WO2017086397A1 - オリゴヌクレオチドの製造方法 - Google Patents

オリゴヌクレオチドの製造方法 Download PDF

Info

Publication number
WO2017086397A1
WO2017086397A1 PCT/JP2016/084150 JP2016084150W WO2017086397A1 WO 2017086397 A1 WO2017086397 A1 WO 2017086397A1 JP 2016084150 W JP2016084150 W JP 2016084150W WO 2017086397 A1 WO2017086397 A1 WO 2017086397A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen atom
solid phase
alkenyl
protected
Prior art date
Application number
PCT/JP2016/084150
Other languages
English (en)
French (fr)
Inventor
祐大 菅原
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US15/776,709 priority Critical patent/US11548910B2/en
Priority to CN201680064758.9A priority patent/CN108350018A/zh
Priority to JP2017551927A priority patent/JP6950529B2/ja
Priority to EP16866398.7A priority patent/EP3378869A4/en
Publication of WO2017086397A1 publication Critical patent/WO2017086397A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel method for producing an oligonucleotide.
  • oligonucleotides such as DNA probes, siRNA, antisense DNA, and antisense RNA have been actively used with the rapid progress and development of cutting-edge bio-related research such as genome drug discovery and gene diagnosis / treatment.
  • Known methods for chemically synthesizing oligonucleotides include the phosphoramidite method and the H-phosphonate method.
  • a typical amidating reagent such as 2-cyanoethyl chloro (diisopropylamino) phosphinite or 2-cyanoethyl bis (diisopropylamino) phosphinite is used.
  • the solid phase synthesis method using the phosphoramidite method is advantageous in terms of speed and is most widely used.
  • the solid-phase synthesis method has limitations that scale-up is limited due to equipment limitations, and that reagents and raw materials are used excessively, and it is difficult to confirm the progress of the reaction at an intermediate stage and to perform intermediate structure analysis.
  • An object of the present invention is to provide a novel method for producing an oligonucleotide using a nucleoside or oligonucleotide which is easily isolated and has high storage stability.
  • the present inventors have made a normal production method comprising a coupling step, a step of modifying a phosphorus atom (oxidation reaction, sulfurization reaction, etc.), a deprotection step, etc.
  • the above-mentioned problem can be solved by a production method different from the above, wherein the method comprises a step of H-phosphonateizing the 5′-position hydroxyl group or the 3′-position hydroxyl group of a nucleoside or oligonucleotide having a pseudo solid phase protecting group.
  • the headline and the present invention were completed.
  • the present invention includes the following. [1] At least one position selected from the group consisting of the 2′-position, the 3′-position, the 5′-position and the nucleic acid base part has a pseudo solid phase protecting group, and the 5′-position or the 3′-position is a hydroxy group
  • At least one position selected from the group consisting of the 2′-position, the 3′-position, the 5′-position and the nucleic acid base part has a pseudo solid phase protecting group, and the 5′-position or the 3′-position is a hydroxy group
  • the extension reaction cycle is A hydroxy group having a pseudo-solid phase protecting group at at least one position selected from the group consisting of the 2′-position, the 3′-position and the nucleic acid base part and protected at the 3′-position with a basic protecting group or a pseudo-solid phase protecting group And removing the temporary protecting group of the first nucleoside or the first oligonucleotide having a hydroxy group protected with a temporary protecting group at the 5 ′ position to form a 5′-hydroxy group; , A second step comprising H-phosphonation of the resulting 5′-hydroxy group with an H-phosphonation reagent; 3'- of a second nucleoside or second oligonucleotide having a 5'-hydroxy group H-phosphonated and a hydroxy group at the 3 'position and a hydroxy group protected with a temporary protecting group at the 5' position Forming a phosphite diester bond from the hydroxy group to obtain a conjugate of the first nucleo
  • the phosphite diester bond of the conjugate is a phosphate diester bond, a thiophosphate diester bond, a boranophosphate diester bond, an aminophosphate diester bond, a phosphate diester bond protected with a basic protecting group, or a basic protecting group.
  • the method further includes a fourth step including converting the phosphite diester bond of the conjugate into a phosphodiester bond, a thiophosphate diester bond, a boranophosphate diester bond, or an aminophosphate diester bond.
  • the manufacturing method as described.
  • the extension reaction cycle includes: A hydroxy group having a pseudo-solid phase protecting group at at least one position selected from the group consisting of 2′-position, 5′-position and nucleobase, and protected with a basic protecting group or a pseudo-solid-phase protecting group at 5′-position And removing the temporary protecting group of the third nucleoside or the third oligonucleotide having a hydroxy group protected at the 3 ′ position with a temporary protecting group to produce a 3′-hydroxy group; , An eighth step comprising H-phosphonating the resulting 3′-hydroxy group with an H-phosphonating reagent; 5'- of a fourth nucleoside or fourth oligonucleotide having a 3'-hydroxy group which is H-phosphonated and a hydroxy group at the 5 'position and a hydroxy group protected with a temporary protecting group at the 3' position.
  • the phosphite diester bond of the conjugate is a phosphate diester bond, a thiophosphate diester bond, a boranophosphate diester bond, an aminophosphate diester bond, a phosphate diester bond protected with a basic protecting group, or a basic protecting group.
  • the method further includes a tenth step including converting the phosphite diester bond of the conjugate into a phosphodiester bond, a thiophosphate diester bond, a boranophosphate diester bond, or an aminophosphate diester bond.
  • the manufacturing method as described.
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group
  • m is 0 or 1
  • the pseudo solid phase protecting group has a nucleobase moiety and m of the pseudo solid phase protecting group is 0, among the pseudo solid phase protecting groups L 1 , L 2 , L 3 and L 4 , The number of bonds is 0 to 3, and the production method according to any one of [1] to [18].
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • R 2 represents a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 halo.
  • the step of forming H-phosphonate comprises phosphorous acid, diphenyl phosphite, phenyl-H-phosphonate triethylammonium salt, p-toluyl-H-phosphonate triethylammonium salt, 2-chloro-4H-1 , 3,2-benzodioxaphosphorin-4-one, at least one H-phosphonation reagent selected from the group consisting of phosphorus trichloride is used, according to any one of [1] to [21] Manufacturing method.
  • the nucleobase contained in the nucleoside and oligonucleotide is independently a 6-aminopurin-9-yl group (adenine residue), a 2-amino-6-hydroxypurin-9-yl group (guanine).
  • n represents an arbitrary integer of 1 or more
  • Base Z represents each independently a nucleobase, a nucleobase protected with a basic protecting group, or a nucleobase protected with a pseudo solid phase protecting group
  • X and Z each independently represent a hydrogen atom, a halogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, an organic group that crosslinks to the 4-position carbon atom, or a hydroxy group protected with a pseudo solid phase protecting group.
  • Y is independently a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, a thiol group, a thiol group protected with a basic protecting group, a borohydride group, a mono C1-6 alkylamino group or a di
  • Z represents a hydrogen atom, a basic protecting group, a temporary protecting group or a pseudo solid phase protecting group
  • at least one of Base Z is a nucleobase protected with a pseudo solid phase protecting group
  • at least one of X Z is a hydroxy group protected with a pseudo solid phase protecting group
  • Z is a pseudo solid phase. At least one of the protecting groups is satisfied. ) Or a salt thereof.
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • R 2 represents a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 halo.
  • An alkenyl group) or —O— In the case where the quasi-solid phase protecting group has a nucleobase protecting group, the number of single bonds is 0 to 3 among L 1 , L 2 , L 3 and L 4 of the pseudo-solid phase protecting group).
  • At least one of Base Z in the formula (XI) satisfies at least one of a nucleobase protected with a pseudo solid phase protecting group and Z is a pseudo solid phase protecting group.
  • Z is a pseudo solid phase protecting group.
  • Base Z independently represents a nucleobase, a nucleobase protected with a basic protecting group, or a nucleobase protected with a pseudo solid phase protecting group
  • X Z independently represents a hydrogen atom, a halogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, an organic group that crosslinks to the 4-position carbon atom, or a hydroxy group protected with a pseudo solid phase protecting group.
  • Y is independently a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, a thiol group, a thiol group protected with a basic protecting group, a borohydride group, a mono C 1-6 alkylamino group, or a di group.
  • a C1-6 alkylamino group, Z represents a hydrogen atom, a basic protecting group, a temporary protecting group or a pseudo solid phase protecting group,
  • at least one of Base Z is a nucleobase protected with a pseudo solid phase protecting group
  • at least one of X Z is a hydroxy group protected with a pseudo solid phase protecting group
  • Z is a pseudo solid phase. At least one of the protecting groups is satisfied. ) Or a salt thereof.
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • R 2 represents a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 halo.
  • the number of single bonds is 0 to 3 among L 1 , L 2 , L 3 and L 4 of the pseudo-solid phase protecting group) [29] or a salt thereof.
  • At least one of Base Z in the formula (XII) is a nucleobase protected with a pseudo solid phase protecting group, and at least one of Z is a pseudo solid phase protecting group, [29] Or the compound as described in [30], or its salt.
  • Base Z represents each independently a nucleobase, a nucleobase protected with a basic protecting group, or a nucleobase protected with a pseudo solid phase protecting group
  • X and Z each independently represent a hydrogen atom, a halogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, an organic group that crosslinks to the 4-position carbon atom, or a hydroxy group protected with a pseudo solid phase protecting group.
  • W represents a hydrogen atom or a temporary protecting group
  • Y is independently a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, a thiol group, a thiol group protected with a basic protecting group, a borohydride group, a mono C1-6 alkylamino group or a di
  • Z represents a hydrogen atom, a basic protecting group, a temporary protecting group or a pseudo solid phase protecting group
  • at least one of Base Z is a nucleobase protected with a pseudo solid phase protecting group
  • at least one of X Z is a hydroxy group protected with a pseudo solid phase protecting group
  • Z is a pseudo solid phase. Satisfy at least one of the protecting groups, At least one of the pseudo-solid phase protecting groups is represented by the formula (I)
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group
  • m is 0 or 1
  • m is 0, L 4 is not a single bond.
  • Base Z independently represents a nucleobase, a nucleobase protected with a basic protecting group, or a nucleobase protected with a pseudo solid phase protecting group
  • X Z independently represents a hydrogen atom, a halogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, an organic group that crosslinks to the 4-position carbon atom, or a hydroxy group protected with a pseudo solid phase protecting group.
  • W represents a hydrogen atom or a temporary protecting group
  • Y is independently a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, a thiol group, a thiol group protected with a basic protecting group, a borohydride group, a mono C 1-6 alkylamino group, or a di group.
  • a C1-6 alkylamino group, Z represents a hydrogen atom, a basic protecting group, a temporary protecting group or a pseudo solid phase protecting group
  • at least one of Base Z is a nucleobase protected with a pseudo solid phase protecting group
  • at least one of X Z is a hydroxy group protected with a pseudo solid phase protecting group
  • Z is a pseudo solid phase. Satisfy at least one of the protecting groups, At least one of the pseudo-solid phase protecting groups is represented by the formula (I)
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group
  • m is 0 or 1
  • m is 0, L 4 is not a single bond.
  • * represents a binding position with at least one position selected from the group consisting of a hydroxyl group at the 2′-position, 3′-position and 5′-position of a nucleoside or oligonucleotide and a nucleic acid base part;
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group, s is an integer of 1 to 5,
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group,
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • An alkenyl group), —C (O) — or —O—, L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group, L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group, m is 0 or 1, and when m is 0, L 4 is not a single bond.
  • the 3′-position and the 5′-position independently have a hydroxy group or a protected hydroxy group, It has a hydroxy group at least at one position selected from the group consisting of the 2′-position, the 3′-position, the 5′-position and the nucleic acid base part, or the hydroxy group or the amino group at at least one position in the 2′-position and the nucleic acid base part
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group).
  • X is a halogen atom, and R 1 , L 1 , L 2 , and L 3 are the same as defined in the formula (X-1); L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group.
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group, s is an integer of 1 to 5, L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group, L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • An alkenyl group), —C (O) — or —O—, L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group, L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group, m is 0 or 1, and when m is 0, L 4 is not a single bond.
  • simulation solid-phase protecting group represented by this.
  • the present invention it has become possible to provide a novel method for producing an oligonucleotide using a nucleoside or oligonucleotide which is easily isolated and has high storage stability.
  • the new production method can cope with mass synthesis of oligonucleotides.
  • n- means normal, “i-” means iso, “t-” and “tert-” mean tertiary, “Ph” means phenyl, “Py” means pyridyl or pyridine.
  • Me is methyl
  • Et is ethyl
  • Pr is propyl
  • Bu is butyl
  • Bn is benzyl
  • Boc is tertiary butoxycarbonyl
  • TPS is tertiary butyldimethylsilyl
  • TIPS means triisopropylsilyl
  • TDPS means tertiary butyldiphenylsilyl
  • DMTr means 4,4′-dimethoxytrityl.
  • L 1 and L 1 are synonymous, “L 2 ” and “L 2 ] are synonymous,“ L 3 ”and“ L 3 ”are synonymous, and“ L 4 ”and“ L 4 ”are synonymous.
  • halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the “C 1-6 alkyl group” means a straight or branched saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n— Examples thereof include a butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group and isohexyl group.
  • the “C2-6 alkenyl group” means a straight chain or branched hydrocarbon group having 2 to 6 carbon atoms having one or more double bonds at any position.
  • an ethenyl group (vinyl Group), 1-propenyl group, 2-propenyl group (allyl group), isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group (homoallyl group), 4-pentenyl group, 5-hexenyl group, etc. Is mentioned.
  • C2-6 alkynyl group means a linear or branched hydrocarbon group having 2 to 6 carbon atoms having one or more triple bonds at any position, and includes, for example, an ethynyl group, 1- Examples include propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 4-pentynyl group, 5-hexynyl group and the like.
  • the “C1-40 alkyl group” means a straight or branched saturated hydrocarbon group having 1 to 40 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n— Butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, decyl, octadecyl, icosyl, triacontyl, tetracontyl, etc. Is mentioned.
  • the “C2-40 alkenyl group” means a straight chain or branched hydrocarbon group having 2 to 40 carbon atoms having one or more double bonds at any position.
  • an ethenyl group (vinyl Group), 1-propenyl group, 2-propenyl group (allyl group), isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group (homoallyl group), 4-pentenyl group, 5-hexenyl group
  • Examples include 10-decenyl group, 18-octadecenyl group, 20-icosenyl group, 30-triacontenyl group, 40-tetracontenyl group and the like.
  • the “C2-40 alkynyl group” means a straight chain or branched hydrocarbon group having 2 to 40 carbon atoms having one or more triple bonds at any position, and includes, for example, an ethynyl group, 1- Propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 4-pentynyl, 5-hexynyl, 10-decynyl, 18-octadecynyl, 20-icosinyl, 30- Examples thereof include a triacontinyl group and a 40-tetracontinyl group.
  • C10-30 alkyl group means a linear or branched saturated hydrocarbon group having 10 to 30 carbon atoms, and examples thereof include a decyl group, an octadecyl group, an icosyl group, and a triacontyl group.
  • C15-25 alkyl group means a linear or branched saturated hydrocarbon group having 15 to 25 carbon atoms, such as pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl. Group, docosyl group and the like.
  • C15-20 alkyl group means a linear or branched saturated hydrocarbon group having 15 to 20 carbon atoms, such as pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl. Groups and the like.
  • the “C10-30 alkenyl group” means a linear or branched hydrocarbon group having 10 to 30 carbon atoms having one or more double bonds at an arbitrary position, such as a 2-decenyl group. Examples thereof include a 10-decenyl group, 18-octadecenyl group, 20-icosenyl group, and 30-triacontenyl group.
  • the “C 1-6 alkylene group” means a divalent substituent obtained by removing one hydrogen atom at any position from the “C 1-6 alkyl group”.
  • a methylene group an ethylene group (ethanediyl group) Propane-1,3-diyl group, propane-2,2-diyl group, 2,2-dimethyl-propane-1,3-diyl group, hexane-1,6-diyl group, 3-methylbutane-1,2 -Diyl groups and the like.
  • the “C2-6 alkylene group” means a linear or branched divalent substituent having 2 to 6 carbon atoms in the “C1-6 alkylene group”, for example, an ethylene group (ethanediyl group). Group), propane-1,3-diyl group, propane-2,2-diyl group, hexane-1,6-diyl group, 3-methylbutane-1,2-diyl group and the like.
  • the “C2-6 alkenylene group” means a divalent substituent obtained by removing one hydrogen atom at an arbitrary position from the “C2-6 alkenyl group”, and includes, for example, an ethene-1,1-diyl group, Ethene-1,2-diyl group, propene-1,1-diyl group, propene-1,2-diyl group, propene-1,3-diyl group, but-1-ene-1,4-diyl group, butane -1-ene-1,3-diyl group, but-2-ene-1,4-diyl group, buta-1,3-diene-1,4-diyl group, penta-2-ene-1,5- Examples thereof include a diyl group, a hexa-3-ene-1,6-diyl group, and a hexa-2,4-diene-1,6-diyl group.
  • the “C2-6 alkynylene group” means a divalent substituent obtained by removing one hydrogen atom at any position from the “C2-6 alkynyl group”, and includes, for example, an ethyne-1,2-diyl group, Propyne-1,3-diyl group, but-1-yne-1,4-diyl group, but-1-in-1,3-diyl group, but-2-yne-1,4-diyl group, penta- Examples include 2-in-1,5-diyl group, penta-2-in-1,4-diyl group, and hexa-3-in-1,6-diyl group.
  • the “C 1-6 haloalkyl group” means a group in which one or more of the “halogen atoms” is substituted with a hydrogen atom at any position of the “C 1-6 alkyl group”, for example, a monofluoromethyl group Monofluoroethyl group, monofluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, monochloromethyl group, trifluoromethyl group, trichloromethyl group, 2,2,2-trifluoroethyl group, Examples include 2,2,2-trichloroethyl group, 1,2-dibromoethyl group, 1,1,1-trifluoropropan-2-yl group and the like.
  • C2-6 haloalkenyl group means a group in which one or more “halogen atoms” are substituted with a hydrogen atom at any position of the “C2-6 alkenyl group”.
  • the “C3-6 cycloalkyl group” is any monocyclic, fused, bridged or spirocyclic aliphatic hydrocarbon ring having 3 to 6 carbon atoms constituting the ring. Means a monovalent substituent in which one hydrogen atom at the position is removed, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • C1-6 alkoxy group means a group in which the “C1-6 alkyl group” is bonded to an oxy group (—O—).
  • “Mono C1-6 alkylamino group” means a group in which one C1-6 alkyl group is bonded to an amino group, such as a methylamino group, an ethylamino group, an n-propylamino group, an isopropylamino group. N-butylamino group, isobutylamino group, sec-butylamino group, tert-butylamino group, n-pentylamino group, isopentylamino group, neopentylamino group, n-hexyl group amino and isohexylamino group, etc. Is mentioned.
  • the “di-C 1-6 alkylamino group” means a group in which two identical or different “C 1-6 alkyl groups” are bonded to an amino group, such as a dimethylamino group, a diethylamino group, a di-n— Propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-t-butylamino group, di-n-pentylamino group, di-n-hexylamino group, N-ethyl-N- Methylamino group, N-methyl-Nn-propylamino group, N-isopropyl-N-methylamino group, Nn-butyl-N-methylamino group, N-isobutyl-N-methylamino group, N- t-butyl-N-methylamino group, N-methyl-Nn-pentylamino group, Nn
  • C1-6 alkoxycarbonyl group “mono C1-6 alkylaminocarbonyl group”, “diC1-6 alkylaminocarbonyl group” and the like are the above-mentioned “C1-6 alkoxy group”, “mono C1-6 alkylamino group”, respectively.
  • group and the “di-C 1-6 alkylamino group” mean a group bonded to a carbonyl group (—C (O) —).
  • C6-10 aryl group means any position from a monocyclic or bicyclic aromatic hydrocarbon ring in which all of the atoms constituting the ring are carbon atoms and the number of carbon atoms is 6 to 10 Is a monovalent substituent obtained by removing one hydrogen atom, and specific examples thereof include a phenyl group and a naphthyl group.
  • the “5-10 membered heteroaryl group” means that the number of atoms constituting the ring is 5 to 10, and 1 to 5 heteroatoms (the hetero atom is a nitrogen atom) in the atoms constituting the ring.
  • An oxygen atom or a sulfur atom and in the case of two or more, they may be the same or different.
  • the monocyclic “5-10 membered heteroaryl group” includes 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, 2-pyranyl group, 3-pyranyl group, 4-pyranyl group 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, 1-imidazolyl group, 2-imidazolyl group, 4-imidazolyl group, 1-pyrazolyl group, 3-pyrazolyl group, 4-pyrazolyl group, 2-thiazolyl group 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 1,2,4-triazol-1-yl group, 1,2,4-triazol-3-yl Group, 1,2,4-triazol-5-yl group, 1,2,3-triazol-1-yl group, 1,2,3-triazol-4-yl group, 1,2,3-triazole-5 -Il group 2-oxazo
  • the “5-10 membered heteroaryl group” of the condensed ring system includes 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuran group Furanyl group, 4-isobenzofuranyl group, 5-isobenzofuranyl group, 2-benzothienyl group, 3-benzothienyl group, 4-benzothienyl group, 5-benzothienyl group, 6-benzothienyl group, 7-benzothienyl group, 1-isobenzothienyl group, 4-isobenzothienyl group, 5-isobenzothienyl group, 2-benzothiazolyl group, 3-benzothiazolyl group, 4-benzothiazolyl group, 5-benzothiazolyl group, 6-benzothiazolyl group Group, 7-benzothiazolyl group, 2-chromenyl group,
  • the “aralkyl group” means a monovalent substituent in which an arbitrary hydrogen atom of the “C1-6 alkyl group” is replaced by the “C6-10 aryl group”.
  • heteroaryl group means a monovalent substituent in which any hydrogen atom of the “C1-6 alkyl group” is replaced by the “5-10 membered heteroaryl group”.
  • the “3-11 membered nitrogen-containing non-aromatic heterocyclic group” means a monocyclic system or condensed ring system containing at least one nitrogen atom and having 3 to 11 atoms constituting the ring (including the above-mentioned In a condensed ring system, a non-aromatic ring may be condensed to a non-aromatic ring or an aromatic ring.),
  • a bridged ring system or a spiro ring system non-aromatic heterocyclic ring Means a monovalent substituent from which one hydrogen atom has been removed; azetidinyl group, pyrrolidinyl group, 2-oxopyrrolidinyl group, piperidinyl group, 3-oxopiperidinyl group, piperazinyl group, morpholino group, thiomorpholino group , Homomorpholino group, homopiperazino group and the like.
  • C1-40 alkylthio group “C3-6 cycloalkylthio group”, “C6-10 arylthio group”, “5-10 membered heteroarylthio group”, “aralkylthio group”, “heteroarylthio group” and the like
  • nucleoside which is a structural unit of an oligonucleotide means that a nucleobase is located at the 1 ′ position of a sugar (for example, ribose, 2′-deoxyribose, 2 ′ and 4 ′ bridged ribose). It means a compound linked by N-glycosidation.
  • ribose and 2′-deoxyribose are unsubstituted or a C1-6 alkyl group, a halogen atom, a hydroxy group, an amino group, a hydroxy group protected with a basic protecting group, or a protected amino group.
  • the C1-6 alkyl group is unsubstituted or independently selected from a halogen atom, a C1-6 alkoxycarbonyl group, a mono C1-6 alkylaminocarbonyl group, a diC1-6 alkylaminocarbonyl group, and the like. Substituted with one or more substituents.
  • the C1-6 alkoxycarbonyl group, mono C1-6 alkylaminocarbonyl group, diC1-6 alkylaminocarbonyl group and the like are unsubstituted, C6-10 aryl group, 5-10 membered heteroaryl group or 3 Substituted from a -11-membered nitrogen-containing non-aromatic heterocyclic group.
  • the ribose in which the 2′-position and the 4′-position are cross-linked is not limited as long as the 2′-position and the 4′-position of the nucleoside are cross-linked via a cross-linking group.
  • the 2′-position and the 4′-position A C2-6 alkylene group (the alkylene group is unsubstituted or substituted with a C1-6 alkyl group, and one or two methylene groups of the alkylene group are not substituted, or —O—, —NR 11 — (R 11 represents a hydrogen atom or a C 1-6 alkyl group), —S—, —CO—, —CS—, —COO—, —OCONR 12 — (R 12 represents a hydrogen atom) Or —CONR 13 — (R 13 represents a hydrogen atom or a C1-6 alkyl group) and —CSNR 14 — (R 14 represents a hydrogen atom or a C1-6 alkyl group).
  • Crosslinked ribose and the like include compounds of the following formula.
  • the sugar of the nucleoside is preferably ribose or 2'-deoxyribose.
  • nucleobase is not particularly limited as long as it is used for nucleic acid synthesis.
  • pyrimidine bases such as cytosyl group, uracil group, thyminyl group, 5-methylcytosyl group, adenyl group, etc.
  • purine bases such as a guanyl group.
  • protected nucleobase is, for example, a nucleobase having an amino group protected in an adenyl group, guanyl group, or cytosyl group, which is a nucleobase having an amino group, or having a hydroxy group.
  • the hydroxy group is protected, in the case of a nucleobase having a thiol group, the thiol group is protected, or in the nucleobase having a carbonyl group, the amino group or hydroxy substituted on the ring
  • the carbonyl group is protected in the form of a hydroxy group in conjugation with a group, and is protected by a protecting group that can withstand the deprotection conditions of the temporary protecting group at the 3′-position or 5′-position.
  • Nucleobases are preferred.
  • amino-protecting group in the nucleobase is not particularly limited, and for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 3rd edition, John Willy and Sons. (JOHN WILLY & SONS) Publishing (1999) etc. can be mentioned.
  • amino-protecting group examples include, for example, a pivaloyl group, a pivaloyloxymethyl group, a trifluoroacetyl group, a phenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, Examples thereof include an acetyl group, a benzoyl group, an isobutyryl group, a dimethylformamidinyl group, and a 9-fluorenylmethyloxycarbonyl group. Among these, phenoxyacetyl group, 4-isopropylphenoxyacetyl group, acetyl group, benzoyl group, isobutyryl group, and dimethylformamidinyl group are preferable.
  • the “protecting group for hydroxy group” in the nucleobase is not particularly limited, and for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 3rd edition, John Willy and Sons. (JOHN WILLY & SONS) publication (1999) etc. can mention the arbitrary protecting groups.
  • alkyl groups methyl group, tert-butyl group, etc.
  • arylmethyl groups benzyl group, p-methoxybenzyl group, etc.
  • alkoxyalkyl groups methoxymethyl group, methoxyethyl group, cyanoethoxymethyl group, Ethoxyethyl group, etc.
  • 2-tetrahydropyranyl group cyanoethyl group, carbamoyl group (phenylcarbamoyl group, 1,1-dioxothiomorpholine-4-thiocarbamoyl group, etc.)
  • acyl group acetyl group, pivaloyl group, isobutyryl
  • benzoyl group phenoxyacetyl group, levulinyl group, 3-benzoylpropionyl group, etc.
  • silyl group trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, ter
  • an acetyl group, a benzoyl group, a benzyl group, or a p-methoxybenzyl group is preferable.
  • the “thiol group protecting group” in the nucleobase include a protecting group that forms a disulfide bond in addition to the same protecting group as the “hydroxy group protecting group”.
  • nucleobase includes, in addition to the above-mentioned groups, a nucleobase having an arbitrary substituent (eg, halogen atom, alkyl group, aralkyl group, alkoxy group, acyl group, alkoxyalkyl group, hydroxy group, amino group).
  • a nucleobase having an arbitrary substituent eg, halogen atom, alkyl group, aralkyl group, alkoxy group, acyl group, alkoxyalkyl group, hydroxy group, amino group.
  • Modified nucleobases eg, 8-bromoadenyl group, 8-bromoguanyl group, 5-bromocytosyl group substituted with 1 to 3 substituents at any position by a group, monoalkylamino, dialkylamino, carboxy, cyano, nitro, etc.
  • extension reaction cycle means that a nucleoside or oligonucleotide having a pseudo solid phase protecting group is H-phosphonated and then reacted with a nucleoside or oligonucleotide having a hydroxy group to have a pseudo solid phase protecting group. It means a reaction cycle for obtaining a conjugate in which a nucleoside or oligonucleotide and a nucleoside or oligonucleotide having a hydroxy group are bonded via a phosphorus-containing group.
  • the extension reaction cycle may include, for example, removing a nucleoside or oligonucleotide temporary protecting group having a pseudo solid phase protecting group and having a hydroxy group protected with a temporary protecting group at the 3′-position or 5′-position to remove the hydroxy group.
  • These include: a step comprising producing, a step comprising H-phosphonateating the produced hydroxy group to obtain an H-phosphonate form, an H-phosphonate form and a nucleoside or oligonucleotide having a hydroxy group. Obtaining an oligonucleotide linked via a phosphodiester bond.
  • the pseudo-solid phase protecting group used in the present invention means that the reaction substrate has the protecting group so that the reaction substrate and the reaction product are solubilized in a low polarity solvent, and the reaction in the liquid phase is possible.
  • Examples of the pseudo solid phase protecting group include groups represented by the following formula (I).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group
  • m is 0 or 1.
  • L 3 represents a C 1-6 alkylene group, a C 2-6 alkenylene group or C 2- A 6-alkynylene group is preferred.
  • a pseudo solid phase protecting group for example, 3,4,5-tris (octadecyloxy) benzyloxysuccinyl group (3- ⁇ 3,4,5-tris (octadecyloxy) benzyloxycarbonyl ⁇ propanoyl group), 3,4,5-tris (octadecyloxy) benzoyl group, 4-oxo-4- (2,4,6-tris (octadecyloxy) phenyl) butyryl group, 2- (3,4,5-tris (octadecyloxy) benzamido) ethoxysuccinyl group (3- [2- ⁇ 3,4,5-tris (octadecyloxy) benzamido ⁇ ethoxycarbonyl] propanoyl group), 2- (N-methyl-3,4,5-tris (octadecyloxy) benzamido) ethoxysuccinyl group (3- [2-
  • the pseudo-solid phase protecting group is preferably a group represented by the following formula (II).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 2 is —COO— or —O— and L 4 is —OCO— or —O—
  • L 3 represents a C 1-6 alkylene group, a C 2-6 alkenylene group or C 2- More preferably, it is a 6 alkynylene group.
  • the pseudo-solid phase protecting group is more preferably a group represented by the following formula (III).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a C 1-6 alkylene group or a C 2-6 alkenylene group
  • L 3 is a C1-6 alkylene group or a C2-6 alkenylene group
  • R 2 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group or a C 2-6 alkenyl group.
  • the pseudo solid phase protecting group is more preferably a group represented by the following formula (IV).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a C 1-6 alkylene group or a C 2-6 alkenylene group
  • L 3 is a C 1-6 alkylene group or a C 2-6 alkenylene group.
  • the pseudo solid phase protecting group is more preferably a group represented by the following formula (IV-2).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group, s is an integer of 1 to 5, L 1 is a C 1-6 alkylene group or a C 2-6 alkenylene group.
  • the pseudo solid phase protecting group is more preferably a group represented by the following formula (IV-3).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a C 1-6 alkylene group or a C 2-6 alkenylene group
  • R 2 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group or a C 2-6 alkenyl group.
  • L 1 is preferably a C 1-6 alkylene group, particularly preferably an ethylene group.
  • L 1 is preferably a C 1-6 alkylene group, particularly preferably a methylene group.
  • L 3 is preferably a C 1-6 alkylene group, and particularly preferably a methylene group or an ethylene group.
  • R 2 is preferably a hydrogen atom or a C 1-6 alkyl group, particularly preferably a hydrogen atom or a methyl group.
  • the pseudo solid phase protecting group is preferably a group represented by the following formula (V).
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group
  • s is an integer of 1 to 5
  • L 1 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 2 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 3 is a single bond, a C 1-6 alkylene group, a C 2-6 alkenylene group or a C 2-6 alkynylene group
  • L 4 represents a single bond, —COO—, —CON (R 2 ) — (wherein R 2 represents a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group, or a C 2-6 halo).
  • L 5 is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group or a C2-6 haloalkenyl group
  • L 6 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group, a C 2-6 alkenyl group or a C 2-6 haloalkenyl group.
  • L 3 represents a C 1-6 alkylene group, a C 2-6 alkenylene group or C 2- More preferably, it is a 6 alkynylene group.
  • the pseudo-solid phase protecting group is more preferably the following formula (VI)
  • R 1 is a C1-40 alkyl group, a C2-40 alkenyl group or a C2-40 alkynyl group, s is an integer of 1 to 5, L 1 is a C 1-6 alkylene group or a C 2-6 alkenylene group, L 3 is a C1-6 alkylene group or a C2-6 alkenylene group, L 4 is a single bond or —N (R 2 ) CO— (wherein R 2 is a hydrogen atom, a C 1-6 alkyl group, a C 1-6 haloalkyl group or a C 2-6 alkenyl group), L 5 is a hydrogen atom or a C 1-6 alkyl group, L 6 represents a hydrogen atom or a C 1-6 alkyl group), or a group represented by the following formula (VII)
  • L 5 is a hydrogen atom or a C 1-6 alkyl group
  • L 6 represents a hydrogen atom or a C 1-6 alkyl group.
  • the pseudo-solid phase protecting group is still more preferably a group represented by the formula (VII).
  • L 1 is preferably a C 1-6 alkylene group, particularly preferably a methylene group or an ethylene group.
  • L 3 is preferably a C 1-6 alkylene group, particularly preferably a methylene group or an ethylene group.
  • L 5 and L 6 are particularly preferably a hydrogen atom.
  • R 1 of the pseudo-solid phase protecting group represented by formula (I) to formula (VII) is preferably a C10-30 alkyl group or a C10-30 alkenyl group, more preferably a C10-30 alkyl group. More preferred is a C15-25 alkyl group, even more preferred is a C15-20 alkyl group, and particularly preferred is an octadecyl group.
  • S of the pseudo solid phase protecting group represented by the formula (I) to the formula (VII) is preferably an integer of 2 to 4, more preferably 3. In formulas (I) to (VII), when s is 2 to 5, each R 1 may be the same or different.
  • the temporary protecting group used in the present invention is a protecting group for protecting the 5′-position hydroxy group or the 3′-position hydroxy group, and is a protecting group to be deprotected in the “elongation reaction cycle”.
  • the deprotected 5′-hydroxy group or 3′-hydroxy group is used for conjugation with another nucleoside or oligonucleotide after being H-phosphonated in an extension reaction cycle.
  • Examples of the temporary protecting group include protecting groups as described in the following documents. Protective Groups in Organic Synthesis, Greene T. W. and Wuts P.M. G. M.M. , Published by Wiley Interscience, 1999 and Protecting Groups, Kocienski P. et al. J. et al. , 1994, Georg Thime Verlag.
  • the basic protecting group used in the present invention is an amino group, a carbonyl group, a hydroxy group, or a thiol group in a nucleobase, a 2′-position hydroxy group, a 3′-position hydroxy group, a 5′-position hydroxy group, or phosphorus. It is a protecting group that protects the hydroxy group of the acid diester bond or the thiol group of the thiophosphate diester bond, and is not deprotected in the “elongation reaction cycle”, and has the function that the “pseudo solid phase protecting group” has. There are no common protecting groups. Examples of the basic protecting group include protecting groups described in the following documents. Protective Groups in Organic Synthesis, Greene T. W. and Wuts P.M. G. M.M. , Published by Wiley Interscience, 1999 and Protecting Groups, Kocienski P. et al. J. et al. , 1994, Georg Thime Verlag.
  • the basic protecting group used for the amino group, hydroxy group, or thiol group in the nucleobase is the “amino group protecting group” in the nucleobase, the “hydroxy group protecting group” in the nucleobase, As described in “Protecting group for thiol group”.
  • the basic protecting groups used for the carbonyl group in the nucleobase are phenoxy group, 2,5-dichlorophenyl group, 3-chlorophenyl group, 3,5-dichlorophenyl group, 2-formylphenyl group, 2-naphthyl group, 4- Methoxyphenyl group, 4-chlorophenyl group, 2-nitrophenyl group, 4-nitrophenyl group, 4-acetylaminophenyl group, pentafluorophenyl, 4-pivaloyloxybenzylalkyl group, 4-nitrophenethylalkyl group, 2- (Methylsulfonyl) ethyl group, 2- (phenylsulfonyl) ethyl group, 2-cyanoethyl group, 2- (trimethylsilyl) ethyl group, dimethylaminocarbonyl group, diethylaminocarbonyl group, N-methyl-N-phenylcarbamoy
  • the basic protective group for protecting the hydroxy group of the phosphodiester bond or the thiol group of the thiophosphate diester bond will be described later.
  • Functional groups protected with protecting groups hydroxy groups and nucleobases protected with pseudo solid phase protecting groups, hydroxy groups protected with temporary protecting groups, hydroxy groups protected with basic protecting groups, amino groups, thiol groups, etc. ) Means that the hydrogen atom of the functional group is substituted by the protecting group, respectively.
  • the “organic group that crosslinks to the 4-position carbon atom” means an organic group that crosslinks the 2′-position and the 4′-position of the sugar and is not particularly limited.
  • the alkylene group is unsubstituted or substituted with a C 1-6 alkyl group, wherein one or two methylene groups of the alkylene group are not substituted or are —O—, —NR 11 — (R 11 represents a hydrogen atom or a C 1-6 alkyl group), —S—, —CO—, —CS—, —COO—, —OCONR 12 — (R 12 represents a hydrogen atom or a C 1-6 alkyl group) ), —CONR 13 — (R 13 represents a hydrogen atom or a C 1-6 alkyl group) and —CSNR 14 — (R 14 represents a hydrogen atom or a C 1-6 alkyl group).
  • a method for producing the oligonucleotide according to the present invention (hereinafter also referred to as “the production method of the present invention”) will be described. Specifically, from a nucleoside or oligonucleotide protected with a pseudo solid phase protecting group (hereinafter also referred to as “n-polymerized oligonucleotide”), a nucleoside or oligonucleotide (hereinafter also referred to as “p-polymerized oligonucleotide”).
  • n-polymerized oligonucleotide a nucleoside or oligonucleotide protected with a pseudo solid phase protecting group
  • p-polymerized oligonucleotide a nucleoside or oligonucleotide
  • n + p polymerized oligonucleotide A method for producing an oligonucleotide that has been extended in step 1 and protected with a pseudo solid phase protecting group (hereinafter also referred to as “n + p polymerized oligonucleotide”) will be described.
  • the n-polymerized oligonucleotide means an oligonucleotide in which n nucleosides are bonded via a phosphorus-containing group.
  • n 1, the n-polymerized oligonucleotide is interpreted as a nucleoside, and a p-polymerized oligonucleotide. The same applies to nucleotides.
  • each nucleobase part may be the same or different
  • n polymerized oligonucleotides contain two or more pseudo solid phases.
  • each pseudo solid phase protecting group may be the same or different.
  • each basic protecting group is the same. If n-polymerized oligonucleotides have organic groups that crosslink to two or more 4-position carbon atoms, the organic groups that crosslink to each 4-position carbon atom are the same or different. It may be. The same applies to p-polymerized oligonucleotides.
  • the method for producing an oligonucleotide has a pseudo solid phase protecting group at at least one position selected from the group consisting of 2′-position, 3′-position, 5′-position and nucleobase portion, and the 5′-position or 3′-position is A phosphonation step in which the 5′-hydroxy group or 3′-hydroxy group of the nucleoside or oligonucleotide which is a hydroxy group is H-phosphonated.
  • the method for producing an oligonucleotide includes at least one extension reaction cycle including the H-phosphonation step.
  • the method for producing an oligonucleotide is characterized in that the extension reaction cycle includes a step of H-phosphonateizing a nucleoside having a pseudo solid phase protecting group or a 5′-position hydroxy group or a 3′-position hydroxy group of an oligonucleotide.
  • the method for producing an oligonucleotide preferably includes the following steps a to d in the extension reaction cycle.
  • the order of the process a to the process d is performed in order of the process a, the process b, the process c, and the process d, or is performed in the order of the process a, the process d, the process b, and the process c.
  • a preferable order is the order of the process a, the process b, the process c, and the process d.
  • Step a includes a hydroxy group that is not an extended end, a nucleobase part, and a quasi-solid phase protecting group in at least one of the 2 ′ positions, and a nucleoside in which the hydroxy group at the extended end is protected with a temporary protecting group
  • Step b is a phosphonation step including H-phosphonation of the hydroxy group from which the temporary protecting group has been removed with an H-phosphonation reagent.
  • step c a nucleoside or oligonucleotide having a hydroxy group is added to the nucleoside or oligonucleotide that has been H-phosphonated in step b, and condensed via a phosphite diester bond via the hydroxy group. It is a coupling process including.
  • step d the formed phosphite diester bond is converted into a phosphodiester bond, a thiophosphate diester bond, an aminophosphate diester bond, a boranophosphate diester bond, a phosphate diester bond protected with a basic protecting group (phosphate triester). Or a thiophosphoric diester bond protected with a basic protecting group (thiophosphoric acid-O, O, S-triester bond) or the like.
  • the amino group of the aminophosphoric acid diester bond is unsubstituted or substituted with one or two C1-6 alkyl groups.
  • the hydrogen atom of one hydroxy group of the phosphodiester bond is C1-40 alkyl group, C3-6 cycloalkyl group, C6-10 aryl group, 5-10 member A bond is replaced by a heteroaryl group, an aralkyl group, a heteroaralkyl group or the like.
  • the C1-6 alkyl group is unsubstituted or substituted by a halogen atom, a cyano group or the like.
  • C3-6 cycloalkyl group, C6-10 aryl group, 5-10 membered heteroaryl group, aralkyl group and heteroaralkyl group are unsubstituted or substituted by C1-6 alkyl group, halogen atom, cyano group, etc.
  • the thiophosphate diester bond protected with the basic protecting group is such that the hydrogen atom of one thiol group of the thiophosphate diester bond is a C1-40 alkyl group, a C3-6 cycloalkyl group, a C6-10 aryl group, a 5-10 member A bond is replaced by a heteroaryl group, an aralkyl group, a heteroaralkyl group or the like.
  • the C1-40 alkyl group is unsubstituted or substituted by a halogen atom, a cyano group or the like.
  • C3-6 cycloalkyl group, C6-10 aryl group, 5-10 membered heteroaryl group, aralkyl group and heteroaralkyl group are unsubstituted or substituted by C1-6 alkyl group, halogen atom, cyano group, etc. Has been.
  • the number n of nucleosides contained in the nucleoside or oligonucleotide having a pseudo solid phase protecting group used in step a is not particularly limited as long as it is an arbitrary integer of 1 or more, but is preferably 1 to 50, more preferably 1 To 30, more preferably 1 to 20, even more preferably 1 to 10, and particularly preferably 1 to 5.
  • the number p of nucleosides contained in the nucleoside or oligonucleotide having a hydroxy group used in step c is not particularly limited as long as it is an arbitrary integer of 1 or more, but is preferably 1 to 50, more preferably 1 to 30.
  • step a can be performed at the same time by appropriately raising the temperature after step d.
  • the method for producing an oligonucleotide can further purify a nucleoside or oligonucleotide by easily and effectively removing excess raw materials and by-products by including the following step e.
  • Step e is a separation step in which a polar solvent is added to the reaction mixture obtained in any one of steps a to d to precipitate a nucleoside or oligonucleotide having a pseudo solid phase protecting group, and is obtained by solid-liquid separation. It is.
  • step e is a step unique to liquid phase synthesis using a pseudo solid phase protecting group, which cannot exist in a normal liquid phase synthesis method without using a pseudo solid phase protecting group or in a solid phase synthesis method. is there.
  • the number of steps e included in the extension reaction cycle is not particularly limited. Step e can be performed after any step from step a to step d.
  • the step e is independently included, for example, 0 to 5 times, preferably 0 to 3 times, more preferably 0 to 2 times, and still more preferably 0 after each step from the step a to the step d. Or included once.
  • at least one after the steps a to d includes one or more steps e.
  • the extension reaction cycle preferably includes 1 to 4 steps e. Since the step e is included once in each of at least one after the step a, after the step b and after the step d in the extension reaction cycle, it is possible to strictly control and control the generation of by-products.
  • step e is included once after step b, once after step d, or once after step b and step d in the extension reaction cycle.
  • step e may be included once after step a, once after step b, or once after step a and step b in the extension reaction cycle. More preferably, each step is included once after step a and step b.
  • step e after repeating step a to step d as a basic unit if the amount of by-products generated can be controlled by controlling the equivalent of raw materials and controlling the reaction.
  • the method for producing an oligonucleotide may further include step f. Thereby, a desired oligonucleotide can be isolated and manufactured.
  • Step f is a deprotection step in which all of the basic protecting group, temporary protecting group and pseudo solid phase protecting group of the oligonucleotide obtained in steps a to e are removed.
  • Oligonucleotide production methods are mainly classified into method A or method B depending on the extension direction of the oligonucleotide.
  • Method A the hydroxy group at the 5 'position is converted by steps a to c, and the nucleoside or oligonucleotide is extended to the 5' position.
  • Method B the hydroxy group at the 3 'position is converted by steps a to c, and the nucleoside or oligonucleotide is extended to the 3' position.
  • Method A is A hydroxy group having a pseudo-solid phase protecting group at at least one position selected from the group consisting of the 2′-position, the 3′-position and the nucleic acid base part and protected at the 3′-position with a basic protecting group or a pseudo-solid phase protecting group
  • a first nucleoside having a hydroxy group protected with a temporary protecting group at the 5 ′ position or a temporary protecting group of the first oligonucleotide to produce a 5′-hydroxy group ( Step a);
  • a second step (step b) comprising H-phosphonating the resulting 5′-hydroxy group with an H-phosphonate reagent; 3'- of a second nucleoside or second oligonucleotide having a 5'-hydroxy group H-phosphonated and a hydroxy group at the 3 'position and a hydroxy group protected with a temporary protecting group at the 5' position
  • Method B A hydroxy group having a pseudo-solid phase protecting group at at least one position selected from the group consisting of 2′-position, 5′-position and nucleobase, and protected with a basic protecting group or a pseudo-solid-phase protecting group at 5′-position
  • An eighth step (step b) comprising H-phosphonating the resulting 3′-hydroxy group with an H-phosphonating reagent; 5'- of a fourth nucleoside or fourth oligonucleotide having a 3'-hydroxy group which is H-phosphonated and a hydroxy group at the 5 'position and a hydroxy group protected with a temporary protecting group at the 3' position.
  • the phosphite diester bond of the conjugate was protected with a phosphodiester bond, a thiophosphate diester bond, a boranophosphate diester bond, an aminophosphate diester bond, a phosphodiester bond protected with a basic protecting group, or a basic protecting group.
  • Step a in each case of method A or method B is shown in Scheme 1 or 2.
  • n Represents an arbitrary integer of 1 or more, and represents a nucleoside when n 1.
  • n any integer of 1 or more
  • Base z independently represents a nucleobase, a nucleobase protected with a basic protecting group, or a nucleobase protected with a pseudo solid phase protecting group
  • R represents a temporary protecting group
  • X z are each a hydrogen atom independently, halogen atom, hydroxy group, protected hydroxy group in basic protecting group, 4-position organic group or a pseudo solid phase protection bridging carbon atoms
  • Y represents independently a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, a thiol group, a thiol group protected with a basic protecting group, borohydride
  • a mono C1-6 alkylamino group or a diC1-6 alkylamino group is represented
  • Z represents a basic protecting group, a temporary protecting group or a pseudo solid phase protecting group.
  • each of Base Z , XZ and Z includes a pseudo solid phase protecting group.
  • each nucleobase part may be the same or different, and (ia) or (ia)
  • each quasi-solid phase protecting group may be the same or different, and (ia) or (ia) has two or more basic protecting groups.
  • each basic protecting group may be the same or different, and when n polymerized oligonucleotides have an organic group that crosslinks to two or more 4-position carbon atoms, they cross-link to each 4-position carbon atom.
  • the organic groups to be used may be the same or different.
  • the step of removing the temporary protecting group R by addition of a fluorine reagent, acid or base (detemporary protecting group step) (Scheme 2).
  • Scheme 2 n, Base z , R, X z , Y, and Z are the same as defined in Scheme 1.
  • the pseudo solid phase protecting group is preferably contained in at least one of Base Z and Z, and more preferably contained in Z.
  • Z is preferably a basic protecting group or a pseudo solid phase protecting group, more preferably a pseudo solid phase protecting group.
  • a preferred pseudo solid phase protecting group contained in XZ or Z is a group represented by the aforementioned formulas (I) to (VII), and preferred embodiments are also the same.
  • the pseudo solid phase protecting group contained in Base z is a group represented by the following formula (I), wherein m is 1 or m is 0, and L 1 , L 2 , L 3 And L 4 is preferably a group having 0 to 3 single bonds.
  • * indicates the position of binding to the nucleic acid base
  • other symbols are the same as defined in the formula (I), and the preferred embodiments are also the same.
  • the quasi-solid phase protecting group contained in Base z is a group represented by the following formula (II), and is a group having 0 to 3 single bonds among L 1 , L 2 , L 3 and L 4 Is more preferable.
  • * indicates the position of binding to the nucleic acid base
  • other symbols are the same as defined in the formula (II), and the preferred embodiments are also the same.
  • the pseudo-solid phase protecting group contained in Base z is more preferably a group represented by the following formula (III).
  • the pseudo solid phase protecting group contained in Base z is more preferably a group represented by the following formula (IV).
  • pseudo solid phase protecting group contained in XZ or Z is more preferably a group represented by the following formula (IV-2).
  • the pseudo solid phase protecting group contained in XZ or Z is more preferably a group represented by the following formula (IV-3).
  • * represents the position of binding to the nucleobase, and other symbols are the same as defined in the formula (IV-3).
  • L 1 of the pseudo-solid phase protecting group represented by the formulas (II) to (IV-3) contained in Base z is preferably a C 1-6 alkylene group, and particularly preferably an ethylene group.
  • L 3 of the pseudo-solid phase protecting group represented by the formulas (II) to (IV) contained in Base z is preferably a C 1-6 alkylene group, and particularly preferably a methylene group or an ethylene group.
  • the pseudo solid phase protecting group contained in Base z is preferably a group represented by the following formula (V).
  • the pseudo solid phase protecting group contained in Base z is more preferably the following formula (VI)
  • the pseudo solid phase protecting group contained in Base z is a group represented by the formula (VII).
  • L 1 of the pseudo-solid phase protecting group represented by formula (I), formula (V) or (VI) contained in Base z is preferably a C1-6 alkylene group, particularly preferably a methylene group or ethylene. It is a group.
  • L 3 of the pseudo-solid phase protecting group represented by formula (I), formula (V) or (VI) contained in Base z is preferably a C1-6 alkylene group, particularly preferably a methylene group or ethylene. It is a group.
  • L 5 and L 6 of the pseudo solid phase protecting group represented by the formula (I) or the formula (V) to the formula (VII) contained in Base z are particularly preferably hydrogen atoms.
  • R 1 of the pseudo-solid phase protecting group represented by formula (I) to formula (VII) contained in Base z is preferably a C10-30 alkyl group or a C10-30 alkenyl group, more preferably C10 A -30 alkyl group; S of the pseudo-solid phase protecting group represented by the formula (I) to the formula (VII) included in Base z is preferably an integer of 2 to 4, more preferably 3. In formulas (I) to (VII), when s is 2 to 5, each R 1 may be the same or different.
  • the temporary protecting group R that can be used for the hydroxy group at the extended end of the oligonucleotide is not particularly limited as long as it can be deprotected with a fluorine reagent, acid or base, and can be used as a protecting group for the hydroxy group.
  • Examples of the temporary protecting group R that can be deprotected with a fluorine reagent include silyl groups (tert-butyldimethylsilyl group, triethylsilyl group, trimethylsilyl group, etc.).
  • Examples of the temporary protecting group R that can be deprotected with an acid include a xanthenyl group (9- (9-phenyl) xanthenyl group, 9-phenylthioxanthenyl group, etc.), an alkoxyalkyl group (1-methoxy-1-methylethyl group, 1,3-dioxolan-2-yl group, 1,3-benzodioxol-2-yl group), alkylthioalkyl group (1,3-dithiolan-2-yl group, 1,3-benzodithiol-2) -Yl group), alkoxycarbonyl group (such as tert-butyloxycarbonyl group), and triarylmethyl group (such as trityl group, dimethoxytrityl group, and monomethoxytrityl group).
  • a xanthenyl group (9- (9-phenyl) xanthenyl group, 9-phenylthioxantheny
  • Examples of the temporary protecting group R that can be deprotected with a base include a levulinyl group and a 3-benzoylpropionyl group.
  • a levulinyl group and a 3-benzoylpropionyl group Preferably, tert-butyldimethylsilyl group, trityl group, 9- (9-phenyl) xanthenyl group, 9-phenylthioxanthenyl group, 1,1-bis (4-methoxyphenyl) -1-phenylmethyl group (dimethoxy) Trityl group) and 1- (4-methoxyphenyl) -1,1-diphenylmethyl group (monomethoxytrityl group).
  • a tert-butyldimethylsilyl group, a monomethoxytrityl group, and a dimethoxytrityl group are preferable, and a tert-butyldimethylsilyl group and a dimethoxytrityl group are preferable.
  • a dimethoxytrityl group is particularly preferable.
  • a tert-butyldimethylsilyl group is also particularly preferred.
  • Examples of the basic protecting group of the “hydroxy group protected by the basic protecting group” in Xz include, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 3rd edition, John Willy and -The protecting group described in Sands (John WILLY & SONS) publication (1999) etc. can be mentioned.
  • an alkyl group such as a methyl group or a tert-butyl group
  • an arylmethyl group such as a benzyl group or a p-methoxybenzyl group
  • a diarylmethyl group such as a diphenylmethyl group
  • an alkoxyalkyl group such as a methoxymethyl group
  • Methoxyethyl group Methoxyethyl group, ethoxyethyl group, cyanoethoxymethyl group, etc.
  • 2-tetrahydropyranyl group such as a methoxymethyl group
  • Methoxyethyl group Methoxyethyl group, ethoxyethyl group, cyanoethoxymethyl group, etc.
  • 2-tetrahydropyranyl group such as cyanoethyl group
  • carbamoyl group phenylcarbamoyl group, 1,1-dioxothiomorpholine-4-thiocarbamo
  • a tert-butyldimethylsilyl group, a triisopropylsilyl group, or a tert-butyldiphenylsilyl group is preferable, and a tert-butyldimethylsilyl group or a triisopropylsilyl group is more preferable.
  • a levulinyl group or 3-benzoylpropionyl group is preferable, and a levulinyl group is more preferable.
  • X z is preferably a hydrogen atom, a hydroxy group, a hydroxy group protected with a basic protecting group, or an organic group that bridges to the 4-position carbon atom, and more preferably a hydrogen atom, a hydroxy group, or a C 1-6 alkyl group , A hydroxy group protected with a tert-butyldimethylsilyl group, a triisopropylsilyl group or a tert-butyldiphenylsilyl group, and more preferably a hydroxy group protected with a hydrogen atom or a triisopropylsilyl group.
  • the C1-6 alkyl group is unsubstituted or substituted with a group selected from the group consisting of a C1-6 alkoxycarbonyl group, a mono C1-6 alkylaminocarbonyl group, and a diC1-6 alkylaminocarbonyl group.
  • X z is more preferably a C2-6 alkylene group (the alkylene group is unsubstituted or substituted with a methyl group.
  • one or two methylene groups of the alkylene group) Is not replaced, or —O—, —NR 11 — (R 11 represents a hydrogen atom or a methyl group), —CO—, —CS—, —COO—, —OCONR 12 — (R 12 is Substituted with a group selected from: —CONR 13 — (R 13 represents a hydrogen atom or methyl group) and —CSNR 14 — (R 14 represents a hydrogen atom or methyl group); It is an organic group that crosslinks to the 4-position carbon atom represented by X z is more preferably an ethylene group (one or two methylene groups of the ethylene group are not substituted or —O—, —CONR 13 — (R 13 represents a hydrogen atom or a methyl group) and An organic group that bridges to the 4-position carbon atom represented by —CSNR 14 — (wherein R 14 represents a hydrogen atom or a methyl group).
  • the basic protecting group for Z those exemplified as the basic protecting group for “hydroxy group protected by basic protecting group” for X z can be mentioned.
  • a tert-butyldimethylsilyl group, a triisopropylsilyl group, a tert-butyldiphenylsilyl group, a levulinyl group or a 3-benzoylpropionyl group is preferable, a levulinyl group or a 3-benzoylpropionyl group is more preferable, and a levulinyl group is still more preferable.
  • a protecting group that is not deprotected under the conditions for deprotecting the temporary protecting group can be used.
  • a temporary protecting group that is deprotected with an acid a protective group that is not deprotected with an acid but is deprotected with a base or a fluorine reagent is used as a basic protecting group among those listed as the temporary protecting group. be able to.
  • a temporary protecting group that is deprotected with a base a protecting group that is not deprotected with a base but is deprotected with an acid or a fluorine reagent is used as a basic protecting group among those listed as the temporary protecting group.
  • a temporary protecting group that is deprotected with a base a protecting group that is not deprotected with a base but is deprotected with an acid or a fluorine reagent is used as a basic protecting group among those listed as the temporary protecting group.
  • a temporary protecting group that is deprotected with a fluorine reagent among those listed as the temporary protecting group, a protecting group that is not deprotected with a fluorine reagent but is deprotected with an acid or base is used as a basic protecting group. Can be used.
  • the temporary protecting group when the basic protecting group in X z or Z is a levulinyl group or 3-benzoyl propionyl group, the temporary protecting group, tert- butyldimethylsilyl group, silyl groups such as triethylsilyl group, or a trityl group, dimethoxytrityl And a triarylmethyl group such as a monomethoxytrityl group.
  • the temporary protecting group is a levulinyl group or a 3-benzoylpropionyl group
  • the basic protecting group in Xz or Z is a silyl group such as a tert-butyldimethylsilyl group or a triethylsilyl group, or a trityl group, a dimethoxytrityl group, A triarylmethyl group such as a monomethoxytrityl group is preferred.
  • a levulinyl group or 3-benzoylpropionyl group may be used as a temporary protecting group.
  • Y independently represents a hydrogen atom, a hydroxy group, a protected hydroxy group, a thiol group, a protected thiol group, a borohydride, a mono C1-6 alkylamino group, or a diC1-6 alkylamino group.
  • the protected hydroxy group is the same as the group that replaces the hydroxy group in the “phosphate diester bond protected by the basic protecting group” converted in step d described later.
  • the protected thiol group is the same as the group that replaces the thiol group in the “thiophosphate diester bond protected with a basic protecting group” converted in step d described later.
  • Y is each independently preferably a hydrogen atom, a hydroxy group, a thiol group, or a 2-cyanoethoxy group, and more preferably a hydroxy group or a thiol group.
  • the phosphorus functional group including Y has, for example, the following structure (or a structure obtained by adding a salt to the following structure).
  • Step a is performed in a solvent that does not affect the reaction. Since the higher the solubility in the solvent, the better the reactivity can be expected, it is preferable to select a low polarity solvent having a high solubility of the target compound.
  • halogen solvents such as chloroform, dichloromethane and 1,2-dichloroethane
  • aromatic solvents such as benzene, toluene, xylene and mesitylene
  • ester solvents such as ethyl acetate and isopropyl acetate
  • hexane, pentane and heptane Aliphatic solvents such as octane, nonane and cyclohexane
  • ether solvents such as tetrahydrofuran, diethyl ether, cyclopentyl methyl ether and tert-butyl methyl ether.
  • solvents may be used as a mixture of two or more in any ratio.
  • nitrogen-containing aromatic solvents such as pyridine, nitrile solvents such as acetonitrile and propionitrile, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone
  • a polar solvent such as a system solvent may be mixed and used at an arbitrary ratio as long as n polymerization oligonucleotides can be dissolved.
  • the solvents used in Step a are dichloromethane, chloroform, 1,2-dichloroethane, benzene, toluene, xylene, mesitylene, hexane, pentane, heptane, nonane, cyclohexane, ethyl acetate, isopropyl acetate, tetrahydrofuran, tert-butyl methyl ether.
  • Cyclopentyl methyl ether, or a combination thereof is preferable, and dichloromethane and tetrahydrofuran are particularly preferable.
  • the concentration of the n-polymerized oligonucleotide in step a is not particularly limited as long as it is dissolved, but is preferably 1 to 30% by weight.
  • the fluorine reagent, acid or base used in step a is not particularly limited as long as good deprotection of the temporary protecting group can be achieved.
  • Fluorine reagents include hydrogen fluoride pyridine salt, tetrabutylammonium fluoride, hydrogen fluoride triethylamine salt, hydrofluoric acid, ammonium fluoride, ammonium fluoride hydrofluoride adduct, potassium fluoride or fluoride.
  • a hydrogen fluoride adduct of potassium is preferable.
  • a pyridine salt of hydrogen fluoride or tetrabutylammonium fluoride is more preferable, and a pyridine salt of hydrogen fluoride is particularly preferable.
  • the acid is preferably trifluoroacetic acid, dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, hydrochloric acid, acetic acid, ammonium cerium nitrate, phosphonic acid or phosphoric acid.
  • trifluoroacetic acid More preferred are dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, hydrochloric acid, acetic acid or ammonium cerium nitrate, trifluoroacetic acid, dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid or p-Toluenesulfonic acid is more preferable, and dichloroacetic acid or phosphonic acid is particularly preferable.
  • Trifluoroacetic acid or p-toluenesulfonic acid is also particularly preferred.
  • bases include hydrazine derivatives (hydrazine monohydrate, hydrazine acetate, hydrazinium sulfate, acetohydrazide, methyl carbazate, phenyl hydrazine, p-toluenesulfonyl hydrazine, etc.), ethylenediamine derivatives (ethylenediamine, etc.) and inorganic bases (carbonic acid carbonate, etc.). Potassium etc.).
  • hydrazine derivatives are preferable, and hydrazine monohydrate is more preferable.
  • fluorine reagents, acids and bases can be used by diluting with the above-mentioned low polarity solvent.
  • deprotection with enzymes such as Chirazyme L-2 and Chirazyme L-5 is also possible.
  • the amount of the fluorine reagent, acid or base used in step a can be used in an amount of 1 to 100 mol, preferably 1 to 40 mol, more preferably 1 to 30 mol, per 1 mol of n polymerized oligonucleotides. And more preferably 5 to 30 mol.
  • the reaction temperature in step a is not particularly limited as long as the reaction proceeds, but is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the type of n polymerized oligonucleotide used, the type of fluorine reagent, the type of acid or base, the type of solvent, the reaction temperature, etc., but preferably 5 minutes to 50 hours, more preferably 5 minutes to 12 hours. 30 minutes to 6 hours is more preferable.
  • a temporary protecting group for the 5′-position or 3′-position hydroxy group of the p-polymerized oligonucleotide (iv)
  • the quench treatment is performed with a silicon reagent or an organic base when the deprotecting agent is a fluorine reagent or acid, and with a ketone compound when the deprotecting agent is the base.
  • the silicon reagent used for the quenching process is not particularly limited as long as it can quench the fluorine reagent, but hexamethyldisiloxane [TMS 2 O], trimethylsilyl chloride [TMSCl], hexamethyldisilazane, Trimethylsilyl bromide, trimethylsilyl iodide, trimethylsilyl trifluoromethanesulfonate, triethylsilyl chloride, triisopropylsilyl chloride, tert-butyldimethylsilyl chloride, tert-butyldiphenylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethylsilyl chloride, triphenylsilyl chloride TMS 2 O and TMSCl are more preferable, and TMS 2 O is particularly preferable.
  • the organic base used for the quench treatment is not particularly limited as long as it can neutralize the above-mentioned acid, but is not limited to pyridine, 2,4,6-trimethylpyridine, benzimidazole, 1,2,4. -Triazole, N-phenylimidazole, 2-amino-4,6-dimethylpyrimidine, 1,10-phenanthroline, imidazole, N-methylimidazole, 2-chlorobenzimidazole, 2-bromobenzimidazole, 2-methylimidazole, 2 -Phenylbenzimidazole, N-phenylbenzimidazole, 5-nitrobenzimidazole are preferred, pyridine, 2,4,6-trimethylpyridine, benzimidazole, 1,2,4-triazole, N-phenylimidazole, N-methylimidazole 2-amino-4 6-dimethylpyrimidine, more preferably 1,10-phenanthroline, pyridine is particularly preferred.
  • the ketone compound used in the quenching treatment is not particularly limited as long as it can consume the above-mentioned base, and examples thereof include acetylacetone and acetone, and acetylacetone is preferable.
  • the amount of the silicon reagent, organic base, or ketone compound used for the quench treatment in step a is, for example, 0.01 to 100 moles, preferably 0.1 to 50 moles per mole of the fluorine reagent, acid, or base. Mol, more preferably 1 to 20 mol, still more preferably 1 to 3 mol.
  • step a and the subsequent step b continuously in a liquid phase, it is preferable to add a cation scavenger during or after the deprotection reaction of the temporary protecting group R in the step a.
  • a cation scavenger may or may not be added.
  • the cation scavenger is not particularly limited as long as reprotection (returning the raw material) by the removed protecting group R or side reaction to the deprotected functional group does not proceed, but pyrrole, 2-methylpyrrole, 3- Pyrrole derivatives such as methylpyrrole, 2,3-dimethylpyrrole, 2,4-dimethylpyrrole; indole, 4-methylindole, 5-methylindole, 6-methylindole, 7-methylindole, 5,6-dimethylindole, Indole derivatives such as 6,7-dimethylindole can be used.
  • pyrrole, 3-methylpyrrole, 2,4-dimethylpyrrole, indole, 4-methylindole, 5-methylindole, 6-methylindole, 7-methylindole, 5, 6-dimethylindole and 6,7-dimethylindole are preferred, pyrrole, 3-methylpyrrole and indole are more preferred, pyrrole and indole are more preferred, and pyrrole is particularly preferred.
  • the amount of the cation scavenger used is, for example, 1 to 50 moles, preferably 1 to 15 moles, and more preferably 1 to 3 moles with respect to 1 mole of n-polymerized oligonucleotide (ia or ib). is there.
  • step b or step d is performed.
  • the 5′-position hydroxy group of n-polymerized oligonucleotide is obtained by performing substitution with the solvent used in step b or step d by separating liquid and distilling off the solvent, if necessary, and performing step e.
  • the deprotected form of (iia) or the deprotected form of the 3′-hydroxy group (iib) can be isolated.
  • Step b in each case of method A or method B is shown in scheme 3 or 4.
  • Step b in Method A comprises the step of removing the 5′-hydroxy group of the deprotected form (ia) of the 5′-hydroxy group of the n-polymerized oligonucleotide obtained in the above-mentioned Step a of Method A or Step d described later, as an H-phosphonate.
  • This is a step (scheme 3 below).
  • each symbol is as defined above.
  • Step b in Method B is the step of converting the 3′-hydroxy group of the deprotected form (iib) of the 3′-hydroxy group of the n-polymerized oligonucleotide obtained in the above-mentioned Step a of Method B or Step d described later to H-phosphonate.
  • This is a step (scheme 4 below).
  • each symbol has the same definition as above.
  • the solvent used in step b include the same solvents as in step a.
  • step b When a solvent other than a nitrogen-containing aromatic solvent such as pyridine is used in step b, it is preferable to add a nucleophile such as pyridine.
  • the nucleophile is not particularly limited as long as good H-phosphonation can be achieved.
  • pyridine 2-picoline, 4-picoline, 3,4-lutidine, 2,6-lutidine, 2,4,6-collidine, N, N-dimethylaminopyridine, 3-methoxypyridine, 4-methoxypyridine, (S, S) -2,6-bis (4-isopropyl-2-oxazolin-2-yl) pyridine, (R, R) -2,6-bis (4-phenyl-2-oxazolin-2-yl) Pyridine, quinoline, quinidine, N-methylimidazole, 3-methylpyridazine and 4-methoxypyridine-N-oxide are preferred, and pyridine is particularly preferred.
  • the amount of the nucleophile used in step b is not particularly limited, but is, for example, 1 to 300 mol, preferably 1 to 100 mol, more preferably 1 mol per 1 mol of n-polymerized oligonucleotide (ia or iib). Is 1 to 40 moles.
  • the H-phosphonation reagent used in step b is not particularly limited as long as good H-phosphonation can be achieved, but phosphorous acid, diaryl phosphite (such as diphenyl phosphite), ammonium of aryl-H-phosphonate Salts (such as triethylammonium salt of phenyl-H-phosphonate, triethylammonium salt of p-toluyl-H-phosphonate), phosphorus halide (2-chloro-4H-1,3,2-benzodioxaphosphorin-4- ON, phosphorus trichloride, etc.).
  • phosphorous acid, diphenyl phosphite, phenyl-H-phosphonate triethylammonium salt, p-toluyl-H-phosphonate triethylammonium salt, 2-chloro-4H-1,3,2-benzodioxaphospholine -4-one and phosphorus trichloride are preferred, and phosphorous acid and diphenyl phosphite are more preferred.
  • condensing agent When using phosphorous acid or an ammonium salt of aryl-H-phosphonate as the H-phosphonate reagent, it is preferable to add a condensing agent.
  • the condensing agent include condensing agents usually used in the H-phosphonate method.
  • 2,2-dimethylbutyryl chloride isobutyryl chloride, pivaloyl chloride, acetyl chloride, 1-adamantyl chloride, diphenyl chlorophosphate, 2,4,6-triisopropylbenzenesulfonyl chloride, 2- (benzoyltriazol-1-yloxy) -1,3-dimethyl-2-pyrrolidin-1-yl-1,3,2 -Diazaphosphoridinium hexafluorate [BOMP], N, N-bis (2-oxazolidinyl) phosphonic chloride [BopCl], benzoyl chloride, benzoic anhydride, diphenyl carbonate, di-p-nitrophenyl carbonate and carbonic acid Examples include diaryl carbonates such as bispentafluorophenyl It is.
  • 2,2-dimethylbutyryl chloride isobutyryl chloride, 1-adamantyl chloride, diphenyl chlorophosphate, 2,4,6-triisopropylbenzenesulfonyl chloride and BopCl are preferable, and 2,2-dimethylbutyryl chloride is preferable. More preferred.
