WO2018139629A1 - イオン伝導体及びその製造方法 - Google Patents

イオン伝導体及びその製造方法 Download PDF

Info

Publication number
WO2018139629A1
WO2018139629A1 PCT/JP2018/002643 JP2018002643W WO2018139629A1 WO 2018139629 A1 WO2018139629 A1 WO 2018139629A1 JP 2018002643 W JP2018002643 W JP 2018002643W WO 2018139629 A1 WO2018139629 A1 WO 2018139629A1
Authority
WO
WIPO (PCT)
Prior art keywords
libh
lithium ion
solid
conductor
present
Prior art date
Application number
PCT/JP2018/002643
Other languages
English (en)
French (fr)
Inventor
昌宏 島田
亜希 香取
功太郎 川上
智裕 伊藤
吉田 浩二
篤 宇根本
慎一 折茂
Original Assignee
三菱瓦斯化学株式会社
株式会社東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 株式会社東北テクノアーチ filed Critical 三菱瓦斯化学株式会社
Priority to JP2018564679A priority Critical patent/JPWO2018139629A1/ja
Publication of WO2018139629A1 publication Critical patent/WO2018139629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ion conductor and a method for producing the same.
  • the present invention also relates to a solid electrolyte for a solid battery including the ion conductor and a solid battery including the solid electrolyte.
  • lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased in applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
  • the current lithium ion secondary battery uses a flammable organic solvent as an electrolyte, and requires a strong exterior so that the organic solvent does not leak.
  • the structure of the device such as the need to take a structure in preparation for the risk that the electrolyte should leak.
  • oxides, phosphate compounds, organic polymers, sulfides, and the like as solid electrolytes in all solid lithium ion secondary batteries is being studied.
  • oxides and phosphate compounds have the property that their particles are hard. Therefore, in order to form a solid electrolyte layer using these materials, generally, sintering at a high temperature of 600 ° C. or higher is required, which is troublesome. Furthermore, when an oxide or a phosphoric acid compound is used as the solid electrolyte, there is a disadvantage that the interface resistance with the electrode active material is increased.
  • the organic polymer has a drawback that the lithium ion conductivity at room temperature is low and the conductivity rapidly decreases as the temperature decreases.
  • Non-patent Document 1 LiBH 4 has a low density, and when this is used as a solid electrolyte, a light battery can be produced. Further, since LiBH 4 is stable even at a high temperature (for example, about 200 ° C.), it is possible to manufacture a heat-resistant battery (Non-patent Document 2).
  • LiBH 4 has a problem that the lithium ion conductivity is greatly lowered at a phase transition temperature of less than 115 ° C. Therefore, in order to obtain a solid electrolyte having high lithium ion conductivity even at a phase transition temperature of less than 115 ° C., a solid electrolyte combining LiBH 4 and an alkali metal compound has been proposed.
  • the crystalline phase that can by the addition of LiNH 2 in solid solution and LiBH 4 that can by the addition of alkali metal compounds such as LiI to LiBH 4 is to keep the high-temperature phase of LiBH 4 even at room temperature, the phase transition It has been reported that lithium ion conductivity is improved at a temperature lower than 115 ° C.
  • Non-patent Document 3 and Patent Document 1 an ion conductor containing a complex hydride such as LiBH 4 is used as a solid electrolyte.
  • the ionic conductor is also referred to as a “complex hydride solid electrolyte”).
  • Such a complex hydride solid electrolyte is stable against metallic lithium, and when a complex hydride solid electrolyte is used, metallic lithium can be used for the negative electrode, so that a high-capacity all-solid battery can be produced.
  • Patent Documents 2 and 3 are examples of these conventional solid electrolytes sometimes have insufficient lithium ion conductivity.
  • an ion conductor containing Li, B, P, and I and having a mass ratio of B and P in a specific range is lithium ion conductive.
  • the present invention has been found to be excellent in performance and can be suitably used as a solid electrolyte in an all-solid-state lithium ion secondary battery, and the present invention has been completed.
  • this invention provides the ion conductor shown below, its manufacturing method, a molded object, the solid electrolyte for all-solid-state batteries, and all-solid-state batteries.
  • An ionic conductor containing Li, B, P and I and having a mass ratio B / P of B and P in the range of 0.5 to 17.5.
  • a novel ion conductor containing Li, B, P and I and a method for producing the same.
  • a molded body obtained by thermoforming the ion conductor, a solid electrolyte for an all solid battery including the ion conductor, and an all solid battery including the solid electrolyte for the all solid battery. can do.
  • FIG. 4 is a diagram showing X-ray diffraction patterns of the ionic conductors and LiI obtained in Examples 1 to 4.
  • FIG. 6 is a diagram showing X-ray diffraction patterns of the ionic conductors obtained in Examples 5 to 9.
  • FIG. 4 is a diagram showing X-ray diffraction patterns of ion conductors obtained in Comparative Examples 1 to 4. It is a figure which shows the measurement result of the lithium ion conductivity measured at the time of temperature rising about the ion conductor obtained in Examples 1-9.
  • FIG. 3 is a graph showing the results of measurement of deterioration over time of lithium ion conductivity for the ion conductors obtained in Examples 1 to 5, 7, 9 and Comparative Example 1.
  • Ion conductor obtained in Examples 1, 2, 4 to 9 a diagram showing a Raman spectrum of LiBH 4 and P 2 I 4.
  • Ion conductor obtained in Example 1, 8 and Comparative Examples 1, 3 and 4 is a diagram showing a Raman spectrum of LiBH 4 and P 2 I 4.
  • the ion conductor of the present invention and the production method thereof, a molded body obtained by thermoforming the ion conductor, a solid electrolyte for an all-solid battery including the ion conductor, an all-solid battery, and the like will be specifically described.
  • the materials and configurations described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
  • the ionic conductor of the present invention contains Li, B, P and I, and is characterized in that the mass ratio B / P of B and P is in the range of 0.5 to 17.5.
  • the ion conductor of the present invention contains Li, B, P and I as constituent elements, and the mass ratio of B and P is in the above range, it can have good lithium ion conductivity.
  • the ionic conductor of the present invention can have good lithium ion conductivity in a wide temperature range, so that its use is not limited and can be used for a wide range of applications.
  • the ion conductor of the present invention since the ion conductor of the present invention has a low density, it is possible to produce a relatively light electrode layer and solid electrolyte layer, thereby reducing the weight of the entire battery.
  • the ion conductor of the present invention is stable even at a high temperature (at least 150 ° C.), a battery having excellent heat resistance can be manufactured by using it for the electrode layer and the solid electrolyte layer.
  • the ion conductor of the present invention when used in a solid electrolyte layer, there is an advantage that the interface resistance with the electrode active material can be reduced.
  • the mass ratio B / P of B and P is not particularly limited as long as it is in the range of 0.5 to 17.5, but is preferably 0.5 to 2.0, more preferably 0.8. 5 to 1.5.
  • the mass ratio B / P of B and P is in the above range, good lithium ion conductivity can be obtained.
  • the contents of the constituent elements Li, B, P and I are not particularly limited.
  • the content of Li is preferably 4 to 25% by mass, more preferably 5 to 20% by mass. %, More preferably 5 to 10% by mass.
  • the content of B is preferably 4 to 40% by mass, more preferably 5 to 20% by mass, and still more preferably 5 to 10% by mass.
  • the content of P is preferably 1.5 to 9.5% by mass, more preferably 4 to 9.5% by mass, and still more preferably 6 to 9.5% by mass.
  • the content of I is preferably 15 to 79% by mass, more preferably 30 to 77% by mass, and still more preferably 55 to 77% by mass.
  • the balance is the H content.
  • the element ratio is calculated based on ICP emission spectroscopic analysis. The specific measurement method is as shown in the examples.
  • the ion conductor of the present invention has a high lithium ion conductivity in both a high temperature region (for example, 150 ° C.) and a low temperature region (for example, 25 ° C.), and is used in a wide temperature region. be able to.
  • the ionic conductor of the present invention has a higher temperature than that of 3LiBH 4 -LiI solid solution (see Non-Patent Document 3 and Patent Document 1), which is a conventional complex hydride solid electrolyte. Deterioration with time of lithium ion conductivity when returning to room temperature (25 ° C.) after treatment (150 ° C.) is small, and durability is also excellent.
  • the ion conductor of the present invention has a different crystal structure (crystal phase) depending on the mass ratio B / P of the constituent elements B and P.
  • crystal phase crystal phase
  • the lithium ion conductivity after holding the ion conductor at 150 ° C. for 30 minutes is 1 ⁇ 10 ⁇ 3 Scm ⁇ 1 or more, more preferably 5 ⁇ 10 ⁇ 3 Scm ⁇ 1
  • the lithium ion conductivity after holding at 150 ° C. for 30 minutes and further holding at 25 ° C. for 40 minutes is 1 ⁇ 10 ⁇ 5 Scm ⁇ 1 or more, more preferably 7 ⁇ 10 ⁇ 5 Scm ⁇ 1 or more.
  • the ion conductor of the present invention to show a conventional 3LiBH 4 or comparable -LiI solid solution more levels lithium ion conductivity of a complex hydride solid electrolyte Can do.
  • the mass ratio B / P of B and P is 0.59, the lithium ion conductivity at 25 ° C.
  • the desired lithium ion conductivity can be obtained in both the temperature range of 25 ° C. (after high-temperature treatment) and 150 ° C., so the use is not limited, and the solid electrolyte for an all-solid-state battery As practical.
