WO2017126416A1 - イオン伝導体の製造方法 - Google Patents
イオン伝導体の製造方法 Download PDFInfo
- Publication number
- WO2017126416A1 WO2017126416A1 PCT/JP2017/000905 JP2017000905W WO2017126416A1 WO 2017126416 A1 WO2017126416 A1 WO 2017126416A1 JP 2017000905 W JP2017000905 W JP 2017000905W WO 2017126416 A1 WO2017126416 A1 WO 2017126416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- libh
- lithium
- ionic conductor
- temperature
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/04—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing an ion conductor.
- lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased in applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
- the current lithium ion secondary battery uses a flammable organic solvent as an electrolyte, and requires a strong exterior so that the organic solvent does not leak.
- the structure of the device such as the need to take a structure in preparation for the risk that the electrolyte should leak.
- oxides and phosphate compounds have the property that their particles are hard. Therefore, in order to form a solid electrolyte layer using these materials, generally, sintering at a high temperature of 600 ° C. or higher is required, which is troublesome. Furthermore, when an oxide or a phosphoric acid compound is used as the material for the solid electrolyte layer, there is a disadvantage that the interfacial resistance with the electrode active material is increased.
- the organic polymer has a drawback that the lithium ion conductivity at room temperature is low and the conductivity rapidly decreases as the temperature decreases.
- Non-patent Document 1 LiBH 4 has a low density, and when this is used as a solid electrolyte, a light battery can be produced.
- LiBH 4 is stable even at a high temperature (for example, about 200 ° C.), a heat-resistant battery can be manufactured.
- LiBH 4 has a problem that the lithium ion conductivity is greatly lowered at a phase transition temperature of less than 115 ° C. Therefore, in order to obtain a solid electrolyte having high lithium ion conductivity even at a phase transition temperature of less than 115 ° C., a solid electrolyte combining LiBH 4 and an alkali metal compound has been proposed.
- a solid solution obtained by adding LiI to LiBH 4 can maintain a high-temperature phase even at room temperature (Non-patent Document 2 and Patent Document 1).
- the complex hydride solid electrolyte made of this solid solution is stable against metallic lithium and metal lithium can be used for the negative electrode, a high-capacity all-solid battery can be produced (Patent Document 2 and Patent Document 3). ).
- Non-patent Document 3 the ion conductor described in Patent Document 1 uses a more expensive compound having a low water content (less than 50 ppm) as the alkali metal compound, and there is room for further improvement in terms of cost.
- An object of the present invention is to provide a production method suitable for producing a large amount of ion conductors excellent in various properties such as ion conductivity.
- the present inventors mixed LiBH 4 and lithium halide using a solvent, and removed the solvent in a specific temperature range, thereby eliminating the conventional problem. Similar to the ionic conductor obtained by the melt mixing method or the mechanical milling method, an unexpected finding that an ionic conductor excellent in various properties such as ionic conductivity can be obtained. Moreover, it has been found that this method can be applied to mass production. The present invention has been completed based on such findings.
- LiBH 4 and the following formula (1): LiX (1) (In formula (1), X represents one selected from the group consisting of halogen atoms.) Mixing with a halogenated lithium represented by Removing the solvent at 60 ° C. to 280 ° C. [2]
- the manufacturing method of the ion conductor as described in [1] which has a diffraction peak in 35.4 +/- 2.0deg and 42.2 +/- 2.0deg.
- [3] The method for producing an ionic conductor according to [1] or [2], wherein the solvent is an ether solvent.
- [4] The method for producing an ionic conductor according to [3], wherein the ether solvent is selected from tetrahydrofuran, 2-methyltetrahydrofuran and cyclopentylmethyl ether.
- [5] The method for producing an ionic conductor according to any one of [1] to [4], wherein the content of lithium halide water is 50 ppm or more and less than 70000 ppm.
- [6] The method for producing an ionic conductor according to any one of [1] to [5], wherein the content of lithium halide water is 50 to 26000 ppm.
- the present invention it is possible to provide a manufacturing method suitable for manufacturing a large amount of ion conductors excellent in various characteristics such as ion conductivity.
- FIG. 4 is a diagram showing X-ray diffraction patterns of ion conductors obtained in Examples 1 to 4 and Comparative Example 1.
- FIG. 4 is a graph showing the ionic conductivity of the ionic conductors obtained in Examples 1 to 4 and Comparative Example 1.
- FIG. 5 is a diagram showing X-ray diffraction patterns of ion conductors obtained in Examples 5 to 8 and Comparative Example 2.
- FIG. 6 is a graph showing the ionic conductivity of the ionic conductors obtained in Examples 5 to 8 and Comparative Example 2.
- LiBH 4 and the following formula (1): LiX (1) (In formula (1), X represents one selected from the group consisting of halogen atoms.)
- a method for producing an ionic conductor is provided, which comprises mixing the lithium halide represented by the formula (1) with a solvent and removing the solvent at 60 ° C. to 280 ° C.
- a mechanical milling method using a planetary ball mill using LiBH 4 and an alkali metal compound as raw materials or a melt mixing method described in Japanese Patent No. 5187703 has been performed.
- the mechanical milling method makes it difficult to increase the size to an industrial scale, and the melt mixing method may cause decomposition of LiBH 4 and generation of hydrogen gas by heating to a temperature of 300 ° C. or higher.
- the production method of the present invention since a solvent is used for mixing LiBH 4 and lithium halide, a uniform mixture can be synthesized in large quantities.
- a high temperature such as melt mixing is not required, and the solvent can be removed in the range of 60 ° C. to 280 ° C., so that the decomposition of LiBH 4 is also suppressed. And generation of hydrogen can be suppressed.
