまい、得られるフェロニッケル中のニッケル品位が低下する可能性がある。
 また、上述したように、炭素質還元剤の混合量、すなわち混合物の内部に存在することになる炭素質還元剤の量を、上述した化学当量の合計値100質量%に対して12.0質量%以上35.0質量%以下の範囲の割合とした場合には、混合物に付着させる金属酸化物の量としては、混合物に含まれるニッケル及び鉄の金属合計量100質量%に対して、金属酸化物に含まれる金属量が0.1質量%以上2.0質量%以下の割合となるようにすることが好ましい。これにより、より効率的に還元反応が進行して、メタルシェルが均一に形成され易くなる。
 混合物表面への金属酸化物の付着方法としては、特に限定されないが、混合物の表面に塗布することで、その表面に均一に金属酸化物を存在させるようにすることが好ましい。例えば、平面上に敷き詰められた金属酸化物の上に混合物を転がしながら付着させて塗布する。または、混合物の上方から金属酸化物をまぶすように付着させてもよい。
 このように、混合物の表面に金属酸化物を付着させることによってペレットを製造し、そのペレットを還元炉に装入して還元処理を施すようにすることができる。
 また、例えば、後で詳述する図2に示すように、混合物の表面の一部、特に上部の表面に金属酸化物を載せるようにして付着させてもよい。さらに、後述する図3に示すように、混合物を金属酸化物で包囲するようにして付着させてもよい。なお、この場合、還元炉の内部で、混合物(ペレット)の上部表面に金属酸化物を載せたり、予め金属酸化物の塊を還元炉内に用意しておいてその中に混合物を埋めるようにしてもよい。
  [酸化抑制物の適用]
 また、表面付着物として酸化抑制物を用いた場合、混合物の表面に酸化抑制物が付着した状態で還元処理に付すことによって、混合物の内部での酸化を効果的に抑制することができ、ニッケルのメタル化率を向上させ、ニッケル品位の高い高品質なフェロニッケルを効率的に得ることができる。
 より具体的に説明すると、例えば重油燃焼雰囲気においては通常、酸素が数%含まれる。そのため、せっかく還元された混合物が酸化して、再度、酸化物になってしまうことがある。このように混合物の酸化が進んでしまうと、原料鉱石の還元率が下がり、また鉄より酸化し易いニッケルの酸化が進んで、得られるフェロニッケル中のニッケル品位が低下してしまう。
 これに対し、混合物の表面に酸化抑制物を付着させた状態で還元することで、雰囲気中に含まれる酸素の混合物への侵入を防ぐことができる。特に、酸化は、混合物の表面から進行するため、その表面に付着させておくことで効果的に酸化を防ぐことができ、還元率の低下と、それに基づくフェロニッケル中のニッケル品位の低下を抑えることができる。
 酸化抑制物としては、例えば、酸化物の含有量が90質量%以上である組成の酸化物混合物を用いることができる。このように、酸化抑制物として、酸化物を高い割合で含有する酸化物混合物を用いることで、混合物内への酸素の侵入を効果的に防ぐことができ、酸化をより効率的に抑えることができる。
 また、酸化抑制物として、酸化物の含有量が90質量%以上である組成の酸化物混合物と、炭素質還元剤とを混合させた混合物を用いることもできる。なお、この混合物を「酸化抑制混合物」という。酸化抑制混合物に含まれる炭素質還元剤としては、石炭、コークスの少なくとも1つ以上であることが好ましい。このとき、酸化抑制混合物としては、重量比で酸化混合物:炭素質還元剤=9:1程度となる、すなわち炭素質還元剤の含有量が10%程度であることが好ましい。
 このように、酸化抑制物として、酸化物を高い割合で含有し、さらに石炭やコークスを含む酸化抑制混合物を用いることで、混合物内への酸素の侵入を防ぐことができるとともに、侵入した酸素を積極的に除去することができる。また、酸素が混合物の周辺に存在していても、石炭やコークスが存在することによって、それらが酸素と反応して混合物の酸化を抑制する作用を奏する。そしてまた、混合物の酸化が進んでしまった場合でも、石炭やコークスが混合物の表面に存在することで、再度混合物を還元することができる。
 また、酸化抑制物としては、原料のニッケル酸化鉱石と共に混合物を構成する炭素質還元剤により得られる灰を少なくとも一部に用いることが好ましい。また、酸化抑制物として、石炭灰、木炭灰、及び竹炭灰から選ばれる1種以上を少なくとも一部に用いることが好ましい。これらは、主として酸化物(酸化物の含有量が90質量%である酸化物混合物)であり、還元処理に供される混合物の周囲に共存させておくことで、酸化を有効に抑えることができる。
 また、酸化抑制物としては、アルミナ、アルミナセメント、マグネシア、マグメシアセメント、ジルコニア、ジルコニアセメント、及びムライトから選ばれる1種類以上を少なくとも一部に用いることもできる。これらは、酸化物の含有量が90質量%である酸化物混合物であり、還元処理に供される混合物の表面に存在させておくことで、酸化を有効に抑えることができる。また、混合物の酸化が進んでしまった場合でも、再度混合物を還元する作用も有する。
 ここで、混合物の表面への酸化抑制物の付着形態としては、例えば図2に模式的に一例を示すように、混合物10の上面(上部表面)に表面付着物11である酸化抑制物を載せたような状態とすることができる。上述したように、混合物の酸化はその表面から進行することから、このように混合物10の「表面」に表面付着物を載せ、その表面に接触した状態で存在させておくことで、混合物10に対する雰囲気成分に起因する酸化を有効に抑えることができる。なお、図2中の符号20は還元炉の炉床を示し、符号21は炉床上に敷いた床敷材(石炭等の炭素質還元剤やアルミナ、ジルコニア、マグネシア等の床敷材)を示す(図3でも同様)。
 混合物の表面における酸素とメタルとの接触を妨げればよいことから、燃焼ガス等が直接当たる場所に部分的にでも酸化抑制物が存在する状態であれば、混合物の酸化を有効に抑えることができる。特に、還元炉をバーナーによって加熱する場合、設備的に適した場所として、そのバーナーを処理対象の上部に設置することが多く、このため、比較的多くの酸素を含有するガスは、上部から供給されることになる。このため、図2に示すように、混合物の表面であって、特にその上部表面に酸化抑制物を載せるように付着させておくことで、効率的な酸化抑制効果を発揮させることができ、好ましい。
 また、混合物の表面への酸化抑制物の付着形態として、例えば図3に模式的に一例を示すように、混合物10を、表面付着物11である酸化抑制物によって包み込んで、その混合物10の表面が露出しないように包囲させるような状態とすることができる。なお、表面付着物11の塊の内部に混合物10を「埋める」と表現することもできる。このように、混合物10を表面付着物11に埋めて包囲して還元処理を施すことで、いわゆる酸化防止のための壁を構築することができ、混合物10内への酸素の侵入をより効果的に防ぐことができ、酸化をより一層抑えることができる。
