WO2022240084A1 - 생분해성 폼 조성물 - Google Patents

생분해성 폼 조성물 Download PDF

Info

Publication number
WO2022240084A1
WO2022240084A1 PCT/KR2022/006543 KR2022006543W WO2022240084A1 WO 2022240084 A1 WO2022240084 A1 WO 2022240084A1 KR 2022006543 W KR2022006543 W KR 2022006543W WO 2022240084 A1 WO2022240084 A1 WO 2022240084A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
foam composition
biodegradable foam
crosslinkable
biodegradable
Prior art date
Application number
PCT/KR2022/006543
Other languages
English (en)
French (fr)
Inventor
이성율
Original Assignee
이성율
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이성율 filed Critical 이성율
Publication of WO2022240084A1 publication Critical patent/WO2022240084A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a biodegradable foam composition, and more particularly, to a biodegradable foam composition capable of having high biodegradation efficiency by replacing some of the components included in the foam with biodegradable materials.
  • biodegradability is imparted to the foam by replacing some of the components contained in the foam composition for forming the foam with a biodegradable material.
  • examples thereof include a technique of applying low-density polylactic acid (Korean Patent Registration No. 10-1650712) and a technique of applying an amorphous polylactic acid resin (Korean Patent Registration No. 10-1393811).
  • the present invention is to provide a biodegradable foam composition that can have high biodegradation efficiency by replacing some of the components included in the foam with biodegradable materials.
  • the present invention is a biodegradable foam composition, polyalkylene adipate terephthalate (PAAT) resin; peroxide crosslinkers; a polymer crosslinkable by the peroxide crosslinking agent; And it provides a biodegradable foam composition comprising a foaming agent.
  • PAAT polyalkylene adipate terephthalate
  • the polyalkylene adipate terephthalate may be polyethylene adipate terephthalate, polybutylene adipate terephthalate or polytrimethylene adipate terephthalate resin.
  • the crosslinkable polymer may be crosslinkable plastic or crosslinkable rubber.
  • the crosslinkable plastic may be a homopolymer or copolymer of ethylene.
  • the crosslinkable rubber is natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), styrene butadiene styrene rubber (SBS), nitrile-butadiene rubber (NBR), ethylene-propylene Rubber (EPM), ethylene-propylenediene monomer (EPDM) rubber, silicone rubber, styrene block copolymer (SBC), 1,2-polybutadiene (1,2-PB), chlorinated polyethylene (CPE), ethylene It may be at least one selected from the group consisting of vinyl acetate rubber (EVM) and thermoplastic polyurethane elastomer (TPU).
  • NR natural rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SBS styrene butadiene styrene rubber
  • NBR nitrile-butadiene rubber
  • EPM ethylene-propylene Rubber
  • the content ratio of the polyalkylene adipate terephthalate resin and the crosslinkable polymer may be 95:5 to 30:70 in weight ratio, respectively.
  • the biodegradable foam composition may further include a compatibilizer.
  • the compatibilizer may be maleic anhydride (MAH) grafted rubber.
  • the peroxide crosslinking agent is t-butylperoxyisopropylcarbonate, t-butylperoxylaurylate, t-butylperoxyacetate, di-t-butylperoxyphthalate, t-dibutyl Peroxymaleic acid, cyclohexanone peroxide, t-butylcumyl peroxide, t-butyl hydroperoxide, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene , methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di(benzoyloxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-butylper oxide, 2,5-dimethyl-2,5-(t-butylperoxy)-3-hexan
  • the blowing agent may be a physical blowing agent or a chemical blowing agent.
  • the biodegradable foam composition according to the present invention contains peroxide-crosslinkable rubber or/and peroxide-crosslinkable plastic and polyalkylene adipate terephthalate (PAAT), so it has excellent processability and moldability, and the foam produced therefrom It can exhibit high strength, durability, etc. while being excellent in biodegradability in nature.
  • PAAT polyalkylene adipate terephthalate
  • 'and/or' includes a combination of a plurality of recited items or any one of a plurality of recited items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • the present invention is a biodegradable foam composition, polyalkylene adipate terephthalate (PAAT) resin; peroxide crosslinkers; a polymer crosslinkable by the peroxide crosslinking agent; And it relates to a biodegradable foam composition comprising a foaming agent.
  • PAAT polyalkylene adipate terephthalate
  • the crosslinkable rubber is natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), styrene butadiene styrene rubber (SBS), nitrile-butadiene rubber (NBR), ethylene-propylene rubber (EPM), ethylene -Propylene diene monomer (EPDM) rubber, silicone rubber, styrene block copolymer (SBC), 1,2-polybutadiene (1,2-PB), chlorinated polyethylene (CPE), ethylene vinyl acetate rubber (EVM) And it may be at least one selected from the group consisting of thermoplastic polyurethane elastomer (TPU).
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SBS styrene butadiene styrene rubber
  • NBR nitrile-butadiene rubber
  • EPM ethylene-propylene rubber
  • EPDM
  • crosslinkable rubber itself is a low hardness region
  • the hardness of the mixture can be matched to the hardness of the rubber region.
  • cross-linking with PAAT can be achieved by cross-linking with peroxide.
  • All of the above-listed rubbers are peroxide crosslinkable rubbers and can be suitably used in the biodegradable foam composition of the present invention.
  • styrene butadiene rubber SBR
  • butadiene rubber BR
  • styrene butadiene styrene rubber SBS
  • EPDM ethylene -Propylene diene monomer
  • the styrene butadiene rubber is a rubber made of a copolymer of styrene and butadiene and is produced through emulsion polymerization or solution polymerization.
  • SBR styrene butadiene rubber
  • the physical properties can be adjusted according to the contents of styrene and butadiene, so it is possible to manufacture foams with various physical properties.
  • the content of styrene included in the SBR may be 20 to 30% by weight, and within the above range, it is possible to manufacture SBR having appropriate physical properties, but if it is out of the above range, the biodegradability produced using the SBR The physical properties of the foam composition may deteriorate.
  • the butadiene rubber (BR) is a rubber produced by polymerizing butadiene, and may exhibit various physical properties depending on the content of the Cis component.
  • a high-Cis butadiene rubber having high abrasion resistance and in the case of such a high-Cis butadiene rubber, it is more preferable to use a product having a Cis component content of 90% or more. If the content of the Cis component is less than 90%, it has high elasticity but may have low wear resistance, so it is also possible to mix and use two or more types of butadiene rubber to have an appropriate Cis component.
  • Styrene butadiene styrene rubber refers to a block copolymer obtained by polymerizing styrene and butadiene in an organic solvent, and is a thermoplastic elastomer having high elasticity without a vulcanization process and excellent deformation recovery in terms of molecular structure.
  • SBS is widely used in asphalt modifiers, adhesives, adhesives, etc., and recently, its use is increasing in products requiring high abrasion resistance such as shoe soles and tires. Products having various physical properties depending on the content of styrene, presence or absence of oil, viscosity, etc.
  • styrene content is within the above range, it has appropriate viscosity and elasticity and can be used as rubber. However, when it is out of the above range, polymerization cannot be performed or it has high hardness, making it difficult to use as rubber.
  • Ethylene-propylene diene monomer (EPDM) rubber is a rubber produced by polymerizing ethylene and propylene, and is known as a rubber with high durability against sunlight, especially ultraviolet rays and ozone.
  • EPDM rubber is known to have excellent preservation resistance, cold resistance, heat resistance, and solvent resistance, and is widely used in road paving materials, flooring materials, building interior and exterior materials, automobile interior and exterior materials, and heat-resistant materials.
  • the EPDM is mainly prepared by copolymerizing diene with ethylene propylene monomer (EPM) and then crosslinking sulfur, and various products are commercially sold according to the ratio of diene, but in the present invention, 3 to Preference is given to using EPDM containing 6% diene by weight.
  • EPM ethylene propylene monomer
  • the polyalkylene adipate terephthalate may have various chemical structures depending on the type of alkylene bonded thereto, but preferably the polyalkylene adipate terephthalate (PAAT) is polyethylene adipate terephthalate (PEAT), butylene adipate terephthalate (PBAT) or polytrimethylene adipate terephthalate (PTAT).
  • PAAT polyalkylene adipate terephthalate
  • PEAT polyethylene adipate terephthalate
  • PBAT butylene adipate terephthalate
  • PTAT polytrimethylene adipate terephthalate
  • PBAT polybutylene adipate terephthalate
  • PBAT polybutylene adipate terephthalate
  • the polybutylene adipate terephthalate (PBAT) resin is a resin having biodegradability and is a type of copolymer also called poly(butylene adipate-co-terephthalate). In the case of such PBAT, it is a type of polymer having the characteristics of both PBA and PBT that are conventionally used.
  • the PBAT may be represented by Formula 1 below.
  • the PBAT has excellent elasticity and toughness, and can modify the properties of the resin when mixed with other polymers.
  • the PBAT is known to have high toughness and high temperature resistance due to the flexible aliphatic chain and the rigid aromatic chain contained therein.
  • biodegradability due to the presence of an ester bond, it also has biodegradability, which may mean that it can be used as a reinforcing material for various polymer resins and at the same time impart biodegradability to polymer resins. Therefore, this PBAT is one of the most active materials for biodegradable plastic research and the best biodegradable materials for market application.
  • the PBAT resin of the present invention can be synthesized by methods common in the art. For example, it can be synthesized by the following steps:
  • 1,4-butanediol is reacted with terephthalic acid at 240°C to 260°C for 2 to 5 hours, adipic acid is added thereto to initiate an esterification reaction at 240°C to 260°C for 2 to 5 hours, and finally , a catalyst and a stabilizer are added thereto to proceed the polycondensation reaction at 240° C. to 260° C. for 3 to 5 hours, wherein the molar ratio of 1,4-butanediol to terephthalic acid is 3-5:1.
  • the content T% by weight of butylene terephthalate units in the PBAT resin is from 35% to 65% by weight.
  • the T% is less than 35% by weight, the obtained article is too soft and undesirable for use. not.
  • the T% exceeds 65% by weight, the product is too hard to use.
  • the content ratio of the crosslinkable polymer and the PAAT may be 95:5 to 30:70, preferably 73:27 to 35:65, and more preferably 70:30 to 40:60, respectively, in weight ratio. If the content of the PAAT is lower than the above, the meaning of biodegradability is lost, and if it is higher than the above, the function as a foam may disappear due to high hardness.
  • the crosslinkable polymer may be a crosslinkable plastic or a crosslinkable rubber.
  • the crosslinkable plastic may be a homopolymer or copolymer of ethylene.
  • the ethylene may form polyethylene through polymerization.
  • an ethylene homopolymer may be formed when the polymerization reaction is performed with ethylene alone, and an ethylene copolymer may be formed when the polymerization reaction is performed by mixing with other types of monomers.
  • the physical properties of the biodegradable foam can be adjusted by mixing with the PAAT to form a co-crosslinking.
  • the PAAT can be appropriately co-crosslinked with the crosslinkable rubber by using the peroxide crosslinking agent.
  • the peroxide crosslinking agent In the case of existing PAAT, there was a limitation in mixed use because it was incompatible with non-degradable resins.
  • co-crosslinking can be formed between the PAAT and crosslinkable rubber by using an additive peroxide crosslinking agent, so that they can be mixed and used, and biodegradable rubber having desired physical properties can be prepared. That is, by co-crosslinking by mixing the crosslinkable rubber and the PAAT, the physical properties of rubber that can be practically used can be made.
  • Non-limiting examples of the peroxide crosslinking agent include t-butylperoxyisopropylcarbonate, t-butylperoxylaurylate, t-butylperoxyacetate, di-t-butylperoxyphthalate, t-dibutylfer Oxymaleic acid, cyclohexanone peroxide, t-butylcumyl peroxide, t-butyl hydroperoxide, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, Methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di(benzoyloxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-butyl peroxide , 2,5-dimethyl-2,5-(t-butylperoxy
  • rubber such as isobutylene isoprene rubber (IIR) is a rubber containing isobutylene and is not crosslinked by a peroxide crosslinking agent, so it may be unsuitable for use as a crosslinkable rubber of the present invention.
  • IIR isobutylene isoprene rubber
  • the peroxide crosslinking agent may be used in an amount of 0.01 to 5 parts by weight, preferably 0.1 to 3 parts by weight, and more preferably 0.5 to 2 parts by weight, based on a total of 100 parts by weight of the crosslinkable rubber and the PAAT. If the content of the peroxide crosslinking agent is less than the above range, the crosslinking degree tends to be insufficient, and if it exceeds the above range, the crosslinking is excessive, resulting in low elongation, loss of function of the foam, and may not be advantageous in terms of cost versus effect.
  • various of the above biodegradable foam compositions necessarily include any and most blowing agents (also known as foaming agents or expanding agents) including gaseous materials, volatile liquids and chemical agents that break down into gases and other by-products.