- LiBH 4 used in the production method of the present invention a commercially available product can be used. Its purity is preferably 90% or more, and more preferably 95% or more. This is because a compound having a purity within the above range has high performance as an ion conductor. Moreover, LiBH 4 marketed in a solid state may be used, or LiBH 4 marketed in a solution state dissolved in a solvent such as THF may be used. In the case of a solution, the purity excluding the solvent is preferably 90% or more, and more preferably 95% or more.
- X of lithium halide is a halogen atom as described above, and is selected from an iodine atom, a bromine atom, a fluorine atom, a chlorine atom, and the like. X is preferably an iodine atom.
- a lithium halide may be used individually by 1 type, and may be used in combination of 2 or more type.
- the solvent is not particularly limited, and various organic solvents can be used.
- organic solvent include ether solvents such as tetrahydrofuran and diethyl ether, and amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide. Of these, ether solvents are preferred. Ether solvents that are stable to the raw material and have high solubility of the raw material can be used.
- tetrahydrofuran, 2-methyltetrahydrofuran, and cyclopentylmethyl ether are more preferable.
- the mixing method is not particularly limited, and a general mixing method can be used.
- a slurry state in which the other substrate is not completely dissolved may be used.
- all of the substrate is dissolved in a solvent to become a uniform state, and an ionic conductor with better ionic conductivity can be produced through such a state.
- the substrate concentration is preferably 1 wt% to 60 wt%, more preferably 10 wt% to 55 wt%, and further preferably 20 wt% to 50 wt%.
- the temperature in the solution mixing is not particularly limited and does not need to be heated, but can be heated to increase the solubility and dissolution rate of the substrate. In the case of heating, it is sufficient to carry out at a temperature below the boiling point of the solvent. However, it is possible to apply heat using an autoclave or the like, and to apply heat up to 200 ° C. If below this temperature, it is possible to sufficiently suppress the decomposition of LiBH 4.
- the mixing time it is sufficient if the time for the mixture to be uniform can be secured.
- the time often depends on the production scale, but it can be made sufficiently uniform by performing, for example, 0.1 to 5 hours.
- Solvent removal is performed by heat drying or vacuum drying, and the optimum temperature varies depending on the type of solvent. It is possible to shorten the solvent removal time by applying a temperature sufficiently higher than the boiling point.
- the temperature at which the solvent is removed is in the range of 60 to 280 ° C. If it is 60 degreeC or more, the solvent in an ion conductor can fully be removed, and the bad influence on ionic conductivity can also be suppressed. Moreover, if it is 280 degrees C or less, decomposition
- crystallization can fully be suppressed.
- the solvent removal temperature is preferably 100 to 250 ° C, more preferably 150 to 220 ° C. Note that, by removing the solvent under reduced pressure such as vacuum drying, the temperature at which the solvent is removed can be lowered and the required time can be shortened. Moreover, the time required for solvent removal can be shortened also by flowing an inert gas such as nitrogen or argon with sufficiently low moisture.
- the heating temperature is usually in the range of 50 to 300 ° C, more preferably in the range of 60 to 250 ° C, and particularly preferably in the range of 65 to 200 ° C. If the temperature is 50 ° C. or higher, crystallization is likely to occur. On the other hand, if the temperature is 300 ° C. or lower, the ionic conductor can be sufficiently prevented from decomposing and the crystals from being altered. In addition, in the manufacturing method of this invention, when it heats for solvent removal, crystallization advances simultaneously and it is efficient.
- the heating time varies slightly depending on the heating temperature, it is usually sufficiently crystallized in the range of 0.1 to 12 hours.
- the heating time is preferably 0.3 to 6 hours, and more preferably 0.5 to 4 hours. From the viewpoint of suppressing the deterioration of the ionic conductor, the heating time is preferably short.
- lithium halide having a high water content can be used as the lithium halide from the viewpoint of cost.
- the conventional mechanical milling method and the melt mixing method described in Japanese Patent No. 5187703 when the moisture in the lithium halide directly acts on LiBH 4 and is heated, LiBH 4 may be decomposed. Lithium halide with a high water content could not be used.
- the production method of the present invention by mixing LiBH 4 and lithium halide using a solvent, it is possible to prevent moisture in the lithium halide from directly acting on LiBH 4. When the solvent is removed in the range of 60 to 280 ° C., the moisture in the lithium halide can be removed together.
- an ionic conductor having excellent ionic conductivity can be obtained even when the water content of lithium halide is 50 ppm or more.
- the upper limit of the water content of the lithium halide is not particularly limited, but is preferably less than 70000 ppm, more preferably 26000 ppm or less from the viewpoint of ion conductivity.
- the cost concerning a lithium halide can be reduced significantly.
- an ionic conductor that can be manufactured by the above manufacturing method.
- the ionic conductor produced by the above production method has excellent ionic conductivity.
- LiBH 4 has a problem that the lithium ion conductivity is greatly lowered at a phase transition temperature lower than 115 ° C.
- such a decrease in lithium ion conductivity hardly occurs, and excellent ion conductivity can be obtained in a wide temperature range.
- the preferable aspect of this invention also has the characteristic that ion conductivity is hard to fluctuate with temperature (that is, the difference in ion conductivity between a low temperature region and a high temperature region is small). Furthermore, since the ionic conductor of the present invention is a crystal, it is also superior in that it is mechanically and thermally strong compared to glass.
- the diffraction peaks of these five regions correspond to the diffraction peaks of the high temperature phase of LiBH 4 . Even when the temperature is lower than the transition temperature (115 ° C.) of the high-temperature phase of LiBH 4, the material having diffraction peaks in the five regions as described above tends to exhibit high ionic conductivity even below the transition temperature.