 なお、酸化抑制物の付着態様としては、図2及び図3に示したものに限られず、混合物への酸素の侵入を防いで酸化を効率的に抑えることができる態様であればよく、状況に応じてその方法を選定すればよい。
 (還元処理について)
 還元加熱処理に用いる還元炉としては、特に限定されないが、例えば移動炉床炉を用いることが好ましい。還元炉として移動炉床炉を使用することにより、連続的に還元反応が進行し、一つの設備で反応を完結させることができ、各工程における処理を別々の炉を用いて行うよりも処理温度の制御を的確に行うことができる。
 また、移動炉床炉を使用することにより、各処理間での熱の損失(ヒートロス)を低減して、より効率的な操業が可能となる。つまり、別々の炉を使用した反応を行った場合、混合物を封入した容器を、炉と炉との間を移動させる際に、外気あるいはそれに近い状態に露出することで、一時的に温度が低下してヒートロスが生じ、また反応雰囲気に変化が生じる。この結果次の処理を行うために、炉に再装入した際に即座に反応が始まらない。
 これに対して、移動炉床炉を使用して一つの設備で各処理を行うことで、ヒートロスが低減されるとともに炉内雰囲気も的確に制御できるため、反応をより効果的に進行させることができる。これらのことにより、より効果的に、ニッケル品位が高い高品質なフェロニッケルを得ることができる。
 具体的に、移動炉床炉としては、例えば、円形状であって複数の処理領域に区分けされた回転炉床炉を用いることができる。回転炉床炉では、所定の方向に回転しながら、各領域においてそれぞれの処理を行う。この回転炉床炉では、各領域を通過する際の時間(移動時間、回転時間)を制御することで、それぞれの領域での処理時間を調整することができ、回転炉床炉が1回転する毎に混合物が製錬処理される。また、移動炉床炉としては、ローラーハースキルン等であってもよい。
 還元炉を使用した還元処理においては、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケルは可能な限り完全に優先的に還元し、一方で、ニッケル酸化鉱石に含まれる酸化鉄は一部だけ還元して、目的とする高いニッケル品位のフェロニッケルが得られる、いわゆる部分還元を施す。
 還元温度としては、特に限定されないが、1200℃以上1450℃以下の範囲とすることが好ましく、1300℃以上1400℃以下の範囲とすることがより好ましい。このような温度範囲で還元することによって、均一に還元反応を生じさせることができ、品質のばらつきを抑制したメタル(フェロニッケル)を生成させることができる。また、より好ましくは1300℃以上1400℃以下の範囲の還元温度で還元することで、比較的短時間で所望の還元反応を生じさせることができる。
 なお、還元処理においては、上述した範囲の還元温度になるまでバーナー等により還元炉の内部温度を上昇させ、昇温後にその温度を維持する。
 また、還元工程S3においては、混合物を還元炉内に装入するにあたって、予めその還元炉の炉床に炭素質還元剤(以下、「炉床炭素質還元剤」ともいう)を敷き詰めて、その敷き詰められた炉床炭素質還元剤の上に混合物を載置させて処理するようにしてもよい。また、炉床の上にアルミナ、ジルコニア、マグネシア等の床敷材を敷いて、その上に混合物を載置させて処理するようにしてもよい。なお、床敷材としては、酸化物を主成分とするものを用いることができる。
 このように還元炉の炉床に、炭素質還元剤や床敷材等を敷いて、その上に混合物を載置して還元処理を施すことによって、炉床と混合物との直接の反応を抑制することができ、炉床への融着を防ぐとともに、その炉床の寿命を延ばすことができる。
  <2-4.分離工程>
 分離工程S4では、還元工程S3にて生成したメタルとスラグとを分離してメタルを回収する。具体的には、混合物に対する還元加熱処理によって得られた、メタル相(メタル固相)とスラグ相(スラグ固相)とを含む混合物(混在物)からメタル相を分離して回収する。
 固体として得られたメタル相とスラグ相との混在物からメタル相とスラグ相とを分離する方法としては、例えば、篩い分けによる不要物の除去に加えて、比重による分離や、磁力による分離等の方法を利用することができる。
 また、得られたメタル相とスラグ相は、濡れ性が悪いことから容易に分離することができ、上述した還元工程S3における処理で得られた、大きな混在物に対して、例えば、所定の落差を設けて落下させる、あるいは篩い分けの際に所定の振動を与える等の衝撃を与えることで、その混在物からメタル相とスラグ相とを容易に分離することができる。
 このようにしてメタル相とスラグ相とを分離することによって、メタル相を回収する。
 以下、本発明の実施例及び比較例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 ≪1.表面付着炭素質還元剤の適用≫
  [混合処理工程]
 原料鉱石としてのニッケル酸化鉱石と、鉄鉱石と、フラックス成分である珪砂及び石灰石と、バインダーと、及び炭素質還元剤(石炭粉、炭素含有量:85重量%、平均粒径:約200μm)とを混合して混合物を得た。炭素質還元剤は、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケル(NiO)と酸化鉄(Fe)とを過不足なく還元するのに必要な量の合計値を100質量%としたときに、試料に応じて17質量%~50質量%の割合となる量で含有させた。
  [混合物成形工程]
 次に、得られた原料粉末の混合物に適宜水分を添加して手で捏ねることによって球状の混合物に形成した。
 続いて、得られた球状の混合物の表面に、炭素質還元剤(表面付着炭素質還元剤)である石炭粉を均一に塗布して付着させた。表面付着炭素質還元剤の付着量は、混合物に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な量を100質量%としたときに、試料に応じて0質量%~15.0質量%の割合となる量とした。
 そして、混合物の固形分が70重量%程度、水分が30重量%程度となるように、300℃~400℃の熱風を混合物に吹き付けて乾燥処理を施して球状(ペレット,直径:17mm)を製造した。なお、下記表3に、乾燥処理後のペレットの固形分組成(炭素を除く)を示す。
Figure JPOXMLDOC01-appb-T000003
  [還元工程]
 製造したペレットを還元炉に装入して、還元処理を施した。具体的には、予め、還元炉の炉床に、主成分がSiOであり、他の成分としてAl、MgO等の酸化物を少量含有する「灰」を敷き詰め、その上にペレットを載置させた。なお、表面に炭素質還元剤(石炭粉)を付着させたペレットにおいて、その石炭粉の量が多く、ペレット表面に付着させられなかった分については、炉床にペレットを載置させた後に上方からふりかけるようにして再度付着させた。