  • the mass ratio B / P of B and P is 0.5 to 1.0, after holding at 150 ° C. for 30 minutes, further holding at 25 ° C. for 40 minutes Using lithium ion conductivity as a reference value (ie, 0 hour), the retention rate of lithium ion conductivity after 100 hours is 50% or more, more preferably 80% or more.
  • 3LiBH 4 -LiI measured under the same conditions Compared with the solid solution lithium ion conductivity maintenance rate of less than 25%, it has a very high maintenance rate.
  • the mass ratio B / P of B and P is in the range of more than 1.0 to 17.5, the ionic conductor of the present invention is diffracted from the LiBH 4 high-temperature phase at room temperature like the 3LiBH 4 -LiI solid solution. Shows the peak.
  • the lithium ion conductivity after holding the ion conductor at 150 ° C. for 30 minutes is 2 ⁇ 10 ⁇ 3 Scm ⁇ 1 or more, more preferably 8 ⁇ 10 ⁇ 3 Scm ⁇ 1
  • the lithium ion conductivity after holding at 150 ° C. for 30 minutes and further holding at 25 ° C. for 40 minutes is 1 ⁇ 10 -5 Scm -1 or more, more preferably 2 ⁇ 10 -5 Scm -1 or higher.
  • the ionic conductor of the present invention can exhibit lithium ion conductivity at a level comparable to 3LiBH 4 -LiI solid solution, which is a conventional complex hydride solid electrolyte. Moreover, since it can have desired lithium ion conductivity in the temperature range of both 25 degreeC (after high temperature process) and 150 degreeC, a use is not limited and it is highly practical as a solid electrolyte for all-solid-state batteries.
  • the mass ratio B / P of B and P is more than 1.0 to 17.5, after being held at 150 ° C. for 30 minutes and further held at 25 ° C. for 40 minutes 3 LiBH 4 -LiI measured under the same conditions, with a lithium ion conductivity of 50% or more, preferably 70% or more after 100 hours, using the lithium ion conductivity of the sample as a reference value (ie, 0 hour) Compared with the solid solution lithium ion conductivity maintenance rate of less than 25%, it has a very high maintenance rate.
  • the ion conductor of this invention contains Li, B, P, and I, if it is a range which does not impair the objective of this invention, it may contain the other component.
  • other components include hydrogen (H), oxygen (O), nitrogen (N), fluorine (F), chlorine (Cl), bromine (Br), silicon (Si), germanium (Ge), and the like. It is done.
  • the ionic conductor of the present invention preferably consists essentially of Li, B, P, I and H, and Li, B contained in the ionic conductor of the present invention.
  • P and I are preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more, and particularly preferably 99.5 mol% or more.
  • the total amount of Li, B, P, I and H contained in the ionic conductor of the present invention is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more, particularly preferably. 100 mol%.
  • the ion conductor of the present invention can be manufactured by an ion conductor manufacturing method described later.
  • the ion conductor of the present invention can be obtained by mixing LiBH 4 and P 2 I 4 at a predetermined molar ratio (raw material molar ratio).
  • the molar ratio of LiBH 4 to P 2 I 4 is not particularly limited as long as it is in the range of 98.5: 1.5 to 80:20, but is preferably 97: 3 to 82.5: 17.5, more preferably 95: 5 to 82.5: 17.5, particularly preferably 90:10 to 82.5: 17.5.
  • the optimum molar ratio of LiBH 4 and P 2 I 4 is 85:15.
  • the lithium ion conductivity of the ionic conductor of the present invention shows the maximum, and almost no deterioration over time is observed.
  • Ionic conductors having different crystal structures (crystal phases) depending on the molar ratio range between LiBH 4 and P 2 I 4 can be obtained.
  • diffraction peaks are diffraction peaks derived from a new crystal structure (crystal phase) different from the LiBH 4 high temperature phase.
  • crystal phase a new crystal structure
  • the molar ratio of LiBH 4 to P 2 I 4 is 87.5: 12.5 to 82.5: 17.5
  • an ionic conductor having good lithium ion conductivity can be obtained.
  • the molar ratio of LiBH 4 to P 2 I 4 is 85:15
  • the lithium ion conductivity at 25 ° C. shows a very high value of about 7 to 8 times that of 3LiBH 4 —LiI solid solution. be able to.
  • diffraction peaks are those derived from the LiBH 4 high temperature phase. That is, when the molar ratio of LiBH 4 to P 2 I 4 is in the range of 98.5: 1.5 to 90:10, the ionic conductor of the present invention is LiBH 4 high temperature at room temperature as in the case of 3LiBH 4 -LiI solid solution. The diffraction peaks derived from the phases are shown. When the molar ratio of LiBH 4 to P 2 I 4 is in the range of 98.5: 1.5 to 90:10, the lithium ion conductivity is increased in proportion to the ratio of P 2 I 4. The molar ratio of 4 to P 2 I 4 is more preferably 95: 5 to 90:10, particularly preferably 90:10.
  • the method for producing an ionic conductor according to the present invention includes a step of mixing LiBH 4 and P 2 I 4 in a molar ratio of 98.5: 1.5 to 80:20 (hereinafter referred to as “mixing step”).
  • the manufacturing method of the ion conductor concerning this invention may include the process (henceforth a "heat treatment process") which heat-processes the mixture obtained at the said mixing process as needed.
  • LiBH 4 a commercially available compound can be used. Its purity is preferably 90% or more, and more preferably 95% or more. This is because a compound having a purity within the above range has high performance as an ion conductor.
  • solid LiBH 4 may be used, or LiBH 4 dissolved in a solvent such as THF may be used. When using the solution, it is preferable that the purity of only LiBH 4 except the solvent is 90% or more, and more preferably 95% or more.
  • P 2 I 4 a commercially available compound can be used. Its purity is preferably 90% or more, and more preferably 95% or more. This is because a compound having a purity within the above range has high performance as an ion conductor.
  • solid P 2 I 4 may be used, or P 2 I 4 dissolved in a solvent such as THF may be used. When using the solution, it is preferable that the purity of only P 2 I 4 except the solvent is 90% or more, and more preferably 95% or more.
  • the mixing method of LiBH 4 and P 2 I 4 is not particularly limited as long as the ion conductor can be produced.
  • mechanical milling using a planetary ball mill or a mixing method using a solvent can be used.
  • a mixing method using mechanical milling is preferable.
  • the optimum range of the rotational speed of mechanical milling varies depending on the ball diameter and the like, and cannot be generally stated, but is preferably, for example, 250 to 550 rpm.
  • the mixing time is 0.5 to 24 hours, preferably 1 to 12 hours.
  • Mixing of LiBH 4 and P 2 I 4 is preferably performed in an inert gas atmosphere. Examples of the inert gas include helium, nitrogen, and argon, and argon is more preferable.
  • the mixing method using a solvent is suitable for large-scale synthesis because it can be uniformly mixed.
  • an aprotic solvent can be preferably used.
  • the aprotic solvent ether is preferably a chain ether such as diethyl ether, dimethyl ether, ethyl methyl ether, dimethylene glycol dimethyl ether, dimethylene glycol diethyl ether, diethylene glycol dimethyl ether, or diethylene glycol diethyl ether, and more preferably diethyl ether.
  • a slurry state in which the substrate is uniformly dispersed may be used.
  • LiBH 4 when LiBH 4 is completely dissolved and made into a uniform solution, P 2 I 4 may be added and dispersed in a slurry state, but both LiBH 4 and P 2 I 4 may be dispersed.
  • an ionic conductor having better ionic conductivity can be produced.
  • a stirrer such as a homogenizer or an ultrasonic disperser may be used as a means for uniformly dissolving or dispersing LiBH 4 and P 2 I 4 in a solvent.
  • the temperature at which the solution is mixed is not particularly limited and does not need to be heated, but may be heated to increase the solubility and dissolution rate of the substrate. In the case of heating, it is sufficient to carry out at a temperature below the boiling point of the solvent. However, it is possible to apply heat using an autoclave or the like, and to apply heat up to 200 ° C. If below this temperature, it is possible to sufficiently suppress the decomposition of LiBH 4.
  • the mixing time it is sufficient if the time for the mixture to be uniform can be secured.
  • the time often depends on the production scale, but can be made uniform by performing, for example, 0.1 to 48 hours.
  • Solvent removal is performed by heat drying or vacuum drying, and the optimum temperature varies depending on the type of solvent. It is possible to shorten the solvent removal time by applying a temperature sufficiently higher than the boiling point.
  • the temperature at which the solvent is removed is preferably in the range of 60 to 280 ° C, more preferably 100 to 250 ° C, still more preferably 150 ° C to 220 ° C. Note that, by removing the solvent under reduced pressure such as vacuum drying, the temperature at which the solvent is removed can be lowered and the required time can be shortened. Moreover, the time required for solvent removal can be shortened also by flowing an inert gas such as nitrogen or argon with sufficiently low moisture.
  • the heating temperature is usually in the range of 50 to 300 ° C, more preferably in the range of 60 to 250 ° C, and particularly preferably in the range of 65 to 200 ° C. If the temperature is lower than the above range, crystallization hardly occurs. On the other hand, if the temperature is higher than the above range, the ionic conductor may be decomposed or the crystal may be deteriorated.
  • the heating time varies slightly depending on the heating temperature, it is usually sufficiently crystallized in the range of 0.1 to 48 hours.
  • the heating time is preferably 1 to 36 hours, more preferably 2 to 24 hours. Heating for a long time exceeding the above range at a high temperature is not preferable because there is a concern about deterioration of the ionic conductor.