  • diaryl phosphite or ammonium salt of aryl-H-phosphonate is used as the H-phosphonate reagent, it can be converted to an H-phosphonate group by treating with water and a tertiary amine such as triethylamine after completion of the reaction. Can do.
  • the amount of H-phosphonation reagent used in step b is preferably 1 to 100 moles, more preferably 1 to 40 moles, and even more preferably 10 to 40 moles per mole of n-polymerized oligonucleotide (iaa or iib). .
  • the amount of the condensing agent used in step b is preferably 1 to 100 moles, more preferably 1 to 40 moles, and even more preferably 10 to 30 moles per mole of n-polymerized oligonucleotide (ia or iib).
  • the reaction temperature in step b is not particularly limited as long as the reaction proceeds, but is preferably ⁇ 10 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C.
  • the reaction time varies depending on the type of n-polymerized oligonucleotide used, the type of solvent, the type of nucleophile, the type of H-phosphonate reagent, the type of condensing agent, the reaction temperature, etc., but from 5 minutes to 24 hours. Preferably, 10 minutes to 12 hours are more preferable, and 30 minutes to 6 hours are more preferable.
  • Step c is performed after step b. Before step c, if necessary, liquid separation treatment, substitution of the solvent used in step c by distilling off the solvent, or 5′-position H-phosphonate form (iii) of n-polymerized oligonucleotide by step e or 3 Isolation of the 'position H-phosphonate (iii) can be performed.
  • Step c) in each case of Method A or Method B is shown in Scheme 5 or 6.
  • Step c) in Method A includes the 5′-hydroxy group H-phosphonate form (iii) of the n-polymerized oligonucleotide obtained in (Step b) in Method A and the 5′-position hydroxy group is temporarily protected.
  • P-polymerized oligonucleotide (iva) protected by the group R and having a 3′-hydroxy group (wherein p represents an arbitrary integer of 1 or more, and when p 1, it represents a nucleoside)
  • Scheme 5 a step of condensing
  • p represents any integer of 1 or more, and other symbols are as defined above, but at least one of Base Z and X Z in the compound (iva) has a pseudo solid phase protecting group. May or may not be included.
  • the case of having two or more nucleobase parts, the case of having two or more pseudo solid phase protecting groups, and the case of having two or more basic protecting groups are the same as defined above.
  • step c Specific examples of the solvent used in step c include the same solvents as in step a. Of these, pyridine, dichloromethane, tetrahydrofuran, toluene and the like are preferable, and pyridine is particularly preferable.
  • a solvent other than a nitrogen-containing aromatic solvent such as pyridine it is preferable to add a nucleophile such as pyridine.
  • the nucleophilic agent is not particularly limited as long as a good coupling reaction can be achieved. Specific examples include the same nucleophilic agent as in step b above, and pyridine is particularly preferable.
  • the nucleophile used in step c is, for example, 1 to 100 mol, preferably 1 to 20 mol, per 1 mol of the H-phosphonate form (iii or iiib) of the n-polymerized oligonucleotide obtained in step b. More preferably, it is 1 to 10 mol.
  • the amount of the p-polymerized oligonucleotide (iva or ivb) used in step c is preferably 1 with respect to 1 mole of the H-phosphonate body (iii or iiib) of the n-polymerized oligonucleotide obtained in step b.
  • the condensing agent used in step c is not particularly limited as long as the coupling reaction proceeds satisfactorily.
  • Specific examples include condensing agents similar to those in step b.
  • 2,2-dimethylbutyryl chloride, isobutyryl chloride, 1-adamantyl chloride, diphenyl chlorophosphate, 2,4,6-triisopropylbenzenesulfonyl chloride, bis (2-oxo-3-oxazolidinyl) phosphinic acid chloride Bispentafluorophenyl carbonate and the like are preferable, and 2,2-dimethylbutyryl chloride or bispentafluorophenyl carbonate is particularly preferable.
  • the condensing agent used in step c is, for example, 1 to 200 mol, preferably 1 to 100 mol, per 1 mol of the H-phosphonate form (iii or iiib) of the n-polymerized oligonucleotide obtained in step b. And more preferably 1 to 50 mol.
  • the reaction temperature in step c is not particularly limited as long as the reaction proceeds, but is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the type of n-polymerized oligonucleotide used, the type of solvent, the type of nucleophile, the type of condensing agent, the reaction temperature, etc., but preferably 1 minute to 12 hours, and 2 minutes to 6 hours. More preferred is 5 minutes to 3 hours.
  • step c After the reaction of step c, a compound represented by the formula (iva or ivb) or a salt thereof in Scheme 5 or 6 or a compound represented by the formula (iaa or iib) or a salt thereof in Scheme 3 or 4 If it remains, the obtained solution may be subjected to a capping reaction if necessary.
  • the capping reaction may be carried out using an acid anhydride such as acetic anhydride, benzoic anhydride, or in addition to the aforementioned condensing agent, triethylammonium salt of methyl-H-phosphonate, triethylammonium salt of ethyl-H-phosphonate, isopropyl- It can be carried out in a conventional manner using ammonium salts of alkyl-H-phosphonates such as triethylammonium salt of H-phosphonate and triethylammonium salt of 2-cyanoethyl-H-phosphonate.
  • an acid anhydride such as acetic anhydride, benzoic anhydride
  • triethylammonium salt of methyl-H-phosphonate triethylammonium salt of ethyl-H-phosphonate
  • isopropyl- isopropyl- It can be carried out in a conventional manner using ammonium salts of al
  • the capping reaction is a reaction that converts a hydroxy group of a compound having a hydroxy group remaining after a coupling reaction or an oxidation reaction into a substituent that cannot extend a nucleoside or oligonucleotide.
  • the capping reaction may be performed after step d described later.
  • the capping reaction is preferably performed after step c or step d.
  • step d or step a is performed. Before step d or step a, if necessary, liquid separation treatment, solvent distillation, substitution to the solvent used in step b or step a, step e, and n + p polymerization oligonucleotide (va or vb) Isolation and the like can be performed. Further, the reaction solution in step c can be used as it is in the next step d or step a.
  • n + p polymerization oligonucleotide (va or vb) obtained in step c or the n polymerization oligonucleotide obtained in step a is reacted with a reagent for modifying a phosphorus atom to thereby react the n + p polymerization oligonucleotide.
  • the phosphite diester bond of (va or vb) is protected with a phosphodiester bond, a thiophosphate diester bond, an aminophosphate diester bond, a boranophosphate diester bond, a phosphodiester bond protected with a basic protecting group, or a basic protecting group. This is a step of converting into a thiophosphoric acid diester bond.
  • Step d in Method A is represented by the following Scheme 7 (in Scheme 7, each symbol is as defined above, but R is a hydrogen atom after Step a).
  • Step d in Method B is represented by the following Scheme 8 (in Scheme 8, each symbol is as defined above, but in the case after Step a, R is a hydrogen atom).
  • n + p polymerized oligonucleotides (va or vb) obtained in step c or n polymerized oligonucleotides (ia or iib) obtained in step a are not isolated. This can be done by simply adding a reagent for modifying the phosphorus atom directly to the subsequent reaction mixture.
  • a reagent for modifying the phosphorus atom an oxidizing agent, a sulfurizing agent, an amidite agent or a boron agent is used.
  • an oxidizing agent or a sulfurizing agent to convert to a phosphate diester bond, a thiophosphate diester bond, a phosphate diester bond protected with a basic protecting group, or a thiophosphate diester bond protected with a basic protecting group. More preferably, it is converted into a phosphodiester bond or a thiophosphate diester bond.
  • the step d may be performed by isolating the n + p polymerization oligonucleotide (va or vb) obtained in the step c or the n polymerization oligonucleotide (iii or iib) obtained in the step a.
  • step d Specific examples of the solvent used in step d include the same solvents as in step a, and are appropriately selected depending on the oxidizing agent, sulfiding agent, amidating agent or boronating agent used.
  • the “oxidant” used in step d is not particularly limited as long as it has the ability to oxidize a phosphite diester bond to a phosphodiester bond without oxidizing other sites, but iodine, (1S) — (+)-(10-camphanylsulfonyl) oxaziridine, tert-butyl hydroperoxide (TBHP), 2-butanone peroxide, 1,1-dihydroperoxycyclododecane, bis (trimethylsilyl) peroxide, m-chloroperbenzoic acid are preferred. .
  • Iodine, tert-butyl hydroperoxide, and 2-butanone peroxide are more preferable, and iodine is particularly preferable from the viewpoint that an oxidation reaction with a good yield or reaction rate can be achieved.
  • Such an oxidizing agent can be used by diluting with an appropriate solvent so as to have a concentration of 0.05 to 2M.
  • a diluting solvent is not particularly limited as long as it is an inert solvent for the reaction, and examples thereof include pyridine, tetrahydrofuran [THF], dichloromethane, water, or a mixed solvent thereof.
  • step d it is preferable to use a mixed solvent of iodine / water / pyridine or a mixed solvent of iodine / water / pyridine / THF.
  • the reaction solvent in step d is the same as the dilution solvent.
  • the “sulfurizing agent” used in step d is not particularly limited as long as it has the ability to convert a phosphite diester bond to a thiophosphate diester bond.
  • -5-thione (ADTT) 3-((N, N-dimethylaminomethylidene) amino) -3H-1,2,4-dithiazole-5-thione (DDTT), 3H-1,2-benzodithiol- 3-one-1,1-dioxide (Beaucage reagent), 3H-1,2-benzodithiol-3-one, phenylacetyl disulfide (PADS), tetraethylthiuram disulfide (TETD), N- (benzoylthio) -succinimide preferable.
  • ADTT 3-((N, N-dimethylaminomethylidene) amino) -3H-1,2,4-dithiazole-5-thione
  • DDTT 3-((N,
  • elemental sulfur and ADTT are more preferable, and elemental sulfur is particularly preferable.
  • a sulfurizing agent can be used by diluting with a suitable solvent so as to have a concentration of 0.05 to 2M.
  • a diluting solvent is not particularly limited as long as it is inert to the reaction, and examples thereof include dichloromethane, acetonitrile, pyridine, and a mixed solvent thereof.
  • the reaction solvent in step d is the same as the dilution solvent.
  • the reagent for converting the phosphite diester bond to the “phosphoric diester bond protected by the basic protecting group” is not particularly limited as long as it has the conversion ability, but the corresponding alcohol compound, Carbon chloride, iodine, carbon tribromide, N-chlorosuccinimide, trichloroisocyanuric acid, sodium hypochlorite, 3,3-dichloro-5,5-dimethylhydantoin, N, N'-dichlorobis (2,4 Oxidizing agents such as, 6-trichlorophenyl) urea are preferred.
  • the solvent for the conversion reaction is not particularly limited as long as it is an inert solvent for the reaction, and examples thereof include dichloromethane, pyridine, and mixed solvents thereof, preferably dichloromethane or pyridine, and more preferably pyridine.
  • the reagent for converting a phosphite diester bond to a “thiophosphate diester bond protected with a basic protecting group” is not particularly limited as long as it has the conversion ability. Examples thereof include an acid sulfiding agent and a morpholine dione sulfiding agent.
  • the solvent for the conversion reaction is not particularly limited as long as it is an inert solvent for the reaction, and examples thereof include dichloromethane, pyridine, and mixed solvents thereof, preferably dichloromethane or pyridine, and more preferably pyridine.
  • phthalimide-based sulfurizing agent examples include N- (C1-40 alkylthio) phthalimide, N- (C3-6 cycloalkylthio) phthalimide, N- (corresponding to the target “thiophosphate diester bond protected with a basic protecting group”.
  • the target “thiophosphoric diester bond protected with a basic protecting group” includes a substituent such as a halogen atom, a cyano group, a C1-6 alkyl group, the N- (C1-40 alkylthio) phthalimide, N- (C3-6 cycloalkylthio) phthalimide, N- (C6-10 arylthio) phthalimide, N- (5-10 membered heteroarylthio) phthalimide, N- (aralkylthio) phthalimide and N- (heteroarylthio) phthalimide Sulfiding agents containing those substituents in the corresponding part of can be used.
  • a substituent such as a halogen atom, a cyano group, a C1-6 alkyl group
  • the N- (C1-40 alkylthio) phthalimide N- (C3-6 cycloalkylthio) phthalimide, N- (C6-10 arylthio)
  • phthalimide-based sulfurizing agent examples include N-[(2-cyanoethyl) thio] phthalimide, N- (methylthio) phthalimide, N- (ethylthio) phthalimide, N- (propylthio) phthalimide, N- (isopropylthio).
  • Phthalimide N- (butylthio) phthalimide, N- (tert-butylthio) phthalimide, N- (cyclohexylthio) phthalimide, N- (dodecylthio) phthalimide, N- (benzylthio) phthalimide, N- (phenylthio) phthalimide, N- Examples include ⁇ (p-chlorophenyl) thio ⁇ phthalimide, N- ⁇ (p-methylphenyl) thio] phthalimide, and N-[(2-benzothiazolyl) thio] phthalimide.
  • succinic sulfiding agent examples include N- (C1-40 alkylthio) succinimide and N- (C3-6 cycloalkylthio) succinic acid corresponding to the target “thiophosphate diester bond protected with a basic protecting group”.
  • examples thereof include imide, N- (C6-10 arylthio) succinimide, N- (5-10 membered heteroarylthio) aralkylthiosuccinimide, and N- (heteroarylthio) succinimide.
  • the target “thiophosphoric acid diester bond protected with a basic protecting group” includes a substituent such as a halogen atom, a cyano group, or a C1-6 alkyl group
  • succinimide-containing sulfiding agent examples include N-[(2-cyanoethyl) thio] succinimide, N- (methylthio) succinimide, N- (ethylthio) succinimide, N- (propylthio).
  • N- (C1-40 alkylthio) morpholine-3,5-dione, N- (C3-6 cyclohexane) corresponding to the target “thiophosphate diester bond protected with a basic protecting group” is used.
  • the target “thiophosphoric acid diester bond protected with a basic protecting group” includes a substituent such as a halogen atom, a cyano group, or a C1-6 alkyl group
  • a substituent such as a halogen atom, a cyano group, or a C1-6 alkyl group
  • morpholine dione-based sulfurizing agent examples include N-[(2-cyanoethyl) thio] morpholine-3,5-dione, N- (methylthio) morpholine-3,5-dione, and N- (ethylthio) morpholine.
  • the “amidizing agent” used in step d is not particularly limited as long as it has the ability to convert a phosphite diester bond to an aminophosphate diester bond, and the corresponding amine compound and carbon tetrachloride, iodine, bromide.
  • the solvent for the conversion reaction is not particularly limited as long as it is an inert solvent for the reaction, and examples thereof include dichloromethane, pyridine, and mixed solvents thereof, preferably dichloromethane or pyridine, and more preferably pyridine.
  • the “boronating agent” used in step d is not particularly limited as long as it has the ability to convert a phosphite diester bond to a boranophosphate diester bond, but borohydride (BH 3 ), BH 3 -THF complex, BH 3 -dimethyl sulfide complex, BH 3 -pyridine complex and the like are preferable.
  • the solvent for the conversion reaction is not particularly limited as long as it is an inert solvent for the reaction, and examples thereof include dichloromethane, pyridine, and mixed solvents thereof, preferably dichloromethane or pyridine, and more preferably pyridine.
  • the amount of the reagent that modifies the phosphorus atom is 1 with respect to 1 mol of the n + p polymerized oligonucleotide (va or vb) obtained in step c or the n polymerized oligonucleotide (ia or iib) obtained in step a.
  • the reaction temperature is not particularly limited as long as the reaction proceeds, but is preferably ⁇ 10 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C.
  • the reaction time is n + p polymerization oligonucleotide (va or vb) obtained in step c or n polymerization oligonucleotide (ia or iib) obtained in step a, and the type of reagent used to modify the phosphorus atom used. Depending on the reaction temperature, etc., it is preferably 1 minute to 24 hours, more preferably 10 minutes to 12 hours, and even more preferably 30 minutes to 6 hours.
  • the oxidizing agent and the sulfiding agent may induce an undesirable side reaction after the completion of the reaction or after the next step.
  • a reducing agent may be added after the end of the reaction. Can be used for quenching.
  • a trivalent phosphorus reagent for example, trialkyl phosphite such as trimethyl phosphite, triethyl phosphite, tris (2-carboxyethyl) phosphine, dimethyl phosphite, A reducing agent such as dialkyl phosphite such as diethyl phosphate) or sodium thiosulfate is used.
  • the quenching process can be omitted.
  • step d When step d is performed after step c, the compound represented by the formula (iva or ivb) or a salt thereof in scheme 5 or 6 or the scheme (ia or iib) in scheme 3 or 4 after the reaction in step d. ) Or a salt thereof may remain, if necessary, the obtained solution may be subjected to a capping reaction.
  • the capping reaction may be carried out using an acid anhydride such as acetic anhydride, benzoic anhydride, or in addition to the aforementioned condensing agent, triethylammonium salt of methyl-H-phosphonate, triethylammonium salt of ethyl-H-phosphonate, isopropyl- It can be carried out in a conventional manner using ammonium salts of alkyl-H-phosphonates such as triethylammonium salt of H-phosphonate and triethylammonium salt of 2-cyanoethyl-H-phosphonate.
  • the capping reaction may be performed after step c described above. When step d is performed after step a, the capping reaction is not performed after step d.
  • Step e is a step in which the oligonucleotide is precipitated by adding a polar solvent to the reaction solution obtained in any of steps a to d, and is obtained by solid-liquid separation.
  • polar solvents in step e include alcohol solvents such as methanol, ethanol and isopropanol n-butanol; nitrile solvents such as acetonitrile and propionitrile; ketone solvents such as acetone and 2-butanone; dimethylformamide and dimethyl
  • An amide solvent such as acetamide and N-methylpiperidone, a sulfoxide solvent such as dimethyl sulfoxide; water, and a mixture of two or more of these are used.
  • the polar solvent in step e is preferably an alcohol solvent or a nitrile solvent, more preferably an alcohol solvent having 1 to 6 carbon atoms or a nitrile solvent having 1 to 6 carbon atoms, particularly preferably methanol or acetonitrile. is there.
  • step e When performing step e using the reaction solution obtained in step d, by using a solution obtained by adding the aforementioned reducing agent to methanol or acetonitrile as a precipitation solvent, a quenching treatment of a reagent that modifies a phosphorus atom, At the same time, step e can be performed.
  • the target oligonucleotide can be obtained with high purity and high yield by repeating the above steps a to e a desired number of times.
  • Step f (Deprotection and oligonucleotide isolation step)
  • the oligonucleotide can be isolated by performing deprotection according to the types and properties of the basic protecting group, the temporary protecting group, and the pseudo solid phase protecting group. Deprotection methods are described, for example, in PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 3rd edition, John WILLY & Sons (1999), etc. According to the deprotection method that has been described, a step of removing all the protecting groups of the oligonucleotide can be performed.
  • the pseudo-solid phase protecting group and the basic protection protecting the basic protective group such as benzoyl group, isobutyryl group, phenoxyacetyl group, acetyl group, levulinyl group, phosphate diester bond or thiophosphate diester bond
  • the 2-cyanoethyl group which is a group, can be completely removed by treatment with aqueous ammonia, aqueous ammonia / ethanol solution, or a mixture of aqueous ammonia and aqueous methylamine.
  • the temporary protecting group at the 5′-position or 3′-position can be removed by treatment with the fluorine reagent, acid or base used in step a, or a solution obtained by appropriately diluting them.
  • a method of removing a basic protecting group such as benzoyl group, isobutyryl group, phenoxyacetyl group, acetyl group, levulinyl group, etc. with an inorganic base (potassium carbonate or the like) can also be used.
  • the phosphodiester bond protected with the basic protecting group can be obtained by, for example, the method described in Journal of the Chemical Society Parkin Transaction 1, 1999, pages 1477-1486 ((E) -2-nitrobenzaldoxime, pyridine It can be converted into a phosphodiester bond by deprotection with an oxime compound such as -2-aldoxime and a base such as 1,1,3,3-tetramethylguanidine and DBU.
  • a thiophosphate diester bond protected with a basic protecting group that can be deprotected by ⁇ elimination, such as a 2-cyanoethyl group, can be converted to a thiophosphate diester bond by deprotection under the basic conditions.
  • the thiophosphoric acid diester bond protected with other basic protecting group is, for example, a method described in Journal of the Chemical Society Parkin Transaction 1, 1999, pages 1477 to 1486 (a method of treating with the oxime compound and the base). Etc.) can be converted into a phosphodiester bond. Since an oligonucleotide having no protecting group is easily degraded by an enzyme, it is preferable to isolate the oligonucleotide under air cleanliness control.
  • step a to step d and step f can apply the same method as a general liquid phase organic synthesis reaction. That is, the reaction can be followed using thin layer silica gel chromatography, high performance liquid chromatography or the like.
  • oligonucleotide obtained from step e or step f can be further led to a desired oligonucleotide derivative by subjecting it to an organic synthesis reaction.
  • Oligonucleotides can also be produced using Method A or Method B using oligonucleotides produced using Method A and oligonucleotides produced using Method B.
  • the 5′-hydroxy group H-phosphonate of the n-polymerized oligonucleotide obtained in step b in Method A (iii), and the n-polymerized oligonucleotide (iib) obtained in Step a in Method B Can be condensed with a phosphite diester bond under the same conditions as in Step c.
  • This process is shown in Scheme 9.
  • the symbols in the scheme are the same as defined above, and n in formula (iii) and n in formula (iib) may be the same or different.
  • Z in formula (iii) and Z in formula (iib) May be the same or different.
  • an H-phosphonate body (iiib) of the 5′-hydroxy group of the n-polymerized oligonucleotide obtained in step b in Method B, and the n-polymerized oligonucleotide (iii) obtained in Step a in Method A; Can be condensed with a phosphite diester bond under the same conditions as in Step c.
  • This step is shown in Scheme 10.
  • the symbols in the scheme are the same as defined above, and n in formula (iiib) and n in formula (ia) may be the same or different, and Z in formula (iii) and Z in formula (iii) May be the same or different.
  • the condensed nucleoside or oligonucleotide (vii) having a pseudo solid phase protecting group is precipitated in the same manner as in step e
  • a separation step obtained by separation can be performed.
  • a nucleoside or oligonucleotide (viii) in which the phosphite diester bond having a pseudo solid phase protecting group is converted in the same manner as in step e. Can be precipitated, and a separation step obtained by solid-liquid separation can be carried out.
  • the oligonucleotide can be isolated by performing deprotection according to the types and properties of the basic protecting group, temporary protecting group and pseudo solid phase protecting group.
  • At least one of the two Z possessed by the condensate (vii) by the phosphite diester bond or the converter (viii) of the phosphite diester bond is a basic protecting group, and the basic protecting group is temporarily protected
  • the condensate (vii) by the phosphite diester bond, or the converted product (viii) of the phosphite diester bond is represented by the formula (ia or ib) in Scheme 1 or 2. Step a in Method A or Method B can be carried out.
  • oligonucleotides are pharmaceuticals for various humans or animals (RNA, DNA, oligonucleotide drugs, etc.), functional foods, specified health foods, foods, chemicals, biopolymer materials, industrial polymers It can be used for various applications such as materials.
  • the starting material in the oligonucleotide production method is a known functional group transformation method (eg, Comprehensive Organic Transformations) such as existing oxidation, reduction, hydrolysis, esterification reaction, amide condensation, etc. 2nd edition (Comprehensive Organic Transformations, Second Edition), by RC Larock, Wiley-VCH (1999), etc.)
  • a nucleoside in which a nucleobase is bonded to a ribose bridged at the 2′-position and the 4′-position with —CSNR 14 — R 14 represents a hydrogen atom or a C 1-6 alkyl group
  • R 13 represents a hydrogen atom or a C 1-6 alkyl group
  • a protection reaction and a deprotection reaction are performed as necessary using a thiocarbonylating reagent (eg, Lawson reagent) from a nucleoside having a structure bridged by Can be synthesized.
  • a thiocarbonylating reagent eg, Lawson
  • a nucleoside or oligonucleotide into which a pseudo solid phase protecting group has been introduced can be produced by the following method, but the following production method is an example of a general production method, and the pseudo solid phase according to the present embodiment is used.
  • the method for producing a nucleoside or the like into which a phase protecting group has been introduced is not limited.
  • a nucleoside or oligonucleotide having a group in which m is 0 is introduced, for example, a carboxylic acid represented by the following formula (X-1) or the following formula It can be obtained by reacting the carboxylic acid halide represented by (X-2) with a hydroxyl group or nucleobase of a nucleoside or oligonucleotide.
  • X means a halogen atom, and other symbols are the same as defined above.
  • N, N, N ′, N′-tetramethyl is used in a solvent.
  • Pseudo solid phase protecting groups can be introduced into nucleosides or oligonucleotides using condensing agents such as —O- (benzotriazol-1-yl) uronium hexafluorophosphate and carbonyldiimidazole. If necessary, an additive such as 1-hydroxybenzotriazole can be used in combination.
  • Solvents include halogen solvents such as chloroform, dichloromethane and 1,2-dichloroethane; aromatic solvents such as benzene, toluene, xylene and mesitylene; ester solvents such as ethyl acetate and isopropyl acetate; hexane, pentane, heptane, Aliphatic solvents such as octane, nonane, cyclohexane; ether solvents such as tetrahydrofuran, diethyl ether, cyclopentyl methyl ether, tert-butyl methyl ether; N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone And amide solvents such as
  • the carboxylic acid or acid halide may be converted into a known functional group transformation method such as oxidation, reduction, hydrolysis (for example, Comprehensive Organic Transformations, Second Edition). Edition), RCLarock, Wiley-VCH (1999), etc.).
  • a known functional group transformation method such as oxidation, reduction, hydrolysis (for example, Comprehensive Organic Transformations, Second Edition). Edition), RCLarock, Wiley-VCH (1999), etc.).
  • an arbitrary bond among the bond between L 1 and L 2 2 is formed using the above condensation method or functional group conversion method
  • a pseudo solid phase protecting group can be introduced step by step.
  • L 2 is —COO—, —CON (R 2 ) —, OCO— or —N (R 2 ) CO—
  • the ester bond or amide bond contained in L 2 is converted into the above condensation method or functional group.
  • a pseudo solid phase protecting group can also be introduced step by step using a conversion method or the like.
  • L 4 is —COO—, —CON (R 2 ) —, OCO— or —N (R 2 ) CO—.
  • R 2 is the same as defined above.
  • m is 0, and L 2 is —COO— or —CON (R 2 Nucleosides or oligonucleotides having groups that are-)-can be produced.
  • L 1 is the same as defined above.
  • the condensation of is usually in a solvent with dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N, N ′, N′-tetramethyl-O- (benzotriazole-1- I) It is carried out using a condensing agent such as uronium hexafluorophosphate or carbonyldiimidazole. If necessary, an additive such as 1-hydroxybenzotriazole can be used in combination.
  • the solvent is the same as in the reaction of the compound represented by the formula (X-1) or the formula (X-2) with the nucleoside or oligonucleotide.
  • a group or a nucleobase is condensed under the same conditions as in the above condensation reaction, and a deprotection reaction is performed as necessary, whereby an alcohol compound represented by the following formula (X-12) or the following formula (X— 13) to obtain an amino compound represented by the formula (X-12) or an amino compound represented by the formula (X-13) and a formula (X-14)
  • the quasi-solid phase protecting group represented by the formula (I) wherein the carboxy compound or the arylcarboxylic acid halide represented by the formula (X-15) is condensed under the same conditions as in the condensation reaction.
  • L 4 has a group which is CO- -OCO- or -N (R 2), can be prepared nucleoside
  • P 1 represents a protecting group for hydroxy group
  • P 2 represents a protecting group of amino group
  • X represents a halogen atom
  • P 1 is hydroxy
  • the protecting group can be selected from a temporary protecting group or a basic protecting group
  • P 2 can be selected from a basic protecting group that protects an amino group.
  • a nucleoside or oligonucleotide having a group in which m is 1 is introduced, for example, an alkyl halide represented by the following formula (X-3) and a nucleoside or It can be obtained by reacting the oligonucleotide with a hydroxy group or nucleobase in a solvent.
  • X means a halogen atom, and other symbols are the same as defined above.
  • a base (potassium carbonate, triethylamine, etc.) is used for the reaction between the alkyl halide represented by the formula (X-3) and the nucleoside or oligonucleotide.
  • the solvent the above-mentioned halogen solvents, aromatic solvents, ester solvents, aliphatic solvents, ether solvents, amide solvents or the like are used, and among them, amide solvents are used.
  • the alkyl halide represented by the formula (X-3) is obtained by reacting the carboxylic acid represented by the formula (X-1) with chloromethanesulfonic acid chloride in a solvent (described in International Publication No. 2014-144285). And by reacting the carboxylic acid represented by the formula (X-1), paraformaldehyde and zinc chloride in a solvent (Journal of Medicinal Chemistry, 2009, Vol. 52, pp. 771-778). Method).
  • an arbitrary bond can be converted using the above condensation method or functional group conversion method.
  • a pseudo solid phase protecting group can be introduced stepwise.
  • L 2 is —COO—, —CON (R 2 ) —, OCO— or —N (R 2 ) CO—
  • the ester bond or amide bond contained in L 2 is converted into the above condensation method or functional group.
  • a pseudo solid phase protecting group can also be introduced step by step using a conversion method or the like. The same applies when L 4 is —COO—, —CON (R 2 ) —, OCO— or —N (R 2 ) CO—.
  • R 2 is the same as defined above.
  • NMR nuclear magnetic resonance spectrum
  • MS mass spectrometry
  • MS was measured by ESI (electrospray ionization) method under the following condition 1 unless otherwise specified.
  • ESI + means ESI positive ion mode
  • ESI ⁇ means ESI negative ion mode.
  • Condition 1 Device: AB SCIEX TripleTOF 5600
  • Aqueous layer 10 mM ammonium formate aqueous solution
  • the mixing ratio of the organic layer and the aqueous layer was linearly changed to 90/10 in 10 minutes after the start of measurement at 50/50. Thereafter, the mixing ratio of the organic layer and the aqueous layer was fixed to 90/10 for 5 minutes.
  • nucleic acid monomer used for oligonucleotide synthesis 5′-O- (4,4′-dimethoxytrityl) thymidine [OH], 5′-O- (4,4′-dimethoxytrityl) -3′-O-hydroxyphos Finylthymidine triethylamine salt [p (H)] and 5′-O- (4,4′-dimethoxytrityl) -3′-O-cyanoethoxy (diisopropylamino) phosphinothymidine [PA] were selected. Each solid was stirred at 100 ° C., and HPLC analysis was performed after a certain period of time. The result is shown in FIG.
  • FIG. 1 shows that nucleosides are more stable than H-phosphonates and amidites.
  • tert-butyldimethylsilyl chloride (16.62 g, 110 mmol) was added to a suspension of thymidine (24.20 g, 100 mmol) in pyridine (60 mL) at 0 ° C., and the mixture was stirred for 22 hours and 29 minutes.
  • the solvent was distilled off under reduced pressure, and methylene chloride and water were added for liquid separation.
  • Methylene chloride was added to the obtained aqueous layer for liquid separation, and the obtained organic layers were combined, washed with 5% aqueous sodium hydrogen carbonate solution, and washed with water.
  • Step 1 Synthesis of 5′-O- (tert-butyldimethylsilyl) uridine Under nitrogen atmosphere, uridine (12.03 g, 49.3 mmol), imidazole (6.74 g, 99.0 mmol) in N, N-dimethylformamide [ To a DMF] (120 g) solution, tert-butyldimethylsilyl chloride (7.76 g, 51.5 mmol) was added at room temperature, and the mixture was stirred for 5 hours and 1 minute. The reaction mixture was added dropwise to water (240 g), and the precipitated solid was filtered.
  • Step 2 Synthesis of 5′-O- (tert-butyldimethylsilyl) -2′-O-triisopropylsilyluridine
  • 5′-O- (tert-butyldimethylsilyl) uridine (5.40 g, 15. 1 mmol)
  • silver nitrate [AgNO 3 ] (10.3 g, 60.6 mmol)
  • pyridine 6.1 mL, 75 mmol
  • THF 50 mL
  • triisopropylsilyl chloride 11.65 g, 60.4 mmol
  • the reaction mixture was filtered through celite, the solvent was evaporated under reduced pressure, and ethyl acetate was added. Water was added for liquid separation, and ethyl acetate was added to the obtained aqueous layer for liquid separation.
  • the obtained organic layers were combined, washed with 6% aqueous potassium hydrogen carbonate solution, and washed with water.
  • the solvent was distilled off under reduced pressure, hexane was added to precipitate a solid, cooled to 0 ° C., filtered, and filtered with 5′-O- (tert-butyldimethylsilyl) -2′-O-triisopropylsilyluridine (5. 24 g, 68% yield) was obtained as a white solid.
  • Step 1 Synthesis of Compound 2 Under a nitrogen atmosphere, triethylamine (6.21 mL) was added to a solution of Compound 1 (8.02 g, 22.4 mmol) and succinic anhydride (3.35 g, 33.5 mmol) in methylene chloride (80 g) at room temperature. , 44.8 mmol) was added and stirred for 4 hours 3 minutes. To the reaction mixture, 2.0M phosphoric acid-triethylamine aqueous solution was added for liquid separation.
  • Step 2 Synthesis of Compound 3 Under a nitrogen atmosphere, the method described in Compound 2 (2.79 g, 5.0 mmol), 3,4,5-tris (octadecyloxy) benzyl alcohol (Tetrahedron, 2011, 67, 6633-6663) 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium in a solution of (3.13 g, 3.4 mmol) in methylene chloride (65 g) at room temperature Hexafluorophosphate [HBTU] (2.55 g, 6.7 mmol), diisopropylethylamine (1.2 mL, 7.1 mmol) and dimethylaminopyridine [DMAP] (847 mg, 6.9 mmol) were added and stirred for 1 hour and 8 minutes.
  • HBTU Hexafluorophosphate
  • DMAP dimethylaminopyridine
  • Step 1 Synthesis of Compound 6 Under a nitrogen atmosphere, hydrogen fluoride-pyridine (86.5 ⁇ L, 3.3 mmol) was added to a solution of Compound 3 (1.00 g, 0.74 mmol) in methylene chloride (5 mL) at 40 ° C. The mixture was stirred for 4 hours and 42 minutes, and hexamethyldisiloxane [TMS 2 O] (0.55 mL, 2.6 mmol) was added. In this reaction mixture, pyridine (8 mL) was added to 0.53 mmol of compound 3, and the mixture was concentrated under reduced pressure. Pyridine (8 mL) was added again, the mixture was concentrated under reduced pressure, and pyridine (6 mL) was added to give a pyridine solution of compound 4.
  • TMS 2 O hexamethyldisiloxane
  • Step 2 Synthesis of Compound 9 Hydrogen fluoride-pyridine (51.9 ⁇ L, 2.0 mmol) was added to a solution of Compound 6 (750 mg) in methylene chloride (4 mL) at 40 ° C. under a nitrogen atmosphere, and the mixture was stirred for 3 hours and 23 minutes. , Hexamethyldisiloxane [TMS 2 O] (0.33 mL, 1.6 mmol) was added. Pyridine (8 mL) was added and concentrated under reduced pressure. Pyridine (8 mL) was added again and concentrated under reduced pressure, and pyridine (6 mL) was added to give a pyridine solution of compound 7.
  • TMS 2 O Hexamethyldisiloxane
  • Step 1 Synthesis of Compound 12 3′-O- (tert-butyldimethylsilyl) thymidine (Berry) (3.07 g, 8.6 mmol), succinic anhydride (1.29 g, 12.9 mmol) under nitrogen atmosphere
  • a methylene chloride (31 g) solution of triethylamine (2.64 g, 26.1 mmol) was added at room temperature and stirred for 2 hours and 33 minutes.
  • 2.0M phosphoric acid-triethylamine aqueous solution was added for liquid separation.
  • Step 2 Synthesis of Compound 13 Under a nitrogen atmosphere, Compound 12 (3.73 g, 8.2 mmol), 3,4,5-tris (octadecyloxy) benzyl alcohol (4.96 g, 5.4 mmol) in methylene chloride (224 g) To the solution was added 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate [HBTU] (4.13 g, 10.9 mmol), diisopropylethylamine (1 .42 g, 11.0 mmol) and dimethylaminopyridine (1.37 g, 11.2 mmol) were added, and the mixture was stirred for 16 hours and 18 minutes.
  • 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate [HBTU] (4.13 g, 10.9 mmol)
  • Step 3 (Elongation Reaction Cycle Step a: Deprotection) Synthesis of Compound 14
  • compound 13 (6.06 g, 4.5 mmol) in tetrahydrofuran [THF] (60 g) solution was added 1.0 M tetrabutylammonium at room temperature.
  • Fluoride [TBAF] / THF solution (4.5 mL, 4.9 mmol) was added and stirred for 1 hour and 23 minutes.
  • Methanol was added to the reaction mixture, and the precipitated solid was filtered to obtain Compound 14 (5.45 g) as a white solid.
  • Step 4 (Elongation Reaction Cycle Step b: Synthesis of H-phosphonate) Synthesis of Compound 15
  • a solution of diphenyl phosphite (1.36 g, 5.8 mmol) in pyridine (15 mL) at room temperature at compound 14 (1. 05 g, 0.85 mmol) in pyridine (10 mL) was added and washed with pyridine (5 mL).
  • the mixture was stirred at 40 ° C. for 1 hour and 22 minutes, water (5.13 g) and triethylamine (3.79 g) were sequentially added, and the mixture was stirred for 14 minutes.
  • Step 5 (Elongation Reaction Cycle Steps c and d: Coupling and Oxidation) Synthesis of Compound 16
  • Compound 15 250 mg
  • 3′-O- (tert-butyldimethylsilyl) thymidine 9 mg, 0.27 mmol
  • 2,2-dimethylbutyryl chloride 0.12 mL, 0.90 mmol
  • pyridine 5 mL
  • Step 1 Synthesis of Compound 18
  • a solution of Compound 17 (synthesized according to the method described in JP2011-126993A) (4.26 g, 4.8 mmol) in nitrobenzene (43 g) at 60 ° C.
  • Succinic acid monoethyl chloride (1.36 mL, 9.7 mmol) was added, aluminum chloride (1.30 g, 9.8 mmol) was added, and the mixture was stirred at 60 ° C. for 2 hr 2 min.
  • the mixture was cooled to room temperature and washed twice with water. Methanol was added to the obtained organic layer to precipitate a solid, which was filtered to obtain a pale yellow solid.
  • Step 2 Synthesis of Compound 19 Under a nitrogen atmosphere, a solution of compound 18 (3.56 g, 3.6 mmol) and compound 1 (1.98 g, 5.6 mmol) in methylene chloride (22 g) at room temperature was treated with 2- (1H-benzoic acid). Triazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate [HBTU] (2.75 g, 7.3 mmol), diisopropylethylamine (1.23 mL, 7.2 mmol), dimethylaminopyridine (0.91 g, 7.4 mmol) was added and stirred for 1 hour 31 minutes. Water was added to the reaction mixture for liquid separation.
  • HBTU Triazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • Step 3 Synthesis of Compound 20 Under a nitrogen atmosphere, hydrogen fluoride-pyridine (3 ⁇ L) was added to a solution of compound 19 (22.5 mg) in methylene chloride (0.3 mL), and the mixture was stirred for 7 hours and 3 minutes. Trimethylsilyl chloride [TMSCl ] (10 ⁇ L) was added. Pyridine (0.1 mL) was added, phosphorous acid (2.9 mg) and 2,2-dimethylbutyryl chloride (20 ⁇ L) were added, and compound 1 (12.9 mg) was added. The mixture was stirred for 2 days, 2,2-dimethylbutyryl chloride (10 ⁇ L) was added, and the mixture was further stirred for 1 hour and 28 minutes.
  • TMSCl Trimethylsilyl chloride
  • Step 1 Synthesis of Compound 22 Under a nitrogen atmosphere, 2,2-dimethylbutyryl chloride (0.33 mL, 2.4 mmol) was added to a solution of phosphorous acid (329 mg, 4.0 mmol) in pyridine (11 mL) at 40 ° C. And stirred for 32 minutes.
  • Compound 21 (synthesized according to the method described in International Publication No. 2014-077292) (492 mg, 0.39 mmol) was added to this solution and washed with pyridine (0.40 mL). The mixture was stirred at 40 ° C. for 3 hours and 40 minutes, and acetonitrile was added to precipitate a solid.
  • Step 2 Synthesis of Compound 23 Under a nitrogen atmosphere, a solution of compound 22 (453 mg) and compound 1 (177 mg, 0.50 mmol) in pyridine (9 mL) at 25 ° C. with 2,2-dimethylbutyryl chloride (0.14 mL, 1 0.0 mmol) was added and stirred for 28 minutes. 2,2-Dimethylbutyryl chloride (0.14 mL, 1.0 mmol) was added and stirred for a further 44 minutes, followed by a solution of pyridine, THF and water (4.0 mL, 0.40 mmol) containing 0.1 M iodine.
  • Step 2 Synthesis of Compound 25 Under a nitrogen atmosphere, hydrogen fluoride-pyridine (8.3 ⁇ L, 0.32 mmol) was added to a solution of Compound 24 (99 mg, 0.070 mmol) in methylene chloride (0.5 mL) at 40 ° C. Stir for 3 hours 34 minutes and add hexamethyldisiloxane [TMS 2 O] (53 mL, 0.25 mmol). Pyridine (1 mL) was added and concentrated under reduced pressure. Pyridine (1 mL) was added again and concentrated under reduced pressure, and pyridine (0.8 mL) was added to give a pyridine solution of the deprotected compound.
  • TMS 2 O hexamethyldisiloxane
  • Step 3 Synthesis of Compound 26 Under a nitrogen atmosphere, a solution of Compound 25 (69 mg) and Compound 1 (28 mg, 78 mmol) in pyridine (1.4 mL) at 25 ° C. with 2,2-dimethylbutyryl chloride (35 ⁇ L, 0.25 mmol). ) And stirred for 48 minutes. Thereafter, a solution of pyridine, THF and water (0.6 mL, 0.060 mmol) containing 0.1 M iodine was added and stirred for 1 hour, and trimethyl phosphite (1.2 ⁇ L, 0.010 mmol) was added.
  • 2,2-dimethylbutyryl chloride (47 ⁇ L, 0.34 mmol) was added to a solution of compound 25 (100 mg) and compound 1 (38 mg, 0.11 mmol) in pyridine (5.0 mL) at 25 ° C. Stir for 14 minutes. Then, a solution of pyridine and water (1.7 mL, 0.085 mmol) containing 0.05 M iodine was added, stirred for 55 minutes, and a solution of pyridine and water (0.41 mL, 0.05 M iodine) was added. 0.021 mmol) was added and stirred for 38 minutes.
  • Step 1 Synthesis of Compound 31 In a nitrogen atmosphere, N- (2-hydroxyethyl) -N-methyl-3,4,5-tris (octadecyloxy) benzamide (in accordance with the method described in JP-A No. 2001-253896) To a solution of (synthesized) (5.0 g, 5.1 mmol) and succinic anhydride (1.0 g, 10 mmol) in methylene chloride (50 g) was added triethylamine (2.1 mL, 15 mmol) at room temperature and stirred for 1 hour and 57 minutes. did.
  • Step 2 Synthesis of Compound 32
  • a solution of compound 31 (1.0 g, 0.92 mmol) and compound 1 (0.51 g, 1.4 mmol) in methylene chloride (25 mL) at room temperature with HBTU (0.70 g, 1.8 mmol), diisopropylethylamine (0.31 mL, 1.8 mmol) and DMAP (0.23 g, 1.9 mmol) were added, and the mixture was stirred for 1 hour and 9 minutes. Thereafter, the reaction mixture was added to methanol (102 g), and the precipitated solid was filtered to obtain Compound 32 (1.3 g, yield 99%) as a white solid.
  • Step 3 Synthesis of Compound 33 Under a nitrogen atmosphere, a 1.0 M TBAF / THF solution (0.95 mL, 0.95 mmol) was added to a solution of Compound 32 (1.2 g, 0.86 mmol) in THF (10 mL) at room temperature. Stir for 1 hour 10 minutes. Thereafter, the reaction mixture was added to methanol (123 g), and the precipitated solid was filtered to obtain Compound 33 (1.2 g, quantitative) as a light skin-colored solid.
  • Step 4 Synthesis of Compound 34 Under a nitrogen atmosphere, 2,2-dimethylbutyryl chloride (0.68 mL, 5.0 mmol) was added to a solution of phosphorous acid (0.63 g, 7.6 mmol) in pyridine (20 mL) at 40 ° C. And stirred for 32 minutes. Compound 33 (1.0 g, 0.77 mmol) was added to this solution, and the mixture was stirred at 40 ° C. for 3 hours 3 minutes. Stir. Thereafter, the reaction mixture was added to acetonitrile (210 g), and the precipitated solid was filtered to obtain compound 34 (1.0 g) as a white solid.
  • Step 5 Synthesis of Compound 35 Under a nitrogen atmosphere, a solution of Compound 34 (106 mg) and Compound 1 (43 mg, 0.12 mmol) in pyridine (2.0 mL) at 25 ° C. with 2,2-dimethylbutyryl chloride (49 ⁇ L, 0 .36 mmol) was added and stirred for 30 minutes. Then, a solution of pyridine and water (2.0 mL, 0.10 mmol) containing 0.05 M iodine was added, stirred for 38 minutes, and a solution of pyridine and water containing 0.05 M iodine (0.13 mL, 0 mL). .0063 mmol) was added and stirred for 10 minutes.
  • dimethyl phosphite (3.3 ⁇ L, 0.036 mmol) was added, and the mixture was stirred at 100 ° C. for 3 hours and 33 minutes.
  • the reaction mixture was concentrated under reduced pressure, pyridine (5.0 mL) was added, the mixture was again concentrated under reduced pressure, and pyridine (1.5 mL) was added.
  • 2,2-dimethylbutyryl chloride 64 ⁇ L, 0.46 mmol was added to a solution of phosphorous acid (64 mg, 0.77 mmol) in pyridine (2.0 mL) at 40 ° C. and stirred for 28 minutes.
  • the reaction mixture containing the above deprotected compound was added to this solution, and the mixture was stirred at 40 ° C.
  • the condensing agent was HBTU (16.1 mg, Example 18), 1,1′-carbonyldiimidazole [CDI] (5.6 mg, Example 19), methanesulfonyl chloride [MsCl.
  • Example 25 1 mg, Example 25), isobutyryl chloride (3.8 ⁇ L, Example 26), acetyl chloride (2.6 ⁇ l) L, Example 27), propionyl chloride (3.1 ⁇ L, Example 28) or butyryl chloride (3.7 ⁇ L, Example 29) was changed to give compound 29.
  • Example 29 Compound 29 was obtained as the main product.
  • Step 1 Synthesis of Compound 39 In a nitrogen atmosphere, 5′-O- (tert-butyldimethylsilyl) -2′-deoxycytidine (Journal of Organic Chemistry, 2011, Vol. 76, pages 105-126) 1-hydroxybenzotriazole at 40 ° C. in a mixed solution of (2.5 g, 7.3 mmol) and compound 31 (5.3 g, 4.9 mmol) in methylene chloride (155 mL) and DMF (25 mL).
  • Step 2 Synthesis of Compound 40 Compound 39 (6.7 g, 4.8 mmol), DMAP (0.062 g, 0.50 mmol), levulinic acid (0.86 g, 7.4 mmol) in THF (69 g) under nitrogen atmosphere was added WSC ⁇ HCl (1.4 g, 7.5 mmol) at room temperature and stirred for 50 minutes. Then, DMAP (0.26 g, 2.1 mmol) was added and stirred at room temperature for 3 days. After filtration of the reaction mixture, the obtained filtrate was concentrated under reduced pressure, and THF (38 g) was added to form a solution, and then added to acetonitrile (505 g), and the precipitated solid was filtered to obtain Compound 40 (6.7 g, yield).
  • Step 3 Synthesis of Compound 41 Under a nitrogen atmosphere, Compound 37 (6.5 g, 4.3 mmol), acetic acid (2.9 mL, 50 mmol) in THF (71 g) solution at 30 ° C. in 1.0 M TBAF / THF solution (28 mL) 28 mmol), and the mixture was stirred for 4 hours 53 minutes. Thereafter, the reaction mixture was added to methanol (531 g), and the precipitated solid was filtered to obtain Compound 41 (6.0 g, quantitative) as a white solid.
  • Step 4 Synthesis of Compound 42 Under a nitrogen atmosphere, 2,2-dimethylbutyryl chloride (1.28 mL, 9.3 mmol) was added to a solution of phosphorous acid (1.20 g, 14.6 mmol) in pyridine (40 mL) at 40 ° C. And stirred for 30 minutes. Compound 41 (2.0 g, 1.4 mmol) was added to this solution, and the mixture was stirred at 40 ° C. for 1 hour and 23 minutes. Thereafter, the reaction mixture was added to acetonitrile, and the precipitated solid was filtered to obtain Compound 42 (2.2 g) as a white solid.
  • Step 5 Synthesis of Compound 43 Under a nitrogen atmosphere, a solution of Compound 42 (96 mg) and Compound 1 (36 mg, 0.10 mmol) in pyridine (2.0 mL) at 40 ° C. with 2,2-dimethylbutyryl chloride (45 ⁇ L, 0 .33 mmol) was added and stirred for 23 minutes. Thereafter, a solution of pyridine and water (2.6 mL, 0.13 mmol) containing 0.05 M iodine was added and stirred for 1 hour and 29 minutes. Then, after adding dimethyl phosphite (3.0 microliters, 0.033 mmol) and water (0.26 mL, 14.4 mmol), it stirred at 70 degreeC for 15 hours and 55 minutes. The reaction mixture was concentrated under reduced pressure to obtain Compound 43 as the main product. MS (ESI ⁇ ): [M ⁇ H] ⁇ 1694.1110.
  • Step 1 Synthesis of Compound 44 Under a nitrogen atmosphere, Compound 42 (0.94 g) and 5′-O- (4,4′-dimethoxytrityl) thymidine (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.49 g, 0.91 mmol)
  • pyridine 20 mL
  • 2,2-dimethylbutyryl chloride 0.42 mL, 3.0 mmol
  • a solution of pyridine, THF and water 9.1 mL, 0.91 mmol) containing 0.1 M iodine was added and stirred for 20 minutes.
  • Step 2 Synthesis of Compound 45
  • Compound 44 (0.98 g) and 5′-O- (4,4′-dimethoxytrityl) thymidine (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.45 g, 0.83 mmol)
  • 2,2-dimethylbutyryl chloride (0.38 mL, 2.8 mmol) was added at 25 ° C., and the mixture was stirred for 27 minutes. Thereafter, a solution of pyridine, THF and water (8.3 mL, 0.83 mmol) containing 0.1 M iodine was added and stirred for 44 minutes.
  • Step 3 Synthesis of Compound 46 Under a nitrogen atmosphere, Compound 45 (1.16 g) and 5′-O- (4,4′-dimethoxytrityl) thymidine (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.43 g, 0.81 mmol) 2,2-Dimethylbutyryl chloride (0.37 mL, 2.7 mmol) was added to the pyridine (20 mL) solution at 25 ° C., and the mixture was stirred for 29 minutes. Thereafter, a solution of pyridine, THF and water (8.1 mL, 0.81 mmol) containing 0.1 M iodine was added and stirred for 25 minutes.
  • the sulfurizing agent was 3H-1,2-benzodithiol-3-one-1,1.
  • the reaction was carried out by changing to -dioxide (3.3 mg), and the reaction mixture after sulfidation was concentrated under reduced pressure to obtain Compound 48 as a main product.
  • Example 40 Using a quarter of the reaction solution after the coupling reaction obtained in Example 40, the reaction was carried out under the same conditions as in Example 37 except that the sulfurizing agent was changed to tetraethylthiuram disulfide (4.4 mg). The reaction mixture after sulfurization was concentrated under reduced pressure to obtain Compound 48 as a main product.
  • Example 50 To one of the solutions divided into three in Example 50 (compound 4: corresponding to 0.093 mmol), N-methylmorpholine (0.45 mL, 4.1 mmol) was added, followed by acetonitrile (43 g) to add a solid. Precipitation was carried out, followed by ice cooling, followed by filtration to obtain compound 5d (96 mg) as a solid.
  • dodecanethiol (6.8 mL, 29 mmol) was added to a mixed solution of phthalimide (4.0 g, 27 mmol) in acetonitrile (15 mL) and pyridine (12 mL), and bromine (1.7 mL, 33 mmol) was added at room temperature.
  • Acetonitrile (20 mL) solution was added dropwise over 40 minutes, and the mixture was stirred at room temperature for 2 hours and 43 minutes.
  • Methanol (32 g) and water (5 g) were added and the mixture was cooled to 0 ° C., and the precipitated solid was filtered to obtain the desired product (6.0 g) as a white solid.
  • 2-mercaptobenzothiazole (4.8 g, 29 mmol) was added to a mixed solution of phthalimide (4.0 g, 27 mmol) in acetonitrile (15 mL) and pyridine (12 mL), and bromine (1.7 mL, 33 mmol) in acetonitrile (20 mL) was added dropwise over 38 minutes and stirred at room temperature for 4 hours 30 minutes.
  • Methanol (30 g) and water (5 g) were added and stirred for 17 minutes, and the precipitated solid was filtered to obtain the desired product (6.8 g) as a pale pink solid.
  • Example 53 The reaction was conducted under the same conditions as in Example 53 except that the condensing agent was changed to pentafluorophenyl acetate (7.1 mg), and the reaction mixture after sulfidation was concentrated under reduced pressure to obtain Compound 55 as a main product. .
  • Example 53 The reaction was carried out under the same conditions as in Example 53 except that the condensing agent was changed to diphenyl chlorophosphate (4.2 ⁇ L), and the reaction mixture after sulfidation was concentrated under reduced pressure to obtain Compound 55 as the main product.
  • Step 1 Synthesis of 3′-O- (tert-butyldiphenylsilyl) -5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine N 4 -benzoyl-3′-O under nitrogen atmosphere -(Tert-Butyldiphenylsilyl) -5'-O- (4,4'-dimethoxytrityl) -2'-deoxycytidine (Biochemistry, 2004, Vol.
  • Step 2 Synthesis of Compound 62 3′-O- (tert-butyldiphenylsilyl) -5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine (2.5 g, 3. 2 mmol) and compound 31 (2.2 g, 2.0 mmol) in a mixed solution of methylene chloride (70 mL) and pyridine (14 mL) at 40 ° C. were added HOBt (anhydrous) (0.35 g, 2.6 mmol) followed by WSC ⁇ HCl (0.92 g, 4.8 mmol) was added and stirred for 2 hours and 26 minutes.
  • HOBt anhydrous
  • Step 3 Synthesis of Compound 63 Under a nitrogen atmosphere, pyrrole (0.39 mL, 5.7 mmol) was added to a solution of Compound 62 (3.5 g, 1.9 mmol) in methylene chloride (35 g) at room temperature, and dichloroacetic acid ( 1.6 mL, 19 mmol) was added and stirred for 1 hour 53 minutes. Pyridine (0.77 mL, 9.5 mmol) was added, the reaction mixture was added to methanol (351 g), and the precipitated solid was filtered to obtain compound 63 (2.8 g) as a white solid.
  • Step 4 Synthesis of Compound 64 Under a nitrogen atmosphere, 2,2-dimethylbutyryl chloride (0.41 mL, 3.0 mmol) was added to a solution of phosphorous acid (0.39 g, 4.7 mmol) in pyridine (14 mL) at 40 ° C. And stirred for 30 minutes. Compound 63 (0.70 g, 0.46 mmol) was added to this solution at 30 ° C., and the mixture was stirred at 30 ° C. for 46 minutes. Thereafter, 2,2-dimethylbutyryl chloride (0.38 mL, 2.7 mmol) was added and stirred for 58 minutes.
  • Step 5 Synthesis of Compound 65 Under a nitrogen atmosphere, a solution of compound 64 (0.70 g) and 5′-O- (4,4′-dimethoxytrityl) thymidine (0.37 g, 0.68 mmol) in pyridine (20 mL) was added. Bispentafluorophenyl carbonate (0.57 g, 1.4 mmol) was added at room temperature and stirred for 24 minutes. Then N-[(2-cyanoethyl) thio] phthalimide (0.17 g, 0.71 mmol) was added and stirred for 16 hours 54 minutes. The reaction mixture was added to methanol (200 g), and the precipitated solid was filtered to obtain Compound 65 (0.88 g).
  • Step 1 Synthesis of Compound 67 Under a nitrogen atmosphere, 5′-O- (4,4′-dimethoxytrityl) thymidine (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.34 g) was added to a solution of Compound 42 (1.5 g) in pyridine (20 mL). 0.62 mmol) and bispentafluorophenyl carbonate (0.74 g, 1.9 mmol) were added and stirred for 22 minutes. Thereafter, N-[(2-cyanoethyl) thio] phthalimide (0.19 g, 0.81 mmol) was added and stirred for 15 hours and 29 minutes to obtain a reaction solution containing Compound 82.
  • Step 2 Under the same conditions as in Synthesis Step 1 of Compound 68 , Compound 67 is used instead of Compound 42, and N 4 -benzoyl-5′-O is used instead of 5′-O- (4,4′-dimethoxytrityl) thymidine. Reaction was performed using-(4,4′-dimethoxytrityl) -2′-deoxycytidine (Tokyo Chemical Industry Co., Ltd.) (0.60 g) to obtain Compound 68 (0.97 g) as a white solid. MS (ESI ⁇ +> ): [M + H] ⁇ +> 2291.1664.
  • Step 1 Synthesis of Compound 67 Under a nitrogen atmosphere, 5′-O- (4,4′-dimethoxytrityl) thymidine (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.44 g) was added to a solution of Compound 42 (1.2 g) in pyridine (20 mL). 0.80 mmol) and bispentafluorophenyl carbonate (0.67 g, 1.7 mmol) were added and stirred for 23 minutes. N-[(2-cyanoethyl) thio] phthalimide (0.19 g, 0.83 mmol) was then added and stirred for 1 hour and 32 minutes.
  • Step 2 Synthesis of Compound 68 Under a nitrogen atmosphere, N 4 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine (in a pyridine (19 mL) solution of Compound 67 (0.72 g) ( Tokyo Chemical Industry Co., Ltd. (0.49 g, 0.77 mmol) and bispentafluorophenyl carbonate (0.60 g, 1.5 mmol) were added and stirred for 22 minutes. Thereafter, N-[(2-cyanoethyl) thio] phthalimide (0.18 g, 0.76 mmol) was added as a sulfurizing agent, and the mixture was stirred for 1 hour and 10 minutes.
  • N 4 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine in a pyridine (19 mL) solution of Compound 67 (0.72 g) ( Tokyo Chemical Industry Co
  • reaction mixture was divided into two, and one was concentrated under reduced pressure. After adding toluene (10 g) and concentrating under reduced pressure three times, methylene chloride (10 mL) was added, and pyrrole (51 ⁇ L, 0.74 mmol) and dichloroacetic acid (0.20 mL, 2.4 mmol) were added at 10 ° C. And stirred for 2 hours and 10 minutes. Pyridine (1.2 mL) is added and the temperature is raised to room temperature. The reaction mixture is further divided into two parts, one is added to acetonitrile (50 g) and the precipitated solid is precipitated and filtered to give compound 77 (0.18 g) as a pale skin color. Obtained as a solid.
  • Step 3 Under the same conditions as in Synthesis Step 2 of Compound 73 , Compound 68 is used instead of Compound 67, and N 4 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine is used instead. And N 2 -isobutyryl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxyguanosine (Tokyo Kasei Kogyo Co., Ltd.) (86 mg) was used to give compound 73 (0. 12 g) was obtained as a white solid. MS (ESI ⁇ +> ): [M + H] ⁇ +> 2759.472.
  • Step 4 Under the same conditions as in Synthesis Step 2 of Compound 74 , Compound 73 is used instead of Compound 67, instead of N 4 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine.
  • the reaction was carried out using N 6 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -2′-deoxyadenosine (manufactured by Tokyo Chemical Industry Co., Ltd.) (66 mg).
  • the reaction mixture after sulfurization was concentrated under reduced pressure to obtain Compound 74 as a main product.
  • the sulfurizing agent was N-[(2-cyanoethyl) thio] succinimide (Journal of Chemical Society Parkin Transaction 1, 2002, pages 2619-2633). (13.7 mg), and the reaction mixture after sulfurization was concentrated under reduced pressure to obtain Compound 82.
  • Step 1 Synthesis of Compound 83 Under a nitrogen atmosphere, 3,4,5-tris (octadecyloxy) benzoic acid (synthesized according to the method described in International Publication No. 2014-077292) (3.0 g, 3.2 mmol) Chloromethanesulfonic acid at room temperature in a mixed solution of sodium carbonate (1.1 g, 10 mmol), tetra-n-butylammonium hydrogen sulfate (0.13 g, 0.38 mmol) in methylene chloride (71 g) and water (30 g) Chloride (0.39 mL, 3.9 mmol) was added and stirred for 2 hours and 42 minutes.
  • sodium carbonate 1.1 g, 10 mmol
  • tetra-n-butylammonium hydrogen sulfate 0.13 g, 0.38 mmol
  • methylene chloride 71 g
  • water 30 g
  • Chloride (0.39 mL, 3.9
  • chloromethanesulfonic acid chloride 60 ⁇ L, 0.60 mmol was added and stirred for 18 minutes, and then heated to 40 ° C. and stirred for 10 minutes. Stirring was stopped, liquid separation was performed, and methylene chloride was added to the obtained aqueous layer for extraction. The obtained organic layers were combined, the solvent was distilled off under reduced pressure, acetonitrile (70 g) was added, and the precipitated solid was filtered to obtain Compound 83 as a white solid (3.16 g).
  • Step 2 Synthesis of Compound 84 Under a nitrogen atmosphere, Compound 83 (1.0 g, 1.1 mmol), 5′-O- (tert-butyldimethylsilyl) -3′-O-levulinylthymidine (0.71 g, 1 .6 mmol) in DMF (50 mL), potassium carbonate (0.21 g, 1.5 mmol) was added at 70 ° C. and stirred for 2 hours and 5 minutes, and potassium carbonate (0.91 g, 6. mmol) was further added. Stir for 2 hours 44 minutes. Thereafter, the reaction mixture was added to acetonitrile (201 g), and the precipitated solid was filtered to obtain Compound 84 (1.01 g) as a yellow solid.
  • Step 3 Synthesis of Compound 85
  • Compound 84 (0.94 g, 0.67 mmol)
  • acetic acid (0.41 mL, 7.2 mmol
  • THF 10 mL
  • TBAF / THF solution at 30 ° C. (3.5 mL, 3.5 mmol)
  • the reaction mixture was added to methanol (100 g), and the precipitated solid was filtered to obtain Compound 85 (0.85 g, yield 99% (Step 3)) as a yellow solid.
  • 2,2-dimethylbutyryl chloride 24 ⁇ L, 0.18 mmol was added to a solution of compound 86 (51 mg) and compound 1 (19 mg, 0.053 mmol) in pyridine (1.0 mL) at 25 ° C., Stir for 19 minutes. Then, a solution of pyridine and water (1.1 mL, 0.055 mmol) containing 0.05 M iodine was added and stirred for 36 minutes. Then, water (0.14 mL) was added, and it heated up at 70 degreeC, and stirred for 15 hours and 43 minutes.
  • reaction mixture was concentrated under reduced pressure, and the operation of adding pyridine and concentrating under reduced pressure was performed twice to obtain a reaction mixture containing a compound in which the TBS group was deprotected.
  • 2,2-dimethylbutyryl chloride 49 ⁇ L, 0.36 mmol
  • phosphorous acid 43 mg, 0.52 mmol
  • pyridine 1.5 mL
  • Step 1 Synthesis of Compound 89
  • compound 31 1.0 g, 0.92 mmol
  • sodium carbonate (0.36 g, 3.4 mmol)
  • tetra-n-butylammonium hydrogen sulfate 34 mg, 0.11 mmol
  • chloromethanesulfonic acid chloride (0.20 mL, 2.0 mmol) was added at room temperature and stirred for 41 minutes. Then, it heated up at 40 degreeC and stirred for 2 hours and 19 minutes. Stirring was stopped, liquid separation was performed, and methylene chloride was added to the obtained aqueous layer for extraction.
  • Step 2 Synthesis of Compound 90
  • Compound 89 (11 mg, 9.7 ⁇ mol), 5′-O- (4,4′-dimethoxytrityl) -3′-O-levulinylthymidine (International Publication No. 2014-2004)
  • Potassium carbonate (20 mg, 0.15 mmol) was added at 60 ° C. to a DMF (0.20 mL) solution of (10 mg, 0.016 mmol) (synthesized according to the method described in No. 077292) and stirred for 19 hours and 30 minutes. .
  • the reaction mixture was concentrated under reduced pressure to obtain Compound 90.
  • Step 1 Synthesis of Compound 93 3′-O- (tert-butyldiphenylsilyl) -5′-O- (4,4′-dimethoxytrityl) -2′-deoxy under the same conditions as in Step 66 of Example 66
  • the reaction was carried out using 5′-O- (4,4′-dimethoxytrityl) -2′-deoxycytidine (Chem-Impex) (4.0 g) instead of cytidine to obtain compound 93 (7. 4 g) was obtained as a white solid.
  • Step 2 Synthesis of Compound 94 Under a nitrogen atmosphere, Compound 93 (7.4 g, 4.7 mmol), DMAP (0.065 g, 0.53 mmol), levulinic acid (0.87 g, 7.5 mmol) in methylene chloride (70 mL) To the solution was added WSC ⁇ HCl (1.4 g, 7.5 mmol) at room temperature and stirred for 5 hours and 4 minutes. Thereafter, the reaction mixture was added to acetonitrile (504 g), and the precipitated solid was filtered to obtain Compound 94 (7.9 g) as a pale yellow solid.
  • the reaction was carried out at 40 ° C. using ethylenediamine (1.5 ⁇ L) instead of hydrazine monohydrate under the same conditions as in Example 75, and the reaction mixture was concentrated under reduced pressure to obtain Compound 78.
  • Step 1 Synthesis of Compound 74
  • the reaction was carried out under the same conditions as in Step 4 of Example 72, the reaction mixture after sulfurization was added to methanol, and the precipitated solid was filtered to give Compound 74 (2.3 g, 90%). Obtained as a light flesh-colored solid.
  • Step 2 Synthesis of Compound 97
  • a solution of Compound 74 (0.50 g, 0.14 mmol) in THF (20 mL) was cooled to 0 ° C., and acetic acid (3.0 mL) was added, followed by hydrazine monohydrate. (14 ⁇ L, 0.29 mmol) was added and stirred for 6 hours.
  • Acetylacetone (100 ⁇ L) was added to the reaction mixture, the temperature was raised to room temperature, and the mixture was concentrated under reduced pressure, and then added to methanol (102 g), and the precipitated solid was filtered to obtain Compound 97 (0.45 g).
  • Step 1 Synthesis of Compound 98
  • a methylene chloride solution (10 mL) of Compound 74 (0.51 g, 0.15 mmol) was cooled to 10 ° C.
  • pyrrole (30 ⁇ L, 0.43 mmol) was added, and the mixture was stirred for 14 minutes.
  • dichloroacetic acid (82 ⁇ L, 1.0 mmol) was added and stirred for 4 hours 3 minutes.
  • Pyridine 1.5 mL was added, the temperature was raised to room temperature, the reaction mixture was added to acetonitrile (86 g), and the precipitated solid was filtered to give compound 98 (0.46 g).
  • Step 2 Synthesis of Compound 99 Under a nitrogen atmosphere, a mixed solution of Compound 98 (0.45 g, 0.14 mmol) in methylene chloride (5.0 mL) and pyridine (1.0 mL) at 40 ° C. was added phosphonic acid (0.20 g, 2.4 mmol) and 2,2-dimethylbutyryl chloride (0.19 mL, 1.4 mmol) was added in four divided portions every 10 minutes and stirred for 1 hour 53 minutes. (0.42 mL, 0.71 mmol) was added and the mixture was further stirred for 1 hour and 8 minutes.
  • Step 1 Synthesis of Compound 102
  • a methylene chloride solution (8.0 mL) of compound 100 (0.39 g, 58 ⁇ mol) and indole (21 mg, 0.18 mmol) was cooled to 10 ° C., and dichloroacetic acid (33 ⁇ L, 0 .40 mmol) was added and stirred for 2 hours.
  • Dichloroacetic acid (14 ⁇ L, 0.17 mmol) was further added and stirred for 2 hours and 32 minutes.
  • Pyridine (0.60 mL) was added, the temperature was raised to room temperature, the reaction mixture was added to methanol (100 g), and the precipitated solid was filtered to obtain compound 101 (0.35 g).
  • Step 2 Synthesis of Compound 103 Phosphonic acid (38 mg, 0.46 mmol) at 40 ° C. in a mixed solution of Compound 101 (0.17 g, 27 ⁇ mol) in methylene chloride (1.0 mL) and pyridine (0.20 mL) under nitrogen atmosphere 2,2-dimethylbutyryl chloride (36 ⁇ L, 0.27 mmol) was added in four divided portions every 10 minutes, stirred for 1 hour and 5 minutes, and 2,2-dimethylbutyryl chloride (73 ⁇ L, 0.53 mmol) was added. ) And stirred for an additional 49 minutes.
  • the reaction mixture was mixed with 5′-O- (4,4′-dimethoxytrityl) -3′-O-levulinyl-2′-deoxyadenosine (12 mg, 18 ⁇ mol) and diisopropylethylamine (14 ⁇ L, 83 ⁇ mol) in methylene chloride (0 .20 mL) solution was added at 10 ° C. and stirred for 1 hour and 20 minutes.
  • the reaction mixture was analyzed by LC-MS, and the formation of compound 111 was confirmed.
  • thionyl chloride (4.0 ⁇ L, 55 ⁇ L) was added to a mixed solution of compound 31 (12 mg, 11 ⁇ mol) in methylene chloride (0.30 mL) and DMF (5.0 ⁇ L) at room temperature, and the mixture was stirred for 20 minutes. .
  • the reaction mixture was mixed with 5′-O- (4,4′-dimethoxytrityl) -3′-O-levulinyl-2′-deoxyguanosine (10 mg, 15 ⁇ mol) and diisopropylethylamine (28 ⁇ L, 0.17 mmol) in methylene chloride. (0.20 mL) was added to the solution at room temperature and stirred for 30 minutes.
  • LC-MS analysis of the reaction mixture confirmed the formation of compound 81.
  • Example 120 (5'-position functional group conversion of adenosine having a pseudo-solid phase protecting group introduced): Synthesis of Compound 114
  • Step 1 Synthesis of Compound 113 Under a nitrogen atmosphere, a solution of Compound 112 (0.29 g, 0.17 mmol) in methylene chloride (1.0 mL) was cooled to 10 ° C., and pyrrole (35 ⁇ L, 0.51 mmol) was added for 5 minutes. Stir. Then, dichloroacetic acid (42 ⁇ L, 0.51 mmol) was added and stirred for 1 hour 13 minutes. Pyridine (0.14 mL) was added, the temperature was raised to room temperature, the reaction mixture was added to acetonitrile (50 g), and the precipitated solid was filtered to obtain Compound 113 (0.20 g).
  • Step 2 Synthesis of Compound 114 Under a nitrogen atmosphere, a solution of phosphonic acid (17 mg, 0.21 mmol) in pyridine (0.30 mL) was heated to 40 ° C., and 2,2-dimethylbutyryl chloride (6.3 ⁇ L, 46 ⁇ mol) And stirred for 30 minutes. Thereafter, Compound 113 (11 mg, 7.8 ⁇ mol) was added and stirred for 2 hours and 15 minutes, 2,2-dimethylbutyryl chloride (21 ⁇ L, 0.15 mmol) was added, and the mixture was further stirred for 1 hour and 10 minutes. The reaction mixture was analyzed by LC-MS and it was confirmed that compound 114 was the main product. MS (ESI ⁇ +> ): [M + H] ⁇ +> 1480.0474.
  • Example 121 (3′-position deprotection of adenosine having a pseudo solid phase protecting group introduced): Synthesis of Compound 115
  • Example 122 (synthesis of novel pseudo-solid phase protecting group and adenosine 5'-position functional group conversion): synthesis of compound 120
  • Step 1 Synthesis of Compound 116 5′-O- (4,4′-dimethoxytrityl) -3′-O-levulinyl-2′-deoxyadenosine (2.0 g, 3.1 mmol) and DMAP (0 .78 g, 6.4 mmol) in methylene chloride (10 mL) was heated to 40 ° C., and N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -methylglycine (2.0 g, 6.3 mmol) was obtained. ) And WSC ⁇ HCl (1.2 g, 6.3 mmol) in this order, and the mixture was stirred at 40 ° C. for 3 hours.
  • Step 2 Synthesis of Compound 117 Under a nitrogen atmosphere, piperidine (32 ⁇ L, 0.32 mmol) was added to a solution of Compound 116 (0.10 g, 0.11 mmol) in acetonitrile (2.1 g) at room temperature and stirred for 2 hours and 39 minutes. . Heptane was added for liquid separation, and the acetonitrile layer was washed 3 times with heptane. The obtained organic layer was concentrated under reduced pressure to obtain Compound 117 (61 mg). MS (ESI ⁇ +> ): [M + H] ⁇ +> 7233.3209.
  • Step 3 Synthesis of Compound 118 Under a nitrogen atmosphere, 3,4,5-tris (octadecyloxy) benzoic acid (synthesized according to the method described in International Publication No. 2014-077292) (51 mg, 55 ⁇ mol) and Compound 117 ( To a solution of 61 mg, 85 ⁇ mol) in methylene chloride (2.5 g) was added HOBt (anhydrous) (12 mg, 90 ⁇ mol), followed by WSC ⁇ HCl (18 mg, 92 ⁇ mol), and stirred for 4 hours and 39 minutes. The reaction mixture was added to methanol (31 g) to precipitate a solid, followed by filtration to obtain compound 118 (65 mg) as a white solid.
  • HOBt anhydrous
  • Step 4 Synthesis of Compound 120
  • a solution of compound 118 (11 mg, 6.9 ⁇ mol) and indole (2.1 mg, 18 ⁇ mmol) in methylene chloride (0.20 mL) was cooled to 10 ° C. and phosphonic acid (14 mg, 0 .17 mmol) was added and stirred for 1 hour and 27 minutes.
  • the reaction mixture was analyzed by LC-MS and it was confirmed that compound 119 was the main product.
  • N- (tert-butylthio) phthalimide (Sinlet, 2009, No. 1, pp. 112-116 was used as a sulfurizing agent. (6.4 mg, 27 ⁇ mol) synthesized according to the method) and stirred at room temperature for 3 hours 30 minutes. Then, N- (tert-butylthio) phthalimide (0.11 g, 0.47 mmol) was added and stirred for 1 hour. The reaction mixture was analyzed by LC-MS and it was confirmed that compound 125 was the main product. MS (ESI ⁇ +> ): [M + H] ⁇ +> 2183.3326.
  • Step 1 Synthesis of Compound 128 3′-O-levulinylthymidine (synthesized according to the method described in Bioorganic and Medicinal Chemistry, 2013, Vol. 21, pp. 8013-8018) (0.75 g, 2. Indole (0.78 g, 6.6 mmol) was added to a methylene chloride (26 g) solution containing the compound 132 synthesized according to the method described in JP-T-2003-525305, and the mixture was cooled to 10 ° C. , Dichloroacetic acid (0.90 mL, 11 mmol) was added and stirred for 1 hour 17 minutes. Further dichloroacetic acid (0.90 mL, 11 mmol) was added and stirred for 40 minutes.
  • Step 2 Synthesis of Compound 130 Compound 133 (0.65 g, 0.91 mmol) and N 2 -isobutyryl-5′-O- (4,4′-dimethoxytrityl) -3′-O-hydroxyphosphini under nitrogen atmosphere
  • ru-2′-deoxycytidine triethylamine salt (Chem Jeans) (1.0 g, 1.3 mmol) in pyridine (8 mL) was added bispentafluorophenyl carbonate (1.3 g, 3.2 mmol) at room temperature. And stirred for 15 minutes.
  • N-[(2-cyanoethyl) thio] phthalimide (0.43 g, 1.9 mmol) was added as a sulfurizing agent, and the mixture was stirred for 1 hour and 57 minutes.
  • Methylene chloride and 5% aqueous sodium hydrogen carbonate solution were added for liquid separation, and the resulting aqueous layer was washed twice with methylene chloride.
  • the obtained organic layers were combined and the solvent was distilled off under reduced pressure to obtain a reaction mixture (13 g) containing compound 134. Of these, 12 g was further concentrated under reduced pressure, toluene was added, and the operation of concentration under reduced pressure was repeated three times.
  • Step 3 Synthesis of Compound 132 Under a nitrogen atmosphere, Compound 130 (0.24 g, 0.20 mmol) and N 6 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -3′-O-hydroxyphosphini Bi-2pentafluorophenyl carbonate (0.43 g, 1.1 mmol) was added to a pyridine (6 mL) solution of ru-2′-deoxyguanosine triethylamine salt (Chem Jeans) (0.23 g, 0.29 mmol) at room temperature. And stirred for 27 minutes.
  • N-[(2-cyanoethyl) thio] phthalimide (0.10 g, 0.43 mmol) was added as a sulfurizing agent, and the mixture was stirred for 1 hour and 34 minutes.
  • Methylene chloride and 5% aqueous sodium hydrogen carbonate solution were added for liquid separation, and the resulting aqueous layer was washed twice with methylene chloride.
  • the obtained organic layers were combined and the solvent was distilled off under reduced pressure to obtain a reaction mixture containing compound 136.
  • Toluene was added and the operation of concentration under reduced pressure was repeated three times, methylene chloride (8.0 g) and indole (77 mg, 0.66 mmol) were added, and the mixture was cooled to 10 ° C.
  • Step 4 Synthesis of Compound 134 Under a nitrogen atmosphere, Compound 132 (0.12 g, 74 ⁇ mol) and N 6 -benzoyl-5′-O- (4,4′-dimethoxytrityl) -3′-O-hydroxyphosphinyl- Bispentafluorophenyl carbonate (0.28 g, 0.71 mmol) was added to a solution of 2′-deoxyadenosine triethylamine salt (Chem Jeans) (90 mg, 0.11 mmol) in pyridine (5 mL) at room temperature for 1 hour. Stir for minutes.
  • 2′-deoxyadenosine triethylamine salt Chem Jeans
  • N-[(2-cyanoethyl) thio] phthalimide (37 mg, 0.16 mmol) was added as a sulfurizing agent, and the mixture was stirred for 2 hours and 8 minutes.
  • Methylene chloride, acetonitrile and 5% aqueous sodium hydrogen carbonate solution were added for liquid separation, and the resulting aqueous layer was washed twice with a mixed solvent of methylene chloride and acetonitrile. The obtained organic layers were combined and the solvent was distilled off under reduced pressure to obtain a reaction mixture containing compound 133.
  • Step 1 Synthesis of Compound 135 Under a nitrogen atmosphere, bispentafluorophenyl carbonate (59 mg, 0.15 mmol) was added to a solution of Compound 103 (43 mg) and Compound 134 (19 mg, 8.3 ⁇ mol) in pyridine (1.4 mL) at room temperature. Added and stirred for 58 minutes. Thereafter, N-[(2-cyanoethyl) thio] phthalimide (10 mg, 44 ⁇ mol) was added as a sulfurizing agent and stirred for 40 minutes. Thereafter, the reaction mixture was concentrated under reduced pressure.
  • Step 2 Synthesis of Compound 136 Phosphonic acid (19 mg, 0.23 mmol) at 40 ° C. in a mixed solution of Compound 135 (50 mg, 5.8 ⁇ mol) in methylene chloride (2.0 mL) and pyridine (0.12 mL) under nitrogen atmosphere 2,2-dimethylbutyryl chloride (25 ⁇ L, 0.18 mmol) was added in 5 portions and stirred for 1 hour and 12 minutes. Thereafter, the reaction mixture was added to acetonitrile (39 g), and the precipitated solid was filtered to obtain Compound 136 (44 mg) as a light skin-colored solid. MS (ESI ⁇ +> ): [M + 4H] 4+ 21555.9794.
  • oligonucleotides such as siRNA, antisense nucleic acids and vaccine adjuvants