 その後、実質的に酸素を含まない窒素雰囲気とし、ペレットを還元炉に装入した。なお、装入時の温度条件は、500±20℃とした。
 次に、還元温度を1400℃として、還元炉内でペレットを還元加熱した。ペレットの表面にメタルシェルが生成されるとともに、混合物であるペレット内での還元が効率的に進行するように、処理時間を15分とした。還元処理後は、窒素雰囲気中で速やかに室温まで冷却して、試料を大気中へ取り出した。
 還元処理後に取り出した試料について、ニッケルメタル率、メタル中のニッケル含有率を、ICP発光分光分析器(SHIMAZU S-8100型)により分析して算出した。なお、ニッケルメタル率は(1)式、メタル中ニッケル含有率は(2)式により求めた。
 ニッケルメタル率=ペレット中のメタル化したNiの量÷(ペレット中の全てNiの量)×100(%)  ・・・(1)式
 メタル中ニッケル含有率=ペレット中のメタル化したNiの量÷(ペレット中のメタル化したNiとFeの合計量)×100(%) ・・・(2)式
 下記表4に、それぞれのペレット試料における、石炭粉(表面付着炭素質還元剤)の付着量、ペレットの内部に含まれる石炭粉(炭素質還元剤)の含有量を示す。また、ICP分析により測定された測定結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果に示されるように、その表面に表面付着炭素質還元剤を付着させたペレットに対して還元処理を施すことで、良好にペレット中のニッケルをメタル化することができ、ニッケル含有率が18.3%~22.8%と高品位のフェロニッケルを製造することができることが分かった(実施例1~実施例13)。
 これに対して、比較例1の結果に示されるように、表面に表面付着炭素質還元剤を付着させなかったペレット試料の場合、ニッケルメタル化率が88.2%と低く、メタル中のニッケル含有率も15.5%となり、フェロニッケルとしては低い値となった。
 ≪2.金属酸化物の適用≫
  [混合処理工程]
 原料鉱石としてのニッケル酸化鉱石と、鉄鉱石と、フラックス成分である珪砂及び石灰石と、バインダーと、及び炭素質還元剤(石炭粉、炭素含有量:85重量%、平均粒径:約200μm)とを混合して混合物を得た。炭素質還元剤は、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケル(NiO)と酸化鉄(Fe)とを過不足なく還元するのに必要な量を100質量%としたときに、試料に応じて17質量%~41質量%の割合となる量で含有させた。
  [混合物成形工程]
 次に、得られた原料粉末の混合物に適宜水分を添加して手で捏ねることによって球状の混合物に形成した。
 続いて、金属酸化物である酸化ニッケル(NiO)又は酸化鉄(FeO)を敷き詰めた容器の上に、得られた球状の混合物を転がすことによって、金属酸化物をその混合物の表面に均一に付着させた。金属酸化物の付着量は、形成されるペレットに含まれるニッケル及び鉄の金属合計量を100質量%としたときに、試料に応じて0質量%~8.0質量%の割合となる量とした。
 次に、混合物の固形分が70重量%程度、水分が30重量%程度となるように、300℃~400℃の熱風を混合物に吹き付けて乾燥処理を施して球状(ペレット,直径:17mm)を製造した。なお、下記表5に、乾燥処理後のペレットの固形分組成(炭素を除く)を示す。
Figure JPOXMLDOC01-appb-T000005
  [還元工程]
 製造したペレットを還元炉に装入して、還元処理を施した。このとき、試料によって、予め還元炉の炉床に、主成分がSiOであり、他の成分としてAl、MgO等の酸化物を少量含有する「灰」を敷き詰め、その上にペレットを載置させた。なお、表面に金属酸化物を付着させたペレットにおいて、その金属酸化物の量が多く、ペレット表面に付着させられなかった分については、炉床にペレットを載置させた後に上方からふりかけるようにして再度付着させた。
 その後、実質的に酸素を含まない窒素雰囲気とし、ペレットを還元炉に装入した。なお、装入時の温度条件は、500±20℃とした。
 次に、還元温度を1400℃として、還元炉内でペレットを還元加熱した。ペレットの表面にメタルシェルが生成されるとともに、混合物であるペレット内での還元が効率的に進行するように、処理時間を15分とした。還元処理後は、窒素雰囲気中で速やかに室温まで冷却して、試料を大気中へ取り出した。
 還元処理後に取り出した試料について、ニッケルメタル率、メタル中のニッケル含有率を、ICP発光分光分析器(SHIMAZU S-8100型)により分析して算出した。なお、ニッケルメタル率は上記の(1)式、メタル中ニッケル含有率は上記の(2)式により求めた。
 下記表6に、それぞれのペレット試料における、金属酸化物の種類及びその付着量、ペレットの内部に含まれる石炭粉(炭素質還元剤)の含有量、炉床炭素質還元剤の有無をまとめて示す。また、ICP分析により測定された測定結果を示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果に示されるように、混合物の表面に金属酸化物を付着させたペレットに対して還元処理を施すことで、良好にペレット中のニッケルをメタル化することができ、ニッケル含有率が16.2%~24.8%と高品位のフェロニッケルを製造することができることが分かった(実施例14~実施例49)。
 このように、良好なフェロニッケルとして製造できた理由としては、ペレット表面に金属酸化物を付着させたことにより、均一に且つ安定してメタルシェルが生成され、これによってメタルシェル内で還元剤が抜け出ることなく、また均一に安定して還元反応が生じたことによると考えられる。
 これに対して、比較例2~比較例3の結果に示されるように、表面に金属酸化物を付着させなかったペレット試料の場合、ニッケルメタル化率が90%程度と低く、メタル中のニッケル含有率も15%程度となり、フェロニッケルとしては低い値となった。
 ≪3.酸化抑制物の適用≫
  <実施例50~実施例109>
  [混合処理工程]
 原料鉱石としてのニッケル酸化鉱石と、鉄鉱石と、フラックス成分である珪砂及び石灰石、バインダー、及び炭素質還元剤(石炭粉、炭素含有量:85重量%、平均粒径:約90μm)を、適量の水を添加しながら混合機を用いて混合して混合物を得た。炭素質還元剤は、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケル(NiO)と酸化鉄(Fe)とを過不足なく還元するのに必要な量の合計値を100%としたときに、25%の割合となる量で含有させた。
  [混合物成形工程]
 次に、得られた混合物を、パン型造粒機を用いて造粒して、φ15.5±1.0mmの大きさに篩った。その後、篩った試料を60個に均等に分け、還元工程での還元処理に供する混合物試料とした。
