WO2017099410A1 - 열가소성 수지 조성물 및 성형품 - Google Patents

열가소성 수지 조성물 및 성형품 Download PDF

Info

Publication number
WO2017099410A1
WO2017099410A1 PCT/KR2016/013917 KR2016013917W WO2017099410A1 WO 2017099410 A1 WO2017099410 A1 WO 2017099410A1 KR 2016013917 W KR2016013917 W KR 2016013917W WO 2017099410 A1 WO2017099410 A1 WO 2017099410A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
weight
compound
graft copolymer
Prior art date
Application number
PCT/KR2016/013917
Other languages
English (en)
French (fr)
Inventor
김서화
김성룡
김태훈
이주형
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2017536575A priority Critical patent/JP6441485B2/ja
Priority to CN202210137591.1A priority patent/CN114456512A/zh
Priority to CN201680007785.2A priority patent/CN107207824A/zh
Priority to EP16873275.8A priority patent/EP3228664B1/en
Priority to US15/542,847 priority patent/US10189984B2/en
Publication of WO2017099410A1 publication Critical patent/WO2017099410A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • F25D23/066Liners

Definitions

  • the present invention relates to thermoplastic resin compositions and molded articles, and more particularly to thermoplastic resins that provide higher levels of chemical resistance to foaming agents while providing equivalent impact strength, glossiness, and vacuum formability in refrigerator interior applications.
  • a composition and a molded article are related.
  • blowing agents have been used as reference blowing agents in the production of hard and soft polyurethane and isocyanate-based foams such as CFC (cyclofluorocarbon-based) such as CCl 3 F (CFC-11).
  • CFC cyclofluorocarbon-based
  • CFC-11 CCl 3 F
  • hydrogen having a relatively short life in the atmosphere such as CHCl 2 CF 3 (HCFC-123), CH 2 ClCHClF (HCFC-141b) -Containing chlorofluoroalkanes (HCFCs) have been proposed as alternative blowing agents.
  • the HCFCs compound also contains some chlorine, it has a relatively high Global Warming Potential (GWP) and Ozone Depletion Potential (ODP).
  • GWP Global Warming Potential
  • ODP Ozone Depletion Potential
  • HFCs non-chlorinated, partially-hydrogenated fluorocarbons
  • HCFs have a relatively high intrinsic thermal conductivity, i.e., low insulation, so that the CF 3 CH has improved insulation.
  • HFC-based blowing agents such as 2 CF 2 H (HFC-245fa) have been proposed.
  • HFC-based blowing agents such as HFC-134a and HFC-365 mfc, which have been recently developed, including HFC-245fa, still show a global warming index higher than a desired global warming index.
  • hydrocarbon blowing agents such as iso- and normal-pentane or cyclopentane have very low global warming potentials, but the thermal insulation efficiency is not only lower than that of the HFC-245fa blowing agent but also has flammability characteristics. .
  • Such foaming agents are used during polyurethane foaming to provide a urethane foam layer, and the polyurethane foam thus prepared may be used as a heat insulating material between the outer steel sheet and the inner resin molding in the refrigerator component material.
  • ABS resins acrylonitrile-butadiene-styrene resins
  • ABS resins acrylonitrile-butadiene-styrene resins
  • ABS resins for refrigerators are also more stringent in chemical resistance while maintaining the same or higher impact strength, gloss and vacuum formability. There is a difficulty in providing a thermoplastic resin composition having a compound.
  • Patent Document 1 KR 10-2000-0014170A
  • Patent Document 2 KR 10-2006-0076161A
  • the present invention provides a higher level of chemical resistance against foaming agents, especially recently developed environmentally friendly foaming agents, while providing equivalent impact strength, glossiness and vacuum formability in refrigerator inboard applications. It is an object to provide a thermoplastic resin composition which can be provided.
  • the present invention provides a diene graft copolymer greater than 0 to 35% by weight, acrylic graft copolymer greater than 0 to 30% by weight, and 35 to 85 weight of the copolymer of the vinyl cyanide compound and the aromatic vinyl compound To 100 parts by weight of the base resin containing%,
  • thermoplastic resin composition comprising a polyester-based elastomer having a melt index of 0.1 to 10 g / 10min (230 °C, 2.16kg) in more than 1 part by weight.
  • the present invention provides a molded article comprising the thermoplastic resin composition.
  • thermoplastic resin composition and a molded article comprising the same, which provide a higher level of chemical resistance to a blowing agent while providing an equivalent level of impact strength, glossiness, and vacuum formability in a refrigerator interior application.
  • the present inventors use an acrylic rubber in addition to the diene rubber as a component when the foam sheet made of a foaming agent having an ozone depletion index (ODP) of 0 is used as a foaming agent, and includes a specific polyester elastomer.
  • ODP ozone depletion index
  • the present invention has been completed on the basis of confirming that the foaming agent provides the same level of impact strength, glossiness and vacuum formability while achieving the stricter chemical resistance required.
  • thermoplastic resin composition according to the present invention in detail.
  • thermoplastic resin composition according to the present invention comprises more than 0 to 35% by weight of the diene graft copolymer, more than 0 to 30% by weight of the acrylic graft copolymer, and 35 to 85% by weight of the copolymer of the vinyl cyanide compound and the aromatic vinyl compound.
  • 100 parts by weight of the base resin to be included characterized in that it comprises more than 1 part by weight of a polyester-based elastomer having a melt index of 0.1 to 10 g / 10 min (230 °C, 2.16 kg).
  • the diene graft copolymer may include, for example, 30 to 70 wt% of a diene rubber polymer; And an aromatic vinyl compound and a total of 30 to 70% by weight of a vinyl cyan compound; and may be a graft polymerized copolymer, including impact strength, glossiness, and vacuum formability without affecting chemical resistance within the above range. It can provide an improved effect.
  • the diene graft copolymer may include, for example, 35 to 65 wt% of a diene rubber polymer; And an aromatic vinyl compound and a total of 35 to 65% by weight of a vinyl cyan compound; and graft polymerized copolymers.
  • the vinyl cyan compound may be included in an amount of 20 to 40 wt%, or 25 to 35 wt% based on 100 wt% of the total compound, and the impact within this range. It can provide the effect of improving the strength, glossiness and vacuum formability and chemical resistance.
  • the aromatic vinyl compound of the present disclosure may be, for example, one or more selected from the group consisting of styrene, ⁇ -methylstyrene, o-ethylstyrene, p-ethylstyrene, and vinyltoluene.
  • the vinyl cyan compound of the present disclosure may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, for example.
  • the diene rubbery polymer may be, for example, an average particle diameter of 0.2 to 0.4 ⁇ m, preferably 0.25 to 0.35 ⁇ m, which is effective for improving impact strength, glossiness, and vacuum formability and chemical resistance.
  • the diene rubber polymer is, for example, formed by polymerizing a conjugated diene compound, and the conjugated diene compound is, for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3- It may be at least one selected from the group consisting of butadiene, 1,3-pentadiene, and isoprene, preferably 1,3-butadiene.
  • the diene graft copolymer may be, for example, 5 to 35% by weight, or 10 to 35% by weight in 100% by weight of the base resin, and impact strength, glossiness and Vacuum formability can provide an improved effect.
  • the acrylic graft copolymer is, for example, 30 to 70% by weight of an acrylic rubbery polymer; And 30 to 70% by weight of the aromatic vinyl compound and the vinyl cyan compound in total. It may be a graft polymerized copolymer, and improves chemical resistance without affecting impact strength, gloss, and vacuum formability within the above range. Can provide the effect.
  • the acrylic graft copolymer may include, for example, 35 to 65 wt% of an acrylic rubbery polymer; And 35 to 65% by weight of the aromatic vinyl compound and the vinyl cyan compound in total.
  • the vinyl cyan compound may be included in an amount of 20 to 40% by weight, or 25 to 35% by weight based on 100% by weight of the total compound, and the impact within this range. It can provide the effect of improving the strength, glossiness and vacuum formability and chemical resistance.
  • the acrylic rubber polymer may have an average particle diameter of 0.3 to 0.6 ⁇ m, and preferably 0.35 to 0.55 ⁇ m, which is effective in improving impact strength, glossiness, vacuum formability, and chemical resistance.
  • the acrylic rubber polymer is, for example, formed by polymerizing an acrylate monomer.
  • the acrylic monomer is, for example, an alkyl acrylate having 2 to 8 carbon atoms. Specific examples include methyl acrylate, ethyl acrylate, propyl acrylate, and isopropyl acrylate.
  • the acrylic graft copolymer may be, for example, 5 to 30% by weight, or 5 to 20% by weight in 100% by weight of the basic resin, within this range without affecting the impact strength and vacuum formability and gloss
  • the chemical property can provide an improved effect.
  • the copolymer of the vinyl cyanide compound and the aromatic vinyl compound may be, for example, a copolymer polymerized including 55 to 95% by weight of an aromatic vinyl compound and 5 to 45% by weight of a vinyl cyan compound, and as a matrix resin within this range. It can provide a role of improving the moldability required for processing the product and the chemical resistance and rigidity required for the product application.
  • the copolymer of the vinyl cyanide compound and the aromatic vinyl compound may be a polymer copolymerized including 60 to 90 wt% of the aromatic vinyl compound and 10 to 40 wt% of the vinyl cyan compound.
  • the copolymer of the vinyl cyanide compound and the aromatic vinyl compound may be, for example, a bulk polymer, an emulsion polymer, or a suspension polymer.
  • the vinyl cyanide compound-aromatic vinyl compound copolymer may be, for example, 35 to 85% by weight, or 38 to 80% by weight in 100% by weight of the base resin, without affecting the impact strength and gloss within this range
  • the chemical property can provide an improved effect.
  • the polyester-based elastomer is not limited thereto, but is a solid-phase polymerized resin prepared by melt polymerization from an aromatic dicarboxylic acid or its ester-forming derivative, aliphatic diol and polyalkylene oxide, and has a Shore hardness.
  • 0.1 g / 10 min to 10 g / 10 min measured in g when the melt index (MI) is 35 to 55 D, or 40 to 50 D, and the melt index (MI) is measured at 10 minutes when the load is 2.16 kg at 230 ° C. according to ASTM D1238.
  • it is 1 g / 10min-10 g / 10min, and there exists an effect of improving chemical resistance, without affecting extrusion processing and vacuum moldability within the said range.
  • the aromatic dicarboxylic acid may be, for example, terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, and 1,4-cyclohexane dicarboxylic acid. It may be at least one selected from the group consisting of acid and the like.
  • the ester forming derivative of the aromatic dicarboxylic acid is for example selected from the group consisting of dimethyl terephthalate, dimethyl isophthalate, 2,6-dimethyl naphthalene dicarboxylate, dimethyl 1,4-cyclohexane dicarboxylate, and the like. It may be one or more, preferably dimethyl terephthalate.
  • the aromatic dicarboxylic acid or its ester-forming derivative may be included in an amount of 25 to 65% by weight based on the total weight of the polyester-based elastomer, for example, preferably contained in 35 to 65% by weight, the reaction balance within this range It is excellent and the reaction proceeds smoothly.
  • the aliphatic diol may be a diol having a molecular weight of 300 g / mol or less, and specific examples thereof may include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentane.