  • the foaming agent is added to the biodegradable foam composition to generate a gas under a certain temperature and pressure time to produce a foam in which cells are formed, and a biodegradable foam can be formed by forming such a foam. can achieve weight reduction, cushioning, and cost reduction.
  • the blowing agent may include a physical blowing agent or a chemical blowing agent alone or in combination.
  • Physical foaming agent forms cells by phase change such as liquid volatilization or gas decomposition, and has the advantages of non-toxicity, odorless, thermal stability, low cost, and no solid residue, but the disadvantage of expensive equipment and equipment to use it there is
  • Examples of useful physical blowing agents may include inorganic blowing agents and organic blowing agents.
  • Suitable inorganic blowing agents may include carbon dioxide, nitrogen, argon, water, air, nitrogen and helium.
  • the organic blowing agent may include C1-9 aliphatic hydrocarbons, C1-3 aliphatic alcohols, and C1-4 halogenated aliphatic hydrocarbons.
  • the C1-9 aliphatic hydrocarbons may include methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, neopentane, and the like.
  • the C1-3 aliphatic alcohol may include methanol, ethanol, n-propanol, and isopropanol.
  • the C1-4 halogenated aliphatic hydrocarbons may include fluorocarbons, chlorocarbons and chlorofluorocarbons.
  • fluorocarbons include methyl fluoride, perfluoromethane, ethyl fluoride, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1, 1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoromethane (HFC-134), pentafluoroethane, difluoromethane, perfluoroethane, 2 2-difluoropropane, 1,1,1-trifluoropropane, perfluoropropane, dichloropropane, difluoropropane, perfluorobutane, and perfluorocyclobutane.
  • halogenated aliphatic hydrocarbon may be a partially halogenated aliphatic hydrocarbon, and specific examples thereof include methyl chloride, methylene chloride, ethyl chloride, 1,1,1-trichloroethane, 1,1-dichloro-1-fluoro Roethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), chlorodifluoromethane (HCFC-22), 1,1-dichloro-2,2,2-tri fluoroethane (HCFC-123) and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124).
  • the halogenated aliphatic hydrocarbon may be a fully halogenated aliphatic hydrocarbon, and specific examples thereof include trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), and trichlorotrifluoroethane (CFC-12). -113), 1,1,1-trifluoroethane, pentafluoroethane, dichlorotetrafluoroethane (CFC-114), chloroheptafluoropropane and dichlorohexafluoropropane.
  • CFC-11 trichloromonofluoromethane
  • CFC-12 dichlorodifluoromethane
  • CFC-12 trichlorotrifluoroethane
  • a chemical blowing agent generates a gas by a chemical reaction such as thermal decomposition or component reaction to form a cell. These gases are usually N 2 and CO 2 , which behave like physical blowing agents but carry residues from decomposition. Chemical blowing agents are classified as exothermic CBA and endothermic CBA. Exothermic CBA generates heat during decomposition and the main decomposition gas is N2. On the other hand, endothermic CBA absorbs heat during decomposition and the main decomposition gas is CO 2 .
  • the decomposition temperature If the decomposition temperature is too high, the low polymer melt strength at the foaming temperature will be lowered and not strong enough to maintain the bubble structure or prevent cell aggregation. If the decomposition temperature is too low, the polymer melt will stiffen and inhibit foam expansion. Another problem is that CBA decomposition residues and off-gases are compatible with polymers and processing systems.
  • the chemical blowing agent is azodicarbonamide (ADCA), azadiisobutyronitrile, benzenesulfonehydrazide, 4,4-oxybenzenesulfonyl semicarbazide, p-toluenesulfonyl semi-carbazide, barium azodica Boxylate, N,N'-dimethyl-N,N'-dinitrosoterephthalamide, dinitrosopentamethylenetetramine (DPT), p,p'-oxybisbenzenesulfonylhydrazide (OBSH), Azodiisobutyronitrile, benzenesulfonehydrazide, 4,4-oxybenzenesulfonyl-semicarbazide, p-toluenesulfonyl semicarbazide, barium azodicarboxylate, and trihydrazino triazine It may include, but is not limited thereto.
  • ADCA
  • an azo-based compound having a decomposition temperature of 130 to 210 ° C can be used as the blowing agent, and in general, when ADCA is thermally decomposed, the rate of gas generation is high, the amount of gas generated is large, self-extinguishing and non-toxic, so it is the most widely used blowing agent for general purpose to be.
  • a suitable decomposition temperature of the foaming agent may be 130 to 170° C. in consideration of the specific gravity of the foam composition and the processing process of the product using the present biodegradable foam composition in the future.
  • a kicker may be used to activate the foaming agent by lowering the foaming temperature of the chemical foaming agent as needed.
  • the kicker include polyols, urea, amines, salts, and metal compounds such as lead, zinc, and cadmium.
  • metal compounds such as lead, zinc, and cadmium.
  • pigments or fillers also perform this role.
  • the foaming agent is a physical foaming agent
  • the foaming agent is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the total of the crosslinkable rubber and the PAAT.
  • the foaming agent is a chemical foaming agent
  • the foaming agent is preferably used in an amount of 0.1 to 6 parts by weight based on the total 100 parts by weight of the crosslinkable rubber and the PAAT. If the amount used is less than the above range, the specific gravity may be greatly increased and the hardness may be excessively high, and if the amount exceeds the above range, the specific gravity may decrease and the strength of the product made of the biodegradable foam composition may decrease.
  • the decomposition temperature of the foaming agent is less than 150 ° C, premature foaming occurs during the manufacture of the biodegradable foam composition, and if it exceeds 210 ° C, it is difficult to decompose in the extruder and when the extruder cylinder temperature is increased a lot to decompose, the high Due to the temperature of the biodegradable foam composition, it may be difficult to form foam because the foaming gas leaks out.
  • the biodegradable foam composition described above may further include a compatibilizer.
  • the compatibilizing agent may increase physical properties by increasing miscibility between the crosslinkable polymer component and the PAAT component.
  • the compatibilizer may be rubber grafted with maleic anhydride (MAH). By grafting the maleic anhydride, mechanical properties of the biodegradable foam composition may be improved.
  • the grafting ratio of the maleic anhydride may be 1 to 10 parts by weight based on 100 parts by weight of the crosslinkable polymer. The performance of the compatibilizer is excellent in the above range.
  • the rubber component of the maleic anhydride-grafted rubber may be EPM, EPDM, silicone rubber, etc. having extremely low compatibility with PAAT.
  • the biodegradable foam composition according to one embodiment of the present invention may further include a filler.
  • the filler may be an inorganic filler or an organic filler.
  • As the inorganic filler talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, zinc oxide, Antimony trioxide, zeolite, hydrotalcite, metal fibers, metal whiskers, ceramic whiskers, potassium titanate, boron nitride, graphite, glass fibers, carbon fibers and the like can be used.
  • organic fillers include naturally occurring polymers such as starch, cellulose fine particles, wood flour, okara, rice husk, and wheat bran, and modified products thereof.
  • the fillers may be used as a single component or two or more fillers may be used in combination.
  • fillers having two or more sizes or physical properties may be mixed and used. Mixed use of such fillers can reduce the porosity of the fillers and impart new physical properties, and also can impart physical properties according to each filler to the foam at the same time.
  • the filler may be included in an amount of 30 parts by weight or less, for example, 5 to 30 parts by weight, based on 100 parts by weight of the total of the crosslinkable polymer and the PAAT. If the filler is included in less than 5 parts by weight, it is difficult to expect the effect (elasticity and strength improvement, etc.) by the filler, and if it exceeds 30 parts by weight, the proportion of the filler is relatively increased, resulting in poor durability or poor physical properties of PAAT. can
  • antioxidants may be further included in the composition, if necessary.
  • the antioxidant may be included in an amount of 0.1 to 5% by weight, preferably 1.0 to 5% by weight, based on the total amount of the composition.
  • the amount of the antioxidant is 0.1 to 5 weight It is preferable to limit within the range of %.
  • a foam may be formed by mixing with a mixer such as a banbury mixer, a kneader, or an open mill, and then forming a sheet and foaming with an open mill.
  • a mixer such as a banbury mixer, a kneader, or an open mill
  • biodegradable foam composition according to one embodiment of the present invention is another biodegradable plastic, poly (butylene succinate-co-butylene adipate) (PBSA), polyalkylene isosorbide adipate-co-terephthalate ( PAIAT), etc. can be compounded to adjust the physical properties, so that it can be processed into more eco-friendly and highly usable products.
  • PBSA poly (butylene succinate-co-butylene adipate)
  • PAIAT polyalkylene isosorbide adipate-co-terephthalate
  • the biodegradable foam composition according to the present invention contains peroxide crosslinkable rubber and PAAT (ex: PBAT) resin, so it has excellent processability, and a foam molded product manufactured therefrom can exhibit high strength and durability while having excellent biodegradability. .
  • the hardness of the foam prepared from the biodegradable foam composition according to the present invention is Shore C 40-80, preferably 45-70, tensile strength is 15 kg/cm2 or more, preferably 20-30 kg/cm2, elongation is 200 % or more preferably 250-300%, tear strength 8 kg/cm or more, preferably 10-20 kg/cm, rebound elasticity 40% or more, preferably 40-55%, abrasion resistance (DIN) 250 or less , preferably 200 or less.
  • the foam composition according to the present invention can be made into a foam having appropriate elasticity, but outside the above range, the properties of the foam may not be exhibited or durability may be poor, making it difficult to use.
  • the biodegradable foam composition according to the present invention may have a biodegradation rate of 35% by weight or more, preferably, 50% by weight or more after 6 months tested by the method of ISO 14855.
  • the test method is not regulated, so biodegradability can be tested using ISO 14855, which is a biodegradability test method for plastics.
  • the biodegradable foam composition of the present invention has a biodegradation rate of 35% by weight or more. can If the biodegradability is lower than the biodegradability, it may not be biodegradable even after a long period of time.
  • Rubber-1 SBR 1502 (Kumho Petrochemical)
  • Rubber-2 BR 01 (Kumho Petrochemical)
  • Rubber-3 SBS 3527 (manufactured by LCY)
  • Rubber-4 EPDM 4520 (made by DOW)
  • Rubber-5 Butyl 268 (Isobutylene Isoprene Rubber, manufactured by Exxon)
  • KEPA 1150 MAH grafted EPDM, manufactured by Kumho Polychem
  • Luperox F Di-(2-t-butylperoxyisopropyl)benzene, manufactured by ARKEMA
  • Foaming agent DX74M (Modified ADCA, decomposition temperature 140°C, gas volume 155cc/g, manufactured by Dongjin Semichem)
  • Rubber, PBAT, and compatibilizing agent were put in a kneader as shown in Table 1 and mixed at 100° C. for 10 minutes, and then a peroxide crosslinking agent and a foaming agent were added and mixed for 2 minutes. After mixing was completed, it was taken out of the kneader, made into a 5 mm thick sheet with an open mill, and then put into a specimen mold having a thickness of 10 mm. The specimen mold was subjected to compression molding at 185° C. for 5 minutes, and then exposed and foamed to the outside to obtain a specimen having a thickness of 16 mm.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Example 5 rubber-1 40 - - - - - - rubber-2 - 40 - - - - rubber-3 - - 40 - - - rubber-4 - - - 40 - 40 rubber-5 - - - - 40 - PBAT 60 60 60 60 60 60 compatibilizer - - - - - 5.0 Peroxide 0.7 0.5 0.7 1.0 2.0 1.0 blowing agent 3 3 3 3 3 3 3 3 Filler - - - - - - - - - -
  • Tensile strength measured according to ASTM D-412 after skiving the molded foam composition to a thickness of 3.0 mm. At this time, if the tensile strength was 20 kg/cm 2 or more, it was determined that the molded foam was suitable.
  • Biodegradability was indicated by the biodegradation rate after 6 months in ISO 14855. Until now, biodegradable foam has not existed, so there is no standard for biodegradable foam. In the case of biodegradable plastics, ISO 14855 is tested and biodegradation is certified when 60% by weight after 45 days and 90% by weight or more after 6 months are biodegraded. Here, 90% by weight biodegradation means that 90% by weight of plastic turns into carbon dioxide gas after 6 months.
  • biodegradable foam of the present invention does not biodegrade as much as biodegradable plastic, but 50% by weight of biodegradable rubber is decomposed in the ground and blown away as carbon dioxide gas, and the remaining 50% by weight is broken down into molecules and exists in the soil Although undecomposed parts remain, it almost restores the function of soil, so it is of sufficient value in itself.
  • the examples of the present invention were excellent in biodegradability and were suitable for use as biodegradable foam. Even in the case of Comparative Example, except for Comparative Example 1, it was found to have biodegradability. However, as shown in Table 3, in the case of the comparative example, since it appears to have physical properties that are not applicable to foam, it was determined that use as a biodegradable foam is impossible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

