WO2022215518A1 - Lgps系固体電解質の製造方法 - Google Patents
Lgps系固体電解質の製造方法 Download PDFInfo
- Publication number
- WO2022215518A1 WO2022215518A1 PCT/JP2022/013405 JP2022013405W WO2022215518A1 WO 2022215518 A1 WO2022215518 A1 WO 2022215518A1 JP 2022013405 W JP2022013405 W JP 2022013405W WO 2022215518 A1 WO2022215518 A1 WO 2022215518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- lgps
- crystals
- particle size
- based solid
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000013078 crystal Substances 0.000 claims abstract description 85
- 239000002243 precursor Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 229910000921 lithium phosphorous sulfides (LPS) Inorganic materials 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 40
- 239000011261 inert gas Substances 0.000 claims description 16
- 239000012298 atmosphere Substances 0.000 claims description 13
- 238000002441 X-ray diffraction Methods 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910011899 Li4SnS4 Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 28
- 238000002156 mixing Methods 0.000 abstract description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 39
- 239000002904 solvent Substances 0.000 description 35
- 239000000843 powder Substances 0.000 description 23
- 239000002994 raw material Substances 0.000 description 23
- 239000012300 argon atmosphere Substances 0.000 description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 229910018091 Li 2 S Inorganic materials 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 239000012456 homogeneous solution Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001069 Raman spectroscopy Methods 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910001216 Li2S Inorganic materials 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000003701 mechanical milling Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002203 sulfidic glass Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000614 lithium tin phosphorous sulfides (LSPS) Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing an LGPS-based solid electrolyte.
- the LGPS-based solid electrolyte refers to a solid electrolyte containing Li, P and S and having a specific crystal structure, but the present invention relates to a solid electrolyte containing Li, Sn, P and S.
- lithium-ion secondary batteries In recent years, the demand for lithium-ion secondary batteries has increased in applications such as mobile information terminals, mobile electronic devices, electric vehicles, hybrid electric vehicles, and even stationary power storage systems.
- current lithium-ion secondary batteries use a combustible organic solvent as an electrolyte, and require a strong exterior to prevent leakage of the organic solvent.
- structure of the equipment such as the need to adopt a structure that is prepared for the risk of electrolyte leakage.
- oxides, phosphoric acid compounds, organic polymers, sulfides, and the like as solid electrolytes in all-solid-state lithium-ion secondary batteries is under study.
- sulfides have high ionic conductivity, are relatively soft and easily form solid-solid interfaces. It is also stable in active materials and is being developed as a practical solid electrolyte.
- LGPS-based solid electrolyte that has a specific crystal structure
- sulfide solid electrolytes LGPS has extremely high ionic conductivity, can operate stably from a low temperature of -30°C to a high temperature of 100°C, and has high expectations for practical use.
- LGPS-based solid electrolytes are being developed with compositions that do not use expensive Ge, and LGPS-based solid electrolytes containing Sn have good ionic conductivity and are low in cost, so there are high expectations for their practical application. High (Non-Patent Documents 1 and 2).
- Li 10 SnP 2 S 12 which is one of LGPS-based solid electrolytes containing Sn, is known to decompose when energy such as pulverization is applied (Non-Patent Document 3). Therefore, it is desired to produce a solid electrolyte with a small particle size without performing pulverization or the like.
- an object of the present invention is to provide a method for producing an LGPS-based solid electrolyte containing Sn and having a small particle size without performing pulverization or the like.
- the present inventors have conducted intensive research in view of the above problems, and found that Li3PS4 crystals having a specific average particle size and crystals made of Li element, Sn element, and S element are mixed and fired. As a result, the inventors have unexpectedly found that fine particles of an LGPS-based solid electrolyte containing Sn can be produced without performing pulverization or the like.
- the present invention is as follows. ⁇ 1> Li 3 PS 4 crystal having an average particle size (D50) of 0.1 to 5 ⁇ m, and a crystal composed of Li element, Sn element, and S element having an average particle size (D50) of 0.1 to 5 ⁇ m A step of preparing a precursor by mixing and heat-treating the precursor at 300 to 700°C. ⁇ 2> The production method according to ⁇ 1> above, wherein the obtained LGPS-based solid electrolyte has an average particle size (D50) of 0.5 to 5 ⁇ m.
- ⁇ 4> The production method according to any one of ⁇ 1> to ⁇ 3> above, wherein the Li 3 PS 4 crystal is ⁇ -Li 3 PS 4 .
- the LGPS-based solid electrolyte is an octahedron O composed of Li element and S element, a tetrahedron T 1 composed of one or more elements selected from the group consisting of P and Sn and S element, A crystal having a tetrahedron T2 composed of P element and S element, wherein the tetrahedron T1 and the octahedron O share edges, and the tetrahedron T2 and the octahedron O share vertices
- ⁇ 7> The manufacturing method according to any one of ⁇ 1> to ⁇ 6> above, wherein the crystal composed of Li element, Sn element, and S element is a crystal having a composition of Li 4 SnS 4 .
- the present invention it is possible to provide a method for producing an LGPS-based solid electrolyte with a small particle size. Further, according to the present invention, it is possible to provide a molded body obtained by thermoforming the LGPS-based solid electrolyte, and an all-solid-state battery containing the LGPS-based solid electrolyte.
- FIG. 1 is a schematic diagram showing the crystal structure of an LGPS-based solid electrolyte according to one embodiment of the present invention
- FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according to one embodiment of the present invention
- FIG. 1 is a graph showing the results of X-ray diffraction measurement of LGPS-based solid electrolytes obtained in Examples 1-4, Comparative Examples 1-2, and Reference Example 1.
- FIG. 1 is a graph showing the results of ionic conductivity measurement of LGPS-based solid electrolytes obtained in Examples 1 to 4, Comparative Examples 1 and 2, and Reference Example 1.
- FIG. 4 is a graph showing the results of Raman spectroscopic measurement of the LGPS-based solid electrolytes obtained in Examples 1-4, Comparative Examples 1-2, and Reference Example 1.
- FIG. 1 is a schematic diagram showing the crystal structure of an LGPS-based solid electrolyte according to one embodiment of the present invention
- FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according
- a method for producing an LGPS-based solid electrolyte according to an embodiment of the present invention includes Li PS 4 crystals having an average particle size (D50) of 0.1 to 5 ⁇ m and It includes a step of mixing crystals made of certain Li element, Sn element and S element to prepare a precursor, and a step of heat-treating the precursor at 300 to 700°C.
- the average particle size (D50) of Li 3 PS 4 crystals is preferably 0.1 to 4 ⁇ m, more preferably 0.1 to 2.5 ⁇ m.
- the average particle diameter (D50) of the crystal composed of Li element, Sn element and S element is preferably 0.1 to 3 ⁇ m, more preferably 0.1 ⁇ m. 1 to 1.5 ⁇ m.