  • thermoplastic polyester elastomer It may be at least one selected from the group consisting of diol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and the like, preferably 1,4-butanediol, with respect to the total weight of the thermoplastic polyester elastomer It may be included in 20 to 40% by weight, preferably contained in 2 to 35% by weight, the reaction is excellent in this range, the reaction proceeds smoothly.
  • the polyalkylene oxide constitutes a soft soft segment with aliphatic polyether, and specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol, copolymer of ethylene oxide and propylene oxide, and polypropylene. It may be at least one selected from the group consisting of ethylene oxide adpolymers of glycols and copolymers of ethylene oxide and tetrahydrofuran, and is preferably polytetramethylene glycol.
  • the polyalkylene oxide may be included in an amount of 10 to 50% by weight, preferably 15 to 45% by weight, and less than 10% by weight, based on the total weight of the thermoplastic polyester-based elastomer.
  • the hardness of the ester-based elastomer is too high, there is a problem in flexibility, and if it exceeds 50% by weight, there is a problem in the heat resistance and compatibility of the thermoplastic polyester-based elastomer produced.
  • the polytetramethylene glycol preferably has a number average molecular weight of 600 to 3,000 g / mol, and more preferably about 2,000 g / mol. Within this range, the effect of obtaining stable polymerization reactivity and physical properties of the polymerization copolymer have.
  • the hardness of the elastomer is generally represented by Shore hardness (Shore D), it can be determined by the content of the polyalkylene oxide.
  • a branching agent or the like may be used when preparing the polymerization, and when the elastomer is used, the melt viscosity and the melt tension of the prepared elastomer may be increased.
  • the branching agent may be, for example, glycerol, pentaerythritol, trimellitic anhydride, trimellitic acid, trimethylol propane, neopentyl glycol, or the like. It may be at least one selected from the group consisting of, preferably trimellitic anhydride, for example, may be included in 0.05 to 0.1% by weight relative to the total weight of the thermoplastic polyester-based elastomer, when the elastomer is less than 0.05% by weight It is difficult to describe an increase in the melt viscosity of the polymer, and if it exceeds 0.1% by weight, the degree of polymerization of the elastomer produced may be excessively increased, making it difficult to control the melt polymerization reaction and discharge the produced resin.
  • the melt polymerization is not particularly limited in the case of the conventional melt polymerization that can be used in the production of thermoplastic polyester-based elastomer, and as a specific example, titanium as a catalyst for the starting material consisting of aromatic dicarboxylic acid, aliphatic diol and polyalkylene oxide After the butoxide was added, a transesterification reaction was carried out at 140 to 215 ° C. for about 120 minutes to form a BHBT (Bis (4-Hydroxy Butyl) Terephthalate) oligomer, and then titanium titanium butoxide was added to the oligomer.
  • BHBT Bis (4-Hydroxy Butyl) Terephthalate
  • the solid phase polymerization is a thermoplastic polyester elastomer prepared by the melt polymerization into a solid phase polymerization reactor and then gradually depressurized by high vacuum under an inert air flow at approximately 140 to 200 °C and the melt index (MFI) according to ASTM D1238 is 15 Highly viscous thermoplastic polyester elastomer, polymerized for 10 to 24 hours until g / 10min (230 ° C, 2.16kg) or less, preferably 10 g / 10min (230 ° C, 2.16kg) or less Can be prepared.
  • MFI melt index
  • the solid phase polymerization reactor may be a vessel vacuum dryer or the like connected with a rotatable high vacuum pump, and the inert air stream may be a nitrogen air stream or the like.
  • the polyalkylene oxide may be, for example, poly (tetramethylene ether) glycol, molecular weight of 600 to 3,000 g / mol, or polypropylene glycol terminally capped with ethylene oxide, and molecular weight of 2,000 to It is preferably 3,000 g / mol, it is possible to describe the appropriate polymerization reactivity and physical properties within this range.
  • KEYFLEX BT 2140D LG Chemistry, DSC Melting Point 198 ° C, Hardness Shore A 95, Shore D 43, and the like may be used in commercially available products.
  • the polyester-based elastomer may be included in an amount of more than 1 part by weight, more than 1 to 20 parts by weight, 1 to 10 parts by weight, or 3 to 10 parts by weight based on 100 parts by weight of the base resin, and a foaming agent within this range, In particular, it can provide the effect of maintaining the surface gloss, impact strength and vacuum formability while providing improved chemical resistance to the environmentally friendly blowing agent.
  • thermoplastic resin composition may include, for example, antibacterial agents, heat stabilizers, antioxidants, mold release agents, light stabilizers, inorganic additives, surfactants, coupling agents, plasticizers, compatibilizers, lubricants, antistatic agents, colorants, pigments, dyes, flame retardants, flame retardant aids, It may further comprise one or more selected from the group consisting of anti-drip agent, weathering agent, ultraviolet absorber and sunscreen.
  • thermoplastic resin composition of the present disclosure may be used as a substrate of a polyurethane foam sheet, for example, wherein the polyurethane foam sheet includes, for example, a fluoroalkene compound having 2 to 6 carbon atoms and a global warming index (GWP) of 7 It may be a sheet foamed with a foaming agent of less than and having an Ozone Depletion Index (ODP) of zero or mixed or used alone.
  • the mixed blowing agent may be 141b, 245fa, cyclopentene, and the like, which are conventionally used.
  • the blowing agent may be one containing a fluoroalkene compound having 3 to 5 carbon atoms as another example, it is preferable that the blowing agent containing a compound having the formula (1).
  • X is a C 1 , C 2 , C 3 , C 4 or C 5 unsaturated, substituted or unsubstituted radical, each R is independently Cl, F, Br or H, and z is 1 to 3)
  • the compound having Formula 1 may have at least four halogen substituents, and at least three of them may be F.
  • the compound having Formula 1 has 3 to 5 fluoro substituents, and the other substituents are preferably propene, butene, pentene and hexene, with or without the substituents.
  • HFO-1233zd and HFO-1234ze refer to 1-chloro-3,3,3-trifluoropropene and 1,3,3,3, -tetrafluoropropene, respectively, regardless of the form of cis or trans. Used to refer.
  • HFO-1233zd refers to cis HFO-1233zd, trans HFO-1233zd and all combinations thereof
  • HFO-1234ze refers to cis HFO-1234ze, trans HFO-1234ze and all combinations thereof.
  • the HFO-1233zd is, for example, a liquid foaming agent having a global warming index (GWP) of less than 7 and an ozone depletion index (ODP) of about 0, an atmospheric life of about 26 days, and a boiling point of about 19 ° C.
  • GWP global warming index
  • ODP ozone depletion index
  • the HFO-1234ze Is a gaseous blowing agent with a global warming index (GWP) of less than 6, an ozone depletion index (ODP) of zero, an atmospheric life of about 14 days and a boiling point of about -19 ° C.
  • the butene is preferably fluorochlorobutene.
  • the blowing agent of the present disclosure may further include an HFCs foaming agent having 1 to 4 carbon atoms as necessary.
  • the HFCs blowing agent is, for example, difluoromethane (HFC-32), fluoroethane (HFC-161), difluoroethane (HFC-152), trifluoroethane (HFC-143), tetrafluoroethane ( HFC-134), pentafluoroethane (HFC-125), pentafluoropropane (HFC-245), hexafluoropropane (HFC-236), heptafluoropropane (HFC-227ea), pentafluorobutane ( HFC-365), hexafluorobutane (HFC-356) and isomers thereof.
  • thermoplastic resin composition of the present disclosure includes, for example, a fluoroalkene compound having 2 to 6 carbon atoms, immersed in a foaming agent having a global warming index (GWP) of 1 and an ozone depletion index (ODP) of approximately 0, and elapsed 20 hr at -40 ° C.
  • GWP global warming index
  • ODP ozone depletion index
  • the observed surface crack incidence may be zero (0%).
  • thermoplastic resin composition of the present disclosure may have, for example, an Izod impact strength (ASTM D256) of more than 20 kgf.cm/cm, or more than 20 and less than or equal to 40 kgf.cm/cm.
  • ASTM D256 Izod impact strength
  • thermoplastic resin composition of the present disclosure may be, for example, a high temperature tensile strength (measured at 150 ° C.), which is an index of vacuum formability, of more than 4.5 kgf / cm 2 , or more than 4.5 and less than 5.0 kgf / cm 2 .
  • the thermoplastic resin composition may, for example, firstly mix raw material components in a mixer or a super mixer, and then input the raw material components into one of various compounding processing equipment such as a twin screw extruder, single screw extruder, roll mill, or kneader, or quantitatively adjust the raw material components according to the input ratio.
  • a kneader such as a kneader, and melt-kneaded at a temperature range of 200 to 300 °C to provide an extruded product of the desired form, or to obtain a pellet and the pellet is put into an extrusion machine to give the extruded product Can provide.
  • the pellet may be dehumidified or hot-air dried, followed by injection molding, and the injection molding may be provided.
  • thermoplastic resin composition the molded article containing the above-mentioned thermoplastic resin composition.
  • the molded article may be an extruded sheet, and may be usefully used in various fields, for example, processed into a sheet form such as a refrigerator inner extrusion sheet, a refrigerator door sheet, a general door, and the like.
  • the average particle diameter was measured using Nicomp370HPL by the dynamic laser light scattering method.
  • Each obtained specimen was prepared by injection molding, and then the injection specimen was placed on a curved jig of 0.7% strain, immersed in a solution of Honeywel's blowing agent HFO-1233zd (trade name Solstice LBA), and the surface cracked after 20hr at -40 ° C. Was observed visually.
  • HFO-1233zd trade name Solstice LBA
  • Each of the obtained specimens was prepared by injection molding specimens for measurement (thickness 1/4 "), and then measured according to the ASTM D256 method.
  • Each obtained specimen was molded at 230 ° C. in a sheet shape by a single screw extruder connected by a T die, and then the specimens were prepared and measured at an angle of 60 degrees according to the ASTM D2457 method.
  • the melt index of the polyester-based elastomer was measured at 2.16 kg load at 230 ° C. according to ASTM D1238, and expressed as the weight (g) of the polymer melted for 10 minutes.
  • Each obtained specimen was injected into a size of 100 mm x 100 mm x 3.2 mm through injection, and then the injection specimen was cut and prepared to have a total length of 51 mm, a total width of 15 mm, and a measuring area of 6.5 mm. .
  • the measured conditions of the prepared specimens were maintained for 15 minutes at a temperature of 150 °C and then measured the high temperature tensile strength at a rate of 200 mm / min, where the high tensile strength indicates excellent vacuum formability.
  • the molded article obtained from the thermoplastic resin composition is environmentally friendly while providing an equivalent level of impact strength, glossiness, and vacuum forming in the refrigerator inner application. It was found that the results provide a higher level of chemical resistance to the blowing agent.
  • Example 1 The same process as in Example 1 was repeated except that 20 parts by weight of (D) polyester elastomer was used in Example 1.
  • the surface crack incidence was 0% as No crack
  • the surface gloss (60 degree) was 75
  • the Izod impact strength was 33 kgf.cm/cm
  • the high temperature tensile strength was 4.9 kgf / cm 2.
  • the surface gloss was poor as compared with Examples 1 to 3.
  • the present inventors use an acrylic rubber in addition to the diene rubber as a component when the foam sheet made of the foaming agent having an ozone depletion index (ODP) of 0 is used as a foaming agent, and includes a specific polyester elastomer.
  • ODP ozone depletion index