고무에 포함되는 성분의 일부를 생분해성 물질로 대체하여 높은 생분해 효율성을 가질 수 있는 생분해성 폼 조성물이 제공된다. 본 발명은 생분해성 폼 조성물로서, 폴리알킬렌 아디페이트 테레프탈레이트(PAAT) 수지; 과산화물 가교제; 상기 과산화물 가교제에 의해서 가교가 가능한 고분자; 및 발포제를 포함하는 생분해성 폼 조성물을 제공한다.

Description

생분해성 폼 조성물
본 발명은 생분해성 폼 조성물에 관한 것으로, 더욱 상세하게는 폼에 포함되는 성분의 일부를 생분해성 물질로 대체하여 높은 생분해 효율성을 가질 수 있는 생분해성 폼 조성물에 관한 것이다.
신발용 중창, 단열재, 포장재 등에는 다양한 종류의 폼들이 사용되고 있다. 그러나 이러한 폼들은 지구환경에 악영향을 미치기 때문에 이를 해결하기 위해 각 종 폼에 생분해성을 부여하는 방법이 다양하게 연구되고 있다.
구체적으로 폼을 형성하기 위한 폼 조성물에 함유되는 성분의 일부를 생분해성 물질로 대체하여 폼에 생분해성을 부여한 것이다. 그 예로는 저밀도 폴리락트산을 적용하는 기술(대한민국 등록특허 제10-1650712호), 비정질 폴리락트산 수지를 적용하는 기술(대한민국 등록특허 제10-1393811호) 등을 들 수 있다.
그러나 상기 기술들은 고경도의 경질 제품에 적합한 폴리락트산을 주 성분으로 하여 폼을 형성하는 것이기 때문에 형성된 폼의 용도가 아주 제한적인 문제점이 있다. 또한 상기 기술에 의해 얻어진 폼은 만족할 만한 수준의 생분해성을 구현하지 못하고 있다.
따라서 생분해성이 우수한 폼 조성물을 손쉬운 방법으로 발포시킬 수 있는 기술의 개발이 요구되고 있다.
전술한 문제를 해결하기 위하여, 본 발명은 폼에 포함되는 성분의 일부를 생분해성 물질로 대체하여 높은 생분해 효율성을 가질 수 있는 생분해성 폼 조성물을 제공하고자 한다.
상술한 문제를 해결하기 위해, 본 발명은 생분해성 폼 조성물로서, 폴리알킬렌 아디페이트 테레프탈레이트(PAAT) 수지; 과산화물 가교제; 상기 과산화물 가교제에 의해서 가교가 가능한 고분자; 및 발포제를 포함하는 생분해성 폼 조성물을 제공한다.
일 실시예에 있어서, 상기 폴리알킬렌 아디페이트 테레프탈레이트(PAAT)는 폴리에틸렌 아디페이트 테레프탈레이트, 폴리부틸렌 아디페이트 테레프탈레이트 또는 폴리트리메틸렌 아디페이트 테레프탈레이트 수지일 수 있다.
일 실시예에 있어서, 상기 가교가 가능한 고분자는 가교가 가능한 플라스틱 또는 가교가 가능한 고무일 수 있다.
일 실시예에 있어서, 상기 가교가 가능한 플라스틱은 에틸렌의 호모폴리머(Homopolymer) 또는 코폴리머(Copolymer)일 수 있다.
일 실시예에 있어서, 상기 가교가 가능한 고무는 천연 고무(NR), 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 스티렌 부타디엔 스티렌고무(SBS), 니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌 고무(EPM), 에틸렌-프로필렌디엔 모노머(EPDM) 고무, 실리콘(silicone) 고무, 스티렌 블록 공중합체(SBC), 1,2-폴리부타디엔(1,2-PB), 염소화폴리에틸렌(CPE), 에틸렌비닐아세테이트 고무(EVM), 및 열가소성 폴리우레탄 탄성체(TPU)로 이루어진 군 중에서 선택되는 1종 이상인 것일 수 있다.
일 실시예에 있어서, 상기 폴리알킬렌 아디페이트 테레프탈레이트 수지와 상기 가교가 가능한 고분자의 함량 비율이 중량비로 각각 95:5 내지 30:70일 수 있다.
일 실시예에 있어서, 상기 생분해성 폼 조성물은 상용화제를 추가로 포함할 수 있다.
일 실시예에 있어서, 상기 상용화제는 말레산 무수물(MAH)이 그라프팅된 고무일 수 있다.
일 실시예에 있어서, 상기 과산화물 가교제는 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸퍼옥시프탈레이트, t-디부틸퍼옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부틸히드로퍼옥사이드, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(벤조일옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-(t-부틸퍼옥시)-3-헥산, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 및 a,a'-비스(t-부틸퍼옥시)디이소프로필벤젠으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
일 실시예에 있어서, 상기 발포제는 물리적 발포제 또는 화학적 발포제일 수 있다.
본 발명에 따른 생분해성 폼 조성물은 과산화물 가교가 가능한 고무 또는/및 과산화물 가교가 가능한 플라스틱과, 폴리알킬렌 아디페이트 테레프탈레이트(PAAT)를 포함하기 때문에 가공성, 성형성이 우수하며, 이로 제조된 폼은 자연에서의 생분해성이 우수하면서도 높은 강도, 내구성 등을 나타낼 수 있다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다” 또는 “가지다”등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
본 명세서에 개시된 기술은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 기술의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다.
본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.
본 발명은 생분해성 폼 조성물로서, 폴리알킬렌 아디페이트 테레프탈레이트(PAAT) 수지; 과산화물 가교제; 상기 과산화물 가교제에 의해서 가교가 가능한 고분자; 및 발포제를 포함하는 생분해성 폼 조성물에 관한 것이다.
상기 가교가 가능한 고무는 천연 고무(NR), 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 스티렌 부타디엔 스티렌고무(SBS), 니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌 고무(EPM), 에틸렌-프로필렌 디엔 모노머(EPDM) 고무, 실리콘(silicone) 고무, 스티렌 블록 공중합체(SBC), 1,2-폴리부타디엔(1,2-PB), 염소화 폴리에틸렌(CPE), 에틸렌비닐아세테이트 고무(EVM) 및 열가소성 폴리우레탄탄성체(TPU)로 이루어진 군 중에서 선택되는 1종 이상일 수 있다. 상기 가교가 가능한 고무는 그 자체가 저경도의 영역이기 때문에 고경도의 PAAT와 혼합시 혼합물 경도를 고무영역의 경도에 맞출 수 있다. 특히 과산화물에 의해 가교됨으로써 PAAT와 공가교를 이룰 수 있다.
상기 열거된 고무들은 과산화물 가교 가능한 고무로서 모두 본 발명의 생분해성 폼 조성물에 적합하게 사용될 수 있으며, 예를 들어 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 스티렌 부타디엔 스티렌고무(SBS) 또는 에틸렌-프로필렌 디엔 모노머(EPDM) 고무 등이 범용성 및 가격을 고려하여 흔히 선택될 수 있다.
상기 스티렌 부타디엔 고무(SBR)는 스티렌과 부타디엔의 공중합체로 제조되는 고무로 유화중합 또는 용액중합을 통하여 제조되고 있다. 이 SBR의 경우 스티렌과 부타디엔의 함량에 따라 물성을 조절할 수 있어 다양한 물성을 가지는 폼의 제조가 가능하다. 본 발명의 경우 상기 SBR에 포함되는 스티렌의 함량은 20~30중량% 일 수 있으며, 상기 범위내에서는 적절한 물성을 가지는 SBR의 제조가 가능하지만 상기 범위를 벗어나는 경우 상기 SBR을 사용하여 제조되는 생분해성 폼 조성물의 물성이 떨어질 수 있다.
상기 부타디엔 고무(BR) 부타디엔을 중합하여 제조되는 고무로, Cis 성분의 함량에 따라 다양한 물성을 나타낼 수 있다. 본 발명의 경우 내마모성이 높은 하이Cis 부타디엔 고무를 사용하는 것이 바람직하며, 이러한 하이 Cis 부타디엔 고무의 경우 Cis성분의 함량이 90%이상인 제품을 사용하는 것이 더욱 바람직하다. 상기 Cis성분의 함량이 90%미만인 경우 높은 탄성을 가지고 있지만 내마모성이 떨어질 수 있으므로, 적절한 Cis성분을 가지도록 2종 이상의 부타디엔 고무를 혼합하여 사용하는 것도 가능하다.