- the average particle size (D50) of the obtained LGPS-based solid electrolyte is preferably 0.5 to 5 ⁇ m, more preferably 0.1 to 4 ⁇ m, and more preferably 0.1 to 2.5 ⁇ m. Especially preferred.
- the average particle size (D50) of the raw materials and products described above can be measured by the method described in the examples below.
- the value of I B / IA is preferably less than 0.50. More preferably, the value of I B /I A is less than 0.40. This is because IA corresponds to the LGPS crystal peak and IB is a crystalline phase with low ionic conductivity. Furthermore, as shown in FIG.
- the LGPS-based solid electrolyte is composed of an octahedron O composed of Li element and S element, and one or more elements selected from the group consisting of P and Sn and S element. and a tetrahedron T2 composed of P element and S element, the tetrahedron T1 and the octahedron O share edges, and the tetrahedron T2 and the octahedron It is preferable that O mainly contains a crystal structure sharing a vertex.
- Li 2 S, P 2 S 5 and M x Sy are used as raw materials to synthesize an ionic conductor, followed by mechanical milling using a vibration mill or a planetary ball mill. (WO2011-118801) and the melt quenching method described in WO2014-196442.
- the mechanical milling method is difficult to scale up to an industrial scale, and the melt quenching method without exposure to the atmosphere is greatly restricted from the aspect of atmosphere control.
- the LGPS-based solid electrolyte and its raw material have the property of being altered by reacting with moisture and oxygen in the air.
- the manufacturing method according to the present invention does not require an amorphization step.
- Microparticulated Li 3 PS 4 crystals and microparticulated Li element, Sn element, and S element crystals are used as raw materials, and mixed in a solid phase or in the presence of a solvent to obtain a precursor, followed by heat treatment.
- an LGPS-based solid electrolyte with a small particle size can be obtained.
- it is important to use the Li 3 PS 4 crystal as a raw material because volatilization and decomposition of the precursor during heat treatment can be suppressed.
- P 2 S 5 is present in the precursor (can be determined by Raman measurement), the highly volatile and decomposable P 2 S 5 causes the formation of by-products and unreacted raw materials in the heat treatment process. As a result, it becomes difficult to obtain a stable and high-performance LGPS-based solid electrolyte.
- the Li 3 PS 4 crystal used in the present invention may be ⁇ , ⁇ , or ⁇ , but ⁇ -Li 3 PS 4 is more preferable. The reason for this is that it exists relatively stably in the LGPS synthesis system.
- the solvent is removed from the obtained suspension at about 25 to 70°C under reduced pressure.
- ⁇ -Li 3 PS 4 can be obtained by performing vacuum drying at about 120 to 240° C. for 1 to 6 hours.
- the Li 2 S crystal can be used either as a synthetic product or as a commercial product. Since water contamination deteriorates other raw materials and precursors, the lower the better, more preferably 300 ppm or less, and particularly preferably 50 ppm or less.
- Li 3 PS 4 crystals having an average particle diameter (D50) of 0.1 to 5 ⁇ m are used as raw materials.
- the Li 3 PS 4 crystals used in the present invention have an average particle diameter (D50) of 0.1 to 5 ⁇ m, there is no particular limitation on the method of microparticulation.
- Li3PS4 is added to a solvent such as acetonitrile under an inert gas atmosphere such as argon and mixed at room temperature to obtain a slurry.
- the powder obtained After removing the solvent from the obtained slurry at about 25-70°C under reduced pressure, the powder obtained is dried at about 120-240°C under vacuum for about 1-6 hours to remove the coordinating solvent. . After that, it can be cooled to room temperature to obtain finely divided Li 3 PS 4 powder.
- Crystals composed of Li element, Sn element, and S element in the present invention are not particularly limited, but crystals having a composition of Li 4 SnS 4 are particularly preferable.
- the specific crystals described above may have the above composition, and may be composed of a single crystal structure or a combination of different crystal structures.
- a crystal having the composition Li4SnS4 may consist of a combination of different crystal structures Li4Sn2S6 and Li2S .
- the crystal having the composition Li 4 SnS 4 preferably used in the present invention may be a commercially available product, but is synthesized from Li 2 S crystal and SnS 2 crystal under an inert gas atmosphere such as argon, for example.
- Li 2 S:SnS 2 is weighed so that the molar ratio is 2:1, and mixed in an agate mortar.
- the obtained mixture is fired in an atmosphere of an inert gas such as argon at 350 to 700° C. for 1 to 12 hours to produce crystals having a composition of Li 4 SnS 4 .
- an inert gas such as argon
- the particle diameter is preferably in the range of 10 nm to 10 ⁇ m, more preferably 10 nm to 5 ⁇ m, and still more preferably 100 nm to 1 ⁇ m.
- the particle size can be measured by SEM, by a particle size distribution analyzer using laser scattering, or the like. Since the particles are small, the reaction is facilitated during the heat treatment, and the generation of by-products can be suppressed.
- One of the characteristics of the present invention is to use, as raw materials, crystals composed of Li element, Sn element, and S element having an average particle size (D50) of 0.1 to 5 ⁇ m.
- Crystals composed of Li element, Sn element, and S element used in the present invention are not particularly limited in the method of microparticulation as long as the average particle size (D50) is 0.1 to 5 ⁇ m.
- an inert gas atmosphere such as argon
- Li 4 SnS 4 is added to methanol and mixed at room temperature for about 3 to 8 hours.
- the resulting slurry is filtered using a membrane filter to obtain a uniform Li 4 SnS 4 solution.
- the Li 4 SnS 4 homogeneous solution obtained is mixed with acetonitrile to obtain a methanol-acetonitrile homogeneous solution.
- Li 4 SnS 4 is precipitated in acetonitrile by removing methanol from the obtained homogeneous solution at about 30 to 70° C. under reduced pressure. After that, the acetonitrile is removed by maintaining the condition of about 30 to 70°C under reduced pressure.
- the coordinating solvent is removed by drying the obtained powder under vacuum at about 120 to 240° C. for about 1 to 6 hours. After that, it can be cooled to room temperature to obtain finely divided Li 4 SnS 4 powder.
- the precursor synthesizing step the precursor is obtained by mixing finely divided Li 3 PS 4 crystals and finely divided crystals composed of Li element, Sn element and S element.
- the molar ratio may be adjusted so as to be the ratio of the elements constituting the crystal structure described above. Mix in ratio.
- the mixing method can be a solid phase or in the presence of a solvent. Note that the mixing method using a solvent is suitable for large-scale synthesis because it enables uniform mixing.
- a solvent it is preferable to use a solvent that does not react with the raw material or the precursor obtained. Examples thereof include ether solvents, ester solvents, hydrocarbon solvents, nitrile solvents and the like.