  • the ionic conductor of the present invention obtained as described above is formed into a desired molded body by various means and can be used for various applications including a solid electrolyte for an all-solid battery described below.
  • the molding method is not particularly limited. For example, a method similar to the molding method of each layer constituting the all solid state battery described in the all solid state battery described later can be used.
  • All-solid-state battery The ion conductor of this invention can be used as a solid electrolyte for all-solid-state batteries, for example. Therefore, according to one Embodiment of this invention, the solid electrolyte for all-solid-state batteries containing the ion conductor mentioned above is provided. Moreover, according to the further embodiment of this invention, the all-solid-state battery containing the solid electrolyte for all-solid-state batteries mentioned above is provided.
  • the “all-solid battery” is an all-solid battery in which lithium ions are responsible for electrical conduction, in particular, an all-solid lithium ion secondary battery.
  • FIG. 1 is a schematic cross-sectional view of an all solid state battery according to an embodiment of the present invention.
  • the all solid state battery 10 has a structure in which a solid electrolyte layer 2 is disposed between a positive electrode layer 1 and a negative electrode layer 3.
  • the all solid state battery 10 is, for example, an all solid state lithium ion secondary battery, and can be used in various devices such as a mobile phone, a personal computer, and an automobile.
  • the ion conductor of the present invention may be contained as a solid electrolyte in any one or more of the positive electrode layer 1, the negative electrode layer 3, and the solid electrolyte layer 2.
  • the positive electrode layer 1 or the negative electrode layer 3 contains the ionic conductor of the present invention as a solid electrolyte
  • the ionic conductor of the present invention and a known positive electrode active material or negative electrode active material for lithium ion secondary batteries are used in combination.
  • the quantity ratio of the ionic conductor of the present invention contained in the positive electrode layer 1 or the negative electrode layer 3 is not particularly limited.
  • the solid electrolyte layer 2 may be composed of the ionic conductor of the present invention alone, and if necessary, a sulfide-based solid electrolyte (for example, Li 2 S—P 2 S 5 ) and other complex hydride solid electrolytes (for example, LiBH 4 —LiNH 2 , LiBH 4 —P 2 S 5 ) may be used in appropriate combinations.
  • a sulfide-based solid electrolyte for example, Li 2 S—P 2 S 5
  • other complex hydride solid electrolytes for example, LiBH 4 —LiNH 2 , LiBH 4 —P 2 S 5
  • the all-solid-state battery is manufactured by molding and laminating the above-described layers, but the molding method and the laminating method of each layer are not particularly limited.
  • a method in which a solid electrolyte and / or an electrode active material is dispersed in a solvent to form a slurry, which is applied by a doctor blade or spin coating, and then rolled to form a film vacuum deposition, ion plating Gas phase method for forming and laminating films using sputtering method, sputtering method, laser ablation method, etc .; pressure forming method for forming powder by hot pressing or cold pressing without applying temperature, and laminating it .
  • the positive electrode layer can also be formed using a sol-gel method.
  • the ion conductor of the present invention is relatively soft, it is particularly preferable to form and laminate each layer by a pressure molding method to produce an all-solid battery.
  • a pressure molding method there are a hot press that is heated and a cold press that is not heated, and an appropriate method may be selected depending on the combination of the solid electrolyte and the electrode active material to be used.
  • the temperature is preferably 50 to 300 ° C, more preferably 65 to 250 ° C.
  • the molded object formed by heat-molding the ion conductor of this invention is included in this invention.
  • the molded body is suitably used as a solid electrolyte layer for an all-solid battery.
  • the manufacturing method of the solid electrolyte layer for all-solid-state batteries including the process of thermoforming the ion conductor of this invention is included by this invention.
  • the layers are preferably integrally formed by pressure molding, and the pressure at that time is preferably 50 to 800 MPa, more preferably 114 to 500 MPa.
  • the pressure at that time is preferably 50 to 800 MPa, more preferably 114 to 500 MPa.
  • P-7 planetary ball mill
  • P-7 planetary ball mill
  • P-7 planetary ball mill
  • Examples 1 to 4 are shown in FIG. 2, the measurement results of Examples 5 to 9 are shown in FIG. 3, and the measurement results of Comparative Examples 1 to 4 are shown in FIG. FIG. 2 also shows LiI measurement results for reference.
  • sample solution 90-100 mg of the prepared ionic conductor was weighed in a sealed container in a glove box under an argon atmosphere.
  • the sealed container was moved out of the glove box, and 0.5 mL of THF (manufactured by Wako Pure Chemical Industries, Ltd., 99.5%, without stabilizer) was added to obtain a uniform solution. Thereafter, 25 mL of ultrapure water was added to obtain a uniform solution.
  • THF manufactured by Wako Pure Chemical Industries, Ltd., 99.5%, without stabilizer
  • a sample insoluble in THF was dissolved by adding 25 mL of an aqueous hydrogen peroxide solution prepared by diluting hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd., 30 wt%) with ultrapure water to 1 wt%.
  • the above solution is diluted 5 to 200,000 times by adding ultrapure water to nitric acid (Wako Pure Chemical Industries, Ltd., 69%) to a concentration of 0.1 M, and the ICP sample solution Got.
  • Measurement conditions Element mass was calculated using an inductively coupled plasma emission spectrometer (ICP analyzer, Vista-ProAX type manufactured by Varian, Inc.) and dedicated software ICP-Expert (ICP-OES Instrument Software).
  • the sample concentration was determined by the absolute calibration curve method.
  • Calibration curves for lithium, boron, phosphorus and iodine are lithium standard solution (Wako Pure Chemical Industries), boron standard solution (Wako Pure Chemical Industries), phosphorus standard solution (Wako Pure Chemical Industries), potassium iodide. (Aldrich, 99.99%).
  • the detection wavelength of each element was 610.365 nm of lithium, 249.772 nm of boron, 213.618 nm of phosphorus, and 206.163 nm of iodine, and the detection intensity treated with ICP-Expert was adopted.
  • the measurement conditions were: power 1.2 (kW), plasma flow 15.0 (L / min.), Nebulizer flow 0.90 (L / min.) Sample introduction delay time 30 sec. Measurement time 3 sec. The measurement was repeated 3 times.
  • the 0.1 M nitric acid used for dilution was measured before and after the measurement of the sample, and the average value before and after was adopted as the blank strength.
  • As the calibration curve factor a value of a first-order approximation formula using the calibration curve concentration and the detection intensity at four points was used.
  • Table 1 shows the relationship between the raw material molar ratio and the element mass ratio.
  • ⁇ Lithium ion conductivity measurement> The ionic conductors obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were subjected to uniaxial molding (240 MPa) to obtain a disk having a thickness of about 1 mm and a diameter of 8 mm.
  • the temperature of the thermostat was increased by 10 ° C. from 30 ° C. to 150 ° C.
  • the ionic conductivity was measured after holding for 30 minutes.
  • the temperature of the thermostatic bath was lowered by 10 ° C. from 140 ° C. to 30 ° C., held at each temperature for 40 minutes, and then the lithium ion conductivity was measured.
  • the lithium ion conductivity of the sample after being held in a thermostatic bath set at 25 ° C. for 40 minutes was measured.
  • the measurement frequency range was 0.1 Hz to 1 MHz, and the amplitude was 50 mV.
  • FIG. 5 shows the lithium ion conductivity measured when the ionic conductors obtained in Examples 1 to 9 were raised
  • FIG. 6 shows the ionic conductor obtained in Examples 1 to 9 when the temperature was lowered.
  • the lithium ion conductivity is shown.
  • FIGS. 7 shows the lithium ion conductivity measured when the ion conductors obtained in Comparative Examples 1 to 4 were raised
  • FIG. 8 shows the ion conductor obtained in Comparative Examples 1 to 4 when the temperature was lowered.
  • the lithium ion conductivity is shown. 7 and 8 also show the measurement results of the lithium ion conductivity of the ion conductors obtained in Examples 1 and 8 for comparison.
  • Table 2 shows the relationship between the raw material molar ratio and lithium ion conductivity.
  • the maintenance rate of lithium ion conductivity is a percentage based on the ionic conductivity of the ionic conductor measured when the ionic conductor is exposed to a temperature of 150 ° C. and then cooled to 25 ° C. (0 hour) (ie, 100%). It showed in.
  • FIG. 9 shows the measurement results of deterioration with time of lithium ion conductivity for the ion conductors of Examples 1 to 5, 7, 9 and Comparative Example 1. Comparing the retention rate of lithium ion conductivity after an elapsed time of 100 hours, the ion conductors of Examples 1, 2 and 7 all exceeded 90%, and the ion conductors of Examples 3 and 9 exceeded 80%. It showed a very high maintenance rate. Further, it was 57% in the ionic conductor of Example 4, and 72% in Example 5. On the other hand, the comparative example 1 was less than 25%.
  • the ionic conductor of the present invention is superior in the retention rate of lithium ion conductivity compared to the 3LiBH 4 -LiI solid solution (Comparative Example 1) which is a conventional complex hydride solid electrolyte. Indicated.
  • the molar ratio of LiBH 4 to P 2 I 4 is 90:10 to 82.5: 17.5
  • the lithium ion conductivity retention rate of the ion conductor is excellent.
  • the ion conductor of the present invention has a small deterioration phenomenon of lithium ion conductivity with time and is excellent in durability.
  • FIG. 10 shows the Raman spectra of the ion conductors obtained in Examples 1, 2, 4 to 9, and FIG. 10 shows the Raman spectra of the ion conductors obtained in Examples 1 and 8 and Comparative Examples 1, 3, and 4.