스티렌 부타디엔 스티렌고무(SBS)는 스티렌과 부타디엔을 유기용매 내에서 중합한 블록 공중합체를 의미하는 것으로 분자구조상 가황공정 없이도 고탄성을 가지며, 변형 회복성이 우수한 열가소성 탄성체이다. 이러한 SBS는 아스팔트 개질제, 점착제, 접착제 등에 광범위하게 사용되고 있으며, 최근에는 신발창이나, 타이어와 같은 높은 내마모성이 요구되는 제품에 사용도 늘어나고 있다. 이러한 SBS는 스티렌의 함량, 오일의 유무, 점도 등에 따라 다양한 물성을 가지는 제품이 사용 및 시판되고 있으며, 본 발명의 경우 높은 내마모성을 가지는 제품을 사용하는 것이 바람직하다. 구체적으로 본 발명의 SBS는 스티렌 함량이 20~23중량%인 무오일 제품을 사용하는 것이 바람직하다. 상기 범위의 스티렌 함량을 가지는 경우 적절한 점도와 탄성을 가지고 있어 고무로서의 사용이 가능하지만, 상기 범위를 벗어나는 경우 중합을 수행할 수 없거나 높은 경도를 가지게 되어 고무로서의 사용이 어려울 수 있다.
에틸렌-프로필렌 디엔 모노머(EPDM)고무는 에틸렌과 프로필렌을 중합하여 제조되는 고무로, 햇빛 특히 자외선과 오존에 대한 내구성이 높은 고무로 알려져 있다. 이러한 EPDM고무의 경우 내보존성, 내한성, 내열성, 내용제성이 뛰어난 것으로 알려져 있어, 도로의 포장재, 바닥재, 건축 내외장재, 자동차용 내외장재, 내열재등으로 많은 사용이 이루어지고 있다. 상기 EPDM은 주로 에틸렌 프로필렌 모노머(EPM)에 디엔을 공중합시킨 다음, 유황가교하여 제조되고 있으며, 디엔의 비율에 따라 다양한 제품이 상업적으로 판매되고 있지만, 본 발명의 경우 높은 내구성 및 내마모성을 가지는 3~6중량%의 디엔을 포함하는 EPDM을 사용하는 것이 바람직하다.
상기 폴리알킬렌 아디페이트 테레프탈레이트는 결합되는 알킬렌의 종류에 따라 다양한 화학구조를 가질 수 있지만, 바람직하게는 상기 폴리알킬렌 아디페이트 테레프탈레이트(PAAT)는 폴리에틸렌 아디페이트 테레프탈레이트(PEAT), 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 또는 폴리트리메틸렌 아디페이트 테레프탈레이트(PTAT)일 수 있다. 특히 이중 상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)는 상업적으로 생산되어 판매되고 있으며, 높은 물성을 가지고 있으므로, 상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 사용하는 것이 더욱 바람직하다.
상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 수지는 생분해성을 가지는 수지로서, 폴리(부틸렌아디페이트-코-테레프탈레이트)라고도 불리는 코폴리머의 일종이다. 이러한 PBAT의 경우 기존에 사용되는 PBA 및 PBT 둘 모두의 특징을 가지는 고분자의 일종이다.
상기 PBAT는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2022006543-appb-I000001
상기 PBAT는 탄력성과 인성(toughness)이 우수하여, 다른 고분자와 혼합했을 때 수지의 특성을 개질할 수 있다.
또한 상기 PBAT는 가요성의 지방족 사슬 및 여기에 함유된 강성의 방향족 사슬로 인하여, 높은 강인성(toughness) 및 고온 내성을 가지는 것으로 알려져 있다. 또한 에스테르 결합의 존재로 인하여, 생분해성도 지니는데, 이는 다양한 고분자 수지의 보강재로 사용될 수 있음과 동시에 고분자 수지에 생분해성을 부여할 수 있다는 것을 의미할 수 있다. 따라서 이 PBAT는 생분해성 플라스틱 연구를 위한 가장 활성인 물질들 및 시장 적용을 위해 최상의 생분해성 물질들 중 하나이다.
본 발명의 PBAT 수지는 당해 분야에서 일반적인 방법에 의해 합성될 수 있다. 예를 들어, 하기 단계들에 의해 합성될 수 있다:
240℃ 내지 260℃에서 2 내지 5시간 동안 1,4-부탄디올을 테레프탈산과 반응시키고, 240℃ 내지 260℃에서 2 내지 5시간 동안 에스테르화 반응을 개시하기 위해 여기에 아디프산을 첨가하고, 마지막으로, 240℃ 내지 260℃에서 3 내지 5시간 동안 중축합 반응을 진행시키기 위해 여기에 촉매 및 안정화제를 첨가하며, 여기서, 1,4-부탄디올 대 테레프탈산의 몰비는 3-5:1이다.
여기서, PBAT 수지에서 부틸렌 테레프탈레이트 단위의 중량 기준 함량 T%는 35 중량% 내지 65 중량%이다, T%가 35 중량% 미만일 때, 얻어진 물품은 너무 연하고(soft), 사용하기에 바람직하지 않다. T%가 65 중량%를 초과할 때, 생성물은 너무 단단하여(hard) 사용하기 어렵다.
또한 상기 PBAT의 테레프탈레이트와 아디페이트는 몰비를 기준으로 6:4~5:5의 비로 공중합체를 구성하는 것이 바람직하며, 예를 들어 상기 화학식 1에서 n=0.56, m=0.44일 수 있다.
상기 가교가 가능한 고분자와 상기 PAAT의 함량 비율은 중량비로 각각 95:5 내지 30:70, 바람직하게는 73:27 내지 35:65, 더 바람직하게는 70:30 내지 40:60일 수 있다. 상기 PAAT의 함량이 상기보다 낮으면 생분해성의 의미가 없어지고, 상기보다 높으면 경도가 높아 폼으로서의 기능이 사라질 수 있다.
상기 가교가 가능한 고분자는 가교가 가능한 플라스틱 또는 가교가 가능한 고무일 수 있다.
그 구체적인 예로서 상기 가교가 가능한 플라스틱은 에틸렌의 호모폴리머(Homopolymer) 또는 코폴리머(Copolymer)일 수 있다.
상기 에틸렌은 중합반응을 통하여 폴리에틸렌을 형성할 수 있다. 이때 에틸렌 단독으로 중합반응을 수행하는 경우 에틸렌 호모폴리머를 형성할 수 있으며, 다른 종류의 모노머와 혼합되어 중합반응을 수행하는 경우 에틸렌 코폴리머를 형성할 수 있다. 이러한 에틸렌 호모폴리머 또는 코폴리머의 경우 상기 PAAT와 혼합되어 공가교를 형성하는 것으로 상기 생분해성 폼의 물성을 조절할 수 있다.
또한 상기 PAAT는 상기 과산화물 가교제를 사용함에 의하여 상기 가교가 가능한 고무와 적절히 공가교될 수 있다. 기존의 PAAT의 경우 비분해성 수지와 혼용성이 없어 혼합사용에 한계를 가지고 있었다. 하지만 본 발명의 경우 상가 과산화물 가교제를 사용하는 것으로 상기 PAAT와 가교가 가능한 고무 사이에 공가교가 형성될 수 있어 이를 혼합하여 사용할 수 있으며, 원하는 물성을 가지는 생분해성 고무를 제조하는 것이 가능하다. 즉 상기 가교가 가능한 고무와 상기 PAAT의 혼합에 의하여 공가교에 의하여 실용상 사용가능한 고무의 물성이 만들어질 수 있다.
상기 과산화물 가교제의 비제한적인 예는 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸퍼옥시프탈레이트, t-디부틸퍼옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부틸히드로퍼옥사이드, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(벤조일옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-(t-부틸퍼옥시)-3-헥산, n-부틸-4, 4-비스(t-부틸퍼옥시)발러레이트 및 a,a'-비스(t-부틸퍼옥시)디이소프로필벤젠으로 이루어진 군 중에서 선택되는 1종 이상일 수 있다.
한편, 예를 들어 이소부틸렌 이소프렌 고무(IIR)같은 고무는 이소부틸렌을 포함한 고무로서 과산화물 가교제에 의한 가교가 되지 않아 본 발명의 가교가 가능한 고무로는 사용이 부적합할 수 있다.
상기 과산화물 가교제는 상기 가교가 가능한 고무와 상기 PAAT를 합친 전체 100 중량부에 대하여 0.01 내지 5 중량부, 바람직하게는 0.1 내지 3 중량부, 보다 바람직하게는 0.5 내지 2 중량부일 수 있다. 상기 과산화물 가교제의 함량이 상기 범위보다 미만이면 가교도가 불충분하게 되기 쉽고, 상기 범위 초과이면 가교가 과도하게 이루어져 신장율이 낮아지고 폼의 기능을 상실할 수가 있으며 효과 대비 비용면에서 유리하지 않을 수 있다.
또한 다양한 상기 생분해성 폼 조성물에는 가스 및 다른 부산물로 분해되는 가스 재료, 휘발성 액체 및 화학작용제를 포함하는 임의의 공지된 대부분의 발포제(기포발생제 또는 팽창제로서 또한 공지됨)가 필수적으로 포함된다. 상기 발포제는 상기 생분해성 폼 조성물에 배합되어 일정 온도, 압력 시간 하에 가스를 발생시켜 셀이 형성된 발포체를 제조하기 위해서 첨가하는 것으로 이러한 발포체의 형성에 의해 생분해성 폼을 형성할 수 있으며 또한 이러한 폼 조성물의 경량화, 쿠션성, 원가 절감을 달성할 수 있다.