- the ionic conductor obtained by the production method of the present invention contains lithium (Li), borohydride (BH 4 ⁇ ), and halogen atoms as main components, but may contain components other than these. Examples of other components include oxygen (O), nitrogen (N) silicon (Si), and germanium (Ge).
- Solid electrolyte for all solid state battery and all solid state battery LiBH 4 and the following formula (1): LiX (1) (In formula (1), X represents one selected from the group consisting of halogen atoms.)
- a solid electrolyte for an all-solid battery comprising an ionic conductor obtained by a method comprising mixing a lithium halide represented by the formula (1) with a solvent and removing the solvent at 60 ° C. to 280 ° C. Is provided.
- the all-solid-state battery using this solid electrolyte for all-solid-state batteries is provided.
- an all solid state battery is an all solid state battery in which lithium ions are responsible for electrical conduction, and in particular, is an all solid state lithium ion secondary battery.
- the all solid state battery has a structure in which a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer.
- the ion conductor of the present invention may be contained as a solid electrolyte in any one or more of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer. When used for the electrode layer, it is preferably used for the positive electrode layer rather than the negative electrode layer. This is because a side reaction is less likely to occur in the positive electrode layer.
- the ionic conductor according to the embodiment When the ionic conductor according to the embodiment is included in the positive electrode layer or the negative electrode layer, the ionic conductor and a known positive electrode active material or negative electrode active material for a lithium ion secondary battery are used in combination.
- the positive electrode layer it is preferable to use a bulk type in which an active material and a solid electrolyte are mixed because the capacity per unit cell is increased.
- the all solid state battery is manufactured by molding and laminating the above-mentioned layers, but the molding method and laminating method of each layer are not particularly limited.
- a vapor phase method in which a film is formed and laminated using a method, a sputtering method, a laser ablation method, etc .
- a press method in which powder is formed by hot pressing or cold pressing without applying temperature, and then laminated. Since the ionic conductor according to the embodiment is relatively soft, it is particularly preferable to form a battery by pressing and to produce a battery.
- the positive electrode layer can also be formed using a sol-gel method.
- Example 2 A white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 1 except that the temperature during drying was 200 ° C.
- Example 3 A white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 1 except that the temperature during drying was 250 ° C.
- Example 4 A white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 1 except that the temperature during drying was 280 ° C.
- LiBH 4 manufactured by Aldrich, purity 90%
- LiI manufactured by Aldrich, purity 99.9%
- ⁇ X-ray diffraction measurement> X-ray diffraction measurement (X'pert 3 Powder made by PANalytical, CuK ⁇ : ⁇ 1.540540) of the ion conductor powders obtained in Examples 1 to 4 and Comparative Example 1 at room temperature under Ar atmosphere Carried out.
- the obtained diffraction peak is shown in FIG.
- at least 2 ⁇ 23.5 ⁇ 0.3 deg, 24.9 ⁇ 0.3 deg, 26.7 ⁇ 0.3 deg, 34.6 ⁇ 0.5 deg and 40.9
- a diffraction peak was observed at ⁇ 0.5 deg, and a peak attributed to the 0.75LiBH 4 -0.25LiI crystal was shown.
- ⁇ Ion conductivity measurement> The ionic conductors obtained in Examples 1 to 4 and Comparative Example 1 were subjected to uniaxial molding (240 MPa) to obtain a disk having a thickness of about 1 mm and a diameter of 8 mm.
- an AC impedance measurement (SI1260 IMPEDANCE / GAIN-PHASE ANALYZER) was performed by a four-terminal method using a lithium electrode at 10 ° C. intervals, and ionic conductivity was calculated.
- the disk obtained as described above was placed in a thermostatic chamber set at 25 ° C. as a sample and held for 30 minutes, and then the ionic conductivity was measured, followed by 10 ° C.
- the temperature of the thermostatic bath was lowered by 10 ° C. from 140 ° C. to 30 ° C., and kept at each temperature for 40 minutes, and then the ionic conductivity was measured. Subsequently, the temperature of the thermostatic bath was lowered to 25 ° C. and held for 40 minutes, and then the ionic conductivity was measured.
- the measurement frequency range was 0.1 Hz to 1 MHz, and the amplitude was 50 mV.
- FIG. 2 shows the measurement results of the lithium ion conductivity at each temperature when the temperature was lowered from 150 ° C. and 150 ° C. for the ion conductors of Examples 1 to 4 and Comparative Example 1.
- an ion conductor was manufactured as follows for the case where lithium halide having a water content of 50 ppm or more was used.
- Lithium halides having different water contents were further prepared by flowing a mixed gas composed of argon and water (water content 300 ppm) through a container containing lithium halide for a predetermined time.
- the resulting lithium halide with a water content of 290 ppm was used in Example 5 below to produce an ionic conductor.
- ⁇ Treatment for obtaining lithium halides having different water contents (part 2)> LiI having a water content of 2000 ppm (manufactured by Wako Pure Chemical Industries, Ltd., purity: 97% or more, Lot. No. LKM6992) was dissolved in ultrapure water. Excess water was removed by an evaporator (6 hours, rotation speed 120 rpm, hot water temperature 60 ° C., vacuum degree 5 hPa) to obtain LiI trihydrate. LiI trihydrate was vacuum-dried at room temperature for 24 hours (vacuum degree 6.7 ⁇ 10 ⁇ 1 Pa) to prepare LiI having a water content of 70000 ppm. The obtained lithium halide having a water content of 70000 ppm was used in Examples 7 and 8 and Comparative Example 2 below to produce an ion conductor.