Abstract

単離が容易で保存安定性が高いヌクレオシド又はオリゴヌクレオチドを用いる、オリゴヌクレオチドの新規製造方法を提供する。 2'位、3'位、5'位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5'位又は3'位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5'-ヒドロキシ基又は3'-ヒドロキシ基をH-ホスホネート化する工程を含むオリゴヌクレオチドの製造方法である。

Description

オリゴヌクレオチドの製造方法
 本発明は、オリゴヌクレオチドの新規な製造方法に関する。
 ゲノム創薬や遺伝子診断・治療などの最先端バイオ関連研究の急速な進歩・発展に伴い近年、DNAプローブ、siRNA、アンチセンスDNA、アンチセンスRNAなどのオリゴヌクレオチドが盛んに利用されている。オリゴヌクレオチドの化学合成方法として、ホスホロアミダイト法、H-ホスホネート法などが知られている。
 ホスホロアミダイト法では、代表的なアミダイト化試薬であるクロロ(ジイソプロピルアミノ)亜ホスフィン酸2-シアノエチル又はビス(ジイソプロピルアミノ)亜ホスフィン酸2-シアノエチルなどが用いられる。これらの試薬は非常に高価であり、アミダイト体の単離時にはカラム精製や超低温での再沈殿などの煩雑な操作が必須である。また、アミダイト体はその安定性の低さから-20℃での保存が必要である。
 これに対して、H-ホスホネート法では、代表的なH-ホスホネート化試薬である亜リン酸ジフェニル又は亜リン酸などが用いられる。これらは安価であるが、H-ホスホネート体の単離時にはカラム精製などの煩雑な操作は必須である。H-ホスホネート体はその安定性により0℃での保存が必要である(例えば、非特許文献1参照)。
 現在では、ホスホロアミダイト法による固相合成法のプロセス最適化及び自動化が進んでいるため、ホスホロアミダイト法による固相合成法がスピード面で有利であり、最も汎用されている。しかし、固相合成法には設備制約上スケールアップに制限があり、試薬及び原料を過剰に使用し、途中段階での反応の進行状況の確認、中間体構造解析等も困難という欠点がある。
 近年では、液相合成法として、擬似固相保護基を用いるH-ホスホネート法が検討されている。具体的にはポリエチレングリコール(MPEG)(例えば、特許文献1参照)や長鎖炭化水素含有基(例えば、特許文献2参照)などを擬似固相保護基として用いる合成法が報告されている。
国際公開第2014-017615号 国際公開第2014-077292号
プロトコールズ フォー オリゴヌクレオチド アンド アナログズ(Protocols for Oligonucleotides and Analogs) ヒューマナ プレス(Humana Press (1993)、44-73頁
 ポリエチレングリコール(MPEG)を用いる合成法においては、21量体までのオリゴヌクレオチドの合成例が示されているものの、伸長サイクル毎にGPCによるカラム精製が必要である。また、長鎖炭化水素含有基を用いる製法においては、5量体のオリゴヌクレオチドの合成例が示されているが、脱保護工程が低収率である。
 上記のように、オリゴヌクレオチドの化学合成法ではアミダイト体もしくはH-ホスホネート体を用いるが、いずれも単離時の操作性や化合物の安定性に課題を抱えており、大量合成に対応できる新規な、オリゴヌクレオチドの製造方法が望まれていた。
 本発明の目的は、単離が容易で保存安定性が高いヌクレオシド又はオリゴヌクレオチドを用いる、オリゴヌクレオチドの新規製造方法を提供することにある。
 このような課題を解決するために本発明者らは鋭意研究した結果、カップリング工程、リン原子を修飾する工程(酸化反応、硫化反応など)、脱保護工程等から構成される通常の製造方法と異なる製造方法であって、擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドの5’位ヒドロキシ基又は3’位ヒドロキシ基をH-ホスホネート化する工程を含む製造方法により、上記課題が解決できることを見出し、本発明を完成させた。
 本発明は以下を含む。
[1] 2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位又は3’位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5’-ヒドロキシ基又は3’-ヒドロキシ基をH-ホスホネート化する工程を含む、オリゴヌクレオチドの製造方法。
[2] 2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位又は3’位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5’-ヒドロキシ基又は3’-ヒドロキシ基をH-ホスホネート化する工程を含む伸長反応サイクルを少なくとも1つ含む、[1]に記載の製造方法。
[3] 前記伸長反応サイクルが、
 2’位、3’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、3’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第一ヌクレオシド又は第一オリゴヌクレオチドの一時保護基を除去して5’-ヒドロキシ基を生成することを含む第一工程と、
 生成した5’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第二工程と、
 H-ホスホネート化された5’-ヒドロキシ基と、3’位にヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第二ヌクレオシド又は第二オリゴヌクレオチドの3’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第一ヌクレオシド又は第一オリゴヌクレオチドと、第二ヌクレオシド又は第二オリゴヌクレオチドとの結合体を得る第三工程と、
を含む、[2]に記載の製造方法。
[4] 前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第四工程を更に含む、[3]に記載の製造方法。
[5] 前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合又はアミノリン酸ジエステル結合に変換することを含む第四工程を更に含む、[3]に記載の製造方法。
[6] 前記第一工程から第四工程からなる群から選ばれる少なくとも1つの工程で得られる反応混合物に、極性溶媒を添加して沈殿物を生成させることと、生成した沈殿物を固液分離により取得する第五工程を更に含む、[4]又は[5]に記載の製造方法。
[7] 前記極性溶媒が炭素数1から6のアルコール溶媒又は炭素数1から6のニトリル溶媒である、[6]に記載の製造方法。
[8] 前記基本保護基、一時保護基及び擬似固相保護基をすべて除去する第六工程を更に含む、[3]から[7]のいずれか1つに記載の製造方法。
[9] 前記第一ヌクレオシド又は第一オリゴヌクレオチドは、3’位に擬似固相保護基で保護されたヒドロキシ基を有する、[3]から[8]のいずれか1つに記載の製造方法。
[10] 前記第三工程は、第二ヌクレオシドを用いる、[3]から[9]のいずれか1つに記載の製造方法。
[11] 前記伸長反応サイクルが、
 2’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第三ヌクレオシド又は第三オリゴヌクレオチドの一時保護基を除去して3’-ヒドロキシ基を生成することを含む第七工程と、
 生成した3’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第八工程と、
 H-ホスホネート化された3’-ヒドロキシ基と、5’位にヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第四ヌクレオシド又は第四オリゴヌクレオチドの5’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第三ヌクレオシド又は第三オリゴヌクレオチドと、第四ヌクレオシド又は第四オリゴヌクレオチドとの結合体を得る第九工程と、
を含む、[2]に記載の製造方法。
[12] 前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第十工程を更に含む、[11]に記載の製造方法。
[13] 前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合又はアミノリン酸ジエステル結合に変換することを含む第十工程を更に含む、[11]に記載の製造方法。
[14] 前記第七工程から第十工程のいずれかの工程で得られる反応混合物に、極性溶媒を添加して沈殿物を生成させることと、生成した沈殿物を固液分離により取得する第十一工程を更に含む、[12]又は[13]に記載の製造方法。
[15] 前記極性溶媒が炭素数1から6のアルコール溶媒又は炭素数1から6のニトリル溶媒である、[14]に記載の製造方法。
[16] 前記基本保護基、一時保護基及び擬似固相保護基をすべて除去する第十二工程を更に含む、[11]から[15]のいずれか1つに記載の製造方法。
[17] 前記第三ヌクレオシド又は第三オリゴヌクレオチドは、5’位に擬似固相保護基で保護されたヒドロキシ基を有する、[11]から[16]のいずれか1つに記載の製造方法。
[18] 前記第九工程は、第四ヌクレオシドを用いる、[11]から[17]のいずれか1つに記載の製造方法。
[19] 前記擬似固相保護基が、下記式(I)
Figure JPOXMLDOC01-appb-C000016
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 mは、0又は1であり、
 前記擬似固相保護基を核酸塩基部に有し、その擬似固相保護基のmが0である場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、[1]から[18]のいずれか1つに記載の製造方法。
[20] 前記擬似固相保護基が、下記式(II)
Figure JPOXMLDOC01-appb-C000017
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 前記擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、[1]から[18]のいずれか1つに記載の製造方法。
[21] 前記一時保護基が、tert-ブチルジメチルシリル基、4、4’-ジメトキシトリチル基、又はレブリニル基である、[3]から[20]のいずれか1つに記載の製造方法。
[22] 前記H-ホスホネート化する工程が、亜リン酸、亜リン酸ジフェニル、フェニル-H-ホスホネートのトリエチルアンモニウム塩、p-トルイル-H-ホスホネートのトリエチルアンモニウム塩、2-クロロ-4H-1,3,2-ベンゾジオキサホスホリン-4-オン、三塩化リンからなる群より選択される少なくとも一種のH-ホスホネート化試薬を用いる、[1]から[21]のいずれか1つに記載の製造方法。
[23] 前記ヌクレオシド及びオリゴヌクレオチドに含まれる核酸塩基が、それぞれ独立して、6-アミノプリン-9-イル基(アデニン残基)、2-アミノ-6-ヒドロキシプリン-9-イル基(グアニン残基)、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル基(シトシン残基)、2-オキソ-4-アミノ-5-メチル-1,2-ジヒドロピリミジン-1-イル基(5-メチルシトシン残基)、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル基(ウラシル残基)及び2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル基(チミン残基)からなる群から選択される少なくとも1種である、[1]から[22]のいずれか1つに記載の製造方法。
[24] 下記式(XI):
Figure JPOXMLDOC01-appb-C000018
(式中、nは、1以上の任意の整数を示し、
 Baseは、それぞれ独立して核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
 Xは、それぞれ独立して水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
 Yは、それぞれ独立して水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
 Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
;かつBaseの少なくとも1つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも1つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たす。)
で示される化合物、又はその塩。
[25] 前記擬似固相保護基が、下記式(II)
Figure JPOXMLDOC01-appb-C000019
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、[24]に記載の化合物、又はその塩。
[26] 前記式(XI)におけるBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、及びZが擬似固相保護基であることの少なくとも一方を満たす、[24]又は[25]に記載の化合物、又はその塩。
[27] 前記式(XI)におけるZが擬似固相保護基である、[24]から[26]のいずれか1つに記載の化合物、又はその塩。
[28] 前記式(XI)におけるnが1から30である、[24]から[27]のいずれか1つに記載の化合物、又はその塩。
[29] 下記式(XII):
Figure JPOXMLDOC01-appb-C000020
(式中、
 nは、1以上の任意の整数を示し、
 Baseは、独立してそれぞれ核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
 Xは、独立してそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
 Yは、独立してそれぞれ水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
 Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
;かつBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも一つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たす。)
で示される化合物、又はその塩。
[30] 前記擬似固相保護基が、下記式(II)
Figure JPOXMLDOC01-appb-C000021
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
 前記擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、[29]に記載の化合物、又はその塩。
[31] 前記式(XII)におけるBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、及びZが擬似固相保護基であることの少なくとも一方を満たす、[29]又は[30]に記載の化合物、又はその塩。
[32] 前記式(XII)におけるZが擬似固相保護基である、[29]から[31]のいずれか1つに記載の化合物、又はその塩。
[33] 前記式(XII)におけるnが1から30である、[29]から[32]のいずれか1つに記載の化合物、又はその塩。
[34] 下記式(XIII):
Figure JPOXMLDOC01-appb-C000022
[式中、nは、1以上の任意の整数を示し、
 Baseは、それぞれ独立して核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
 Xは、それぞれ独立して水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
 Wは、水素原子又は一時保護基を示し、
 Yは、それぞれ独立して水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
 Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
;かつBaseの少なくとも1つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも1つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たし、
 前記擬似固相保護基の少なくとも1つが、式(I)
Figure JPOXMLDOC01-appb-C000023
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される。]化合物、又はその塩。
[35] 下記式(XIV):
Figure JPOXMLDOC01-appb-C000024
(式中、
 nは、1以上の任意の整数を示し、
 Baseは、独立してそれぞれ核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
 Xは、独立してそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
 Wは、水素原子又は一時保護基を示し、
 Yは、独立してそれぞれ水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
 Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
;かつBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも一つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たし、
 前記擬似固相保護基の少なくとも1つが、式(I)
Figure JPOXMLDOC01-appb-C000025
(式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される。]
で示される化合物、又はその塩。
[36] 下記式(I)
Figure JPOXMLDOC01-appb-C000026
(式中、*は、ヌクレオシド又はオリゴヌクレオチドの2’位、3’位及び5’位のヒドロキシ基並びに核酸塩基部からなる群から選ばれる少なくとも1か所との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される、擬似固相保護基。
[37] 3’位及び5’位に、独立してヒドロキシ基又は保護されたヒドロキシ基を有し、
 2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所にヒドロキシ基を有するか、又は2’位及び核酸塩基部の少なくとも1カ所にヒドロキシ基又はアミノ基を有するヌクレオシド又はオリゴヌクレオチドを、
下記式(X-1)
Figure JPOXMLDOC01-appb-C000027
(式中、Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
  Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-である)で表されるカルボキシ化合物、下記式(X-2)
Figure JPOXMLDOC01-appb-C000028
(式中、Xは、ハロゲン原子であり、R、L、L、L及びLは、前記式(X-1)における定義と同じである。)で表される酸ハロゲン化物又は、下記式(X-3)
Figure JPOXMLDOC01-appb-C000029
(式中、Xは、ハロゲン原子であり、R、L、L、及びLは、前記式(X-1)における定義と同じであり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基である。)で表されるハロゲン化アルキル化合物と反応させ、
 2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に、
下記式(I)
Figure JPOXMLDOC01-appb-C000030
(式中、*は、2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所との結合位置を示し、
 Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
 Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
 mは、0又は1であり、mが0である場合、Lは単結合ではない。)で表される擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドの製造方法。
 本発明により、単離が容易で保存安定性が高いヌクレオシド又はオリゴヌクレオチドを用いる、オリゴヌクレオチドの新規製造方法を提供することが可能となった。また該新規製造方法は、オリゴヌクレオチドの大量合成に対応できる。
オリゴヌクレオチド合成に用いる核酸モノマーの安定性を示す図である。
 以下、本発明について詳細に説明する。
 特に記述がない限り、本明細書で用いるすべての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。本明細書に記載されたものと同様又は同等の任意の方法及び材料は、本発明の実施又は試験において使用することができるが、好ましい方法及び材料を以下に記載する。
 「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 尚、本明細書中「n-」はノルマル、「i-」はイソ、「t-」及び「tert-」はターシャリー、を意味し、「Ph」はフェニル、「Py」はピリジル又はピリジン、「Me」はメチル、「Et」はエチル、「Pr」はプロピル、「Bu」はブチル、「Bn」はベンジル、「Boc」はターシャリーブトキシカルボニル、「TBS」はターシャリーブチルジメチルシリル、「TIPS」はトリイソプロピルシリル、「TBDPS」は、ターシャリーブチルジフェニルシリル、「DMTr」は4,4’-ジメトキシトリチルを意味する。
 「L」と「L」は同義であり、「L」と「L]は同義であり、「L」と「L」は同義であり、「L」と「L」は同義であり、「L」と「L」は同義であり、「L」と「L」は同義である。
 本明細書中、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子である。
 「C1-6アルキル基」とは、炭素数が1から6の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基及びイソヘキシル基等が挙げられる。
 「C2-6アルケニル基」とは、任意の位置に1以上の二重結合を有する、炭素数が2から6の直鎖又は分枝状の炭化水素基を意味し、例えば、エテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基(ホモアリル基)、4-ペンテニル基、5-ヘキセニル基等が挙げられる。
 「C2-6アルキニル基」とは、任意の位置に1以上の三重結合を有する、炭素数が2から6の直鎖又は分枝状の炭化水素基を意味し、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。
 「C1-40アルキル基」とは、炭素数が1から40の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、デシル基、オクタデシル基、イコシル基、トリアコンチル基、テトラコンチル基等が挙げられる。
 「C2-40アルケニル基」とは、任意の位置に1以上の二重結合を有する、炭素数が2から40の直鎖又は分枝状の炭化水素基を意味し、例えば、エテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基(ホモアリル基)、4-ペンテニル基、5-ヘキセニル基、10-デセニル基、18-オクタデセニル基、20-イコセニル基、30-トリアコンテニル基、40-テトラコンテニル基等が挙げられる。
 「C2-40アルキニル基」とは、任意の位置に1以上の三重結合を有する、炭素数が2から40の直鎖又は分枝状の炭化水素基を意味し、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、10-デシニル基、18-オクタデシニル基、20-イコシニル基、30-トリアコンチニル基、40-テトラコンチニル基等が挙げられる。
 「C10-30アルキル基」とは、炭素数が10から30の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、デシル基、オクタデシル基、イコシル基、トリアコンチル基等が挙げられる。
 「C15-25アルキル基」とは、炭素数が15から25の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ドコシル基等が挙げられる。
 「C15-20アルキル基」とは、炭素数が15から20の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
 「C10-30アルケニル基」とは、任意の位置に1以上の二重結合を有する、炭素数が10から30の直鎖又は分枝状の炭化水素基を意味し、例えば、2-デセニル基、10-デセニル基、18-オクタデセニル基、20-イコセニル基、30-トリアコンテニル基等が挙げられる。
 「C1-6アルキレン基」とは、前記「C1-6アルキル基」から任意の位置の水素原子を1個取り除いた2価の置換基を意味し、例えば、メチレン基、エチレン基(エタンジイル基)、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、2,2-ジメチル-プロパン-1,3-ジイル基、ヘキサン-1,6-ジイル基、3-メチルブタン-1,2-ジイル基などが挙げられる。
 「C2-6アルキレン基」とは、前記「C1-6アルキレン基」のうち、炭素数が2から6の直鎖又は分枝状の2価の置換基を意味し、例えば、エチレン基(エタンジイル基)、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ヘキサン-1,6-ジイル基、3-メチルブタン-1,2-ジイル基などが挙げられる。
 「C2-6アルケニレン基」とは、前記「C2-6アルケニル基」から任意の位置の水素原子を1個取り除いた2価の置換基を意味し、例えば、エテン-1,1-ジイル基、エテン-1,2-ジイル基、プロペン-1,1-ジイル基、プロペン-1,2-ジイル基、プロペン-1,3-ジイル基、ブタ-1-エン-1,4-ジイル基、ブタ-1-エン-1,3-ジイル基、ブタ-2-エン-1,4-ジイル基、ブタ-1,3-ジエン-1,4-ジイル基、ペンタ-2-エン-1,5-ジイル基、ヘキサ-3-エン-1,6-ジイル基、ヘキサ-2,4-ジエン-1,6-ジイル基などが挙げられる。
 「C2-6アルキニレン基」とは、前記「C2-6アルキニル基」から任意の位置の水素原子を1個取り除いた2価の置換基を意味し、例えば、エチン-1,2-ジイル基、プロピン-1,3-ジイル基、ブタ-1-イン-1,4-ジイル基、ブタ-1-イン-1,3-ジイル基、ブタ-2-イン-1,4-ジイル基、ペンタ-2-イン-1,5-ジイル基、ペンタ-2-イン-1,4-ジイル基、ヘキサ-3-イン-1,6-ジイル基などが挙げられる。
 「C1-6ハロアルキル基」とは、1以上の前記「ハロゲン原子」で前記「C1-6アルキル基」の任意の位置の水素原子が置換されてなる基を意味し、例えば、モノフルオロメチル基、モノフルオロエチル基、モノフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、モノクロロメチル基、トリフルオロメチル基、トリクロロメチル基、2,2,2-トリフルオロエチル基、2,2,2-トリクロロエチル基、1,2-ジブロモエチル基及び1,1,1-トリフルオロプロパン-2-イル基等が挙げられる。
 「C2-6ハロアルケニル基」とは、1以上の前記「ハロゲン原子」で前記「C2-6アルケニル基」の任意の位置の水素原子が置換されてなる基を意味する。
 「C3-6シクロアルキル基」とは、環を構成する炭素原子数が3乃至6個である、単環系、縮合環系、橋架け環系又はスピロ環系の脂肪族炭化水素環から任意の位置の水素原子を1個取り除いた1価の置換基を意味し、具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 「C1-6アルコキシ基」とは、前記「C1-6アルキル基」が、オキシ基(-O-)に結合した基を意味する。
 「モノC1-6アルキルアミノ基」とは、1つの前記C1-6アルキル基がアミノ基に結合した基を意味し、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、イソプロピルアミノ基、n-ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、n-ペンチルアミノ基、イソペンチルアミノ基、ネオペンチルアミノ基、n-ヘキシル基アミノ及びイソヘキシルアミノ基等が挙げられる。
 「ジC1-6アルキルアミノ基」とは、同一又は異なる2個の前記「C1-6アルキル基」がアミノ基に結合した基を意味し、例えば、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-t-ブチルアミノ基、ジ-n-ペンチルアミノ基、ジ-n-ヘキシルアミノ基、N-エチル-N-メチルアミノ基、N-メチル-N-n-プロピルアミノ基、N-イソプロピル-N-メチルアミノ基、N-n-ブチル-N-メチルアミノ基、N-イソブチル-N-メチルアミノ基、N-t-ブチル-N-メチルアミノ基、N-メチル-N-n-ペンチルアミノ基、N-n-ヘキシル-N-メチルアミノ基、N-エチル-N-n-プロピルアミノ基、N-エチル-N-イソプロピルアミノ基、N-n-ブチル-N-エチルアミノ基、N-エチル-N-イソブチルアミノ基、N-t-ブチル-N-エチルアミノ基、N-エチル-N-n-ペンチルアミノ基、N-エチル-N-n-ヘキシルアミノ基などが挙げられる。
 「C1-6アルコキシカルボニル基」、「モノC1-6アルキルアミノカルボニル基」及び「ジC1-6アルキルアミノカルボニル基」等は、それぞれ前記「C1-6アルコキシ基」、「モノC1-6アルキルアミノ基」及び「ジC1-6アルキルアミノ基」が、カルボニル基(-C(O)-)に結合した基を意味する。
 「C6-10アリール基」とは、環を構成する原子が全て炭素原子であり、炭素原子数が6乃至10個である、単環式又は二環式の芳香族炭化水素環から任意の位置の水素原子を1個取り除いた1価の置換基を意味し、具体例としては、フェニル基及びナフチル基等が挙げられる。
 「5-10員ヘテロアリール基」とは、環を構成する原子の数が5乃至10個であり、環を構成する原子中に1乃至5個のヘテロ原子(該へテロ原子は、窒素原子、酸素原子又は硫黄原子を意味し、2個以上の場合は、同一でも異なっていてもよい。)を含有する単環系又は縮合環系の芳香族複素環から任意の位置の水素原子を1個取り除いた1価の置換基を意味する。
 単環系の「5-10員ヘテロアリール基」としては、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、2-ピラニル基、3-ピラニル基、4-ピラニル基、1-ピロリル基、2-ピロリル基、3-ピロリル基、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基、1-ピラゾリル基、3-ピラゾリル基、4-ピラゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、1,2,4-トリアゾール-1-イル基、1,2,4-トリアゾール-3-イル基、1,2,4-トリアゾール-5-イル基、1,2,3-トリアゾール-1-イル基、1,2,3-トリアゾール-4-イル基、1,2,3-トリアゾール-5-イル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジニル基、2-ピリミジニル基、4-ピリミジニル基、5-ピリミジニル基、3-ピリダジニル基、4-ピリダジニル基、1,3,4-オキサジアゾール-2-イル基、1,3,4-チアジアゾール-2-イル基、1,2,4-オキサジアゾール-3-イル基、1,2,4-オキサジアゾール-5-イル基、1,2,4-チアジアゾール-3-イル基、1,2,4-チアジアゾール-5-イル基、1,2,5-オキサジアゾール-3-イル基及び1,2,5-チアジアゾール-3-イル基等が挙げられる。
 縮合環系の「5-10員ヘテロアリール基」としては、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、2-ベンゾチエニル基、3-ベンゾチエニル基、4-ベンゾチエニル基、5-ベンゾチエニル基、6-ベンゾチエニル基、7-ベンゾチエニル基、1-イソベンゾチエニル基、4-イソベンゾチエニル基、5-イソベンゾチエニル基、2-ベンゾチアゾリル基、3-ベンゾチアゾリル基、4-ベンゾチアゾリル基、5-ベンゾチアゾリル基、6-ベンゾチアゾリル基、7-ベンゾチアゾリル基、2-クロメニル基、3-クロメニル基、4-クロメニル基、5-クロメニル基、6-クロメニル基、7-クロメニル基、8-クロメニル基、1-インドリジニル基、2-インドリジニル基、3-インドリジニル基、5-インドリジニル基、6-インドリジニル基、7-インドリジニル基、8-インドリジニル基、1-イソインドリル基、2-イソインドリル基、4-イソインドリル基、5-イソインドリル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-インダゾリル基、2-インダゾリル基、3-インダゾリル基、4-インダゾリル基、5-インダゾリル基、6-インダゾリル基、7-インダゾリル基、1-プリニル基、2-プリニル基、3-プリニル基、6-プリニル基、7-プリニル基、8-プリニル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、1-フタラジニル基、5-フタラジニル基、6-フタラジニル基、2,7-ナフチリジン-1-イル基、2,7-ナフチリジン-3-イル基、2,7-ナフチリジン-4-イル基、2,6-ナフチリジン-1-イル基、2,6-ナフチリジン-3-イル基、2,6-ナフチリジン-4-イル基、1,8-ナフチリジン-2-イル基、1,8-ナフチリジン-3-イル基、1,8-ナフチリジン-4-イル基、1,7-ナフチリジン-2-イル基、1,7-ナフチリジン-3-イル基、1,7-ナフチリジン-4-イル基、1,7-ナフチリジン-5-イル基、1,7-ナフチリジン-6-イル基、1,7-ナフチリジン-8-イル基、1,6-ナフチリジン-2-イル基、1,6-ナフチリジン-3-イル基、1,6-ナフチリジン-4-イル基、1,6-ナフチリジン-5-イル基、1,6-ナフチリジン-7-イニル基、1,6-ナフチリジン-8-イル基、1,5-ナフチリジン-2-イル基、1,5-ナフチリジン-3-イル基、1,5-ナフチリジン-4-イル基、1,5-ナフチリジン-6-イル基、1,5-ナフチリジン-7-イル基、1,5-ナフチリジン-8-イル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、2-キナゾリニル基、4-キナゾリニル基、5-キナゾリニル基、6-キナゾリニル基、7-キナゾリニル基、8-キナゾリニル基、3-シンノリニル基、4-シンノリニル基、5-シンノリニル基、6-シンノリニル基、7-シンノリニル基、8-シンノリニル基、2-プテリジニル基、4-プテリジニル基、6-プテリジニル基及び7-プテリジニル基等が挙げられる。
 「アラルキル基」とは、前記「C1-6アルキル基」の任意の水素原子が、前記「C6-10アリール基」によって置き換えられた1価の置換基を意味する。
 「ヘテロアラルキル基」とは、前記「C1-6アルキル基」の任意の水素原子が、前記「5-10員ヘテロアリール基」によって置き換えられた1価の置換基を意味する。
 「3-11員含窒素非芳香族ヘテロ環基」とは、少なくとも1個以上の窒素原子を含有する、環を構成する原子数が3乃至11個である単環系、縮合環系(該縮合環系では、非芳香族環が非芳香族環又は芳香族環に縮合していてもよい。)、橋架け環系又はスピロ環系の非芳香族性の複素環から、任意の位置の水素原子を1個取り除いた1価の置換基を意味し、アゼチジニル基、ピロリジニル基、2-オキソピロリジニル基、ピペリジニル基、3-オキソピペリジニル基、ピペラジニル基、モルホリノ基、チオモルホリノ基、ホモモルホリノ基、ホモピペラジノ基等が挙げられる。
 「C1-40アルキルチオ基」、「C3-6シクロアルキルチオ基」、「C6-10アリールチオ基」、「5-10員ヘテロアリールチオ基」、「アラルキルチオ基」及び「ヘテロアリールチオ基」等は、それぞれ前記「C1-40アルキル基」、「C3-6シクロアルキル基」、「C6-10アリール基」、「5-10員ヘテロアリール基」、「アラルキル基」及び「ヘテロアリール基」が、チオ基(-S-)に結合した基を意味する。
 本明細書において、オリゴヌクレオチドの構成単位となる「ヌクレオシド」とは、核酸塩基が糖(例えば、リボース、2’-デオキシリボース、2’位と4’位が架橋したリボース)の1’位にN-グリコシド化により結合された化合物を意味する。
 ここで、前記リボース及び2’-デオキシリボースは、無置換であるか又は、C1-6アルキル基、ハロゲン原子、ヒドロキシ基、アミノ基、基本保護基で保護されたヒドロキシ基、保護されたアミノ基からなる群から選択される1つ以上の置換基で置換されている。また、前記C1-6アルキル基は、無置換であるか、ハロゲン原子、C1-6アルコキシカルボニル基、モノC1-6アルキルアミノカルボニル基及びジC1-6アルキルアミノカルボニル基等から独立して選択される1つ以上の置換基で置換されている。前記C1-6アルコキシカルボニル基、モノC1-6アルキルアミノカルボニル基及びジC1-6アルキルアミノカルボニル基等は、無置換であるか又は、C6-10アリール基、5-10員ヘテロアリール基又は3-11員含窒素非芳香族ヘテロ環基より置換されている。
 2’位と4’位が架橋したリボースとは、ヌクレオシドの2’位と4’位とが架橋基を介して架橋されている限り限定されないが、例えば、2’位と4’位とが、C2-6アルキレン基(該アルキレン基は無置換であるか、又はC1-6アルキル基で置換されている。また、該アルキレン基の1若しくは2つのメチレン基は、置き換えられていないか、又は-O-、-NR11-(R11は水素原子又はC1-6アルキル基を示す)、-S-、-CO-、-CS-、-COO-、-OCONR12-(R12は水素原子又はC1-6アルキル基を示す)、-CONR13-(R13は水素原子又はC1-6アルキル基を示す)及び-CSNR14-(R14は水素原子又はC1-6アルキル基を示す)から選ばれる基で置き換えられている)で架橋されたリボースが挙げられる。具体例としては、下記式の化合物が挙げられる。ヌクレオシドの糖は、好ましくは、リボース又は2’-デオキシリボースである。
Figure JPOXMLDOC01-appb-C000031
 本明細書において、「核酸塩基」とは、核酸の合成に使用されるものであれば特に制限されず、例えば、シトシル基、ウラシル基、チミニル基、5-メチルシトシル基等のピリミジン塩基、アデニル基、グアニル基等のプリン塩基を挙げることができる。また、「保護された核酸塩基」とは、例えば、アミノ基を有する核酸塩基であるアデニル基、グアニル基、又はシトシル基において、アミノ基が保護されていること、ヒドロキシ基を有する核酸塩基である場合においてヒドロキシ基が保護されていること、チオール基を有する核酸塩基である場合においてチオール基が保護されていること、又はカルボニル基を有する核酸塩基において、その環に置換されているアミノ基又はヒドロキシ基と共役してカルボニル基がヒドロキシ基の形になって保護されていること等を意味し、3’位又は5’位における一時保護基の脱保護条件に耐え得る保護基により保護されている核酸塩基が好ましい。
 前記核酸塩基における「アミノ基の保護基」としては、特に限定されず、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている保護基を挙げることができる。かかる「アミノ基の保護基」の具体例としては、例えば、ピバロイル基、ピバロイロキシメチル基、トリフルオロアセチル基、フェノキシアセチル基、4-イソプロピルフェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、アセチル基、ベンゾイル基、イソブチリル基、ジメチルホルムアミジニル基、9-フルオレニルメチルオキシカルボニル基等を挙げることができる。これらの中でも、フェノキシアセチル基、4-イソプロピルフェノキシアセチル基、アセチル基、ベンゾイル基、イソブチリル基、及びジメチルホルムアミジニル基が好ましい。
 前記核酸塩基における「ヒドロキシ基の保護基」としては、特に限定されず、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている任意の保護基を挙げることができる。具体的には、アルキル基(メチル基、tert-ブチル基等)、アリールメチル基(ベンジル基、p-メトキシベンジル基等)、アルコキシアルキル基(メトキシメチル基、メトキシエチル基、シアノエトキシメチル基、エトキシエチル基等)、2-テトラヒドロピラニル基、シアノエチル基、カルバモイル基(フェニルカルバモイル基、1,1-ジオキソチオモルホリン-4-チオカルバモイル基等)、アシル基(アセチル基、ピバロイル基、イソブチリル基、ベンゾイル基、フェノキシアセチル基、レブリニル基、3-ベンゾイルプロピオニル基等)、シリル基(トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等)、[(トリイソプロピルシリル)オキシ]メチル基(Tom基)、1-(4-クロロフェニル)-4-エトキシピペリジン-4-イル基(Cpep基)等を挙げることができる。これらの中でも、アセチル基、ベンゾイル基、ベンジル基又はp-メトキシベンジル基が好ましい。
 前記核酸塩基における「チオール基の保護基」としては、「ヒドロキシ基の保護基」と同様の保護基に加えて、ジスルフィド結合を形成する保護基を挙げることができる。
 また、核酸塩基のカルボニル基が共役してヒドロキシ基の形になって保護されているとき、例えば、フェノール、2,5-ジクロロフェノール、3-クロロフェノール、3,5-ジクロロフェノール、2-ホルミルフェノール、2-ナフトール、4-メトキシフェノール、4-クロロフェノール、2-ニトロフェノール、4-ニトロフェノール、4-アセチルアミノフェノール、ペンタフルオロフェノール、4-ピバロイロキシベンジルアルコール、4-ニトロフェネチルアルコール、2-(メチルスルフォニル)エタノール、2-(フェニルスルフォニル)エタノール、2-シアノエタノール、2-(トリメチルシリル)エタノール、ジメチルカルバミン酸クロライド、ジエチルカルバミン酸クロライド、エチルフェニルカルバミン酸クロライド、1-ピロリジンカルボン酸クロライド、4-モルホリンカルボン酸クロライド、ジフェニルカルバミン酸クロライド等を反応させて、カルボニル基を保護することが出来る。
 また、該「核酸塩基」には、上記の基の他に、核酸塩基が任意の置換基(例えば、ハロゲン原子、アルキル基、アラルキル基、アルコキシ基、アシル基、アルコキシアルキル基、ヒドロキシ基、アミノ基、モノアルキルアミノ、ジアルキルアミノ、カルボキシ、シアノ、ニトロ等)により任意の位置に1から3個置換されている修飾核酸塩基(例えば、8-ブロモアデニル基、8-ブロモグアニル基、5-ブロモシトシル基、5-ヨードシトシル基、5-ブロモウラシル基、5-ヨードウラシル基、5-フルオロウラシル基、5-メチルシトシル基、8-オキソグアニル基、ヒポキサンチニル基等)も包含される。
〔伸長反応サイクル〕
 本明細書中「伸長反応サイクル」とは、擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドをH-ホスホネート化した後、ヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドと反応させ、擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドと、ヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドとがリン含有基を介して結合した結合体を得る反応サイクルを意味する。
 伸長反応サイクルは、たとえば、擬似固相保護基を有し、3’位又は5’位に一時保護基で保護されたヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドの一時保護基を除去してヒドロキシ基を生成することを含む工程と、生成したヒドロキシ基をH-ホスホネート化してH-ホスホネート体を得ることを含む工程と、H-ホスホネート体と、ヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドとから、これらが亜リン酸ジエステル結合を介して結合したオリゴヌクレオチドを得る工程と、を含む。
〔擬似固相保護基〕
 本発明に使用される擬似固相保護基とは、該保護基を反応基質が有することにより、反応基質及び反応生成物が低極性溶媒に可溶化し、液相中の反応が可能であると共に、一定以上の極性溶媒の添加により反応生成物又は反応基質が沈殿し、固液分離が可能となる保護基であって、5’位ヒドロキシ基もしくは3’位ヒドロキシ基の下記一時保護基を除去し得る条件では安定な保護基である。擬似固相保護基を有する反応基質を使用することにより、反応性と後処理の簡便性とを両立することができる。
 擬似固相保護基としては、下記式(I)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
mは、0又は1である。
 ここで、Lが、-COO-又は-O-であり、Lが、-OCO-又は-O-であるとき、Lは、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であることが好ましい。
 擬似固相保護基の代表的な例としては、例えば、
3,4,5-トリス(オクタデシルオキシ)ベンジルオキシスクシニル基(3-{3,4,5-トリス(オクタデシルオキシ)ベンジルオキシカルボニル}プロパノイル基)、
3,4,5-トリス(オクタデシルオキシ)ベンゾイル基、
4-オキソ-4-(2,4,6-トリス(オクタデシルオキシ)フェニル)ブチリル基、
2-(3,4,5-トリス(オクタデシルオキシ)ベンズアミド)エトキシスクシニル基(3-[2-{3,4,5-トリス(オクタデシルオキシ)ベンズアミド}エトキシカルボニル]プロパノイル基)、
2-(N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド)エトキシスクシニル基(3-[2-{N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド}エトキシカルボニル]プロパノイル基)、
(N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド)アセチル基、
((3,4,5-トリス(オクタデシルオキシ)ベンゾイル)オキシ)メチル基、及び
2-(N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド)エトキシスクシニルオキシメチル基({(3-[2-{N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド}エトキシカルボニル]プロパノイル)オキシ}メチル基)
などが挙げられる。
 擬似固相保護基の具体例としては、国際公開第2014-077292号等に開示された基も挙げられる。
 擬似固相保護基は、好ましくは、下記式(II)で表される基である。
Figure JPOXMLDOC01-appb-C000033
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-である。
 ここで、Lが、-COO-又は-O-であり、Lが、-OCO-又は-O-であるとき、Lは、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であることがより好ましい。
 擬似固相保護基は、さらに好ましくは、下記式(III)で表される基である。
Figure JPOXMLDOC01-appb-C000034
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基又はC2-6アルケニル基である。
 また、擬似固相保護基は、さらに好ましくは、下記式(IV)で表される基である。
Figure JPOXMLDOC01-appb-C000035
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、C1-6アルキレン基又はC2-6アルケニレン基である。
 また、擬似固相保護基は、さらに好ましくは、下記式(IV-2)で表される基である。
Figure JPOXMLDOC01-appb-C000036
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、C1-6アルキレン基又はC2-6アルケニレン基である。
 また、擬似固相保護基は、さらに好ましくは、下記式(IV-3)で表される基である。
Figure JPOXMLDOC01-appb-C000037
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基又はC2-6アルケニル基である。
 式(II)から式(IV-2)において、Lは、好ましくはC1-6アルキレン基であり、特に好ましくはエチレン基である。
 式(IV-3)において、Lは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基である。
 式(II)から式(IV)において、Lは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 式(II)、式(III)及び式(IV-3)において、Rは、好ましくは水素原子又はC1-6アルキル基であり、特に好ましくは水素原子又はメチル基である。
 その他の態様として、擬似固相保護基は好ましくは、下記式(V)で表される基である。
 式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
は、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
は、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
は、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基である。
 ここで、Lが、-COO-又は-O-であり、Lが、-OCO-又は-O-であるとき、Lは、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であることがより好ましい。
 擬似固相保護基は、さらに好ましくは、下記式(VI)
Figure JPOXMLDOC01-appb-C000039
 (式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、C1-6アルキレン基又はC2-6アルケニレン基であり、
は、単結合又は-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基又はC2-6アルケニル基である)であり、
は、水素原子又はC1-6アルキル基であり、
は、水素原子又はC1-6アルキル基である)で表される基、又は下記式(VII)
Figure JPOXMLDOC01-appb-C000040
 (式中、*は、擬似固相保護基が保護する基との結合位置を示し、
は、水素原子又はC1-6アルキル基であり、
は、水素原子又はC1-6アルキル基である)で表される基である。
 擬似固相保護基は、さらにより好ましくは、前記式(VII)で表される基である。
 式(I)、式(V)及び(VI)において、Lは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 式(I)、式(V)及び(VI)において、Lは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 式(I)、式(V)から式(VII)において、L及びLは、特に好ましくは水素原子である。
 式(I)から式(VII)で表される擬似固相保護基のRは、好ましくは、C10-30アルキル基又はC10-30アルケニル基であり、より好ましくはC10-30アルキル基であり、さらに好ましくはC15-25アルキル基であり、さらにより好ましくは、C15-20アルキル基であり、特に好ましくは、オクタデシル基である。
 式(I)から式(VII)で表される擬似固相保護基のsは、好ましくは、2から4の整数であり、より好ましくは3である。
 式(I)から式(VII)において、sが2から5であるとき、それぞれのRは、同一であっても異なっていてもよい。
〔一時保護基〕
 本発明に使用される一時保護基とは、5’位ヒドロキシ基もしくは3’位ヒドロキシ基を保護する保護基であり、前記「伸長反応サイクル」において脱保護される保護基である。脱保護された5’位ヒドロキシ基もしくは3’位ヒドロキシ基は、伸長反応サイクルにおいて、H-ホスホネート化された後、別のヌクレオシド又はオリゴヌクレオチドとの結合に利用される。一時保護基は、例えば、以下の文献に記載されるような保護基が挙げられる。
 Protective Groups in Organic Synthesis,Greene T.W.and Wuts P.G.M.,published by Wiley Interscience,1999及びProtecting Groups,Kocienski P.J.,1994,Georg Thieme Verlag。
〔基本保護基〕
 本発明に使用される基本保護基とは、核酸塩基中のアミノ基、カルボニル基、ヒドロキシ基、若しくはチオール基又は、2’位ヒドロキシ基、3’位ヒドロキシ基若しくは5’位ヒドロキシ基、又はリン酸ジエステル結合のヒドロキシ基若しくはチオリン酸ジエステル結合のチオール基を保護する保護基であり、前記「伸長反応サイクル」においては脱保護されず、かつ前記「擬似固相保護基」が有する機能は有さない一般的な保護基である。基本保護基は、例えば、以下の文献に記載される保護基が挙げられる。
 Protective Groups in Organic Synthesis,Greene T.W.and Wuts P.G.M.,published by Wiley Interscience,1999及びProtecting Groups,Kocienski P.J.,1994,Georg Thieme Verlag。
 核酸塩基中のアミノ基、ヒドロキシ基、若しくはチオール基に使用される基本保護基は、前記核酸塩基における「アミノ基の保護基」、前記核酸塩基における「ヒドロキシ基の保護基」、前記核酸塩基における「チオール基の保護基」の通りである。
 核酸塩基中のカルボニル基に使用される基本保護基は、フェノキシ基、2,5-ジクロロフェニル基、3-クロロフェニル基、3,5-ジクロロフェニル基、2-ホルミルフェニル基、2-ナフチル基、4-メトキシフェニル基、4-クロロフェニル基、2-ニトロフェニル基、4-ニトロフェニル基、4-アセチルアミノフェニル基、ペンタフルオロフェニル、4-ピバロイロキシベンジルアルキル基、4-ニトロフェネチルアルキル基、2-(メチルスルフォニル)エチル基、2-(フェニルスルフォニル)エタチル基、2-シアノエチル基、2-(トリメチルシリル)エチル基、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、N-メチル-N-フェニルカルバモイル基、1-ピロリジノカルボニル基、4-モルホリノカルボニル基、N,N-ジフェニルアミノカルボニル基等が挙げられ、前述の方法に従い、上記保護されたカルボニル基を有するヌクレオチド又はオリゴヌクレオチドが得られる。
 2’位ヒドロキシ基の基本保護基は、Xにおける「基本保護基で保護されたヒドロキシ基」の基本保護基として後述する。3’位ヒドロキシ基及び5’位ヒドロキシ基の基本保護基は、Zにおける「基本保護基で保護されたヒドロキシ基」の基本保護基として後述する。
 リン酸ジエステル結合のヒドロキシ基若しくはチオリン酸ジエステル結合のチオール基を保護する基本保護基は、後述する。
 保護基で保護された官能基(擬似固相保護基で保護されたヒドロキシ基及び核酸塩基、一時保護基で保護されたヒドロキシ基、基本保護基で保護されたヒドロキシ基、アミノ基、チオール基等)は、それぞれ、その官能基の水素原子がその保護基により置換されていることを意味する。
 本明細書中「4位炭素原子に架橋する有機基」は、糖の2’位と4’位とを架橋する有機基を意味し、特に限定されないが、例えば、C2-6アルキレン基(該アルキレン基は無置換であるか、又はC1-6アルキル基で置換されている。ここで、該アルキレン基の1若しくは2つのメチレン基は、置き換えられていないか、又は-O-、-NR11-(R11は水素原子又はC1-6アルキル基を示す)、-S-、-CO-、-CS-、-COO-、-OCONR12-(R12は水素原子又はC1-6アルキル基を示す)、-CONR13-(R13は水素原子又はC1-6アルキル基を示す)及び-CSNR14-(R14は水素原子又はC1-6アルキル基を示す)から選ばれる基で置き換えられている)である架橋基を意味する。
〔オリゴヌクレオチドの製造方法〕
 次に、本発明にかかるオリゴヌクレオチドの製造方法(以下、「本発明の製造方法」ともいう。)について説明する。具体的には、擬似固相保護基で保護されたヌクレオシド又はオリゴヌクレオチド(以下、「n個重合オリゴヌクレオチド」ともいう)から、ヌクレオシド又はオリゴヌクレオチド(以下、「p個重合オリゴヌクレオチド」ともいう)で伸長され、擬似固相保護基で保護されたオリゴヌクレオチド(以下、「n+p個重合オリゴヌクレオチド」ともいう)を製造する方法について説明する。なお、n個重合オリゴヌクレオチドとは、n個のヌクレオシドがリン含有基を介して結合したオリゴヌクレオチドを意味し、n=1の場合、n個重合オリゴヌクレオチドはヌクレオシドと解され、p個重合オリゴヌクレオチドについても同様である。
 ここで、n個重合オリゴヌクレオチドが、2以上の核酸塩基部を有する場合、それぞれの核酸塩基部は同一であっても異なっていてもよく、n個重合オリゴヌクレオチドが、2以上の擬似固相保護基を有する場合、それぞれの擬似固相保護基は同一であっても異なっていてもよく、n個重合オリゴヌクレオチドが、2以上の基本保護基を有する場合、それぞれの基本保護基は同一であっても異なっていてもよく、n個重合オリゴヌクレオチドが、2以上の4位炭素原子に架橋する有機基を有する場合、それぞれの4位炭素原子に架橋する有機基は同一であっても異なっていてもよい。
 p個重合オリゴヌクレオチドについても同様である。
 オリゴヌクレオチドの製造方法は、2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位又は3’位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5’-ヒドロキシ基又は3’-ヒドロキシ基をH-ホスホネート化するホスホネート化工程を含む。
 またオリゴヌクレオチドの製造方法は、前記H-ホスホネート化工程を含む伸長反応サイクルを少なくとも1つ含む。
 オリゴヌクレオチドの製造方法は、伸長反応サイクルに、擬似固相保護基を持つヌクレオシド又はオリゴヌクレオチドの5’位ヒドロキシ基又は3’位ヒドロキシ基をH-ホスホネート化する工程を含むことを特徴とする。オリゴヌクレオチドの製造方法は、好ましくは以下の工程aから工程dを伸長反応サイクルに含む。なお、工程aから工程dの順番は、工程a、工程b、工程c、工程dの順に行うか、工程a、工程d、工程b、工程cの順に行う。好ましい順は、工程a、工程b、工程c、工程dの順である。
(工程a)
 工程aは、伸長末端ではないヒドロキシ基、核酸塩基部及び2’位の中の少なくとも1つに擬似固相保護基を有し、かつ伸長末端のヒドロキシ基が一時保護基で保護されたヌクレオシド又はオリゴヌクレオチドの一時保護基を除去してヒドロキシ基とすることを含む脱一時保護基工程である。
(工程b)
 工程bは、一時保護基が除去されたヒドロキシ基をH-ホスホネート化試薬によりH-ホスホネート化することを含むホスホネート化工程である。
(工程c)
 工程cは、工程bでH-ホスホネート化されたヌクレオシド又はオリゴヌクレオチドに対して、ヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドを添加して、そのヒドロキシ基を介して亜リン酸ジエステル結合により縮合させることを含むカップリング工程である。
(工程d)
 工程dは、形成された亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、アミノリン酸ジエステル結合、ボラノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合(リン酸トリエステル結合)又は基本保護基で保護されたチオリン酸ジエステル結合(チオリン酸-O,O,S-トリエステル結合)等へと変換することを含む変換工程である。
 ここで、前記アミノリン酸ジエステル結合のアミノ基は、無置換であるか、又は1若しくは2個のC1-6アルキル基で置換されている。
 基本保護基で保護されたリン酸ジエステル結合は、リン酸ジエステル結合の1つのヒドロキシ基の水素原子が、C1-40アルキル基、C3-6シクロアルキル基、C6-10アリール基、5-10員ヘテロアリール基、アラルキル基又はヘテロアラルキル基等によって置き換えられた結合である。ここで前記C1-6アルキル基は、無置換であるか又は、ハロゲン原子、シアノ基等によって置換されている。C3-6シクロアルキル基、C6-10アリール基、5-10員ヘテロアリール基、アラルキル基及びヘテロアラルキル基は、無置換であるか又は、C1-6アルキル基、ハロゲン原子、シアノ基等によって置換されている。
 基本保護基で保護されたチオリン酸ジエステル結合は、チオリン酸ジエステル結合の1つのチオール基の水素原子が、C1-40アルキル基、C3-6シクロアルキル基、C6-10アリール基、5-10員ヘテロアリール基、アラルキル基又はヘテロアラルキル基等によって置き換えられた結合である。ここで前記C1-40アルキル基は、無置換であるか又は、ハロゲン原子、シアノ基等によって置換されている。C3-6シクロアルキル基、C6-10アリール基、5-10員ヘテロアリール基、アラルキル基及びヘテロアラルキル基は、無置換であるか又は、C1-6アルキル基、ハロゲン原子、シアノ基等によって置換されている。
 工程aに用いる擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドに含まれるヌクレオシド数nは、1以上の任意の整数であれば特に限定されないが、好ましくは、1から50であり、より好ましくは1から30であり、更に好ましくは1から20であり、更により好ましくは1から10であり、特に好ましくは1から5である。
 工程cに用いるヒドロキシ基を有するヌクレオシド又はオリゴヌクレオチドに含まれるヌクレオシド数pは、1以上の任意の整数であれば特に限定されないが、好ましくは、1から50であり、より好ましくは1から30であり、更に好ましくは1から20であり、更に好ましくは1から5であり、更により好ましくは1から3であり、特に好ましくは1、つまりヌクレオシドを用いることが特に好ましい。
 なお、工程dで得られた反応混合物を、そのまま工程aに使用することもできる。また、工程d終了後に適宜昇温などを行うことで、同時に工程aを行うこともできる。
 オリゴヌクレオチドの製造方法は、更に、下記工程eを含むことにより、簡便かつ効果的に過剰原料や副生物を除去してヌクレオシド又はオリゴヌクレオチドを精製することができる。
(工程e)
 工程eは、工程aから工程dのいずれかで得られた反応混合物に極性溶媒を添加して、擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドを沈殿させて、固液分離により取得する分離工程である。
 なお、工程eは、擬似固相保護基を用いない通常の液相合成法にも、固相合成法にも存在し得ない、擬似固相保護基を用いる液相合成法に特有の工程である。
 伸長反応サイクルに含まれる工程eの数は、特に制限されない。工程eは、工程aから工程dのいずれの工程の後にも、行うことができる。
 工程eは、工程aから工程dの各工程の後に、それぞれ独立して例えば0~5回含まれ、好ましくは0~3回含まれ、より好ましくは0~2回含まれ、さらに好ましくは0又は1回含まれる。ここで、工程a~dの後の少なくとも1つに、1回以上の工程eが含まれる。
 伸長反応サイクルには、1から4回の工程eが含まれることが好ましい。工程eは、伸長反応サイクル中に、工程aの後、工程bの後及び工程dの後の少なくとも1つに、それぞれ1回含まれることが、副生物発生を厳格に管理・制御でき、高純度のオリゴヌクレオチドに導けるという観点で好ましい。工程eは、伸長反応サイクル中に、工程bの後に1回含まれるか、工程dの後に1回含まれるか、又は工程b及び工程dの後にそれぞれ1回含まれることが、より好ましい。
 その他の態様として、工程eは、伸長反応サイクル中に、工程aの後に1回含まれるか、工程bの後に1回含まれるか、又は工程a及び工程bの後にそれぞれ1回含まれることが、より好ましく、工程a及び工程bの後にそれぞれ1回含まれることが、さらに好ましい。
 原料の当量管理と反応を制御することによって副生物の発生量を制御できる状況であれば、工程aから工程dを基本単位として繰り返した後、工程eを行うことが好ましい。
 オリゴヌクレオチドの製造方法は、更に、工程fを含んでいてもよい。これにより、所望のオリゴヌクレオチドを単離・製造することができる。
(工程f)
 工程fは、工程aから工程eで得られたオリゴヌクレオチドの基本保護基、一時保護基及び擬似固相保護基を全て除去する脱保護工程である。
 オリゴヌクレオチドの製造方法はオリゴヌクレオチドの伸長方向によって、主に方法A又は方法Bに分類される。方法Aでは、5’位のヒドロキシ基を工程aから工程cにより変換し、5’位にヌクレオシド又はオリゴヌクレオチドを伸長する。方法Bでは、3’位のヒドロキシ基を工程aから工程cにより変換し、3’位にヌクレオシド又はオリゴヌクレオチドを伸長する。
 方法Aは、
 2’位、3’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、3’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第一ヌクレオシド又は第一オリゴヌクレオチドの一時保護基を除去して5’-ヒドロキシ基を生成することを含む第一工程(工程a)と、
 生成した5’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第二工程(工程b)と、
 H-ホスホネート化された5’-ヒドロキシ基と、3’位にヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第二ヌクレオシド又は第二オリゴヌクレオチドの3’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第一ヌクレオシド又は第一オリゴヌクレオチドと、第二ヌクレオシド又は第二オリゴヌクレオチドとの結合体を得る第三工程(工程c)と、
 結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合、又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第四工程(工程d)と、を含むオリゴヌクレオチドの製造方法である。
 方法Bは、
 2’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第三ヌクレオシド又は第三オリゴヌクレオチドの一時保護基を除去して3’-ヒドロキシ基を生成することを含む第七工程(工程a)と、
 生成した3’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第八工程(工程b)と、
 H-ホスホネート化された3’-ヒドロキシ基と、5’位にヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第四ヌクレオシド又は第四オリゴヌクレオチドの5’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第三ヌクレオシド又は第三オリゴヌクレオチドと、第四ヌクレオシド又は第四オリゴヌクレオチドとの結合体を得る第九工程(工程c)と、
 結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合、又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第十工程(工程d)と、を含むオリゴヌクレオチドの製造方法である。
 以下に、工程aから工程fについて順に詳細に説明する。
(工程a)(脱一時保護基工程)
 まず、方法A又は方法Bのそれぞれの場合の工程aをスキーム1又は2に示す。
 方法Aにおける工程aは、低極性溶媒中において、5’位ヒドロキシ基がフッ素試薬、酸又は塩基で除去可能な一時保護基Rで保護されたn個重合オリゴヌクレオチド(ia)(式中、nは、1以上の任意の整数を示し、n=1の場合は、ヌクレオシドを示す。)の一時保護基Rを、フッ素試薬、酸又は塩基の添加により除去する工程(脱一時保護基工程)である(スキーム1)。
Figure JPOXMLDOC01-appb-C000041
 スキーム中、nは、1以上の任意の整数を示し、Baseは、独立してそれぞれ核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、Rは、一時保護基を示し、Xは、独立してそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、Yは、独立してそれぞれ水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、Zは、基本保護基、一時保護基又は擬似固相保護基を示す。ここで、Base、X及びZの中の少なくとも1つに擬似固相保護基が含まれる。
 ここで、スキーム1中化合物(ia)又は(iia)が、2以上の核酸塩基部を有する場合、それぞれの核酸塩基部は同一であっても異なっていてもよく、(ia)又は(iia)が、2以上の擬似固相保護基を有する場合、それぞれの擬似固相保護基は同一であっても異なっていてもよく、(ia)又は(iia)が、2以上の基本保護基を有する場合、それぞれの基本保護基は同一であっても異なっていてもよく、n個重合オリゴヌクレオチドが、2以上の4位炭素原子に架橋する有機基を有する場合、それぞれの4位炭素原子に架橋する有機基は同一であっても異なっていてもよい。
 方法Bにおける(工程a)は、低極性溶媒中において、3’位ヒドロキシ基がフッ素試薬、酸又は塩基で除去可能な一時保護基Rで保護されたn個重合オリゴヌクレオチド(ib)(式中、nは、1以上の任意の整数を示し、n=1の場合は、ヌクレオシドを示す。)の一時保護基Rを、フッ素試薬、酸又は塩基の添加により除去する工程(脱一時保護基工程)である(スキーム2)。なお、スキーム中、n、Base、R、X、Y及びZは、スキーム1における定義に同じである。
Figure JPOXMLDOC01-appb-C000042
 擬似固相保護基は、Base及びZの中の少なくとも1つに含まれることが好ましく、Zの中に含まれることがより好ましい。
 Zは、好ましくは、基本保護基又は擬似固相保護基であり、より好ましくは擬似固相保護基である。
 X又はZに含まれる好ましい擬似固相保護基は、前述の式(I)から(VII)で表される基であり、好ましい態様もまた同様である。
 Baseに含まれる擬似固相保護基は、下記式(I)で表される基であって、mが1である基か、又は、mが0であり、L、L、L及びLのうち単結合の数が0から3である基が好ましい。
Figure JPOXMLDOC01-appb-C000043
 式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(I)における定義に同じであり、好ましい態様もまた同様である。
 Baseに含まれる擬似固相保護基は、下記式(II)で表される基であって、L、L、L及びLのうち単結合の数が0から3である基がより好ましい。
Figure JPOXMLDOC01-appb-C000044
 式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(II)における定義に同じであり、好ましい態様もまた同様である。
 Baseに含まれる擬似固相保護基は、下記式(III)で表される基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000045
 式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(II)における定義に同じである。
 また、Baseに含まれる擬似固相保護基は、下記式(IV)で表される基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000046
 式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(IV)における定義に同じである。
 また、X又はZに含まれる擬似固相保護基は、下記式(IV-2)で表される基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000047
  式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(IV-2)における定義に同じである。
 また、X又はZに含まれる擬似固相保護基は、下記式(IV-3)で表される基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000048