상기 발포제는 물리적 발포제 또는 화학적 발포제를 단독으로 또는 조합하여 포함할 수 있다. 물리적 발포제(PBA)는 액체 휘발이나 가스의 분해와 같은 상변화에 의하여 셀을 형성하며, 무독성, 무취, 열안정성, 저가 및 고형 잔사가 남지 않는 장점이 있지만 이를 사용하기 위한 장치 설비가 고가라는 단점이 있다.
유용한 물리적 발포제의 예는 무기 발포제 및 유기 발포제를 포함할 수 있다.
적절한 무기 발포제는 이산화탄소, 질소, 아르곤, 물, 공기, 질소 및 헬륨을 포함할 수 있다. 유기 발포제는 C1~9 지방족 탄화수소, C1~3 지방족 알코올, 및 C1~4 할로겐화 지방족 탄화수소를 포함할 수 있다.
상기 C1~9 지방족 탄화수소는 메탄, 에탄, 프로판, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 네오펜탄 등을 포함할 수 있다.
상기 C1~3 지방족 알코올은 메탄올, 에탄올, n-프로판올 및 이소프로판올을 포함할 수 있다.
상기 C1~4 할로겐화 지방족 탄화수소는 불화탄소, 염화탄소 및 염화불화탄소를 포함할 수 있다. 불화탄소의 구체적인 예로 메틸플루오라이드, 퍼플루오로메탄, 에틸 플루오라이드, 1,1-디플루오로에탄(HFC-152a), 1,1,1-트리플루오로에탄 (HFC-143a), 1,1,1,2-테트라플루오로에탄(HFC-134a), 1,1,2,2-테트라플루오로메탄 (HFC-134), 펜타플루오로에탄, 디플루오로메탄, 퍼플루오로에탄, 2,2-디플루오로프로판, 1,1,1-트리플루오로프로판, 퍼플루오로프로판, 디클로로프로판, 디플루오로프로판, 퍼플루오로부탄, 퍼플루오로사이클로부탄을 들 수 있다.
또한 상기 할로겐화 지방족 탄화수소는 부분 할로겐화(partially halogenated) 지방족 탄화수소일 수 있으며, 이의 구체적인 예는 메틸 클로라이드, 메틸렌 클로라이드, 에틸 클로라이드, 1,1,1-트리클로로에탄, 1,1-디클로로-1-플루오로에탄(HCFC-141b), 1-클로로-1,1-디플루오로에탄 (HCFC-142b), 클로로디플루오로메탄 (HCFC-22), 1,1-디클로로-2,2,2-트리플루오로에탄 (HCFC-123) 및 1-클로로-1,2,2,2-테트라플루오로에탄 (HCFC-124)일 수 있다.
또한 할로겐화 지방족 탄화수소는 완전 할로겐화(fully halogenated) 지방족 탄화수소일 수 있으며, 이의 구체적인 예로 트리클로로모노플루오로메탄 (CFC-11), 디클로로디플루오로메탄 (CFC-12), 트리클로로트리플루오로에탄(CFC-113), 1,1,1-트리플루오로에탄, 펜타플루오로에탄, 디클로로테트라플루오로에탄 (CFC-114), 클로로헵타플루오로프로판 및 디클로로헥사플루오로프로판을 들 수 있다.
화학적 발포제(CBA)는 열분해 또는 성분 반응과 같은 같은 화학적 반응에 의해 가스를 발생시켜 셀을 형성한다. 이러한 가스는 대개 N2 및 CO2이며 이들은 마치 물리적 발포제와 같이 거동하지만 분해과정에서 유래한 잔여물들을 수반한다. 화학적 발포제는 발열성 CBA와 흡열성 CBA로 분류된다. 발열성 CBA는 분해과정에서 열을 생성하며 주된 분해 가스는 N2이다. 반면 흡열성 CBA는 분해과정에서 열을 흡수하며 주된 분해 가스는 CO2이다.
생분해성 폼 조성물의 발포에서 적절한 화학적 발포제를 선정하는 것이 중요한데, 이를 위해 고려해야 할 중요한 문제는 첫째 분해온도이다. 만일 분해 온도가 너무 높으면 발포 온도에서 낮은 고분자 멜트 강도가 낮아져서 버블 구조를 유지하거나 셀 뭉침을 막기에 충분히 강하지 않게 된다. 만일 분해 온도가 너무 낮으면 고분자 멜트가 경직되어 폼 팽창을 억제하게 된다. 또 다른 문제는 CBA 분해잔여물 및 발생 가스가 고분자 및 가공 시스템과 상용성이 있다는 점이다.
상기 화학적 발포제는 아조디카르본아미드(ADCA), 아자디이소부티로니트릴, 벤젠술폰하이드라자이드, 4,4-옥시벤젠 술포닐 세미카바자이드, p-톨루엔술포닐 세미-카바자이드, 바륨 아조디카복실레이트, N,N'-디메틸-N,N'-디니트로소테레프탈아마이드, 다이나이트로소펜타메틸렌테트라민(DPT), p,p'-옥시비스벤젠술포닐하이드라지드(OBSH), 아조디이소부티로니트릴, 벤젠술폰히드라지드, 4,4-옥시벤젠 술포닐-세미카르바자이드, p-톨루엔 술포닐 세미카르바자이드, 바륨 아조디카르복실레이트, 및 트리하이드라지노 트리아진을 포함할 수 있지만, 이에 제한되지 않는다.
바람직하게는 상기 발포제로 분해온도가 130 ~ 210℃인 아조계 화합물이 사용될 수 있으며, 일반적으로 ADCA가 열분해시 가스 발생속도가 빠르고 발생가스 량이 많으며 자기 소화성 및 무독성이 있어 범용으로 가장 많이 사용되는 발포제이다. 추후 본 생분해성 폼 조성물을 이용한 제품의 가공공정 및 발포된 폼 조성물의 비중을 고려하여 적절한 발포제의 분해온도는 130 ~ 170℃일 수 있다.
한편 필요에 따라 상기 화학적 발포제의 발포 온도를 낮춰 발포제를 활성화시키기 위하여 키커(kicker)가 사용될 수 있으며, 상기 키커의 종류로는 폴리올, 우레아, 아민, 염류 및 납, 아연, 카드뮴 등의 금속화합물이 있으며 일반적으로 안료나 충전제가 이러한 역할을 수행하기도 한다.
상기 발포제가 물리적 발포제일 경우 상기 발포제는 상기 가교가 가능한 고무와 상기 PAAT를 합친 전체 100중량부에 대하여 0.1 ~ 10중량부가 사용되는 것이 좋다. 또한 상기 발포제가 화학적발포제일 경우 상기 발포제는 상기 가교가 가능한 고무와 상기 PAAT를 합친 전체 100 중량부에 대하여 0.1 내지 6중량부 사용하는 것이 좋다. 만일, 그 사용량이 상기 범위 미만이면 비중이 많이 높아질 수 있고, 경도가 지나치게 높아질 수 있으며, 상기 범위 초과이면 비중이 저하되어 생분해성 폼 조성물로 제조되는 제품의 강도가 떨어질 수 있다. 그리고, 상기 발포제의 분해 온도가 150℃ 미만이면 생분해성 폼 조성물 제조 중에 조기발포가 발생하고, 210℃를 초과하면 압출기 내에서 분해가 어렵고 분해를 시키려고 압출기 실린더 온도를 많이 높이면 다이를 통과해 나온 높은 생분해성 폼 조성물의 온도로 인해 발포 가스가 새어나가 버려 폼이 형성되기 어려울 수 있다.
상술한 생분해성 폼 조성물은 상용화제를 더 포함할 수 있다. 상기 상용화제는 상기 가교가 가능한 고분자 성분과 상기 PAAT 성분 사이의 혼화성을 높여 물성을 증가시킬 수 있다. 바람직하게는 상기 상용화제는 말레산 무수물(MAH)이 그라프팅된 고무인 것일 수 있다. 상기 말레산 무수물이 그라프팅됨으로써 상기 생분해성 폼 조성물의 기계적 물성이 향상될 수 있다. 상기 말레산 무수물이 그라프팅되는 비율은 상기 가교가 가능한 고분자 100 중량부 대비 1 내지 10 중량부일 수 있다. 상기 범위에서 상용화제의 성능이 우수하다.
상기 말레산 무수물이 그라프팅된 고무의 고무 성분은 PAAT와 상용성이 극히 낮은 EPM, EPDM, 실리콘 고무 등일 수 있다.
본 발명의 일 구현예에 따른 생분해성 폼 조성물은 필러를 더 포함할 수 있다. 상기 필러는 무기 필러 혹은 유기 필러일 수 있다. 무기 필러로서는 탈크, 탄산칼슘, 탄산아연, 월라스토나이트, 실리카, 알루미나, 산화 마그네슘, 규산 칼슘, 알루민산 나트륨, 알루민산 칼슘, 알루미노규산 나트륨, 규산 마그네슘, 유리 벌룬, 카본블랙, 산화 아연, 3산화 안티몬, 제올라이트, 하이드로탈사이트, 금속 섬유, 금속 휘스커, 세라믹 휘스커, 티탄산 칼륨, 질화 붕소, 그래파이트, 유리 섬유, 탄소 섬유 등을을 사용할 수 있다. 또한, 유기 필러로서는 전분, 셀룰로오스 미립자, 목분, 비지, 왕겨, 밀기울 등 천연에 존재하는 폴리머나 이들의 변성품을 들 수 있다. 아울러 이러한 필러의 성능을 높이기 위하여 상기 필러는 단일성분으로 사용되거나 2개 이상의 필러가 혼합되어 사용되는 것도 가능하다. 또한 단일필러도 사용되는 경우에도 2종 이상의 크기 또는 물성을 가지는 필러가 혼합되어 사용될 수 있다. 이러한 필러의 혼합사용은 필러의 공극률을 줄여 새로운 물성을 부여해 줄 수 있으며, 또한 각 필러에 따른 물성을 동시에 상기 폼에 부여할 수 있다.
상기 필러는 상기 가교가 가능한 고분자와 상기 PAAT를 합한 전체 100 중량부에 대하여 30 중량부 이하, 예를 들어 5 내지 30 중량부가 포함될 수 있다. 상기 필러가 5중량부 미만으로 포함되는 경우 필러에 의한 효과(탄성 및 강도 향상 등)를 기대하기 어려우며, 30중량부를 초과하는 경우 필러의 비율이 상대적으로 늘어나게 되어 내구성이 떨어지거나 PAAT의 물성이 떨어질 수 있다.