  [還元工程]
 用意した混合物試料を用いて、下記表8~表10に示す条件で還元処理を施した。具体的には、混合物試料を還元炉に装入し、特定の酸化抑制物が共存する状態にして、それぞれの還元温度、還元時間で還元加熱処理を施した。また、還元炉の炉床には、予め、主成分がSiOであり、他の成分としてAl、MgO等の酸化物を少量含有する「灰」を敷き詰め、その上に混合物試料を載置させて処理した。
 なお、各混合物試料は、還元処理を施す前に、固形分が70重量%程度、水分が30重量%程度となるように、170℃~250℃の熱風を吹き付けることで乾燥処理を施した。下記表7に、乾燥処理後の試料の固形分組成(炭素を除く)を示す。
Figure JPOXMLDOC01-appb-T000007
 ここで、酸化抑制物としては、石炭灰、木炭灰、竹炭灰、アルミナ、アルミナセメント、マグネシア、マグネシアセメント、ジルコニア、ジルコニアセメント、及びムライトから、各実施例で選択して用いた。
 また、酸化抑制物の共存状態(表中では「酸化抑制物の置き方」と表記)としては、図2に例示するように混合物の上部表面に酸化抑制物を載せるようにしてまぶす態様(表中では「まぶす」と表記)、あるいは、図3に例示するように混合物を酸化抑制物に埋めて表面が見えないように包囲させる態様(表中では「埋める」と表記)のいずれかとした。
  <比較例4~比較例6>
 比較例4~比較例6では、実施例と同様にして混合物試料を作製し、その混合物試料を還元炉に装入して還元加熱処理を施したが、このとき、酸化抑制物は用いることなく処理した。なお、還元温度、還元時間は、実施例と同等の範囲とした。
 実施例、比較例のそれぞれの還元加熱処理後に取り出した試料について、ニッケルメタル率、メタル中のニッケル含有率を、ICP発光分光分析器(SHIMAZU S-8100型)により分析して算出した。下記表8~表10に、分析結果から算出した値を併せて示す。なお、ニッケルメタル率は上記の(1)式、メタル中ニッケル含有率は上記の(2)式により求めた。
 また、回収した各試料は、湿式処理よる粉砕後、磁力選別によってメタルを回収した。そして、ニッケル酸化鉱石の投入量、その中のNi含有割合、及び回収したNi量から、Niメタル回収率を算出した。なお、Niメタル回収率は、(3)式により求めた。
 Niメタル回収率=回収されたNiの量÷(投入した鉱石の量×鉱石中のNi含有割合)×100  ・・・(3)式
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 
 表8~表10の結果に示されるように、酸化抑制物が共存する状態で混合物試料を還元処理した実施例50~実施例109では、ニッケルメタル化率、メタル中ニッケル含有量、メタル回収率がいずれも高い値となり良好な結果が得られた。このことは、酸化抑制物を共存させた状態で還元処理に付したことにより、混合物の内部への酸素の侵入が防がれ、酸化を有効に抑えることができたためであると考えられる。
 一方で、酸化抑制物を使用しなかった比較例4~比較例6では、その他の還元処理条件は同等であったにもかかわらず、ニッケルメタル化率が85.0%~85.5%、メタル中ニッケル含有量が14.2%~14.6%、メタル回収率が75.0%~75.8%と、いずれも実施例に比べて明らかに低い値となった。
 以上の結果から、酸化抑制物を共存させた状態で、原料のニッケル酸化鉱石を含む混合物に対する還元処理を施すことで、高い効率でニッケルを含有するメタルを得ることができることが分かった。
  <実施例110~実施例169>
  [混合処理工程]
 原料鉱石としてのニッケル酸化鉱石と、鉄鉱石と、フラックス成分である珪砂及び石灰石、バインダー、及び炭素質還元剤(石炭粉、炭素含有量:85重量%、平均粒径:約83μm)を、適量の水を添加しながら混合機を用いて混合して混合物を得た。炭素質還元剤は、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケル(NiO)と酸化鉄(Fe)とを過不足なく還元するのに必要な量の合計値を100%としたときに、27%の割合となる量で含有させた。
  [混合物成形工程]
 次に、得られた混合物を、パン型造粒機を用いて造粒して、φ14.5±1.0mmの大きさに篩った。その後、篩った試料を60個に分け、還元工程での還元処理に供する混合物試料とした。
  [還元工程]
 用意した混合物試料を用いて、下記表11~表15に示す条件で還元処理を施した。具体的には、混合物試料を還元炉に装入し、特定の酸化抑制物が共存する状態にして、それぞれの還元温度、還元時間で還元加熱処理を施した。また、還元炉の炉床には、予め、主成分がSiOであり、他の成分としてAl、MgO等の酸化物を少量含有する「灰」を敷き詰め、その上に混合物試料を載置させて処理した。
 なお、各混合物試料は、還元処理を施す前に、固形分が70重量%程度、水分が30重量%程度となるように、170℃~250℃の熱風を吹き付けることで乾燥処理を施した。乾燥処理後の試料の固形分組成は、上記表7と同一であった。
 ここで、酸化抑制物としては、酸化物の含有量が90質量%以上である酸化物混合物と、炭素質還元剤である石炭とを混合させた酸化抑制混合物を用いた。酸化物混合物としては、アルミナ、アルミナセメント、マグネシア、マグメシアセメント、ジルコニア、ジルコニアセメント、及びムライトから、各実施例で選択して用いた。なお、酸化抑制混合物中において、酸化物混合物と石炭との混合割合は重量比で9:1とした。
 また、酸化抑制物の共存状態(表中では「酸化抑制物の置き方」と表記)としては、図2に例示するように混合物の上部表面に酸化抑制物を載せるようにしてまぶす態様(表中では「まぶす」と表記)、あるいは、図3に例示するように混合物を酸化抑制物に埋めて表面が見えないように包囲させる態様(表中では「埋める」と表記)のいずれかとした。
 ≪評価≫
 還元加熱処理後に取り出した試料について、ニッケルメタル率、メタル中のニッケル含有率を求めた。また、回収した各試料は、湿式処理よる粉砕後、磁力選別によってメタルを回収し、Niメタル回収率を算出した。下記表11~表15に、分析結果から算出した値を併せて示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表11~表15の結果に示されるように、酸化抑制混合物からなる酸化抑制物が共存する状態で混合物試料を還元処理することによって、ニッケルメタル化率、メタル中ニッケル含有量、メタル回収率がいずれも高い値となり良好な結果が得られた。特に、ニッケルメタル化率に関しては、実施例50~実施例109と比べても、安定的に94%以上の高い値となった。
 10  混合物
 11  表面付着物
 20  還元炉の炉床
 21  床敷材