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 수지 조성물 및 성형품에 관한 것이다. 본 발명에 따르면 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공성형성을 제공하면서도 발포제에 대하여 보다 높은 수준의 내화학성을 제공하는 열가소성 수지 조성물 및 성형품을 제공하는 효과가 있다.

Description

열가소성 수지 조성물 및 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2015년 12월 10일자 한국 특허 출원 제10-2015-0175538호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물 및 성형품에 관한 것으로, 보다 상세하게는 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공성형성을 제공하면서도 발포제에 대하여 보다 높은 수준의 내화학성을 제공하는 열가소성 수지 조성물 및 성형품에 관한 것이다.
종래 발포제로서 CCl3F(CFC-11)와 같은 CFC(시클로플루오로카본계)가 경질 및 연질 폴리우레탄 및 이소시아네이트-기초 발포체의 제조에 기준 발포제로 사용되어 왔다. 그러나, 상기 물질의 대기 중 방출로 인하여 성층권에서 오존층 손상으로 인하여 사용이 금지되었고, 이에 CHCl2CF3(HCFC-123), CH2ClCHClF(HCFC-141b)와 같은 대기 중에서 비교적 짧은 수명을 갖는 수소-함유 클로로플루오로알칸(HCFCs)가 대체 발포제로 제안되었다. 그러나, 상기 HCFCs 화합물 또한 염소를 일부 함유하므로 비교적 높은 지구온난화지수(GWP: Global Warming Potential)와 오존고갈지수(ODP: Ozone Depletion Potential)를 갖는다.
이에 HCFCs 화합물을 대체할 수 있는 발포제로서 비-염소화, 부분-수소화된 플루오로탄소(HFCs)이 제안되었으나, HCFs는 상대적으로 높은 고유 열전도성, 즉 낮은 절연성 문제가 있어 절연성이 개선된 CF3CH2CF2H(HFC-245fa) 등의 HFC계 발포제가 제안되었다. 그러나, HFC-245fa을 포함하여 최근 개발된 HFC-134a, HFC-365 mfc 등의 HFC계 발포제들은 여전히 원하는 지구 온난화 지수보다는 높은 지구 온난화 지수를 나타내는 단점이 있다.
이밖에 이소- 및 노르말-펜탄, 혹은 시클로펜탄과 같은 탄화수소 발포제의 경우 매우 낮은 지구 온난화 지수를 나타내지만 열 절연 효율이 일례로 HFC-245fa 발포제에 의한 열 절연 효율 대비 낮을 뿐 아니라 가연성의 특성을 갖는다.
상기와 같은 발포제들은 우레탄 발포층을 제공하도록 폴리우레탄 발포시 사용되며, 이렇게 제조된 폴리우레탄 발포체는 냉장고 부품소재에서 외부 철판과 내부 수지 성형물 사이에 단열재로 사용될 수 있다.
상기 내부 수지 성형물로는 가공성, 성형성, 내충격성, 강도 및 광택성등이 우수하여 각종 전기전자 및 잡화 부품에 널리 적용되는 아크릴로니트릴-부타디엔-스티렌 수지(이하 ABS 수지라 함)를 사용할 수 있는데, 상술한 발포제들에 의해 변질되지 않는 우수한 내화학성을 갖추어야 제품 제조 및 사용 도중 크랙 등의 불량 발생을 억제할 수 있다.
이에 ABS 수지의 내화학성을 개선하도록, ABS 수지에 포함된 아크릴로니트릴 함량을 높이거나 수지의 분자량을 높이거나, 부타디엔 고무 함량을 높이거나 혹은 고무평균 입경이 큰 제품을 사용하거나 아크릴레이트계 고무를 사용하는 등 다양한 방식이 시도되었지만, 새로운 친환경 특성을 갖고 발포효율이 개선된 발포제의 개발에 따라 냉장고 내상용 ABS 수지 또한 동등 이상의 충격강도, 광택도와 진공 성형성 등을 유지하면서 보다 엄격한 수준의 내화학성을 갖는 열가소성 수지 조성물의 제공에는 어려움이 있다.
〔선행기술문헌〕
〔특허문헌〕
(특허문헌 1) KR 10-2000-0014170A
(특허문헌 2) KR 10-2006-0076161A
본 발명은 이러한 종래 기술의 문제점을 극복하기 위해, 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공 성형성을 제공하면서도 발포제, 특히 최근 개발된 친환경 발포제에 대하여 보다 높은 수준의 내화학성을 제공할 수 있는 열가소성 수지 조성물을 제공하는 것을 목적으로 한다.
또한 본 발명은 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공 성형성을 제공하면서도 발포제에 대하여 보다 높은 수준의 내화학성을 제공할 수 있는 성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 디엔계 그라프트 공중합체 0 초과 내지 35 중량%, 아크릴계 그라프트 공중합체 0 초과 내지 30 중량%, 및 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체 35 내지 85 중량%를 포함하는 기본 수지 100 중량부에,
용융지수가 0.1 내지 10 g/10min (230℃, 2.16kg)인 폴리에스터계 엘라스토머를 1 초과 중량부로 포함하는 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
또한, 본 발명은 상기 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 제공한다.
본 발명에 따르면, 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공 성형성을 제공하면서도 발포제에 대하여 더 높은 수준의 내화학성을 제공하는 열가소성 수지 조성물 및 이를 포함하는 성형품을 제공하는 효과가 있다.
이하 본 발명을 상세하게 설명한다.
본 발명자들은 발포제로서 오존고갈지수(ODP)가 0인 발포제로 제조된 발포시트에 대하여 내상 기재로 적용시 성분으로 디엔계 고무 이외에 아크릴계 고무를 혼합 사용하고, 특정 폴리에스터계 엘라스토머를 포함하는 경우 상기 발포제가 요구하는 보다 엄격한 수준의 내화학성을 달성하면서 동등 수준의 충격강도, 광택도 및 진공 성형성을 제공하는 것을 확인하여 이를 토대로 본 발명을 완성하게 되었다.
본 발명에 의한 열가소성 수지 조성물을 상세하게 살펴보면 다음과 같다.
본 발명에 의한 열가소성 수지 조성물은 디엔계 그라프트 공중합체 0 초과 내지 35 중량%, 아크릴계 그라프트 공중합체 0 초과 내지 30 중량%, 및 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체 35 내지 85 중량%를 포함하는 기본 수지 100 중량부에, 용융지수가 0.1 내지 10 g/10min (230℃, 2.16kg)인 폴리에스터계 엘라스토머를 1 초과 중량부로 포함하는 것을 특징으로 한다.
상기 디엔계 그라프트 공중합체는 일례로 디엔계 고무질 중합체 30 내지 70 중량%; 및 방향족 비닐 화합물 및 비닐시안 화합물 총 30 내지 70 중량%;를 포함하여 그라프트 중합된 공중합체일 수 있고, 상기 범위 내에서 내화학성에 영향을 미치지 않으면서 충격강도, 광택도 및 진공 성형성이 개선된 효과를 제공할 수 있다.
상기 디엔계 그라프트 공중합체는 다른 예로 디엔계 고무질 중합체 35 내지 65 중량%; 및 방향족 비닐 화합물 및 비닐시안 화합물 총 35 내지 65 중량%;를 포함하여 그라프트 중합된 공중합체일 수 있다.