  • the Raman spectra of LiBH 4 and P 2 I 4 are also shown in FIGS.
  • the peak at 2000 ⁇ 2700 cm -1 derived from LiBH 4 compared with LiBH 4 alone peaks tend FWHM increases were observed in the case of addition of P 2 I 4 .
  • BH 4 - anions suggesting that it is degraded.
  • FIG. 10 shows the Raman spectra of LiBH 4 and P 2 I 4 .
  • Comparative Examples 1 and 4 both had a full width at half maximum comparable to LiBH 4 . Further, in Comparative Example 3, the peak intensity of the BH bond is remarkably reduced as compared with Example 1. In the rock salt type crystal phase, when the ratio of P 2 I 4 is increased, LiBH 4 contributing to lithium ion conduction is decreased, and it is considered that a decrease in ionic conductivity was observed as described above.
  • the ion conductor of the present invention can be used as a solid electrolyte used in an all-solid battery such as an all-solid lithium ion secondary battery.
  • the all-solid-state battery using the solid electrolyte of the present invention is suitably used in various devices including a portable information terminal, a portable electronic device, an electric vehicle, a hybrid electric vehicle, and a stationary power storage system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、リチウムイオン伝導度が高く、全固体リチウムイオン二次電池における固体電解質として好適に用いることができる新規なイオン伝導体およびその製造方法に関する。本発明のイオン伝導体は、Li、B、PおよびIを含み、BおよびPの質量割合B/Pが0.5~17.5の範囲であることを特徴としている。本発明のイオン伝導体は、LiBHとPとをLiBHとPとを98.5:1.5~80:20のモル比で、好ましくはメカニカルミリングによって混合することを含む方法によって製造することができる。

Description

イオン伝導体及びその製造方法
 本発明は、イオン伝導体及びその製造方法に関する。また、本発明は、該イオン伝導体を含む固体電池用固体電解質及びそれを含む固体電池に関する。
 近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
 更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
 例えば、全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物等を使用することが検討されている。
 しかしながら、酸化物やリン酸化合物は、その粒子が堅いという特性を有する。従って、これらの材料を使用して固体電解質層を成形するには、一般的に600℃以上の高い温度での焼結を必要とし、手間がかかる。更には、固体電解質として酸化物やリン酸化合物を使用した場合、電極活物質との間の界面抵抗が大きくなってしまうという欠点も有する。有機高分子については、室温におけるリチウムイオン伝導度が低く、温度が下がると急激に伝導性が低くなるという欠点を有する。
 新しいリチウムイオン伝導性固体電解質に関しては、2007年に錯体水素化物固体電解質であるLiBHの高温相が、高いリチウムイオン伝導性を有することが報告された(非特許文献1)。LiBHは密度が小さく、これを固体電解質として用いた場合には軽い電池を作製できる。また、LiBHは高温(例えば、約200℃)においても安定であるため、耐熱性の電池を作製することも可能である(非特許文献2)。
 しかし、LiBHは、相転移温度である115℃未満において、リチウムイオン伝導度が大きく低下してしまうという問題がある。そこで、相転移温度である115℃未満においても高いリチウムイオン伝導性を有する固体電解質を得るべく、LiBHとアルカリ金属化合物とを組み合わせた固体電解質が提案されている。例えば、2009年には、LiBHにLiIなどのアルカリ金属化合物を加えることによってできる固溶体ならびにLiBHにLiNHを加えることによってできる結晶相が、室温においてもLiBHの高温相を保ち、相転移温度(115℃)未満におけるリチウムイオン伝導度が向上することが報告された(非特許文献3および特許文献1;以下、例えばLiBH等の錯体水素化物を含むイオン伝導体を固体電解質として使用する場合に、該イオン伝導体を「錯体水素化物固体電解質」とも称する)。
 このような錯体水素化物固体電解質は金属リチウムに対して安定であり、錯体水素化物固体電解質を使用する場合には負極に金属リチウムを使用できることから、高容量な全固体電池を作製することができる(特許文献2および3)。しかしながら、これら従来の固体電解質ではリチウムイオン伝導性が十分でない場合があった。
特許第5187703号公報 国際公開第2015/030052号 国際公開第2015/030053号
Applied Physics Letters(2007) 91、p.224103 Chemical Reviews (2007) 107、 p.4111-4132 Journal of American Chemical Society、131(2009)16389-16391
 このような状況の下、リチウムイオン伝導性が良好であり、全固体リチウムイオン二次電池における固体電解質として好適に用いることができる新規な材料の提供が望まれている。
 そこで、本発明者らは、上記課題に鑑みて鋭意研究を行ったところ、Li、B、PおよびIを含み、BおよびPの質量割合が特定の範囲であるイオン伝導体が、リチウムイオン伝導性に優れており、全固体リチウムイオン二次電池における固体電解質として好適に用いることができることを見い出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示したイオン伝導体及びその製造方法、成形体、全固体電池用固体電解質及び全固体電池を提供するものである。
[1]Li、B、PおよびIを含み、BおよびPの質量割合B/Pが0.5~17.5の範囲である、イオン伝導体。
[2]BおよびPの質量割合B/Pが0.5~1.0の範囲であり、かつ、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=25.4±0.5deg、29.5±0.5deg、42.3±0.5deg、50.1±0.5deg、52.5±0.5deg、61.5±0.5deg、67.7±0.5degおよび69.7±0.5degの8箇所に回折ピークを有する、[1]に記載のイオン伝導体。
[3]BおよびPの質量割合B/Pが1.0超~17.5の範囲であり、かつ、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2 θ = 2 3 .5 ± 1 . 0 d e g 、2 5 . 0± 1 . 2 d e g 、2 6 . 5 ± 1 . 2 d e g 、3 4 . 5 ± 1 . 5 d e g 、および4 1 . 5 ±2 . 0 d e g の5 箇所に回折ピークを有する、[1]に記載のイオン伝導体。
[4]LiBHとPとを98.5:1.5~80:20のモル比で混合することを含む、[1]に記載のイオン伝導体の製造方法。
[5]LiBHとPとを87.5:12.5~80:20のモル比で混合することを含む、[2]に記載のイオン伝導体の製造方法。
[6]LiBHとPとを98:5~90:10のモル比で混合することを含む、[3]に記載のイオン伝導体の製造方法。
[7]LiBHとPとをメカニカルミリングによって混合することを含む、[4]から[6]のいずれか一項に記載の製造方法。
[8]LiBHとPとを非プロトン性溶媒を用いて混合することを含む、[4]から[6]のいずれか一項に記載の製造方法。
[9]非プロトン性溶媒がジエチルエーテルである、[8]に記載の製造方法。
[10][1]から[3]のいずれか一項に記載のイオン電導体を加圧成形してなる成形体。
[11][1]から[3]のいずれか一項に記載のイオン伝導体を含む全固体電池用固体電解質。
[12][11]に記載の全固体電池用固体電解質を含む全固体電池。
 本発明によれば、Li、B、PおよびIを含む新規なイオン伝導体およびその製造方法を提供することができる。また、本発明によれば、該イオン伝導体を加熱成形してなる成形体、該イオン伝導体を含む全固体電池用固体電解質、更には該全固体電池用固体電解質を含む全固体電池を提供することができる。
本発明の一実施形態に係る全固体電池の概略断面図である。 実施例1~4で得られたイオン伝導体およびLiIのX線回折パターンを示す図である。 実施例5~9で得られたイオン伝導体のX線回折パターンを示す図である。 比較例1~4で得られたイオン伝導体のX線回折パターンを示す図である。 実施例1~9で得られたイオン伝導体について昇温時に測定したリチウムイオン伝導度の測定結果を示す図である。 実施例1~9で得られたイオン伝導体について降温時に測定したリチウムイオン伝導度の測定結果を示す図である。 実施例1、8および比較例1~4で得られたイオン伝導体について昇温時に測定したリチウムイオン伝導度の測定結果を示す図である。 実施例1、8および比較例1~4で得られたイオン伝導体について降温時に測定したリチウムイオン伝導度の測定結果を示す図である。 実施例1~5、7、9および比較例1で得られたイオン伝導体についてのリチウムイオン伝導度の経時劣化測定結果を示す図である。 実施例1、2、4~9で得られたイオン伝導体、LiBHおよびPについてのラマンスペクトルを示す図である。 実施例1、8および比較例1、3および4で得られたイオン伝導体、LiBHおよびPについてのラマンスペクトルを示す図である。
 以下、本発明のイオン伝導体及びその製造方法、該イオン伝導体を加熱成形してなる成形体、該イオン伝導体を含む全固体電池用固体電解質及び全固体電池等について具体的に説明する。なお、以下に説明する材料及び構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
1.イオン伝導体