Claims (17)

  1.  酸化鉱石と炭素質還元剤とを混合し、得られた混合物を加熱して還元処理に付し、還元物であるメタルとスラグとを得る製錬方法であって、
     前記混合物の表面に、炭素質還元剤、金属酸化物、及び酸化抑制物から選ばれる1種以上の表面付着物を付着させた状態で還元処理を施す
     酸化鉱石の製錬方法。
  2.  前記酸化鉱石は、ニッケル酸化鉱石であり、
     前記表面付着物として少なくとも前記炭素質還元剤を用い、前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記混合物の表面に付着させる該炭素質還元剤の量を0.1質量%以上20.0質量%以下の割合とする
     請求項1に記載の酸化鉱石の製錬方法。
  3.  前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記酸化鉱石と共に該混合物の内部に存在する炭素質還元剤の量を40.0質量%以下の割合とする
     請求項2に記載の酸化鉱石の製錬方法。
  4.  前記表面付着物として少なくとも前記金属酸化物を用い、
     前記金属酸化物は、酸化ニッケル及び/又は酸化鉄である
     請求項1に記載の酸化鉱石の製錬方法。
  5.  前記酸化鉱石は、ニッケル酸化鉱石であり、
     前記混合物に含まれるニッケル及び鉄の金属合計量を100質量%としたとき、前記金属酸化物に含まれる金属量が0.03質量%以上8.0質量%以下の割合となるように、該金属酸化物を該混合物の表面に付着させる
     請求項4に記載の酸化鉱石の製錬方法。
  6.  前記混合物中に含まれる酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な炭素質還元剤の量を100質量%としたとき、前記酸化鉱石と共に該混合物の内部に存在する炭素質還元剤の量を12.0質量%以上35.0質量%以下の割合とする
     請求項5に記載の酸化鉱石の製錬方法。
  7.  前記混合物に含まれるニッケル及び鉄の金属合計量を100質量%としたとき、前記金属酸化物に含まれる金属量が0.1質量%以上2.0質量%以下の割合となるように、該金属酸化物を該混合物の表面に付着させる
     請求項6に記載の酸化鉱石の製錬方法。
  8.  前記表面付着物として少なくとも前記酸化抑制物を用い、
     前記酸化抑制物は、酸化物の含有量が90質量%以上である酸化物混合物である
     請求項1に記載の酸化鉱石の製錬方法。
  9.  前記表面付着物として少なくとも前記酸化抑制物を用い、
     前記酸化抑制物は、酸化物の含有量が90質量%以上である酸化物混合物と、炭素質還元物とを含む酸化抑制混合物である
     請求項1に記載の酸化鉱石の製錬方法。
  10.  前記酸化抑制混合物に含まれる前記炭素質還元物は、石炭及び/又はコークスである
     請求項9に記載の酸化鉱石の製錬方法。
  11.  前記混合物の上面に前記表面付着物を載せて還元処理を施す
     請求項8乃至10のいずれかに記載の酸化鉱石の製錬方法。
  12.  前記混合物を前記表面付着物で包囲して還元処理を施す
     請求項8乃至10のいずれかに記載の酸化鉱石の製錬方法。
  13.  前記酸化抑制物として、前記炭素質還元剤の灰を少なくとも一部に用いる
     請求項8乃至12のいずれかに記載の酸化鉱石の製錬方法。
  14.  前記酸化抑制物として、石炭灰、木炭灰、及び竹炭灰から選ばれる1種類以上を少なくとも一部に用いる
     請求項8乃至13のいずれかに記載の酸化鉱石の製錬方法。
  15.  前記酸化抑制物として、アルミナ、アルミナセメント、マグネシア、マグメシアセメント、ジルコニア、ジルコニアセメント、及びムライトから選ばれる1種類以上を少なくとも一部に用いる
     請求項8乃至12のいずれかに記載の酸化鉱石の製錬方法。
  16.  前記還元処理においては、予め炉床に炭素質還元剤を敷き詰めた還元炉に前記混合物を装入し、該炭素質還元剤上に該混合物を載置した状態で処理を施す
     請求項1乃至15のいずれかに記載の酸化鉱石の製錬方法。
  17.  前記還元処理における還元温度を、1200℃以上1450℃以下とする
     請求項1乃至16のいずれかに記載の酸化鉱石の製錬方法。
     