상기 방향족 비닐 화합물과 비닐시안 화합물(이하 화합물이라 함) 중 비닐시안 화합물은 화합물 총 100 중량%에 대하여 일례로 20 내지 40 중량%, 혹은 25 내지 35 중량%로 포함될 수 있고, 이 범위 내에서 충격강도, 광택도 및 진공 성형성과 내화학성을 개선하는 효과를 제공할 수 있다.
본 기재의 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, o-에틸스티렌, p-에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 기재의 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 디엔계 고무질 중합체는 일례로, 평균입경이 0.2 내지 0.4㎛일 수 있고, 바람직하게는 0.25 내지 0.35 ㎛인 것이 충격강도, 광택도 및 진공 성형성과 내화학성 개선에 효과적이다.
상기 디엔계 고무질 중합체는 일례로 공액디엔 화합물을 중합하여 형성된 것으로, 상기 공액디엔 화합물은 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 및 이소프렌으로 이루어진 그룹으로부터 선택된 1종 이상일 수 있고, 바람직하게는 1,3-부타디엔이다.
상기 디엔계 그라프트 공중합체는 일례로 기본 수지 100 중량% 중 5 내지 35 중량%, 혹은 10 내지 35 중량%일 수 있고, 이 범위 내에서 내화학성에 영향을 미치지 않으면서 충격강도, 광택도 및 진공 성형성이 개선된 효과를 제공할 수 있다.
상기 아크릴계 그라프트 공중합체는 일례로 아크릴계 고무질 중합체 30 내지 70 중량%; 및 상기 방향족 비닐 화합물 및 비닐시안 화합물 총30 내지 70 중량%;를 포함하여 그라프트 중합된 공중합체일 수 있고, 상기 범위 내에서 충격강도와 광택, 진공 성형성에 영향을 미치지 않으면서 내화학성이 개선된 효과를 제공할 수 있다.
상기 아크릴계 그라프트 공중합체는 다른 예로 아크릴계 고무질 중합체 35 내지 65 중량%; 및 상기 방향족 비닐 화합물 및 비닐시안 화합물 총35 내지 65 중량%;를 포함하여 그라프트 중합된 공중합체인 것이 바람직하다.
상기 방향족 비닐 화합물과 비닐시안 화합물(이하 화합물이라 함) 중 비닐시안 화합물은 화합물 총 100 중량%에 대하여 일례로 20 내지 40 중량%, 또는 25 내지 35 중량%로 포함될 수 있고, 이 범위 내에서 충격강도, 광택도 및 진공 성형성과 내화학성을 개선하는 효과를 제공할 수 있다.
상기 아크릴계 고무질 중합체는 일례로, 평균입경이 0.3 내지 0.6㎛일 수 있고, 바람직하게는 0.35 내지 0.55 ㎛인 것이 충격강도, 광택도 및 진공 성형성과 내화학성 개선에 효과적이다.
상기 아크릴계 고무질 중합체는 일례로 아크릴레이트 단량체를 중합하여 형성된 것으로, 상기 아크릴 단량체는 일례로 탄소수 2 내지 8의 알킬아크릴레이트로서 구체적인 예로, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 이소프로필 아크릴레이트, t-부틸 아크릴레이트, n-부틸 아크릴레이트, n-옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 이소프로필 메타크릴레이트, t-부틸 메타크릴레이트, n-부틸 메타크릴레이트, n-옥틸 메타크릴레이트 및 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 n-부틸 아크릴레이트 또는 n-부틸 메타크릴레이트이다.
상기 아크릴계 그라프트 공중합체는 일례로 기본 수지 100 중량% 중 5 내지 30 중량%, 혹은 5 내지 20 중량%일 수 있고, 이 범위 내에서 충격강도와 진공 성형성 및 광택에 영향을 미치지 않으면서 내화학성이 개선된 효과를 제공할 수 있다.
*상기 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체는 일례로 방향족 비닐 화합물 55 내지 95 중량%와 비닐시안 화합물 5 내지 45중량%를 포함하여 중합된 공중합체일 수 있고, 이 범위 내에서 매트릭스 수지로서 제품 가공에 필요한 성형성 및 제품 적용에 필요한 내화학성 및 강성을 개선하는 역할을 제공할 수 있다.
상기 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체는 다른 예로 방향족 비닐 화합물 60 내지 90 중량%와 비닐시안 화합물 10 내지 40중량%를 포함하여 중합된 공중합체일 수 있다.
상기 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체는 일례로 괴상 중합체, 유화 중합체, 혹은 현탁 중합체일 수 있다.
상기 시안화 비닐 화합물-방향족 비닐 화합물 공중합체는 일례로 기본 수지 100 중량% 중 35 내지 85 중량%, 혹은 38 내지 80 중량%일 수 있고, 이 범위 내에서 충격강도와 광택에 영향을 미치지 않으면서 내화학성이 개선된 효과를 제공할 수 있다.
상기 폴리에스터계 엘라스토머는, 이에 한정하는 것은 아니나, 방향족 디카르복실산 또는 그 에스터 형성 유도체, 지방족 디올 및 폴리알킬렌 옥사이드로부터 용융중합으로 제조된 수지를 고상중합시킨 것으로, 쇼어(Shore) 경도가 35 내지 55D, 혹은 40 내지 50D이고, 용융지수(MI)가 ASTM D1238에 의거하여 230℃에서 하중이 2.16kg일 때 10분간 측정되는 무게를 g으로 측정하여 0.1 g/10min 내지 10 g/10min, 혹은 1 g/10min 내지 10 g/10min인 것으로, 상기 범위 내에서 압출 가공 및 진공 성형성에 영향을 미치지 않으면서 내화학성을 개선시키는 효과가 있다.
상기 방향족 디카르복실산은 일례로 테레프탈산(Terephthalic acid), 이소프탈산(Isophthalic acid), 2,6-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르보실산 및 1,4-사이클로헥산 디카르복실산 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 방향족 디카르복실산의 에스터 형성 유도체는 일례로 디메틸 테레프탈레이트, 디메틸 이소프탈레이트, 2,6-디메틸 나프탈렌 디카르복실레이트, 및 디메틸 1,4-사이클로헥산 디카르복실레이트 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 디메틸 테레프탈레이트이다.
상기 방향족 디카르복시산 또는 그 에스터 형성 유도체는 일례로 상기 폴리에스터계 엘라스토머 총 중량에 대하여 25 내지 65 중량%로 포함될 수 있고, 바람직하게는 35 내지 65 중량%로 포함되는 것인데, 이 범위 내에서 반응 밸런스가 우수하여 반응이 원활하게 진행된다.
상기 지방족 디올은 분자량이 300 g/mol 이하인 디올일 수 있고, 구체적인 예로 에탈렌 글리콜, 프로필렌 글리콜, 1,2-프로판디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올 및 1,4-사이클로헥산디메탄올 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 1,4-부탄디올일 수 있으며, 상기 열가소성 폴리에스테르 엘라스토머 총 중량에 대하여 20 내지 40 중량%로 포함될 수 있고, 바람직하게는 2 내지 35 중량%로 포함되는 것인데, 이 범위 내에서 반응 밸런스가 우수하여 반응이 원활하게 진행된다.