 本発明のイオン伝導体は、Li、B、PおよびIを含み、BおよびPの質量割合B/Pが0.5~17.5の範囲であることを特徴としている。本発明のイオン伝導体は、構成元素としてLi、B、PおよびIを含み、かつ、BおよびPの質量割合が上記の範囲であることにより、良好なリチウムイオン伝導性を有することができる。
 本発明の好ましい態様によれば、本発明のイオン伝導体は、広い温度範囲において良好なリチウムイオン伝導度を有することができるので、用途が限定されず、幅広い用途に用いることができる。また、本発明のイオン伝導体は密度が低いため、比較的軽い電極層及び固体電解質層を作製することができ、それにより電池全体の重量を軽くすることができる。また、本発明のイオン伝導体は高温(少なくとも、150℃)においても安定であるため、電極層及び固体電解質層に用いることで耐熱性に優れた電池を作製することができる。更に、本発明のイオン伝導体は、固体電解質層に用いた場合、電極活物質との間の界面抵抗を小さくすることができるといった利点もある。
 本発明のイオン伝導体において、BおよびPの質量割合B/Pは0.5~17.5の範囲であれば特に制限されないが、0.5~2.0が好ましく、より好ましくは0.5~1.5である。BおよびPの質量割合B/Pが上記の範囲であると、良好なリチウムイオン伝導度を有することができる。
 本発明のイオン伝導体において、構成元素Li、B、PおよびIの各含有量は特に制限されないが、例えば、Liの含有量は、4~25質量%が好ましく、より好ましくは5~20質量%、更に好ましくは5~10質量%である。また、Bの含有量は、4~40質量%が好ましく、より好ましくは5~20質量%、更に好ましくは5~10質量%である。Pの含有量は、1.5~9.5質量%が好ましく、より好ましくは4~9.5質量%、更に好ましくは6~9.5質量%である。Iの含有量は15~79質量%が好ましく、より好ましくは30~77質量%、更に好ましくは55~77質量%である。残部はHの含有量となる。なお、本明細書において、元素比率は、ICP発光分光分析に基づいて算出される。具体的な測定方法は、実施例で示したとおりである。
 本発明の好ましい態様によれば、本発明のイオン伝導体は、高温領域(例えば、150℃)と低温領域(例えば、25℃)の両方においてリチウムイオン伝導度が高く、広い温度領域において使用することができる。また、本発明の好ましい態様によれば、本発明のイオン伝導体は、従来の錯体水素化物固体電解質である3LiBH-LiI固溶体(非特許文献3及び特許文献1参照)と比較して、高温処理(150℃)後に室温(25℃)に戻した際のリチウムイオン伝導度の経時劣化が小さく、耐久性においても優れている。
 本発明のイオン伝導体は、構成元素BおよびPの質量割合B/Pによって異なる結晶構造(結晶相)を有する。以下、本発明のイオン伝導体における構成元素BおよびPの質量割合B/Pと結晶構造の関係について説明する。
<BおよびPの質量割合B/Pが0.5~1.0の場合>
 BおよびPの質量割合B/Pが0.5~1.0の範囲では、本発明のイオン伝導体は、25℃におけるX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=25.4±0.5deg、29.5±0.5deg、42.3±0.5deg、50.1±0.5deg、52.5±0.5deg、61.5±0.5deg、67.7±0.5degおよび69.7±0.5degの8箇所に回折ピークを有する。これらの回折ピークは、LiBH高温相とは異なる新たな結晶構造(結晶相)に由来する回折ピークである。
 本発明の好ましい態様によれば、BおよびPの質量割合B/Pが0.5~1.0の範囲では、イオン伝導体を150℃において30分間保持した後のリチウムイオン伝導度は1×10-3Scm-1以上、より好ましくは5×10-3Scm-1であり、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度は1×10-5Scm-1以上、より好ましくは7×10-5Scm-1以上である。なお、イオン伝導体を150℃において30分間保持した後のリチウムイオン伝導度の上限値は特に制限されないが、通常0.05Scm-1以下である。また、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度の上限値は特に制限されないが、通常1×10-3Scm-1以下である。このように本発明の好ましい態様によれば、本発明のイオン伝導体は、従来の錯体水素化物固体電解質である3LiBH-LiI固溶体に匹敵するかそれ以上のレベルのリチウムイオン伝導度を示すことができる。なお、BおよびPの質量割合B/Pが0.59では、25℃(高温処理後)でのリチウムイオン伝導度は3LiBH-LiI固溶体の約7~8倍という非常に高い数値を示すことができる。
 本発明の好ましい態様によれば、25℃(高温処理後)及び150℃の両方の温度領域において所望のリチウムイオン伝導度を有することができるので、用途が限定されず、全固体電池用固体電解質として実用性が高い。
 また、本発明の好ましい態様によれば、BおよびPの質量割合B/Pが0.5~1.0の場合、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度を基準値(すなわち、0時間)として、100時間経過後のリチウムイオン伝導度の維持率は50%以上、より好ましくは80%以上であり、同じ条件で測定した3LiBH-LiI固溶体のリチウムイオン伝導度の維持率25%弱と比較すると非常に高い維持率を有している。
<BおよびPの質量割合B/Pが1.0超~17.5の場合>
 本発明のイオン伝導体は、BおよびPの質量割合B/Pが1.0超~17.5の範囲では、室温(25℃)におけるX線回折(CuKα:λ=1.5405Å)において、2 θ = 2 3 .5 ± 1 . 0 d e g 、2 5 . 0± 1 . 2 d e g 、2 6 . 5 ± 1 . 2 d e g 、3 4 . 5 ± 1 . 5 d e g 、および4 1 . 5 ±2 . 0 d e g の5 箇所に回折ピークを有する。これらの回折ピークは、LiBH高温相に由来する回折ピークである。すなわち、BおよびPの質量割合B/Pが1.0超~17.5の範囲では、本発明のイオン伝導体は、3LiBH-LiI固溶体と同様に室温でLiBH高温相に由来する回折ピークを示す。
 本発明の好ましい態様によれば、BおよびPの質量割合B/Pが1.0超~17.5の範囲において、イオン伝導体を150℃において30分間保持した後のリチウムイオン伝導度は2×10-3Scm-1以上、より好ましくは8×10-3Scm-1であり、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度は1×10-5Scm-1以上、より好ましくは2×10-5Scm-1以上である。なお、イオン伝導体を150℃において30分間保持した後のリチウムイオン伝導度の上限値は特に制限されないが、通常0.02Scm-1以下である。また、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度の上限値は特に制限されないが、通常1×10-3Scm-1以下である。このように本発明の好ましい態様によれば、本発明のイオン伝導体は、従来の錯体水素化物固体電解質である3LiBH-LiI固溶体に匹敵するレベルのリチウムイオン伝導度を示すことができる。また、25℃(高温処理後)及び150℃の両方の温度領域において所望のリチウムイオン伝導度を有することができるので、用途が限定されず、全固体電池用固体電解質として実用性が高い。
 また、本発明の好ましい態様によれば、BおよびPの質量割合B/Pが1.0超~17.5の場合、150℃において30分間保持した後、更に25℃において40分間保持した後のリチウムイオン伝導度を基準値(すなわち、0時間)として、100時間経過後のリチウムイオン伝導度の維持率は50%以上、好ましくは70%以上であり、同じ条件で測定した3LiBH-LiI固溶体のリチウムイオン伝導度の維持率25%弱と比較すると非常に高い維持率を有している。
 なお、本発明のイオン伝導体は、Li、B、PおよびIを含むが、本発明の目的を損なわない範囲であれば、他の成分を含んでいてもよい。他の成分としては、水素(H)のほか、酸素(O)、窒素(N)、フッ素(F)、塩素(Cl)、臭素(Br)、ケイ素(Si)、ゲルマニウム(Ge)等が挙げられる。本発明の好ましい態様によれば、本発明のイオン伝導体は、Li、B、P、IおよびHから本質的になるものであることが好ましく、本発明のイオン伝導体に含まれるLi、B、PおよびIの合計量は90モル%以上が好ましく、より好ましくは95モル%以上、更に好ましくは99モル%以上、特に好ましくは99.5モル%以上である。また、本発明のイオン伝導体に含まれるLi、B、P、IおよびHの合計量は90モル%以上が好ましく、より好ましくは95モル%以上、更に好ましくは99モル%以上、特に好ましくは100モル%である。
 本発明のイオン伝導体は、後述するイオン伝導体の製造方法によって製造することができる。
2.イオン伝導体の製造方法
 本発明のイオン伝導体は、LiBHとPとを所定のモル比(原料モル比)で混合することにより得ることができる。LiBHとPとのモル比は98.5:1.5~80:20の範囲であれば特に制限されないが、97:3~82.5:17.5が好ましく、より好ましくは95:5~82.5:17.5、特に好ましくは90:10~82.5:17.5である。LiBHとPとのモル比が上記の範囲であると、良好なリチウムイオン伝導度を有するイオン伝導体を得ることができる。なお、LiBHとPとの最適モル比は85:15である。このモル比において、本発明のイオン伝導体のリチウムイオン伝導度は最大を示し、経時劣化も殆ど観察されない。
 LiBHとPとのモル比の範囲によって異なる結晶構造(結晶相)を有するイオン伝導体を得ることができる。
<LiBHとPとのモル比が87.5:12.5~80:20の場合>
 LiBHとPとのモル比が87.5:12.5~80:20の範囲では、25℃におけるX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=25.4±0.5deg、29.5±0.5deg、42.3±0.5deg、50.1±0.5deg、52.5±0.5deg、61.5±0.5deg、67.7±0.5degおよび69.7±0.5degの8箇所に回折ピークを有するイオン伝導体を得ることができる。これらの回折ピークは、LiBH高温相とは異なる新たな結晶構造(結晶相)に由来する回折ピークである。特に、LiBHとPとのモル比が87.5:12.5~82.5:17.5であると、良好なリチウムイオン伝導度を有するイオン伝導体を得ることができる。なお、LiBHとPとのモル比85:15では、25℃(高温処理後)でのリチウムイオン伝導度は3LiBH-LiI固溶体の約7~8倍という非常に高い数値を示すことができる。
<LiBHとPとのモル比が98.5:1.5~90:10の場合>