PCT/JP2017/015776 2016-04-22 2017-04-19 酸化鉱石の製錬方法 WO2017183666A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/093,339 US11479832B2 (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
EP20197570.3A EP3778937A1 (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
AU2017253321A AU2017253321B2 (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
CN201780022808.1A CN108884516B (zh) 2016-04-22 2017-04-19 氧化物矿石的冶炼方法
EP17786003.8A EP3447157B1 (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
CA3021181A CA3021181C (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
EP20197857.4A EP3778938A1 (en) 2016-04-22 2017-04-19 Method for smelting oxide ore
PH12018502219A PH12018502219A1 (en) 2016-04-22 2018-10-17 Method for smelting oxide ore

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-085963 2016-04-22
JP2016085963A JP6780284B2 (ja) 2016-04-22 2016-04-22 ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP2016089470A JP6780285B2 (ja) 2016-04-27 2016-04-27 ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP2016-089470 2016-04-27
JP2017082195A JP6855897B2 (ja) 2017-04-18 2017-04-18 酸化鉱石の製錬方法
JP2017-082195 2017-04-18

Publications (1)

Publication Number Publication Date
WO2017183666A1 true WO2017183666A1 (ja) 2017-10-26

Family

ID=60116839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015776 WO2017183666A1 (ja) 2016-04-22 2017-04-19 酸化鉱石の製錬方法

Country Status (7)