상기 폴리알킬렌 옥사이드는 일례로 지방족 폴리에테르로 연질 소프트 세그먼트를 구성하게 되는데, 구체적인 예로 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리테트라메틸렌 글리콜, 폴리헥사메틸렌 글리콜, 에틸렌 옥사이드와 프로필렌 옥사이드의 공중합체, 폴리프로필렌 글리콜의 에틸렌 옥사이드 부가중합체 및 에틸렌 옥사이드와 테트라하이드로퓨란의 공중합체 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 폴리테트라메틸렌 글리콜이다.
상기 폴리알킬렌 옥사이드는 일례로 상기 열가소성 폴리에스터계 엘라스토머 총 중량에 대하여 10 내지 50 중량%로 포함될 수 있고, 바람직하게는 15 내지 45 중량%로 포함되는 것인데, 10 중량% 미만인 경우 제조되는 열가소성 폴리에스터계 엘라스토머의 경도가 너무 높아 유연성에 문제가 있고, 50 중량%를 초과하는 경우 제조되는 열가소성 폴리에스터계 엘라스토머의 내열성 및 상용성 등에 문제가 있다.
상기 폴리테트라메틸렌 글리콜은 수평균 분자량이 600 내지3,000 g/mol인 것이 바람직하고, 보다 바람직하게는 약 2,000 g/mol인 것인데, 이 범위 내에서 중합 공중합체의 안정적인 중합 반응성과 물성을 얻는 효과가 있다.
참고로, 상기 엘라스토머의 경도는 일반적으로 쇼어 경도(Shore D)로 나타내고, 상기 폴리알킬렌 옥사이드의 함량에 의해서 결정될 수 있다.
상기 엘라스토머는 중합 제조시 분지제 등이 사용될 수 있는데, 이를 사용하는 경우 제조되는 엘라스토머의 용융점도 및 용융장력이 높아질 수 있다.
상기 분지제는 일례로 글리세롤, 펜타에리스리톨(Pentaerythritol), 트리멜리틱 언하이드라이드(Trimellitic Anhydride), 트리멜리틱산(Trimellitic Acid), 트리메틸올 프로판(Trimethylol Propane) 및 네오펜틸 글리콜(Neopentyl Glycol) 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 트리멜리틱 언하이드라이드이며, 일례로 열가소성 폴리에스터계 엘라스토머 총 중량에 대하여 0.05 내지 0.1 중량%로 포함될 수 있는데, 0.05 중량% 미만인 경우 제조되는 엘라스토머의 용융점도의 상승을 기재하기 어렵고, 0.1 중량%를 초과하는 경우 제조되는 엘라스토머의 중합도가 지나치게 상승하여 용융중합 반응의 제어 및 생성된 수지의 토출이 어려워질 수 있다.
상기 용융중합은 열가소성 폴리에스터계 엘라스토머 제조시 사용될 수 있는 통상의 용융중합인 경우 특별히 제한되지 않고, 구체적인 일례로 방향조 디카르복실산, 지방족 디올 및 폴리알킬렌 옥사이드로 이루어진 출발 물질에 촉매인 티타늄 부톡사이드를 투입한 다음 140 내지 215℃에서 대략 120분 동안 에스테르 교환반응을 진행시켜 BHBT(Bis(4-Hydroxy Butyl) Terephthalate) 올리고머를 만들고, 이 만들어진 올리고머에 다시 촉매인 티타늄 부톡사이드를 투입한 후, 215 내지 245℃에서 760 torr에서 0.3 torr까지 단계적으로 감압하면서 ASTM D1238에 의한 용융지수(MFI)가 20 g/10min (230℃, 2.16kg)이 되는 시점까지(대략 120분간 반응) 축중합 반응을 진행시킨 다음, 질소압으로 반응기 내에서 생성물을 스트랜드 형태로 토출시키고, 이를 펠레타이징하여 최종적으로 열가소성 폴리에스터 엘라스토머를 펠렛 형태로 제조한다.
상기 고상중합은 상기 용융중합으로 제조된 열가소성 폴리에스터계 엘라스토머를 고상중합 반응기에 투입한 다음 대략 140 내지 200℃에서 불활성 기류 하에 고 진공으로 점진적으로 감압하며 ASTM D1238에 의한 용융지수(MFI)가 15 g/10min (230℃, 2.16kg) 이하, 바람직하게는 10 g/10min (230℃, 2.16kg) 이하가 될 때까지 10 내지 24 시간 동안 중합반응시킨 것으로, 고 점도화된 열가소성 폴리에스터계 엘라스토머를 제조할 수 있다.
상기 고상중합 반응기는 회전 가능한 고 진공 펌프가 연결된 베슬(vessel) 진공 건조기 등일 수 있고, 상기 불활성 기류는 질소 기류 등일 수 있다.
상기 폴리알킬렌 옥사이드는 일례로 폴리(테트라메틸렌 에테르)글리콜이고, 분자량이 600 내지 3,000 g/mol인 것, 혹은 말단이 에틸렌 옥사이드로 캡핑(capping)된 폴리프로필렌 글리콜일 수 있고, 분자량이 2,000 내지 3,000 g/mol인 것이 바람직한데, 이 범위 내에서 적절한 중합 반응성과 물성을 기재할 수 있다.
본 기재에 사용하는 상기 폴리에스터계 엘라스토머는 일례로 시판 제품 중 KEYFLEX BT 2140D (LG화학, DSC 녹는점 198℃, 경도 Shore A 95, Shore D 43) 등을 사용할 수 있다.
상기 폴리에스터계 엘라스토머는 일례로 상기 기본 수지 100 중량부에 대하여 1 초과 중량부, 1 초과 내지 20 중량부, 1 내지 10 중량부, 혹은 3 내지 10중량부로 포함될 수 있고, 이 범위 내에서 발포제, 특히 친환경 발포제에 대하여 개선된 내화학성을 제공하면서 표면광택과 충격강도 및 진공 성형성을 유지하는 효과를 제공할 수 있다.
상기 열가소성 수지 조성물은 일례로 항균제, 열안정제, 산화방지제, 이형제, 광안정제, 무기물 첨가제, 계면활성제, 커플링제, 가소제, 상용화제, 활제, 정전기방지제, 착색제, 안료, 염료, 난연제, 난연보조제, 적하방지제, 내후제, 자외선흡수제 및 자외선 차단제로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다.
본 기재의 상기 열가소성 수지 조성물은 일례로 폴리우레탄 발포시트의 기재로 사용될 수 있는 것으로, 여기서 폴리우레탄 발포시트는 일례로 탄소수 2 내지 6의 플루오로알켄 화합물을 포함하고 지구온난화지수(GWP)가 7 미만이고 오존고갈지수(ODP)가 0인 발포제가 혼합 혹은 단독 사용되어 발포된 시트일 수 있다. 여기서 혼합 발포제로는 종래 사용되던 141b, 245fa, 시클로펜텐 등일 수 있다.
상기 발포제는 다른 예로 탄소수 3 내지 5의 플루오로알켄 화합물을 포함하는 것일 수 있고, 하기 화학식 1을 갖는 화합물을 포함하는 발포제인 것이 바람직하다.
[식 1]
XCF2R3-Z
(상기 식에서, X는 C1, C2, C3, C4 혹은 C5 불포화, 치환 혹은 비치환 라디칼이고, R은 각각 독립적으로 Cl, F, Br 혹은 H이며, z는 1 내지 3이다)
일례로 상기 화학식 1을 갖는 화합물은 최소 4개의 할로겐 치환체를 갖고, 이중 최소 3개는 F일 수 있다.
다른 예로, 상기 화학식 1을 갖는 화합물은 3 내지 5개의 플루오로 치환체를 가지며, 다른 치환체는 존재하거나 존재하지 않는 프로펜, 부텐, 펜텐 및 헥센인 것이 바람직하다.
다른 예로, 상기 프로펜은 테트라플루오로프로펜 혹은 플루오로클로로프로펜인 것이 바람직하고, CF3CH=CHCl (HFO-1233zd) 혹은 CF3CH=CHF (HFO-1234ze)인 것이 보다 바람직하다.
상기 용어 HFO-1233zd, HFO-1234ze는 cis 혹은 trans의 형태와 무관하게 각각1-클로로-3,3,3-트리플루오로프로펜과 1,3,3,3,-테트라플루오로프로펜을 지칭하는 것으로 사용된다. 따라서 용어 HFO-1233zd는 cis HFO-1233zd, trans HFO-1233zd 및 이들의 모든 조합을 지칭하고, 용어 HFO-1234ze는 cis HFO-1234ze, trans HFO-1234ze 및 이들의 모든 조합을 지칭한다.
상기 HFO-1233zd는 일례로 지구온난화지수(GWP)가 7 미만이고 오존고갈지수(ODP)가 대략 0이고, 대기 중 수명이 약 26일이며 비점이 약19℃인 액상 발포제이고, 상기 HFO-1234ze는 지구온난화지수(GWP)가 6 미만이고, 오존고갈지수(ODP)가 0이고, 대기 중 수명이 약14일이며 비점이 약 -19℃인 기상 발포제이다.