 式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(IV-3)における定義に同じである。
 Baseに含まれる、式(II)から式(IV-3)で表される擬似固相保護基のLは、好ましくはC1-6アルキレン基であり、特に好ましくはエチレン基である。
 Baseに含まれる、式(II)から式(IV)で表される擬似固相保護基のLは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 その他の態様として、Baseに含まれる擬似固相保護基は好ましくは、下記式(V)で表される基である。
Figure JPOXMLDOC01-appb-C000049
 式中、*は、核酸塩基部との結合位置を示し、その他の記号は前記式(V)における定義に同じであり、好ましい態様も同様である。
 Baseに含まれる擬似固相保護基は、さらに好ましくは、下記式(VI)
Figure JPOXMLDOC01-appb-C000050
 (式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(VI)における定義に同じである)で表される基、又は下記式(VII)
Figure JPOXMLDOC01-appb-C000051
 (式中、*は、核酸塩基部との結合位置を示し、その他の記号は、前記式(VII)における定義に同じである)で表される基である。
 Baseに含まれる擬似固相保護基は、さらにより好ましくは、前記式(VII)で表される基である。
 Baseに含まれる、式(I)、式(V)又は(VI)で表される擬似固相保護基のLは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 Baseに含まれる、式(I)、式(V)又は(VI)で表される擬似固相保護基のLは、好ましくはC1-6アルキレン基であり、特に好ましくはメチレン基又はエチレン基である。
 Baseに含まれる、式(I)、式(V)から式(VII)で表される擬似固相保護基のL及びLは、特に好ましくは水素原子である。
 Baseに含まれる、式(I)から式(VII)で表される擬似固相保護基のRは、好ましくは、C10-30アルキル基又はC10-30アルケニル基であり、より好ましくはC10-30アルキル基である。
 Baseに含まれる、式(I)から式(VII)で表される擬似固相保護基のsは、好ましくは、2から4の整数であり、より好ましくは3である。
 式(I)から式(VII)において、sが2から5であるとき、それぞれのRは、同一であっても異なっていてもよい。
 m=1である式(I)、式(V)から式(VII)で表される擬似固相保護基は、チミン又はウラシルに導入された場合に、特に有用である。
 オリゴヌクレオチドの伸長末端のヒドロキシ基に用いることができる一時保護基Rは、フッ素試薬、酸又は塩基で脱保護可能であり、ヒドロキシ基の保護基として用いられるものであれば、特に限定はされない。フッ素試薬で脱保護可能な一時保護基Rとしては、シリル基(tert-ブチルジメチルシリル基、トリエチルシリル基、トリメチルシリル基等)が挙げられる。酸で脱保護可能な一時保護基Rとしては、キサンテニル基(9-(9-フェニル)キサンテニル基、9-フェニルチオキサンテニル基等)、アルコキシアルキル基(1-メトキシ-1-メチルエチル基、1,3-ジオキソラン-2-イル基、1,3-ベンゾジオキソール-2-イル基等)、アルキルチオアルキル基(1,3-ジチオラン-2-イル基、1,3-ベンゾジチオール-2-イル基)、アルコキシカルボニル基(tert-ブチルオキシカルボニル基等)、及びトリアリールメチル基(トリチル基、ジメトキシトリチル基、モノメトキシトリチル基等)等が挙げられる。塩基で脱保護可能な一時保護基Rとしては、レブリニル基、3-ベンゾイルプロピオニル基が挙げられる。好ましくは、tert-ブチルジメチルシリル基、トリチル基、9-(9-フェニル)キサンテニル基、9-フェニルチオキサンテニル基、1,1-ビス(4-メトキシフェニル)-1-フェニルメチル基(ジメトキシトリチル基)、1-(4-メトキシフェニル)-1,1-ジフェニルメチル基(モノメトキシトリチル基)である。これらの中でも、脱保護のしやすさ、入手の容易さの観点から、tert-ブチルジメチルシリル基、モノメトキシトリチル基、ジメトキシトリチル基であることが好ましく、tert-ブチルジメチルシリル基、ジメトキシトリチル基がより好ましく、ジメトキシトリチル基が特に好ましい。tert-ブチルジメチルシリル基も特に好ましい。
 Xにおける「基本保護基で保護されたヒドロキシ基」の基本保護基としては、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている保護基を挙げることができる。具体的には、アルキル基(メチル基、tert-ブチル基等)、アリールメチル基(ベンジル基、p-メトキシベンジル基等)、ジアリールメチル基(ジフェニルメチル基等)、アルコキシアルキル基(メトキシメチル基、メトキシエチル基、エトキシエチル基、シアノエトキシメチル基等)、2-テトラヒドロピラニル基、シアノエチル基、カルバモイル基(フェニルカルバモイル基、1,1-ジオキソチオモルホリン-4-チオカルバモイル基等)、アシル基(アセチル基、ピバロイル基、ベンゾイル基、レブリニル基、3-ベンゾイルプロピオニル基等)、シリル基(トリイソプロピルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等)、[(トリイソプロピルシリル)オキシ]メチル(Tom)基、1-(4-クロロフェニル)-4-エトキシピペリジン-4-イル(Cpep)基等を挙げることができる。これらの中でもtert-ブチルジメチルシリル基、トリイソプロピルシリル基、又はtert-ブチルジフェニルシリル基であることが好ましく、tert-ブチルジメチルシリル基、トリイソプロピルシリル基であることがより好ましい。その他の態様として、レブリニル基又は3-ベンゾイルプロピオニル基が好ましく、レブリニル基がより好ましい。
 Xは、好ましくは水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基又は4位炭素原子に架橋する有機基であり、より好ましくは、水素原子、ヒドロキシ基、又はC1-6アルキル基、tert-ブチルジメチルシリル基、トリイソプロピルシリル基若しくはtert-ブチルジフェニルシリル基で保護されたヒドロキシ基であり、さらに好ましくは水素原子又はトリイソプロピルシリル基で保護されたヒドロキシ基である。ここで、前記C1-6アルキル基は、無置換であるか、C1-6アルコキシカルボニル基、モノC1-6アルキルアミノカルボニル基、ジC1-6アルキルアミノカルボニル基からなる群から選ばれる基で置換されている。
 その他の態様として、Xはより好ましくは、C2-6アルキレン基(該アルキレン基は無置換であるか、又はメチル基で置換されている。ここで、該アルキレン基の1若しくは2つのメチレン基は、置き換えられていないか、又は-O-、-NR11-(R11は水素原子又はメチル基を示す)、-CO-、-CS-、-COO-、-OCONR12-(R12は水素原子又はメチル基を示す)、-CONR13-(R13は水素原子又はメチル基を示す)及び-CSNR14-(R14は水素原子又はメチル基を示す)から選ばれる基で置き換えられている)で表される4位炭素原子に架橋する有機基である。Xはより好ましくは、エチレン基(該エチレン基の1若しくは2つのメチレン基は、置き換えられていないか、又は-O-、-CONR13-(R13は水素原子又はメチル基を示す)及び-CSNR14-(R14は水素原子又はメチル基を示す)から選ばれる基で置き換えられている)で表される4位炭素原子に架橋する有機基である。
 Zにおける基本保護基としては、Xにおける「基本保護基で保護されたヒドロキシ基」の基本保護基として挙げられたものが挙げられる。
 中でもtert-ブチルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジフェニルシリル基、レブリニル基又は3-ベンゾイルプロピオニル基が好ましく、レブリニル基又は3-ベンゾイルプロピオニル基がより好ましく、レブリニル基が更に好ましい。
 X又はZにおける基本保護基には、一時保護基を脱保護する条件で脱保護されない保護基を用いることができる。例えば、酸で脱保護される一時保護基を用いる場合、前記一時保護基に挙げられたものの内、酸では脱保護されず塩基又はフッ素試薬で脱保護される保護基を、基本保護基として用いることができる。逆に、塩基で脱保護される一時保護基を用いる場合、前記一時保護基に挙げられたものの内、塩基では脱保護されず酸又はフッ素試薬で脱保護される保護基を、基本保護基として用いることができる。また、フッ素試薬で脱保護される一時保護基を用いる場合、前記一時保護基に挙げられたものの内、フッ素試薬では脱保護されず酸又は塩基で脱保護される保護基を、基本保護基として用いることができる。
 例えば、X又はZにおける基本保護基がレブリニル基又は3-ベンゾイルプロピオニル基等である場合、一時保護基は、tert-ブチルジメチルシリル基、トリエチルシリル基等のシリル基、又はトリチル基、ジメトキシトリチル基、モノメトキシトリチル基等のトリアリールメチル基であることが好ましい。
 一時保護基がレブリニル基又は3-ベンゾイルプロピオニル基等である場合、X又はZにおける基本保護基は、tert-ブチルジメチルシリル基、トリエチルシリル基等のシリル基、又はトリチル基、ジメトキシトリチル基、モノメトキシトリチル基等のトリアリールメチル基であることが好ましい。特に方法Bの場合に、レブリニル基又は3-ベンゾイルプロピオニル基等を一時保護基として用いてもよい。
 Yは、独立してそれぞれ水素原子、ヒドロキシ基、保護されたヒドロキシ基、チオール基、保護されたチオール基、水素化ホウ素、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示す。保護されたヒドロキシ基は、後述する工程dで変換される「基本保護基で保護されたリン酸ジエステル結合」においてヒドロキシ基を置き換える基と同様である。保護されたチオール基は、後述する工程dで変換される「基本保護基で保護されたチオリン酸ジエステル結合」においてチオール基を置き換える基と同様である。
 Yは、独立してそれぞれ、好ましくは、水素原子、ヒドロキシ基、チオール基又は2-シアノエトキシ基であり、より好ましくは、ヒドロキシ基又はチオール基である。Yを含めたリン官能基は、例えば以下の構造(又は、以下の構造に塩を付した構造)を有する。
Figure JPOXMLDOC01-appb-C000052
 工程aは、反応に影響を及ぼさない溶媒中で行われる。当該溶媒における溶解度が高い程、優れた反応性が期待できるため、目的とする化合物の溶解度の高い低極性溶媒を選択することが好ましい。具体的には、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族系溶媒;酢酸エチル、酢酸イソプロピル等のエステル系溶媒;ヘキサン、ペンタン、ヘプタン、オクタン、ノナン、シクロヘキサン等の脂肪族系溶媒;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒が挙げられる。これらの溶媒は2種以上を任意の割合で混合して用いてもよい。また、上記低極性溶媒に、ピリジンなどの含窒素芳香族系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等の極性溶媒を、n個重合オリゴヌクレオチドが溶解し得る限り、任意の割合で混合して用いてもよい。中でも、工程aに用いる溶媒は、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ペンタン、ヘプタン、ノナン、シクロヘキサン、酢酸エチル、酢酸イソプロピル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、又は、これらの組合せが好ましく、ジクロロメタン、テトラヒドロフランが特に好ましい。
 工程aにおけるn個重合オリゴヌクレオチドの溶媒中の濃度は、溶解していれば特に限定されないが、好ましくは1から30重量%である。
 工程aに使用されるフッ素試薬、酸又は塩基としては、一時保護基の良好な脱保護が達成できれば特に限定されない。
 フッ素試薬としては、フッ化水素のピリジン塩、テトラブチルアンモニウムフルオリド、フッ化水素のトリエチルアミン塩、フッ化水素酸、フッ化アンモニウム、フッ化アンモニウムのフッ化水素付加体、フッ化カリウム又はフッ化カリウムのフッ化水素付加体が好ましく、中でも、フッ化水素のピリジン塩又はテトラブチルアンモニウムフルオリドがより好ましく、フッ化水素のピリジン塩が特に好ましい。
 酸としては、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、塩酸、酢酸、硝酸アンモニウムセリウム、ホスホン酸又はリン酸が好ましく、中でも、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、塩酸、酢酸又は硝酸アンモニウムセリウムがより好ましく、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸又はp-トルエンスルホン酸がさらに好ましく、ジクロロ酢酸又はホスホン酸が特に好ましい。トリフルオロ酢酸又はp-トルエンスルホン酸も特に好ましい。
 塩基としては、ヒドラジン誘導体(ヒドラジン一水和物、ヒドラジン酢酸塩、硫酸ヒドラジニウム、アセトヒドラジド、メチルカルバゼート、フェニルヒドラジン、p-トルエンスルホニルヒドラジン等)、エチレンジアミン誘導体(エチレンジアミン等)及び無機塩基(炭酸カリウム等)等が挙げられる。塩基としては、ヒドラジン誘導体が好ましく、ヒドラジン一水和物がより好ましい。
 これらフッ素試薬、酸及び塩基は、上記低極性溶媒で希釈して使用することができる。 また、フッ素試薬、酸及び塩基以外では、Chirazyme L-2、Chirazyme L-5等の酵素により脱保護することも可能である。
 工程aにおけるフッ素試薬、酸又は塩基の使用量は、n個重合オリゴヌクレオチド1モルに対し、1から100モル使用することができ、好ましくは1から40モルであり、より好ましくは1から30モルであり、さらに好ましくは5から30モルである。
 工程aの反応温度は、反応が進行すれば特に限定されないが、-10℃から60℃が好ましく、0℃から50℃がより好ましく、0℃から30℃がさらに好ましい。反応時間は、使用するn個重合オリゴヌクレオチドの種類、フッ素試薬、酸又は塩基の種類、溶媒の種類、反応温度等により異なるが、5分間から50時間が好ましく、5分間から12時間がより好ましく、30分間から6時間がより好ましい。
 脱保護剤として使用されるフッ素試薬、酸又は塩基が、後述する工程cのカップリング反応中に存在すると、p個重合オリゴヌクレオチド(iv)の5’位若しくは3’位ヒドロキシ基の一時保護基Rの脱保護を誘発するため、クエンチ処理によって除去されることが必要である。クエンチ処理は、脱保護剤がフッ素試薬又は酸である場合、ケイ素試薬又は有機塩基により行い、脱保護剤が前記塩基である場合、ケトン化合物により行う。
 クエンチ処理に使用されるケイ素試薬としては、前記フッ素試薬をクエンチすることができるものであれば特に限定されないが、ヘキサメチルジシロキサン[TMSO]、トリメチルシリルクロリド[TMSCl]、ヘキサメチルジシラザン、トリメチルシリルブロミド、トリメチルシリルヨージド、トリメチルシリルトリフルオロメタンスルホネート、トリエチルシリルクロリド、トリイソプロピルシリルクロリド、tert-ブチルジメチルシリルクロリド、tert-ブチルジフェニルシリルクロリド、フェニルジメチルシリルクロリド、ジフェニルメチルシリルクロリド、トリフェニルシリルクロリドが好ましく、TMSO、TMSClがより好ましく、TMSOが特に好ましい。
 クエンチ処理に使用される有機塩基としては、前出の酸を中和することができるものであれば特に限定されないが、ピリジン、2,4,6-トリメチルピリジン、ベンズイミダゾール、1,2,4-トリアゾール、N-フェニルイミダゾール、2-アミノ-4,6-ジメチルピリミジン、1,10-フェナントロリン、イミダゾール、N-メチルイミダゾール、2-クロロベンズイミダゾール、2-ブロモベンズイミダゾール、2-メチルイミダゾール、2-フェニルベンズイミダゾール、N-フェニルベンズイミダゾール、5-ニトロベンズイミダゾールが好ましく、ピリジン、2,4,6-トリメチルピリジン、ベンズイミダゾール、1,2,4-トリアゾール、N-フェニルイミダゾール、N-メチルイミダゾール、2-アミノ-4,6-ジメチルピリミジン、1,10-フェナントロリンがより好ましく、ピリジンが特に好ましい。
 クエンチ処理に使用されるケトン化合物としては、前出の塩基を消費することができるものであれば特に限定されないが、アセチルアセトン、アセトン等が挙げられ、好ましくは、アセチルアセトンである。
 工程aにおけるクエンチ処理に使用されるケイ素試薬、有機塩基又はケトン化合物の使用量は、フッ素試薬、酸又は塩基1モルに対し、例えば0.01から100モルであり、好ましくは0.1から50モルであり、より好ましくは1から20モルであり、さらに好ましくは1から3モルである。
 工程a、それに続く工程bを液相で連続化して行うためには、工程aにおける一時保護基Rの脱保護反応中、または脱保護反応後に、カチオン捕捉剤を添加することが好ましい。工程aと工程bを連続化しない場合には、カチオン捕捉剤を添加してもよく、しなくてもよい。
 カチオン捕捉剤としては、除去された保護基Rによる再保護(原料戻り)や脱保護され
た官能基への副反応が進行しなければ、特に限定されないが、ピロール、2-メチルピロ
ール、3-メチルピロール、2,3-ジメチルピロール、2,4-ジメチルピロール等の
ピロール誘導体;インドール、4-メチルインドール、5-メチルインドール、6-メチ
ルインドール、7-メチルインドール、5,6-ジメチルインドール、6,7-ジメチル
インドール等のインドール誘導体を使用することができる。良好なカチオン捕捉効果が得
られるという観点で、ピロール、3-メチルピロール、2,4-ジメチルピロール、イン
ドール、4-メチルインドール、5-メチルインドール、6-メチルインドール、7-メ
チルインドール、5,6-ジメチルインドール、6,7-ジメチルインドールが好ましく
、ピロール、3-メチルピロール、インドールがより好ましく、ピロール、インドールが
更に好ましく、ピロールが特に好ましい。
 前記カチオン捕捉剤の使用量は、n個重合オリゴヌクレオチド(ia又はib)1モルに対し、例えば1から50モルであり、好ましくは1から15モルであり、より好ましくは、1から3モルである。
 工程aの後に、工程b又は工程dが実施される。工程b又は工程dの前に、必要に応じて分液処理、溶媒留去によって、工程b又は工程dで用いられる溶媒への置換、工程eを行いn個重合オリゴヌクレオチドの5’位ヒドロキシ基の脱保護体(iia)若しくは3’位ヒドロキシ基の脱保護体(iib)の単離等を行うことができる。
(工程b)(ホスホネート化工程)
 まず、方法A又は方法Bのそれぞれの場合の工程bをスキーム3又は4に示す。
 方法Aにおける工程bは、方法Aにおける前記工程a若しくは後述の工程dで得られたn個重合オリゴヌクレオチドの5’位ヒドロキシ基の脱保護体(iia)の5’位ヒドロキシ基をH-ホスホネート化させる工程(下記スキーム3)である。スキーム3中、各記号は、前記定義と同義である。
Figure JPOXMLDOC01-appb-C000053
 方法Bにおける工程bは、方法Bにおける前記工程a若しくは後述の工程dで得られたn個重合オリゴヌクレオチドの3’位ヒドロキシ基の脱保護体(iib)の3’位ヒドロキシ基をH-ホスホネート化させる工程(下記スキーム4)である。スキーム4中、各記号は、前記定義に同義である。
Figure JPOXMLDOC01-appb-C000054
 工程bで用いられる溶媒は、具体的には、前記工程aと同様の溶媒が挙げられる。中でも、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ペンタン、ヘプタン、ノナン、シクロヘキサン、酢酸エチル、酢酸イソプロピル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、又は、これらの組合せが好ましく、ピリジン、ジクロロメタンが更に好ましく、ピリジンが特に好ましい。
 工程bでピリジンなどの含窒素芳香族系溶媒以外の溶媒を用いる場合は、ピリジンなどの求核剤を添加することが好ましい。求核剤としては、良好なH-ホスホネート化が達成できさえすれば特に限定されないが、具体的には、ピリジン、2,6-ジーtert-ブチルピリジン、2-ピコリン、3-ピコリン、4-ピコリン、3,4-ルチジン,2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、4-アセチルピリジン、N,N-ジメチルアミノピリジン、2-シアノピリジン、3-シアノピリジン、4-シアノピリジン、2-クロロピリジン、3-クロロピリジン、4-クロロピリジン、2-メトキシピリジン、3-メトキシピリジン、4-メトキシピリジン、ピコリン酸エチル、ニコチン酸エチル、イソニコチン酸エチルなどのピリジン系求核剤;(S,S)-2,6-ビス(4-イソプロピル-2-オキサゾリン-2-イル)ピリジン、(R,R)-2,6-ビス(4-フェニル-2-オキサゾリン-2-イル)ピリジンなどのPybox系求核剤、キノリン、キニン、キニジン、シンコニンなどのキノリン系求核剤、N-メチルイミダゾール、ピリミジン、2-メチルピラジン、3-メチルピリダジン、1,10-フェナントロリンなどの含窒素芳香族系求核剤;4-メトキシピリジン-N-オキシドなどのN-オキシド系求核剤;N,N-ジメチルアニリンなどのアニリン系求核剤;1,3-ジ-tert-ブチルイミダゾール-2-イリデン、1,3-ジメシチルイミダゾール-2-イリデンなどのN-ヘテロサイクリックカルベン系求核剤;トリフェニルホスフィン、亜リン酸トリメチルなどのリン系求核剤;トリエチルアミン、1,4-ジアザビシクロ[2.2.2]オクタンなどの脂肪族アミン系求核剤などが挙げられる。中でも、ピリジン、2-ピコリン、4-ピコリン、3,4-ルチジン,2,6-ルチジン、2,4,6-コリジン、N,N-ジメチルアミノピリジン、3-メトキシピリジン、4-メトキシピリジン、(S,S)-2,6-ビス(4-イソプロピル-2-オキサゾリン-2-イル)ピリジン、(R,R)-2,6-ビス(4-フェニル-2-オキサゾリン-2-イル)ピリジン、キノリン、キニジン、N-メチルイミダゾール、3-メチルピリダジン、4-メトキシピリジン-N-オキシドが好ましく、ピリジンが特に好ましい。
 工程bにおける求核剤の使用量は、特に制限されないが、n個重合オリゴヌクレオチド(iia又はiib)1モルに対し、例えば1から300モルであり、好ましくは1から100モルであり、より好ましくは1から40モルである。
 工程bに使用されるH-ホスホネート化試薬は、良好なH-ホスホネート化が達成できれば特に限定されないが、亜リン酸、亜リン酸ジアリール(亜リン酸ジフェニルなど)、アリール-H-ホスホネートのアンモニウム塩(フェニル-H-ホスホネートのトリエチルアンモニウム塩、p-トルイル-H-ホスホネートのトリエチルアンモニウム塩など)、ハロゲン化リン(2-クロロ-4H-1,3,2-ベンゾジオキサホスホリン-4-オン、三塩化リンなど)などが挙げられる。中でも、亜リン酸、亜リン酸ジフェニル、フェニル-H-ホスホネートのトリエチルアンモニウム塩、p-トルイル-H-ホスホネートのトリエチルアンモニウム塩、2-クロロ-4H-1,3,2-ベンゾジオキサホスホリン-4-オン、三塩化リンが好ましく、亜リン酸、亜リン酸ジフェニルがより好ましい。
 H-ホスホネート化試薬として、亜リン酸、アリール-H-ホスホネートのアンモニウム塩を用いる場合は、縮合剤を添加することが好ましい。この縮合剤としては、H-ホスホネート法において通常使用される縮合剤を挙げることができ、具体的には、2,2-ジメチルブチリルクロリド、イソブチリルクロリド、ピバロイルクロリド、アセチルクロリド、1-アダマンチルクロリド、クロロリン酸ジフェニル、2,4,6-トリイソプロピルベンゼンスルホニルクロリド、2-(ベンゾイルトリアゾール1-イルオキシ)―1,3-ジメチル-2-ピロリジン-1-イル-1,3,2-ジアザホスホリジリニウム ヘキサフルオレート[BOMP]、N,N-ビス(2-オキサゾリジニル)ホスホニッククロリド[BopCl]、ベンゾイルクロライド、無水安息香酸、炭酸ジフェニル、炭酸ジ-p-ニトロフェニルや炭酸ビスペンタフルオロフェニル等の炭酸ジアリール等が挙げられる。中でも、2,2-ジメチルブチリルクロリド、イソブチリルクロリド、1-アダマンチルクロリド、クロロリン酸ジフェニル、2,4,6-トリイソプロピルベンゼンスルホニルクロリド、BopClが好ましく、2,2-ジメチルブチリルクロリドがより好ましい。
 H-ホスホネート化試薬として、亜リン酸ジアリール又はアリール-H-ホスホネートのアンモニウム塩を用いる場合は、反応終了後に水とトリエチルアミンなどの3級アミンで処理することにより、H-ホスホネート基に変換することができる。
 工程bにおけるH-ホスホネート化試薬の使用量は、n個重合オリゴヌクレオチド(iia又はiib)1モルに対し、1から100モルが好ましく、1から40モルがより好ましく、10から40モルがさらに好ましい。
 工程bにおける縮合剤の使用量は、n個重合オリゴヌクレオチド(iia又はiib)1モルに対し、1から100モル使用が好ましく、1から40モルがより好ましく、10から30モルがさらに好ましい。
 工程bの反応温度は、反応が進行すれば特に限定されないが、-10℃から60℃が好ましく、20℃から50℃がより好ましい。反応時間は、使用するn個重合オリゴヌクレオチドの種類、溶媒の種類、求核剤の種類、H-ホスホネート化試薬の種類、縮合剤の種類、反応温度等により異なるが、5分間から24時間が好ましく、10分間から12時間がより好ましく、30分間から6時間がより好ましい。
 工程bの後に、工程cが実施される。工程cの前に、必要に応じて分液処理、溶媒留去による工程cで用いられる溶媒への置換、又は工程eによるn個重合オリゴヌクレオチドの5’位H-ホスホネート体(iiia)若しくは3’位H-ホスホネート体(iiib)の単離を行うことができる。
(工程c)(カップリング工程)
 まず、方法A又は方法Bのそれぞれの場合の(工程c)をスキーム5又は6に示す。
 方法Aにおける(工程c)は、前記方法Aにおける(工程b)で得られたn個重合オリゴヌクレオチドの5’位ヒドロキシ基のH-ホスホネート体(iiia)と、5’位ヒドロキシ基が一時保護基Rにより保護され、かつ3’位ヒドロキシ基を持つp個重合オリゴヌクレオチド(iva)(式中、pは、1以上の任意の整数を示し、p=1の場合は、ヌクレオシドを示す。)と、を縮合させる工程である(スキーム5)。
Figure JPOXMLDOC01-appb-C000055
 式中、pは、1以上の任意の整数を示し、他の記号は前記定義と同義であるが、化合物(iva)におけるBase及びXの中の少なくとも1つには擬似固相保護基が含まれていてもよく、含まれていなくてもよい。2以上の核酸塩基部を有する場合、2以上の擬似固相保護基を有する場合、及び2以上基本保護基を有する場合も前記定義と同様である。
 方法Bにおける工程cは、前記方法Bにおける工程bで得られたn個重合オリゴヌクレオチドの3’位ヒドロキシ基のH-ホスホネート体(iiib)と、3’位ヒドロキシ基が一時保護基Rにより保護され、かつ5’位ヒドロキシ基を持つp個重合オリゴヌクレオチド(ivb)(式中、pは、1以上の任意の整数を示し、p=1の場合は、ヌクレオシドを示す。)と、を縮合させる工程である(スキーム6)。スキーム6中、各記号は、前記定義に同義であるが、化合物(ivb)におけるBase及びXの中の少なくとも1つに擬似固相保護基が含まれていてもよく、含まれていなくてもよい。
Figure JPOXMLDOC01-appb-C000056
 工程cで用いられる溶媒は、具体的には、前記工程aと同様の溶媒が挙げられる。中でも、ピリジン、ジクロロメタン、テトラヒドロフラン、トルエン等が好ましく、ピリジンが特に好ましい。
 工程cでピリジンなどの含窒素芳香族系溶媒以外の溶媒を用いる場合は、ピリジンなどの求核剤を添加することが好ましい。求核剤としては、良好なカップリング反応が達成できれば特に限定されないが、具体的には、前記工程bと同様の求核剤が挙げられ、ピリジンが特に好ましい。
 工程cに使用される前記求核剤は、工程bで得られたn個重合オリゴヌクレオチドのH-ホスホネート体(iiia又はiiib)1モルに対し、例えば1~100モル、好ましくは1~20モル、さらに好ましくは1~10モルである。
 工程cに使用されるp個重合オリゴヌクレオチド(iva又はivb)の使用量は、工程bで得られたn個重合オリゴヌクレオチドのH-ホスホネート体(iiia又はiiib)1モルに対し、好ましくは1から10モルであり、より好ましくは1から5モルであり、さらに好ましくは1から3モルであり、特に好ましくは1から1.5モルである。
 工程cに使用される縮合剤は、カップリング反応が良好に進行すれば特に限定されないが、具体的には、前記工程bと同様の縮合剤が挙げられる。中でも、2,2-ジメチルブチリルクロリド、イソブチリルクロリド、1-アダマンチルクロリド、クロロリン酸ジフェニル、2,4,6-トリイソプロピルベンゼンスルホニルクロリド、ビス(2-オキソ-3-オキサゾリジニル)ホスフィン酸クロリド、炭酸ビスペンタフルオロフェニル等が好ましく、2,2-ジメチルブチリルクロリド又は炭酸ビスペンタフルオロフェニルが特に好ましい。
 工程cに使用される縮合剤は、工程bで得られたn個重合オリゴヌクレオチドのH-ホスホネート体(iiia又はiiib)1モルに対し、例えば1から200モルであり、好ましくは1から100モルであり、より好ましくは1から50モルである。
 工程cの反応温度は、反応が進行すれば特に限定されないが、-10℃から60℃が好ましく、0℃から50℃がより好ましく、0℃から30℃がさらに好ましい。反応時間は、使用するn個重合オリゴヌクレオチドの種類、溶媒の種類、求核剤の種類、縮合剤の種類、反応温度等により異なるが、1分間から12時間が好ましく、2分間から6時間がより好ましく、5分間から3時間が更に好ましい。
 工程cの反応の後に、スキーム5又は6中、式(iva又はivb)で表される化合物又はその塩、あるいはスキーム3又は4中、式(iia又はiib)で表される化合物又はその塩が残存している場合には、必要に応じて、得られた溶液をキャッピング反応に付してもよい。キャッピング反応は、無水酢酸、無水安息香酸などの酸無水物を用いて、又は前述の縮合剤に加えて、メチル-H-ホスホネートのトリエチルアンモニウム塩、エチル-H-ホスホネートのトリエチルアンモニウム塩、イソプロピル-H-ホスホネートのトリエチルアンモニウム塩及び2-シアノエチル-H-ホスホネートのトリエチルアンモニウム塩などのアルキル-H-ホスホネートのアンモニウム塩を用いて、通常の方法により実施することができる。
 なお、キャッピング反応とは、カップリング反応、酸化反応後に残存したヒドロキシ基を有する化合物のヒドロキシ基を、ヌクレオシド又はオリゴヌクレオチドを伸長できない置換基に変換する反応である。
 キャッピング反応は、後述する工程dの後に実施してもよい。キャッピング反応は、工程c又は工程dの後に実施することが好ましい。
 工程cの後には、工程d又は工程aが実施される。工程d又は工程aの前に、必要に応じて分液処理、溶媒留去によって、工程b又は工程aで用いられる溶媒への置換、工程eを行いn+p個重合オリゴヌクレオチド(va又はvb)の単離等を行うことができる。また、工程cの反応溶液をそのまま、次の工程d又は工程aに用いることもできる。
(工程d)(変換工程)
 工程は、工程cで得られたn+p個重合オリゴヌクレオチド(va又はvb)若しくは工程aで得られたn個重合オリゴヌクレオチドにリン原子を修飾する試薬を反応させることにより、該n+p個重合オリゴヌクレオチド(va又はvb)の亜リン酸ジエステル結合をリン酸ジエステル結合、チオリン酸ジエステル結合、アミノリン酸ジエステル結合、ボラノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合へと変換する工程である。
 方法Aにおける工程dは下記スキーム7(スキーム7中、各記号は、前記定義と同義であるが、工程a後の場合、Rは水素原子である)で表される。
Figure JPOXMLDOC01-appb-C000057
 方法Bにおける工程dは下記スキーム8(スキーム8中、各記号は、前記定義と同義であるが、工程a後の場合、Rは水素原子である)で表される。
Figure JPOXMLDOC01-appb-C000058
 工程dは、工程cで得られたn+p個重合オリゴヌクレオチド(va又はvb)又は、工程aで得られたn個重合オリゴヌクレオチド(iia又はiib)を単離することなく、工程c又は工程a後の反応混合物に、リン原子を修飾する試薬を直接添加するだけで行うことができる。リン原子を修飾する試薬としては、酸化剤、硫化剤、アミダイト化剤又はホウ素化剤が使用される。酸化剤又は硫化剤を使用して、リン酸ジエステル結合、チオリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合、又は基本保護基で保護されたチオリン酸ジエステル結合へ変換することが好ましく、リン酸ジエステル結合又はチオリン酸ジエステル結合へ変換することがより好ましい。工程dは、工程cで得られたn+p個重合オリゴヌクレオチド(va又はvb)又は、工程aで得られたn個重合オリゴヌクレオチド(iia又はiib)を単離して行ってもよい。
 工程dで用いられる溶媒は、具体的には、前記工程aと同様の溶媒が挙げられ、使用する酸化剤、硫化剤、アミダイト化剤又はホウ素化剤によって適宜選択される。
 工程dに使用される「酸化剤」は、他の部位を酸化することなく、亜リン酸ジエステル結合をリン酸ジエステル結合に酸化する能力があれば、特に限定されないが、ヨウ素、(1S)-(+)-(10-カンファニルスルフォニル)オキサジリジン、tert-ブチルヒドロペルオキシド(TBHP)、2-ブタノンペルオキシド、1,1-ジヒドロペルオキシシクロドデカン、ビス(トリメチルシリル)ペルオキシド、m-クロロ過安息香酸が好ましい。収率又は反応速度が良好な酸化反応を達成できるという観点で、ヨウ素、tert-ブチルヒドロペルオキシド、2-ブタノンペルオキシドがより好ましく、ヨウ素が特に好ましい。かかる酸化剤は、0.05から2Mの濃度になるように適当な溶媒で希釈して使用することができる。かかる希釈溶媒としては、反応に不活性な溶媒であれば特に限定されないが、ピリジン、テトラヒドロフラン[THF]、ジクロロメタン、水、又はこれらの混合溶媒を挙げることができる。中でも、例えば、ヨウ素/水/ピリジンの混合溶媒若しくはヨウ素/水/ピリジン/THFの混合溶媒を用いることが好ましい。
 工程dで前記酸化剤を使用する場合、工程dの反応溶媒は、前記希釈溶媒と同様である。
 工程dに使用される「硫化剤」は、亜リン酸ジエステル結合をチオリン酸ジエステル結合に変換しうる能力があれば、特に限定されないが、単体硫黄、3-アミノ-1,2,4-ジチアゾール-5-チオン(ADTT)、3-((N,N-ジメチルアミノメチリデン)アミノ)-3H-1,2,4-ジチアゾール-5-チオン(DDTT)、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(Beaucage試薬)、3H-1,2-ベンゾジチオール-3-オン、フェニルアセチルジスルフィド(PADS)、テトラエチルチウラムジスルフィド(TETD)、N-(ベンゾイルチオ)-スクシンイミドが好ましい。収率又は反応速度が良好な反応が進行しうるという観点で、単体硫黄、ADTTがより好ましく、単体硫黄が特に好ましい。かかる硫化剤は、0.05から2Mの濃度になるように適当な溶媒で希釈して使用することができる。かかる希釈溶媒としては、反応に不活性な溶媒であれば特に限定されないが、例えば、ジクロロメタン、アセトニトリル、ピリジン又はこれらの混合溶媒が挙げられる。
 工程dで前記硫化剤を使用する場合、工程dの反応溶媒は、前記希釈溶媒と同様である。
 亜リン酸ジエステル結合を、「基本保護基で保護されたリン酸ジエステル結合」へ変換する際の試薬は、その変換能力を有していれば、特に限定されないが、対応するアルコール化合物と、四塩化炭素、ヨウ素、臭化三塩化炭素、N-クロロコハク酸イミド、トリクロロイソシアヌル酸、次亜塩素酸ナトリウム、3,3-ジクロロ-5,5-ジメチルヒダントイン、N,N’-ジクロロビス(2,4,6-トリクロロフェニル)尿素などの酸化剤が好ましい。前記変換反応の溶媒としては、反応に不活性な溶媒であれば特に限定されないが、ジクロロメタン、ピリジン又はこれらの混合溶媒が挙げられ、好ましくはジクロロメタン又はピリジンであり、より好ましくはピリジンである。
 亜リン酸ジエステル結合を、「基本保護基で保護されたチオリン酸ジエステル結合」へ変換する際の試薬は、その変換能力を有していれば、特に限定されないが、フタルイミド系硫化剤、含コハク酸系硫化剤及びモルホリンジオン系硫化剤等が挙げられる。前記変換反応の溶媒としては、反応に不活性な溶媒であれば特に限定されないが、ジクロロメタン、ピリジン又はこれらの混合溶媒が挙げられ、好ましくはジクロロメタン又はピリジンであり、より好ましくはピリジンである。
 フタルイミド系硫化剤としては、目的の「基本保護基で保護されたチオリン酸ジエステル結合」に対応する、N-(C1-40アルキルチオ)フタルイミド、N-(C3-6シクロアルキルチオ)フタルイミド、N-(C6-10アリールチオ)フタルイミド、N-(5-10員ヘテロアリールチオ)フタルイミド、N-(アラルキルチオ)フタルイミド及びN-(ヘテロアリールチオ)フタルイミド等が挙げられる。ここで、目的の「基本保護基で保護されたチオリン酸ジエステル結合」が、ハロゲン原子、シアノ基、C1-6アルキル基等の置換基を含む場合、前記N-(C1-40アルキルチオ)フタルイミド、N-(C3-6シクロアルキルチオ)フタルイミド、N-(C6-10アリールチオ)フタルイミド、N-(5-10員ヘテロアリールチオ)フタルイミド、N-(アラルキルチオ)フタルイミド及びN-(ヘテロアリールチオ)フタルイミドの対応する部分にそれらの置換基を含む硫化剤を使用することができる。フタルイミド系硫化剤としては、具体的には、N-[(2-シアノエチル)チオ]フタルイミド、N-(メチルチオ)フタルイミド、N-(エチルチオ)フタルイミド、N-(プロピルチオ)フタルイミド、N-(イソプロピルチオ)フタルイミド、N-(ブチルチオ)フタルイミド、N-(tert-ブチルチオ)フタルイミド、N-(シクロヘキシルチオ)フタルイミド、N-(ドデシルチオ)フタルイミド、N-(ベンジルチオ)フタルイミド、N-(フェニルチオ)フタルイミド、N-{(p-クロロフェニル)チオ}フタルイミド、N-{(p-メチルフェニル)チオ]フタルイミド及びN-[(2-ベンゾチアゾリル)チオ]フタルイミド等が挙げられる。
 コハク酸系硫化剤としては、目的の「基本保護基で保護されたチオリン酸ジエステル結合」に対応する、N-(C1-40アルキルチオ)コハク酸イミド、N-(C3-6シクロアルキルチオ)コハク酸イミド、N-(C6-10アリールチオ)コハク酸イミド、N-(5-10員ヘテロアリールチオ)アラルキルチオコハク酸イミド及びN-(ヘテロアリールチオ)コハク酸イミド等が挙げられる。ここで、目的の「基本保護基で保護されたチオリン酸ジエステル結合」が、ハロゲン原子、シアノ基、C1-6アルキル基等の置換基を含む場合、前記N-(C1-40アルキルチオ)コハク酸イミド、N-(C3-6シクロアルキルチオ)コハク酸イミド、N-(C6-10アリールチオ)コハク酸イミド、N-(5-10員ヘテロアリールチオ)コハク酸イミド、N-(アラルキルチオ)コハク酸イミド及びN-(ヘテロアリールチオ)コハク酸イミドの対応する部分にそれらの置換基を含む硫化剤を使用することができる。含コハク酸イミド硫化剤としては、具体的には、N-[(2-シアノエチル)チオ]コハク酸イミド、N-(メチルチオ)コハク酸イミド、N-(エチルチオ)コハク酸イミド、N-(プロピルチオ)コハク酸イミド、N-(イソプロピルチオ)コハク酸イミド、N-(ブチルチオ)コハク酸イミド、N-(tert-ブチルチオ)コハク酸イミド、N-(シクロヘキシルチオ)コハク酸イミド、N-(ドデシルチオ)コハク酸イミド、N-(ベンジルチオ)コハク酸イミド、N-(フェニルチオ)コハク酸イミド、N-{(p-クロロフェニル)チオ}コハク酸イミド、N-{(p-メチルフェニル)チオ]コハク酸イミド及びN-[(2-ベンゾチアゾリル)チオ]コハク酸イミド等が挙げられる。
 モルホリンジオン系硫化剤としては、目的の「基本保護基で保護されたチオリン酸ジエステル結合」に対応する、N-(C1-40アルキルチオ)モルホリン-3,5-ジオン、N-(C3-6シクロアルキルチオ)モルホリン-3,5-ジオン、N-(C6-10アリールチオ)モルホリン-3,5-ジオン、N-(5-10員ヘテロアリールチオ)モルホリン-3,5-ジオン、N-(アラルキルチオ)モルホリン-3,5-ジオン及びN-(ヘテロアリールチオ)モルホリン-3,5-ジオン等が挙げられる。ここで、目的の「基本保護基で保護されたチオリン酸ジエステル結合」が、ハロゲン原子、シアノ基、C1-6アルキル基等の置換基を含む場合、前記N-(C1-40アルキルチオ)モルホリン-3,5-ジオン、N-(C3-6シクロアルキルチオ)モルホリン-3,5-ジオン、N-(C6-10アリールチオ)モルホリン-3,5-ジオン、N-(5-10員ヘテロアリールチオ)モルホリン-3,5-ジオン、N-(アラルキルチオ)モルホリン-3,5-ジオン及びN-(ヘテロアリールチオ)モルホリン-3,5-ジオンの対応する部分にそれらの置換基を含む硫化剤を使用することができる。モルホリンジオン系硫化剤としては、具体的には、N-[(2-シアノエチル)チオ]モルホリン-3,5-ジオン、N-(メチルチオ)モルホリン-3,5-ジオン、N-(エチルチオ)モルホリン-3,5-ジオン、N-(プロピルチオ)モルホリン-3,5-ジオン、N-(イソプロピルチオ)モルホリン-3,5-ジオン、N-(ブチルチオ)モルホリン-3,5-ジオン、N-(tert-ブチルチオ)モルホリン-3,5-ジオン、N-(シクロヘキシルチオ)モルホリン-3,5-ジオン、N-(ドデシルチオ)モルホリン-3,5-ジオン、N-(ベンジルチオ)モルホリン-3,5-ジオン、N-(フェニルチオ)モルホリン-3,5-ジオン、N-{(p-クロロフェニル)チオ}モルホリン-3,5-ジオン、N-{(p-メチルフェニル)チオ]モルホリン-3,5-ジオン及びN-[(2-ベンゾチアゾリル)チオ]モルホリン-3,5-ジオン等が挙げられる。
 工程dに使用する「アミダイト化剤」は、亜リン酸ジエステル結合をアミノリン酸ジエステル結合に変換しうる能力があれば、特に限定されないが、対応するアミン化合物と、四塩化炭素、ヨウ素、臭化三塩化炭素、N-クロロコハク酸イミド、トリクロロイソシアヌル酸、次亜塩素酸ナトリウム、3,3-ジクロロ-5,5-ジメチルヒダントイン、N,N’-ジクロロビス(2,4,6-トリクロロフェニル)尿素などの酸化剤が好ましい。前記変換反応の溶媒としては、反応に不活性な溶媒であれば特に限定されないが、ジクロロメタン、ピリジン又はこれらの混合溶媒が挙げられ、好ましくはジクロロメタン又はピリジンであり、より好ましくはピリジンである。
 工程dに使用する「ホウ素化剤」は、亜リン酸ジエステル結合をボラノリン酸ジエステル結合に変換しうる能力があれば、特に限定されないが、水素化ホウ素(BH)、BH-THF錯体、BH-ジメチルスルフィド錯体、BH-ピリジン錯体などが好ましい。前記変換反応の溶媒としては、反応に不活性な溶媒であれば特に限定されないが、ジクロロメタン、ピリジン又はこれらの混合溶媒が挙げられ、好ましくはジクロロメタン又はピリジンであり、より好ましくはピリジンである。
 リン原子を修飾する試薬の使用量は、工程cで得られたn+p個重合オリゴヌクレオチド(va若しくはvb)又は工程aで得られたn個重合オリゴヌクレオチド(iia若しくはiib)1モルに対し、1から50モルが好ましく、より好ましくは1から15モルであり、さらに好ましくは1から10モルであり、さらにより好ましくは1から7モルである。
 反応温度は、反応が進行すれば特に限定されないが、-10℃から60℃が好ましく、20℃から50℃がより好ましい。反応時間は、工程cで得られたn+p個重合オリゴヌクレオチド(va若しくはvb)又は工程aで得られたn個重合オリゴヌクレオチド(iia若しくはiib)の種類、使用するリン原子を修飾する試薬の種類、反応温度等によって異なるが、好ましくは1分間から24時間であり、より好ましくは、10分間から12時間であり、更に好ましくは、30分間から6時間である。
 酸化剤や硫化剤を用いる場合、該酸化剤及び硫化剤は反応終了後又は次工程以降で望まない副反応を誘発する可能性があり、該副反応を抑制するため、反応終了後に還元剤を用いてクエンチ処理を行うことができる。具体的には、還元剤として、3価のリン試薬(例えば、亜リン酸トリメチル、亜リン酸トリエチル、トリス(2-カルボキシエチル)ホスフィン等の亜リン酸トリアルキルや、亜リン酸ジメチルや亜リン酸ジエチルなどの亜リン酸ジアルキル)、チオ硫酸ナトリウム等の還元剤を用いる。前記クエンチ処理は、省略することも可能である。
 工程cの後に工程dを行う際、工程dの反応の後に、スキーム5又は6中、式(iva又はivb)で表される化合物又はその塩、あるいはスキーム3又は4中、式(iia又はiib)で表される化合物又はその塩が残存している場合には、必要に応じて、得られた溶液をキャッピング反応に付してもよい。キャッピング反応は、無水酢酸、無水安息香酸などの酸無水物を用いて、又は前述の縮合剤に加えて、メチル-H-ホスホネートのトリエチルアンモニウム塩、エチル-H-ホスホネートのトリエチルアンモニウム塩、イソプロピル-H-ホスホネートのトリエチルアンモニウム塩及び2-シアノエチル-H-ホスホネートのトリエチルアンモニウム塩などのアルキル-H-ホスホネートのアンモニウム塩を用いて、通常の方法により実施することができる。
 キャッピング反応は、前述する工程cの後に実施してもよい。
 工程aの後に工程dを行う際には、工程dの後には、前記キャッピング反応を実施しない。
(工程e)(沈殿化及び固液分離工程)
 工程eは、工程aから工程dのいずれかで得られた反応溶液に極性溶媒を添加することによりオリゴヌクレオチドを沈殿させて、固液分離により取得する工程である。
 工程eにおける極性溶媒としては、例えば、メタノール、エタノール、イソプロパノールn-ブタノール等のアルコール系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;アセトン、2-ブタノン等のケトン系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピペリドン等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒;水、ならびにこれら2種以上の混合溶媒が用いられる。工程eにおける極性溶媒は、好ましくはアルコール系溶媒、ニトリル系溶媒であり、より好ましくは、炭素数1から6のアルコール溶媒又は炭素数1から6のニトリル溶媒であり、特に好ましくはメタノール又はアセトニトリルである。
 工程dで得られた反応溶液を用いて工程eを行う場合、前述の還元剤を沈殿化溶媒であるメタノールやアセトニトリルに加えた溶液を使用することにより、リン原子を修飾する試薬のクエンチ処理と同時に工程eを行うことができる。
 本発明のオリゴヌクレオチドの製造方法は、上記工程aから工程eを所望の回数繰返すことで高純度かつ高収率で目的のオリゴヌクレオチドを得ることができる。
(工程f)(脱保護・オリゴヌクレオチド単離工程)
 オリゴヌクレオチドの製造方法においては、工程eの後に、基本保護基、一時保護基及び擬似固相保護基の種類・性質に応じて、脱保護を行い、オリゴヌクレオチドを単離することができる。脱保護の方法としては、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている脱保護方法に従い、オリゴヌクレオチドの全ての保護基を除去する工程を行うことができる。具体的には、擬似固相保護基、ならびに基本保護基であるベンゾイル基、イソブチリル基、フェノキシアセチル基、アセチル基、レブリニル基等、リン酸ジエステル結合又はチオリン酸ジエステル結合を保護している基本保護基である2-シアノエチル基等は、アンモニア水、アンモニア水/エタノール溶液、又はアンモニア水とメチルアミン水溶液の混合液で処理することにより、全て除去することができる。また、5’位又は3’位ヒドロキシ基の一時保護基は、工程aで使用されるフッ素試薬、酸又は塩基、又はそれらを適宜希釈した溶液で処理することにより除去することができる。また、ジャーナルオブザケミカルソサイエティー パーキントランザクション1、2002年、2619頁-2633頁に記載されている脱保護方法に従い、DBU[1,8-ジアザビシクロ[5.4.0]-7-ウンデセン]及びトリメチルシリルクロリドで処理して、リン酸ジエステル結合又はチオリン酸ジエステル結合を保護しているシアノエチル基等を除去した後に、アンモニア水で擬似固相保護基、ならびに基本保護基であるベンゾイル基、イソブチリル基、フェノキシアセチル基、アセチル基、レブリニル基等を除去する方法を用いることもできる。また、無機塩基(炭酸カリウム等)で基本保護基であるベンゾイル基、イソブチリル基、フェノキシアセチル基、アセチル基、レブリニル基等を除去する方法を用いることもできる。
 基本保護基で保護されたリン酸ジエステル結合は、例えば、ジャーナルオブザケミカルソサイエティー パーキントランザクション1、1999、1477頁-1486頁に記載されている方法((E)-2-ニトロベンズアルドキシム、ピリジン-2-アルドキシムなどのオキシム化合物及び、1、1、3、3-テトラメチルグアニジン、DBU等の塩基で処理する方法)で脱保護することにより、リン酸ジエステル結合へ変換することができる。2-シアノエチル基等、β脱離によって脱保護可能な基本保護基で保護されたチオリン酸ジエステル結合は、前記塩基性条件下での脱保護により、チオリン酸ジエステル結合へ変換できる。その他の基本保護基で保護されたチオリン酸ジエステル結合は、例えば、ジャーナルオブザケミカルソサイエティー パーキントランザクション1、1999、1477頁-1486頁に記載されている方法(前記オキシム化合物及び前記塩基で処理する方法等)で脱保護することにより、リン酸ジエステル結合へ変換できる。
 保護基を有しないオリゴヌクレオチドは、酵素により容易に分解されやすいため、空気清浄度管理下でオリゴヌクレオチドを単離することが好ましい。
 上記工程aから工程d及び工程fにおける反応の進行の確認は、いずれも一般的な液相有機合成反応と同様の方法を適用できる。すなわち、薄層シリカゲルクロマトグラフィー、高速液体クロマトグラフィー等を用いて反応を追跡することができる。
 工程e又は工程fより得られたオリゴヌクレオチドは、更に有機合成反応を施すことにより、所望のオリゴヌクレオチド誘導体へと導くこともできる。方法Aを使用して製造されたオリゴヌクレオチド及び方法Bを使用して製造されたオリゴヌクレオチドを用いて、方法A又は方法Bを使用してオリゴヌクレオチドを製造することもできる。
 例えば、方法Aにおける工程bで得られたn個重合オリゴヌクレオチドの5’位ヒドロキシ基のH-ホスホネート体(iiia)と、方法Bにおける工程aで得られたn個重合オリゴヌクレオチド(iib)とを、前記工程cと同様の条件で、亜リン酸ジエステル結合により縮合させることができる。本工程をスキーム9に示す。スキーム中の記号は、前記定義に同じであり、式(iiia)のnと式(iib)のnとは同一でも異なっていてもよく、式(iiia)のZと式(iib)のZとは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000059
 また、方法Bにおける工程bで得られたn個重合オリゴヌクレオチドの5’位ヒドロキシ基のH-ホスホネート体(iiib)と、方法Aにおける工程aで得られたn個重合オリゴヌクレオチド(iia)とを、前記工程cと同様の条件で、亜リン酸ジエステル結合により縮合させることができる。本工程をスキーム10に示す。スキーム中の記号は、前記定義に同じであり、式(iiib)のnと式(iia)のnとは同一でも異なっていてもよく、式(iiib)のZと式(iia)のZとは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000060
 前記縮合されたオリゴヌクレオチド(vii)の亜リン酸ジエステル結合を、工程dと同様の条件で、リン酸ジエステル結合、チオリン酸ジエステル結合、アミノリン酸ジエステル結合、ボラノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合へと変換することができる。本工程をスキーム11に示す。スキーム中の記号は、前記定義に同じであり、式(vii)中の2つのnは同一でも異なっていてもよく、式(vii)中の2つのZは同一でも異なっていてもよい。式(viii)も同様である。
Figure JPOXMLDOC01-appb-C000061
 前記亜リン酸ジエステル結合により縮合させる工程により得られた反応混合物を用いて、工程eと同様に擬似固相保護基を有する縮合された前記ヌクレオシド又はオリゴヌクレオチド(vii)を沈殿させて、固液分離により取得する分離工程を実施することができる。また、前記亜リン酸ジエステル結合を変換する工程により得られた反応混合物を用いて、工程eと同様に擬似固相保護基を有する亜リン酸ジエステル結合が変換されたヌクレオシド又はオリゴヌクレオチド(viii)を沈殿させて、固液分離により取得する分離工程を実施することができる。
 前記分離工程の後に、工程fと同様に、基本保護基、一時保護基及び擬似固相保護基の種類・性質に応じて、脱保護を行い、オリゴヌクレオチドを単離することができる。
 前記亜リン酸ジエステル結合による縮合体(vii)、又はその亜リン酸ジエステル結合の変換体(viii)が有する2つのZの内の少なくとも1つが基本保護基であり、該基本保護基を一時保護基としても使用できる場合、前記亜リン酸ジエステル結合による縮合体(vii)、又はその亜リン酸ジエステル結合の変換体(viii)を、スキーム1又は2中、式(ia又はib)で表される化合物として用い、方法A又は方法Bにおける工程aを実施することができる。
 製造されたオリゴヌクレオチドは、各種人体用又は動物用の医薬品(RNA、DNA、オリゴヌクレオチド医薬、等)、機能性食品、特定保健食品、食品、化成品、生体用高分子材料、工業用高分子材料等の各種用途に使用することができる。
 オリゴヌクレオチドの製造方法における出発物質は、既存の酸化、還元、加水分解、エステル化反応、アミド縮合等、一般的に知られている官能基変換法(例えば、コンプリヘンシブ・オーガニック・トランスフォーメーションズ第2版(Comprehensive Organic Transformations, Second Edition)、ラロック(R.C.Larock)著、ワイリー-ブイシーエイチ(Wiley-VCH)(1999年)など参照)を行うことにより製造できる。
 例えば、2’位と4’位が-CSNR14-(R14は水素原子又はC1-6アルキル基を示す)で架橋したリボースに、核酸塩基が結合したヌクレオシドは、対応する-CONR13-(R13は水素原子又はC1-6アルキル基を示す)で架橋した構造を有するヌクレオシド等から、チオカルボニル化試薬(例えばローソン試薬等)を用いて、必要に応じて保護反応及び脱保護反応を行って、合成することができる。
 擬似固相保護基が導入されたヌクレオシド又はオリゴヌクレオチドは以下に示す方法によって製造することができるが、下記製造方法は一般的な製造方法の一例を示すものであり、本実施形態に係る擬似固相保護基が導入されたヌクレオシド等の製造方法を限定するものではない。
 前記式(I)で表される擬似固相保護基のうち、mが0である基が導入されたヌクレオシド又はオリゴヌクレオチドは、例えば、下記式(X-1)に示されるカルボン酸若しくは下記式(X-2)に示されるカルボン酸ハライドと、ヌクレオシド又はオリゴヌクレオチドのヒドロキシ基若しくは核酸塩基との反応により得ることができる。
Figure JPOXMLDOC01-appb-C000062
 式中、Xは、ハロゲン原子を意味し、その他の記号は前記定義に同じである。
 擬似固相保護基の導入にカルボン酸を用いる場合は、溶媒中、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N,N’,N’-テトラメチル-O-(ベンゾトリアゾール-1-イル)ウロニウムヘキサフルオロホスファート及びカルボニルジイミダゾール等の縮合剤を用いて、擬似固相保護基をヌクレオシド又はオリゴヌクレオチドへ導入することができる。必要に応じて1-ヒドロキシベンゾトリアゾール等の添加剤を組み合わせて用いることができる。カルボン酸ハライドを用いる場合は、溶媒中、トリエチルアミン、ジイソプロピルエチルアミンなどの塩基を用いる方法が挙げられる。溶媒としては、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族系溶媒;酢酸エチル、酢酸イソプロピル等のエステル系溶媒;ヘキサン、ペンタン、ヘプタン、オクタン、ノナン、シクロヘキサン等の脂肪族系溶媒;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等が挙げられる。
 当該カルボン酸若しくは酸ハライドは、既存の酸化、還元、加水分解等、一般的に知られている官能基変換法(例えば、コンプリヘンシブ・オーガニック・トランスフォーメーションズ第2版(Comprehensive Organic Transformations, Second Edition)、ラロック(R.C.Larock)著、ワイリー-ブイシーエイチ(Wiley-VCH)(1999年)など参照)を行うことにより製造できる。
 また、LとL間の結合、LとL間の結合、LとL間の結合の内、任意の結合を上記縮合法や官能基変換法等を用いて形成させ、段階的に擬似固相保護基を導入することもできる。また、Lが、-COO-、-CON(R)-、OCO-又は-N(R)CO-である場合、Lが含むエステル結合又はアミド結合を、上記縮合法や官能基変換法等を用いて形成させ、段階的に擬似固相保護基を導入することもできる。Lが、-COO-、-CON(R)-、OCO-又は-N(R)CO-である場合も同様である。ここで、Rは前記定義に同じである。
 例えば、ヌクレオシド又はオリゴヌクレオチドと、式(X-4)で表されるジカルボン酸無水物(コハク酸無水物等)とを反応させ、カルボキシ基を有する下記式(X-5)で表される基を有するヌクレオシド又はオリゴヌクレオチドを得た後に、該カルボキシ基を有する式(X-5)で表される基を有するヌクレオシド又はオリゴヌクレオチドと、下記式(X-6)に示されるアルコール化合物又は下記式(X-7)に示されるアミン化合物とを縮合させ、前記式(I)で表される擬似固相保護基のうち、mが0であり、Lが-COO-又は-CON(R)-である基を有する、ヌクレオシド又はオリゴヌクレオチドを製造することができる。
Figure JPOXMLDOC01-appb-C000063