- the raw material composition includes tetrahydrofuran, cyclopentylmethyl ether, diisopropyl ether, diethyl ether, dimethyl ether, dioxane, methyl acetate, ethyl acetate, butyl acetate, acetonitrile and the like.
- the water content is preferably 100 ppm or less, more preferably 50 ppm or less.
- Mixing is preferably performed in an inert gas atmosphere.
- Nitrogen, helium, argon, or the like can be used as the inert gas, and deterioration of the raw material composition can be suppressed by removing oxygen and moisture in the inert gas.
- concentrations of oxygen and moisture in the inert gas are preferably 1000 ppm or less, more preferably 100 ppm or less, and particularly preferably 10 ppm or less.
- the substrate may be uniformly dispersed in a slurry state, but more preferably, a portion of the raw material (regardless of the type) is dissolved.
- a slurry it is preferable to disintegrate by stirring for the purpose of crushing aggregated particles.
- a homogenizer or an ultrasonic disperser may be used.
- a mortar mixer, a laikai machine, a ball mill, or the like can be used. In the case of these methods, crystals are usually not amorphized.
- Mixing is preferably carried out under a vacuum or an inert gas atmosphere, and the conditions are the same as in the case of using a solvent.
- the temperature for mixing does not need to be heated, but if a solvent is used, it can be heated to increase the solubility or dissolution rate of the substrate. When heating, it is sufficient to carry out at the boiling point of the solvent or below. However, it is also possible to carry out under pressure using an autoclave or the like. If the mixing is performed at a high temperature, the reaction proceeds before the raw materials are well mixed, and by-products are likely to be generated. Therefore, the mixing is preferably performed at around room temperature.
- the mixing time it is sufficient if the time for the mixture to become uniform can be secured. Although the time often depends on the production scale, uniformity can be achieved by carrying out, for example, 0.1 to 24 hours.
- the precursor is obtained by removing the solvent.
- Solvent removal is performed by heat drying or vacuum drying, and the optimum temperature differs depending on the type of solvent.
- Solvent removal time can be shortened by applying a temperature sufficiently higher than the boiling point.
- the temperature for removing the solvent is preferably in the range of 60 to 280°C, more preferably 100 to 250°C.
- the temperature for removing the solvent can be lowered and the required time can be shortened.
- the time required for removing the solvent can be shortened by flowing an inert gas such as nitrogen or argon, which has a sufficiently low water content.
- an LGPS-based solid electrolyte with a small particle size is obtained by heat-treating the precursor obtained in the precursor synthesis step.
- the heating temperature is in the range of 300-700°C, preferably in the range of 350-650°C, and particularly preferably in the range of 450-600°C. If the temperature is lower than the above range, the desired crystals are difficult to form, while if the temperature is higher than the above range, non-desired crystals are formed.
- the heating time varies slightly depending on the heating temperature, the crystals are sufficiently crystallized usually within the range of 0.1 to 24 hours. Heating at a high temperature exceeding the above range for a long time is not preferable because there is a concern that the LGPS-based solid electrolyte may deteriorate. Heating can be performed in a vacuum or an inert gas atmosphere, preferably in an inert gas atmosphere. Nitrogen, helium, argon, etc. can be used as the inert gas, with argon being preferred. It is preferable that the oxygen and water content are low, and the conditions are the same as in the precursor synthesis step.
- the LGPS-based solid electrolyte of the present invention obtained as described above can be made into a desired molded body by various means, and can be used for various applications including the all-solid-state battery described below.
- a molding method is not particularly limited. For example, it is possible to use the same method as the method of forming each layer constituting the all-solid-state battery described in the later-described all-solid-state battery.
- the LGPS-based solid electrolyte of the present invention can be used, for example, as a solid electrolyte for all-solid-state batteries. Further, according to a further embodiment of the present invention, an all-solid battery containing the solid electrolyte for an all-solid battery described above is provided.
- FIG. 2 is a schematic cross-sectional view of an all-solid-state battery according to one embodiment of the present invention.
- the all-solid battery 10 has a structure in which a solid electrolyte layer 2 is arranged between a positive electrode layer 1 and a negative electrode layer 3 .
- the all-solid-state battery 10 can be used in various devices such as mobile phones, personal computers, automobiles, and the like.
- the LGPS-based solid electrolyte of the present invention may be contained as a solid electrolyte in any one or more layers of the positive electrode layer 1, the negative electrode layer 3 and the solid electrolyte layer 2.
- the LGPS-based solid electrolyte of the present invention When the LGPS-based solid electrolyte of the present invention is included in the positive electrode layer 1 or the negative electrode layer 3, the LGPS-based solid electrolyte of the present invention and a known positive electrode active material or negative electrode active material for lithium ion secondary batteries are used in combination.
- the amount ratio of the LGPS-based solid electrolyte of the present invention contained in the positive electrode layer 1 or the negative electrode layer 3 is not particularly limited.
- the solid electrolyte layer 2 may be composed of the LGPS-based solid electrolyte of the present invention alone, or may be composed of an oxide solid electrolyte (for example, , Li 7 La 3 Zr 2 O 12 ), sulfide-based solid electrolytes (eg, Li 2 SP 2 S 5 ), and other complex hydride solid electrolytes (eg, LiBH 4 , 3LiBH 4 -LiI). May be used in combination.
- an oxide solid electrolyte for example, Li 7 La 3 Zr 2 O 12
- sulfide-based solid electrolytes eg, Li 2 SP 2 S 5
- other complex hydride solid electrolytes eg, LiBH 4 , 3LiBH 4 -LiI
- An all-solid-state battery is produced by forming and laminating each layer described above, but the forming method and lamination method of each layer are not particularly limited.
- the LGPS-based solid electrolyte of the present invention is relatively soft, it is particularly preferable to form and laminate each layer by pressure molding to produce an all-solid-state battery.
- a pressure molding method there are a hot press performed with heating and a cold press without heating, but the cold press can be sufficiently molded.
- the present invention includes a molded article obtained by heat-molding the LGPS-based solid electrolyte of the present invention. The molded article is suitably used as an all-solid battery.
- the present invention also includes a method for producing an all-solid-state battery, including the step of thermoforming the LGPS-based solid electrolyte of the present invention.
- the average particle size of crystals having the compositions of Li 3 PS 4 and Li 4 SnS 4 used as raw materials and the average particle size of the obtained solid electrolyte were measured by the following methods. A small amount of the raw material or solid electrolyte was sampled, and the powder was added to acetonitrile as a dispersion medium and dispersed for 3 minutes with an ultrasonic homogenizer (UH-50 manufactured by SMT). Subsequently, the particle size distribution was measured with a laser scattering/diffraction particle size distribution analyzer (Nikkiso Misrotrac MT3000EXII) to determine the average particle size (D50).