 LiBHとPとのモル比が98.5:1.5~90:10の範囲では、室温(25℃)におけるX線回折(CuKα:λ=1.5405Å)において、少なくとも、2 θ = 2 3 .5 ± 1 . 0 d e g 、2 5 . 0± 1 . 2 d e g 、2 6 . 5 ± 1 . 2 d e g 、3 4 . 5 ± 1 . 5 d e g 、および4 1 . 5 ±2 . 0 d e g の5 箇所に回折ピークを有するイオン伝導体を得ることができる。これらの回折ピークは、LiBH高温相に由来する回折ピークである。すなわち、LiBHとPとのモル比が98.5:1.5~90:10の範囲では、本発明のイオン伝導体は、3LiBH-LiI固溶体と同様に室温でLiBH高温相に由来する回折ピークを示す。なお、LiBHとPとのモル比が98.5:1.5~90:10の範囲では、Pの割合に比例してリチウムイオン伝導度が向上することから、LiBHとPとのモル比は95:5~90:10がより好ましく、特に好ましくは90:10である。
 本発明にかかるイオン伝導体の製造方法は、LiBHとPとを98.5:1.5~80:20のモル比で混合する工程(以下「混合工程」という)を含む。また、本発明にかかるイオン伝導体の製造方法は、必要に応じて、前記混合工程で得られた混合物を熱処理する工程(以下「熱処理工程」という。)を含んでいてもよい。以下、各工程について説明する。
(1)混合工程
 混合工程では、LiBHとPとを98.5:1.5~80:20のモル比で混合する。
 LiBHとしては、市販されている化合物を使用することができる。その純度は、90%以上であることが好ましく、95%以上であることがより好ましい。純度が上記範囲である化合物は、イオン伝導体としての性能が高いためである。また、本発明の製造方法においては、固体のLiBHを用いてもよいし、THF等の溶媒に溶解したLiBHを用いてもよい。なお、溶液を使用する場合には、溶媒を除いたLiBHのみの純度が90%以上であることが好ましく、95%以上であることがより好ましい。
 Pとしては、市販されている化合物を使用することができる。その純度は、90%以上であることが好ましく、95%以上であることがより好ましい。純度が上記範囲である化合物は、イオン伝導体としての性能が高いためである。また、本発明においては、固体のPを用いてもよいし、THF等の溶媒に溶解したPを用いてもよい。なお、溶液を使用する場合には、溶媒を除いたPのみの純度が90%以上であることが好ましく、95%以上であることがより好ましい。
 LiBHとPの混合方法は、イオン伝導体を製造できる限り特に限定されない。例えば、遊星ボールミルによるメカニカルミリングまたは溶媒を用いた混合方法を用いることができるが、本発明においてはメカニカルミリングを用いた混合方法が好ましい。メカニカルミリングの回転数はボール径等によって最適範囲が異なり、一概には言えないが、例えば250~550rpmが好ましい。また、混合時間は0.5~24時間であり、1~12時間が好ましい。LiBHとPの混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えばヘリウム、窒素、アルゴンを挙げることができるが、より好ましくはアルゴンである。
 溶媒を用いた混合方法は、均一に混合できることから大量に合成する場合に適している。溶媒としては、非プロトン性溶媒を好ましく使用できる。
 非プロトン性溶媒エーテルとしては、ジエチルエーテル、ジメチルエーテル、エチルメチルエーテル、ジメチレングリコールジメチルエーテル、ジメチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の鎖状エーテルが好ましく、より好ましくはジエチルエーテルである。
 混合の際には基質が均一に分散されたスラリー状態であってもよい。本発明の好ましい態様においては、LiBHを完全に溶解し均一な溶液にしたところに、Pを加えてスラリー状態で分散させればよいが、LiBH及びPの両方の基質が完全に溶解した状態であると、より良好なイオン伝導度を有するイオン伝導体の製造が可能である。LiBH及びPを溶媒中で均一に溶解または分散させるための手段として、ホモジナイザーまたは超音波分散機などの攪拌機を用いてもよい。
 溶液混合における温度は特に制限されなく、加熱する必要もないが、基質の溶解度や溶解速度を上げるために加熱することもできる。加熱する場合には、溶媒の沸点以下で行うことで十分である。しかし、オートクレーブ等を用いて加圧状態とし、200℃までであれば熱をかけることも可能である。これ以下の温度であれば、LiBHの分解を十分に抑えることができる。
 混合時間としては、混合物が均一となる時間が確保できれば十分である。その時間は製造規模に左右されることが多いが、例えば0.1~48時間行うことで均一にすることができる。
 均一になった後に、イオン伝導体を得るためには溶媒を除去する必要がある。溶媒除去は加熱乾燥や真空乾燥で行い、その最適な温度は溶媒の種類によって違いがある。沸点よりも十分に高い温度をかけることで溶媒除去時間を短くすることが可能である。溶媒を除去する際の温度は、60~280℃の範囲であることが好ましく、より好ましくは100~250℃であり、更に好ましくは150℃~220℃である。なお、真空乾燥等のように減圧下で溶媒を除去することで、溶媒を除去する際の温度を下げると共に所要時間を短くすることができる。また、十分に水分の少ない窒素やアルゴン等の不活性ガスを流すことでも、溶媒除去に要する時間を短くすることができる。
(2)熱処理工程
 本発明の製造方法においては、必要に応じて、混合工程で得られた混合物を熱処理してもよい。これによって、混合物の結晶化を進行させることができる。加熱温度は、通常50~300℃の範囲であり、より好ましくは60~250℃の範囲であり、特に好ましくは65~200℃未満である。上記範囲よりも温度が低いと結晶化が生じにくく、一方、上記範囲よりも温度が高いと、イオン伝導体が分解することや、結晶が変質することが懸念される。
 加熱時間は、加熱温度との関係で若干変化するものの、通常は0.1~48時間の範囲で十分に結晶化される。加熱時間は、好ましくは1~36時間であり、より好ましくは2~24時間である。高い温度で上記範囲を超えて長時間加熱することは、イオン伝導体の変質が懸念されることから、好ましくない。
 上記のようにして得られる本発明のイオン伝導体は、各種手段によって所望の成形体とし、以下に記載する全固体電池用固体電解質をはじめとする各種用途に使用することができる。成形方法は特に限定されない。例えば、後述する全固体電池において述べた全固体電池を構成する各層の成形方法と同様の方法を使用することができる。
3.全固体電池
 本発明のイオン伝導体は、例えば、全固体電池用の固体電解質として使用され得る。よって、本発明の一実施形態によれば、上述したイオン伝導体を含む全固体電池用固体電解質が提供される。また、本発明の更なる実施形態によれば、上述した全固体電池用固体電解質を含む全固体電池が提供される。
 ここで「全固体電池」とは、リチウムイオンが電気伝導を担う全固体電池であり、特に全固体リチウムイオン二次電池である。図1は、本発明の一実施形態に係る全固体電池の概略断面図である。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。全固体電池10は、例えば、全固体リチウムイオン二次電池であり、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。
 本発明のイオン伝導体は、正極層1、負極層3および固体電解質層2のいずれか一層以上に、固体電解質として含まれてよい。正極層1または負極層3に本発明のイオン伝導体が固体電解質として含まれる場合、本発明のイオン伝導体と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層1または負極層3に含まれる本発明のイオン伝導体の量比は、特に制限されない。
 固体電解質層2に本発明のイオン伝導体が含まれる場合、固体電解質層2は、本発明のイオン伝導体単独で構成されてもよいし、必要に応じて、硫化物系固体電解質(例えば、LiS-P)やその他の錯体水素化物固体電解質(例えば、LiBH-LiNH、LiBH-P)などを適宜組み合わせて使用してもよい。
 全固体電池は、上述した各層を成形して積層することによって作製されるが、各層の成形方法および積層方法については、特に制限されない。
 例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレードまたはスピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて製膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していく加圧成形法等がある。また、正極層は、ゾルゲル法を用いて成膜することもできる。
 本発明のイオン伝導体は比較的柔らかいことから、加圧成形法によって各層を成形および積層して全固体電池を作製することが特に好ましい。加圧成形法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、使用する固体電解質と電極活物質の組み合わせによって適切な方を選べばよい。ホットプレスの場合、その温度は50~300℃であることが好ましく、65~250℃であることがより好ましい。
 なお、本発明には、本発明のイオン伝導体を加熱成形してなる成形体が包含される。該成形体は、全固体電池用固体電解質層として好適に用いられる。また、本発明には、本発明のイオン伝導体を加熱成形する工程を含む、全固体電池用固体電解質層の製造方法が包含される。
 本発明においては、加圧成形にて各層を一体成型することが好ましく、その際の圧力は、50~800MPaであることが好ましく、114~500MPaであることがより好ましい。上記範囲の圧力で加圧成形することにより、粒子間の空隙が少なく、密着性が良好な層を得ることができるため、イオン伝電性の観点から望ましい。必要以上に圧力を高くすることは、高価な材質の加圧装置や成形容器を使用する必要が生じると共に、それらの耐用寿命が短くなることから実用的ではない。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、本発明における各種評価及び測定は以下に示した方法に従って行った。
実施例1
 アルゴン雰囲気下のグローブボックス内で、LiBH(シグマ・アルドリッチ社製、純度95%以上)とP(シグマ・アルドリッチ社製、純度:95%以上)とを、LiBH:P=85:15のモル比になるように量り取り、メノウ乳鉢にて混合した。
 次に、得られた混合物を45mLのジルコニア製ポットに投入し、更にジルコニアボール(株式会社ニッカトー製「YTZ」、φ10mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチュ社製「P-7」)に取り付け、回転数400rpmで5時間、メカニカルミリングを行い、イオン伝導体(85LiBH-15P)を得た。
実施例2
 LiBHとPとのモル比をLiBH:P=87.5:12.5に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例3
 LiBHとPとのモル比をLiBH:P=82.5:17.5に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例4
 LiBHとPとのモル比をLiBH:P=80.0:20.0に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例5
 LiBHとPとのモル比をLiBH:P=97.0:3.0に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例6
 LiBHとPとのモル比をLiBH:P=95.0:5.0に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例7