 式中、Lは前記定義に同じである。
Figure JPOXMLDOC01-appb-C000064

 式中の記号は前記定義に同じである。
Figure JPOXMLDOC01-appb-C000065

 式中の記号は前記定義に同じである。
 前記カルボキシ基を有する式(X-5)で表される基を有するヌクレオシド又はオリゴヌクレオチドと、前記式(X-6)に示されるアルコール化合物又は前記式(X-7)に示されるアミン化合物との縮合は、通常、溶媒中、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N,N’,N’-テトラメチル-O-(ベンゾトリアゾール-1-イル)ウロニウムヘキサフルオロホスファート又はカルボニルジイミダゾール等の縮合剤を用いて行われる。必要に応じて1-ヒドロキシベンゾトリアゾール等の添加剤を組み合わせて用いることができる。溶媒は、前記式(X-1)若しくは式(X-2)に示される化合物と、ヌクレオシド又はオリゴヌクレオチドとの反応と同様である。
 また、例えば、下記式(X-8)若しくは(X-10)に示されるカルボン酸又は下記式(X-9)若しくは(X-11)に示されるカルボン酸ハライドと、ヌクレオシド又はオリゴヌクレオチドのヒドロキシ基若しくは核酸塩基とを、前記縮合反応と同様の条件で縮合させ、必要に応じてその後脱保護反応を行うことにより、下記式(X-12)で表されるアルコール化合物又は下記式(X-13)で表されるアミノ化合物を得て、得られた式(X-12)で表されるアルコール化合物又は式(X-13)で表されるアミノ化合物と、式(X-14)で表されるカルボキシ化合物又は式(X-15)で表されるアリールカルボン酸ハライドとを前記縮合反応と同様の条件で縮合させ、前記式(I)で表される擬似固相保護基のうち、mが0であり、Lが-OCO-又は-N(R)CO-である基を有する、ヌクレオシド又はオリゴヌクレオチドを製造することができる。
Figure JPOXMLDOC01-appb-C000066
 (式中、Pはヒドロキシ基の保護基を表し、Pはアミノ基の保護基を表し、Xはハロゲン原子を表し、その他の記号は前記定義に同じである。)Pは、ヒドロキシ基を保護する一時保護基又は基本保護基から選択することができ、Pは、アミノ基を保護する基本保護基から選択することができる。
Figure JPOXMLDOC01-appb-C000067
 式中の記号は前記定義に同じである。
Figure JPOXMLDOC01-appb-C000068
 式中の記号は前記定義に同じであり、Xはハロゲン原子を表す。
 前記脱保護反応の条件は、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等を参照できる。
 前記式(I)に示される擬似固相保護基のうち、mが1である基が導入されたヌクレオシド又はオリゴヌクレオチドは、例えば、下記式(X-3)に示されるアルキルハライドと、ヌクレオシド又はオリゴヌクレオチドのヒドロキシ基若しくは核酸塩基とを溶媒中で反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000069
 式中、Xは、ハロゲン原子を意味し、その他の記号は前記定義に同じである。
 前記式(X-3)に示されるアルキルハライドと、ヌクレオシド又はオリゴヌクレオチドの反応には、塩基(炭酸カリウム、トリエチルアミン等)が用いられる。前記溶媒としては、前述のハロゲン系溶媒、芳香族系溶媒、エステル系溶媒、脂肪族系溶媒、エーテル系溶媒又はアミド系溶媒等が用いられ、中でもアミド系溶媒が用いられる。
 前記式(X-3)に示されるアルキルハライドは、前記式(X-1)に示されるカルボン酸とクロロメタンスルホン酸クロリドを溶媒中で反応させることにより(国際公開第2014-144285号に記載の方法)、また前記式(X-1)に示されるカルボン酸、パラホルムアルデヒド及び塩化亜鉛を溶媒中で反応させることにより(ジャーナルオブメディシナルケミストリー、2009年、52巻、771頁-778頁の方法)、製造できる。
 また、LとLの間の結合、LとLの間の結合、LとLの間の結合の内、任意の結合を上記縮合法や官能基変換法等を用いて形成させ、段階的に擬似固相保護基を導入することもできる。また、Lが、-COO-、-CON(R)-、OCO-又は-N(R)CO-である場合、Lが含むエステル結合又はアミド結合を、上記縮合法や官能基変換法等を用いて形成させ、段階的に擬似固相保護基を導入することもできる。Lが、-COO-、-CON(R)-、OCO-又は-N(R)CO-である場合も同様である。ここで、Rは前記定義に同じである。
 次に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中、NMRは核磁気共鳴スペクトルを、MSは質量分析を意味する。
 H-NMRデータが記載されている場合には、300MHz(JNM-ECP300;日本電子(JEOL)社製、又はJNM-ECX300;日本電子(JEOL)社製)で測定し、テトラメチルシランを内部標準としたシグナルの化学シフトδ(単位:ppm)(分裂パターン、積分値)を表す。「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「quint」はクインテット、「dd」はダブレット・オブ・ダブレット、「m」はマルチプレット、「brs」はブロードシングレット、「CDCl」は重クロロホルム、「CN」は重ピリジンを意味する。
 31P-NMRデータが記載されている場合には、JNM-ECX300;日本電子(JEOL)社製)で測定したシグナルの化学シフトδ(単位:ppm)を表す。
 MSは、特に記述がない場合は、以下の条件1で、ESI(エレクトロスプレーイオン化)法を用いて測定した。「ESI」はESI正イオンモード、「ESI」はESI負イオンモードを意味する。
条件1:
 装置:AB SCIEX TripleTOF 5600
 カラム:Kinetex PFP(2.6μm、2.1×75mm)
 カラム温度:40℃
 溶離液組成:
  有機層:テトラヒドロフラン/アセトニトリル=1/1(体積比)
  水層:10mM ギ酸アンモニウム水溶液
有機層と水層の混合比を50/50で測定開始後、10分間で90/10に直線的に変えた。その後5分間、有機層と水層の混合比を90/10に固定した。
 流速:0.50mL/min、
 検出波長:260nm
 シリカゲルカラムクロマトグラフィーでの精製は、特に記述がない場合は、山善製Hi-Flashカラムを用いた。
参考例 (5’位ヒドロキシ基に4,4’-ジメトキシトリチル基を持つ核酸モノマーの安定性評価)
Figure JPOXMLDOC01-appb-C000070
 オリゴヌクレオチド合成に用いる核酸モノマーとして、5’-O-(4,4’-ジメトキシトリチル)チミジン[OH]、5’-O-(4,4’-ジメトキシトリチル)-3’-O-ヒドロキシホスフィニルチミジン トリエチルアミン塩[p(H)]、及び5’-O-(4,4’-ジメトキシトリチル)-3’-O-シアノエトキシ(ジイソプロピルアミノ)ホスフィノチミジン[PA]を選択した。それぞれ固体のまま100℃で撹拌し、一定時間経過後にHPLC分析を行った。その結果を、図1に示す。
 図1から、H-ホスホネート体及びアミダイト体と比較して、ヌクレオシドが安定であることが分かる。
参考合成例1 (5’位ヒドロキシ基にtert-ブチルジメチルシリル基を持つヌクレオシドの合成):化合物1の合成
Figure JPOXMLDOC01-appb-C000071
 窒素雰囲気下、チミジン(24.20g、100mmol)のピリジン(60mL)懸濁液に、0℃でtert-ブチルジメチルシリルクロリド(16.62g、110mmol)を加え、22時間29分撹拌した。溶媒を減圧下留去し、塩化メチレンと水を加えて分液した。得られた水層に塩化メチレンを加えて分液し、得られた有機層を合わせて5%炭酸水素ナトリウム水溶液で洗浄し、水で洗浄した。溶媒を減圧下留去し、トルエンを加えて析出した固体をろ過し化合物1(29.77g、収率84%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.11(s、3H)、0.12(s、3H)、0.92(s、9H)、1.92(d、3H)、2.02-2.16(m、2H)、2.32-2.39(m、1H)、3.81-3.92(m、2H)、4.01-4.04(m、1H)、4.45-4.49(m、1H)、6.36(q、1H)、7.48(d、1H)、8.27(brs、1H).
参考合成例2 (5’位ヒドロキシ基にtert-ブチルジメチルシリル基を持ち、2’位ヒドロキシ基にトリイソプロピルシリル基を持つヌクレオシドの合成):5’-O-(tert-ブチルジメチルシリル)-2’-O-トリイソプロピルシリルウリジンの合成
Figure JPOXMLDOC01-appb-C000072
工程1 5’-O-(tert-ブチルジメチルシリル)ウリジンの合成
 窒素雰囲気下、ウリジン(12.03g、49.3mmol)、イミダゾール(6.74g、99.0mmol)のN,N-ジメチルホルムアミド[DMF](120g)溶液に、室温でtert-ブチルジメチルシリルクロリド(7.76g、51.5mmol)を加え、5時間1分撹拌した。この反応混合物を水(240g)に滴下し、析出した固体をろ過した。得られた粗物にトルエンを加えて30分間撹拌し、ろ過して5’-O-(tert-ブチルジメチルシリル)ウリジン(10.49g、収率59%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.11(s、6H)、0.92(s、9H)、3.82-3.87(m、1H)、4.00-4.05(m、1H)、4.14-4.15(m、1H)、4.21-4.26(m、2H)、5.67(d、1H)、5.90(d、1H)、8.06(d、1H).
工程2 5’-O-(tert-ブチルジメチルシリル)-2’-O-トリイソプロピルシリルウリジンの合成
 窒素雰囲気下、5’-O-(tert-ブチルジメチルシリル)ウリジン(5.40g、15.1mmol)、硝酸銀[AgNO](10.3g、60.6mmol)、ピリジン(6.1mL,75mmol)のTHF(50mL)懸濁液に、室温でトリイソプロピルシリルクロリド(11.65g、60.4mmol)を加え、23時間6分撹拌した。この反応混合物をセライトろ過し、溶媒を減圧下留去して酢酸エチルを加えた。水を加えて分液し、得られた水層に酢酸エチルを加えて分液した。得られた有機層を合わせて6%炭酸水素カリウム水溶液で洗浄し、水で洗浄した。溶媒を減圧下留去し、ヘキサンを加えて固体を析出させ、0℃に冷却後、ろ過し5’-O-(tert-ブチルジメチルシリル)-2’-O-トリイソプロピルシリルウリジン(5.24g、収率68%)を白色固体として得た。
 得られたろ液を減圧下留去して、シリカゲルクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、5’-O-(tert-ブチルジメチルシリル)-2’-O-トリイソプロピルシリルウリジン(1.72g、収率22%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.12(s、6H)、0.94(s、9H)、1.04-1.16(m、21H)、2.80(d、1H)、3.81(d、1H)、3.96(d、1H)、4.13-4.20(m、2H)、4.36(t、1H)、5.70(d、1H)、6.07(d、1H)、7.95(dd、1H)、8.17(brs、1H).
実施例1(3’位ヒドロキシ基に擬似固相保護基が結合したヌクレオシドの合成):化合物3の合成
Figure JPOXMLDOC01-appb-C000073
工程1 化合物2の合成
 窒素雰囲気下、化合物1(8.02g、22.4mmol)、無水コハク酸(3.35g、33.5mmol)の塩化メチレン(80g)溶液に、室温でトリエチルアミン(6.21mL、44.8mmol)を加え、4時間3分撹拌した。反応混合物に2.0M リン酸-トリエチルアミン水溶液を加えて分液した。得られた有機層を、2M リン酸-トリエチルアミン水溶液で2回分液により洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、化合物2を薄紫色固体(11.37g、収率91%)として得た。
H-NMR:(300MHz;CDCl)δ0.13(s、6H)、0.93(s、9H)、1.23(t、9H)、1.92(d、3H)、2.04-2.13(m、1H)、2.39-2.46(m、1H)、2.55-2.66(m、4H)、3.02(q、6H)、3.86-3.95(m、2H)、4.13(d、1H)、5.25(d、1H)、6.35(q、1H)、7.55(d、1H).
工程2 化合物3の合成
 窒素雰囲気下、化合物2(2.79g、5.0mmol)、3,4,5-トリス(オクタデシルオキシ)ベンジルアルコール(Tetrahedron、2011、67、6633-6643に記載の方法に準じて合成した)(3.13g、3.4mmol)の塩化メチレン(65g)溶液に、室温で2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオホスフェート[HBTU](2.55g、6.7mmol)、ジイソプロピルエチルアミン(1.2mL、7.1mmol)、ジメチルアミノピリジン[DMAP](847mg、6.9mmol)を加え、1時間8分撹拌した。反応混合物にメタノールを加えて析出した固体をろ過し、化合物3(4.53g、収率98%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.130(s、3H)、0.133(s、3H)、0.88(t、9H)、0.94(s、9H)、1.14-1.83(m、96H)、1.93(d、3H)、2.05-2.15(m、1H)、2.37-2.44(m、1H)、2.68(t、4H)、3.89-3.97(m、8H)、4.07(d、1H)、5.02(s、2H)、5.27(d、1H)、6.34(q、1H)、6.53(s、2H)、7.54(d、1H)、8.11(brs、1H).
実施例2(TBS基の脱保護):化合物4の合成
Figure JPOXMLDOC01-appb-C000074
 窒素雰囲気下、化合物3(2.97g、2.2mmol)のテトラヒドロフラン[THF](65g)溶液に、室温で1.0M テトラブチルアンモニウムフルオリド[TBAF]/THF溶液(2.4mL、2.4mmol)を加え、2時間10分撹拌した。反応混合物にメタノールを加えて析出した固体をろ過し、化合物4(2.66g、収率98%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.09-1.84(m、96H)、1.93(d、3H)、2.30-2.45(m、2H)、2.62-2.73(m、4H)、3.82-4.04(m、9H)、5.02(s、2H)5.25-5.29(m、1H)、6.19(q、1H)、6.53(s、2H)、7.49(d、1H)、8.07(brs、1H).
実施例3(H-ホスホネート化):化合物5aの合成
Figure JPOXMLDOC01-appb-C000075
 窒素雰囲気下、亜リン酸(336mg、4.0mmol)のピリジン(10mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.33mL、2.4mmol)を加え、39分間撹拌した。この反応混合物に化合物4(498mg、0.40mmol)を加えて、40℃で1時間撹拌し、2,2-ジメチルブチリルクロリド(56μL、0.40mmol)を加えてさらに1時間45分撹拌した。アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し化合物5a(562mg)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.16-1.83(m、96H)、1.92(d、3H)、2.31-2.35(m、2H)、2.68(brs、4H)、3.90-3.98(m、6H)、4.17-4.24(m、3H)、5.02(s、2H)、5.39(d、1H)、6.38(q、1H)、6.53(s、2H)、6.94(d、1H)、7.68(d、1H).
31P-NMR:(300MHz;CDCl)δ6.54.
実施例4(H-ホスホネート化):化合物5b(トリエチルアミン塩)の合成
Figure JPOXMLDOC01-appb-C000076
 窒素雰囲気下、亜リン酸ジフェニル(0.72g、3.1mmol)のピリジン(7g)溶液に、35℃で化合物4(0.5g、0.40mmol)のピリジン(5g)溶液を加えて、ピリジン(3g)で洗浄した。35℃で1時間55分撹拌し、水(2.5g)、トリエチルアミン(1.9g)を順に加えて26分間撹拌した。アセトニトリルを加えて析出した固体をろ過し、化合物5b(507mg)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.20-1.81(m、105H)、1.98(s、3H)、2.32-2.35(m、2H)、2.67(brs、4H)、3.00-3.09(m、6H)、3.90-4.17(m、9H)、5.02(s、2H)、5.41(t、1H)、6.41(t、1H)、6.53(s、2H)、6.90(d、1H)、7.84(s、1H)、7.92(brs、1H)、12.67(brs、1H).
31P-NMR:(300MHz;CDCl)δ5.11.
実施例5(カップリング及び酸化):化合物6の合成
Figure JPOXMLDOC01-appb-C000077
 窒素雰囲気下、化合物5a(49mg)と化合物1(20mg、0.056mmol)のピリジン(1mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(25μL、0.18mmol)を加え、41分間撹拌した。その後0.1M ヨウ素 ピリジン/THF/水溶液(0.73mL、0.073mmol)を加え、29分間撹拌し、亜リン酸トリメチル(4.3μL、0.036mmol)を加えた。反応混合物を減圧下濃縮し、アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物6(34mg)を肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.091-0.13(m、6H)、0.85-0.95(m、18H)、1.08-1.83(m、96H)、1.90(s、3H)、1.91(s、3H)、2.36(brs、2H)、2.57-2.67(m、6H)、3.81-4.29(m、12H)、4.91(t、1H)、5.01(s、2H)、5.42(s、1H)、6.28-6.37(m、2H)、6.53(s、2H)、7.51(s、1H)、7.72(s、1H).
31P-NMR:(300MHz;CDCl)δ0.70.
MS(ESI):[M-H] 1654.1197.
実施例6(3mer合成):化合物9の合成
Figure JPOXMLDOC01-appb-C000078
工程1 化合物6の合成
 窒素雰囲気下、化合物3(1.00g、0.74mmol)の塩化メチレン(5mL)溶液に、40℃でフッ化水素-ピリジン(86.5μL、3.3mmol)を加え、4時間42分撹拌し、ヘキサメチルジシロキサン[TMSO](0.55mL、2.6mmol)を加えた。この反応混合物のうち、化合物3 0.57mmol分に、ピリジン(8mL)を加え、減圧下濃縮した。再度ピリジン(8mL)を加え、減圧下濃縮し、ピリジン(6mL)を加え、化合物4のピリジン溶液とした。
 窒素雰囲気下、亜リン酸(0.50g、6.1mmol)のピリジン(16mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.41mL、3.0mmol)を加え、35分間撹拌した。この溶液に化合物4のピリジン溶液を加えてピリジン(1mL)で洗浄した。40℃で6時間35分撹拌し、2,2-ジメチルブチリルクロリド(0.12mL、0.87mmol)を加えてさらに3時間撹拌した。アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物5a(737mg)を白色固体として得た。
 窒素雰囲気下、化合物5a(702mg)と化合物1(279mg、0.78mmol)のピリジン(14mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.36mL、2.6mmol)を加え、33分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(6.3mL、0.63mmol)を加え、21分間撹拌し、亜リン酸トリメチル(12μL、0.11mmol)を加えた。反応混合物にアセトニトリルを加えて固体を析出させ、減圧下濃縮し、アセトニトリルを加えて氷冷した後にろ過し、化合物6(799mg)を薄い肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.096(s、3H)、0.11(s、3H)、0.85-0.95(m、18H)、1.10-1.83(m、96H)、1.90(s、3H)、1.91(s、3H)、2.35(brs、2H)、2.57-2.67(m、6H)、3.86-4.28(m、12H)、4.92(t、1H)、5.02(s、2H)、5.35(s、1H)、6.28-6.33(m、2H)、6.53(s、2H)、7.49(s、1H)、7.59(s、1H).
31P-NMR:(300MHz;CDCl)δ0.96.
工程2 化合物9の合成
 窒素雰囲気下、化合物6(750mg)の塩化メチレン(4mL)溶液に、40℃でフッ化水素-ピリジン(51.9μL、2.0mmol)を加え、3時間23分撹拌し、ヘキサメチルジシロキサン[TMSO](0.33mL、1.6mmol)を加えた。ピリジン(8mL)を加え、減圧下濃縮した。再度ピリジン(8mL)を加え、減圧下濃縮し、ピリジン(6mL)を加え、化合物7のピリジン溶液とした。
 窒素雰囲気下、亜リン酸(0.37g、4.4mmol)のピリジン(12mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.37mL、2.7mmol)を加え、39分間撹拌した。この溶液に化合物7のピリジン溶液を加えてピリジン(1mL)で洗浄した。40℃で1時間43分撹拌し、2,2-ジメチルブチリルクロリド(61μL、0.44mmol)を加えてさらに3時間31分撹拌した。アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物8(611mg)を白色固体として得た。
 窒素雰囲気下、化合物8(600mg)と化合物1(194mg、0.54mmol)のピリジン(10mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.25mL、1.8mmol)を加え、34分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(4.3mL、0.43mmol)を加え、58分間撹拌し、亜リン酸トリメチル(16μL、0.14mmol)を加えた。反応混合物にアセトニトリルを加えて固体を析出させ、減圧下濃縮し、アセトニトリルを加えて氷冷した後にろ過し、化合物9(634mg)を薄い肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.093(s、3H)、0.10(s、3H)、0.85-0.92(m、18H)、1.09-1.89(m、105H)、2.01-2.52(m、6H)、2.67(brs、4H)、3.85-4.26(m、15H)、4.92(s、1H)、5.01(s、2H)、5.02(s、1H)、5.38(s、1H)、6.13(s、1H)、6.24-6.30(m、2H)、6.53(s、2H)、7.42(s、1H)、7.48(s、1H)、7.60(s、1H).
31P-NMR:(300MHz;CDCl)δ-1.52、-1.33.
実施例7(カップリング及び硫化):化合物10の合成
Figure JPOXMLDOC01-appb-C000079
 窒素雰囲気下、化合物5a(102mg)と化合物1(38mg、0.11mmol)のピリジン(2mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(49μL,0.36mmol)を加え、23分間撹拌した。その後、単体硫黄(28mg、0.87mmol)を加え、1時間8分撹拌し、アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物10(121mg)を白色固体として得た。
31P-NMR:(300MHz;CDCl)δ60.46、61.07.
MS(ESI):[M-H] 1670.0959.
実施例8(一時保護基がジメトキシトリチル基の場合の2mer合成):化合物11の合成
Figure JPOXMLDOC01-appb-C000080
 窒素雰囲気下、化合物5a(103mg)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(61mg、0.11mmol)のピリジン(2mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(50μL,0.36mmol)を加え、22分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(0.88mL、88μmol)を加え、57分間撹拌し、亜リン酸トリメチル(1.7μL,14μmol)を加えた。アセトニトリルを加え、反応混合物を減圧下濃縮した。アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物11(96mg)を薄赤色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.09-2.01(m、102H)、2.37-2.69(m、8H)、3.67-4.22(m、18H)、4.91-5.02(m、3H)、5.38(s、1H)、6.09(s、1H)、6.25(s、1H)、6.54(s、2H)、6.81-7.36(m、13H)、7.51(s、1H)、7.56(s、1H).
実施例9(5'→3’方向への2mer合成):化合物16の合成
Figure JPOXMLDOC01-appb-C000081
工程1 化合物12の合成
 窒素雰囲気下、3’-O-(tert-ブチルジメチルシリル)チミジン(ベリー社製)(3.07g、8.6mmol)、無水コハク酸(1.29g、12.9mmol)の塩化メチレン(31g)溶液に、室温でトリエチルアミン(2.64g、26.1mmol)を加え、2時間33分撹拌した。反応混合物に2.0M リン酸-トリエチルアミン水溶液を加えて分液した。得られた有機層を2M リン酸-トリエチルアミン水溶液で2回分液により洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、化合物12を白色泡状固体(3.73g)として得た。
H-NMR:(300MHz;CDCl)δ0.10(s、3H)、0.12(s、3H)、0.90(s、9H)、1.23(t、9H)、1.90(s、3H)、2.05-2.14(m、1H)、2.36-2.43(m、1H)、2.51-2.86(m、4H)、3.00(q、6H)、4.10(brs、1H)、4.21-4.26(m、1H)、4.40-4.43(m、1H)、4.59-4.63(m、1H)、5.30(s、1H)、6.08(q、1H)、7.41(d、1H)、9.95(brs、1H).
工程2 化合物13の合成
 窒素雰囲気下、化合物12(3.73g、8.2mmol)、3,4,5-トリス(オクタデシルオキシ)ベンジルアルコール(4.96g、5.4mmol)の塩化メチレン(224g)溶液に、室温で2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオホスフェート[HBTU](4.13g、10.9mmol)、ジイソプロピルエチルアミン(1.42g、11.0mmol)、ジメチルアミノピリジン(1.37g、11.2mmol)を加え、16時間18分撹拌した。反応混合物にメタノールを加えて析出した固体をろ過し、化合物13(7.18g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.080-0.085(m、6H)、0.86-0.89(m、18H)、1.18-1.84(m、96H)、1.94(d、3H)、2.05-2.14(m、1H)、2.27-2.34(m、1H)、2.64-2.74(m、4H)、3.91-3.98(m、6H)、4.04-4.07(m、1H)、4.20-4.39(m、3H)、5.01(s、2H)、6.25(t、1H)、6.52(s、2H)、7.27(d、1H)、8.01(brs、1H).
工程3(伸長反応サイクル工程a:脱保護)化合物14の合成
 窒素雰囲気下、化合物13(6.06g、4.5mmol)のテトラヒドロフラン[THF](60g)溶液に、室温で1.0M テトラブチルアンモニウムフルオリド[TBAF]/THF溶液(4.5mL、4.9mmol)を加え、1時間23分撹拌した。反応混合物にメタノールを加えて析出した固体をろ過し、化合物14(5.45g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.08-1.84(m、96H)、1.93(d、3H)、2.07-2.16(m、1H)、2.32-2.40(s、1H)、2.62-2.79(m、4H)、3.91-4.00(m、7H)、4.16(dd、1H)、4.27(quint、1H)、4.39(dd、1H)、5.01(q、2H)、6.25(t、1H)、6.53(s、2H)、7.24(d、1H).
工程4(伸長反応サイクル工程b:H-ホスホネート化)化合物15の合成
 窒素雰囲気下、亜リン酸ジフェニル(1.36g、5.8mmol)のピリジン(15mL)溶液に、室温で化合物14(1.05g、0.85mmol)のピリジン(10mL)溶液を加えて、ピリジン(5mL)で洗浄した。40℃で1時間22分撹拌し、水(5.13g)、トリエチルアミン(3.79g)を順に加えて14分間撹拌した。反応混合物にアセトニトリルを加えて析出した固体をろ過し、化合物15(1.09g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.20-1.83(m、96H)、1.93(d、3H)、2.14-2.23(m、1H)、2.54-2.74(m、5H)、3.90-3.98(m、6H)、4.32-4.39(m、3H)、4.80-4.86(m、1H)、5.00(s、2H)、6.30(t、1H)、6.52(s、2H)、6.89(d、1H)、7.28(d、1H)、8.17(brs、1H)、12.32(brs、1H).
31P-NMR:(300MHz;CDCl)δ3.86.
工程5(伸長反応サイクル工程c及びd:カップリング及び酸化)化合物16の合成
 窒素雰囲気下、化合物15(250mg)と3’-O-(tert-ブチルジメチルシリル)チミジン(97mg、0.27mmol)のピリジン(5mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.12mL、0.90mmol)を加え、29分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(2.2mL、0.22mmol)を加え、40分間撹拌し、亜リン酸トリメチル(4.3μL、36μmol)を加えた。反応混合物を減圧下濃縮し、アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物16(270mg)を淡肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.076(s、6H)、0.83-0.96(m、18H)、1.06-1.83(m、96H)、1.89(s、3H)、1.92(s、3H)、2.11-2.67(m、8H)、3.90-4.47(m、13H)、4.92(s、1H)、4.99(s、2H)、6.19-6.28(m、2H)、6.52(s、2H)、7.26(s、1H)、7.55(s、1H).
31P-NMR:(300MHz;CDCl)δ-0.48.
MS(ESI):[M-H] 1654.1123.
実施例10(2mer合成):化合物20の合成
Figure JPOXMLDOC01-appb-C000082
工程1 化合物18の合成
 窒素雰囲気下、化合物17(特開第2011-126993号に記載の方法に準じて合成した)(4.26g、4.8mmol)のニトロベンゼン(43g)溶液に、60℃でコハク酸モノエチルクロリド(1.36mL,9.7mmol)を加え、塩化アルミニウム(1.30g、9.8mmol)を加え、60℃で2時間2分撹拌した。室温まで冷却し、水で2回分液により洗浄した。得られた有機層にメタノールを加えて固体を析出させ、ろ過して淡黄色固体を得た。
 この固体のTHF(15g)溶液に、水酸化カリウム(3.17g、48mmol)水溶液を加え、加熱還流下1時間25分撹拌した。水(2g)を加え、濃塩酸で水層のpHを7から8に調整した。塩化メチレン(38g)、水(12g)を加えて分液し、得られた有機層を減圧下濃縮した。得られた残渣をTHFに溶解させ、メタノールを加えて析出した固体をろ過し、化合物18(3.70g)を褐色固体として得た。
H-NMR:(300MHz;CN)δ0.88(t、9H)、1.11-1.88(m、96H)、3.17(t、2H)、3.62(t、2H)、4.04(t、4H)、4.11(t、2H)、6.53(s、2H).
MS(ESI):[M-H] 981.8884.
工程2 化合物19の合成
 窒素雰囲気下、化合物18(3.56g、3.6mmol)、化合物1(1.98g、5.6mmol)の塩化メチレン(22g)溶液に、室温で2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオホスフェート[HBTU](2.75g、7.3mmol)、ジイソプロピルエチルアミン(1.23mL、7.2mmol)、ジメチルアミノピリジン(0.91g、7.4mmol)を加え、1時間31分撹拌した。反応混合物に水を加えて分液した。得られた水層を塩化メチレンで分液し、得られた有機層を合わせて飽和塩化ナトリウム水溶液で洗浄し、減圧下濃縮した。ヘキサンを加えて固体を析出させ、ろ過して固体を除去した。得られた粗物をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、化合物19(2.85g)をオレンジ色油状物として得た。
H-NMR:(300MHz;CDCl)δ0.13(s、6H)、0.88(t、9H)、0.93(s、9H)、1.14-1.87(m、96H)、1.92(d、3H)、2.05-2.14(m、1H)、2.39-2.45(m、1H)、2.67(t、2H)、3.09(t、2H)、3.88-3.94(m、8H)、4.11(d、1H)、5.27(d、1H)、6.05(s、2H)、6.35(q、1H)、7.55(d、1H)、8.01(d、1H).
MS(ESI):[M+H] 1322.0619.
工程3 化合物20の合成
 窒素雰囲気下、化合物19(22.5mg)の塩化メチレン(0.3mL)溶液に、フッ化水素-ピリジン(3μL)を加え、7時間3分撹拌し、トリメチルシリルクロリド[TMSCl](10μL)を加えた。ピリジン(0.1mL)を加え、亜リン酸(2.9mg)、2,2-ジメチルブチリルクロリド(20μL)を加え、化合物1(12.9mg)を加えた。2日間撹拌し、2,2-ジメチルブチリルクロリド(10μL)を加えてさらに1時間28分撹拌した。0.1Mのヨウ素を含むピリジン、THF及び水の溶液(1mL)を加え、1日間撹拌し、チオ硫酸ナトリウムが飽和したアセトニトリルと水の混合溶媒(セトニトリル/水=9/1(重量比))を加えてろ過し、化合物20を得た。
MS(ESI):[M-H] 1624.1104.
実施例11(2mer合成):化合物23の合成
Figure JPOXMLDOC01-appb-C000083
工程1 化合物22の合成
 窒素雰囲気下、亜リン酸(329mg、4.0mmol)のピリジン(11mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.33mL、2.4mmol)を加え、32分間撹拌した。この溶液に化合物21(国際公開第2014-077292号に記載の方法に準じて合成した)(492mg、0.39mmol)を加え、ピリジン(0.40mL)で洗浄した。40℃で3時間40分撹拌し、アセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物22(495mg)を淡黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.17-1.83(m、96H)、1.97(d、3H)、2.18(s、3H)、2.33-2.44(m、2H)、2.54-2.58(m、2H)、2.73-2.79(m、2H)、3.95-4.05(m、6H)、4.20(t、1H)、4.27(d、2H)、5.37(d、1H)、6.38(t、1H)、7.10(s、2H)、6.94(d、1H)、7.76(d、1H).
31P-NMR:(300MHz;CDCl)δ6.62.
工程2 化合物23の合成
 窒素雰囲気下、化合物22(453mg)と化合物1(177mg、0.50mmol)のピリジン(9mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.14mL、1.0mmol)を加え、28分間撹拌した。2,2-ジメチルブチリルクロリド(0.14mL、1.0mmol)を加えてさらに44分間撹拌し、その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(4.0mL、0.40mmol)を加え、1時間36分撹拌し、亜リン酸トリメチル(7.8μL、0.066mmol)を加えた。反応混合物にアセトニトリルを加えて固体を析出させ、減圧下濃縮し、アセトニトリルを加えて氷冷した後にろ過し、化合物23(478mg)を薄褐色固体として得た。
H-NMR:(300MHz;CDCl)δ0.095-0.13(m、6H)、0.85-0.97(m、18H)、1.08-1.83(m、96H)、1.89-1.95(m、6H)、2.06-2.39(m、7H)、2.54-2.65(m、2H)、2.75-2.82(m、2H)、3.86-4.30(m、12H)、4.90-5.39(m、2H)、6.12-6.40(m、2H)、7.12(d、2H)、7.45-7.82(m、2H).
31P-NMR:(300MHz;CDCl)δ-1.27.
実施例12(2mer合成):化合物26の合成
Figure JPOXMLDOC01-appb-C000084
工程1 化合物24の合成
 窒素雰囲気下、化合物2(89mg、0.16mmol)、N-(2-ヒドロキシエチル)-3,4,5-トリス(オクタデシルオキシ)ベンズアミド(特開第2001-122889号に記載の方法に準じて合成した)(100mg、0.10mmol)の塩化メチレン(1mL)溶液に、40℃で2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオホスフェート[HBTU](77mg、0.20mmol)、ジイソプロピルエチルアミン(35μL、0.21mmol)、ジメチルアミノピリジン(25mg、0.20mmol)を加え、1時間21分撹拌した。反応混合物にメタノールを加えて析出した固体をろ過し、化合物24(135mg、収率93%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.096(s、3H)、0.11(s、3H)、0.88(t、9H)、0.91(s、9H)、1.12-1.84(m、96H)、1.92(d、3H)、2.04-2.14(m、1H)、2.34-2.41(m、1H)、2.68(brs、4H)、3.70(q、2H)、3.86(s、2H)、3.96-4.02(m、6H)、4.07(s、1H)、4.32(t、2H)、5.25(d、1H)、6.29-6.34(m、1H)、6.55(t、1H)、6.98(s、2H)、7.52(d、1H)、8.07(brs、1H).
MS(ESI):[M+H] 1409.0956.
工程2 化合物25の合成
 窒素雰囲気下、化合物24(99mg、0.070mmol)の塩化メチレン(0.5mL)溶液に、40℃でフッ化水素-ピリジン(8.3μL、0.32mmol)を加え、3時間34分撹拌し、ヘキサメチルジシロキサン[TMSO](53mL、0.25mmol)を加えた。ピリジン(1mL)を加え、減圧下濃縮した。再度ピリジン(1mL)を加え、減圧下濃縮し、ピリジン(0.8mL)を加え、脱保護された化合物のピリジン溶液とした。
 窒素雰囲気下、亜リン酸(57mg、0.693mmol)のピリジン(2mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(59μL、0.43mmol)を加え、31分間撹拌した。この混合物に上記の脱保護された化合物のピリジン溶液を加えてピリジン(0.5mL)で洗浄した。40℃で1時間12分撹拌し、2,2-ジメチルブチリルクロリド(15μL、0.11mmol)を加えてさらに1時間17分撹拌した。反応混合物にアセトニトリルを加えて固体を析出させ、氷冷した後にろ過し、化合物25(78mg)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.18-1.83(m、96H)、1.91(s、3H)、2.19-2.36(m、2H)、2.65(brs、4H)、3.69(brs、2H)、3.95-4.01(m、6H)、4.13(s、1H)、4.17(s、1H)、4.20(s、1H)、4.32(t、2H)、5.28(d、1H)、6.29(q、1H)、6.80(brs、1H)、6.88(d、1H)、7.00(s、2H)、7.53(s、1H).
31P-NMR:(300MHz;CDCl)δ6.86.
MS(ESI):[M-H] 1356.9650.
工程3 化合物26の合成
 窒素雰囲気下、化合物25(69mg)と化合物1(28mg、78mmol)のピリジン(1.4mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(35μL、0.25mmol)を加え、48分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(0.6mL、0.060mmol)を加え、1時間撹拌し、亜リン酸トリメチル(1.2μL、0.010mmol)を加えた。反応混合物を減圧下濃縮し、アセトニトリルを加えて氷冷した後にろ過し、化合物26(76mg)を淡褐色固体として得た。
H-NMR:(300MHz;CDCl)δ0.087-0.12(m、6H)、0.85-0.95(m、18H)、1.17-1.78(m、96H)、1.86-1.89(m、6H)、2.02-2.65(m、8H)、3.67-4.30(m、16H)、4.92-5.36(m、2H)、6.12-6.32(m、2H)、6.90(brs、1H)、6.99-7.03(m、2H)、7.45-7.60(m、2H).
31P-NMR:(300MHz;CDCl)δ-1.11.
実施例13(RNAでの2mer合成):化合物27の合成
Figure JPOXMLDOC01-appb-C000085
 窒素雰囲気下、化合物25(9.4mg)と5’-O-(tert-ブチルジメチルシリル)-2’-O-トリイソプロピルシリルウリジン(参考合成例2記載)(5.3mg、10mmol)のピリジン(0.50mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(9.4μL、69μmol)を加え、37分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(0.17mL、8.5μmol)を加え4時間撹拌し、その後80℃で15時間23分撹拌した。反応混合物を減圧下濃縮し、化合物27を得た。
MS(ESI):[M-H] 1755.1612.
実施例14(カップリング~脱保護連続化):化合物28の合成
Figure JPOXMLDOC01-appb-C000086
 窒素雰囲気下、化合物25(100mg)と化合物1(38mg、0.11mmol)のピリジン(5.0mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(47μL、0.34mmol)を加え、14分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(1.7mL、0.085mmol)を加え、55分間撹拌し、さらに0.05Mのヨウ素を含む、ピリジンと水の溶液(0.41mL、0.021mmol)を加え、38分間撹拌した。その後、亜リン酸ジメチル(0.63μL、0.0069mmol)を加え、100℃で5時間57分撹拌した。反応混合物を冷却し、アセトニトリル(41g)に加えて固体を析出させ、氷冷した後にろ過し、化合物28(0.11g)を肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.17-1.82(m、96H)、1.86(s、3H)、2.23-2.34(m、4H)、2.64(brs、4H)、3.67-4.31(m、16H)、5.04(brs、1H)、5.41(s、1H)、6.13(t、1H)、6.29(t、1H)、6.97-7.00(m、1H)、7.02(s、2H)、7.26-7.63(m、2H)、9.28(brs、2H).
31P-NMR:(300MHz;CDCl)δ-0.069.
実施例15(炭酸ビスペンタフルオロフェニルを縮合剤として用いるカップリング):化合物29の合成
Figure JPOXMLDOC01-appb-C000087
 窒素雰囲気下、化合物25(10mg)と化合物1(4.2mg、0.012mmol)のピリジン(0.50mL)溶液に、25℃で炭酸ビスペンタフルオロフェニル(15.4mg、0.039mmol)を加え、20分間撹拌した。反応混合物を減圧下濃縮し、化合物29を主生成物として得た。
MS(ESI):[M-H] 1711.1424.
実施例16(ベンゾイルクロリドを縮合剤に用いる1サイクル):化合物30の合成
Figure JPOXMLDOC01-appb-C000088
 窒素雰囲気下、化合物25(102mg)と化合物1(39mg、0.11mmol)のピリジン(5.0mL)溶液に、25℃でベンゾイルクロリド(24μL、0.21mmol)を加え、15分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(2.1mL、0.11mmol)を加え、36分間撹拌した後、亜リン酸ジメチル(3.2μL、0.035mmol)を加えた。100℃で4時間31分撹拌し、反応混合物を減圧下濃縮した。ピリジン(5.0mL)を加えて、減圧下濃縮した後に、ピリジン(5.0mL)を加えた。亜リン酸(56mg、0.68mmol)を加え、ベンゾイルクロリド(50μL、0.43mmol)を3分割して40℃で10分おきに加え、2時間35分撹拌し、ベンゾイルクロリド(8.3μL、0.071mmol)を加えてさらに54分間撹拌した。その後、反応混合物をアセトニトリル(44g)に加えて析出した固体をろ過し、化合物30(0.11g)を淡褐色固体として得た。
H-NMR:(300MHz;CDCl)δ0.87(t、9H)、1.08-1.99(m、102H)、2.23-2.63(m、8H)、3.67(brs、2H)、3.96(t、6H)、4.15-4.27(m、6H)、5.08(brs、1H)、5.35(s、1H)、6.16(s、1H)、6.24(s、1H)、6.83(d、1H)、7.04(s、2H)、7.13(brs、1H)、7.47(s、1H)、7.53(s、1H)、9.86(brs、2H).
31P-NMR:(300MHz;CDCl)δ-1.59、5.89.
実施例17(DNAで脱保護連続化で1サイクル):化合物35の合成
Figure JPOXMLDOC01-appb-C000089
工程1 化合物31の合成
 窒素雰囲気下、N-(2-ヒドロキシエチル)-N-メチル-3,4,5-トリス(オクタデシルオキシ)ベンズアミド(特開第2001-253896号に記載の方法に準じて合成した)(5.0g、5.1mmol)と無水コハク酸(1.0g、10mmol)の塩化メチレン(50g)溶液に、室温でトリエチルアミン(2.1mL、15mmol)を加え、1時間57分撹拌した。その後、反応混合物をアセトニトリル(513g)に加えて固体を析出させた後にろ過し、化合物31(5.3g、収率95%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.86-0.90(m、9H)、1.09-1.84(m、96H)、2.65(s、4H)、3.05(s、3H)、3.76(brs、2H)、3.96(t、6H)、4.38(brs、2H)、6.58(s、2H).
MS(ESI):[M-H] 1082.9343.
工程2 化合物32の合成
 窒素雰囲気下、化合物31(1.0g、0.92mmol)と化合物1(0.51g、1.4mmol)の塩化メチレン(25mL)溶液に、室温でHBTU(0.70g、1.8mmol)、ジイソプロピルエチルアミン(0.31mL、1.8mmol)、DMAP(0.23g、1.9mmol)を加え、1時間9分撹拌した。その後、反応混合物をメタノール(102g)に加えて析出した固体をろ過し、化合物32(1.3g、収率99%)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.13(s、6H)、0.86-0.94(m、18H)、1.09-1.84(m、96H)、1.92(s、3H)、2.14-2.43(m、2H)、2.66(brs、4H)、3.06(s、3H)、3.68(brs、2H)、3.90-3.98(m、8H)、4.10(s、1H)、4.34(brs、2H)、5.27(d、1H)、6.34(q、1H)、6.57(s、2H)、7.54(s、1H)、8.07(brs、1H).
MS(ESI):[M-H] 1421.1060.
工程3 化合物33の合成
 窒素雰囲気下、化合物32(1.2g、0.86mmol)のTHF(10mL)溶液に、室温で1.0M TBAF/THF溶液(0.95mL、0.95mmol)を加え、1時間10分撹拌した。その後、反応混合物をメタノール(123g)に加えて析出した固体をろ過し、化合物33(1.2g、定量的)を薄い肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.03-1.84(m、96H)、1.92(s、3H)、2.36-2.41(m、2H)、2.65(brs、4H)、3.06(s、3H)、3.75(brs、2H)、3.86(brs、2H)、3.93-3.98(m、6H)、4.07(d、1H)、4.36(brs、2H)、5.30-5.34(m、1H)、6.21(t、1H)、6.59(s、2H)、7.51(s、1H)、8.21(brs、1H).
MS(ESI):[M-H] 1307.0241.
工程4 化合物34の合成
 窒素雰囲気下、亜リン酸(0.63g、7.6mmol)のピリジン(20mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.68mL、5.0mmol)を加え、32分間撹拌した。この溶液に化合物33(1.0g、0.77mmol)を加えて40℃で3時間3分撹拌し、2,2-ジメチルブチリルクロリド(52μL、0.38mmol)を加えてさらに1時間4分撹拌した。その後、反応混合物をアセトニトリル(210g)に加えて析出した固体をろ過し、化合物34(1.0g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.10-1.81(m、96H)、1.91(s、3H)、2.33-2.37(m、2H)、2.66(brs、4H)、3.06(s、3H)、3.68-3.80(brs、2H)、3.94-4.36(m、11H)、6.36(q、1H)、6.59(s、2H)、6.90(d、1H)、7.60(s、1H).
31P-NMR:(300MHz;CDCl)δ6.56.
MS(ESI):[M-H] 1370.9904.
工程5 化合物35の合成
 窒素雰囲気下、化合物34(106mg)と化合物1(43mg、0.12mmol)のピリジン(2.0mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(49μL、0.36mmol)を加え、30分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(2.0mL、0.10mmol)を加え、38分間撹拌し、さらに0.05Mのヨウ素を含むピリジンと水の溶液(0.13mL、0.0063mmol)を加え、10分間拌した。その後、亜リン酸ジメチル(3.3μL、0.036mmol)を加え、100℃で3時間33分撹拌した。反応混合物を減圧下濃縮し、ピリジン(5.0mL)を加えて、再度減圧下濃縮した後に、ピリジン(1.5mL)を加えた。
 窒素雰囲気下、亜リン酸(64mg、0.77mmol)のピリジン(2.0mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(64μL、0.46mmol)を加え、28分間撹拌した。この溶液に上記の脱保護された化合物を含む反応混合物を加えて40℃で1時間5分撹拌し、2,2-ジメチルブチリルクロリド(20μL、0.14mmol)を加えてさらに1時間12分撹拌した。その後、反応混合物をアセトニトリル(51g)に加えて析出した固体を析出ろ過し、化合物35(0.12g)を褐色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.15-1.89(m、102H)、2.23-2.38(m、4H)、2.66(brs、4H)、3.05(s、3H)、3.72(brs、2H)、3.93-4.35(m、14H)、5.11(brs、1H)、5.37(s、1H)、6.17(brs、1H)、6.28(t、1H)、6.58(s、2H)、6.83(d、1H)、7.46(s、1H)、7.54(s、1H)、9.61(brs、2H).
31P-NMR:(300MHz;CDCl)δ-1.52、6.01.
MS(ESI):[M-H] 1675.0476.
実施例18~29(縮合剤検討):化合物29の合成
 実施例15と同様の条件で、縮合剤を、HBTU(16.1mg、実施例18)、1,1’-カルボニルジイミダゾール[CDI](5.6mg、実施例19)、メタンスルホニルクロリド[MsCl](2.8μL、実施例20)ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム[PyBOP](20.8mg、実施例21)、N,N’-ジシクロヘキシルカルボジイミド[DCC](9.1mg、実施例22)、無水トリフルオロ酢酸[TFAA](4.7μL、実施例23)、トリフルオロ酢酸ペンタフルオロフェニル(6.1μL、実施例24)、p-トルエンスルホニルクロリド(9.1mg、実施例25)、イソブチリルクロリド(3.8μL、実施例26)、アセチルクロリド(2.6μL、実施例27)、プロピオニルクロリド(3.1μL、実施例28)又はブチリルクロリド(3.7μL、実施例29)に変更して反応を実施し、化合物29を得た。実施例19、20、21、22、25、26では、主生成物として化合物29を得た。
実施例30(デオキシシチジンを用いる2mer合成):化合物36の合成
Figure JPOXMLDOC01-appb-C000090
 実施例17の工程5と同様の条件で、化合物1をN-ベンゾイル-5’-O-(tert-ブチルジメチルシリル)-2’-デオキシシチジン(東京化成工業社製)(5.3mg)に変更して反応を実施し、化合物36を主生成物として得た。
MS(ESI):[M-H] 1700.0868.
実施例31(デオキシアデノシンを用いる2mer合成):化合物37の合成
Figure JPOXMLDOC01-appb-C000091
 実施例17の工程5と同様の条件で、化合物1をN-ベンゾイル-5’-O-(tert-ブチルジメチルシリル)-2’-デオキシアデノシン(東京化成工業社製)(5.4mg)に変更して反応を実施し、化合物37を主生成物として得た。
MS(ESI):[M+H] 1726.1283.
実施例32(デオキシグアノシンを用いる2mer合成):化合物38の合成
Figure JPOXMLDOC01-appb-C000092
 実施例17の工程5と同様の条件で、化合物1をN-イソブチリル-5’-O-(tert-ブチルジメチルシリル)-2’-デオキシグアノシン(東京化成工業社製)(6.5mg)に変更して反応を実施し、化合物38を主生成物として得た。
MS(ESI):[M-H] 1706.1275.
実施例33(核酸塩基に擬似固相保護基を導入したモノマー及び2mer合成):化合物40の合成
Figure JPOXMLDOC01-appb-C000093
工程1 化合物39の合成
 窒素雰囲気下、5’-O-(tert-ブチルジメチルシリル)-2’-デオキシシチジン(ジャーナルオブオーガニックケミストリー、2011年、76巻、105頁-126頁に記載の方法に準じて合成した)(2.5g、7.3mmol)と化合物31(5.3g、4.9mmol)の塩化メチレン(155mL)及びDMF(25mL)の混合溶液に、40℃で1-ヒドロキシベンゾトリアゾール[HOBt](無水)(0.74g、5.5mmol)を加え、続いて1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩[WSC・HCl](1.9g、9.9mmol)を加えて、1時間40分撹拌した。反応混合物を減圧下濃縮した後にメタノール(503g)に加えて固体を析出させた後にろ過し、化合物39(6.8g、収率98%)を黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.09-0.10(m、6H)、0.84-0.90(m、18H)、1.20-1.81(m、96H)、2.12-2.21(m、1H)、2.28-2.36(m、1H)、2.61-2.77(m、5H)、3.05(s、3H)、3.76(brs、2H)、3.81-3.97(m、8H)、4.07(q、1H)、4.37(brs、2H)、4.40-4.45(m、1H)、6.29(t、1H)、6.57(s、2H)、7.31(d、1H)、8.31(d、1H)、8.88(brs、1H).
MS(ESI):[M-H] 1406.1107.
工程2 化合物40の合成
 窒素雰囲気下、化合物39(6.7g、4.8mmol)、DMAP(0.062g、0.50mmol)、レブリン酸(0.86g、7.4mmol)のTHF(69g)溶液に、室温でWSC・HCl(1.4g、7.5mmol)を加え、50分間撹拌した。その後、DMAP(0.26g、2.1mmol)を加えて、室温で3日間撹拌した。反応混合物をろ過後に、得られたろ液を減圧下濃縮し、THF(38g)を加えて溶液とした後、アセトニトリル(505g)に加えて析出した固体をろ過し、化合物40(6.7g、収率93%)を淡黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.09(s、6H)、0.86-0.90(m、18H)、1.26-1.81(m、96H)、2.01-2.13(m、2H)、2.20(s、3H)、2.52-2.80(m、8H)、3.06(s、3H)、3.77(brs、2H)、3.86-3.98(m、8H)、4.20(s、1H)、4.38(brs、2H)、5.26(d、1H)、6.32-6.37(m、1H)、6.57(s、2H)、7.33(d、1H)、8.27(d、1H)、9.17(brs、1H).
MS(ESI):[M-H] 1504.1412.
工程3 化合物41の合成
 窒素雰囲気下、化合物37(6.5g、4.3mmol)、酢酸(2.9mL、50mmol)のTHF(71g)溶液に、30℃で1.0M TBAF/THF溶液(28mL、28mmol)を加え、4時間53分撹拌した。その後、反応混合物をメタノール(531g)に加えて析出した固体をろ過し、化合物41(6.0g、定量的)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.20-1.80(m、96H)、2.20(s、3H)、2.38-2.80(m、10H)、3.05(s、3H)、3.78(brs、2H)、3.88-3.98(m、8H)、4.18(d、1H)、4.39(brs、2H)、5.36(quint、1H)、6.20(dd、1H)、6.59(s、2H)、7.21-7.31(m、1H)、8.19(d、1H).
MS(ESI):[M-H] 1390.0541.
工程4 化合物42の合成
 窒素雰囲気下、亜リン酸(1.20g、14.6mmol)のピリジン(40mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(1.28mL、9.3mmol)を加え、30分間撹拌した。この溶液に化合物41(2.0g、1.4mmol)を加えて40℃で1時間23分撹拌した。その後、反応混合物をアセトニトリルに加えて析出した固体をろ過し、化合物42(2.2g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.83(m、96H)、2.19(s、3H)、2.38-2.88(m、10H)、3.06(s、3H)、3.75(brs、2H)、3.92-4.35(m、11H)、5.37(d、1H)、6.17(t、1H)、6.58(s、2H)、6.88(d、1H)、7.26-7.28(m、1H)、8.51(d、1H).
31P-NMR:(300MHz;CDCl)δ5.73.
MS(ESI):[M-H] 1454.0237.
工程5 化合物43の合成
 窒素雰囲気下、化合物42(96mg)と化合物1(36mg、0.10mmol)のピリジン(2.0mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(45μL、0.33mmol)を加え、23分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(2.6mL、0.13mmol)を加え、1時間29分撹拌した。その後、亜リン酸ジメチル(3.0μL、0.033mmol)を加え、水(0.26mL,14.4mmol)を加えた後、70℃で15時間55分撹拌した。反応混合物を減圧下濃縮し、化合物43を主生成物として得た。
MS(ESI):[M-H] 1694.1110.
実施例34(2mer合成):化合物44の合成
Figure JPOXMLDOC01-appb-C000094
 窒素雰囲気下、化合物42(1.0g)と化合物1(0.35g、0.98mmol)のピリジン(20mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.45mL、3.3mmol)を加え、17分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(9.8mL、0.98mmol)を加え、38分間撹拌した。その後、反応混合物を減圧下濃縮した。トルエン(27g)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(12g)を加え、不溶物をろ過で除去し、塩化メチレン(6g)で二回洗浄した。この溶液に、フッ化水素-ピリジン(76.1μL、2.9mmol)を室温で加え、18時間57分撹拌した。TMSCl(0.29mL、2.3mmol)を加え、17分間撹拌した。その後、反応混合物を減圧下濃縮し、ピリジンを加えて、減圧下濃縮した。
 窒素雰囲気下、亜リン酸(0.70g、8.5mmol)のピリジン(18mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.80mL、5.8mmol)を加え、39分間撹拌した。この溶液に前記濃縮物を加えて40℃で2時間37分撹拌した。その後、反応混合物をアセトニトリル(518g)に加えて析出した固体をろ過し、化合物44(1.0g)をうす肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.15-1.83(m、96H)、1.90(s、3H)、2.18(s、3H)、2.46-2.95(m、12H)、3.06(s、3H)、3.68(brs、2H)、3.92-4.34(m、14H)、5.02(s、1H)、5.35(s、1H)、6.16(t、1H)、6.25(t、1H)、6.59(s、2H)、6.82(d、1H)、7.07(d、1H)、7.46(s、1H)、8.65(d、1H).
31P-NMR:(300MHz;CDCl)δ-2.16、4.97.
MS(ESI):[M-H] 1758.0754.
実施例35(4mer合成):化合物46の合成
Figure JPOXMLDOC01-appb-C000095
工程1 化合物44の合成
 窒素雰囲気下、化合物42(0.94g)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(0.49g、0.91mmol)のピリジン(20mL)溶液に、25℃で縮合剤として2,2-ジメチルブチリルクロリド(0.42mL、3.0mmol)を加え、20分間撹拌した(カップリング反応)。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(9.1mL、0.91mmol)を加え、20分間撹拌した。その後、オルトギ酸トリメチル(1.3mL、12mmol)を加えて25℃で34分間撹拌し、反応混合物を減圧下濃縮した。トルエン(30g)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(10mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(5mL)で2回抽出した。この溶液に、ピロール(0.13mL、1.8mmol)、ホスホン酸(0.73g、9.1mmol)を室温で加え、29分間撹拌した。ピリジン(2.8mL)を室温で加えた後、2,2-ジメチルブチリルクロリド(0.83mL、6.0mmol)を3分割して10分間おきに加えて1時間16分撹拌し、2,2-ジメチルブチリルクロリド(0.14mL、1.0mmol)を加えてさらに45分間撹拌した。その後、反応混合物をアセトニトリル(396g)に加えて析出した固体をろ過し、化合物44(1.0g)を薄い灰色固体として得た。
MS(ESI):[M-H] 1758.0512.
工程2 化合物45の合成
 窒素雰囲気下、化合物44(0.98g)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(0.45g、0.83mmol)のピリジン(20mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.38mL、2.8mmol)を加え、27分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(8.3mL、0.83mmol)を加え、44分間撹拌した。その後、オルトギ酸トリメチル(1.2mL、11mmol)を加えて25℃で42分間撹拌し、反応混合物を減圧下濃縮した。トルエン(30g)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(10mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(5mL)で2回抽出した。この溶液に、ピロール(0.12mL、1.7mmol)、ホスホン酸(0.69g、8.3mmol)を20℃で加え、30分間撹拌した。ピリジン(2.8mL)を25℃で加えた後、2,2-ジメチルブチリルクロリド(0.76mL、5.5mmol)を3分割して10分間おきに加えて39分間撹拌し、2,2-ジメチルブチリルクロリド(0.14mL、1.0mmol)を加えてさらに49分間撹拌した。その後、反応混合物をアセトニトリル(396g)に加えて析出した固体をろ過し、化合物45(1.2g)を薄灰色固体として得た。
MS(ESI):[M+H] 2064.1191.
工程3 化合物46の合成
 窒素雰囲気下、化合物45(1.16g)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(0.43g、0.81mmol)のピリジン(20mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(0.37mL、2.7mmol)を加え、29分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(8.1mL、0.81mmol)を加え、25分間撹拌した。その後、オルトギ酸トリメチル(1.2mL、11mmol)を加えて25℃で21分間撹拌し、反応混合物を減圧下濃縮した。トルエン(30g)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(10mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(5mL)で2回洗浄した。この溶液に、ピロール(0.11mL、1.6mmol)及びホスホン酸(0.65g、8.1mmol)を27~30℃で加え、24分間撹拌した。ピリジン(3.0mL)を22~28℃で加えた後、2,2-ジメチルブチリルクロリド(0.74mL、5.4mmol)を3分割して10分間おきに加えて41分間撹拌し、2,2-ジメチルブチリルクロリド(0.49mL、3.6mmol)を加えてさらに1時間20分撹拌した。その後、反応混合物をアセトニトリル(397g)に加えて析出した固体を析出ろ過し、化合物46(1.33g)を薄い灰色固体として得た。