- Example 6 Using LiI with a water content of 2000 ppm (Wako Pure Chemical Industries, purity: 97% or more, Lot. No. LKM6992), mixing the THF solution of LiBH 4 with LiI for 30 minutes at room temperature, sufficiently uniform A white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 5 except that a simple solution was obtained.
- Example 7 LiI having a water content of 10,000 ppm and LiI having a water content of 70000 ppm were mixed at a predetermined ratio to obtain LiI having a water content of 10,000 ppm.
- a white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 6 except that LiI having a water content of 10,000 ppm was used.
- Example 8 LiI having a water content of 25700 ppm was obtained by mixing LiI having a water content of 2000 ppm and LiI having a water content of 70000 ppm at a predetermined ratio.
- a white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 6 except that LiI having a water content of 25700 ppm was used.
- Example 2 A white ionic conductor (0.75LiBH 4 -0.25LiI) was obtained in the same manner as in Example 6 except that LiI having a water content of 70000 ppm was used.
- Examples 5 to 8 and Comparative Example 2 For the ion conductors of Examples 5 to 8 and Comparative Example 2, X-ray diffraction measurement and ion conductivity measurement were performed in the same manner as the ion conductors obtained in Examples 1 to 4 and Comparative Example 1, respectively.
- the X-ray diffraction patterns of the ion conductors obtained in Examples 5 to 8 and Comparative Example 2 are shown in FIG.
- FIG. 4 shows the lithium ion conductivity of the ion conductors obtained in Examples 5 to 8 and Comparative Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
Description
また、例えば特許文献1に記載のイオン伝導体は、アルカリ金属化合物として、水含有量が低い(50ppm未満)、より高価な化合物を使用しており、コストの観点でさらに改善の余地がある。
[1] LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、
前記溶媒を60℃~280℃において除去することとを含む、イオン伝導体の製造方法。
[2] 前記イオン伝導体は、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=23.9±1.2deg、25.6±1.5deg、27.3±1.5deg、35.4±2.0degおよび42.2±2.0degに回折ピークを有する、[1]に記載のイオン伝導体の製造方法。
[3] 前記溶媒がエーテル系溶媒である、[1]または[2]に記載のイオン伝導体の製造方法。
[4] 前記エーテル系溶媒がテトラヒドロフラン、2-メチルテトラヒドロフラン及びシクロペンチルメチルエーテルから選択される、[3]に記載のイオン伝導体の製造方法。
[5] ハロゲン化リチウムの水の含有量が50ppm以上70000ppm未満である、[1]~[4]のいずれか一項に記載のイオン伝導体の製造方法。
[6] ハロゲン化リチウムの水の含有量が50~26000ppmである、[1]~[5]のいずれか一項に記載のイオン伝導体の製造方法。
[7] LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、
前記溶媒を60℃~280℃において除去することとを含む方法によって得られるイオン伝導体を含む、全固体電池用固体電解質。
[8] [7]に記載の全固体電池用固体電解質を使用した、全固体電池。
本発明の1つの実施形態によると、LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、この溶媒を60℃~280℃において除去することとを含む、イオン伝導体の製造方法が提供される。
これに対し、本発明の製造方法においては、LiBH4とハロゲン化リチウムとを溶媒を用いて混合することにより、ハロゲン化リチウム中の水分が直接LiBH4に作用することを防ぐことができ、また、60~280℃の範囲で溶媒を除去する際にハロゲン化リチウム中の水分を一緒に除去することができるため、水含有量の高いハロゲン化リチウムであっても問題なく使用することができる。本発明の製造方法の好ましい態様によれば、ハロゲン化リチウムの水含有量が50ppm以上であっても、優れたイオン伝導性を有するイオン伝導体を得ることができる。ハロゲン化リチウムの水含有量の上限は特に限定されないが、イオン伝導性の観点からは70000ppm未満が好ましく、より好ましくは26000ppm以下である。このように、本発明の好ましい態様によれば、ハロゲン化リチウムにかかるコストを大幅に削減することができる。
本発明の他の実施形態によると、上記製造方法によって製造され得るイオン伝導体が提供される。上記製造方法によって製造されたイオン伝導体は、優れたイオン伝導性を有する。上述したように、LiBH4は、相転移温度である115℃未満において、リチウムイオン伝導度が大きく低下してしまうという問題がある。しかしながら、本発明のイオン伝導体では、このようなリチウムイオン伝導度の低下は生じ難く、広い温度範囲において優れたイオン伝導性を得ることができる。また、本発明の好ましい態様によれば、イオン伝導度が温度によって変動し難い(すなわち、低温領域と高温領域でのイオン伝導度の差が小さい)という特性も有する。さらに、本発明のイオン伝導体は結晶であるため、ガラスと比較して、機械的および熱的に強固であるという点でも優れている。
本発明の他の実施形態によると、LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、前記溶媒を60℃~280℃において除去することとを含む方法によって得られるイオン伝導体を含む、全固体電池用固体電解質が提供される。また、本発明のさらなる実施形態によると、この全固体電池用固体電解質を使用した全固体電池が提供される。
アルゴン雰囲気下のグローブボックス内で、三口フラスコにLiI(アルドリッチ社製、純度99.9%)を量り取り、さらにLiBH4の10%THF溶液(Lockwood Lithium社製、Product no.401653)を、LiBH4:LiI=0.75:0.25のモル比[LiBH4:LiI=x:(1-x)とした場合、x=0.75]となるように加え、混合した。溶液混合は50℃で、1時間行うことで、十分に均一な溶液を得た。