또한 필요에 따라 산화방지제가 상기 조성물에 더 포함될 수 있다. 상기 산화방지제는 조성물 전체 양에 대해 0.1 내지 5중량%, 바람직하게는 1.0 내지 중량%가 포함될 수 있다. 상기 산화방지제의 사용량이 상기 범위 미만인 경우에는 제품의 산화방지 반응이 용이하게 이루어질 수 없고, 상기 범위 초과의 경우에는 제품의 물성이 저하될 우려가 있기 때문에, 상기 산화방지제의 사용량은 0.1 내지 5 중량%의 범위 내로 한정하는 것이 바람직하다.
상술한 생분해성 폼 조성물을 이용하여 다양한 제품으로 성형할 수 있다. 예를 들어 밴버리 믹서(banbury mixer), 니더, 오픈 밀(open mill) 등의 혼합기로 혼합하고 오픈 밀(open mill)로 시트(sheet)를 만들고 발포시켜 폼을 형성할 수 있다. 또한 상기 특정제품(신발창, 의자의 좌석 등)의 형상을 가지는 금형의 내부에 주입된 이후, 상기 금형의 형상에 따라 발포 및 팽창되어 원하는 형상의 폼을 형성하는 것도 가능하다.
또한 본 발명의 일 구현예에 따른 생분해성 폼 조성물은 다른 생분해 플라스틱인 폴리(부틸렌석시네이트-코-부틸렌 아디페이트)(PBSA), 폴리알킬렌 이소소르바이드 아디페이트-코-테레프탈레이트(PAIAT) 등을 컴파운딩하여 물성을 조절함으로써 보다 친환경적이며 활용도가 높은 제품으로 가공될 수 있다.
본 발명에 따른 생분해성폼 조성물은 과산화물 가교가 가능한 고무와 PAAT (ex: PBAT) 수지를 포함하기 때문에 가공성이 우수하며, 이로 제조된 폼성형품은 생분해성이 우수하면서도 높은 강도, 내구성 등을 나타낼 수 있다.
본 발명에 의한 생분해성 폼 조성물로 제조된 폼의 경도는 Shore C 40~80, 바람직하게는 45~70, 인장강도는 15 kg/㎠ 이상, 바람직하게는 20~30 kg/㎠, 신장율은 200% 이상 바람직하게는 250~300%, 인렬강도는 8 kg/㎝이상, 바람직하게는 10~20kg/㎝, 반발탄성은 40% 이상, 바람직하게는 40~55%, 내마모성(DIN)은 250 이하, 바람직하게는 200 이하일 수 있다. 상기 범위 내에서는 본 발명에 의한 폼 조성물이 적절한 탄성을 가지는 폼으로 제조될 수 있지만, 상기 범위를 벗어나는 경우 폼의 성질을 나타낼 수 없거나 내구성이 떨어져 사용이 어려울 수 있다.
또한 본 발명에 의한 생분해성 폼 조성물은 ISO 14855의 방법으로 시험한 6개월 후의 생분해율이 35중량% 이상 바람직하게는, 50중량% 이상일 수 있다. 생분해성 폼의 경우 그 시험방법이 규정되어 있지 않아 플라스틱의 생분해성 시험방법인 ISO 14855를 이용하여 생분해성을 실험할 수 있으며, 이때 본 발명의 생분해성 폼 조성물은 35중량% 이상의 생분해율을 가질 수 있다. 상기 생분해율 미만인 경우 생분해성이 떨어져 장기간 경과하더라도 생분해가 되지 않을 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
실시예
본 발명의 생분해성 폼 조성물의 제조를 위해 아래와 같은 원료를 사용하였다.
고무-1: SBR 1502 (금호석유화학제)
고무-2: BR 01 (금호석유화학제)
고무-3: SBS 3527(LCY제)
고무-4: EPDM 4520 (DOW 제)
고무-5: Butyl 268 (Isobutylene Isoprene Rubber, Exxon제)
PBAT: Solpol 1000 (Solchemical제)
상용화제: KEPA 1150 (MAH grafted EPDM, 금호폴리켐제)
Peroxide: Luperox F (Di-(2-t-butylperoxyisopropyl)benzene, ARKEMA제)
발포제:DX74M (Modified ADCA, 분해온도 140℃, 가스량 155cc/g, 동진세미켐제)
고무, PBAT, 상용화제를 표 1의 배합비와 같이 니더(Kneader)에 넣고 100℃에서 10분간 혼합한 뒤 과산화물 가교제(Peroxide)와 발포제를 넣고 2분간 혼합하였다. 혼합이 완료된 이후 니더에서 꺼내어 오픈 밀(Open Mill)로 5mm 두께의 시트(Sheet)를 만든 뒤, 두께 10mm의 시편 몰드(Mold)에 투입하였다. 상기 시편몰드를 185℃에서 5분간 가압성형(Compression Molding)한 다음, 외부에 노출 및 발포시켜 두께 16mm의 시편을 얻었다.
표 1 및 2의 각 원료와 관련된 숫자는 특별한 언급이 없는 한 중량부를 나타낸다.
실시예1 실시예2 실시예3 실시예4 비교예1 실시예5
고무-1 40 - - - - -
고무-2 - 40 - - - -
고무-3 - - 40 - - -
고무-4 - - - 40 - 40
고무-5 - - - - 40 -
PBAT 60 60 60 60 60 60
상용화제 - - - - - 5.0
Peroxide 0.7 0.5 0.7 1.0 2.0 1.0
발포제 3 3 3 3 3 3
Filler - - - - - -
실시예6 비교예2 실시예7 실시예8 비교예3 비교예4 비교예5
고무-1 30 20 50 60 65
고무-2 - - - - - - -
고무-3 - - - - - 65 65
고무-4 - - - - - - -
고무-5 - - - - - - -
PBAT 70 80 50 40 35 35 35
상용화제 - - - - - - -
Peroxide 0.8 0.9 0.6 0.5 0.5 0.5 0.5
발포제 3 3 3 3 3 3 4
상기 표 1 및 2의 비율로 제조된 시편을 이용하여 성형 폼의 물성 측정에 일반적으로 사용되는 작업성, 작업이후 수축, 비중(g/cc), 경도(Shore C), 인장강도(kg/㎠) 등을 측정하였으며, 이를 바탕으로 성형폼 적용 가부를 판정하였다.
인장강도: 성형된 폼 조성물을 두께 3.0mm로 스카이빙(skiving)한 후 ASTM D-412에 의거하여 측정하였다. 이때 인장강도가 20 kg/㎠ 이상이면 성형폼에 적합한 것으로 판정하였다.
수축 비중 경도 인장강도 적용가부
실시예1 양호 0.20 55 22 가능
실시예2 양호 0.20 56 22 가능
실시예3 양호 0.20 60 23 가능
실시예4 양호 0.18 54 18 가능
비교예1 심함 발포불가 - - 불가
실시예5 양호 0.18 54 22 가능
실시예6 양호 0.22 70 28 가능
비교예2 양호 0.25 85 33 불가
실시예7 양호 0.18 45 19 가능
실시예8 양호 0.16 40 18 가능
비교예3 심함 0.15 33 15 불가
비교예4 양호 0.15 45 19 가능
비교예5 양호 0.13 35 15 불가
표 3에 나타난 바와 같이 본 발명의 실시예의 경우 성형폼으로 사용이 적절한 것으로 나타났다.
또한 상기 고무의 생분해성을 확인하기 위한 실험을 실시하였으며, 이때 기존의 생분해성 폼에 대한 시험기준이 마련되어 있지 않으므로, 생분해성플라스틱의 시험기준인 ISO 14855의 방법을 준용하여 시험을 실시하였다.
생분해성은 ISO 14855로 6개월 후의 생분해율을 표시하였다. 지금까지 생분해성 폼은 존재하지 않았으므로 생분해성 폼에 대한 규격은 없다. 생분해성 플라스틱의 경우에는 ISO 14855로 시험해서 45일 후 60중량%, 6개월 후 90중량% 이상 생분해되었을 때 생분해의 인증을 해주고 있다. 여기서 90중량% 생분해란 플라스틱의 90중량%가 6개월 후에 탄산가스로 변하여 버린다는 것이다.
생분해성(%) 생분해성 폼으로의 적합성
실시예1 55 적합
실시예2 55 적합
실시예3 55 적합
실시예4 55 적합
비교예1 - 불가
실시예5 53 적합
실시예6 64 적합
비교예2 73 적합
실시예7 46 적합
실시예8 37 적합
비교예3 32 불가
비교예4 32 불가
비교예5 32 불가
본 발명의 생분해성 폼은 생분해성 플라스틱만큼 생분해는 일어나지 않지만, 50중량% 생분해성 고무는 땅속에서 50중량%는 분해되어 탄산가스로 날아가 버리고 나머지 50중량%는 분자의 크기로 쪼개어져 흙 속에 존재하게 되는데, 이는 미분해 부분이 남아 있기는 하지만, 흙의 기능을 거의 회복하게 되므로 그 자체로 충분한 가치가 있는 것이다.
표 4에 나타난 바와 같이 본 발명의 실시예의 경우 생분해성이 뛰어나 생분해성 폼으로 사용이 적합한 것으로 나타났다. 비교예의 경우에도 비교예 1을 제외하면 생분해성을 가지는 것으로 나타났다. 하지만 표3에 나타난 바와 같이 비교예의 경우 폼으로 적용이 불가능한 물성을 가지고 있는 것으로 나타나고 있으므로, 생분해성 폼으로의 사용은 불가능할 것으로 판단되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (10)