MS(ESI):[M+H] 2368.1574.
実施例36(RNAでの2mer合成):化合物47の合成
Figure JPOXMLDOC01-appb-C000096
 窒素雰囲気下、化合物42(9.5mg)と2’-O-(tert-ブチルジメチルシリル)-5’-O-(4,4’-ジメトキシトリチル)ウリジン(関東化学社から購入)(7.8mg、0.012mmol)のピリジン(0.20mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(4.5μL、0.033mmol)を加え、35分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(98μL、0.098mmol)を加え、20分間撹拌した。反応混合物を減圧下濃縮し、トルエン(1mL)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(0.30mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(0.20mL×2回)で抽出した。この溶液に、ピロール(2μL、0.029mmol)、ホスホン酸(9.1mg、0.11mmol)を室温で加え、30分間撹拌した。反応混合物を減圧下濃縮し、化合物47を主生成物として得た。
MS(ESI):[M-H] 1810.2131.
実施例37(2mer合成):化合物49の合成
Figure JPOXMLDOC01-appb-C000097
 窒素雰囲気下、化合物42(104mg)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(58mg、107mmol)のピリジン(2.0mL)溶液に、室温で2,2-ジメチルブチリルクロリド(46μL、0.34mmol)を加え、32分間撹拌することで、カップリング反応を行った。その後、硫化剤として単体硫黄(3.2mg、0.10mmol)を加え、1時間32分撹拌し、反応混合物を減圧下濃縮した。トルエン(4.0mL)を加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(1.0mL)を加え、不溶物をシリンジフィルターで除去し、塩化メチレン(0.50mL×2回)で洗浄した。この溶液に、ピロール(14μL、0.20mmol)、ホスホン酸(80mg、1.0mmol)を室温で加え、36分間撹拌することで、脱一時保護基反応を行った。ピリジン(0.30mL)を室温で加えた後、2,2-ジメチルブチリルクロリド(92μL、0.67mmol)を3分割して10分間おきに加えて2時間24分間撹拌し、2,2-ジメチルブチリルクロリド(16μL、0.12mmol)を加えてさらに40分間撹拌した。その後、反応混合物をアセトニトリル(49g)に加えて析出した固体を析出ろ過し、化合物49(98mg)を白色固体として得た。
MS(ESI):[M-H] 1774.0443.
実施例38(硫化剤検討2mer合成):化合物49の合成
 実施例37と同様の条件で、硫化剤を3-アミノ-1,2,4-ジチアゾール-5-チオン(11.8mg)に変更して反応を実施し、化合物49(99mg)を淡黄色固体として得た。
実施例39(硫化剤検討2mer合成):化合物48の合成
 実施例37と同様の条件で、硫化剤を3-((ジメチルアミノ-メチリデン)アミノ)-3H-1,2,4-ジチアゾール-3-チオン[DDTT](11.8mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例40(硫化剤検討2mer合成):化合物48の合成
 実施例37と同様の条件で実施したカップリング反応後の反応溶液を4分割し、硫化剤を3H-1,2-ベンゾジチオール-3-オン(3.7mg)に変更して実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例41(硫化剤検討2mer合成):化合物48の合成
 実施例40で得られたカップリング反応後の反応溶液の4分の1を用い、実施例37と同様の条件で、硫化剤を3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(3.3mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例42(硫化剤検討2mer合成):化合物48の合成
 実施例40で得られたカップリング反応後の反応溶液の4分の1を用い、実施例37と同様の条件で、硫化剤をテトラエチルチウラムジスルフィド(4.4mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例43(硫化剤検討2mer合成):化合物48の合成
 実施例37と同様の条件で、硫化剤をビス(フェニルアセチル)ジスルフィド(4.5mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例44(硫化剤検討2mer合成):化合物48の合成
 実施例37と同様の条件で、硫化剤をN-(ベンゾイルチオ)-スクシンイミド(シンセシス、1980年、721-722頁に記載の方法に準じて合成した)(3.7mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物48を主生成物として得た。
実施例45(デオキシアデノシンを用いる2mer合成):化合物50の合成
Figure JPOXMLDOC01-appb-C000098
 実施例37と同様の条件で、5’-O-(4,4’-ジメトキシトリチル)チミジンをN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(66.4mg)に変更して反応を実施し、脱一時保護基反応後の反応混合物を減圧下濃縮し、化合物50を得た。
MS(ESI):[M-H] 1823.1213.
実施例46(デオキシグアノシンを用いる2mer合成):化合物51の合成
Figure JPOXMLDOC01-appb-C000099
 実施例37と同様の条件で、5’-O-(4,4’-ジメトキシトリチル)チミジンをN-イソブチリル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシグアノシン(東京化成工業社製)(6.6mg)に変更して反応を実施し、カップリング反応後の反応混合物を減圧下濃縮し、化合物51を主生成物として得た。
MS(ESI):[M-H] 2075.2896.
実施例47(3mer合成):化合物52の合成
Figure JPOXMLDOC01-appb-C000100
 窒素雰囲気下、化合物44(9.5mg)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(6.0mg、0.011mmol)のピリジン(0.20mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(3.8μL、0.028mmol)を加え、26分間撹拌した。その後、単体硫黄(2.1mg、0.065mmol)を加え、1時間40分撹拌した。反応混合物を減圧下濃縮し,化合物52を主生成物として得た。
MS(ESI):[M-H] 2316.2547.
実施例48(H-ホスホネートジエステルで2mer合成):化合物53の合成
Figure JPOXMLDOC01-appb-C000101
 窒素雰囲気下、化合物42(12mg)と5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(7.0mg、0.013mmol)のTHF(0.20mL)溶液に25℃でピリジン(1.7μL、0.034mmol)を加えた後に、2,2-ジメチルブチリルクロリド(4.6μL、0.034mmol)を加え、45分間撹拌した。その後、ピリジン(1.7μL、0.034mmol)を追加し、18分間撹拌した。この溶液に、ピロール(1.4μL、0.020mmol)、ホスホン酸(8.5mg、0.10mmol)を25℃で加え、44分間撹拌した。塩化メチレン(0.20mL)を加え、さらに1時間20分撹拌した。ピリジン(30μL)を25℃で加えた後、2,2-ジメチルブチリルクロリド(9.2μL、0.067mmol)を3分割して10分間おきに加えて35分間撹拌した。その後、反応混合物をアセトニトリル(2g)に加えて析出した固体をろ過し、化合物53を得た。
MS(ESI):[M-H] 1742.1016.
実施例49(H-ホスホネート化):化合物5b(トリエチルアミン塩)の合成
Figure JPOXMLDOC01-appb-C000102
 窒素雰囲気下、亜リン酸(345mg、4.2mmol)のピリジン(10mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.33mL、2.4mmol)を加え、35分間撹拌した。この反応混合物に化合物4(497mg、0.40mmol)を加えて、40℃で1時間2分撹拌し、2,2-ジメチルブチリルクロリド(83μL、0.61mmol)を加えてさらに1時間13分撹拌した。トリエチルアミン(2.8mL、20mmol)を加えた後にアセトニトリル(211g)を加えて固体を析出させ、氷冷した後にろ過し、化合物5b(547mg)を白色固体として得た。
実施例50(H-ホスホネート化):化合物5c(N-メチルイミダゾール塩)の合成
Figure JPOXMLDOC01-appb-C000103
 窒素雰囲気下、亜リン酸(241mg、2.9mmol)のピリジン(7mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.23mL、1.7mmol)を加え、30分間撹拌した。この反応混合物に化合物4(350mg、0.28mmol)を加えて、40℃で1時間49分撹拌し、2,2-ジメチルブチリルクロリド(39μL、0.28mmol)を加えてさらに2時間撹拌した。得られた溶液を3分割し(化合物4:0.093mmol相当)、N-メチルイミダゾール(0.32mL、4.1mmol)を加えた後にアセトニトリル(40g)を加えて固体を析出させ、氷冷した後にろ過し化合物5c(103mg)を固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.83(m、96H)、1.92(s、3H)、2.32-2.36(m、2H)、2.67(s、4H)、3.89-3.98{m、6H+3H(N-メチルイミダゾール)}、4.18-4.21(m、3H)、5.02(s、2H)、5.41(t、1H)、6.38(t、1H)、6.53(s、2H)、6.93(d、1H)、7.04(s、1H、N-メチルイミダゾール)、7.31(s、1H、N-メチルイミダゾール)、7.73(d、1H)、8.84(s、1H、N-メチルイミダゾール).
31P-NMR:(300MHz;CDCl)δ5.74.
実施例51(H-ホスホネート化):化合物5d(N-メチルモルホリン塩)の合成
Figure JPOXMLDOC01-appb-C000104
 実施例50で3分割した溶液の1つ(化合物4:0.093mmol相当)に対して、N-メチルモルホリン(0.45mL、4.1mmol)を加えた後にアセトニトリル(43g)を加えて固体を析出させ、氷冷した後にろ過し、化合物5d(96mg)を固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.09-1.84(m、96H)、1.96(s、3H)、2.01(s、3H、N-メチルモルホリン)、2.31-2.36(m、2H)、2.68(s、4H)、2.76(s、4H、N-メチルモルホリン)、3.90-3.98{m、6H+4H(N-メチルモルホリン)}、4.10-4.17(m、3H)、5.02(s、2H)、5.41(t、1H)、6.38(t、1H)、6.53(s、2H)、6.89(d、1H)、7.71(d、1H).
31P-NMR:(300MHz;CDCl)δ5.88.
実施例52(2mer合成):化合物54の合成
Figure JPOXMLDOC01-appb-C000105
 窒素雰囲気下、化合物42(99mg)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(66mg、0.10mmol)のピリジン(2.0mL)溶液に、25℃で縮合剤として2,2-ジメチルブチリルクロリド(28μL、0.20mmol)を加え、21分間撹拌した。その後、硫化剤としてN-(フェニルチオ)フタルイミド(27mg、0.11mmol)を加え、43分間撹拌した。水(3.6μL、0.20mmol)を加えて1時間37分撹拌し、反応混合物を減圧下濃縮した。トルエン(4.0mL)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(2.0mL)を加え、ピロール(14μL、0.20mmol)、ホスホン酸(8.7mg、0.11mmol)を室温で加え、1時間28分間撹拌することで、脱一時保護基反応を行った。ピリジン(0.30mL)、ホスホン酸(74mg、0.90mmol)を室温で加えた後、2,2-ジメチルブチリルクロリド(92μL、0.67mmol)を3分割して10分間おきに加えて59分間撹拌し、2,2-ジメチルブチリルクロリド(31μL、0.22mmol)を加えてさらに42分間撹拌した。その後、反応混合物をアセトニトリル(51g)に加えて析出した固体をろ過し、化合物54(100mg)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.13-1.80(m、96H)、2.17-2.85(m、15H)、3.03(s、3H)、3.68-4.33(m、16H)、5.20-5.35(m、2H)、6.07-6.17(m、2H)、6.43-6.53(m、2H)、6.56(s、2H)、7.24-8.78(m、14H).
31P-NMR:(300MHz;CDCl)δ6.10、25.20、25.30.
MS(ESI):[M+H] 1965.1202.
実施例53(硫化剤検討2mer合成):化合物55の合成
Figure JPOXMLDOC01-appb-C000106
 実施例52と同様の条件で、硫化剤をN-[(2-シアノエチル)チオ]フタルイミド(テトラへドロン、1997年、53巻、14411-14416頁に記載の方法に準じて合成した)(4.3mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
MS(ESI):[M+H] 2180.2862.
実施例54(硫化剤検討2mer合成):化合物56の合成
Figure JPOXMLDOC01-appb-C000107
 実施例52と同様の条件で、硫化剤をN-[(p-メチルフェニル)チオ]フタルイミド(ヌクレイック アシッズ リサーチ、1999年、27巻、963-971頁に記載の方法に準じて合成した)(27mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物56を主生成物として得た。
MS(ESI):[M+H] 2217.2981.
実施例55(硫化剤検討2mer合成):化合物57の合成
Figure JPOXMLDOC01-appb-C000108
 実施例52と同様の条件で、N-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシンを5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(5.2mg)に、硫化剤をN-[(p-クロロフェニル)チオ]フタルイミド(テトラへドロン、1997年、53巻、14411-14416頁に記載の方法に準じて合成した)(4.3mg)に変更して実施し、脱一時保護基反応後の反応混合物を減圧下濃縮し、化合物57を主生成物として得た。
MS(ESI):[M+H] 1788.1262.
実施例56(硫化剤検討2mer合成):化合物58の合成
Figure JPOXMLDOC01-appb-C000109
 実施例52と同様の条件で、N-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシンをN-イソブチリル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシグアノシン(東京化成工業社製)(7.0mg)に、硫化剤をN-(シクロヘキシルチオ)フタルイミド(3.3mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物58を得た。
MS(ESI):[M+H] 2191.3401.
実施例57(2mer合成):化合物55の合成
 実施例53と同様の条件で、縮合剤を炭酸ビスペンタフルオロフェニル(9.1mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例58(硫化剤検討2mer合成):化合物59の合成
Figure JPOXMLDOC01-appb-C000110
 実施例52と同様の条件で、硫化剤をN-(メチルチオ)フタルイミド(テトラへドロン、1997年、53巻、14411-14416頁に記載の方法に準じて合成した)(9.9mg)に変更して反応を実施し、脱一時保護基反応後の反応混合物を減圧下濃縮し、化合物59を主生成物として得た。
MS(ESI):[M+H] 1839.1373.
参考合成例3(硫化剤合成):N-(ドデシルチオ)フタルイミドの合成
Figure JPOXMLDOC01-appb-C000111
 窒素雰囲気下、フタルイミド(4.0g、27mmol)のアセトニトリル(15mL)とピリジン(12mL)の混合溶液にドデカンチオール(6.8mL、29mmol)を加えて、室温で臭素(1.7mL、33mmol)のアセトニトリル(20mL)溶液を40分かけて滴下し、室温で2時間43分撹拌した。メタノール(32g)、水(5g)を加えて0℃に冷却し、析出した固体をろ過して、目的物(6.0g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、3H)、1.08-1.64(m、20H)、2.88(t、2H)、7.75-7.80(m、2H)、7.89-7.95(m、2H).
MS(ESI):[M+H] 348.2003.
参考合成例4(硫化剤合成):N-[(2-ベンゾ[d]チアゾリル)チオ]フタルイミドの合成
Figure JPOXMLDOC01-appb-C000112
 窒素雰囲気下、フタルイミド(4.0g、27mmol)のアセトニトリル(15mL)とピリジン(12mL)の混合溶液に2-メルカプトベンゾチアゾール(4.8g、29mmol)を加えて、室温で臭素(1.7mL、33mmol)のアセトニトリル(20mL)溶液を38分かけて滴下し、室温で4時間30分撹拌した。メタノール(30g)、水(5g)を加えて17分間撹拌し、析出した固体をろ過して目的物(6.8g)を薄いピンク色固体として得た。
H-NMR:(300MHz;CDCl)δ7.27-7.38(m、1H)、7.40-7.48(m、1H)、7.69-7.77(m、1H)、7.82-7.94(m、3H)、7.99-8.62(m、2H).
MS(ESI):[M+H] 313.0090.
実施例59(硫化剤検討2mer合成):化合物60の合成
Figure JPOXMLDOC01-appb-C000113
 実施例52と同様の条件で、硫化剤をN-(ドデシルチオ)フタルイミド(4.0mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物60を得た。
MS(ESI):[M+H] 2295.4570.
実施例60(硫化剤検討2mer合成):化合物61の合成
Figure JPOXMLDOC01-appb-C000114
 実施例52と同様の条件で、硫化剤をN-[(2-ベンゾ[d]チアゾリル)チオ]フタルイミド(4.8mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物61を得た。
MS(ESI):[M+H] 2277.2747.
実施例61(縮合剤検討2mer合成):化合物55の合成
 実施例53と同様の条件で、縮合剤を酢酸ペンタフルオロフェニル(7.1mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例62(縮合剤検討2mer合成):化合物55の合成
 実施例53と同様の条件で、縮合剤をクロロリン酸ジフェニル(4.2μL)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例63(縮合剤検討2mer合成):化合物55の合成
 実施例52と同様の条件で、縮合剤をクロロリン酸ビス(2-クロロフェニル)(4.6μL)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例64(縮合剤検討2mer合成):化合物55の合成
 実施例53と同様の条件で、縮合剤をクロロリン酸ビス(2、4-ジクロロフェニル)(10.7mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例65(縮合剤検討2mer合成):化合物55の合成
 実施例53と同様の条件で、縮合剤をクロロリン酸ビス(2、6-ジメチルフェニル)(7.1mg)に変更して反応を実施し、硫化後の反応混合物を減圧下濃縮し、化合物55を主生成物として得た。
実施例66(3’位TBDPS基での2mer合成):化合物65の合成
Figure JPOXMLDOC01-appb-C000115
工程1 3’-O-(tert-ブチルジフェニルシリル)-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジンの合成
 窒素雰囲気下、N-ベンゾイル-3’-O-(tert-ブチルジフェニルシリル)-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(バイオケミストリー、2004年、43巻、6167-6181頁に記載の方法に準じて合成した)(6.5g、6.8mmol)のメタノール(301g)溶液に、室温で40%メチルアミン水溶液(5.8mL、69mmol)を加え、23時間26分撹拌した。反応混合物を減圧下濃縮した後にシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、目的物(5.1g、収率98%)を泡状固体として得た。
H-NMR:(300MHz;CDCl)δ1.00(s、9H)、1.95-1.97(m、1H)、2.51-2.59(m、1H)、3.02-3.07(m、1H)、3.25-3.30(m、1H)、3.77(s、6H)、4.44-4.49(m、1H)、5.22(d、1H)、6.35(t、1H)、6.71-6.75(m、4H)、7.08-7.41(m、16H)、7.53-7.59(m、4H)、7.77(d、1H).
MS(ESI):[M+H] 768.3391.
工程2 化合物62の合成
 窒素雰囲気下、3’-O-(tert-ブチルジフェニルシリル)-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(2.5g、3.2mmol)と化合物31(2.2g、2.0mmol)の塩化メチレン(70mL)及びピリジン(14mL)の混合溶液に、40℃でHOBt(無水)(0.35g、2.6mmol)を加え、続いてWSC・HCl(0.92g、4.8mmol)を加えて2時間26分撹拌した。反応混合物中の不溶物をろ過により除去し、減圧下濃縮した後にメタノール(250g)に加えて固体を析出させた後にろ過し、化合物62(3.5g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(s、9H)、1.01(s、9H)、1.26-1.81(m、96H)、1.91-1.99(m、1H)、2.68-2.71(m、5H)、3.04-3.08(m、4H)、3.25-3.29(m、1H)、3.77(brs、8H)、3.95(t、6H)、4.13-4.46(m、4H)、6.30(t、1H)、6.56(s、2H)、6.72-6.75(m、4H)、6.91(d、1H)、7.08-7.42(m、15H)、7.53-7.59(m、4H)、8.05(d、1H)、8.92(brs、1H).
MS(ESI):[M+H] 1834.2754.
工程3 化合物63の合成
 窒素雰囲気下、化合物62(3.5g、1.9mmol)の塩化メチレン(35g)溶液に室温でピロール(0.39mL、5.7mmol)を加え、10℃でジクロロ酢酸(1.6mL、19mmol)を加え、1時間53分撹拌した。ピリジン(0.77mL、9.5mmol)を加え、反応混合物をメタノール(351g)に加えて析出した固体をろ過し、化合物63(2.8g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(s、9H)、1.08(s、9H)、1.26-1.82(m、96H)、2.16-2.25(m、1H)、2.51-2.59(m、1H)、2.69-2.75(m、4H)、3.04(s、3H)、3.19-3.24(m、1H)、3.61-3.65(m、3H)、3.92-4.43(m、10H)、6.21(t、1H)、6.57(s、2H)、7.21(d、1H)、7.35-7.45(m、6H)、7.60-7.66(m、4H)、8.03(d、1H)、9.02(brs、1H).
MS(ESI):[M+H] 1532.1383.
工程4 化合物64の合成
 窒素雰囲気下、亜リン酸(0.39g、4.7mmol)のピリジン(14mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.41mL、3.0mmol)を加え、30分間撹拌した。この溶液に30℃で化合物63(0.70g、0.46mmol)を加えて30℃で46分間撹拌した。その後、2,2-ジメチルブチリルクロリド(0.38mL、2.7mmol)を加え、58分間撹拌した。反応混合物をアセトニトリル(200g)に加えて析出した固体をろ過し、化合物64(0.70g)を白色固体として得た。
MS(ESI):[M+H] 1596.1098.
工程5 化合物65の合成
 窒素雰囲気下、化合物64(0.70g)と5’-O-(4,4’-ジメトキシトリチル)チミジン(0.37g、0.68mmol)のピリジン(20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(0.57g、1.4mmol)を加え、24分間撹拌した。その後N-[(2-シアノエチル)チオ]フタルイミド(0.17g、0.71mmol)を加え、16時間54分間撹拌した。反応混合物をメタノール(200g)に加えて析出した固体をろ過し、化合物65(0.88g)を得た。
H-NMR:(300MHz;CDCl)δ0.88(s、9H)、1.07(s、9H)、1.25-2.01(m、97H)、2.33-2.93(m、10H)、3.04(s、3H)、3.32-4.34(m、24H)、5.08-5.18(m、1H)、6.25-6.36(m、2H)、6.58(s、2H)、6.82-6.85(m、4H)、7.22-7.65(m、21H)、7.79-7.85(m、1H)、8.96(brs、1H)、9.28(brs、1H).
31P-NMR:(300MHz;CDCl)δ27.08、27.20.
MS(ESI):[M+H] 2207.3152.
実施例67(3’位TBDPS基の脱保護):化合物66の合成
Figure JPOXMLDOC01-appb-C000116
 窒素雰囲気下、化合物65(10mg)の塩化メチレン(0.20mL)溶液に、室温でフッ化水素-ピリジン(1.3μL、0.045mmol)を加え、3時間45分撹拌した。反応混合物を減圧下濃縮して、化合物66を得た。
MS(ESI):[M+H] 1969.2010.
実施例68(4mer合成):化合物69の合成
Figure JPOXMLDOC01-appb-C000117
工程1 化合物67の合成
 窒素雰囲気下、化合物42(1.5g)のピリジン(20mL)溶液に5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(0.34g、0.62mmol)、炭酸ビスペンタフルオロフェニル(0.74g、1.9mmol)を加え、22分間撹拌した。その後N-[(2-シアノエチル)チオ]フタルイミド(0.19g、0.81mmol)を加え、15時間29分間撹拌して、化合物82を含む反応溶液を得た。その後、亜リン酸トリエチル(90μL、0.52mmol)、水(0.28mL、16mmol)を加えて25℃で1時間撹拌し、反応混合物を減圧下濃縮した。トルエン(25g)を加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(20mL)を加え、ピロール(0.11mL、1.6mmol)、ホスホン酸(1.0g、13mmol)を10℃で加え、1時間15分間撹拌した。ピリジン(3.0mL)を加えた後、室温で2,2-ジメチルブチリルクロリド(0.96mL、7.0mmol)を4分割して10分間おきに加えて33分間撹拌し、2,2-ジメチルブチリルクロリド(0.48mL、3.5mmol)を加えてさらに35分間撹拌した。その後、反応混合物をアセトニトリル(200g)に加えて析出した固体をろ過し、化合物67(1.9g)を白色固体として得た。
MS(ESI):[M+H] 1829.0819.
工程2 化合物68の合成
 工程1と同様の条件で、化合物42の代わりに化合物67を、5’-O-(4,4’-ジメトキシトリチル)チミジンの代わりにN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(東京化成工業社製)(0.60g)を用いて反応を実施し、化合物68(0.97g)を白色固体として得た。
MS(ESI):[M+H] 2291.1664.
工程3 化合物69の合成
 窒素雰囲気下、化合物68(0.96g)とN-イソブチリル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシグアノシン(東京化成工業社製)(0.51g、0.80mmol)のピリジン(20mL)溶液に、25℃で炭酸ビスペンタフルオロフェニル(0.65g、1.7mmol)を加え、10分間撹拌した。反応混合物を減圧下濃縮して、化合物69を得た。
MS(ESI):[M+H] 2912.4312.
実施例69(4mer合成):化合物70の合成
Figure JPOXMLDOC01-appb-C000118
 実施例68の工程1と同様の条件で、化合物42の代わりに化合物68を用いて反応を実施し、化合物70を得た。
MS(ESI):[M+H] 2817.3753.
実施例70(4mer合成):化合物71の合成
Figure JPOXMLDOC01-appb-C000119
 実施例68の工程1と同様の条件で、化合物42の代わりに化合物68を、5’-O-(4,4’-ジメトキシトリチル)チミジンの代わりにN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(東京化成工業社製)(5.4mg)を用いて反応を実施し、化合物71を得た。
MS(ESI):[M+H] 2906.4242.
実施例71(4mer合成):化合物72の合成
Figure JPOXMLDOC01-appb-C000120
 実施例68の工程1と同様の条件で、化合物42の代わりに化合物68を、5’-O-(4,4’-ジメトキシトリチル)-2’-チミジンの代わりにN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(4.9mg)を用いて反応を実施し、化合物72を得た。
MS(ESI):[M+H] 2930.4184.
実施例72(5mer合成):化合物74の合成
Figure JPOXMLDOC01-appb-C000121
工程1 化合物67の合成
 窒素雰囲気下、化合物42(1.2g)のピリジン(20mL)溶液に5’-O-(4,4’-ジメトキシトリチル)チミジン(東京化成工業社製)(0.44g、0.80mmol)、炭酸ビスペンタフルオロフェニル(0.67g、1.7mmol)を加え、23分間撹拌した。その後N-[(2-シアノエチル)チオ]フタルイミド(0.19g、0.83mmol)を加え、1時間32分間撹拌した。その後、亜リン酸トリエチル(90μL、0.52mmol)、水(0.28mL、16mmol)を加えて25℃で50分間撹拌し、反応混合物を減圧下濃縮した。トルエン(25g)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(20mL)を加え、ピロール(0.11mL、1.6mmol)、ジクロロ酢酸(0.43mL、5.3mmol)を10℃で加え、2時間27分間撹拌した。ピリジン(3.0mL)を加えて室温まで昇温し、反応混合物をアセトニトリル(200g)に加えて析出した固体をろ過し、化合物95(0.72g)を薄い肌色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.25-1.89(m、99H)、2.20(s、3H)、2.21-2.89(m、13H)、3.06-3.20(m、5H)、3.21-3.98(m、11H)、4.19-4.4.44(m、6H)、5.32-5.34(m、2H)、6.10-6.23(m、2H)、6.58(s、2H)、7.41(t、1H)、7.51(d、1H)、7.95-8.08(m、1H)、8.70-9.60(m、2H).
31P-NMR:(300MHz;CDCl)δ27.55、27.94.
MS(ESI):[M+H] 1765.1162.
 窒素雰囲気下、得られた化合物95(0.72g)の塩化メチレン(15mL)とピリジン(2.3mL)の混合溶液に室温でホスホン酸(0.56g、6.8mmol)を加え、2,2-ジメチルブチリルクロリド(0.56mL、4.1mmol)を4分割して10分間おきに加えて31分間撹拌し、2,2-ジメチルブチリルクロリド(0.42mL、3.1mmol)を加えてさらに23分間撹拌した。その後、反応混合物をアセトニトリル(203g)に加えて析出した固体をろ過し、化合物67(0.72g)を白色固体として得た。
工程2 化合物68の合成
 窒素雰囲気下、化合物67(0.72g)のピリジン(19mL)溶液にN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(東京化成工業社製)(0.49g、0.77mmol)、炭酸ビスペンタフルオロフェニル(0.60g、1.5mmol)を加え、22分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(0.18g、0.76mmol)を加え、1時間10分間撹拌した。その後、反応混合物を2分割し、一方を減圧下濃縮した。トルエン(10g)を加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(10mL)を加え、ピロール(51μL、0.74mmol)、ジクロロ酢酸(0.20mL、2.4mmol)を10℃で加え、2時間10分撹拌した。ピリジン(1.2mL)を加えて室温まで昇温し、反応混合物をさらに2分割し、一方をアセトニトリル(50g)に加えて析出した固体を析出ろ過し、化合物77(0.18g)を薄い肌色固体として得た。
 窒素雰囲気下、得られた化合物77(0.18g)の塩化メチレン(3.0mL)とピリジン(0.50mL)の混合溶液に室温でホスホン酸(0.12g、1.5mmol)を加え、2,2-ジメチルブチリルクロリド(0.13mL、0.96mmol)を4分割して10分間おきに加えて57分間撹拌し、2,2-ジメチルブチリルクロリド(33μL、0.24mmol)を加えてさらに40分間撹拌した。その後、反応混合物をアセトニトリル(51g)に加えて析出した固体をろ過し、化合物68(0.15g)を白色固体として得た。
工程3 化合物73の合成
 工程2と同様の条件で、化合物67の代わりに化合物68を、N-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジンの代わりにN-イソブチリル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシグアノシン(東京化成工業社製)(86mg)を用いて、反応を実施し、化合物73(0.12g)を白色固体として得た。
MS(ESI):[M+H] 2759.2472.
工程4 化合物74の合成
 工程2と同様の条件で、化合物67の代わりに化合物73を、N-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジンの代わりにN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(66mg)を用いて、反応を実施した。硫化後の反応混合物を減圧下濃縮して、化合物74を主生成物として得た。
MS(ESI):[M+2H]2+ 1742.2655.
実施例73(3’位レブリニル基の脱保護):化合物75の合成
Figure JPOXMLDOC01-appb-C000122
 実施例72の工程4で得られた硫化後の反応混合物の半分を0℃に冷却し、ヒドラジン1水和物(4.4μL、0.091mmol)を加えて3時間40分撹拌した。さらにヒドラジン1水和物(2.2μL、0.045mmol)を加えて1時間7分撹拌し、アセチルアセトン(50μL)を加えた。その後、反応混合物をアセトニトリル(25g)に加えて析出した固体をろ過し、化合物75を得た。
MS(ESI):[M+2H]2+ 1693.2314.
実施例74(3’位レブリニル基の脱保護):化合物76の合成
Figure JPOXMLDOC01-appb-C000123
 実施例68の工程1で得られた、化合物82を含む硫化後の反応混合物の0.5重量%に、室温でヒドラジン1水和物(1.3μL)を加えて4時間撹拌した。反応混合物を減圧下濃縮して、化合物76を得た。
MS(ESI):[M+H] 1969.2134.
実施例75(3’位レブリニル基の脱保護):化合物78の合成
Figure JPOXMLDOC01-appb-C000124
 窒素雰囲気下、化合物77(99mg、45μmol)の塩化メチレン(2.0mL)と酢酸(0.40mL)の混合溶液を0℃に冷却し、ヒドラジン1水和物(5.2μL、0.11mmol)を加えて10時間28分撹拌した。反応混合物を減圧下濃縮して、メタノール(30g)に加えて析出した固体をろ過し、化合物78(70mg)を得た。
MS(ESI):[M+H] 2129.1466.
実施例76(硫化剤検討2mer合成):化合物82の合成
 実施例68の工程2と同様の条件で、硫化剤をN-[(2-シアノエチル)チオ]コハク酸イミド(ジャーナル オブ ケミカル ソサイエティー パーキン トランザクション 1、2002年、2619-2633頁に記載の方法に準じて合成した)(13.7mg)に変更して実施し、硫化後の反応混合物を減圧下濃縮し、化合物82を得た。
実施例77(アデニンへの擬似固相保護基導入):化合物79の合成
Figure JPOXMLDOC01-appb-C000125
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(41mg、0.075mmol)と化合物31(53mg、0.049mmol)の塩化メチレン(1.5mL)及びピリジン(0.30mL)の混合溶液に、40℃でHOBt(無水)(7.0mg、0.052mmol)を加え、続いてWSC・HCl(17.7mg、0.092mmol)を加えて5時間撹拌した。反応混合物を減圧下濃縮し、化合物79を得た。
MS(ESI):[M+H] 1620.1583.
実施例78(グアニンへの擬似固相保護基導入):化合物80の合成
Figure JPOXMLDOC01-appb-C000126
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシグアノシン(東京化成工業社製)(43mg、0.075mmol)と化合物31(50mg、0.046mmol)の塩化メチレン(1.5mL)及びピリジン(0.30mL)の混合溶液に、40℃でHOBt(無水)(7.2mg、0.053mmol)を加え、続いてWSC・HCl(18.4mg、0.096mmol)を加えて約1週間撹拌した。反応混合物を減圧下濃縮し、化合物80を得た。
MS(ESI):[M+H] 1636.1879.
参考合成例5(アデノシン3’位レブリニル化):5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシアデノシンの合成
Figure JPOXMLDOC01-appb-C000127
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(ケム-インペックス社製)(2.6g、4.6mmol)、DMAP(58mg、0.48mmol)及びレブリン酸(0.80g、6.9mmol)の塩化メチレン(50mL)溶液に、室温でWSC・HCl(1.3g、6.8mmol)を加え、3時間55分撹拌した。酢酸(0.45mL)及びトリエチルアミン(0.78mL)の水(20g)溶液を加えて5分間撹拌し、分液した。得られた有機層に水(20g)を加えて3分間撹拌し、分液した。得られた有機層の溶媒を減圧下留去した後に、シリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシアデノシン(2.8g、収率93%)を淡黄色泡状固体として得た。
H-NMR:(300MHz;CDCl)δ2.21(s、3H)、2.58-2.66(m、3H)、2.76-2.81(m、2H)、2.90-3.00(m、1H)、3.42(d、2H)、3.78(s、6H)、4.29(s、1H)、5.51(d、1H)、5.96(s、2H)、6.43-6.48(m、1H)、6.80(d、4H)、7.18-7.44(m、9H)、7.97(s、1H)、8.28(s、1H).
MS(ESI):[M+H] 652.2741.
参考合成例6(グアノシン3’位レブリニル化):5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシグアノシンの合成
Figure JPOXMLDOC01-appb-C000128
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(ケム-インペックス社製)(1.5g、2.6mmol)、DMAP(39mg、0.32mmol)及びレブリン酸(0.63g、5.4mmol)の塩化メチレン(60mL)溶液に、室温でWSC・HCl(1.0g、5.4mmol)を加え、27時間44分撹拌した。酢酸(0.26mL)及びトリエチルアミン(0.46mL)の水(20g)溶液を加えて23分間撹拌し、分液した。得られた有機層に水(21g)を加えて8分間撹拌し、分液した。得られた有機層の溶媒を減圧下留去し、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシグアノシン(1.8g)を淡黄色固体として得た。
H-NMR:(300MHz;CDCl)δ2.20(s、3H)、2.49-2.94(m、6H)、3.39(s、2H)、3.77(d、6H)、4.24(s、1H)、5.52(d、1H)、6.07(s、2H)、6.19-6.24(m、1H)、6.80(d、4H)、7.19-7.40(m、9H)、7.63(s、1H)、11.97(brs、1H).
MS(ESI):[M+H] 668.2715.
実施例79(グアニンへの擬似固相保護基導入):化合物81の合成
Figure JPOXMLDOC01-appb-C000129
 窒素雰囲気下、化合物31(8.9mg、8.2μmol)の塩化メチレン(1.0mL)溶液に、室温でクロロギ酸エチル(1.3μL、0.014mmol)を加え、続いてトリエチルアミン(1.9μL、0.014mmol)を加えて1時間57分撹拌した。さらに、クロロギ酸エチル(1.3μL、0.014mmol)、トリエチルアミン(1.9μL、0.014mmol)を加えて36分間撹拌した。その後、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシグアノシン(10.5mg、0.016mmol)を室温で加えて59分間撹拌後、トリエチルアミン(0.10mL、0.72mmol)を室温で加え、40℃に昇温して3時間3分撹拌した。反応混合物を減圧下濃縮し、化合物81を得た。
MS(ESI):[M+H] 1734.1983.
実施例80(グアニンへの擬似固相保護基導入):化合物81の合成
Figure JPOXMLDOC01-appb-C000130
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシグアノシン(0.94g、1.4mmol)と化合物31(1.0g、0.93mmol)の塩化メチレン(100mL)溶液に、40℃でジイソプロピルエチルアミン(0.78mL、4.6mmol)、DMAP(0.57g、4.7mmol)、WSC・HCl(0.89g、4.6mmol)の順に加え、3時間21分撹拌した。反応混合物を減圧下濃縮し、メタノール(100g)を加えて析出した固体をろ過し、化合物81の粗物(1.5g)を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物81(47mg)を得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.81(m、96H)、2.19(s、3H)、2.20-2.60(m、7H)、2.75-2.80(m、2H)、2.94-3.06(m、4H)、3.37(d、2H)、3.38-3.79(m、8H)、3.95(t、6H)、3.90-4.50(m、3H)、5.50(d、1H)、6.12-6.20(m、1H)、6.57(s、2H)、6.76-6.80(m、4H)、7.19-7.43(m、9H)、7.79(s、1H)、9.34(brs、1H)、11.89(brs、1H).
MS(ESI):[M+H] 1734.1951.
参考合成例7:5’-O-(tert-ブチルジメチルシリル)-3’-O-レブリニルチミジンの合成
Figure JPOXMLDOC01-appb-C000131
 窒素雰囲気下、化合物1(5.3g、15mmol)、DMAP(0.17g、1.4mmol)及びレブリン酸(2.8g、24mmol)のTHF(38g)溶液に、室温でWSC・HCl(4.6g、24mmol)を加え、15時間13分撹拌した。酢酸(1.5g、26mmol)及びトリエチルアミン(2.6g、19mmol)の水(38g)溶液を加えて5分間撹拌し、酢酸エチル(37g)を加えて14分間撹拌し、分液した。得られた有機層の溶媒を減圧下留去し、5’-O-(tert-ブチルジメチルシリル)-3’-O-レブリニルチミジン(6.9g)を薄いオレンジ色固体として得た。
H-NMR:(300MHz;CDCl)δ0.13(s、6H)、0.93(s、9H)、1.92(d、3H)、2.05-2.15(m、1H)、2.21(s、3H)、2.39-2.45(m、1H)、2.58-2.62(m、2H)、2.76-2.81(m、2H)、3.90-3.91(m、2H)、4.099-4.103(m、1H)、5.26(d、1H)、6.37(q、1H)、7.55(d、1H)、9.34(brs、1H).
実施例81(チミン3位に擬似固相保護基が結合したヌクレオシドの合成):化合物85の合成
Figure JPOXMLDOC01-appb-C000132
工程1 化合物83の合成
 窒素雰囲気下、3,4,5-トリス(オクタデシルオキシ)安息香酸(国際公開第2014-077292号に記載の方法に準じて合成した)(3.0g、3.2mmol)、炭酸ナトリウム(1.1g、10mmol)、硫酸水素テトラ-n-ブチルアンモニウム(0.13g、0.38mmol)の塩化メチレン(71g)と水(30g)の混合溶液に、室温でクロロメタンスルホン酸クロリド(0.39mL、3.9mmol)を加え、2時間42分撹拌した。さらにクロロメタンスルホン酸クロリド(60μL、0.60mmol)を加えて18分間撹拌した後に、40℃に昇温して10分間撹拌した。撹拌を停止して分液し、得られた水層に塩化メチレンを加えて抽出した。得られた有機層を合わせて、溶媒を減圧下留去し、アセトニトリル(70g)を加えて析出した固体をろ過し、化合物83を白色固体(3.16g)として得た。
H-NMR:(300MHz;CDCl)δ0.86-0.90(m、9H)、1.26-1.84(m、96H)、3.99-4.05(m、6H)、5.93-6.01(m、2H)、7.27-7.36(m、2H).
工程2 化合物84の合成
 窒素雰囲気下、化合物83(1.0g、1.1mmol)、5’-O-(tert-ブチルジメチルシリル)-3’-O-レブリニルチミジン(0.71g、1.6mmol)のDMF(50mL)溶液に、70℃で炭酸カリウム(0.21g、1.5mmol)を加えて2時間5分撹拌し、さらに炭酸カリウム(0.91g、6.mmol)を加えて2時間44分撹拌した。その後、反応混合物をアセトニトリル(201g)に加えて析出した固体をろ過し、化合物84(1.01g)を黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.14(s、6H)、0.86-0.93(m、18H)、1.26-1.81(m、96H)、2.13-2.43(m、5H)、2.56-2.60(m、2H)、2.74-2.79(m、2H)、3.92-4.12(m、9H)、5.26(d、1H)、6.22(q、2H)、6.42(q、1H)、7.22(s、2H)、7.59(s、1H).
MS(ESI):[M+H] 1394.0827.
工程3 化合物85の合成
 窒素雰囲気下、化合物84(0.94g、0.67mmol)、酢酸(0.41mL、7.2mmol)のTHF(10mL)溶液に、30℃で1.0M TBAF/THF溶液(3.5mL、3.5mmol)を加え、4時間2分撹拌した。その後、反応混合物をメタノール(100g)に加えて析出した固体をろ過し、化合物85(0.85g、収率99%(工程3))を黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.81(m、96H)、2.20(s、3H)、2.39-2.44(m、2H)、2.58-2.60(m、2H)、2.76-2.78(m、2H)、3.93(t、3H)、3.96-4.01(m、6H)、4.11(d、1H)、5.34-5.38(m、1H)、6.21(q、2H)、6.32(t、1H)、7.21(s、2H)、7.61(d、1H).
MS(ESI):[M+H] 1279.9950.
実施例82(H-ホスホネート化):化合物86の合成
Figure JPOXMLDOC01-appb-C000133
 窒素雰囲気下、亜リン酸(0.40g、4.9mmol)のピリジン(15mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(0.45mL、3.3mmol)を加え、39分間撹拌した。この溶液に化合物85(0.65g、0.51mmol)を加えて40℃で1時間27分撹拌した。その後、反応混合物をアセトニトリル(151g)に加えて析出した固体をろ過し、化合物86(0.66g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.81(m、96H)、1.97(d、3H)、2.19(s、3H)、2.34-2.41(m、2H)、2.55-2.59(m、2H)、2.74-2.78(m、2H)、3.96-4.01(m、6H)、4.20-4.29(m、3H)、5.39(d、1H)、6.20(q、2H)、6.45-6.50(m、1H)、6.96(d、1H)、7.21(s、2H)、7.76-7.81(m、1H).
31P-NMR:(300MHz;CDCl)δ6.28.
MS(ESI):[M-H] 1341.9722.
実施例83(2mer合成):化合物87の合成
Figure JPOXMLDOC01-appb-C000134
 窒素雰囲気下、化合物86(51mg)と化合物1(19mg、0.053mmol)のピリジン(1.0mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(24μL、0.18mmol)を加え、19分間撹拌した。その後0.05Mのヨウ素を含む、ピリジンと水の溶液(1.1mL、0.055mmol)を加え、36分間撹拌した。その後、水(0.14mL)を加えて70℃に昇温し、15時間43分撹拌した。その後、反応混合物を減圧下濃縮し、ピリジンを加えて減圧下濃縮する操作を2回実施し、TBS基が脱保護体された化合物を含む反応混合物を得た。
 窒素雰囲気下、亜リン酸(43mg、0.52mmol)のピリジン(1.5mL)溶液に、40℃で2,2-ジメチルブチリルクロリド(49μL、0.36mmol)を加え、38分間撹拌した。この溶液に上記の脱保護された化合物を含む反応混合物を加えて40℃で2時間14分撹拌した。その後、反応混合物をアセトニトリル(26g)に加えて析出した固体をろ過し、化合物87(52mg)を褐色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.08-1.83(m、96H)、1.89(s、3H)、1.94(s、3H)、2.19(s、3H)、2.23-2.79(m、8H)、3.96-4.00(m、6H)、4.18-4.41(m、6H)、5.18(brs、1H)、5.38(d、1H)、6.14-6.25(m、3H)、6.43-6.48(m、1H)、6.86(d、1H)、7.21(s、2H)、7.46(s、1H)、7.65(s、1H).
31P-NMR:(300MHz;CDCl)δ-1.10、6.08.
MS(ESI):[M-H] 1646.0226.
実施例84(2mer合成):化合物88の合成
Figure JPOXMLDOC01-appb-C000135
 窒素雰囲気下、化合物86(52mg)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(東京化成工業社製)(36mg、0.057mmol)のピリジン(1.0mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(15μL、0.11mmol)を加え、53分間撹拌した。その後単体硫黄(13mg、0.41mmol)を加え、2時間10分撹拌した。その後、反応混合物を減圧下濃縮した。トルエン(2mL)を加えて減圧下濃縮する操作を3回繰り返した後に、塩化メチレン(0.50mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(0.25mL×2回)で洗浄した。この溶液に、ピロール(7.4μL、0.11mmol)及びホスホン酸(46mg、0.56mmol)を室温で加え、51分間撹拌した。ピリジン(0.15mL)を室温で加えた後、2,2-ジメチルブチリルクロリド(49μL、0.36mmol)を3分割して10分間おきに加えて35分間撹拌し、2,2-ジメチルブチリルクロリド(16μL、0.12mmol)を加えてさらに45分間撹拌した。その後、反応混合物をアセトニトリル(26g)に加えて析出した固体をろ過し、化合物88(47mg)を淡黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、0.98-1.99(m、99H)、2.13-2.34(m、7H)、2.56(brs、2H)、2.75(brs、2H)、3.97-4.21(m、12H)、5.17-5.35(m、2H)、6.14-6.21(m、3H)、6.44(t、1H)、6.93(d、1H)、7.20(s、2H)、7.54-8.34(m、8H).
31P-NMR:(300MHz;CDCl)δ5.11、59.77、61.38.
MS(ESI):[M-H] 1751.0079.
実施例85(チミン3位に擬似固相保護基が結合したヌクレオシドの合成):化合物90の合成
Figure JPOXMLDOC01-appb-C000136
工程1 化合物89の合成
 窒素雰囲気下、化合物31(1.0g、0.92mmol)、炭酸ナトリウム(0.36g、3.4mmol)、硫酸水素テトラ-n-ブチルアンモニウム(34mg、0.11mmol)の塩化メチレン(30g)と水(10g)の混合溶液に、室温でクロロメタンスルホン酸クロリド(0.20mL、2.0mmol)を加えて41分間撹拌した。その後、40℃に昇温し、2時間19分撹拌した。撹拌を停止して分液し、得られた水層に塩化メチレンを加えて抽出した。得られた有機層を合わせて、溶媒を減圧下留去し、アセトニトリル(50g)を加えて析出した固体をろ過し、化合物89を淡黄色固体(0.96g)として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.84(m、96H)、2.70-2.73(m、4H)、3.05(s、3H)、3.74(brs、2H)、3.93-3.98(m、6H)、4.36(brs、2H)、5.69(s、2H)、6.58(s、2H).
MS(ESI):[M+H] 1132.9248.
工程2 化合物90の合成
 窒素雰囲気下、化合物89(11mg、9.7μmol)、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニルチミジン(国際公開第2014-077292号に記載の方法に準じて合成した)(10mg、0.016mmol)のDMF(0.20mL)溶液に、60℃で炭酸カリウム(20mg、0.15mmol)を加えて19時間30分撹拌した。反応混合物を減圧下濃縮し、化合物90を得た。
MS(ESI):[M+H] 1739.1983.
実施例86(チミン3位に擬似固相保護基が結合したヌクレオシドの合成):化合物91の合成
Figure JPOXMLDOC01-appb-C000137
 実施例85の工程2と同様の条件で、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニルチミジンを5’-O-(tert-ブチルジメチルシリル)-3’-O-レブリニルチミジン(11mg)に変更して反応を実施した。反応混合物を減圧下濃縮し、化合物91を得た。
MS(ESI):[M+H] 1551.1540.
実施例87(塩化メチレン溶媒で2mer合成):化合物43の合成
 窒素雰囲気下、化合物42(98mg)、化合物1(36mg、0.10mmol)とピリジン(53μL、0.66mmol)の塩化メチレン(2.0mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(45μL、0.33mmol)を加え、50分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(0.98mL、0.098mmol)を加え、38分間撹拌した。その後、亜リン酸ジメチル(3.0μL、0.033mmol)を加え、塩化メチレン(1.0mL)を加えて、減圧下濃縮した。塩化メチレン(5.0mL)を加え、再度減圧下濃縮した。不溶物を吸引ろ過で除去し、塩化メチレン(1.0mL×2回)洗浄した。この溶液に、フッ化水素-ピリジン(84.5μL、3.3mmol)を40℃で加え、5時間33分撹拌した。TMSCl(0.41mL、3.3mmol)を加えて、反応混合物を減圧下濃縮し、化合物43を得た。
実施例88(THF溶媒で2mer合成):化合物43の合成
 窒素雰囲気下、化合物42(85mg)、化合物1(30mg、0.084mmol)とピリジン(45μL、0.55mmol)のTHF(1.5mL)溶液に、25℃で2,2-ジメチルブチリルクロリド(38μL、0.28mmol)を加え、14分間撹拌した。その後0.1Mのヨウ素を含む、ピリジン、THF及び水の溶液(1.2mL、0.12mmol)を加え、3時間49分撹拌した。その後、亜リン酸ジメチル(3.0μL、0.033mmol)を加え、反応混合物を減圧下濃縮した。トルエン(3.0mL)を加えて、減圧下濃縮を3回繰り返した後に、塩化メチレン(1.0mL)を加え、不溶物を吸引ろ過で除去し、塩化メチレン(1.0mL×2回)で洗浄した。この溶液に、フッ化水素-ピリジン(6.5μL、0.25mmol)を25℃で加え、40℃で終夜撹拌した。その後、反応混合物を減圧下濃縮して、化合物43を得た。
実施例89(縮合剤検討):化合物92の合成
Figure JPOXMLDOC01-appb-C000138
 実施例35の工程2と同様の条件で、縮合剤を2、4、6-トリイソプロピルベンゼンスルホン酸クロリド(8.4mg)に変更して反応を実施し、カップリング反応後の反応混合物を減圧下濃縮して、化合物92を主生成物として得た。
MS(ESI):[M-H] 2284.3243.
実施例90(縮合剤検討):化合物92の合成
 実施例35の工程2と同様の条件で、縮合剤を2、4-メシチレンジスルホン酸ジクロリド(8.8mg)に変更して反応を実施し、カップリング後反応の反応混合物を減圧下濃縮して、化合物92を主生成物として得た。
実施例91(縮合剤検討):化合物92の合成
 実施例35の工程2と同様の条件で、縮合剤を1-アダマンタンカルボニルクロリド(5.5mg)に変更して反応を実施し、カップリング反応後の反応混合物を減圧下濃縮して、化合物92を主生成物として得た。
実施例92(核酸塩基に擬似固相保護基を導入したモノマー及び2mer合成):化合物41の合成
Figure JPOXMLDOC01-appb-C000139
工程1 化合物93の合成
 実施例66の工程2と同様の条件で、3’-O-(tert-ブチルジフェニルシリル)-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジンの代わりに5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(ケム-インペックス社製)(4.0g)を用いて反応を実施し、化合物93(7.4g)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.19-1.80(m、96H)、2.17-2.28(m、1H)、2.69-2.80(m、5H)、3.05(s、3H)、3.41-3.79(m、10H)、3.92-3.97(m、6H)、4.09-4.46(m、4H)、6.24(t、1H)、6.57(s、2H)、6.84(d、4H)、7.15-7.40(m、10H)、8.20(d、1H)、9.27(brs、1H).
MS(ESI):[M+H] 1596.1595.
工程2 化合物94の合成
 窒素雰囲気下、化合物93(7.4g、4.7mmol)、DMAP(0.065g、0.53mmol)、レブリン酸(0.87g、7.5mmol)の塩化メチレン(70mL)溶液に、室温でWSC・HCl(1.4g、7.5mmol)を加え、5時間4分撹拌した。その後、反応混合物をアセトニトリル(504g)に加えて析出した固体をろ過し、化合物94(7.9g)を淡黄色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.20-1.81(m、96H)、2.19(s、3H)、2.23-2.33(m、1H)、2.51-2.60(m、2H)、2.70-2.80(m、7H)、3.06(s、3H)、3.44(d、2H)、3.79(brs、8H)、3.93-3.98(m、6H)、4.03-4.36(m、3H)、5.39(d、2H)、6.27(t、1H)、6.57(s、2H)、6.81-6.85(m、4H)、7.11(d、1H)、7.21-7.36(m、9H)、8.07(d、1H)、9.32(brs、1H).
工程3 化合物41の合成
 窒素雰囲気下、化合物94(5.8g、3.4mmol)の塩化メチレン(50g)溶液に、室温でピロール(0.71mL、10mmol)、ジクロロ酢酸(1.4mL、17mmol)を加え、23分間撹拌した。ピリジン(1.4mL、17mmol)を加え、反応混合物をメタノール(502g)に加えて析出した固体をろ過し、化合物41(4.6g)を白色固体として得た。
実施例93(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにアセトヒドラジド(7.6mg)を用いて室温で反応を実施し、反応混合物を減圧下濃縮して、化合物78を得た。
実施例94(3’位レブリニル基の脱保護):化合物78の合成
 窒素雰囲気下、化合物77(10mg、4.5μmol)の塩化メチレン(0.20mL)とピリジン(0.20mL)の混合溶液を0℃に冷却し、硫酸ヒドラジニウム(10.7mg、0.082mmol)を加えて、40℃で終夜撹拌した。反応混合物を減圧下濃縮して、化合物78を得た。
実施例95(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにエチレンジアミン(1.5μL)を用いて40℃で反応を実施し、反応混合物を減圧下濃縮して、化合物78を得た。
実施例96(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにヒドラジン酢酸塩(0.7mg)を用いて反応を実施し、反応混合物を減圧下濃縮して、化合物78を主生成物として得た。
実施例97(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにフェニルヒドラジン(2.5mg)を用いて反応を実施し、反応混合物を減圧下濃縮して、化合物78を得た。
実施例98(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにp-トルエンスルホニルヒドラジン(2.0mg)を用いて反応を実施し、反応混合物を減圧下濃縮して、化合物78を得た。
実施例99(3’位レブリニル基の脱保護):化合物78の合成
 実施例75と同様の条件で、ヒドラジン1水和物の代わりにメチルカルバゼート(3.1mg)を用いて反応を実施し、反応混合物を減圧下濃縮して、化合物78を得た。
実施例100(3’位レブリニル基の脱保護):化合物96の合成
Figure JPOXMLDOC01-appb-C000140
 窒素雰囲気下、ヒドラジン1水和物(0.50mg、10.3mmol)の塩化メチレン(0.20mL)と酢酸(40μL)の混合溶液を0℃に冷却し、化合物41(10mg、7.3μL)の塩化メチレン(0.10mL)溶液を加え、5時間撹拌した。反応混合物をLC-MSにより分析し、化合物96の生成を確認した。
実施例101(3’位レブリニル基の脱保護):化合物96の合成
 窒素雰囲気下、Chirazyme L-2(3.7mg)を0.15Mリン酸緩衝液(pH6.8)(0.23g)に加えた。その後、化合物41(9.0mg、6.5μmol)の1,4-ジオキサン(1.0g)溶液を加えて40℃に昇温し、13時間20分撹拌した。反応混合物をLC-MSにより分析し、化合物96の生成を確認した。
実施例102(3’位レブリニル基の脱保護):化合物96の合成
 窒素雰囲気下、Chirazyme L-5(10mg)を0.15Mリン酸緩衝液(pH6.8)(0.21g)に加えた。その後、化合物41(10mg、7.2μmol)の1,4-ジオキサン(1.0g)溶液を加えて40℃に昇温し、13時間20分撹拌した。反応混合物をLC-MSにより分析し、化合物96の生成を確認した。
実施例103(3’末端にヒドロキシ基を持つ5mer合成):化合物97の合成
Figure JPOXMLDOC01-appb-C000141
工程1 化合物74の合成
 実施例72の工程4と同様の条件で反応を実施し、硫化後の反応混合物をメタノールに加えて析出した固体をろ過し、化合物74(2.3g、90%)を薄い肌色固体として得た。
工程2 化合物97の合成
 窒素雰囲気下、化合物74(0.50g、0.14mmol)のTHF(20mL)溶液を0℃に冷却し、酢酸(3.0mL)を加えた後に、ヒドラジン1水和物(14μL、0.29mmol)を加え、6時間撹拌した。反応混合物にアセチルアセトン(100μL)を加えて室温まで昇温し、減圧下濃縮した後に、メタノール(102g)に加えて析出した固体をろ過し、化合物97(0.45g)を得た。
MS(ESI):[M+2H]2+ 1693.2456.
実施例104(5’末端にH-ホスホネート基を持つ5mer合成):化合物99の合成
Figure JPOXMLDOC01-appb-C000142
工程1 化合物98の合成
 窒素雰囲気下、化合物74(0.51g、0.15mmol)の塩化メチレン溶液(10mL)を10℃に冷却し、ピロール(30μL、0.43mmol)を加えて14分間撹拌した。その後、ジクロロ酢酸(82μL、1.0mmol)を加え、4時間3分撹拌した。ピリジン(1.5mL)を加えて室温まで昇温し、反応混合物をアセトニトリル(86g)に加えて析出した固体をろ過し、化合物98(0.46g)を得た。
MS(ESI):[M+2H]2+ 1591.1922.
工程2 化合物99の合成
 窒素雰囲気下、化合物98(0.45g、0.14mmol)の塩化メチレン(5.0mL)とピリジン(1.0mL)の混合溶液に40℃でホスホン酸(0.20g、2.4mmol)を加え、2,2-ジメチルブチリルクロリド(0.19mL、1.4mmol)を4分割して10分間おきに加えて1時間53分撹拌し、2,2-ジメチルブチリルクロリド(0.42mL、0.71mmol)を加えてさらに1時間8分撹拌した。その後、反応混合物をアセトニトリル(84g)に加えて析出した固体をろ過し、化合物99(0.42g)を白色固体として得た。
 