得られた溶液を、真空下、アルゴンを流速5cc/minで流しながら、150℃で、3時間乾燥させることで、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
乾燥時の温度を200℃にした以外は実施例1と同様にして、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
乾燥時の温度を250℃にした以外は実施例1と同様にして、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
乾燥時の温度を280℃にした以外は実施例1と同様にして、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
アルゴン雰囲気下のグローブボックス内で、LiBH4(アルドリッチ社製、純度90%)とLiI(アルドリッチ社製、純度99.9%)を、LiBH4:LiI=0.75:0.25のモル比[LiBH4:LiI=x:(1-x)とした場合、x=0.75]で混合し、この混合物をモリブデン容器に移した後、オートクレーブを用いて320℃に加熱して溶融混合した。その後、この溶融混合物を室温まで冷却して、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
実施例1~4および比較例1で得られたイオン伝導体の粉末について、Ar雰囲気下、室温にて、X線回折測定(PANalytical社製X‘pert3 Powder、CuKα:λ=1.5405Å)を実施した。得られた回折ピークを図1に示す。
実施例1~4および比較例1では、少なくとも、2θ=23.5±0.3deg、24.9±0.3deg、26.7±0.3deg、34.6±0.5degおよび40.9±0.5degに回折ピークが観測され、0.75LiBH4-0.25LiI結晶に帰属するピークが示された。
実施例1~4および比較例1で得られたイオン伝導体を一軸成型(240MPa)に供し、厚さ約1mm、直径8mmのディスクを得た。室温から150℃の温度範囲において、10℃間隔でリチウム電極を利用した四端子法による交流インピーダンス測定(SI1260 IMPEDANCE/GAIN―PHASE ANALYZER)を行い、イオン伝導度を算出した。具体的には、上記のようにして得たディスクをサンプルとして25℃に設定した恒温槽に入れて30分間保持した後にイオン伝導度を測定し、続いて30℃~150℃まで10℃ずつ恒温槽を昇温し、各温度で同様の操作を繰り返した。150℃での測定を終えた後は、140℃~30℃まで10℃ずつ恒温槽を降温し、各温度で40分間保持した後にイオン伝導度を測定した。続いて25℃まで恒温槽を降温し、40分間保持した後にイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。
ハロゲン化リチウム中の水含有量の測定は、Metrohm社製カールフィッシャー水分計(型式851/1)、スターラー(型式801)、オートサンプラー(型式874)および専用の密閉バイアルを用いて行った。滴定試薬は、水分測定用新カールフィッシャー試薬ハイドラナールクーロマットAGオーブン(林純薬工業製)を選択した。
測定試料について、サンプル加熱温度200℃、抽出時間300秒、抽出温度25℃、滴定終了5μg/min.(相対ドリフト)および終点設定50mVにて分析を実施した。測定データはMetrohm社製解析ソフト:tiamo(Ver2.3)にて解析を行った。「平行な接線による終点(EP)評価」機能を用いて滴定分析の終点(EP)を決定した。この時、接線としては、滴定前(0~20sec.)および滴定終了後(250~300sec.)におけるベースラインと一致する接線を用いた。得られた終点(EP)から水の重量(μg)を算出し、下記式Aを用いてハロゲン化リチウム中の水含有量を算出した。
{測定試料中の水の重量(μg)-ブランク中の水の重量(μg)}/ハロゲン化リチウムの重量(g)=ハロゲン化リチウム中の水含有量(ppm) …(式A)
アルゴンおよび水からなる混合ガス(水含有量300ppm)を、ハロゲン化リチウムを入れた容器内に所定時間流通させることで、水含有量の異なるハロゲン化リチウムをさらに調製した。得られた水含有量290ppmのハロゲン化リチウムを、以下の実施例5で使用して、イオン伝導体を製造した。
水含有量2000ppmのLiI(和光純薬社製、純度:97%以上、Lot.No.LKM6992)を超純水に溶解させた。エバポレーター(6時間、回転数120rpm、湯温60℃、真空度5hPa)により、余分な水分を取り除くことで、LiIの3水和物を得た。LiIの3水和物を室温で24時間真空乾燥(真空度6.7×10-1Pa)することで、水分量70000ppmのLiIを調製した。得られた水含有量70000ppmのハロゲン化リチウムを、以下の実施例7、8及び比較例2で使用して、イオン伝導体を製造した。
まず、LiI(シグマ・アルドリッチ社製、純度:99.9%以上、Lot.No.MKBT8164V)に上記処理を施すことにより、水含有量290ppmのアルカリ金属化合物を製造した。これを、アルゴン雰囲気下のグローブボックス内で、三口フラスコに量り取り、そこに、LiBH4のTHF溶液(Lockwood Lithium社製)を、LiBH4:LiI=0.75:0.25のモル比[LiBH4:LiI=x:(1-x)とした場合、x=0.75]となるように加え、混合した。溶液混合は50℃で、1時間行い、十分に均一な溶液を得た。
得られた溶液を、真空下、アルゴンを流速5cc/minで流しながら、200℃で、3時間乾燥させることで、白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
水含有量2000ppmのLiI(和光純薬社製、純度:97%以上、Lot.No.LKM6992)を使用した点、LiBH4のTHF溶液とLiIとの混合を室温で30分行い、十分に均一な溶液を得た以外は、実施例5と同様にして白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
水分量2000ppmのLiIと水分量70000ppmのLiIを所定の割合で混合させることで、水含有量10000ppmのLiIを得た。得られた水含有量10000ppmのLiIを使用した点以外は、実施例6と同様にして白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
水分量2000ppmのLiIと水分量70000ppmのLiIを所定の割合で混合させることで、水含有量25700ppmのLiIを得た。得られた水含有量25700ppmのLiIを使用した点以外は、実施例6と同様にして白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
水含有量70000ppmのLiIを使用した点以外は、実施例6と同様にして白色のイオン伝導体(0.75LiBH4-0.25LiI)を得た。
Claims (8)
- LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、
前記溶媒を60℃~280℃において除去することとを含む、イオン伝導体の製造方法。 - 前記イオン伝導体は、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=23.9±1.2deg、25.6±1.5deg、27.3±1.5deg、35.4±2.0degおよび42.2±2.0degに回折ピークを有する、請求項1に記載のイオン伝導体の製造方法。
- 前記溶媒がエーテル系溶媒である、請求項1または請求項2に記載のイオン伝導体の製造方法。
- 前記エーテル系溶媒がテトラヒドロフラン、2-メチルテトラヒドロフラン及びシクロペンチルメチルエーテルから選択される、請求項3に記載のイオン伝導体の製造方法。
- ハロゲン化リチウムの水の含有量が50ppm以上70000ppm未満である、請求項1~4のいずれか一項に記載のイオン伝導体の製造方法。
- ハロゲン化リチウムの水の含有量が50~26000ppmである、請求項1~5のいずれか一項に記載のイオン伝導体の製造方法。
- LiBH4と下記式(1):
LiX (1)
(式(1)中、Xは、ハロゲン原子からなる群から選択される1種を表す。)