Country Link
US (1) US11479832B2 (ja)
EP (3) EP3778937A1 (ja)
CN (1) CN108884516B (ja)
AU (1) AU2017253321B2 (ja)
CA (1) CA3021181C (ja)
PH (1) PH12018502219A1 (ja)
WO (1) WO2017183666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194165A1 (ja) * 2017-04-20 2018-10-25 住友金属鉱山株式会社 金属酸化物の製錬方法
JP2020076132A (ja) * 2018-11-08 2020-05-21 住友金属鉱山株式会社 酸化鉱石の製錬方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778937A1 (en) 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
AU2017257842B2 (en) * 2016-04-27 2020-07-09 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method
AU2021227730A1 (en) * 2020-02-26 2022-10-20 Nsgi Steel Inc. Smelting apparatus and metallurgical processes thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294921A (ja) * 2000-04-10 2001-10-26 Midrex Internatl Bv 粒状金属鉄の製法
JP2005220398A (ja) * 2004-02-05 2005-08-18 Mitsubishi-Hitachi Metals Machinery Inc 還元金属成型体及びその製造装置、製造方法
JP2007231418A (ja) * 2006-01-31 2007-09-13 Jfe Steel Kk 還元金属の製造方法
JP2016030835A (ja) * 2014-07-25 2016-03-07 住友金属鉱山株式会社 ペレットの製造方法、鉄−ニッケル合金の製造方法
WO2016056362A1 (ja) * 2014-10-06 2016-04-14 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2111344A (en) 1937-01-22 1938-03-15 Ohio Ferro Alloys Corp Metallurgical briquette and method of making same
GB1569311A (en) 1977-01-20 1980-06-11 Sumitomo Heavy Industries Process for producing metallized pellets from raw pellets
JPS6033888B2 (ja) 1982-08-24 1985-08-06 工業技術院長 熔鉱炉法アルミニウム製錬用アルミナ質含有原料成形体
JPS63145704A (ja) 1986-12-08 1988-06-17 Kawasaki Steel Corp 高炉の原料装入方法
JPH01162729A (ja) 1987-12-18 1989-06-27 Nkk Corp 燒結用ブリケットの製造方法
JPH0347927A (ja) * 1989-07-17 1991-02-28 Nippon Steel Corp 高炉用焼結原料の事前処理法
JP2704673B2 (ja) * 1990-12-06 1998-01-26 新日本製鐵株式会社 半還元焼結鉱の製造方法
JPH07286205A (ja) 1994-04-20 1995-10-31 Kawasaki Steel Corp 海綿鉄製造用容器からの還元剤除去装置
JP3272605B2 (ja) 1996-07-18 2002-04-08 三菱重工業株式会社 石炭内装鉄鉱石ペレットの還元方法およびその装置
JP3781153B2 (ja) 1997-09-22 2006-05-31 株式会社 テツゲン 製鉄ダスト等からの安価な還元鉄の製造方法
EP0952230A1 (en) * 1998-03-24 1999-10-27 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method of producing reduced iron agglomerates
JP2001098313A (ja) 1999-09-28 2001-04-10 Mitsubishi Heavy Ind Ltd 還元鉄製造装置
JP4572435B2 (ja) 1999-12-24 2010-11-04 Jfeスチール株式会社 鉄含有物からの還元鉄の製造方法
WO2001054819A1 (en) 2000-01-28 2001-08-02 Pacific Edge Holdings Pty Ltd Process for upgrading low rank carbonaceous material
TW562860B (en) 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
CN1696318A (zh) * 2000-05-29 2005-11-16 杰富意钢铁株式会社 烧结用模拟粒子原料及其制造方法
JP2002241822A (ja) 2001-02-14 2002-08-28 Kawasaki Steel Corp 海綿鉄の製造方法
JP2003089812A (ja) 2001-07-09 2003-03-28 Kawasaki Steel Corp 海綿鉄の製造方法、および還元鉄粉とその製造方法
JP3635256B2 (ja) 2001-09-14 2005-04-06 新日本製鐵株式会社 酸化鉄の還元方法
RU2313595C2 (ru) 2002-10-18 2007-12-27 Кабусики Кайся Кобе Сейко Се Способ получения ферроникеля и способ получения исходного материала для получения ферроникеля
JP4348152B2 (ja) 2002-10-18 2009-10-21 株式会社神戸製鋼所 フェロニッケルおよびフェロニッケル精錬原料の製造方法
JP4470490B2 (ja) 2003-12-26 2010-06-02 Jfeスチール株式会社 半還元塊成鉱の製造方法
JP4356932B2 (ja) 2004-04-28 2009-11-04 株式会社神戸製鋼所 製鉄用炭材内装塊成化物の製造方法
EP1749894A4 (en) * 2004-05-19 2008-07-02 Jfe Steel Corp SINTERED SEMI-REDDED ORE AND METHOD OF PRODUCTION THEREOF
JP4462008B2 (ja) * 2004-10-29 2010-05-12 Jfeスチール株式会社 焼結鉱の製造方法および還元鉄が存在する焼結鉱製造用擬似粒子
JP2006265569A (ja) * 2005-03-22 2006-10-05 Jfe Steel Kk 焼結鉱の製造方法および焼結鉱製造用擬似粒子
CN100424191C (zh) 2007-04-29 2008-10-08 章宇 以红土镍矿为原料用隧道窑生产直接还原镍铁的方法
CN101392330A (zh) 2007-09-21 2009-03-25 毛耐文 红土镍矿在隧道窑——高炉中联合生产镍铁的方法
WO2009052066A1 (en) 2007-10-15 2009-04-23 E. I. Du Pont De Nemours And Company Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom
CA2713442A1 (en) * 2008-01-30 2009-08-27 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
US8557019B2 (en) * 2008-02-08 2013-10-15 Vale Inco Limited Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
CN101748298B (zh) 2008-12-03 2012-10-03 司全 一种隧道窑预还原-熔分炉终还原联合处理红土镍矿生产镍铁的方法
JP5503420B2 (ja) 2010-06-07 2014-05-28 株式会社神戸製鋼所 粒状金属の製造方法
CN102939395B (zh) * 2010-06-16 2016-09-07 普锐特冶金技术日本有限公司 生球
CN101967570A (zh) * 2010-10-11 2011-02-09 大同市和合新能源科技有限责任公司 一种红土镍矿生产镍铁合金的方法
JP5368522B2 (ja) * 2011-09-14 2013-12-18 株式会社神戸製鋼所 回転炉床式還元炉の操業方法
KR20150036547A (ko) * 2012-07-18 2015-04-07 제이에프이 스틸 가부시키가이샤 소결기의 기체 연료 공급 장치
JP2015063740A (ja) * 2013-09-25 2015-04-09 株式会社神戸製鋼所 粒状鉄の製造方法
JP5858105B1 (ja) 2014-08-01 2016-02-10 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP6179478B2 (ja) 2014-08-01 2017-08-16 住友金属鉱山株式会社 ペレットの製造方法、鉄−ニッケル合金の製造方法
CN104313227B (zh) 2014-10-29 2016-06-15 洪阳冶化工程科技有限公司 利用含铁熔体余热进行碳热还原的方法和系统
CN104404246B (zh) 2014-11-24 2016-10-19 江苏省冶金设计院有限公司 提高冶金渣球团金属化率的方法
JP6477371B2 (ja) * 2015-09-08 2019-03-06 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
EP3778937A1 (en) 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
AU2017257842B2 (en) * 2016-04-27 2020-07-09 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294921A (ja) * 2000-04-10 2001-10-26 Midrex Internatl Bv 粒状金属鉄の製法
JP2005220398A (ja) * 2004-02-05 2005-08-18 Mitsubishi-Hitachi Metals Machinery Inc 還元金属成型体及びその製造装置、製造方法
JP2007231418A (ja) * 2006-01-31 2007-09-13 Jfe Steel Kk 還元金属の製造方法
JP2016030835A (ja) * 2014-07-25 2016-03-07 住友金属鉱山株式会社 ペレットの製造方法、鉄−ニッケル合金の製造方法
WO2016056362A1 (ja) * 2014-10-06 2016-04-14 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447157A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194165A1 (ja) * 2017-04-20 2018-10-25 住友金属鉱山株式会社 金属酸化物の製錬方法
JP2020076132A (ja) * 2018-11-08 2020-05-21 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7215092B2 (ja) 2018-11-08 2023-01-31 住友金属鉱山株式会社 酸化鉱石の製錬方法