MS(ESI):[M+2H]2+ 1623.1824.
実施例105(5mer合成):化合物99の合成
 窒素雰囲気下、化合物74(10mg、2.9μmol)、ピロール(60μL、8.6μmmol)の塩化メチレン溶液(0.20mL)を10℃に冷却し、ホスホン酸(0.71mg、8.6μmol)を加え、1時間35分撹拌した。反応混合物をLC-MSにより分析し、化合物98が主生成物であることを確認した。その後、ピリジン(30μL)を加えて室温まで昇温し、2,2-ジメチルブチリルクロリド(8.0μL、58μmmol)を加えて30分間撹拌した。反応混合物をLC-MS分析し、化合物99が主生成物であることを確認した。
実施例106(10mer合成):化合物100の合成
Figure JPOXMLDOC01-appb-C000143
 窒素雰囲気下、化合物97(0.44g、0.13mmol)と化合物99(0.41g)のピリジン(10mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(0.80g、2.0mmol)を加え、11分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(62mg、0.27mmol)を加え、1時間52分撹拌した。反応混合物をメタノール(102g)に加えて析出した固体をろ過し、化合物100(0.81g)を得た。
MS(ESI):[M+3H]3+ 2232.9346.
実施例107(3’末端にヒドロキシ基を持つ10mer合成):化合物101の合成
Figure JPOXMLDOC01-appb-C000144
 窒素雰囲気下、化合物100(0.39g、58μmol)のTHF(15mL)溶液を0℃に冷却し、酢酸(2.3mL)を加えた後に、ヒドラジン1水和物(5.5μL、0.11mmol)を加え、7時間撹拌した。更にヒドラジン1水和物(5.5μL、0.11mmol)を加え、1時間12分撹拌した。反応混合物にアセチルアセトン(0.50mL)を加えて室温まで昇温し、減圧下濃縮した後に、該濃縮物をメタノール(100g)に加えて析出した固体をろ過し、化合物101(0.35g)を得た。
 窒素雰囲気下、化合物101(0.15g、23μmol)のTHF(3.0mL)溶液を10℃に冷却し、酢酸(0.90mL)を加えた後に、ヒドラジン1水和物(7.5μL、0.15mmol)を加え、30分間撹拌した。反応混合物をメタノール(57g)に加えて析出した固体をろ過し、化合物101(0.14g)を得た。
MS(ESI):[M+3H]3+ 2200.2656.
実施例108(5’末端にH-ホスホネート基を持つ10mer合成):化合物103の合成
Figure JPOXMLDOC01-appb-C000145
工程1 化合物102の合成
 窒素雰囲気下、化合物100(0.39g、58μmol)、インドール(21mg、0.18mmol)の塩化メチレン溶液(8.0mL)を10℃に冷却し、ジクロロ酢酸(33μL、0.40mmol)を加え、2時間撹拌した。更にジクロロ酢酸(14μL、0.17mmol)を加え、2時間32分撹拌した。ピリジン(0.60mL)を加えて室温まで昇温し、反応混合物をメタノール(100g)に加えて析出した固体をろ過し、化合物101(0.35g)を得た。
MS(ESI):[M+3H]3+ 2132.2235.
工程2 化合物103の合成
 窒素雰囲気下、化合物101(0.17g、27μmol)の塩化メチレン(1.0mL)とピリジン(0.20mL)の混合溶液に40℃でホスホン酸(38mg、0.46mmol)を加え、2,2-ジメチルブチリルクロリド(36μL、0.27mmol)を4分割して10分間おきに加えて1時間5分撹拌し、2,2-ジメチルブチリルクロリド(73μL、0.53mmol)を加えてさらに49分間撹拌した。その後、反応混合物をアセトニトリル(51g)に加えて析出した固体をろ過し、化合物102(0.17g)を白色固体として得た。
MS(ESI):[M+3H]3+ 2153.5570.
実施例109(11mer合成):化合物104の合成
Figure JPOXMLDOC01-appb-C000146
 窒素雰囲気下、化合物101(5.5mg、0.83μmol)と化合物42(2.7mg)のピリジン(0.20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(50mg、0.13mmol)を加え、3時間8分撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(3.4mg、15μmol)を加え、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物104の生成を確認した。
MS(ESI):[M+3H]3+ 2707.5985.
実施例110(11mer合成):化合物105の合成
Figure JPOXMLDOC01-appb-C000147
 窒素雰囲気下、化合物102(5.8mg、0.91μmol)と5’-O-(4,4’-ジメトキシトリチル)-3’-O-ヒドロキシホスフィニル-2’-デオキシシチジントリエチルアミン塩(ケムジーンズ社製)(2.3mg、2.9μmmol)のピリジン(0.20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(28mg、72μmol)を加え、1時間40分撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(3.6mg、16μmol)を加え、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物105が主生成物であることを確認した。
MS(ESI):[M+3H]3+ 2386.9640.
実施例111(11mer合成):化合物105の合成
Figure JPOXMLDOC01-appb-C000148
 窒素雰囲気下、化合物103(4.5mg、0.70μmol)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシシチジン(東京化成工業社製)(2.9mg、4.6μmmol)のピリジン(0.20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(23mg、57μmol)を加え、28分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(2.8mg、12μmol)を加え、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物105の生成を確認した。
実施例112(3’末端にH-ホスホネート基を持つ10mer合成):化合物106の合成
Figure JPOXMLDOC01-appb-C000149
 窒素雰囲気下、亜リン酸ジフェニル(2.0μL、10μmol)のピリジン(0.20mL)溶液に、室温で化合物101(9.3mg、1.4μmol)を加えて、室温で3時間7分撹拌した。その後、亜リン酸ジフェニル(2.0μL、10μmol)を追加し、室温で11時間50分撹拌した。水、トリエチルアミンを順に加え、反応混合物をLC-MSにより分析し、化合物106の生成を確認した。
MS(ESI):[M+3H]3+ 2221.5833.
実施例113(10merの脱保護):化合物107の合成
Figure JPOXMLDOC01-appb-C000150
 窒素雰囲気下、化合物101(8.7mg、1.3μmol)のエタノール(0.15g)懸濁液を45℃に昇温し、40%メチルアミン水溶液(0.50mL)を加え、20分間撹拌した。反応混合物をLC-MSにより分析し、化合物107の生成を確認した。
MS(ESI):[M+2H]2+ 1566.1633
実施例114(3’末端にH-ホスホネート基を持つ5mer合成):化合物108の合成
Figure JPOXMLDOC01-appb-C000151
 窒素雰囲気下、亜リン酸ジフェニル(3.9μL、20μmol)のピリジン(0.20mL)溶液に、室温で化合物97(9.0mg、2.7μmol)を加えて、室温で1時間撹拌した。その後、水(50μL)を加え、反応混合物をアセトニトリルに加えて析出した固体をろ過し、化合物108(0.80mg)を白色固体として得た。
MS(ESI):[M+2H]2+ 1725.2231.
実施例115(15mer合成):化合物109の合成
Figure JPOXMLDOC01-appb-C000152
 窒素雰囲気下、化合物102(1.7mg、0.27μmol)と化合物108(0.80mg)のピリジン(0.20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(29mg、73μmol)を加え、30分間撹拌した。反応混合物をLC-MS分析し、化合物109の生成を確認した。
MS(ESI):[M+4H]4+ 2457.0209.
実施例116(15mer合成):化合物107の合成
Figure JPOXMLDOC01-appb-C000153
 窒素雰囲気下、化合物101(11mg、1.7μmol)と化合物99(4.8mg)のピリジン(0.20mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(64mg、0.16mmol)を加え、1時間5分撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(5.0mg、22μmol)を加え、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物110の生成を確認した。
MS(ESI):[M+4H]4+ 2478.2707.
実施例117(アデニンへの擬似固相保護基導入):化合物111の合成
Figure JPOXMLDOC01-appb-C000154
 窒素雰囲気下、化合物31(11mg、10μmol)の塩化メチレン(0.20mL)とDMF(5.0μL)の混合溶液を10℃に冷却し、塩化チオニル(4.0μL、55μL)を加えた後に室温に昇温し、58分間撹拌した。この反応混合物を、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシアデノシン(12mg、18μmol)とジイソプロピルエチルアミン(14μL、83μmol)の塩化メチレン(0.20mL)溶液に10℃で加え、1時間20分撹拌した。反応混合物をLC-MSにより分析し、化合物111の生成を確認した。
MS(ESI):[M+H] 1718.2007.
実施例118(グアニンへの擬似固相保護基導入):化合物81の合成
Figure JPOXMLDOC01-appb-C000155
 窒素雰囲気下、化合物31(12mg、11μmol)の塩化メチレン(0.30mL)とDMF(5.0μL)の混合溶液に、室温で塩化チオニル(4.0μL、55μL)を加えて、20分間撹拌した。この反応混合物を、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシグアノシン(10mg、15μmol)とジイソプロピルエチルアミン(28μL、0.17mmol)の塩化メチレン(0.20mL)溶液に室温で加え、30分間撹拌した。反応混合物をLC-MS分析し、化合物81の生成を確認した。
実施例119(アデニンへの擬似固相保護基導入):化合物112の合成
Figure JPOXMLDOC01-appb-C000156
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシアデノシン(0.93g、1.4mmol)と化合物31(1.1g、0.97mmol)の塩化メチレン(100mL)溶液に、40℃でDMAP(0.56g、4.6mmol)、WSC・HCl(0.90g、4.7mmol)の順に加え、16時間35分撹拌した。反応混合物を減圧下濃縮し、メタノール(102g)を加えて析出した固体をろ過し、化合物112の粗物(1.3g)を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物112(0.68g)を得た。
H-NMR:(300MHz;CDCl)δ0.85(t、9H)、1.25-1.81(m、96H)、2.21(s、3H)、2.59-3.07(m、11H)、3.26-3.78(m、12H)、3.93-4.31(m、9H)、5.53(d、1H)、6.48-6.49(m、1H)、6.59(s、2H)、6.77-6.80(m、4H)、7.20-7.38(m、9H)、8.10(s、1H)、8.61(s、1H)、8.83(brs、1H).
MS(ESI):[M+H] 1718.2015.
実施例120(擬似固相保護基が導入されたアデノシンの5’位官能基変換):化合物114の合成
Figure JPOXMLDOC01-appb-C000157
工程1 化合物113の合成
 窒素雰囲気下、化合物112(0.29g、0.17mmol)の塩化メチレン(1.0mL)溶液を10℃に冷却し、ピロール(35μL、0.51mmol)を加えて5分間撹拌した。その後、ジクロロ酢酸(42μL、0.51mmol)を加え、1時間13分撹拌した。ピリジン(0.14mL)を加えて室温まで昇温し、反応混合物をアセトニトリル(50g)に加えて析出した固体をろ過し、化合物113(0.20g)を得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.16-1.83(m、96H)、2.22(s、3H)、2.45-2.51(m、1H)、2.59-2.63(m、2H)、2.79-2.83(m、4H)、3.07-3.20(m、4H)、3.27-4.29(m、15H)、5.56(d、1H)、6.31-6.36(m、1H)、6.58(s、2H)、8.06(d、1H)、8.64(s、1H)、8.93(brs、1H).
MS(ESI):[M+H] 1416.0785.
工程2 化合物114の合成
 窒素雰囲気下、ホスホン酸(17mg、0.21mmol)のピリジン(0.30mL)溶液を40℃に昇温し、2,2-ジメチルブチリルクロリド(6.3μL、46μmol)を加えて30分撹拌した。その後、化合物113(11mg、7.8μmol)を加えて2時間15分撹拌し、2,2-ジメチルブチリルクロリド(21μL、0.15mmol)を加えてさらに1時間10分撹拌した。反応混合物をLC-MSにより分析し、化合物114が主生成物であることを確認した。
MS(ESI):[M+H] 1480.0474.
実施例121(擬似固相保護基が導入されたアデノシンの3’位脱保護):化合物115の合成
Figure JPOXMLDOC01-appb-C000158
 窒素雰囲気下、化合物112(33mg、19μmol)の塩化メチレン(0.13g)溶液に室温で酢酸(0.20mL)を加えた後に0℃に冷却し、ヒドラジン1水和物(1.9μL、39μmol)を加え、4時間30分撹拌した。反応混合物をLC-MSにより分析し、化合物115が主生成物であることを確認した。
MS(ESI):[M+H] 1620.1626.
実施例122(新規擬似固相保護基の合成及びアデノシンの5’位官能基変換):化合物120の合成
Figure JPOXMLDOC01-appb-C000159
工程1 化合物116の合成
 窒素雰囲気下、5’-O-(4,4’-ジメトキシトリチル)-3’-O-レブリニル-2’-デオキシアデノシン(2.0g、3.1mmol)とDMAP(0.78g、6.4mmol)の塩化メチレン(10mL)溶液を40℃に昇温し、N-α-(9-フルオレニルメトキシカルボニル)-N-α-メチルグリシン(2.0g、6.3mmol)、WSC・HCl(1.2g、6.3mmol)の順に加えて、40℃で3時間撹拌した。室温に冷却して、5%炭酸水素ナトリウム水溶液で2回洗浄し、得られた有機層を水で1回洗浄した。有機層を減圧下濃縮した後にシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物116(1.3g)を得た。
H-NMR:(300MHz;CDCl)δ2.21(s、3H)、2.42-2.81(m、5H)、3.05-3.14(m、4H)、3.45(brs、2H)、3.77(s、6H)、4.00-4.69(m、6H)、5.55(brs、1H)、6.50(brs、1H)、6.77-6.91(m、4H)、7.19-7.78(m、17H)、8.14(d、1H)、8.52-8.90(m、2H).
MS(ESI):[M+H] 945.3776.
工程2 化合物117の合成
 窒素雰囲気下、化合物116(0.10g、0.11mmol)のアセトニトリル(2.1g)溶液に、室温でピペリジン(32μL、0.32mmol)を加えて2時間39分撹拌した。ヘプタンを加えて分液し、アセトニトリル層をヘプタンで3回洗浄した。得られた有機層を減圧下濃縮し、化合物117(61mg)を得た。
MS(ESI):[M+H] 723.3209.
工程3 化合物118の合成
 窒素雰囲気下、3,4,5-トリス(オクタデシルオキシ)安息香酸(国際公開第2014-077292号に記載の方法に準じて合成した)(51mg、55μmol)と化合物117(61mg、85μmol)の塩化メチレン(2.5g)溶液に、HOBt(無水)(12mg、90μmol)を加え、続いてWSC・HCl(18mg、92μmol)を加えて、4時間39分撹拌した。反応混合物をメタノール(31g)に加えて固体を析出させた後にろ過し、化合物118(65mg)を白色固体として得た。
H-NMR:(300MHz;CDCl)δ0.88(t、9H)、1.26-1.77(m、96H)、2.21(s、3H)、2.58-2.81(m、5H)、3.01-3.16(m、4H)、3.78(s、6H)、3.96(s、6H)、4.81(s、2H)、5.53(d、1H)、6.48(q、1H)、6.70(s、2H)、6.77-7.39(m、14H)、8.11(s、1H)、8.58(brs、1H).
MS(ESI):[M+H] 1632.1611.
工程4 化合物120の合成
 窒素雰囲気下、化合物118(11mg、6.9μmol)及びインドール(2.1mg、18μmmol)の塩化メチレン(0.20mL)溶液を10℃に冷却し、ホスホン酸(14mg、0.17mmmol)を加え、1時間27分撹拌した。反応混合物をLC-MSにより分析し、化合物119が主生成物であることを確認した。
MS(ESI):[M+H] 1330.0382.
 その後、ピリジン(0.050mL)を加えて室温まで昇温し、2,2-ジメチルブチリルクロリド(14μL、0.10mmmol)を加えて1時間40分撹拌した。反応混合物をLC-MSにより分析し、化合物120が主生成物であることを確認した。
MS(ESI):[M+H] 1394.0054.
実施例123(硫化剤検討):化合物121の合成
Figure JPOXMLDOC01-appb-C000160
 窒素雰囲気下、化合物42(0.15g)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシアデノシン(東京化成工業社製)(0.10g、0.16mmol)のピリジン(3.0mL)溶液に、25℃で縮合剤として炭酸ビスペンタフルオロフェニル(0.13g、0.32mmol)を加え、20分間撹拌することで、カップリング反応を行った。反応混合物(3.53g)のうち0.47gに硫化剤としてN-(エチルチオ)フタルイミド(シンレット、2009年、1号、112頁-116頁に記載の方法に準じて合成した)(4.5mg、22μmol)を加えて、室温で1時間撹拌した。反応混合物をLC-MSにより分析し、化合物121が主生成物であることを確認した。
MS(ESI):[M+H] 2155.2871.
実施例124(硫化剤検討):化合物122の合成
Figure JPOXMLDOC01-appb-C000161
 実施例123にて得られたカップリング反応後の反応混合物(0.46g)に、硫化剤としてN-(n-プロピルチオ)フタルイミド(バイオオーガニック アンド メディシナル ケミストリー、2006年、14巻、11号、3775頁-3784頁に記載の方法に準じて合成した)(5.7mg、26μmol)を加えて、室温で1時間撹拌した。反応混合物をLC-MSにより分析し、化合物122が主生成物であることを確認した。
MS(ESI):[M+H] 2169.3107.
実施例125(硫化剤検討):化合物123の合成
Figure JPOXMLDOC01-appb-C000162
 実施例123にて得られたカップリング反応後の反応混合物(0.48g)に、硫化剤としてN-(イソプロピルチオ)フタルイミド(バイオオーガニック アンド メディシナル ケミストリー、2006年、14巻、11号、3775頁-3784頁に記載の方法に準じて合成した)(5.6mg、25μmol)を加えて、室温で3時間30分間撹拌した。その後、N-(イソプロピルチオ)フタルイミド(32mg、0.15mmol)を追加して、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物123が主生成物であることを確認した。
MS(ESI):[M+H] 2169.2959.
実施例126(硫化剤検討):化合物124の合成
Figure JPOXMLDOC01-appb-C000163
 実施例123にて得られたカップリング反応後の反応混合物(0.48g)に、硫化剤としてN-(n-ブチルチオ)フタルイミド(バイオオーガニック アンド メディシナル ケミストリー、2006年、14巻、11号、3775頁-3784頁に記載の方法に準じて合成した)(6.6mg、28μmol)を加えて、室温で1時間撹拌した。反応混合物をLC-MSにより分析し、化合物124が主生成物であることを確認した。
MS(ESI):[M+H] 2183.3273.
実施例127(硫化剤検討):化合物125の合成
Figure JPOXMLDOC01-appb-C000164
 実施例123にて得られたカップリング反応後の反応混合物(0.47g)に、硫化剤としてN-(tert-ブチルチオ)フタルイミド(シンレット、2009年、1号、112頁-116頁に記載の方法に準じて合成した)(6.4mg、27μmol)を加えて、室温で3時間30分間撹拌した。その後、N-(tert-ブチルチオ)フタルイミド(0.11g、0.47mmol)を追加して、1時間撹拌した。反応混合物をLC-MSにより分析し、化合物125が主生成物であることを確認した。
MS(ESI):[M+H] 2183.3326.
実施例128(硫化剤検討):化合物126の合成
Figure JPOXMLDOC01-appb-C000165
 実施例123にて得られたカップリング反応後の反応混合物(0.48g)に、硫化剤としてN-(ベンジルチオ)フタルイミド(バイオオーガニック アンド メディシナル ケミストリー、2006年、14巻、11号、3775頁-3784頁に記載の方法に準じて合成した)(5.7mg、21μmol)を加えて、室温で1時間撹拌した。反応混合物をLC-MSにより分析し、化合物126が主生成物であることを確認した。
MS(ESI):[M+H] 2217.3232
参考合成例8(5mer合成):化合物134の合成
Figure JPOXMLDOC01-appb-C000166
工程1 化合物128の合成
 3’-O-レブリニルチミジン(バイオオーガニック アンド メディシナル ケミストリー、2013年、21巻、8013頁-8018頁に記載の方法に準じて合成した)(0.75g、2.2mmol)を用いて、特表2003-525305に記載の方法に準じて合成した化合物132を含有する塩化メチレン(26g)溶液にインドール(0.78g、6.6mmol)を加えて10℃に冷却し、ジクロロ酢酸(0.90mL、11mmol)を加え、1時間17分撹拌した。更にジクロロ酢酸(0.90mL、11mmol)を加え、40分間撹拌した。反応混合物を5%炭酸水素ナトリウム水溶液に加えて分液した。得られた水層に塩化メチレンを加えて分液を行う再抽出操作を11回実施し、得られた有機層を合わせて溶媒を減圧下留去し、粗物を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物128(0.65g)を得た。
MS(ESI):[M+H] 714.1865.
工程2 化合物130の合成
 窒素雰囲気下、化合物133(0.65g、0.91mmol)とN-イソブチリル-5’-O-(4,4’-ジメトキシトリチル)-3’-O-ヒドロキシホスフィニル-2’-デオキシシチジントリエチルアミン塩(ケムジーンズ社製)(1.0g、1.3mmol)のピリジン(8mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(1.3g、3.2mmol)を加え、15分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(0.43g、1.9mmol)を加え、1時間57分撹拌した。塩化メチレンと5%炭酸水素ナトリウム水溶液を加えて分液し、得られた水層を塩化メチレンで2回洗浄した。得られた有機層を合わせて溶媒を減圧下留去し、化合物134を含有する反応混合物(13g)を得た。このうち12gを更に減圧下濃縮し、トルエンを加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(16g)、インドール(0.30g、2.6mmol)を加えて10℃に冷却し、ジクロロ酢酸(0.69mL、8.4mmol)を加え、1時間40分撹拌した。反応混合物を5%炭酸水素ナトリウム水溶液に加えて分液した。得られた水層に塩化メチレンを加えて分液を行う再抽出操作を2回実施し、得られた有機層を合わせて溶媒を減圧下留去し、粗物を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物130(0.30g)を得た。
MS(ESI):[M+H] 1176.2650.
工程3 化合物132の合成
 窒素雰囲気下、化合物130(0.24g、0.20mmol)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-3’-O-ヒドロキシホスフィニル-2’-デオキシグアノシントリエチルアミン塩(ケムジーンズ社製)(0.23g、0.29mmol)のピリジン(6mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(0.43g、1.1mmol)を加え、27分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(0.10g、0.43mmol)を加え、1時間34分撹拌した。塩化メチレンと5%炭酸水素ナトリウム水溶液を加えて分液し、得られた水層を塩化メチレンで2回洗浄した。得られた有機層を合わせて溶媒を減圧下留去し、化合物136を含有する反応混合物を得た。トルエンを加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(8.0g)及びインドール(77mg、0.66mmol)を加えて10℃に冷却し、ジクロロ酢酸(0.17mL、2.0mmol)を加え、2時間8分撹拌した。反応混合物を5%炭酸水素ナトリウム水溶液に加えて分液した。得られた水層に塩化メチレンを加えて分液を行う再抽出操作を2回実施し、得られた有機層を合わせて溶媒を減圧下留去し、粗物を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物132(0.12g)を得た。
MS(ESI):[M+H] 1644.3648.
工程4 化合物134の合成
 窒素雰囲気下、化合物132(0.12g、74μmol)とN-ベンゾイル-5’-O-(4,4’-ジメトキシトリチル)-3’-O-ヒドロキシホスフィニル-2’-デオキシアデノシントリエチルアミン塩(ケムジーンズ社製)(90mg、0.11mmol)のピリジン(5mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(0.28g、0.71mmol)を加え、1時間2分撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(37mg、0.16mmol)を加え、2時間8分撹拌した。塩化メチレン、アセトニトリルと5%炭酸水素ナトリウム水溶液を加えて分液し、得られた水層を塩化メチレンとアセトニトリルの混合溶媒で2回洗浄した。得られた有機層を合わせて溶媒を減圧下留去し、化合物133を含有する反応混合物を得た。この反応混合物に塩化メチレン(3.1g)を加えて0℃に冷却し、酢酸(0.15mL)を加えた後に、ヒドラジン1水和物(36μL、0.74mmol)を加え、1時間26分撹拌した。反応混合物にアセチルアセトン(0.30mL)を加えて室温まで昇温し、5%炭酸水素ナトリウム水溶液を加えて分液した得られた水層に塩化メチレンを加えて分液を行う再抽出操作を2回実施し、得られた有機層を合わせて溶媒を減圧下留去し、粗物を得た。粗物をシリカゲルクロマトグラフィー(クロロホルム-メタノール)で精製し、化合物134(55mg)を得た。
MS(ESI):[M+H] 2334.5224.
実施例129(15mer合成):化合物136の合成
Figure JPOXMLDOC01-appb-C000167
工程1 化合物135の合成
 窒素雰囲気下、化合物103(43mg)と化合物134(19mg、8.3μmol)のピリジン(1.4mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(59mg、0.15mmol)を加え、58分間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(10mg、44μmol)を加え、40分間撹拌した。その後、反応混合物を減圧下濃縮した。トルエン(2g)を加えて減圧下濃縮の操作を3回繰り返した後に、塩化メチレン(1.2mL)を加え、インドール(2.5mg、21μmol)、ジクロロ酢酸(6.2μL、76mmol)を10℃で加え、1時間51分間撹拌した。その後、ジクロロ酢酸(6.2μL、76mmol)を追加し、2時間41分間撹拌した。さらに、ジクロロ酢酸(6.2μL、76mmol)を追加し、1時間38分間撹拌した。ピリジン(0.20mL)を加えて室温まで昇温し、反応混合物をアセトニトリル(38g)に加えて析出した固体を析出ろ過し、化合物135(51mg)を薄い肌色固体として得た。
MS(ESI):[M+4H]4+ 2140.0080.
工程2 化合物136の合成
 窒素雰囲気下、化合物135(50mg、5.8μmol)の塩化メチレン(2.0mL)とピリジン(0.12mL)の混合溶液に40℃でホスホン酸(19mg、0.23mmol)を加え、2,2-ジメチルブチリルクロリド(25μL、0.18mmol)を5分割して加えて1時間12分間撹拌した。その後、反応混合物をアセトニトリル(39g)に加えて析出した固体をろ過し、化合物136(44mg)を薄い肌色固体として得た。
MS(ESI):[M+4H]4+ 2155.9794.
実施例130(20mer合成):化合物137の合成
Figure JPOXMLDOC01-appb-C000168
 窒素雰囲気下、化合物134(19mg、8.1μmol)と化合物136(44mg)のピリジン(1.2mL)溶液に、室温で炭酸ビスペンタフルオロフェニル(274mg、0.69mmol)を加え、1時間撹拌した。その後、硫化剤としてN-[(2-シアノエチル)チオ]フタルイミド(5.1mg、22μmol)を加え、1時間撹拌した。反応混合物をメタノール(30g)に加えて析出した固体をろ過し、化合物137(46mg)を白色固体として得た。
MS(ESI):[M+5H]5+ 2205.1210.
実施例131(20merの脱保護):化合物138の合成
Figure JPOXMLDOC01-appb-C000169
 窒素雰囲気下、化合物137(2.6mg、0.24μmol)の塩化メチレン(0.38g)溶液に、室温で1,8-ジアザビシクロ[5.4.0]-7-ウンデセン[DBU](3.5μL、23μmol)、TMSCl(0.70μL、5.5μmol)を加えて、30分間撹拌した。反応混合物(1.6g)を減圧下濃縮し、28%アンモニア水(1.0mL)、エチレンジアミン四酢酸(3.1mg、11μmol)を加えて、80℃で2時間6分間撹拌した。反応混合物をLC-MS分析し、化合物138の生成を確認した。
MS(ESI):[M+3H]3+ 2123.8976.
 カップリング工程、酸化反応や硫化反応などのリン原子を修飾する工程、脱保護工程等から構成される通常の製造方法と異なる製造方法であって、擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドの5’位ヒドロキシ基又は3’位ヒドロキシ基をH-ホスホネート化する工程を含む製造方法により、単離が容易で保存安定性が高いヌクレオシド又はオリゴヌクレオチドを用いる、大量合成に対応できるオリゴヌクレオチドの新規製造方法を提供できるようになった。したがって、本発明は、siRNA、アンチセンス核酸、ワクチンのアジュバントなどのオリゴヌクレオチドの製造に適用することができ、ゲノム創薬や遺伝子診断・治療などの分野において極めて有用なものである。

Claims (37)

  1.  2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位又は3’位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5’-ヒドロキシ基又は3’-ヒドロキシ基をH-ホスホネート化する工程を含む、オリゴヌクレオチドの製造方法。
  2.  2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位又は3’位がヒドロキシ基であるヌクレオシド又はオリゴヌクレオチドの当該5’-ヒドロキシ基又は3’-ヒドロキシ基をH-ホスホネート化する工程を含む伸長反応サイクルを少なくとも1つ含む、請求項1に記載の製造方法。
  3.  前記伸長反応サイクルが、
     2’位、3’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、3’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第一ヌクレオシド又は第一オリゴヌクレオチドの一時保護基を除去して5’-ヒドロキシ基を生成することを含む第一工程と、
     生成した5’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第二工程と、
     H-ホスホネート化された5’-ヒドロキシ基と、3’位にヒドロキシ基を有し、5’位に一時保護基で保護されたヒドロキシ基を有する第二ヌクレオシド又は第二オリゴヌクレオチドの3’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第一ヌクレオシド又は第一オリゴヌクレオチドと、第二ヌクレオシド又は第二オリゴヌクレオチドとの結合体を得る第三工程と、
    を含む請求項2に記載の製造方法。
  4.  前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第四工程を更に含む、請求項3に記載の製造方法。
  5.  前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合又はアミノリン酸ジエステル結合に変換することを含む第四工程を更に含む、請求項3に記載の製造方法。
  6.  前記第一工程から第四工程からなる群から選ばれる少なくとも1つの工程で得られる反応混合物に、極性溶媒を添加して沈殿物を生成させることと、生成した沈殿物を固液分離により取得する第五工程を更に含む、請求項4又は5に記載の製造方法。
  7.  前記極性溶媒が炭素数1から6のアルコール溶媒又は炭素数1から6のニトリル溶媒である、請求項6に記載の製造方法。
  8.  前記基本保護基、一時保護基及び擬似固相保護基をすべて除去する第六工程を更に含む、請求項3から7のいずれか1項に記載の製造方法。
  9.  前記第一ヌクレオシド又は第一オリゴヌクレオチドは、3’位に擬似固相保護基で保護されたヒドロキシ基を有する、請求項3から8のいずれか1項に記載の製造方法。
  10.  前記第三工程は、前記第二ヌクレオシドを用いる、請求項3から9のいずれか1項に記載の製造方法。
  11.  前記伸長反応サイクルが、
     2’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に擬似固相保護基を有し、5’位に基本保護基又は擬似固相保護基で保護されたヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第三ヌクレオシド又は第三オリゴヌクレオチドの一時保護基を除去して3’-ヒドロキシ基を生成することを含む第七工程と、
     生成した3’-ヒドロキシ基を、H-ホスホネート化試薬を用いてH-ホスホネート化することを含む第八工程と、
     H-ホスホネート化された3’-ヒドロキシ基と、5’位にヒドロキシ基を有し、3’位に一時保護基で保護されたヒドロキシ基を有する第四ヌクレオシド又は第四オリゴヌクレオチドの5’-ヒドロキシ基とから亜リン酸ジエステル結合を形成して、第三ヌクレオシド又は第三オリゴヌクレオチドと、第四ヌクレオシド又は第四オリゴヌクレオチドとの結合体を得る第九工程と、
    を含む請求項2に記載の製造方法。
  12.  前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合、アミノリン酸ジエステル結合、基本保護基で保護されたリン酸ジエステル結合又は基本保護基で保護されたチオリン酸ジエステル結合に変換することを含む第十工程を更に含む、請求項11に記載の製造方法。
  13.  前記結合体の亜リン酸ジエステル結合を、リン酸ジエステル結合、チオリン酸ジエステル結合、ボラノリン酸ジエステル結合又はアミノリン酸ジエステル結合に変換することを含む第十工程を更に含む、請求項11に記載の製造方法。
  14.  前記第七工程から第十工程のいずれかの工程で得られる反応混合物に、極性溶媒を添加して沈殿物を生成させることと、生成した沈殿物を固液分離により取得する第十一工程を更に含む請求項12又は13に記載の製造方法。
  15.  前記極性溶媒が炭素数1から6のアルコール溶媒又は炭素数1から6のニトリル溶媒である、請求項14に記載の製造方法。
  16.  前記基本保護基、一時保護基及び擬似固相保護基をすべて除去する第十二工程を更に含む、請求項11から15のいずれか1項に記載の製造方法。
  17.  前記第三ヌクレオシド又は第三オリゴヌクレオチドは、5’位に擬似固相保護基で保護されたヒドロキシ基を有する、請求項11から16のいずれか1項に記載の製造方法。
  18.  前記第九工程は、第四ヌクレオシドを用いる、請求項11から17のいずれか1項に記載の製造方法。
  19.  前記擬似固相保護基が、下記式(I)
    Figure JPOXMLDOC01-appb-C000001

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     mは、0又は1であり、
     前記擬似固相保護基を核酸塩基部に有し、その擬似固相保護基のmが0である場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、請求項1から18のいずれか1項に記載の製造方法。
  20.  前記擬似固相保護基が、下記式(II)
    Figure JPOXMLDOC01-appb-C000002

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     前記擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、請求項1から18のいずれか1項に記載の製造方法。
  21.  前記一時保護基が、tert-ブチルジメチルシリル基、4、4’-ジメトキシトリチル基、又はレブリニル基である、請求項3から20のいずれか1項に記載の製造方法。
  22.  前記H-ホスホネート化する工程が、亜リン酸、亜リン酸ジフェニル、フェニル-H-ホスホネートのトリエチルアンモニウム塩、p-トルイル-H-ホスホネートのトリエチルアンモニウム塩、2-クロロ-4H-1,3,2-ベンゾジオキサホスホリン-4-オン、三塩化リンからなる群より選択される少なくとも一種のH-ホスホネート化試薬を用いる、請求項1から21のいずれか1項に記載の製造方法。
  23.  前記第一から第四ヌクレオシド及び第一から第四オリゴヌクレオチドに含まれる核酸塩基が、それぞれ独立して、6-アミノプリン-9-イル基(アデニン残基)、2-アミノ-6-ヒドロキシプリン-9-イル基(グアニン残基)、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル基(シトシン残基)、2-オキソ-4-アミノ-5-メチル-1,2-ジヒドロピリミジン-1-イル基(5-メチルシトシン残基)、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル基(ウラシル残基)及び2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル基(チミン残基)からなる群から選択される少なくとも1種である、請求項1から22のいずれか1項に記載の製造方法。
  24.  下記式(XI):
    Figure JPOXMLDOC01-appb-C000003

    [式中、nは、1以上の任意の整数を示し、
     Baseは、それぞれ独立して核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
     Xは、それぞれ独立して水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
     Yは、それぞれ独立して水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
     Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
    ;かつBaseの少なくとも1つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも1つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たす。]
    で示される化合物、又はその塩。
  25.  前記擬似固相保護基が、下記式(II)
    Figure JPOXMLDOC01-appb-C000004

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     前記擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、請求項24に記載の化合物、又はその塩。
  26.  前記式(XI)におけるBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、及びZが擬似固相保護基であることの少なくとも一方を満たす、請求項24又は25に記載の化合物、又はその塩。
  27.  前記式(XI)におけるZが擬似固相保護基である、請求項24から26のいずれか1項に記載の化合物、又はその塩。
  28.  前記式(XI)におけるnが1から30である、請求項24から27のいずれか1項に記載の化合物、又はその塩。
  29.  下記式(XII):
    Figure JPOXMLDOC01-appb-C000005

    [式中、
     nは、1以上の任意の整数を示し、
     Baseは、独立してそれぞれ核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
     Xは、独立してそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
     Yは、独立してそれぞれ水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
     Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
    ;かつBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも一つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たす。]
    で示される化合物、又はその塩。
  30.  前記擬似固相保護基が、下記式(II)
    Figure JPOXMLDOC01-appb-C000006

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)又は-O-であり、
     前記擬似固相保護基を核酸塩基部に有する場合、その擬似固相保護基のL、L、L及びLのうち、単結合の数は0から3である)で表される、請求項29に記載の化合物、又はその塩。
  31.  前記式(XII)におけるBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、及びZが擬似固相保護基であることの少なくとも一方を満たす、請求項29又は30に記載の化合物、又はその塩。
  32.  前記式(XII)におけるZが擬似固相保護基である、請求項29から31のいずれか1項に記載の化合物、又はその塩。
  33.  前記式(XII)におけるnが1から30である、請求項29から32のいずれか1項に記載の化合物、又はその塩。
  34.  下記式(XIII):
    Figure JPOXMLDOC01-appb-C000007

    [式中、nは、1以上の任意の整数を示し、
     Baseは、それぞれ独立して核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
     Xは、それぞれ独立して水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
     Wは、水素原子又は一時保護基を示し、
     Yは、それぞれ独立して水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
     Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
    ;かつBaseの少なくとも1つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも1つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たし、
     前記擬似固相保護基の少なくとも1つが、式(I)
    Figure JPOXMLDOC01-appb-C000008

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される。]化合物、又はその塩。
  35.  下記式(XIV):
    Figure JPOXMLDOC01-appb-C000009

    (式中、
     nは、1以上の任意の整数を示し、
     Baseは、独立してそれぞれ核酸塩基、基本保護基で保護された核酸塩基又は擬似固相保護基で保護された核酸塩基を示し、
     Xは、独立してそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、4位炭素原子に架橋する有機基又は擬似固相保護基で保護されたヒドロキシ基を示し、
     Wは、水素原子又は一時保護基を示し、
     Yは、独立してそれぞれ水素原子、ヒドロキシ基、基本保護基で保護されたヒドロキシ基、チオール基、基本保護基で保護されたチオール基、水素化ホウ素基、モノC1-6アルキルアミノ基又はジC1-6アルキルアミノ基を示し、
     Zは、水素原子、基本保護基、一時保護基又は擬似固相保護基を示し、
    ;かつBaseの少なくとも一つが擬似固相保護基で保護された核酸塩基であること、Xの少なくとも一つが擬似固相保護基で保護されたヒドロキシ基であること、及びZが擬似固相保護基であることの少なくとも1つを満たし、
     前記擬似固相保護基の少なくとも1つが、式(I)
    Figure JPOXMLDOC01-appb-C000010

    (式中、*は、前記擬似固相保護基が保護する基との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される。]で示される化合物、又はその塩。
  36.  下記式(I)
    Figure JPOXMLDOC01-appb-C000011

    (式中、*は、ヌクレオシド又はオリゴヌクレオチドの2’位、3’位及び5’位ノヒドロキシ基並びに核酸塩基部からなる群から選ばれる少なくとも1か所との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     mは、0又は1であり、mが0である場合、Lは、単結合ではない。)で表される、擬似固相保護基。
  37.  3’位及び5’位に、独立してヒドロキシ基又は保護されたヒドロキシ基を有し、
     2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所にヒドロキシ基を有するか、又は2’位及び核酸塩基部の少なくとも1カ所にヒドロキシ基又はアミノ基を有するヌクレオシド又はオリゴヌクレオチドを、
    下記式(X-1)
    Figure JPOXMLDOC01-appb-C000012

     (式中、Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
      Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-である)で表されるカルボキシ化合物、下記式(X-2)
    Figure JPOXMLDOC01-appb-C000013

     (式中、Xは、ハロゲン原子であり、R、L、L、L及びLは、前記式(X-1)における定義と同じである。)で表される酸ハロゲン化物又は、下記式(X-3)
    Figure JPOXMLDOC01-appb-C000014

     (式中、Xは、ハロゲン原子であり、R、L、L、及びLは、前記式(X-1)における定義と同じであり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基である。)で表されるハロゲン化アルキル化合物と反応させ、
     2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所に、
    下記式(I)
    Figure JPOXMLDOC01-appb-C000015

    (式中、*は、2’位、3’位、5’位及び核酸塩基部からなる群から選ばれる少なくとも1か所との結合位置を示し、
     Rは、C1-40アルキル基、C2-40アルケニル基又はC2-40アルキニル基であり、sは、1から5の整数であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、単結合、C1-6アルキレン基、C2-6アルケニレン基又はC2-6アルキニレン基であり、
     Lは、単結合、-COO-、-CON(R)-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-OCO-、-N(R)CO-(式中Rは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基を示す)、-C(O)-又は-O-であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     Lは、水素原子、C1-6アルキル基、C1-6ハロアルキル基、C2-6アルケニル基又はC2-6ハロアルケニル基であり、
     mは、0又は1であり、mが0である場合、Lは単結合ではない。)で表される擬似固相保護基を有するヌクレオシド又はオリゴヌクレオチドの製造方法。
PCT/JP2016/084150 2015-11-17 2016-11-17 オリゴヌクレオチドの製造方法 WO2017086397A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/776,709 US11548910B2 (en) 2015-11-17 2016-11-17 Oligonucleotide production method
CN201680064758.9A CN108350018A (zh) 2015-11-17 2016-11-17 寡核苷酸的制造方法
JP2017551927A JP6950529B2 (ja) 2015-11-17 2016-11-17 オリゴヌクレオチドの製造方法
EP16866398.7A EP3378869A4 (en) 2015-11-17 2016-11-17 PROCESS FOR THE PREPARATION OF OLIGONUCLEOTIDES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224617 2015-11-17
JP2015-224617 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017086397A1 true WO2017086397A1 (ja) 2017-05-26

Family

ID=58718980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084150 WO2017086397A1 (ja) 2015-11-17 2016-11-17 オリゴヌクレオチドの製造方法

Country Status (6)

Country Link
US (1) US11548910B2 (ja)
EP (1) EP3378869A4 (ja)
JP (3) JP6950529B2 (ja)
CN (1) CN108350018A (ja)
TW (1) TWI729028B (ja)
WO (1) WO2017086397A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586449A (zh) * 2018-06-08 2018-09-28 山东阳谷华泰化工股份有限公司 一种n-(2-巯基苯并噻唑)邻苯二甲酰亚胺及其制备方法和应用
WO2018203574A1 (ja) * 2017-05-02 2018-11-08 日産化学株式会社 オリゴヌクレオチドの製造方法
WO2018212236A1 (ja) * 2017-05-16 2018-11-22 日産化学株式会社 オリゴヌクレオチドの製造方法
WO2019131719A1 (ja) * 2017-12-27 2019-07-04 神戸天然物化学株式会社 高脂溶性ホスホラミダイトの製造
WO2020166705A1 (ja) 2019-02-15 2020-08-20 味の素株式会社 オリゴヌクレオチドの製造方法
WO2020196890A1 (ja) 2019-03-28 2020-10-01 味の素株式会社 ホスホロチオエート化部位を有するオリゴヌクレオチドの製造方法
JPWO2020235658A1 (ja) * 2019-05-21 2020-11-26
JP2020203902A (ja) * 2018-07-20 2020-12-24 藤本化学製品株式会社 アルコキシフェニル誘導体、ヌクレオシド保護体およびヌクレオチド保護体、オリゴヌクレオチド製造方法、ならびに、置換基除去方法
US10919928B2 (en) 2015-12-16 2021-02-16 Ajinomoto Co., Inc. Oligonucleotide production method, and nucleoside, nucleotide, or oligonucleotide
CN112533892A (zh) * 2018-07-20 2021-03-19 藤本化学制品株式会社 烷氧基苯基衍生物、核苷保护体和核苷酸保护体、寡核苷酸制造方法以及取代基除去方法
JP7220439B1 (ja) 2022-03-14 2023-02-10 国立大学法人東北大学 キメラ分子の製造方法
JP7433684B1 (ja) 2023-05-24 2024-02-20 塩野フィネス株式会社 疑似固相保護基、それを用いたヌクレオシド保護体又はオリゴヌクレオチド保護体、オリゴアミダイト前駆体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3378869A4 (en) * 2015-11-17 2019-09-18 Nissan Chemical Corporation PROCESS FOR THE PREPARATION OF OLIGONUCLEOTIDES
WO2017221929A1 (ja) * 2016-06-21 2017-12-28 株式会社ジーンデザイン リボ核酸h-ホスホネートモノマーの合成方法および本モノマーを用いたオリゴヌクレオチド合成
KR20230106665A (ko) * 2020-11-11 2023-07-13 바이오젠 엠에이 인코포레이티드 올리고뉴클레오티드, 시약, 및 그의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174797A (ja) * 1984-02-21 1985-09-09 Funai Corp Ν−アロイルチミジン誘導体ならびに抗腫瘍活性物質の毒性低下剤
WO2005028494A1 (ja) * 2003-09-02 2005-03-31 Takeshi Wada 5'-ホスフィチル化モノマーおよびh-ホスホネートオリゴヌクレオチド誘導体の製造方法
JP2010275254A (ja) * 2009-05-29 2010-12-09 Tokyo Univ Of Agriculture & Technology 疎水性基結合ヌクレオシド、疎水性基結合ヌクレオシド溶液、及び疎水性基結合オリゴヌクレオチド合成方法
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2013122236A1 (ja) * 2012-02-17 2013-08-22 味の素株式会社 塩基部保護オリゴヌクレオチド
WO2014077292A1 (ja) * 2012-11-14 2014-05-22 武田薬品工業株式会社 核酸の液相合成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707529A (en) 1970-09-04 1972-12-26 Du Pont Elastomeric vinylidene fluoride polymers with 55-95 percent non-ionic end groups
US3860722A (en) 1972-09-22 1975-01-14 Richardson Merrell Inc Hypolipidemic agents
CA2234159A1 (en) 1995-10-19 1997-04-24 Alecia Settle Method for solution phase synthesis of oligonucleotides
JP2004503560A (ja) 2000-06-13 2004-02-05 プロリゴ・エルエルシー 固相オリゴ合成の普遍固形支持体とその製造及び使用の方法
JP3947483B2 (ja) 2003-02-28 2007-07-18 財団法人野口研究所 ジアミド型ゲル化剤
EP1611119A1 (en) * 2003-04-03 2006-01-04 Semafore Pharmaceuticals, Inc. Pi-3 kinase inhibitor prodrugs
CN102139203B (zh) 2011-01-14 2013-01-23 河北师范大学 一种选择性凝胶化苯胺(或取代苯胺)的有机小分子凝胶剂及其应用
WO2013179412A1 (ja) * 2012-05-30 2013-12-05 北海道システム・サイエンス株式会社 高分散性液相支持体を用いたオリゴヌクレオチド合成法
EP2878604B1 (en) 2012-07-25 2018-08-29 Kochi University Monomer for synthesis of rna, method for producing same, and method for producing rna
JP6733554B2 (ja) * 2015-01-21 2020-08-05 味の素株式会社 沈殿促進剤およびそれを用いる沈殿化方法
EP3378869A4 (en) * 2015-11-17 2019-09-18 Nissan Chemical Corporation PROCESS FOR THE PREPARATION OF OLIGONUCLEOTIDES
JP7027889B2 (ja) * 2015-12-16 2022-03-02 味の素株式会社 オリゴヌクレオチドの製造方法、およびヌクレオシド、ヌクレオチドまたはオリゴヌクレオチド

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174797A (ja) * 1984-02-21 1985-09-09 Funai Corp Ν−アロイルチミジン誘導体ならびに抗腫瘍活性物質の毒性低下剤
WO2005028494A1 (ja) * 2003-09-02 2005-03-31 Takeshi Wada 5'-ホスフィチル化モノマーおよびh-ホスホネートオリゴヌクレオチド誘導体の製造方法
JP2010275254A (ja) * 2009-05-29 2010-12-09 Tokyo Univ Of Agriculture & Technology 疎水性基結合ヌクレオシド、疎水性基結合ヌクレオシド溶液、及び疎水性基結合オリゴヌクレオチド合成方法
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2013122236A1 (ja) * 2012-02-17 2013-08-22 味の素株式会社 塩基部保護オリゴヌクレオチド
WO2014077292A1 (ja) * 2012-11-14 2014-05-22 武田薬品工業株式会社 核酸の液相合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAKER, B. R. ET AL.: "Irreversible enzyme inhibitors. 195. Inhibitors of thymidine kinase from Walker 256 carcinoma derived from thymidine 5'-acetate", JOURNAL OF MEDICINAL CHEMISTRY, vol. 15, no. 9, 1972, pages 940 - 944, XP002025085, ISSN: 0022-2623 *
GOPALAKRISHNAN, B. ET AL.: "A Virtual Screening Approach for Thymidine Monophosphate Kinase Inhibitors as Antitubercular Agents Based on Docking and Pharmacophore Models", JOURNAL OF CHEMICAL INFORMATION AND MODELING, vol. 45, no. 4, 2005, pages 1101 - 1108, XP002443827, ISSN: 1549-9596 *
See also references of EP3378869A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919928B2 (en) 2015-12-16 2021-02-16 Ajinomoto Co., Inc. Oligonucleotide production method, and nucleoside, nucleotide, or oligonucleotide
WO2018203574A1 (ja) * 2017-05-02 2018-11-08 日産化学株式会社 オリゴヌクレオチドの製造方法
WO2018212236A1 (ja) * 2017-05-16 2018-11-22 日産化学株式会社 オリゴヌクレオチドの製造方法
WO2019131719A1 (ja) * 2017-12-27 2019-07-04 神戸天然物化学株式会社 高脂溶性ホスホラミダイトの製造
US11891412B2 (en) 2017-12-27 2024-02-06 Knc Laboratories Co., Ltd. Production of highly fat-soluble phosphoramidite
JP7229539B2 (ja) 2017-12-27 2023-02-28 神戸天然物化学株式会社 高脂溶性ホスホラミダイトの製造
EP3733680A4 (en) * 2017-12-27 2021-12-29 KNC Laboratories Co., Ltd Production of highly fat-soluble phosphoramidite
JPWO2019131719A1 (ja) * 2017-12-27 2021-03-04 神戸天然物化学株式会社 高脂溶性ホスホラミダイトの製造
CN108586449A (zh) * 2018-06-08 2018-09-28 山东阳谷华泰化工股份有限公司 一种n-(2-巯基苯并噻唑)邻苯二甲酰亚胺及其制备方法和应用
KR102531388B1 (ko) * 2018-07-20 2023-05-11 후지모토 캐미칼스 가부시키가이샤 알콕시 페닐 유도체, 뉴클레오시드 보호체 및 뉴클레오티드 보호체, 올리고뉴클레오티드 제조 방법, 및 치환기 제거 방법
CN112533892A (zh) * 2018-07-20 2021-03-19 藤本化学制品株式会社 烷氧基苯基衍生物、核苷保护体和核苷酸保护体、寡核苷酸制造方法以及取代基除去方法
KR20210032478A (ko) * 2018-07-20 2021-03-24 후지모토 캐미칼스 가부시키가이샤 알콕시 페닐 유도체, 뉴클레오시드 보호체 및 뉴클레오티드 보호체, 올리고뉴클레오티드 제조 방법, 및 치환기 제거 방법
JP2020203902A (ja) * 2018-07-20 2020-12-24 藤本化学製品株式会社 アルコキシフェニル誘導体、ヌクレオシド保護体およびヌクレオチド保護体、オリゴヌクレオチド製造方法、ならびに、置換基除去方法
EP3825300A4 (en) * 2018-07-20 2022-04-20 Fujimoto Chemicals Co. Ltd. ALCOXYPHENYL DERIVATIVE, NUCLEOSIDE PROTECTOR, NUCLEOTIDE PROTECTOR, METHOD FOR PRODUCTION OF OLIGONUCLEOTIDE AND METHOD FOR REMOVAL OF SUBSTITUENT
CN112533892B (zh) * 2018-07-20 2023-09-08 藤本化学制品株式会社 烷氧基苯基衍生物、核苷保护体和核苷酸保护体、寡核苷酸制造方法以及取代基除去方法
JP7296636B2 (ja) 2018-07-20 2023-06-23 藤本化学製品株式会社 アルコキシフェニル誘導体、ヌクレオシド保護体およびヌクレオチド保護体、オリゴヌクレオチド製造方法、ならびに、置換基除去方法
WO2020166705A1 (ja) 2019-02-15 2020-08-20 味の素株式会社 オリゴヌクレオチドの製造方法
WO2020196890A1 (ja) 2019-03-28 2020-10-01 味の素株式会社 ホスホロチオエート化部位を有するオリゴヌクレオチドの製造方法
KR20220002469A (ko) 2019-05-21 2022-01-06 나티아스 인크. 올리고뉴클레오티드 합성에 사용하는 멀티플루오로스블록머 및 이를 사용한 올리고뉴클레오티드 합성방법
JPWO2020235658A1 (ja) * 2019-05-21 2020-11-26
JP7393807B2 (ja) 2019-05-21 2023-12-07 株式会社ナティアス オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法
WO2020235658A1 (ja) 2019-05-21 2020-11-26 株式会社四国核酸化学 オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法
JP7220439B1 (ja) 2022-03-14 2023-02-10 国立大学法人東北大学 キメラ分子の製造方法
WO2023176773A1 (ja) * 2022-03-14 2023-09-21 国立大学法人東北大学 キメラ分子の製造方法
JP2023133992A (ja) * 2022-03-14 2023-09-27 国立大学法人東北大学 キメラ分子の製造方法
JP7433684B1 (ja) 2023-05-24 2024-02-20 塩野フィネス株式会社 疑似固相保護基、それを用いたヌクレオシド保護体又はオリゴヌクレオチド保護体、オリゴアミダイト前駆体の製造方法

Also Published As

Publication number Publication date
JP6950529B2 (ja) 2021-10-13
TW201731861A (zh) 2017-09-16
EP3378869A4 (en) 2019-09-18
US20190169223A1 (en) 2019-06-06
JPWO2017086397A1 (ja) 2018-09-06
EP3378869A1 (en) 2018-09-26
CN108350018A (zh) 2018-07-31
TWI729028B (zh) 2021-06-01
US11548910B2 (en) 2023-01-10
JP2023100975A (ja) 2023-07-19
JP2022000444A (ja) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2017086397A1 (ja) オリゴヌクレオチドの製造方法
JP7306263B2 (ja) オリゴヌクレオチドの製造方法
JP7140111B2 (ja) オリゴヌクレオチドの製造方法
KR101617472B1 (ko) 모르폴리노 올리고머의 합성 방법
JP6481022B2 (ja) 配糖体化合物の製造方法
US8093397B2 (en) Activators for oligonucleotide synthesis
JP6770553B2 (ja) アルコキシフェニル誘導体、ヌクレオシド保護体およびヌクレオチド保護体、オリゴヌクレオチド製造方法、ならびに、置換基除去方法
Taniguchi et al. Development of novel C-nucleoside analogues for the formation of antiparallel-type triplex DNA with duplex DNA that includes TA and dUA base pairs
AU711814B2 (en) Nucleoside derivatives with photolabile protective groups
US20030229218A1 (en) Synthons for oligonucleotide synthesis
WO2013126034A1 (en) Synthesis of high purity dmt-c3-disulfide phosphoramidite
JP7229539B2 (ja) 高脂溶性ホスホラミダイトの製造
CA2501565C (en) Phosphitylation process
EP4047004B1 (en) Phosphoramidite activator
Kayukov et al. Synthesis of 4-Acyl-2-amino-6-(arylsulfanyl) pyridine-3, 5-dicarbonitriles
JP2720536B2 (ja) 反応促進剤
EP4043473A1 (en) Method for producing nucleic acid oligomers
Kayukov et al. Synthesis of 6-Alkoxy-and 1, 6-Dialkoxy-4-amino-1-aryl-3-oxo-2, 3-dihydro-1 H-pyrrolo [3, 4-c] pyridine-7-carbonitriles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866398

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016866398

Country of ref document: EP

Effective date: 20180618