で表されるハロゲン化リチウムとを、溶媒を用いて混合することと、
前記溶媒を60℃~280℃において除去することとを含む方法によって得られるイオン伝導体を含む、全固体電池用固体電解質。 - 請求項7に記載の全固体電池用固体電解質を使用した、全固体電池。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187022808A KR102723760B1 (ko) | 2016-01-18 | 2017-01-13 | 이온 전도체의 제조 방법 |
EP17741296.2A EP3407363B8 (en) | 2016-01-18 | 2017-01-13 | Method for manufacturing ion conductor |
BR112018014421-5A BR112018014421B1 (pt) | 2016-01-18 | 2017-01-13 | Método para fabricar um condutor iônico de eletrólito sólido cristalizado |
JP2017562538A JP6724044B2 (ja) | 2016-01-18 | 2017-01-13 | イオン伝導体の製造方法 |
PL17741296.2T PL3407363T3 (pl) | 2016-01-18 | 2017-01-13 | Sposób wytwarzania przewodnika jonowego |
US16/069,439 US10825574B2 (en) | 2016-01-18 | 2017-01-13 | Method for manufacturing ionic conductor |
CA3010253A CA3010253A1 (en) | 2016-01-18 | 2017-01-13 | Method for manufacturing ionic conductor |
RU2018124793A RU2714498C1 (ru) | 2016-01-18 | 2017-01-13 | Способ получения ионного проводника |
CN201780006992.0A CN108475565B (zh) | 2016-01-18 | 2017-01-13 | 离子传导体的制造方法 |
AU2017209394A AU2017209394B2 (en) | 2016-01-18 | 2017-01-13 | Method for manufacturing ionic conductor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016007434 | 2016-01-18 | ||
JP2016-007433 | 2016-01-18 | ||
JP2016-007434 | 2016-01-18 | ||
JP2016007433 | 2016-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126416A1 true WO2017126416A1 (ja) | 2017-07-27 |
Family
ID=59362357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000905 WO2017126416A1 (ja) | 2016-01-18 | 2017-01-13 | イオン伝導体の製造方法 |
Country Status (12)
Country | Link |
---|---|
US (1) | US10825574B2 (ja) |
EP (1) | EP3407363B8 (ja) |
JP (1) | JP6724044B2 (ja) |
CN (1) | CN108475565B (ja) |
AU (1) | AU2017209394B2 (ja) |
BR (1) | BR112018014421B1 (ja) |
CA (1) | CA3010253A1 (ja) |
HU (1) | HUE064792T2 (ja) |
PL (1) | PL3407363T3 (ja) |
RU (1) | RU2714498C1 (ja) |
TW (1) | TWI712197B (ja) |
WO (1) | WO2017126416A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167813A1 (ja) | 2018-02-28 | 2019-09-06 | 三菱瓦斯化学株式会社 | Li2B12H12およびLiBH4を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 |
WO2020040044A1 (ja) | 2018-08-23 | 2020-02-27 | 三菱瓦斯化学株式会社 | LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 |
CN111373590A (zh) * | 2017-10-19 | 2020-07-03 | 三菱瓦斯化学株式会社 | 全固态电池的制造方法 |
CN112771626A (zh) * | 2018-12-26 | 2021-05-07 | 松下知识产权经营株式会社 | 固体电解质组合物和固体电解质部件的制造方法 |
WO2021166705A1 (ja) | 2020-02-17 | 2021-08-26 | 三菱瓦斯化学株式会社 | LiCB9H10の高温相を含むイオン伝導体およびその製造方法 |
RU2772865C2 (ru) * | 2018-02-28 | 2022-05-26 | Мицубиси Газ Кемикал Компани, Инк. | ИОННЫЙ ПРОВОДНИК, СОДЕРЖАЩИЙ Li2B12H12 И LiBH4, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ПОЛНОСТЬЮ ТВЕРДОТЕЛЬНЫХ АККУМУЛЯТОРОВ, СОДЕРЖАЩИЙ УКАЗАННЫЙ ИОННЫЙ ПРОВОДНИК |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244535B (zh) * | 2018-11-01 | 2021-01-19 | 上海理工大学 | 硼氢化锂基固态电解质材料的制备方法 |
EP3940818B1 (en) * | 2019-03-12 | 2023-12-06 | Mitsubishi Gas Chemical Company, Inc. | Method for producing all-solid-state battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139382A1 (ja) * | 2008-05-13 | 2009-11-19 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
WO2015030053A1 (ja) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | 全固体電池および電極活物質の製造方法 |
WO2015030052A1 (ja) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | 全固体電池 |
JP2016134316A (ja) * | 2015-01-20 | 2016-07-25 | 出光興産株式会社 | 固体電解質 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971263A (ja) * | 1982-10-18 | 1984-04-21 | Toshiba Corp | 固体電池 |
CN1051569A (zh) * | 1989-11-07 | 1991-05-22 | 广州市华远电热电器厂 | 高分子复合固态电解质及制法 |
RU2066901C1 (ru) * | 1993-07-01 | 1996-09-20 | Жуковский Владимир Михайлович | Твердый литийпроводящий электролит и способ его получения |