  1. 생분해성 폼 조성물로서,
    폴리알킬렌 아디페이트 테레프탈레이트(PAAT) 수지;
    과산화물 가교제;
    상기 과산화물 가교제에 의해서 가교가 가능한 고분자; 및
    발포제;
    를 포함하는 생분해성 폼 조성물.
  2. 제1항에 있어서,
    상기 폴리알킬렌 아디페이트 테레프탈레이트(PAAT)는 폴리에틸렌 아디페이트 테레프탈레이트, 폴리부틸렌 아디페이트 테레프탈레이트 또는 폴리트리메틸렌 아디페이트 테레프탈레이트인 것인 생분해성 폼 조성물.
  3. 제1항에 있어서,
    상기 가교가 가능한 고분자는 가교가 가능한 플라스틱 또는 가교가 가능한 고무인 생분해성 폼 조성물.
  4. 제3항에 있어서,
    상기 가교가 가능한 플라스틱은 에틸렌의 호모폴리머(Homopolymer) 또는 코폴리머(Copolymer)인 생분해성 폼 조성물.
  5. 제3항에 있어서,
    상기 가교가 가능한 고무는 천연 고무(NR), 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 스티렌 부타디엔 스티렌고무(SBS), 니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌 고무(EPM), 에틸렌-프로필렌디엔 모노머(EPDM) 고무, 실리콘(silicone) 고무, 스티렌 블록 공중합체(SBC), 1,2-폴리부타디엔(1,2-PB), 염소화폴리에틸렌(CPE), 에틸렌비닐아세테이트 고무(EVM), 및 열가소성 폴리우레탄 탄성체(TPU)로 이루어진 군 중에서 선택되는 1종 이상인 것인 생분해성 폼 조성물.
  6. 제1항에 있어서,
    상기 폴리알킬렌 아디페이트 테레프탈레이트 수지와 상기 가교가 가능한 고분자의 함량 비율이 중량비로 각각 95:5 내지 30:70인 것인 생분해성 폼 조성물.
  7. 제1항에 있어서,
    상기 생분해성 폼 조성물은 상용화제를 추가로 포함하는 것인 생분해성 폼 조성물.
  8. 제7항에 있어서,
    상기 상용화제는 말레산 무수물(MAH)이 그라프팅된 고무인 것인 생분해성 폼 조성물.
  9. 제1항에 있어서,
    상기 과산화물 가교제는 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸퍼옥시프탈레이트, t-디부틸퍼옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부틸히드로퍼옥사이드, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(벤조일옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-(t-부틸퍼옥시)-3-헥산, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 및 a,a'-비스(t-부틸퍼옥시)디이소프로필벤젠으로 이루어진 군에서 선택되는 1종 이상인 생분해성 폼 조성물.
  10. 제1항에 있어서,
    상기 발포제는 물리적 발포제 또는 화학적 발포제인 생분해성 폼 조성물.
PCT/KR2022/006543 2021-05-10 2022-05-09 생분해성 폼 조성물 WO2022240084A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0060020 2021-05-10
KR20210060020 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022240084A1 true WO2022240084A1 (ko) 2022-11-17