다른 예로, 상기 부텐은 플루오로클로로부텐인 것이 바람직하다.
본 기재의 발포제는 필요에 따라 탄소수 1 내지 4인 HFCs발포제를 더 포함할 수 있다. 상기 HFCs 발포제는 일례로 디플루오로메탄(HFC-32), 플루오로에탄(HFC-161), 디플루오로에탄(HFC-152), 트리플루오로에탄(HFC-143), 테트라플루오로에탄(HFC-134), 펜타플루오로에탄(HFC-125), 펜타플루오로프로판(HFC-245), 헥사플루오로프로판(HFC-236), 헵타플루오로프로판(HFC-227ea), 펜타플루오로부탄(HFC-365), 헥사플루오로부탄(HFC-356) 및 이의 이성질체로 구성되는 그룹으로부터 1이상 선택될 수 있다.
본 기재의 열가소성 수지 조성물은 일례로 탄소수 2 내지 6의 플루오로알켄 화합물을 포함하고 지구온난화지수(GWP)가 1이고 오존고갈지수(ODP)가 대략 0인 발포제에 침지하고 -40℃에서 20hr 경과후 관찰한 표면 크랙 발생율이 제로(0%)일 수 있다.
본 기재의 상기 열가소성 수지 조성물은 일례로 아이조드 충격강도(ASTM D256)가 20 초과 kgf.cm/cm, 또는 20초과 내지 40 이하 kgf.cm/cm일 수 있다.
본 기재의 상기 열가소성 수지 조성물은 일례로 진공 성형성의 지표가 되는 고온 인장강도(150 ℃ 측정치)가 4.5 초과 kgf/cm2, 또는 4.5초과 내지 5.0 이하 kgf/cm2일 수 있다.
상기 열가소성 수지 조성물은 일례로 원료 성분들을 믹서 혹은 슈퍼믹서에서 일차 혼합한 다음 이축 압출기, 일축 압출기, 롤밀, 또는 니더 등 다양한 배합 가공기기 중 하나에 투입하거나 원료 성분들을 투입 비율에 맞추어 정량으로 이축 압출기, 니더 등의 배합 기기 중 하나에 투입하고, 200 내지 300 ℃의 온도구간에서 용융 혼련하여 원하는 형태의 압출 성형 제품을 제공하거나, 펠렛을 수득하고 이 펠렛을 다시 압출 성형 기기에 투입하여 압출 제품을 제공할 수 있다. 필요에 따라서 상기 펠렛을 제습 건조 혹은 열풍 건조한 다음 사출 가공하고 사출 성형품으로 제공할 수 있다.
본 발명에 따르면, 상술한 열가소성 수지 조성물을 포함하는 성형품을 제공한다.
상기 성형품은 압출시트일 수 있고, 일례로 냉장고 내상용 압출시트, 냉장고 도어용 시트, 일반 도어 등 시트 형태로 가공되는 여러 분야에서 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1 내지 3, 비교예 1 내지 4
하기 표 1에 나타낸 성분들을 그 기재된 함량으로 슈퍼 믹서에 투입하고 이축 압출기를 이용하여 230 ℃ 하에 용융 혼련한 다음 압출 가공하여 펠렛을 수득하고, 물성 테스트 시편으로 사용하였다.
하기 표 1 내 물질
(A) 부타디엔계 그라프트 공중합체: 평균 입경 0.2 내지 0.4 ㎛ (LG 화학 DP270 제품)
(B) 아크릴계 그라프트 공중합체: 평균 입경 0.3 내지 0.6 ㎛ (LG 화학 SA927 제품)
(C) 시안화 비닐-방향족 비닐계 공중합체(SAN 수지): 97HC(LG 화학)
(D) 폴리에스터계 엘라스토머(Thermoplastic Polyseter elastomer):
(D1) KEYFLEX BT 2140D (LG화학), MI 5 g/10min (230℃, 2.16 kg), 경도 Shore A 95, Shore D 43
(D2) KEYFLEX BT 1045D (LG화학), MI 25 g/10min (230℃, 2.16 kg), 경도 Shore A 95, Shore D 42
상기 평균 입경은 다이나믹 레이져라이트 스케터링 방법으로 Nicomp370HPL을 이용하여 측정하였다.
[시험예]
상기 실시예 1 내지 3 및 비교예 1 내지 4에서 수득한 시편의 물성을 하기의 방법으로 측정하여, 그 결과를 하기의 표 1에 나타내었다.
물성 측정 방법
<내화학시험-변형 ESCR 측정>
각각 수득한 시편을 사출을 통해 측정용 시편을 제작한 다음 0.7% 스트레인의 굴곡 지그에 사출 시편을 걸고 Honeywel사의 발포제HFO-1233zd(제품명 Solstice LBA) 용액에 침지하고 -40 ℃하에 20hr 경과 후 표면 크랙의 유무를 육안 관찰하였다.
<아이조드 충격강도>
각각 수득한 시편을 사출을 통해 측정용 시편(두께 1/4")을 제작한 다음 ASTM D256 방법에 따라 측정하였다.
<표면 광택>
각각 수득한 시편을 T 다이가 연결된 단축 압출기로 시트 형상으로 230℃에서 성형하여 시편을 제작한 다음 ASTM D2457 방법에 따라 60도 각도에서 측정하였다.
<용융지수>
폴리에스터계 엘라스토머의 용융지수는 ASTM D1238에 따라 230℃에서 2.16㎏ 하중으로 측정하며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
<고온 인장 강도>
각각 수득한 시편을 사출을 통해 100 mm x 100 mm x 3.2 mm의 크기로 사출한 후에 이 사출 시편을 총 길이 51 mm, 총 넓이 15 mm, 측정 부위의 넓이 6.5 mm가 되도록 시편을 커팅하여 준비하였다. 준비한 시편의 측정 조건은 온도 150 ℃에서 15분간 유지한 다음 200 mm/min의 속도로 고온 인장강도를 측정하였고, 이때 인장강도가 높으면 진공성형성이 우수한 것을 나타낸다.
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4
(A)* 20 20 20 20 30 0 20
(B)* 10 10 20 10 0 30 10
(C)* 70 70 60 70 70 70 70
(D1)** 5 10 5 0 5 5 0
(D2)** 0 0 0 0 0 0 5
ESCR No crack No crack No crack Crack Crack No crack No crack
표면광택(60도) 94 92 92 94 94 89 87
아이조드충격강도(kgf.cm/cm) 30 32 35 29 32 20 27
고온 인장강도(kgf/cm2) 4.6 4.8 4.9 4.5 4.3 4.9 3.8
** : * 3종 합 100 중량부에 기초한 중량부
상기 표 1에서 보듯이, 본 발명에 따라 제조된 실시예 1 내지 3의 경우, 열가소성 수지 조성물로부터 수득된 성형품은 냉장고 내상 용도에 있어 동등 수준의 충격강도, 광택도 및 진공성형성을 제공하면서도 친환경 발포제에 대하여 보다 높은 수준의 내화학성을 제공하는 결과를 확인할 수 있었다.
반면, 비교예 1 내지 4의 경우, 광택도, 충격강도 및 진공성형성이 열악한 것을 확인할 수 있었다.
추가 실험예 1
상기 실시예 1에서 (D) 폴리에스터 엘라스토머를 20 중량부 사용한 것을 제외하고는 실시예 1과 동일한 공정을 반복하였다.
내화학성-변형 ESCR 측정 결과, No crack으로서 표면 크랙 발생율이 0%이었고, 표면 광택(60도)는 75이었고, 아이조드 충격강도는 33 kgf.cm/cm이고, 고온 인장강도는 4.9 kgf/cm2으로서 실시예 1 내지 3 대비 표면 광택 이 불량한 것을 확인하였다.
이로부터 본 발명자들은 발포제로서 오존고갈지수(ODP)가 0인 발포제로 제조된 발포시트에 대하여 내상 기재로 적용시 성분으로 디엔계 고무 이외에 아크릴계 고무를 혼합 사용하고, 특정 폴리에스터계 엘라스토머를 포함하는 경우 상기 발포제가 요구하는 보다 엄격한 수준의 내화학성을 달성하면서 동등 수준의 충격강도, 광택도와 진공성형성을 제공하는 열가소성 수지 조성물을 구현할 수 있음을 확인할 수 있었다.