Also Published As

Publication number Publication date
EP3447157A1 (en) 2019-02-27
CA3021181C (en) 2020-11-10
PH12018502219A1 (en) 2019-08-05
CN108884516B (zh) 2021-06-22
EP3447157B1 (en) 2021-05-26
CA3021181A1 (en) 2017-10-26
EP3778937A1 (en) 2021-02-17
CN108884516A (zh) 2018-11-23
US11479832B2 (en) 2022-10-25
EP3778938A1 (en) 2021-02-17
AU2017253321B2 (en) 2020-06-25
AU2017253321A1 (en) 2018-11-08
EP3447157A4 (en) 2020-03-18
US20190144971A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017183666A1 (ja) 酸化鉱石の製錬方法
JP6891722B2 (ja) 酸化鉱石の製錬方法、還元炉
WO2017188344A1 (ja) 酸化鉱石の製錬方法
JP6981070B2 (ja) 酸化鉱石の製錬方法
WO2018216513A1 (ja) 酸化鉱石の製錬方法
JP6900695B2 (ja) 金属酸化物の製錬方法
JP6900696B2 (ja) 金属酸化物の製錬方法
JP6855897B2 (ja) 酸化鉱石の製錬方法
JP6780285B2 (ja) ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP6772525B2 (ja) ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP6780284B2 (ja) ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP6809603B2 (ja) 金属酸化物の製錬方法
JP6776927B2 (ja) 金属酸化物の製錬方法
JP6772526B2 (ja) ニッケル酸化鉱石の製錬方法
JP7167534B2 (ja) 酸化鉱石の製錬方法
JP6926993B2 (ja) ペレットの製造方法、ニッケル酸化鉱の製錬方法
JP7342692B2 (ja) 酸化鉱石の製錬方法
JP7292581B2 (ja) 酸化鉱石の製錬方法
JP6809377B2 (ja) 酸化鉱石の製錬方法
JP7196461B2 (ja) 酸化鉱石の製錬方法
JP6926674B2 (ja) 酸化鉱石の製錬方法
JP7293634B2 (ja) 酸化鉱石の製錬方法
JP6953835B2 (ja) 酸化鉱石の製錬方法
JP6900837B2 (ja) 酸化鉱石の製錬方法、還元炉
JP7124588B2 (ja) 酸化鉱石の製錬方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3021181

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017253321

Country of ref document: AU

Date of ref document: 20170419

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017786003

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017786003

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786003

Country of ref document: EP

Kind code of ref document: A1