Family

ID=84029277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006543 WO2022240084A1 (ko) 2021-05-10 2022-05-09 생분해성 폼 조성물

Country Status (2)

Country Link
KR (1) KR20220152945A (ko)
WO (1) WO2022240084A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050013026A (ko) * 2003-07-26 2005-02-02 주식회사 보스산업 태권도화용 고무발포 겉창 조성물
JP2005206771A (ja) * 2004-01-20 2005-08-04 Nakamoto Pakkusu Kk 生分解性発泡体
JP2007056080A (ja) * 2005-08-22 2007-03-08 Mitsubishi Chemicals Corp 生分解性樹脂発泡粒子、生分解性樹脂発泡粒子の製造方法、及び、型内発泡成形体
KR20150078268A (ko) * 2013-12-30 2015-07-08 삼성정밀화학 주식회사 발포용 생분해성 폴리에스테르 수지 컴파운드 및 그로부터 얻어진 발포체
JP2015532675A (ja) * 2012-08-30 2015-11-12 ショーワ ベスト グローブ, インコーポレイテッド 生分解性組成物、方法およびその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393811B1 (ko) 2011-12-13 2014-05-13 (주)엘지하우시스 가교된 폴리락트산을 이용한 발포 시트 및 이의 제조방법
KR101650712B1 (ko) 2015-12-04 2016-08-24 주식회사 그린폼텍 우수한 내열성을 갖는 저밀도 폴리락트산 발포 성형체 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050013026A (ko) * 2003-07-26 2005-02-02 주식회사 보스산업 태권도화용 고무발포 겉창 조성물
JP2005206771A (ja) * 2004-01-20 2005-08-04 Nakamoto Pakkusu Kk 生分解性発泡体
JP2007056080A (ja) * 2005-08-22 2007-03-08 Mitsubishi Chemicals Corp 生分解性樹脂発泡粒子、生分解性樹脂発泡粒子の製造方法、及び、型内発泡成形体
JP2015532675A (ja) * 2012-08-30 2015-11-12 ショーワ ベスト グローブ, インコーポレイテッド 生分解性組成物、方法およびその用途
KR20150078268A (ko) * 2013-12-30 2015-07-08 삼성정밀화학 주식회사 발포용 생분해성 폴리에스테르 수지 컴파운드 및 그로부터 얻어진 발포체

Also Published As

Publication number Publication date
KR20220152945A (ko) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5159315B2 (ja) 高溶融強度熱可塑性エラストマー組成物
US5939464A (en) High elasticity foams
TWI230174B (en) Olefinic thermoplastic elastomer foam and olefinic thermoplastic elastomer composition for preparing the same
EP1390416B1 (en) Propylene copolymer foams
CN1802408A (zh) 可发泡热塑性弹性体的生产方法
WO2001064784A1 (fr) Composition d'elastomere thermoplastique, mousse realisee a partir de cette derniere et procede de production de la mousse
KR101839434B1 (ko) 신발 중창의 제조방법
AU757026B2 (en) Process for producing extruded foam
JP4025423B2 (ja) 熱可塑性エラストマー発泡体
WO2017099410A1 (ko) 열가소성 수지 조성물 및 성형품
AU9035598A (en) Vinyl aromatic polymer coupling and foams
WO2014021544A1 (ko) 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체
WO2022240084A1 (ko) 생분해성 폼 조성물
WO2022240090A1 (ko) 생분해성 폼 조성물
WO2023063710A1 (ko) 생분해성 폼 조성물
WO2022260353A1 (ko) 생분해성 폼 조성물
US20060205890A1 (en) Polymer foam containing hydrogenated copolymer
JP3943505B2 (ja) 熱可塑性エラストマー組成物の押出成形方法、架橋発泡体及び自動車用ウェザストリップ
JP2001341589A (ja) ウェザーストリップ
KR102464166B1 (ko) 생분해성 고무 조성물
KR20050045048A (ko) 방진재용 합성수지발포체 조성물, 방진재용합성수지발포체 및 그 제조방법
JP2904861B2 (ja) 塩素化エチレン・α―オレフィン共重合ゴム及びその組成物
US3560413A (en) Process for vulcanizing and foaming active liquid diolefin polymers
CN114106472A (zh) 三元乙丙橡胶组合物及三元乙丙橡胶海绵胶的制备方法
WO2022239965A1 (ko) 생분해성 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807732

Country of ref document: EP

Kind code of ref document: A1