- UH-50 manufactured by SMT ultrasonic homogenizer
- Example 1 ⁇ Method for producing ⁇ - Li3PS4 >
- Li2S manufactured by Sigma-Aldrich, 99.8% purity
- P2S5 manufactured by Sigma - Aldrich, 99% purity
- Li2S : P2S5 Weighed out to give a 1.5:1 molar ratio.
- Li 2 S and P 2 S 5 were added in order to tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade) so that the concentration of (Li 2 S + P 2 S 5 ) was 10 wt%. Mixed for 12 hours under.
- This zirconia pot was fixed to a planetary ball mill device (manufactured by Fritsch Japan) and subjected to ball mill treatment at 500 rpm for 10 hours.
- a crystal having a composition of Li 4 SnS 4 was obtained by firing the precursor powder obtained by ball milling at 450° C. for 8 hours.
- ⁇ Step of Microparticulating Crystals Having Composition of Li 4 SnS 4 > In a glove box under an argon atmosphere, 1 g of crystal having a composition of Li 4 SnS 4 synthesized in the above manufacturing process was weighed.
- the weighed crystals having a composition of Li 4 SnS 4 were added to 10 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, boiling point 64° C.) and mixed at room temperature for 6 hours. The mixture gradually dissolved to obtain a slurry containing insoluble matter. The resulting slurry was filtered using a membrane filter (PTFE, pore size 1.0 ⁇ m) to obtain a homogeneous solution of crystals having a composition of Li 4 SnS 4 .
- methanol manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, boiling point 64° C.
- the homogeneous solution of crystals having the composition of Li 4 SnS 4 obtained above and 200 mL of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade, boiling point 82° C.) were mixed to obtain a methanol-acetonitrile homogeneous solution.
- Crystals having a composition of Li 4 SnS 4 were deposited in acetonitrile by removing methanol from the obtained homogeneous solution at 50° C. under reduced pressure. Thereafter, the acetonitrile was removed while maintaining the state at 50° C. under reduced pressure to obtain powder. Solvent removal was performed while the homogeneous solution was stirred. The coordinating solvent was removed by drying the powder obtained above at 180° C.
- the average particle size (D50) of the powder of crystals with the composition of micronized Li 4 SnS 4 was 1.1 ⁇ m.
- Example 2 Li 10 SnP 2 S 12 in the same manner as in Example 1, except that in Example 1, “firing at 550° C. for 8 hours in an argon atmosphere” was changed to “firing at 550° C. for 2 hours in an argon atmosphere”. Crystals were obtained.
- the average particle size (D50) of the obtained solid electrolyte was 2.0 ⁇ m.
- Example 3 In a glove box under an argon atmosphere, crystals having the composition of ⁇ -Li 3 PS 4 after the atomization step obtained in Example 1 and Li 4 SnS 4 after the atomization step were treated as ⁇ -Li 3 PS 4 : Li 4 SnS 4 was weighed out in a molar ratio of 2:1. The weighed mixed powder was added to acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade) so as to be 5 wt %, and mixed at room temperature to obtain a slurry. After removing the acetonitrile from the resulting slurry at 50° C. under reduced pressure, the resulting powder was dried at 180° C.
- acetonitrile manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade
- FIG. 4 shows the measurement results of the lithium ion conductivity when the temperature was lowered.
- solid electrolytes having an average particle size (D50) of 4 ⁇ m or less could be produced while maintaining the ionic conductivity at 1 mS/cm to 3 mS/cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Fuel Cell (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
これらの固体電解質の中で、硫化物はイオン伝導度が高く、比較的やわらかく固体-固体間の界面を形成しやすい特徴がある。活物質にも安定であり、実用的な固体電解質として開発が進んでいる。
固体電解質を微粒子化する一般的な手法として、粗大粒子を合成した後にボールミルやジェットミル等を用いた粉砕法が挙げられる。しかし、粉砕法は、工程上の問題から大型化には向いていない。また、Snを含むLGPS系固体電解質の一つであるLi10SnP2S12は、粉砕等のエネルギーを与えると分解することが知られている(非特許文献3)。そのため、粉砕等を行わずに粒径の小さな固体電解質を製造することが求められている。
<1> 平均粒径(D50)が0.1~5μmであるLi3PS4結晶と、平均粒径(D50)が0.1~5μmであるLi元素、Sn元素、およびS元素からなる結晶とを混合して前駆体を作製する工程と、