 LiBHとPとのモル比をLiBH:P=90.0:10.0に変更した以外は、実施例1と同様にイオン伝導体を得た。
実施例8
 アルゴン雰囲気下のグローブボックス内で、ジエチルエーテル(和光純薬工業株式会社製)10.0gを三口フラスコに量り取り、LiBH(アルドリッチ社製、純度90%)を0.24g加え、シーリングミキサー(中村科学機械工業製)で混合して溶解した。得られた溶液にP(社製)を0.70g加え[LiBH:P=90:10のモル比]、27℃で24時間撹拌混合したところ、白濁した。
 次に、得られた混合物を、真空下、200℃で2時間乾燥させることで溶媒を除去した。溶媒除去は、混合物を撹拌しながら行った。その後、室温まで冷却して白色のイオン伝導体(90LiBH-10P)を得た。
実施例9
 LiBHとPとのモル比をLiBH:P=98.5:1.5に変更した以外は、実施例1と同様にイオン伝導体を得た。
比較例1
 アルゴン雰囲気下のグローブボックス内で、LiBH(シグマ・アルドリッチ社製、純度95%以上)とLiI(シグマ・アルドリッチ社製、純度:99.9%以上、水含有量50ppm以下)とを、LiBH:LiI=3.00:1.00のモル比になるように量り取り、メノウ乳鉢にて混合した。
 次に、得られた混合物を45mLのジルコニア製ポットに投入し、更にジルコニアボール(株式会社ニッカトー製「YTZ」、φ10mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチュ社製「P-7」)に取り付け、回転数400rpmで5時間、メカニカルミリングを行い、イオン伝導体(3.00LiBH-1.00LiI)を得た。
比較例2
 LiBHとPとのモル比をLiBH:P=99.5:0.5に変更した以外は、実施例1と同様にイオン伝導体を得た。
比較例3
 LiBHとPとのモル比をLiBH:P=75.0:25.0に変更した以外は、実施例1と同様にイオン伝導体を得た。
比較例4
 アルゴン雰囲気下のグローブボックス内で、LiBH(シグマ・アルドリッチ社製、純度95%以上)とPCl(和光純薬株式会社製、純度99%以上)とを、LiBH:PCl=92.3:7.7のモル比になるように量り取り、メノウ乳鉢にて混合した。
 次に、得られた混合物を45mLのジルコニア製ポットに投入し、更にジルコニアボール(株式会社ニッカトー製「YTZ」、φ10mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチュ社製「P-7」)に取り付け、回転数400rpmで5時間、メカニカルミリングを行い、イオン伝導体(92.3LiBH―7.7PCl)を得た。
<X線回折測定>
 実施例1~9および比較例1~4で得られたイオン伝導体の粉末について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert Powder」、CuKα:λ=1.5405Å)を実施した。
 実施例1~4の測定結果を図2に、実施例5~9の測定結果を図3に、比較例1~4の測定結果を図4にそれぞれ示す。図2には、参考のためにLiIの測定結果も示す。
 図2に示したとおり、実施例1~4では、少なくとも、2θ=25.4±0.5deg、29.5±0.5deg、42.3±0.5deg、50.1±0.5deg、52.5±0.5deg、61.5±0.5deg、67.7±0.5degおよび69.7±0.5degの8箇所に回折ピークが観測され、X線回折測定結果から、LiBHの高温相とは異なり、岩塩型の結晶相が発現することが確認された。なお、LiBHとPとのモル比が87.5:12.5(実施例2)では、LiBH高温相の回折ピークも観測されたことから、LiBH高温相と、前記岩塩型の結晶相とが共存していると考えられる。Pの割合が15mol%以上の組成領域では、LiBH高温相の回折ピークは検出されず、前記岩塩型の結晶相の回折ピークのみが観察された。
 一方、図3に示したとおり、実施例5~9では、少なくとも、2θ=23.5±0.3deg、25.0±0.4deg、26.7±0.3deg、34.6±0.5degおよび40.9±0.5degの5箇所に回折ピークが観測され、LiBHの高温相の回折ピークに相当するピークが示された。すなわち、LiBHとPとのモル比が98.5:1.5~90:10の場合、3LiBH-LiI固溶体と同様に室温でLiBH高温相の回折ピークを示すことが確認された。
 また、図4に示したとおり、比較例2のPのモル比がLiBH:P=99.5:0.5以下の組成では、LiBHに対してPの添加量が少ないためLiBH高温相を維持できずLiBH低温相の回折ピークが得られた。LiBH低温相は、後述するイオン伝導度の測定結果のとおり、イオン伝導度が低下する。同様にしてI以外のハロゲン種PClを用いた比較例4も同様にLiBH低温相の回折ピークが得られた。比較例3のPのモル比がLiBH:P=75:25以上の組成では、実施例1~4と同様に、前記岩塩型の結晶相が得られると考えられるが、イオン伝導度は低かった。Pの添加量が増えるに従ってB-H結合が減少している傾向が後述するようにラマン分光測定にて示されており、このことから、イオン伝導を担うLiBHの減少がイオン伝導度を低下させている原因と考えられる。
<ICP発光分光分析>
(1)試料溶液の調製
 アルゴン雰囲気下グローブボックス内で、調製したイオン伝導体を密閉容器内に90~100mg秤量した。密閉容器をグローブボックス外に移動し、THF(和光純薬工業株式会社製、99.5%、安定剤不含)0.5mLを添加して均一溶液とした。その後、超純水を25mL添加して均一溶液を得た。THFに不溶の試料は、過酸化水素(和光純薬株式会社製、30wt%)を超純水で希釈して1wt%とした過酸化水素水溶液を25mL添加して溶解させた。
 硝酸(和光純薬工業株式会社製、69%)に超純水を加えて0.1Mの濃度とした0.1M硝酸水溶液を用いて、上記溶液を5~20万倍に希釈しICP試料溶液を得た。
(2)測定条件
誘導結合プラズマ発光分光分析装置(ICP分析装置、Varian,Inc.製 Vista-ProAX型) および専用ソフトウェアICP―Expert(ICP―OES Instrument Software)を使用して元素質量を算出した。
 試料濃度は絶対検量線法により決定した。リチウム、ほう素、りん、ヨウ素の検量線は、リチウム標準液(和光純薬工業製)、ほう素標準液(和光純薬工業製)、りん標準液(和光純薬工業製)、ヨウ化カリウム(アルドリッチ社製、99.99%)を用いて調製した。各元素の検出波長はリチウム610.365nm、ほう素249.772nm、りん213.618nm、ヨウ素206.163nmとし、ICP-Expertで処理された検出強度を採用した。
 測定条件は、パワー1.2(kW)、プラズマフロー15.0(L/min.)、ネブライザーフロー0.90(L/min.)試料導入遅延時間30sec.、測定時間3sec.、繰り返し測定回数3回とした。試料の測定前後に希釈で使用した0.1M硝酸を測定し、前後の平均値をブランク強度として採用した。検量線ファクターは、4点の検量線濃度および検出強度を用いた1次近似式の値を用いた。
Figure JPOXMLDOC01-appb-M000001
 原料モル比および元素質量割合の関係を表1に示す。
Figure JPOXMLDOC01-appb-T000002
<リチウムイオン伝導度測定>
 実施例1~9および比較例1~4で得られたイオン伝導体を一軸成型(240MPa)に供し、厚さ約1mm、直径8mmのディスクを得た。室温(25℃)および30℃から150℃の温度範囲において10℃間隔で、リチウム電極を利用した四端子法による交流インピーダンス測定(Solartron社製「SI1260 IMPEDANCE/GAIN―PHASE ANALYZER」)を行い、リチウムイオン伝導度を算出した。
 具体的には、サンプルを25℃に設定した恒温槽に入れて30分間保持した後にリチウムイオン伝導度を測定し、続いて30℃~150℃まで10℃ずつ恒温槽を昇温し、各温度で30分間保持した後にイオン伝導度を測定した。150℃での測定を終えた後は、140℃~30℃まで10℃ずつ恒温槽を降温し、各温度で40分間保持した後にリチウムイオン伝導度を測定した。最後に25℃に設定した恒温槽で40分間保持した後のサンプルのリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。
 実施例1~9で得られたイオン伝導体についてのリチウムイオン伝導度の測定結果を図5および6に示す。図5では、実施例1~9で得られたイオン伝導体について昇温時に測定したリチウムイオン伝導度を示し、図6では、実施例1~9で得られたイオン伝導体について降温時に測定したリチウムイオン伝導度を示す。
 さらに、比較例1~4で得られたイオン伝導体についてのリチウムイオン伝導度の測定結果を図7および8に示す。図7では、比較例1~4で得られたイオン伝導体について昇温時に測定したリチウムイオン伝導度を示し、図8では、比較例1~4で得られたイオン伝導体について降温時に測定したリチウムイオン伝導度を示す。なお、図7および8では、比較のために実施例1および8で得られたイオン伝導体のリチウムイオン伝導度の測定結果も示す。
 原料モル比およびリチウムイオン伝導度の関係を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表1および2に示したとおり、LiBHとPとのモル比が85:5であり、BおよびPの質量割合B/Pが0.59において、リチウムイオン伝導度が最大(例えば、25℃(降温時)において、従来の錯体水素化物固体電解質である3LiBH-LiI固溶体(比較例1)の約7~8倍)を示した。
 LiBHとPとのモル比が98.5:1.5~90:10の範囲(BおよびPの質量割合B/Pが1.0~17.5)では、Pの割合に比例してリチウムイオン伝導度が向上した。
<イオン伝導度の経時劣化測定>
 イオン伝導度の測定に続いて、実施例1~5、7、9および比較例1のイオン伝導体についてリチウムイオン伝導度の経時劣化を測定した。イオン伝導度の測定における25℃(降温時)での最後の測定時の値を基準(すなわち0時間)とし、経過時間100時間までに複数回測定を行い、リチウムイオン伝導度の経時変化を観察した。経過時間100時間後のリチウムイオン伝導度の測定結果は表2に示したとおりである。リチウムイオン伝導度の維持率は、イオン伝導体を150℃の温度に曝し、その後25℃まで冷却した時点(0時間)で測定したイオン伝導体のイオン伝導度を基準(すなわち100%)として百分率で示した。
 実施例1~5、7、9および比較例1のイオン伝導体についてのリチウムイオン伝導度の経時劣化測定結果を図9に示す。経過時間100時間後のリチウムイオン伝導度の維持率を比較すると、実施例1、2および7のイオン伝導体ではいずれも90%を超え、実施例3、9のイオン伝導体では80%を超えており、非常に高い維持率を示した。また、実施例4のイオン伝導体では57%であり、実施例5では72%であった。
 一方、比較例1は25%を下回っていた。
 これらの結果より、本発明のイオン伝導体は、従来の錯体水素化物固体電解質である3LiBH-LiI固溶体(比較例1)と比較して、リチウムイオン伝導度の維持率が優れていることが示された。特に、LiBHとPとのモル比が90:10~82.5:17.5の場合にイオン伝導体のリチウムイオン伝導度維持率が優れている。このように本発明の好ましい態様によれば、本発明のイオン伝導体は、リチウムイオン伝導度の経時的な劣化現象が小さく、耐久性においても優れているといえる。