CN1142610C (zh) * | 2001-01-16 | 2004-03-17 | 华中科技大学 | 磺酰亚胺类锂盐的复合固体电解质材料及其制备方法 |
US7776201B1 (en) | 2005-06-15 | 2010-08-17 | Hrl Laboratories | Electrochemical regeneration of chemical hydrides |
CN101013766A (zh) * | 2007-02-26 | 2007-08-08 | 清华大学 | 一种准固态电解质及其制备方法与应用 |
US9673482B2 (en) | 2012-11-06 | 2017-06-06 | Idemitsu Kosan Co., Ltd. | Solid electrolyte |
RU2561919C1 (ru) * | 2014-07-08 | 2015-09-10 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российский академии наук | Способ получения литий-ионного проводящего материала |
US10326164B2 (en) * | 2015-03-03 | 2019-06-18 | Ut-Battelle, Llc | High-conduction GE substituted LiAsS4 solid electrolyte |
CN105481887A (zh) * | 2015-12-31 | 2016-04-13 | 苏州润禾化学材料有限公司 | 一种草酸二氟硼酸锂的制备方法 |
-
2017
- 2017-01-13 EP EP17741296.2A patent/EP3407363B8/en active Active
- 2017-01-13 RU RU2018124793A patent/RU2714498C1/ru active
- 2017-01-13 WO PCT/JP2017/000905 patent/WO2017126416A1/ja active Application Filing
- 2017-01-13 BR BR112018014421-5A patent/BR112018014421B1/pt active IP Right Grant
- 2017-01-13 JP JP2017562538A patent/JP6724044B2/ja active Active
- 2017-01-13 US US16/069,439 patent/US10825574B2/en active Active
- 2017-01-13 AU AU2017209394A patent/AU2017209394B2/en active Active
- 2017-01-13 HU HUE17741296A patent/HUE064792T2/hu unknown
- 2017-01-13 CN CN201780006992.0A patent/CN108475565B/zh active Active
- 2017-01-13 CA CA3010253A patent/CA3010253A1/en active Pending
- 2017-01-13 PL PL17741296.2T patent/PL3407363T3/pl unknown
- 2017-01-17 TW TW106101465A patent/TWI712197B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139382A1 (ja) * | 2008-05-13 | 2009-11-19 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
JP5187703B2 (ja) | 2008-05-13 | 2013-04-24 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
WO2015030053A1 (ja) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | 全固体電池および電極活物質の製造方法 |
WO2015030052A1 (ja) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | 全固体電池 |
JP2016134316A (ja) * | 2015-01-20 | 2016-07-25 | 出光興産株式会社 | 固体電解質 |
Non-Patent Citations (3)
Title |
---|
APPLIED PHYSICS LETTERS, vol. 91, 2007, pages 224103 |
CHEMICAL REVIEWS, vol. 107, 2007, pages 4111 - 4132 |
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 894 - 895 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111373590A (zh) * | 2017-10-19 | 2020-07-03 | 三菱瓦斯化学株式会社 | 全固态电池的制造方法 |
CN111373590B (zh) * | 2017-10-19 | 2024-03-26 | 三菱瓦斯化学株式会社 | 全固态电池的制造方法 |
CN111771248B (zh) * | 2018-02-28 | 2021-12-03 | 三菱瓦斯化学株式会社 | 含有Li2B12H12和LiBH4的离子导体及其制造方法以及包含该离子导体的全固体电池用固体电解质 |
US11769873B2 (en) | 2018-02-28 | 2023-09-26 | Mitsubishi Gas Chemical Company, Inc. | Ion conductor containing Li2B12H12 and LiBH4, method for producing same, and solid electrolyte for all-solid-state batteries, which contains said ion conductor |
KR20200126391A (ko) | 2018-02-28 | 2020-11-06 | 미츠비시 가스 가가쿠 가부시키가이샤 | Li2B12H12 및 LiBH4를 포함하는 이온 전도체 및 그의 제조 방법, 및 해당 이온 전도체를 포함하는 전고체 전지용 고체 전해질 |
CN111771248A (zh) * | 2018-02-28 | 2020-10-13 | 三菱瓦斯化学株式会社 | 含有Li2B12H12和LiBH4的离子导体及其制造方法以及包含该离子导体的全固体电池用固体电解质 |
RU2772865C2 (ru) * | 2018-02-28 | 2022-05-26 | Мицубиси Газ Кемикал Компани, Инк. | ИОННЫЙ ПРОВОДНИК, СОДЕРЖАЩИЙ Li2B12H12 И LiBH4, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ПОЛНОСТЬЮ ТВЕРДОТЕЛЬНЫХ АККУМУЛЯТОРОВ, СОДЕРЖАЩИЙ УКАЗАННЫЙ ИОННЫЙ ПРОВОДНИК |
WO2019167813A1 (ja) | 2018-02-28 | 2019-09-06 | 三菱瓦斯化学株式会社 | Li2B12H12およびLiBH4を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 |
RU2795829C2 (ru) * | 2018-08-23 | 2023-05-12 | Мицубиси Газ Кемикал Компани, Инк. | ИОННЫЙ ПРОВОДНИК, СОДЕРЖАЩИЙ ВЫСОКОТЕМПЕРАТУРНУЮ ФАЗУ LiCB9H10, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ПОЛНОСТЬЮ ТВЕРДОТЕЛЬНЫХ АККУМУЛЯТОРОВ, СОДЕРЖАЩИЙ УКАЗАННЫЙ ИОННЫЙ ПРОВОДНИК |