前記前駆体を300~700℃にて加熱処理する工程と、を含むことを特徴とするLGPS系固体電解質の製造方法である。
<2> 得られたLGPS系固体電解質の平均粒径(D50)が0.5~5μmである、上記<1>に記載の製造方法である。
<3> 前記LGPS系固体電解質が、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、上記<1>または<2>に記載の製造方法である。
<4> 前記Li3PS4結晶がβ-Li3PS4である、上記<1>から<3>のいずれかに記載の製造方法である。
<5> 前記加熱処理工程を不活性ガス雰囲気下で行う、上記<1>から<4>のいずれかに記載の製造方法である。
<6> 前記LGPS系固体電解質が、Li元素およびS元素から構成される八面体Oと、P及びSnからなる群より選ばれる一種以上の元素およびS元素から構成される四面体T1と、P元素およびS元素から構成される四面体T2とを有し、前記四面体T1および前記八面体Oは稜を共有し、前記四面体T2および前記八面体Oは頂点を共有する結晶構造を主体として含有する、上記<1>から<5>のいずれかに記載の製造方法である。
<7> 前記Li元素、Sn元素、およびS元素からなる結晶が、Li4SnS4の組成を有する結晶である、上記<1>から<6>のいずれかに記載の製造方法である。
本発明の一実施形態のLGPS系固体電解質の製造方法は、平均粒径(D50)が0.1~5μmであるLi3PS4結晶と、平均粒径(D50)が0.1~5μmであるLi元素、Sn元素、およびS元素からなる結晶とを混合して前駆体を作製する工程と、前記前駆体を300~700℃にて加熱処理する工程と、を含む。
Li3PS4結晶の平均粒径(D50)は、好ましくは0.1~4μmであり、より好ましくは0.1~2.5μmである。
Li元素、Sn元素、およびS元素からなる結晶(好ましくは、Li4SnS4の組成を有する結晶)の平均粒径(D50)は、好ましくは0.1~3μmであり、より好ましくは0.1~1.5μmである。
得られたLGPS系固体電解質の平均粒径(D50)は、0.5~5μmであることが好ましく、0.1~4μmであることがより好ましく、0.1~2.5μmであることが特に好ましい。
本発明において、上述した原料及び生成品の平均粒径(D50)は、後述する実施例に記載された方法で測定することができる。
また、前記LGPS系固体電解質は、前記2θ=29.58°±0.50°のピークの回折強度をIAとし、2θ=27.33°±0.50°のピークの回折強度をIBとした場合に、IB/IAの値が0.50未満であることが好ましい。より好ましくは、IB/IAの値が0.40未満である。これは、IAに相当するのがLGPS結晶のピークであり、IBはイオン伝導性が低い結晶相のためである。
更に、前記LGPS系固体電解質は、図1に示されるように、Li元素およびS元素から構成される八面体Oと、P及びSnからなる群より選ばれる一種以上の元素およびS元素から構成される四面体T1と、P元素およびS元素から構成される四面体T2とを有し、前記四面体T1および前記八面体Oは稜を共有し、前記四面体T2および前記八面体Oは頂点を共有する結晶構造を主体として含有することが好ましい。
本発明で使用されるLi3PS4結晶は、α、β、γのいずれでも使用することができるが、より好ましくはβ-Li3PS4である。この理由は、LGPS合成系において、比較的安定に存在するためである。
本発明におけるLi3PS4結晶は、市販品を用いてもよいが、例えば、アルゴンなどの不活性ガス雰囲気下で、Li2S及びP2S5から合成することができる。例えば、Li2S:P2S5=1.5:1のモル比となるように量り取り、テトラヒドロフランなどの溶媒に対して、Li2S、P2S5の順に加え、室温下で5~15時間程度混合する。得られた溶液に、上記を含めた全原料組成がLi2S:P2S5=3:1のモル比となるように、Li2Sを更に加え、室温下で5~15時間程度混合しながら、懸濁液を得る。得られた懸濁液を減圧下、25~70℃程度で溶媒を除去する。その後、120~240℃程度で、1~6時間、真空乾燥を行うことにより、β-Li3PS4を得ることができる。
Li2S結晶は、合成品でも市販品でも使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。
本発明では、平均粒径(D50)が0.1~5μmであるLi3PS4結晶を原料として用いることを特徴の一つとする。
本発明で使用されるLi3PS4結晶は、平均粒径(D50)が0.1~5μmであればその微粒子化の方法は特に制限されることはない。例えば、アルゴンなどの不活性ガス雰囲気下で、Li3PS4をアセトニトリルなどの溶媒に加え、室温下で混合し、スラリーを得る。得られたスラリーを減圧下、25~70℃程度で溶媒を除去した後に、得られた粉末を真空下、120~240℃程度で1~6時間程度乾燥させることで、配位溶媒を除去する。その後、室温まで冷却して微粒子化したLi3PS4粉末を得ることができる。
本発明におけるLi元素、Sn元素、およびS元素からなる結晶としては、特に制限されないが、Li4SnS4の組成を有する結晶が特に好ましく挙げられる。なお、上述した具体的な結晶は、組成として上記のものであればよく、単一の結晶構造から構成されていても、異なる結晶構造の組み合わせから構成されていてもよい。例えば、Li4SnS4の組成を有する結晶は、異なる結晶構造であるLi4Sn2S6とLi2Sとの組み合わせから構成されていてもよい。
本発明において好ましく使用されるLi4SnS4の組成を有する結晶は、市販品を用いてもよいが、例えば、アルゴンなどの不活性ガス雰囲気下で、Li2S結晶およびSnS2結晶から合成することができる。例えば、Li2S:SnS2=2:1のモル比になるように量り取り、メノウ乳鉢にて混合する。次に、得られた混合物をアルゴンなどの不活性ガス雰囲気下で350~700℃、1~12時間の焼成を行うことにより、Li4SnS4の組成を有する結晶を製造することができる。
なお、上記の原料の一部はアモルファスであっても問題はなく使用することができる。
いずれの原料結晶においても粒子径が小さいことが重要であり、好ましくは粒子の直径として10nm~10μmの範囲であり、より好ましくは10nm~5μm、更に好ましくは100nm~1μmの範囲である。なお、粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。粒子が小さいことで、加熱処理時に反応がしやすくなり、副生成物の生成が抑制できる。
本発明では、平均粒径(D50)が0.1~5μmであるLi元素、Sn元素、およびS元素からなる結晶を原料として用いることを特徴の一つとする。
本発明で使用されるLi元素、Sn元素、およびS元素からなる結晶は、平均粒径(D50)が0.1~5μmであればその微粒子化の方法は特に制限されることはない。例えば、アルゴンなどの不活性ガス雰囲気下で、Li4SnS4をメタノールに加え、室温下で3~8時間程度混合する。得られたスラリーをメンブランフィルターを用いて濾過することでLi4SnS4均一溶液を得る。得られたLi4SnS4均一溶液とアセトニトリルとを混合し、メタノール-アセトニトリル均一溶液を得る。得られた均一溶液を、減圧下、30~70℃程度でメタノールを除去することでアセトニトリル中にLi4SnS4を析出させる。その後、減圧下、30~70℃程度の状態を保ち、アセトニトリルを除去する。得られた粉末を真空下、120~240℃程度で1~6時間程度乾燥させることで、配位溶媒を除去する。その後、室温まで冷却して微粒子化したLi4SnS4粉末を得ることができる。
前駆体合成工程では、微粒子化したLi3PS4結晶と、微粒子化したLi元素、Sn元素、およびS元素からなる結晶とを混合することにより、前駆体が得られる。そのモル比としては上述した結晶構造を構成する元素比となるように調整すればよいが、例えばLi10SnP2S12であれば、Li3PS4:Li4SnS4=2:1のモル比で混合する。
混合方法は、固相もしくは溶媒存在下で混合することができる。なお、溶媒を用いた混合方法は、均一に混合できることから大量に合成する場合に適している。溶媒を使用する場合は、原料や得られる前駆体と反応しない溶媒を用いることが好ましい。例えば、エーテル系溶媒、エステル系溶媒、炭化水素系溶媒、ニトリル系溶媒などが挙げられる。具体的には、テトラヒドロフラン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル、ジメチルエーテル、ジオキサン、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリルなどが挙げられる。原料組成物が劣化することを防止するため、溶媒中の酸素と水分は除去しておくことが好ましく、特に水分については、100ppm以下が好ましく、より好ましくは50ppm以下である。混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンなどを使用することができ、不活性ガス中の酸素および水分も除去することで原料組成物の劣化を抑制できる。不活性ガス中の酸素および水分は、どちらの濃度も1000ppm以下であることが好ましく、より好ましくは100ppm以下、特に好ましくは10ppm以下である。