<ラマン分光測定>
(1)試料調製
 上部に石英ガラス(Φ60mm、厚さ1mm)を光学窓として有する密閉容器を用いて測定試料の作製を行った。アルゴン雰囲気下グローブボックスにて、試料を石英ガラスに密着させた後、容器を密閉してグローブボックス外に取り出し、ラマン分光測定を行った。
(2)測定条件
 レーザーラマン分光光度計NRS-5100(日本分光株式会社製)を使用し、励起波長532.15nm、露光時間1sec.、積算回数2回、対物レンズをMPLFLN20倍(オリンパス株式会社製)、減光器オープン、測定波長域196.4~3864.4cm-1にて測定を行った。
 実施例1、2、4~9で得られたイオン伝導体についてのラマンスペクトルを図10に、実施例1、8および比較例1、3、4で得られたイオン伝導体についてのラマンスペクトルを図11に示す。また、参考のため、LiBHおよびPのラマンスペクトルも図10および図11に示す。
 図10に示されるとおり、LiBHに由来する2000~2700cm-1におけるピークは、LiBH単独のピークと比較して、Pを添加した場合に半値全幅が大きくなる傾向がみられた。これはLiBHとPとが反応することで、BH アニオンが分解されていることを示唆している。
 一方、図11に示されるとおり、比較例1、4は共にLiBHと同程度の半値全幅を有するに留まった。また、比較例3は実施例1に比べてB-H結合のピーク強度が著しく低下している。前記岩塩型の結晶相においては、Pの比率が増加すると、リチウムイオン伝導に寄与するLiBHが減少し、前述したようにイオン伝導度の低下が見られたと考えられる。
 以上のとおり本発明のいくつかの実施形態を説明したが、これらの実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 本発明のイオン伝導体は、全固体リチウムイオン二次電池などの全固体電池に用いられる固体電解質等として利用可能である。本発明の固体電解質を用いた全固体電池は、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムをはじめとする各種機器において好適に用いられる。
1 正極層
2 固体電解質層
3 負極層
10 全固体電池
 

Claims (12)

  1.  Li、B、PおよびIを含み、BおよびPの質量割合B/Pが0.5~17.5の範囲である、イオン伝導体。
  2.  BおよびPの質量割合B/Pが0.5~1.0の範囲であり、かつ、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=25.4±0.5deg、29.5±0.5deg、42.3±0.5deg、50.1±0.5deg、52.5±0.5deg、61.5±0.5deg、67.7±0.5degおよび69.7±0.5degの8箇所に回折ピークを有する、請求項1に記載のイオン伝導体。
  3.  BおよびPの質量割合B/Pが1.0超~17.5の範囲であり、かつ、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2 θ = 2 3 .5 ± 1 . 0 d e g 、2 5 . 0± 1 . 2 d e g 、2 6 . 5 ± 1 . 2 d e g 、3 4 . 5 ± 1 . 5 d e g 、および4 1 . 5 ±2 . 0 d e g の5 箇所に回折ピークを有する、請求項1に記載のイオン伝導体。
  4.  LiBHとPとを98.5:1.5~80:20のモル比で混合することを含む、請求項1に記載のイオン伝導体の製造方法。
  5.  LiBHとPとを87.5:12.5~80:20のモル比で混合することを含む、請求項2に記載のイオン伝導体の製造方法。
  6.  LiBHとPとを98:5~90:10のモル比で混合することを含む、請求項3に記載のイオン伝導体の製造方法。
  7.  LiBHとPとをメカニカルミリングによって混合することを含む、請求項4から6のいずれか一項に記載の製造方法。
  8.  LiBHとPとを非プロトン性溶媒を用いて混合することを含む、請求項4から6のいずれか一項に記載の製造方法。
  9.  非プロトン性溶媒がジエチルエーテルである、請求項8に記載の製造方法。
  10.  請求項1から3のいずれか一項に記載のイオン電導体を加圧成形してなる成形体。
  11.  請求項1から3のいずれか一項に記載のイオン伝導体を含む全固体電池用固体電解質。
  12.  請求項11に記載の全固体電池用固体電解質を含む全固体電池。
     
     
PCT/JP2018/002643 2017-01-30 2018-01-29 イオン伝導体及びその製造方法 WO2018139629A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564679A JPWO2018139629A1 (ja) 2017-01-30 2018-01-29 イオン伝導体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-014549 2017-01-30
JP2017014549 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139629A1 true WO2018139629A1 (ja) 2018-08-02

Family

ID=62978531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002643 WO2018139629A1 (ja) 2017-01-30 2018-01-29 イオン伝導体及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2018139629A1 (ja)
TW (1) TW201841168A (ja)
WO (1) WO2018139629A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166705A1 (ja) * 2020-02-17 2021-08-26 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法
RU2814874C1 (ru) * 2020-02-17 2024-03-05 Мицубиси Газ Кемикал Компани, Инк. Ионный проводник, содержащий высокотемпературную фазу licb9h10, и способ его получения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310417A (ja) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd 非晶質リチウムイオン導電性固体電解質およびその製造方法
WO2009139382A1 (ja) * 2008-05-13 2009-11-19 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
WO2013069243A1 (ja) * 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2016103894A1 (ja) * 2014-12-22 2016-06-30 三菱瓦斯化学株式会社 イオン伝導体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310417A (ja) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd 非晶質リチウムイオン導電性固体電解質およびその製造方法
WO2009139382A1 (ja) * 2008-05-13 2009-11-19 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
WO2013069243A1 (ja) * 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2016103894A1 (ja) * 2014-12-22 2016-06-30 三菱瓦斯化学株式会社 イオン伝導体およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166705A1 (ja) * 2020-02-17 2021-08-26 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法
RU2814874C1 (ru) * 2020-02-17 2024-03-05 Мицубиси Газ Кемикал Компани, Инк. Ионный проводник, содержащий высокотемпературную фазу licb9h10, и способ его получения

Also Published As

Publication number Publication date
JPWO2018139629A1 (ja) 2019-11-14
TW201841168A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
JP7107087B2 (ja) Lgps系固体電解質の製造方法
CN111066103B (zh) Lgps系固体电解质的制造方法
CN112074918B (zh) Lgps类固体电解质和制造方法
WO2016103894A1 (ja) イオン伝導体およびその製造方法
WO2017126416A1 (ja) イオン伝導体の製造方法
US10930973B2 (en) Production method for LGPS-based solid electrolyte
KR102495416B1 (ko) Li3PS4를 갖는 고체 전해질의 제조 방법
JP2020064832A (ja) 固体電解質材料およびその成形体
CN112703624B (zh) 包含LiCB9H10的高温相的离子导体及其制造方法、和包含该离子导体的全固体电池用固体电解质
WO2018139629A1 (ja) イオン伝導体及びその製造方法
WO2019167813A1 (ja) Li2B12H12およびLiBH4を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
JP7119753B2 (ja) Lgps系固体電解質の製造方法
JP7022498B2 (ja) イオン伝導体の経時劣化を抑制する方法
JP2018039689A (ja) イオン伝導体の製造方法
WO2021166705A1 (ja) LiCB9H10の高温相を含むイオン伝導体およびその製造方法
US20240194937A1 (en) Method for producing lgps-type solid electrolyte
JP6759880B2 (ja) イオン伝導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745431

Country of ref document: EP

Kind code of ref document: A1