KR20210044851A (ko) | 2018-08-23 | 2021-04-23 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | LiCB9H10의 고온상을 포함하는 이온 전도체 및 그의 제조 방법, 및 해당 이온 전도체를 포함하는 전고체 전지용 고체 전해질 |
WO2020040044A1 (ja) | 2018-08-23 | 2020-02-27 | 三菱瓦斯化学株式会社 | LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 |
US12043551B2 (en) | 2018-08-23 | 2024-07-23 | Mitsubishi Gas Chemical Company, Inc. | Ionic conductor containing high-temperature phase of LiCB9H10, method for manufacturing same, and solid electrolyte for all-solid-state battery containing said ion conductor |
CN112771626A (zh) * | 2018-12-26 | 2021-05-07 | 松下知识产权经营株式会社 | 固体电解质组合物和固体电解质部件的制造方法 |
CN112771626B (zh) * | 2018-12-26 | 2024-05-10 | 松下知识产权经营株式会社 | 固体电解质组合物和固体电解质部件的制造方法 |
WO2021166705A1 (ja) | 2020-02-17 | 2021-08-26 | 三菱瓦斯化学株式会社 | LiCB9H10の高温相を含むイオン伝導体およびその製造方法 |
KR20220143824A (ko) | 2020-02-17 | 2022-10-25 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | LiCB9H10의 고온상을 포함하는 이온 전도체 및 그의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
TWI712197B (zh) | 2020-12-01 |
US10825574B2 (en) | 2020-11-03 |
BR112018014421B1 (pt) | 2023-10-31 |
JPWO2017126416A1 (ja) | 2018-11-15 |
RU2714498C1 (ru) | 2020-02-18 |
AU2017209394A1 (en) | 2018-09-06 |
EP3407363B8 (en) | 2023-12-06 |
BR112018014421A2 (pt) | 2019-02-19 |
JP6724044B2 (ja) | 2020-07-15 |
CN108475565A (zh) | 2018-08-31 |
PL3407363T3 (pl) | 2024-03-04 |
KR20180105163A (ko) | 2018-09-27 |
AU2017209394B2 (en) | 2021-08-19 |
TW201729455A (zh) | 2017-08-16 |
EP3407363B1 (en) | 2023-10-25 |
EP3407363C0 (en) | 2023-10-25 |
HUE064792T2 (hu) | 2024-04-28 |
US20190080814A1 (en) | 2019-03-14 |
EP3407363A1 (en) | 2018-11-28 |
EP3407363A4 (en) | 2019-10-02 |
CN108475565B (zh) | 2020-11-06 |
CA3010253A1 (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017126416A1 (ja) | イオン伝導体の製造方法 | |
JP7107087B2 (ja) | Lgps系固体電解質の製造方法 | |
CN112074918B (zh) | Lgps类固体电解质和制造方法 | |
CN111066103B (zh) | Lgps系固体电解质的制造方法 | |
WO2016103894A1 (ja) | イオン伝導体およびその製造方法 | |
JP7172433B2 (ja) | 固体電解質材料およびその成形体 | |
CN111771248B (zh) | 含有Li2B12H12和LiBH4的离子导体及其制造方法以及包含该离子导体的全固体电池用固体电解质 | |
JP7119753B2 (ja) | Lgps系固体電解質の製造方法 | |
JP7022498B2 (ja) | イオン伝導体の経時劣化を抑制する方法 | |
JP6776743B2 (ja) | イオン伝導体の製造方法 | |
KR102723760B1 (ko) | 이온 전도체의 제조 방법 | |
WO2018139629A1 (ja) | イオン伝導体及びその製造方法 | |
Nangir et al. | Super Ionic Li3–2xMx (OH) 1-yNyCl (M= Ca, W, N= F) Halide Hydroxide as an Anti-Perovskite Electrolyte for Solid-State Batteries | |
JP6759880B2 (ja) | イオン伝導体の製造方法 | |
WO2022215518A1 (ja) | Lgps系固体電解質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741296 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562538 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3010253 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018014421 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20187022808 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187022808 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018124793 Country of ref document: RU Ref document number: 2017741296 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017741296 Country of ref document: EP Effective date: 20180820 |
|
ENP | Entry into the national phase |
Ref document number: 2017209394 Country of ref document: AU Date of ref document: 20170113 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112018014421 Country of ref document: BR Free format text: REAPRESENTE A DECLARACAO REFERENTE AO DOCUMENTO DE PRIORIDADE DEVIDAMENTE ASSINADA, CONFORME ART. 408 C/C ART. 410, II, DO CODIGO DE PROCESSO CIVIL. |
|
ENP | Entry into the national phase |
Ref document number: 112018014421 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180713 |