Claims (17)

  1. 디엔계 그라프트 공중합체 0 초과 내지 35 중량%, 아크릴계 그라프트 공중합체 0 초과 내지 30 중량%, 및 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체 35 내지 85 중량%를 포함하는 기본 수지 100 중량부에,
    용융지수가 0.1 내지 10 g/10min (230℃, 2.16kg)인 폴리에스터계 엘라스토머를 1 초과 중량부로 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서,
    상기 디엔계 그라프트 공중합체는 디엔계 고무질 중합체 30 내지 70 중량%; 및 방향족 비닐 화합물 및 비닐시안 화합물 총 30 내지 70 중량%;를 포함하여 그라프트 중합된 공중합체이고,
    상기 화합물 중 비닐시안 화합물은 화합물 총 100 중량%에 대하여 20 내지 40 중량%로 포함되는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제2항에 있어서,
    상기 디엔계 고무질 중합체는 평균입경이 0.2 내지 0.4㎛인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항에 있어서,
    상기 아크릴계 그라프트 공중합체는 아크릴계 고무질 중합체 30 내지 70 중량%; 및 상기 방향족 비닐 화합물 및 비닐시안 화합물 총30 내지 70 중량%;를 포함하여 그라프트 중합된 공중합체이고,
    상기 화합물 중 비닐시안 화합물은 화합물 총100 중량%에 대하여 20 내지 40 중량%로 포함되는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제4항에 있어서,
    상기 아크릴계 그라프트 공중합체는 평균 입경이 0.3 내지 0.6㎛인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항에 있어서,
    상기 아크릴계 그라프트 공중합체는 상기 기본 수지 100 중량% 중 5 내지 30 중량%인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 시안화 비닐 화합물과 방향족 비닐 화합물의 공중합체는 방향족 비닐 화합물 55 내지 95 중량%와 비닐시안 화합물 5 내지 45중량%를 포함하여 중합된 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 폴리에스터계 엘라스토머는 방향족 디카르복시산 또는 그 에스터 형성 유도체, 지방족 디올 및 폴리알킬렌 옥사이드의 용융중합으로 제조된 수지를 고상 중합시킨 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 폴리에스터계 엘라스토머는 Shore D 경도가 35 내지 55인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항에 있어서,
    상기 폴리에스터계 엘라스토머는 상기 기본 수지 100 중량부에 대하여 1 초과 내지 20이하 중량부인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항에 있어서,
    상기 열가소성 수지 조성물은 폴리우레탄 발포시트의 기재로 사용되는 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제11항에 있어서,
    상기 폴리우레탄 발포시트는 탄소수 2 내지 6의 플루오로알켄 화합물을 포함하고 지구온난화지수(GWP)가 7 미만인 발포제로 발포된 폴리우레탄 시트인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제1항에 있어서,
    상기 열가소성 수지 조성물은 탄소수 2 내지 6의 플루오로알켄 화합물을 포함하고 지구온난화지수(GWP)가 7미만인 발포제에 침지하고 -40℃에서 20hr 경과후 관찰한 표면 크랙 발생율이 0%인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제1항에 있어서,
    상기 열가소성 수지 조성물은 아이조드 충격강도가 20 초과 kgf.cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  15. 제1항에 있어서,
    상기 열가소성 수지 조성물은 고온 인장강도(150 ℃ 측정치)가 4.5 초과 kgf/cm2인 것을 특징으로 하는 열가소성 수지 조성물.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품.
  17. 제16항에 있어서,
    상기 성형품은 내상용 압출시트인 것을 특징으로 하는 성형품.
PCT/KR2016/013917 2015-12-10 2016-11-30 열가소성 수지 조성물 및 성형품 WO2017099410A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017536575A JP6441485B2 (ja) 2015-12-10 2016-11-30 熱可塑性樹脂組成物及び成形品
CN202210137591.1A CN114456512A (zh) 2015-12-10 2016-11-30 热塑性树脂组合物和模制品
CN201680007785.2A CN107207824A (zh) 2015-12-10 2016-11-30 热塑性树脂组合物和模制品
EP16873275.8A EP3228664B1 (en) 2015-12-10 2016-11-30 Thermoplastic resin composition and molded product
US15/542,847 US10189984B2 (en) 2015-12-10 2016-11-30 Thermoplastic resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0175538 2015-12-10
KR1020150175538A KR101912985B1 (ko) 2015-12-10 2015-12-10 열가소성 수지 조성물 및 성형품

Publications (1)

Publication Number Publication Date
WO2017099410A1 true WO2017099410A1 (ko) 2017-06-15

Family

ID=59013357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013917 WO2017099410A1 (ko) 2015-12-10 2016-11-30 열가소성 수지 조성물 및 성형품

Country Status (6)