固相で混合する場合は、乳鉢混合、ライカイ機、ボールミル等を使用することができる。これらの方法の場合は、通常は結晶がアモルファス化されることは無い。混合は、真空もしくは不活性ガス雰囲気下で合成することが好ましく、その条件は溶媒を用いた場合と同様である。
混合における温度は、加熱する必要もないが、溶媒を用いた場合は基質の溶解度や溶解速度を上げるために加熱することもできる。加熱する場合には、溶媒の沸点以下で行うことで十分である。しかし、オートクレーブ等を用いて加圧状態で行うことも可能である。なお、高い温度で混合を行うと、原料がよく混じり合う前に反応が進行し、副生成物が生成しやくなることから、室温付近で行うことが好ましい。
本発明の製造方法においては、前駆体合成工程で得られた前駆体を加熱処理することによって、粒径の小さなLGPS系固体電解質を得る。加熱温度は、300~700℃の範囲であり、好ましくは350~650℃の範囲であり、特に好ましくは450~600℃の範囲である。上記範囲よりも温度が低いと所望の結晶が生じにくく、一方、上記範囲よりも温度が高くても、目的とする以外の結晶が生成する。
加熱は、真空もしくは不活性ガス雰囲気下で行うことができるが、好ましくは不活性ガス雰囲気下である。不活性ガスとしては、窒素、ヘリウム、アルゴンなどを使用することができるが、中でもアルゴンが好ましい。酸素や水分が低いことが好ましく、その条件は前駆体合成工程の混合時と同じである。
本発明のLGPS系固体電解質は、例えば、全固体電池用の固体電解質として使用され得る。また、本発明の更なる実施形態によれば、上述した全固体電池用固体電解質を含む全固体電池が提供される。
本発明のLGPS系固体電解質は、正極層1、負極層3および固体電解質層2のいずれか一層以上に、固体電解質として含まれてよい。正極層1または負極層3に本発明のLGPS系固体電解質が含まれる場合、本発明のLGPS系固体電解質と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層1または負極層3に含まれる本発明のLGPS系固体電解質の量比は、特に制限されない。
固体電解質層2に本発明のLGPS系固体電解質が含まれる場合、固体電解質層2は、本発明のLGPS系固体電解質単独で構成されてもよいし、必要に応じて、酸化物固体電解質(例えば、Li7La3Zr2O12)、硫化物系固体電解質(例えば、Li2S-P2S5)やその他の錯体水素化物固体電解質(例えば、LiBH4、3LiBH4-LiI)などを適宜組み合わせて使用してもよい。
例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレードまたはスピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて製膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していく加圧成形法等がある。
なお、本発明には、本発明のLGPS系固体電解質を加熱成形してなる成形体が包含される。該成形体は、全固体電池として好適に用いられる。また、本発明には、本発明のLGPS系固体電解質を加熱成形する工程を含む、全固体電池の製造方法が包含される。
原料として用いたLi3PS4及びLi4SnS4の組成を有する結晶の平均粒径、及び得られた固体電解質の平均粒径は、以下の方法で測定した。
上記原料あるいは固体電解質を少量サンプリングし、その粉末を分散媒であるアセトニトリルに加え、超音波ホモジナイザー(SMT社製UH-50)で3分間分散させた。続いて、レーザー散乱・回折式粒度分布測定機(日機装製Misrotrac MT3000EXII)で粒度分布測定を行い、平均粒径(D50)を決定した。
<β-Li3PS4の製造方法>
アルゴン雰囲気下のグローブボックス内で、Li2S(シグマ・アルドリッチ社製、純度99.8%)及びP2S5(シグマ・アルドリッチ社製、純度99%)を、Li2S:P2S5=1.5:1のモル比となるように量り取った。次に、(Li2S+P2S5)の濃度が10wt%となるようにテトラヒドロフラン(和光純薬工業社製、超脱水グレード)に対して、Li2S、P2S5の順に加え、室温下で12時間混合した。混合物は徐々に溶解し、わずかな不溶物を含むほぼ均一な溶液を得た。
得られた溶液に、上記を含めた全原料組成がLi2S:P2S5=3:1のモル比となるように、Li2Sを更に加え、室温下で12時間混合しながら、懸濁液を得た。得られた懸濁液を減圧下、50℃で溶媒を除去した。その後、180℃、4時間、真空乾燥を行うことにより、β-Li3PS4を得た。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。
得られたβ-Li3PS4について後述するラマン分光測定を行ったところ、PS4 3-に相当する420cm-1におけるピークを確認することができた。なお、使用した硫化物原料については、全て結晶であった。
<β-Li3PS4の微粒子化工程>
アルゴン雰囲気下のグローブボックス内で、上記工程で合成したβ-Li3PS4を濃度が6wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)に対して加え、室温下で混合し、スラリーを得た。
得られたスラリーを減圧下、50℃でアセトニトリルを除去した後に、得られた粉末を真空下、180℃で4時間乾燥させることで、配位溶媒を除去した。溶媒除去はスラリーを撹拌しながら行った。その後、室温まで冷却して微粒子化したβ-Li3PS4粉末を得た。微粒子化したβ-Li3PS4粉末の平均粒径(D50)は、2.1μmであった。
Li2S(シグマ・アルドリッチ社製、純度99.8%)及びSnS2(高純度化学、99.9%)を原料として用いた。これらを、アルゴン雰囲気下のグローブボックス内でLi4SnS4の組成を有する結晶の化学量論比となるように秤量し、15分間メノウ乳鉢を用いて混合した。得られた粉体1.0gとφ10mmのジルコニアボール15個を45mLのジルコニアポットに入れて密閉した。このジルコニアポットを遊星型ボールミル装置(フリッチュジャパン製)に固定し、500rpmにて10時間ボールミル処理を行った。ボールミル処理によって得られた前駆体粉末を450℃において8 時間焼成することで、Li4SnS4の組成を有する結晶を得た。
<Li4SnS4の組成を有する結晶の微粒子化工程>
アルゴン雰囲気下のグローブボックス内で、前記製造工程で合成したLi4SnS4の組成を有する結晶を1g秤量した。次に、秤量したLi4SnS4の組成を有する結晶を10mLのメタノール(和光純薬工業社製、超脱水グレード 沸点64℃)に加え、室温下で6時間混合した。混合物は徐々に溶解し、不溶物を含むスラリーを得た。得られたスラリーをメンブランフィルター(PTFE、孔径1.0μm)を用いて濾過することでLi4SnS4の組成を有する結晶の均一溶液を得た。
上記で得られたLi4SnS4の組成を有する結晶の均一溶液と200mLのアセトニトリル(和光純薬工業社製、超脱水グレード 沸点82℃)とを混合し、メタノール-アセトニトリル均一溶液を得た。
得られた均一溶液を、減圧下、50℃でメタノールを除去することでアセトニトリル中にLi4SnS4の組成を有する結晶を析出させた。その後、減圧下、50℃の状態を保ち、アセトニトリルを除去して粉末を得た。溶媒の除去は均一溶液を撹拌しながら行った。
上記で得られた粉末を真空下、180℃で4時間乾燥させることで、配位溶媒を除去した。その後、室温まで冷却して微粒子化したLi4SnS4の組成を有する結晶の粉末を得た。微粒子化したLi4SnS4の組成を有する結晶の粉末の平均粒径(D50)は、1.1μmであった。
アルゴン雰囲気下のグローブボックス内で、上記の微粒子化したβ-Li3PS4及び微粒子化したLi4SnS4の組成を有する結晶をβ-Li3PS4:Li4SnS4=2:1のモル比となるように量り取り、メノウ乳鉢にて混合した。これをアルゴン雰囲気下で550℃、8時間の焼成を行うことにより、Li10SnP2S12結晶(LGPS系固体電解質)を得た。得られた固体電解質の平均粒径(D50)は、2.1μmであった。
実施例1において、「アルゴン雰囲気下で550℃、8時間の焼成」を「アルゴン雰囲気下で550℃、2時間の焼成」に変更した以外は、実施例1と同様にLi10SnP2S12結晶を得た。得られた固体電解質の平均粒径(D50)は、2.0μmであった。
アルゴン雰囲気下のグローブボックス内で、実施例1で得られた微粒子化工程後のβ-Li3PS4及び微粒子化工程後のLi4SnS4の組成を有する結晶をβ-Li3PS4:Li4SnS4=2:1のモル比となるように量り取った。量り取った混合粉末が5wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)に加え、室温下で混合し、スラリーを得た。得られたスラリーを減圧下、50℃でアセトニトリルを除去した後に、得られた粉末を真空下、180℃で4時間乾燥させることで、配位溶媒を除去した。溶媒除去はスラリーを撹拌しながら行った。その後、室温まで冷却して前駆体粉末を得た。これをアルゴン雰囲気下で550℃、8時間の焼成を行うことにより、Li10SnP2S12結晶を得た。得られた固体電解質の平均粒径(D50)は、3.6μmであった。
アルゴン雰囲気下のグローブボックス内で、実施例1で得られた微粒子化工程後のβ-Li3PS4及び微粒子工程後のLi4SnS4の組成を有する結晶をβ-Li3PS4:Li4SnS4=2.7:1のモル比となるように量り取った。量り取った前駆体粉末600mgを、直径3mmφのジルコニアボール80gと共に50ccのデュラン瓶に入れ密閉した。上記計量、添加、密閉作業は全てアルゴン雰囲気下のグローブボックス内で実施し、使用する器具類は全て乾燥機で事前に水分除去したものを用いた。
この容器をボールミル架台(株式会社アサヒ理化製作所製、AV-1型)を用いて、常温にて60rpmにて1時間回転させて混合した後に粉末を回収した。これをアルゴン雰囲気下で550℃、2時間の焼成を行うことにより、Li9.81Sn0.81P2.19S12結晶を得た。得られた固体電解質の平均粒径(D50)は、2.3μmであった。
アルゴン雰囲気下のグローブボックス内で、実施例1における微粒子化工程後のβ-Li3PS4と微粒子化工程前のLi4SnS4の組成を有する結晶とをβ-Li3PS4:Li4SnS4=2:1のモル比となるように量り取り、メノウ乳鉢にて混合した。これをアルゴン雰囲気下で550℃、8時間の焼成を行うことにより、Li10SnP2S12結晶を得た。微粒子化していないLi4SnS4の組成を有する結晶の粉末の平均粒径(D50)は、11μmであった。また、得られた固体電解質の平均粒径(D50)は、11μmであった。
アルゴン雰囲気下のグローブボックス内で、実施例1における微粒子化工程前のβ-Li3PS4と微粒子化工程前のLi4SnS4の組成を有する結晶とをβ-Li3PS4:Li4SnS4=2:1のモル比となるように量り取り、メノウ乳鉢にて混合した。これをアルゴン雰囲気下で550℃、8時間の焼成を行うことにより、Li10SnP2S12結晶を得た。微粒子化していないβ-Li3PS4粉末の平均粒径(D50)は、8.0μmであった。また、得られた固体電解質の平均粒径(D50)は、6.8μmであった。なお、この比較例2は、[背景技術]に記載された特許文献1(WO2018/173939)における実施例に相当するものである。
Li10SnP2S12合成において、原料を、Li2S:P2S5:SnS2=5:1:1のモル比となるように量り取り、メノウ乳鉢にて混合した。次に、得られた混合物を45mLのジルコニア製ポットに投入し、更にジルコニアボール(株式会社ニッカトー製「YTZ」、φ10mm、15個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチュ社製「P-7」)に取り付け、回転数800rpmで10時間、メカニカルミリングを行い、前駆体粉末を得た。これをアルゴン雰囲気下で475℃、8時間の焼成を行うことにより、Li10SnP2S12結晶を得た。得られた固体電解質の平均粒径(D50)は、30μmであった。
実施例1~4、比較例1~2、および参考例1で得られたLGPS系固体電解質の粉末について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
実施例1~4、比較例1~2、および参考例1で得られたLGPS系固体電解質のX線回折測定の結果を図3に示す。
図3に示したとおり、実施例1~4では、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.40°に回折ピークが観測され、このパターンはICSDデータベースのLi10SnP2S12と一致した。
実施例1~4、比較例1~2、および参考例1で得られたLGPS系固体電解質を一軸成型(240MPa)に供し、厚さ約1mm、直径8mmのディスクを得た。室温(25℃)および30℃から100℃と、-20℃までの温度範囲において10℃間隔で、In(インジウム)電極を利用した四端子法による交流インピーダンス測定(Solartron社製「SI1260 IMPEDANCE/GAIN―PHASE ANALYZER」)を行い、リチウムイオン伝導度を算出した。
具体的には、サンプルを25℃に設定した恒温槽に入れて30分間保持した後にリチウムイオン伝導度を測定し、続いて30℃~100℃まで10℃ずつ恒温槽を昇温し、各温度で25分間保持した後にイオン伝導度を測定した。100℃での測定を終えた後は、90℃~30℃まで10℃ずつ恒温槽を降温し、各温度で40分間保持した後にリチウムイオン伝導度を測定した。次に、25℃に設定した恒温槽で40分間保持した後のサンプルのリチウムイオン伝導度を測定した。その後、20℃~-20℃まで10℃ずつ恒温槽を降温し、各温度で40分間保持した後にリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。降温時のリチウムイオン伝導度の測定結果を図4に示す。
実施例1~4では、イオン伝導度を1mS/cm~3mS/cmに維持しつつ、平均粒径(D50)が4μm以下の固体電解質を製造することができた。
(1)試料調製
上部に石英ガラス(Φ60mm、厚さ1mm)を光学窓として有する密閉容器を用いて測定試料の作製を行った。アルゴン雰囲気下のグローブボックスにて、試料を石英ガラスに密着させた後、容器を密閉してグローブボックス外に取り出し、ラマン分光測定を行った。
(2)測定条件
レーザーラマン分光光度計NRS-5100(日本分光株式会社製)を使用し、励起波長532.15nm、露光時間5秒にて測定を行った。
2 固体電解質層
3 負極層
10 全固体電池
Claims (7)
- 平均粒径(D50)が0.1~5μmであるLi3PS4結晶と、平均粒径(D50)が0.1~5μmであるLi元素、Sn元素、およびS元素からなる結晶とを混合して前駆体を作製する工程と、
前記前駆体を300~700℃にて加熱処理する工程と、を含むことを特徴とするLGPS系固体電解質の製造方法。 - 得られたLGPS系固体電解質の平均粒径(D50)が0.5~5μmである、請求項1に記載の製造方法。
- 前記LGPS系固体電解質が、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、請求項1または2に記載の製造方法。
- 前記Li3PS4結晶がβ-Li3PS4である、請求項1から3のいずれかに記載の製造方法。
- 前記加熱処理工程を不活性ガス雰囲気下で行う、請求項1から4のいずれかに記載の製造方法。
- 前記LGPS系固体電解質が、Li元素およびS元素から構成される八面体Oと、P及びSnからなる群より選ばれる一種以上の元素およびS元素から構成される四面体T1と、P元素およびS元素から構成される四面体T2とを有し、前記四面体T1および前記八面体Oは稜を共有し、前記四面体T2および前記八面体Oは頂点を共有する結晶構造を主体として含有する、請求項1から5のいずれかに記載の製造方法。
- 前記Li元素、Sn元素、およびS元素からなる結晶が、Li4SnS4の組成を有する結晶である、請求項1から6のいずれかに記載の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237030807A KR20230167022A (ko) | 2021-04-07 | 2022-03-23 | Lgps계 고체 전해질의 제조 방법 |
BR112023015205A BR112023015205A2 (pt) | 2021-04-07 | 2022-03-23 | Método para produzir um eletrólito sólido à base de sulfeto de lítio, germânio e fósforo |
JP2023512918A JPWO2022215518A1 (ja) | 2021-04-07 | 2022-03-23 | |
CN202280024801.4A CN117083684A (zh) | 2021-04-07 | 2022-03-23 | Lgps系固体电解质的制造方法 |
AU2022253965A AU2022253965A1 (en) | 2021-04-07 | 2022-03-23 | Method for producing lgps-type solid electrolyte |
EP22784503.9A EP4321481A1 (en) | 2021-04-07 | 2022-03-23 | Method for producing lgps-type solid electrolyte |
US18/285,423 US20240194937A1 (en) | 2021-04-07 | 2022-03-23 | Method for producing lgps-type solid electrolyte |
CA3208800A CA3208800A1 (en) | 2021-04-07 | 2022-03-23 | Method for producing lgps-type solid electrolyte |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-065248 | 2021-04-07 | ||
JP2021065248 | 2021-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022215518A1 true WO2022215518A1 (ja) | 2022-10-13 |
Family
ID=83545425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013405 WO2022215518A1 (ja) | 2021-04-07 | 2022-03-23 | Lgps系固体電解質の製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20240194937A1 (ja) |
EP (1) | EP4321481A1 (ja) |
JP (1) | JPWO2022215518A1 (ja) |
KR (1) | KR20230167022A (ja) |
CN (1) | CN117083684A (ja) |
AU (1) | AU2022253965A1 (ja) |
BR (1) | BR112023015205A2 (ja) |
CA (1) | CA3208800A1 (ja) |
TW (1) | TW202248116A (ja) |
WO (1) | WO2022215518A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118801A1 (ja) | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
WO2014196442A1 (ja) | 2013-06-07 | 2014-12-11 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
JP2017045613A (ja) * | 2015-08-26 | 2017-03-02 | 出光興産株式会社 | 硫化物固体電解質及びその製造方法 |
WO2018173939A1 (ja) | 2017-03-22 | 2018-09-27 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
JP2020027781A (ja) * | 2018-08-16 | 2020-02-20 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
-
2022
- 2022-03-23 US US18/285,423 patent/US20240194937A1/en active Pending
- 2022-03-23 EP EP22784503.9A patent/EP4321481A1/en active Pending
- 2022-03-23 BR BR112023015205A patent/BR112023015205A2/pt unknown
- 2022-03-23 AU AU2022253965A patent/AU2022253965A1/en active Pending
- 2022-03-23 WO PCT/JP2022/013405 patent/WO2022215518A1/ja active Application Filing
- 2022-03-23 KR KR1020237030807A patent/KR20230167022A/ko unknown
- 2022-03-23 JP JP2023512918A patent/JPWO2022215518A1/ja active Pending
- 2022-03-23 CN CN202280024801.4A patent/CN117083684A/zh active Pending
- 2022-03-23 CA CA3208800A patent/CA3208800A1/en active Pending
- 2022-03-28 TW TW111111528A patent/TW202248116A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118801A1 (ja) | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
WO2014196442A1 (ja) | 2013-06-07 | 2014-12-11 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
JP2017045613A (ja) * | 2015-08-26 | 2017-03-02 | 出光興産株式会社 | 硫化物固体電解質及びその製造方法 |
WO2018173939A1 (ja) | 2017-03-22 | 2018-09-27 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
JP2020027781A (ja) * | 2018-08-16 | 2020-02-20 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
Non-Patent Citations (3)
Title |
---|
J. AM. CHEM. SOC., vol. 135, 2013, pages 15694 - 15697 |
JOURNAL OF POWER SOURCES, vol. 396, 2018, pages 824 - 830 |
NANO ENERGY, vol. 67, January 2020 (2020-01-01), pages 104252 |
Also Published As
Publication number | Publication date |
---|---|
EP4321481A1 (en) | 2024-02-14 |
US20240194937A1 (en) | 2024-06-13 |
AU2022253965A1 (en) | 2023-08-03 |
BR112023015205A2 (pt) | 2023-10-17 |
KR20230167022A (ko) | 2023-12-07 |
JPWO2022215518A1 (ja) | 2022-10-13 |
CN117083684A (zh) | 2023-11-17 |
CA3208800A1 (en) | 2022-10-13 |
TW202248116A (zh) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7308147B2 (ja) | Lgps系固体電解質の製造方法 | |
JP7294334B2 (ja) | Lgps系固体電解質および製造方法 | |
JP7107087B2 (ja) | Lgps系固体電解質の製造方法 | |
JP6996553B2 (ja) | Lgps系固体電解質の製造方法 | |
JP7513014B2 (ja) | 硫化物系固体電解質の製造方法 | |
JP7119753B2 (ja) | Lgps系固体電解質の製造方法 | |
WO2022215518A1 (ja) | Lgps系固体電解質の製造方法 | |
KR102714666B1 (ko) | Lgps계 고체 전해질 및 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22784503 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023512918 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3208800 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317051033 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2022253965 Country of ref document: AU Date of ref document: 20220323 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023015205 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280024801.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18285423 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 112023015205 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230728 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022784503 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022784503 Country of ref document: EP Effective date: 20231107 |