Country Link
US (1) US10189984B2 (ko)
EP (1) EP3228664B1 (ko)
JP (1) JP6441485B2 (ko)
KR (1) KR101912985B1 (ko)
CN (2) CN107207824A (ko)
WO (1) WO2017099410A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519725A (ja) * 2017-11-09 2020-07-02 エルジー・ケム・リミテッド 熱可塑性樹脂組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139386A1 (ko) * 2018-01-10 2019-07-18 주식회사 엘지화학 열가소성 수지 조성물
KR102295658B1 (ko) * 2018-01-10 2021-08-31 주식회사 엘지화학 열가소성 수지 조성물
KR102298295B1 (ko) 2018-10-31 2021-09-07 주식회사 엘지화학 열가소성 수지 조성물
KR102490389B1 (ko) * 2018-12-19 2023-01-19 주식회사 엘지화학 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100232625B1 (ko) * 1997-08-30 1999-12-01 박병재 내약품성 및 내열성을 가지는 스티렌계 수지 조성물
KR20000014170A (ko) 1998-08-18 2000-03-06 성재갑 일반물성, 가공성 및 내 hcfc 성이 우수한 열가소성 수지조성물
KR20060076161A (ko) 2004-12-28 2006-07-04 제일모직주식회사 환경응력 저항성이 우수한 냉장고용 열가소성 수지 조성물
KR20130075793A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 외관 및 착색성이 우수한 열가소성 수지 조성물
KR20140099609A (ko) * 2013-02-04 2014-08-13 제일모직주식회사 외관품질과 대전방지성이 우수한 열가소성 수지 조성물
KR101506370B1 (ko) * 2012-05-24 2015-04-06 주식회사 엘지화학 시트성형용 열가소성 폴리에스테르 엘라스토머 복합수지 조성물
KR20150045160A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 난연성 수지 조성물

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996269A (en) * 1987-03-13 1991-02-26 The Goodyear Tire & Rubber Company Polyester composition which is particularly suitable for use in thermoforming thin walled articles
WO1992000351A1 (en) * 1990-06-25 1992-01-09 Sumitomo Naugatuck Co., Ltd. Thermoplastic resin composition
JP2921075B2 (ja) * 1990-09-26 1999-07-19 宇部サイコン株式会社 混合樹脂組成物
JPH0517540A (ja) * 1991-05-29 1993-01-26 Japan Synthetic Rubber Co Ltd 成形材料
JPH0517658A (ja) * 1991-07-15 1993-01-26 Japan Synthetic Rubber Co Ltd 成形材料
EP0741165B1 (en) * 1994-11-11 2003-03-05 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thermoplastic resin composition and automotive trim parts
JPH09303950A (ja) * 1996-05-15 1997-11-28 Sumika A B S Latex Kk 耐フロン性に優れた冷蔵庫ドアキャップ成形品
KR100371521B1 (ko) * 1997-12-15 2003-04-11 제일모직주식회사 유동성이우수한내HCFC141b성수지조성물
JPH11293085A (ja) * 1998-02-27 1999-10-26 Qimei Ind Co Ltd スチレン系樹脂組成物
JP2000147716A (ja) * 1998-11-13 2000-05-26 Fuji Photo Film Co Ltd 写真感光材料包装用射出成形品及び写真感光材料包装体
JP2001081279A (ja) * 1999-07-09 2001-03-27 Toray Ind Inc 熱可塑性樹脂組成物およびシート成形品
KR20010100240A (ko) 2000-03-23 2001-11-14 히라이 가쯔히꼬 열가소성 수지 조성물 및 그것으로 이루어진 압출성형품
US6448342B2 (en) * 2000-04-21 2002-09-10 Techno Polymer Co., Ltd. Transparent butadiene-based rubber-reinforced resin and composition containing the same
WO2006003972A1 (ja) * 2004-06-30 2006-01-12 Zeon Corporation 熱可塑性エラストマー組成物及びその成形品
KR100638433B1 (ko) * 2004-10-12 2006-10-24 주식회사 엘지화학 내 약품성이 우수한 스티렌계 열 가소성 수지 조성물
US7718733B2 (en) * 2004-12-20 2010-05-18 Sabic Innovative Plastics Ip B.V. Optically clear polycarbonate polyester compositions
KR100645260B1 (ko) 2005-11-25 2006-11-14 제일모직주식회사 내화학성 및 전사성과 진공성형성이 우수한 냉장고용열가소성 수지 조성물
JP4873409B2 (ja) * 2006-07-03 2012-02-08 ダイセルポリマー株式会社 レーザーマーキング用熱可塑性樹脂組成物
JP5322916B2 (ja) * 2009-12-28 2013-10-23 花王株式会社 樹脂組成物
US8735490B2 (en) * 2009-12-30 2014-05-27 Cheil Industries Inc. Thermoplastic resin composition having improved impact strength and melt flow properties
US9051442B2 (en) 2011-02-21 2015-06-09 Honeywell International Inc. Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same
JP5927905B2 (ja) * 2011-12-26 2016-06-01 東ソー株式会社 ポリウレタンフォーム製造用の原料配合組成物
WO2014098123A1 (ja) * 2012-12-21 2014-06-26 日東電工株式会社 樹脂発泡体、及び、発泡シール材
KR101922246B1 (ko) * 2013-02-06 2018-11-26 에스케이케미칼 주식회사 내충격성 또는 내열성이 우수한 고분자 수지 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100232625B1 (ko) * 1997-08-30 1999-12-01 박병재 내약품성 및 내열성을 가지는 스티렌계 수지 조성물
KR20000014170A (ko) 1998-08-18 2000-03-06 성재갑 일반물성, 가공성 및 내 hcfc 성이 우수한 열가소성 수지조성물
KR20060076161A (ko) 2004-12-28 2006-07-04 제일모직주식회사 환경응력 저항성이 우수한 냉장고용 열가소성 수지 조성물
KR20130075793A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 외관 및 착색성이 우수한 열가소성 수지 조성물
KR101506370B1 (ko) * 2012-05-24 2015-04-06 주식회사 엘지화학 시트성형용 열가소성 폴리에스테르 엘라스토머 복합수지 조성물
KR20140099609A (ko) * 2013-02-04 2014-08-13 제일모직주식회사 외관품질과 대전방지성이 우수한 열가소성 수지 조성물
KR20150045160A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 난연성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228664A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519725A (ja) * 2017-11-09 2020-07-02 エルジー・ケム・リミテッド 熱可塑性樹脂組成物
US11401409B2 (en) 2017-11-09 2022-08-02 Lg Chem, Ltd. Thermoplastic resin composition

Also Published As

Publication number Publication date
US20180002522A1 (en) 2018-01-04
KR20170068726A (ko) 2017-06-20
US10189984B2 (en) 2019-01-29
EP3228664A4 (en) 2018-11-07
CN107207824A (zh) 2017-09-26
CN114456512A (zh) 2022-05-10
EP3228664B1 (en) 2020-01-29
JP6441485B2 (ja) 2018-12-19
JP2018507927A (ja) 2018-03-22
KR101912985B1 (ko) 2018-10-29
EP3228664A1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2017099410A1 (ko) 열가소성 수지 조성물 및 성형품
JP6058281B2 (ja) ポリエステル系エラストマー発泡体及び発泡部材
JP5143489B2 (ja) ポリエステル系エラストマー発泡体、及び該発泡体で構成された電気・電子機器用シール材
WO2013162184A1 (ko) 열가소성 폴리에스테르 엘라스토머 수지 조성물 및 이를 포함하는 성형품
JP2010280886A (ja) 難燃挙動性を有するポリエステル発泡体材料
Whelan Thermoplastic elastomers
JP5339857B2 (ja) 生分解性難燃ポリエステル発泡用樹脂組成物、及びそれより得られる発泡体、その成形体
JP2011178989A (ja) 熱可塑性樹脂発泡体、およびその製造方法
WO2021029546A1 (ko) 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
US20220289916A1 (en) Recycled polymer compositions and methods thereof
KR102183901B1 (ko) 스티렌계 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
JP2008112669A (ja) 被覆ワイヤーおよびその製造方法
KR100541061B1 (ko) 금속 질감을 갖는 냉장고 내상용 다층 쉬트
JP2905345B2 (ja) 断熱用箱体
WO2022092512A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
JP3013431B2 (ja) 混合樹脂組成物
WO2022240090A1 (ko) 생분해성 폼 조성물
JPH0413771A (ja) 樹脂組成物
JP3006073B2 (ja) 混合樹脂組成物
KR20200077874A (ko) 폴리에스테르 엘라스토머 수지의 제조방법 및 이를 포함하는 수지 조성물의 제조방법
JP3063146B2 (ja) 混合樹脂組成物
WO2022260353A1 (ko) 생분해성 폼 조성물
WO2023063710A1 (ko) 생분해성 폼 조성물
WO2022240084A1 (ko) 생분해성 폼 조성물
KR20220120900A (ko) 연질 친환경 접착필름

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016873275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017536575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542847

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE