WO2023176773A1 - キメラ分子の製造方法 - Google Patents

キメラ分子の製造方法 Download PDF

Info

Publication number
WO2023176773A1
WO2023176773A1 PCT/JP2023/009612 JP2023009612W WO2023176773A1 WO 2023176773 A1 WO2023176773 A1 WO 2023176773A1 JP 2023009612 W JP2023009612 W JP 2023009612W WO 2023176773 A1 WO2023176773 A1 WO 2023176773A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
chimeric molecule
group
derivative
formula
Prior art date
Application number
PCT/JP2023/009612
Other languages
English (en)
French (fr)
Inventor
健彦 和田
雅仁 稲垣
Original Assignee
国立大学法人東北大学
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 国立大学法人東海国立大学機構 filed Critical 国立大学法人東北大学
Publication of WO2023176773A1 publication Critical patent/WO2023176773A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical

Definitions

  • the present invention relates to a method for producing chimeric molecules.
  • This application claims priority based on Japanese Patent Application No. 2022-039293, filed in Japan on March 14, 2022, and the contents thereof are incorporated herein.
  • nucleic acid drugs like antibody drugs, have attracted attention as next-generation molecular targeting drugs.
  • nucleic acid medicine for example, targeting messenger RNA (mRNA), micro RNA (miRNA), SI RNA (siRNA), etc. that are involved in disease progression, recognizing the target in a base sequence selective manner and forming a complex.
  • ASOs Antisense nucleic acids
  • ASOs are known that suppress the function of target RNA and exert therapeutic effects.
  • 1) high in-vivo stability, 2) high specificity and complex stability for the target nucleic acid are required, and natural DNA/RNA must be chemically modified.
  • the development of modified oligonucleic acids/artificial oligonucleic acids is being actively researched.
  • Non-Patent Document 1 a nucleic acid drug that has a catalytic function that utilizes RNaseH, which cleaves target RNA like a catalyst with a small amount of ASO, is attracting attention.
  • Nucleic acid medicines with catalytic functions utilizing RNaseH focus on the dissociation process after RNA cleavage, and are useful for constructing oligonucleic acid systems that can rapidly dissociate from target RNA complexes after cleavage.
  • a chimeric molecule that can inhibit the function and suppress off-target effects has been reported (Patent Document 1).
  • Solid-phase synthesis is commonly used to synthesize oligonucleic acids. Furthermore, solid phase synthesis is widely used for the synthesis of peptides. Although solid-phase synthesis has been optimized and automated, it is essentially a heterogeneous system, and in order to compensate for its low reactivity, it is necessary to use a large excess of reagents, for example 6 to 10 equivalents or more. There is room for improvement in terms of cost. In addition, in addition to requiring advanced techniques for isolation and purification, it is difficult to scale up due to the limited amount of functional groups supported on the reaction solid-phase resin.Although it is suitable for laboratory scale, it is difficult to apply solid-phase synthesis when looking at industrialization. I have to say that it is difficult.
  • oligomers such as oligoribonucleic acids, oligodeoxyribonucleic acids, and oligopeptides that do not fuse different molecules have been produced by liquid phase synthesis.
  • RNA typically ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), and peptide nucleic acid (PNA) or peptide ribonucleic acid (PRNA) having an oligopeptide backbone are optionally used.
  • PNA peptide nucleic acid
  • PRNA peptide ribonucleic acid having an oligopeptide backbone
  • the method of further elongating DNA using DNA as a clue allows the reaction to proceed almost quantitatively in each step using an automatic synthesizer, so even when elongating multiple DNAs. A sufficient yield can be maintained.
  • the yield is only about 70% at maximum, and then the yield increases by several percentage points as the PNA elongates. decreases.
  • a solid phase synthesis method is used, not only is it not possible to obtain a satisfactory yield for constructing a PNA-DNA structure, but the reaction system is complicated by many side reactions, and isolation requires a large number of steps. It takes effort.
  • the main clavicular bone represented by RNA and DNA including the production of a second chimeric molecule precursor and the production of a chimeric molecule using the second chimeric molecule precursor, which will be described later.
  • a method for producing a chimeric molecule by a liquid phase synthesis method in which a nucleic acid or its derivative whose main chain skeleton is neutral or cationic, such as PNA or PRNA, is introduced into an anionic nucleic acid or its derivative.
  • a nucleic acid whose main chain skeleton is neutral or cationic, such as PNA or PRNA including the production of a chimera molecule using a third chimera molecule precursor described below.
  • An object of the present invention is to provide a method for producing a chimeric molecule by a liquid phase synthesis method, in which a nucleic acid whose main chain skeleton is anionic, such as RNA or DNA, or a derivative thereof is introduced into a derivative thereof.
  • the present invention has the following gist.
  • a method The production method includes preparing a second chimeric molecule precursor by introducing the second nucleic acid or a derivative thereof through the hydroxyl group of the first chimeric molecule precursor having a hydroxyl group; If necessary, deprotecting the second chimeric molecule precursor, and converting the first nucleic acid or derivative thereof into the second chimeric molecule precursor or the deprotected second chimeric molecule precursor.
  • the introduction of The first chimeric molecule precursor having a hydroxyl group includes a lipophilic anchor
  • the second nucleic acid or its derivative has an optionally protected amino group
  • the deprotection of the second chimera molecule precursor is deprotection of the protected amino group of the second nucleic acid or its derivative introduced into the second chimera molecule precursor
  • the introduction of the first nucleic acid or its derivative is introduction via the amino group of the second nucleic acid or its derivative
  • a production method characterized in that the preparation of the second chimeric molecule precursor, the deprotection of the second chimeric molecule precursor, and the production of the chimeric molecule are all performed by a liquid phase synthesis method.
  • the first nucleic acid is PNA, PRNA, PNA/PRNA, or LNA
  • the second nucleic acid is RNA or DNA
  • the first nucleic acid is PNA
  • the second nucleic acid is DNA
  • the chimeric molecule has a portion to which the first nucleic acid or its derivative is bound to the 5' end of the second nucleic acid or its derivative. It is preferable that the first chimeric molecule precursor is a compound represented by a specific formula described below. It is preferable that the second nucleic acid or its derivative is a compound represented by a specific formula described below.
  • the optionally protected amino group is a protected amino group
  • the protecting group for the protected amino group is an optionally substituted trityl group.
  • the first nucleic acid or a derivative thereof is a compound represented by a specific formula described below.
  • Another aspect of the present invention has the following gist.
  • Production of a chimeric molecule in which at least one first nucleic acid or derivative thereof whose main chain skeleton is neutral or cationic and a second nucleic acid or derivative thereof whose main chain skeleton is anionic are fused.
  • a method The production method includes introducing the second nucleic acid or a derivative thereof into the third chimeric molecule precursor having an amino group via the amino group of the third chimeric molecule precursor having an amino group.
  • the third chimeric molecule precursor having an amino group includes a partial structure derived from the first nucleic acid or a derivative thereof, an amino group derived from the first nucleic acid or a derivative thereof, and a lipophilic anchor,
  • a production method characterized in that the introduction of the second nucleic acid or its derivative into the third chimeric molecule precursor having an amino group is performed by a liquid phase synthesis method.
  • the first nucleic acid is PNA, PRNA, PNA/PRNA, or LNA
  • the second nucleic acid is RNA or DNA
  • the first nucleic acid is PNA
  • the second nucleic acid is DNA
  • the chimeric molecule has a portion to which the first nucleic acid or derivative thereof is bound to the 3' end of the second nucleic acid or derivative thereof.
  • the third chimeric molecule precursor is a compound represented by a specific formula described below.
  • the second nucleic acid or its derivative is a compound represented by a specific formula described below.
  • Yet another aspect of the present invention has the following gist.
  • the derivative of the first nucleic acid is a halogenated derivative of the base moiety bonded to the first nucleic acid, a deaminated derivative, or a derivative having a sulfur atom instead of an oxygen atom
  • the derivative of the second nucleic acid is a halogenated derivative, a deaminated derivative, or a derivative having a sulfur atom instead of an oxygen atom, or a phosphorothioate type DNA or RNA, or a phosphorothioate type DNA or RNA, or a phosphorothioate type DNA or RNA.
  • Rhodithioate type DNA or RNA, morpholino type nucleic acid The base part means uracil, cytosine, thymine, adenine, guanine, purine ring or pyrimidine ring bound to a nucleic acid
  • the production method includes preparing a second chimeric molecule precursor by introducing the second nucleic acid or a derivative thereof via the hydroxyl group at the 5' position of the RNA or DNA of the first chimeric molecule precursor having a hydroxyl group; oxidation of the phosphorus atom of the second chimeric molecule precursor using a peroxide; If necessary, deprotecting the second chimeric molecule precursor, and converting the first nucleic acid or derivative thereof into the second chimeric molecule precursor or the deprotected second chimeric molecule precursor.
  • the first chimeric molecule precursor has the formula (1)
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker;
  • R is each Independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • Base represents the base portion; deoxyribose in the formula may have an optionally protected hydroxyl group at the 2'-position; Good.
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker;
  • R is each Independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • Base represents the base moiety; Indicates one or more first nucleic acids or derivatives thereof and/or second nucleic acids or derivatives thereof; deoxyribose in the formula may have a hydroxyl group that may be protected at the 2'-position.
  • the second nucleic acid has the formula (4)
  • the deprotection of the second chimera molecule precursor is deprotection of the protected amino group of the second nucleic acid or its derivative introduced into the second chimera molecule precursor
  • the introduction of the first nucleic acid or its derivative is introduction via the amino group of the second nucleic acid or its derivative
  • the first nucleic acid has the formula (5)
  • a production method characterized in that the preparation of the second chimeric molecule precursor, the deprotection of the second chimeric molecule precursor, and the production of the chimeric molecule are all performed by a liquid phase synthesis method.
  • [3] The manufacturing method of [1] or [2], wherein the first nucleic acid or its derivative is PNA, and the second nucleic acid or its derivative is DNA.
  • the peroxide is tert-butyl hydroperoxide or metachloroperbenzoic acid, and the amount of the peroxide used is 2 to 5 moles per the number of moles of the second chimeric molecule precursor used. , or 2 to 5 mol per mole of the first chimeric molecule precursor used to prepare the second chimeric molecule precursor, [1] to [3].
  • the linker in the formula (1) and the formula (2) is -O-, the aromatic hydrocarbon ring having 6 to 14 carbon atoms is a benzene ring, and the R is a hydrogen atom, The manufacturing method according to any one of [1] to [4].
  • the protecting group for the adjacent amino group is such that the fluorenyl group consists of halogen, nitro, cyano, trifluoromethyl, carboxy, alkyloxycarbonyl, dialkylcarbamoyl, and alkylcarbonyl.
  • a fluorenylmethoxycarbonyl group optionally substituted with a group selected from the group; a trityl group; a p-methoxyphenyldiphenylmethyl group; a di(p-methoxyphenyl)phenylmethyl group; or a phthalimide-type protecting group; The manufacturing method according to any one of [1] to [7].
  • the optionally protected hydroxyl group that is allowed to be substituted at the 2'-position of deoxyribose in the formula (1), the formula (2), and the formula (4) is an unprotected hydroxyl group.
  • [10] A chimeric molecule in which at least one first nucleic acid, which is PNA, PRNA, PNA/PRNA, or LNA, or a derivative thereof, and a second nucleic acid, which is RNA or DNA, or a derivative thereof are fused.
  • the derivative of the first nucleic acid is a halogenated derivative of the base moiety bonded to the first nucleic acid, a deaminated derivative, or a derivative having a sulfur atom instead of an oxygen atom
  • the derivative of the second nucleic acid is a halogenated derivative, a deaminated derivative, or a derivative having a sulfur atom instead of an oxygen atom, or a phosphorothioate type DNA or RNA, or a phosphorothioate type DNA or RNA, or a phosphorothioate type DNA or RNA.
  • Rhodithioate type DNA or RNA, morpholino type nucleic acid The base part means uracil, cytosine, thymine, adenine, guanine, purine ring or pyrimidine ring bound to a nucleic acid,
  • the production method includes introducing the second nucleic acid or a derivative thereof into the third chimeric molecule precursor having an amino group via the amino group of the third chimeric molecule precursor having an amino group.
  • the third chimeric molecule precursor has the formula (11)
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker;
  • R is each independently, Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • Base represents the base portion.
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker;
  • R is each independently, represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • Base represents the base moiety;
  • Z represents a single bond, or 1 through a bond between a nitrogen atom bonded to Z and a carbonyl carbon atom;
  • the above first nucleic acid or its derivative and/or the second nucleic acid or its derivative is shown; each deoxyribose in the formula may independently have an optionally protected hydroxyl group at the 2'-position. Good.
  • the second nucleic acid has the formula (14)
  • p represents an integer of 0 or more; AG/HG represents an optionally protected amino group or hydroxyl group; Base represents the base portion; LV represents a 2-cyanoethyl group, an allyl group) , or a benzyl group; each deoxyribose in the formula may independently have an optionally protected hydroxyl group at the 2'-position.
  • a production method characterized in that the introduction of the second nucleic acid or its derivative into the third chimeric molecule precursor having an amino group is performed by a liquid phase synthesis method.
  • a nucleic acid whose main chain skeleton is anionic, such as RNA or DNA, or a derivative thereof, has a neutral or cationic main chain skeleton, such as PNA or PRNA, or a nucleic acid thereof, whose main chain skeleton is neutral or cationic, such as PNA or PRNA. It is possible to provide a method for producing a chimeric molecule by a liquid phase synthesis method in which a derivative is introduced.
  • a PNA structure is formed by fusing a PNA structure to oligo RNA or oligo DNA, or a PNA structure is formed by further bonding a PNA structure to this structure; or a PNA structure is further bonded to a DNA-PNA structure.
  • a PNA-DNA-PNA structure in which a PNA structure is further bonded to this structure can be manufactured by a liquid phase synthesis method.
  • a nucleic acid or a derivative thereof having a neutral or cationic main chain skeleton such as PNA or PRNA
  • an anionic main chain skeleton such as RNA or DNA. It is possible to provide a method for producing a chimeric molecule by a liquid phase synthesis method, in which a nucleic acid or a derivative thereof is introduced.
  • a DNA-PNA structure in which a DNA structure or an RNA structure is fused to an oligo-PNA or an oligo-PRNA, or a DNA structure or an RNA structure is further bonded to this structure; Furthermore, it becomes possible to produce a DNA-PNA-DNA structure by liquid phase synthesis in which a DNA structure or an RNA structure is fused, or a DNA structure or an RNA structure is further bonded to this structure.
  • the chimeric molecule that is the object of the production method of the present invention is a first nucleic acid whose main chain skeleton is neutral or cationic or a derivative thereof (hereinafter, including the derivative, also simply referred to as "first nucleic acid”). ) and a second nucleic acid whose main chain skeleton is anionic or a derivative thereof (hereinafter also simply referred to as "second nucleic acid” including derivatives). be. That is, the chimeric molecule that is the object of the production method of the present invention only needs to have a partial structure in which the first nucleic acid and the second nucleic acid are fused.
  • the chimeric molecule that is the object of the production method of the present invention has a plurality of nucleic acids bound thereto, any part of which may be the first nucleic acid, and the remaining part may be the second nucleic acid.
  • the lower limit of the total number of nucleic acids may be 2, 3, 5, 10, or 16.
  • the upper limit of the total number of nucleic acids may be 80, may be 40, may be 30, may be 23, may be 15, may be 10, may be 5.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 2 to 80, it may be 2 to 40, it may be 2 to 15, it may be 2 to 10, it may be 2 to 5, it may be 3 to 80, It may be 3-40, it may be 3-10, it may be 5-40, it may be 10-30, it may be 16-23.
  • the ratio of the number of first nucleic acids to the number of second nucleic acids in the total number of nucleic acids is not particularly limited, but as the number of first nucleic acids: the number of second nucleic acids, The ratio may be 1:10 to 10:1, preferably 1:3 to 3:1, more preferably 1:2 to 2:1.
  • the first nucleic acid and the second nucleic acid in the present invention each have the ability to bind to a target nucleic acid.
  • the target nucleic acid is not particularly limited as long as it is a nucleic acid or a derivative thereof that has a target sequence to which the chimeric molecule that is the object of the production method of the present invention can bind, but RNA or DNA is preferable, and the chimeric molecule is used in the pharmaceutical composition.
  • the target nucleic acid is preferably RNA or DNA encoding a protein that causes the disease to be treated using the pharmaceutical composition, and mRNA, miRNA, or siRNA associated with the disease.
  • nucleic acid refers to a wide range of nucleic acids including RNA and DNA, which are generally defined as nucleic acids, as well as so-called artificial nucleic acids such as PNA, PRNA, and LNA (cross-linked artificial nucleic acids).
  • Nucleic acid derivatives are not particularly limited, but include, for example, halogenated derivatives of base moieties (uracil, cytosine, thymine, adenine, guanine, purine rings, and pyrimidine rings) bound to nucleic acids, deaminated derivatives, and each nucleic acid base. Examples include derivatives having a sulfur atom instead of an oxygen atom.
  • nucleic acid derivatives include phosphorothioate-type DNA and RNA, phosphorodithioate-type DNA and RNA, and morpholino-type nucleic acids as disclosed in Patent Document 3 mentioned above.
  • halogen means fluoro, chloro, bromo, and iodo, preferably fluoro, chloro, and bromo.
  • Ribose or deoxyribose in RNA, DNA, and PRNA may be ribose or deoxyribose in which the carbon atoms at the 2nd and 4th positions of LNA etc. are bonded by a divalent organic group, and such ribose
  • examples of deoxyribose include ribose or deoxyribose having the structure described in Patent Document 7 mentioned above. When it comes to ribose or deoxyribose in RNA, DNA, or PRNA, ribose or deoxyribose is preferred.
  • the first nucleic acid or its derivative having a neutral or cationic main chain skeleton preferably has a neutral main chain skeleton.
  • the neutral main chain skeleton is not particularly limited, but includes, for example, an amide skeleton (typically, a skeleton having N-(2-aminoethyl)glycine as a unit).
  • examples of the nucleic acid having an amide skeleton or a derivative thereof include PNA or a derivative thereof, PRNA or a derivative thereof, a combination of PNA and PRNA (hereinafter also referred to as "PNA/PRNA"), or a derivative thereof.
  • PNA/PRNA the binding position of PRNA in PNA may be any position in PNA, or it may be bound in the middle of PNA.
  • a combination such as PNA-PRNA-PNA may be used.
  • the cationic main chain skeleton is not particularly limited, but includes, for example, an imino skeleton, a phosphoric acid amide skeleton, a phosphoramidite skeleton, and a skeleton having a cationic side chain such as an amino group or a guanidium group in the side chain of the amide skeleton. can be mentioned.
  • the anionic main chain skeleton is not particularly limited, but includes, for example, a sugar-phosphate skeleton, a sugar-thiophosphate skeleton. can be mentioned.
  • examples of the nucleic acid having a sugar-phosphate skeleton or sugar-thiophosphate skeleton or a derivative thereof include RNA or a derivative thereof, DNA or a derivative thereof.
  • the first nucleic acid or its derivative is preferably one selected from the group consisting of PNA, PRNA, PNA/PRNA, and LNA, and derivatives thereof; It is more preferable that it be one of the following.
  • the second nucleic acid or its derivative is preferably one selected from the group consisting of RNA, DNA, and derivatives thereof.
  • the first nucleic acid or its derivative is selected from the group consisting of PNA, PRNA, PNA/PRNA, and LNA, and derivatives thereof
  • the second nucleic acid or its derivative Preferably, the derivative is selected from the group consisting of RNA and DNA, and derivatives thereof; the first nucleic acid or its derivative is selected from the group consisting of PNA and its derivatives.
  • the second nucleic acid or its derivative is preferably one selected from the group consisting of RNA and DNA, and derivatives thereof; the first nucleic acid or its derivative is selected from PNA and its derivatives. It is more preferable that the second nucleic acid or its derivative is selected from the group consisting of DNA and its derivative.
  • a chimeric molecule when a plurality of first nucleic acids or derivatives thereof, or second nucleic acids or derivatives thereof are included in the molecule, the plurality of first nucleic acids or derivatives thereof are different even if they are the same.
  • the plurality of second nucleic acids or derivatives thereof may be the same or different.
  • the first nucleic acid may be bound to either the 3' end or the 5' end of the second nucleic acid. In one aspect of the present invention, it is preferable that the 5' end of the second nucleic acid has at least one portion to which the first nucleic acid is bound.
  • the 5' end of the second nucleic acid has at least one portion to which the first nucleic acid is bound.
  • the 3' end of the second nucleic acid has at least one portion to which the first nucleic acid is bound.
  • it is necessary that the 3' end of the second nucleic acid has at least one portion to which the first nucleic acid is bound.
  • a chimeric molecule in which at least one first nucleic acid and one second nucleic acid are fused is, for example, a first nucleic acid, PNA (or a derivative thereof; the same applies hereinafter), and a second nucleic acid, DNA.
  • PNA PNA
  • DNA DNA
  • Fusions of PNA and DNA include chimeric molecules in which PNA is fused to the 5'-position of DNA (hereinafter also referred to as "PNA-DNA chimeric molecules”), and PNA fused to the 3'-position of DNA.
  • PNA-DNA chimeric molecules hereinafter also referred to as "DNA-PNA chimeric molecules").
  • PNA-DNA chimeric molecules are preferred.
  • DNA-PNA chimeric molecules are preferred.
  • a fusion product of PNA/PRNA and DNA is a chimeric molecule in which PNA/PRNA is fused to the 5'-position of DNA (hereinafter also referred to as "PNA/PRNA-DNA chimeric molecule” or " PRPD "). and a chimeric molecule in which PNA/PRNA is fused to the 3'-position of DNA (hereinafter also referred to as "DNA-PNA/PRNA chimeric molecule" or " DPRP ").
  • P R PD is preferred.
  • DP RP is preferred.
  • the chimeric molecule that is the object of the production method of the present invention has a plurality of nucleic acids bound thereto, any part of which may be the first nucleic acid, and the remaining part may be the second nucleic acid. Therefore, - Extension of the first nucleic acid (preferably via the N-terminus of the first nucleic acid and the elongation that creates a bond between the ends), - Extension of a second nucleic acid using the first nucleic acid as a guide (preferably via the N-terminus of the first nucleic acid) (preferably via the N-terminus of the first nucleic acid and the elongation that creates a bond between the '-position), - Extension of the first nucleic acid (preferably via the 5'-position of the second nucleic acid and the first (elongation that creates a bond between the C-terminus of the nucleic acid), and - Extension of the second nucleic acid (preferably via the 5'-position of the second nucleic acid) using the second
  • elongation of the first nucleic acid using the first nucleic acid as a clue can be carried out by the methods described in Patent Documents 4 to 6 mentioned above or by the methods described in K.K. Ogami, et al. , Chem. Lett. , 2018, 47, 138-140, or a method similar thereto can be adopted.
  • the methods described in Patent Documents 2 and 7 mentioned above or methods similar thereto can be employed.
  • the elongation of the first nucleic acid using the second nucleic acid as a cue in particular the elongation that produces a bond with the C-terminus of the first nucleic acid via the 5'-position of the second nucleic acid, is described below.
  • the manufacturing method of the present invention (hereinafter also referred to as the first embodiment of the present invention) can be employed.
  • the elongation of the second nucleic acid using the first nucleic acid as a guide in particular the elongation to the N-terminus of the first nucleic acid via the 3'-position of the second nucleic acid, can be carried out in the production of the present invention as described below. method (hereinafter also referred to as the second aspect of the present invention).
  • the method for producing a chimeric molecule according to the first embodiment includes the following steps (A1) to (A3).
  • the manufacturing method of the first aspect of the present invention will be described below.
  • a PNA-DNA chimera molecule (a chimera molecule in which PNA is fused to the 5'-position of DNA) is produced using PNA as the first nucleic acid and DNA as the second nucleic acid as necessary.
  • the first chimera molecule precursor (hereinafter also simply referred to as "the first chimera molecule precursor") having a hydroxyl group (the second chimera molecule precursor Preparation of)
  • This step is a step of introducing the second nucleic acid using the hydroxyl group of the first chimeric molecule precursor as a foothold.
  • a second chimeric molecule precursor is produced.
  • the first chimeric molecule precursor has a lipid that solidifies the target product by adding a specific solvent to the solution after the reaction and facilitates recovery. Contains soluble anchors.
  • the first nucleic acid is introduced using the introduced second nucleic acid as a clue, so the second nucleic acid has an optionally protected amino group at the 5'-position.
  • the second nucleic acid undergoes nucleophilic attack from the hydroxyl group of the first chimera molecule precursor, and interacts with the oxygen atom derived from the hydroxyl group of the first chimera molecule precursor.
  • a phosphorus atom of the second nucleic acid, DNA preferably a phosphorus atom connected to the 3'-position of deoxyribose of the DNA.
  • the second nucleic acid may be a combination of two or more second nucleic acids.
  • the phosphorus atom of the second nucleic acid that undergoes nucleophilic attack is preferably trivalent.
  • one bond is substituted with the 3'-position oxygen atom of deoxyribose (ribose in the case of RNA), another bond is substituted with a leaving group, and the remaining bond is The hand is substituted with a group that can ultimately form -O 2 - .
  • the leaving group may be any leaving group that can be used in a nucleophilic substitution reaction of an oxygen atom to a phosphorus atom under weakly acidic conditions.
  • a dialkylamino group can be mentioned.
  • a diisopropylamino group is preferably used, and for example, a diethylamino group and an ethylisopropylamino group can also be used.
  • Groups that can ultimately produce -O - include groups in which an oxygen atom is replaced by a group that leaves the oxygen atom under conditions that do not affect other structures in the chimera molecule or chimera molecule precursor. That's fine.
  • an ethoxy group substituted with an electron-withdrawing group at the 2-position which can form -O 2 - under weakly basic conditions, and a 2-cyanoethoxy group is preferred.
  • an allyloxy group that can generate -O - by oxidative addition of a palladium catalyst in the presence of a palladium catalyst and a benzyloxy group that can generate -O - by catalytic hydrogen reduction in the presence of palladium-supported carbon.
  • a group capable of generating -O 2 - under weakly basic conditions such as an ethoxy group substituted with an electron-withdrawing group at the 2-position, can be eliminated during the final cleavage of the lipophilic anchor.
  • the group that detaches from the oxygen atom under weak basic conditions is a necessary functional group during the nucleophilic attack from the first chimera molecule precursor in this step, but in other steps, It may or may not be eliminated, and it may be actively eliminated or eliminated due to reaction conditions.
  • Examples of the optionally protected amino group of the second nucleic acid include amino groups and protected amino groups. It will be done. A protected amino group is preferred in order for this step to proceed smoothly.
  • the protecting group for the amino group is not particularly limited as long as it can be removed under acidic conditions.
  • Protective Groups in Organic Synthesis (4th edition, 2006) and optionally substituted trityl groups are preferred.
  • Examples of the optionally substituted trityl group include trityl group (Tr), p-methoxyphenyldiphenylmethyl group (MMTr), and di(p-methoxyphenyl)phenylmethyl group (DMTr), with MMTr being more preferred. .
  • the optionally protected amino group of the second nucleic acid is the compound to which two or more second nucleic acids are bound. It is sufficient that only the second nucleic acid present at the 5'-end of the second nucleic acid exists, and the second nucleic acids other than the second nucleic acid present at the 5'-end may be bonded to each other via an oxygen atom.
  • the second nucleic acid used in this step has the following structure.
  • p represents an integer of 0 or more; AG represents an optionally protected amino group; Base indicates a base part (which may be the same or different); NR 2 represents a leaving group used in the nucleophilic substitution reaction of an oxygen atom to a phosphorus atom under weakly acidic conditions; LV represents a group that leaves an oxygen atom. Note that each deoxyribose may independently have a hydroxyl group that may be protected at the 2'-position.
  • p is preferably 0 to 40, more preferably 0 to 20, even more preferably 0 to 10, even more preferably 0 to 5, even more preferably 0 to 1, and particularly preferably 0.
  • the optionally protected hydroxyl group that deoxyribose is allowed to have at the 2'-position includes 2'-modified products such as methoxy and methoxyethyloxy groups, as well as hydroxyl groups that are selectively removed after synthesis. Examples include tert-butyldimethylsilyloxy group, triisopropyloxymethyloxy group, tetrahydropyranyloxy group, bis(2-acetylmethoxy)methyloxy group, and levulinyloxy group.
  • 2'-modified products such as methoxy and methoxyethyloxy groups, as well as hydroxyl groups that are selectively removed after synthesis. Examples include tert-butyldimethylsilyloxy group, triisopropyloxymethyloxy group, tetrahydropyranyloxy group, bis(2-acetylmethoxy)methyloxy group, and levulinyloxy group.
  • the second nucleic acid used in this step for example, one bond of a phosphorus atom is substituted with an oxygen atom at the 3'-position of deoxyribose, another bond is substituted with a leaving group, and the remaining one
  • the second nucleic acid in which one bond is substituted with a group capable of ultimately producing -O - is described, for example, in US Patent Application Publication US 2020/0399304, Tetrahedron Letters, 39 (24), 4215-4218. , 1998, Journal of Carbohydrate Chemistry, 24(2), 145-160, 2005, or a method analogous thereto.
  • the lipophilic anchor possessed by the first chimeric molecule precursor may be any partial structure that contributes to facilitating recovery by solidifying the target product by adding a specific solvent to the solution after the reaction.
  • the partial structures disclosed in the above-mentioned Patent Documents 2 to 6 may be mentioned, and in particular, the pseudo solid-phase protecting group disclosed in the above-mentioned Patent Document 2 can be used.
  • a starting material containing a fat-soluble anchor as part of its structure is used, so a chimeric molecule containing a fat-soluble anchor as part of its structure can be produced.
  • a chimeric molecule that does not contain the lipophilic anchor as part of its structure is produced.
  • the lipophilic anchor is not cleaved during the production of the chimeric molecule, while being able to be cleaved at any stage.
  • the lipophilic anchor is not removed under acidic conditions and is removable under basic conditions.
  • the fat-soluble anchor examples include organic groups having an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which one or more aliphatic hydrocarbon groups having 10 to 40 carbon atoms are bonded via a single bond or a linker.
  • the aliphatic hydrocarbon group may be linear, branched, or cyclic, or a mixture of these may be used.
  • the aliphatic hydrocarbon group may have one or two unsaturated bonds.
  • one or two methylene carbon atoms may be replaced by ether oxygen atoms.
  • the aliphatic hydrocarbon group is preferably linear; it is more preferably linear and has no unsaturated bonds; the aliphatic hydrocarbon group is linear and contains an unsaturated bond and an etheric oxygen atom It is further preferable that it does not have.
  • the number of carbon atoms in the aliphatic hydrocarbon group having 10 to 40 carbon atoms is preferably 10 to 30, more preferably 12 to 28, even more preferably 14 to 22, and particularly preferably 16 to 20.
  • a linear alkyl group having 14 to 22 carbon atoms is preferable, a linear alkyl group having 16 to 20 carbon atoms is more preferable, and a linear alkyl group having 17 to 19 carbon atoms is preferable.
  • a chain alkyl group is more preferred, and a straight chain alkyl group having 18 carbon atoms is particularly preferred.
  • the aliphatic hydrocarbon group having 10 to 40 carbon atoms and the aromatic hydrocarbon ring having 6 to 14 carbon atoms are preferably bonded via a linker.
  • Examples of the aromatic hydrocarbon ring having 6 to 14 carbon atoms include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring, with a benzene ring and a naphthalene ring being preferred, and a benzene ring being more preferred.
  • 1 to 5 aliphatic hydrocarbon groups having 10 to 40 carbon atoms may be bonded via a single bond or a linker, preferably 1 to 4 aliphatic hydrocarbon groups having 10 to 40 carbon atoms.
  • the number is more preferably 1 to 3, still more preferably 2 to 3, particularly preferably 3.
  • the fat-soluble anchor examples include an organic group having a benzene ring in which 1 to 5 aliphatic hydrocarbon groups having 14 to 22 carbon atoms are bonded via an -O-linker; An organic group having a benzene ring in which 2 to 3 hydrocarbon groups are bonded via an -O-linker is preferable; a benzene ring in which 3 aliphatic hydrocarbon groups having 18 carbon atoms are bonded via an -O-linker is preferable. An organic group having a ring is more preferred; an organic group having 3,4,5-tri(n-octadecanyloxy)phenyl is even more preferred.
  • organic groups having an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker include organic groups having the following structure. , an organic group having a structure represented by the following formula (i) is preferable.
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker;
  • R each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
  • NA each independently indicates a position that binds to a structure containing the first nucleic acid or the second nucleic acid.
  • the alkyl group having 1 to 6 carbon atoms in R may be linear, branched, or cyclic, or a mixture of these may be used. Examples include methyl group, ethyl group, n-propyl group, and isopropyl group, with methyl group and ethyl group being preferred, and methyl group being more preferred.
  • R is preferably a hydrogen atom.
  • the hydroxyl groups possessed by the first chimeric molecule precursor are preferably hydroxyl groups at the 3'- and 5'-positions of deoxyribose and ribose of nucleosides, and deoxyribose and ribose of DNA and RNA that are the second nucleic acids.
  • the oxygen atom at the 3'-position of the deoxyribose or ribose of the nucleoside is represented by formula (i).
  • the first chimeric molecule precursor A may be directly substituted at the NA position of the lipophilic anchor represented by .
  • the first chimeric molecule precursor A has, for example, the following structure.
  • Ar * and R have the above-mentioned meanings; Base indicates a base portion. Note that deoxyribose may have an optionally protected hydroxyl group at the 2'-position.
  • the oxygen atom of the hydroxyl group of the first chimera molecule precursor is a hydroxyl group at the 5'-position of deoxyribose or ribose of DNA or RNA that is the second nucleic acid
  • the oxygen atom of the hydroxyl group of the first chimera molecule precursor A and the phosphate site at the 3'-position of deoxyribose or ribose of DNA or RNA that is the second nucleic acid, or the oxygen atom of the hydroxyl group of the first chimera molecule precursor A and the second A phosphoric acid site at the 3'-position of deoxyribose or ribose of DNA or RNA that is a nucleic acid is linked to one or more first nucleic acids and/or second nucleic acids (a combination of a first nucleic acid and a second nucleic acid).
  • the first chimeric molecule precursor B has, for
  • Ar * , R and Base have the above-mentioned meanings;
  • X represents a single bond or represents one or more first nucleic acids and/or second nucleic acids through a bond between an oxygen atom and a phosphorus atom that are bonded to X.
  • each deoxyribose may independently have a hydroxyl group that may be protected at the 2'-position.
  • the NA of the lipophilic anchor represented by formula (ii) Is the N-terminus of the first nucleic acid, PNA or PRNA, whose C-terminus is bound to the position directly linked to the phosphate site at the 3'-position of deoxyribose or ribose of the second nucleic acid, DNA or RNA?
  • the first chimeric molecule precursor C may be The first chimeric molecule precursor C has, for example, the following structure.
  • Ar * , R and Base have the above-mentioned meanings;
  • Y represents a single bond or represents one or more first nucleic acids and/or second nucleic acids through a bond between a nitrogen atom and a phosphorus atom that are bonded to Y.
  • each deoxyribose may independently have a hydroxyl group that may be protected at the 2'-position.
  • the total number of nucleic acids may be 1 to 70, preferably 1 to 31, more preferably 1 to 21, and still more preferably 1 to 10. , even more preferably from 1 to 5, particularly preferably from 1 to 3.
  • the first chimeric molecular precursor has a molecular weight of 300 to 6,000 in order for the lipophilic anchor described above to solidify the target product by adding a specific solvent to the solution after the reaction and facilitate recovery. It is preferably 300 to 5,000, more preferably 300 to 4,000.
  • the first chimeric molecule precursor used in this step is produced, for example, by the method described in the above-mentioned patent documents, particularly Patent Documents 2 and 7, the method described in the Examples of the present application, or a method analogous thereto. be able to.
  • This step is performed in a solvent inert to the reaction using an excess amount of the second nucleic acid relative to the first chimeric molecule precursor.
  • nonpolar solvent examples include halogenated hydrocarbons such as chloroform, dichloromethane, and 1,2-dichloroethane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; fatty acid esters such as ethyl acetate and isopropyl acetate; hexane. , aliphatic hydrocarbons such as pentane, heptane, octane, and cyclohexane; nonpolar ethers such as diethyl ether and cyclopentyl methyl ether; and any combination thereof. Halogenated hydrocarbons are preferred.
  • a polar solvent may be used in combination.
  • polar solvents include nitriles such as acetonitrile and propionitrile; polar ethers such as 1,4-dioxane and tetrahydrofuran; amides such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and dimethylsulfoxide; any of these Combinations include;
  • the mixing ratio may be 50:50 to 99:1, preferably 80:20 to 99:1, and more preferably 80:20 to 95:5.
  • the second nucleic acid used in excess amount with respect to the first chimeric molecule precursor is 1.5 to 10 equivalents, preferably 1.6 to 8 equivalents, based on the number of moles of the first chimeric molecule precursor used, More preferably, it can be used in an amount of 1.8 to 5 equivalents, and still more preferably 2 to 4 equivalents.
  • an activator such as 1H-tetrazole or 4,5-dicyanoimidazole may be used.
  • these activators are used, they are used in an amount of 1 to 25 equivalents, preferably 5 to 20 equivalents, more preferably 8 to 15 equivalents, even more preferably 8 to 15 equivalents, based on the number of moles of the first chimeric molecule precursor used. 12 equivalents can be used.
  • the reaction temperature and reaction time can be changed as appropriate depending on the type and amount of the reagent used. For example, stirring may be performed at 0 to 100°C, preferably 15 to 50°C, more preferably 20 to 30°C, for 5 minutes to 24 hours.
  • the substrate concentration in the reaction can be changed as appropriate depending on the type and amount of the reagent used.
  • the concentration of the first chimeric molecule precursor in the reaction solution is 0.01 to 0.2 mol/L, preferably 0.02 to 0.1 mol/L, more preferably 0.025 to 0.08 mol/L.
  • the amount of the solvent used can be adjusted so that it is more preferably 0.03 to 0.05 mol/L.
  • the phosphorus atom of the second chimeric molecule precursor may be oxidized or thiooxidized, if necessary.
  • a conventional method can be used for oxidation or thiooxidation of the phosphorus atom.
  • Peroxide is preferably used for oxidizing phosphorus atoms.
  • tert-butyl hydroperoxide and metachloroperbenzoic acid are preferable, and tert-butyl hydroperoxide can be used as a commercially available decane solution or toluene solution as it is or diluted 1 to 3 times. can.
  • the amount of the oxidizing agent or thiooxidizing agent used is, for example, 1 to 50 mol, preferably 1 to 10 mol, per mole of the second chimeric molecule precursor or the first chimeric molecule precursor used in the previous step. More preferably, it is 2 to 5 mol.
  • the oxidation or thiooxidation of the phosphorus atom can be carried out in a so-called one-pot process following the step of introducing the second nucleic acid without isolating and purifying the second chimera molecule precursor after introducing the second nucleic acid. You may go.
  • the target object may be solidified and recovered by adding a polar solvent to the reaction solution. Since the first chimeric molecule precursor used in the production method of the present invention contains a fat-soluble anchor, the object of this step (second chimeric molecule precursor) is solidified and precipitated by the addition of a polar solvent. Therefore, the target product of this step can be recovered by filtration.
  • a polar solvent acetonitrile and methanol are preferably used from the viewpoint of versatility and cost, and methanol is particularly preferably used.
  • the amount of polar solvent added to the reaction solution after the completion of the reaction in order to recover the target product by filtration depends on the substrate concentration in the reaction, but for example, the amount of polar solvent added to the reaction solution is 5 to 50% based on the total amount (volume) of the reaction solvent used.
  • the amount is 50 times, preferably 5 to 30 times, more preferably 8 to 20 times, even more preferably 10 to 15 times.
  • the second chimeric molecule precursor obtained in the above step is derived from the introduced second nucleic acid and may be protected. It has an amino group. Since the first nucleic acid is introduced via this amino group in the next step, when the optionally protected amino group is a protected amino group, it is necessary to deprotect the amino group. Conditions for deprotecting the amino group can be changed as appropriate depending on the protecting group used. Specifically, the method described in the aforementioned "Greene's Protective Groups in Organic Synthesis (4th edition, 2006)" can be employed.
  • the reaction is carried out using an acid in a solvent inert to the reaction.
  • acids that can be used include, but are not particularly limited to, halogenoacetic acids such as trichloroacetic acid, trifluoroacetic acid, and dichloroacetic acid; sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. From the viewpoint of obtaining good results, halogenoacetic acids are preferred, and trichloroacetic acid is particularly preferred.
  • the amount of acid used is, for example, 1 to 100 mol, preferably 5 to 80 mol, more preferably 10 to 60 mol, even more preferably 20 to 50 mol, per the number of moles of the second chimeric molecule precursor used. .
  • the target product (deprotected second chimeric molecule precursor) may be solidified and recovered by adding a polar solvent to the reaction solution.
  • the deprotected second chimeric molecule precursor may be subjected to the next step as it is, or it may be removed by removing the group that leaves the oxygen atom under weak basic conditions, as shown by LV in the above formula. It may be subjected to the next step.
  • a conventional method can be used to eliminate the group that is eliminated from the oxygen atom. Elimination of groups that leave off from oxygen atoms under weakly basic conditions is described, for example, by De Napoli et al. , Chem. Commun. , 2005, 2586-2588, U. Pradere et al. , Chem. Rev. , 2014, 114, 9154-9218.
  • This step is a step of introducing the first nucleic acid using the amino group of the second chimeric molecule precursor as a foothold. As a result, chimeric molecules are produced.
  • an amide bond is formed by an amidation reaction between the amino group of the second chimeric molecule precursor and the carboxy group of the first nucleic acid, or a similar reaction form.
  • the first nucleic acid may be one to which one or more first nucleic acids are bound.
  • a PNA monomer with a protected N-terminus such as an Fmoc-type PNA monomer, can be used.
  • the fluorenyl group in Fmoc (fluorenylmethoxycarbonyl) in the Fmoc type PNA monomer has 1 to 2 substituents at arbitrary substitution positions in order to adjust the reactivity when removing Fmoc. Good too.
  • the substituent is preferably an electron-withdrawing group, such as halogen, nitro, cyano, trifluoromethyl, carbonyl (carboxy, alkyloxycarbonyl, dialkylcarbamoyl, alkylcarbonyl).
  • the first nucleic acid used in this step has the following structure.
  • q represents an integer of 0 or more; PG represents a protecting group for the adjacent amino group; Base indicates a base portion (which may be the same or different).
  • q is preferably 0 to 40, more preferably 0 to 30, even more preferably 0 to 20, even more preferably 0 to 10, and particularly preferably 0.
  • a commercially available compound may be used as the first nucleic acid used in this step.
  • commercially available monomers can be subjected to a normal amidation reaction to prepare monomers in which two or more first nucleic acids are bound.
  • Fmoc which may have a substituent
  • Fmoc preferably Fmoc
  • a phthalimide-type protecting group that can be removed using trityl, more preferably MMTr, or hydrazine, including Tr, MMTr, and DMTr.
  • This step is carried out using an excess amount of the first nucleic acid relative to the second chimeric molecule precursor, in the presence of a condensing agent as necessary, and in a solvent inert to the reaction.
  • solvents used here include, but are not limited to, halogenated hydrocarbons; aromatic hydrocarbons; fatty acid esters; non-polar/polar ethers; nitriles; amides; any combination thereof; can be mentioned.
  • halogenated hydrocarbons aromatic hydrocarbons
  • fatty acid esters non-polar/polar ethers
  • nitriles nitriles
  • amides any combination thereof; can be mentioned.
  • tetrahydrofuran is preferred.
  • the first nucleic acid used in excess amount with respect to the second chimeric molecule precursor is 1.01 to 5 equivalents, preferably 1.05 to 3 equivalents, based on the number of moles of the second chimeric molecule precursor used, More preferably, it can be used in an amount of 1.1 to 2.5 equivalents, and still more preferably 1.1 to 2.2 equivalents.
  • a condensing agent may be used for the purpose of making this step proceed smoothly.
  • the condensing agent include dicyclohexylcarbodiimide, 1,1'-carbonyldiimidazole, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 1-[bis(dimethylamino)methylene]-1H- 1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, (1-cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU), diphenyl phosphoric acid azide, and phosphorus oxychloride, but are not limited to these.
  • COMU is preferred.
  • COMU When COMU is used as a condensing agent, preferably as a condensing agent, 1 to 10 equivalents, preferably 1.5 to 8 equivalents, more preferably 2 to 6 equivalents, based on the number of moles used of the second chimeric molecule precursor. More preferably, it can be used in an amount of 2.5 to 5 equivalents, particularly preferably 3 to 4.5 equivalents.
  • carboxy group in the first nucleic acid into a reactive derivative and then react it with the second chimeric molecule precursor.
  • reactive derivatives of carboxyl groups include acid halides obtained by reacting with halogenating agents such as phosphorus oxychloride and thionyl chloride; mixed acid anhydrides obtained by reacting with isobutyl chloroformate, etc.; 1-hydroxy Examples include active esters obtained by condensation with benzotriazole and the like.
  • the reaction between these reactive derivatives and the second chimeric molecule precursor is carried out in a solvent that is inert to the reaction of halogenated hydrocarbons, aromatic hydrocarbons, ethers, and the like. It may be advantageous to use an organic base such as triethylamine, N,N-diisopropylethylamine, or N-methylmorpholine in order to make the reaction proceed smoothly.
  • an additive eg, 1-hydroxybenzotriazole, etc.
  • an organic base or an inorganic base such as potassium carbonate, sodium carbonate, potassium hydroxide, etc.
  • an organic base preferably N,N-diisopropylethylamine as the organic base, 1 to 10 equivalents, preferably 1.5 to 8 equivalents, more preferably It can be used in an amount of 1.5 to 5 equivalents, more preferably 2 to 4 equivalents, particularly preferably 2 to 3 equivalents.
  • the number of phosphate backbones in the second chimeric molecule precursor is 1 to 10 times the molar amount, preferably 1.5 to 5 times the molar amount, more preferably 2 to 4 times the molar amount, and even more preferably It can be used in an amount of 2.5 to 3 times the molar amount.
  • the reaction temperature and reaction time can be changed as appropriate depending on the type and amount of the reagent used. For example, stirring may be performed at 0 to 100°C, preferably 15 to 50°C, more preferably 20 to 30°C, for 5 minutes to 24 hours.
  • the substrate concentration in the reaction can be changed as appropriate depending on the type and amount of the reagent used.
  • the concentration of the first chimeric molecule precursor in the reaction solution is 0.01 to 0.2 mol/L, preferably 0.02 to 0.1 mol/L, more preferably 0.025 to 0.08 mol/L.
  • the amount of the solvent used can be adjusted so that it is more preferably 0.03 to 0.05 mol/L.
  • the target object (chimera molecule) may be solidified and recovered by adding a polar solvent to the reaction solution.
  • the chimeric molecule obtained in the above step may further bind the first nucleic acid or the second nucleic acid via the N-terminus of the introduced first nucleic acid.
  • the protecting group for the amino group of the introduced first nucleic acid can be removed, and the first nucleic acid or the second nucleic acid can be bound using the amino group as a clue.
  • the method for removing the protecting group for the amino group of the introduced first nucleic acid may be selected depending on the type of protecting group, and is described in the aforementioned "Greene's Protective Groups in Organic Synthesis (4th edition, 2006)". method can be adopted.
  • the protecting group for the amino group of the introduced first nucleic acid is Fmoc, for example, 2% by volume of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 2% by volume of Examples include a method in which a solution with piperidine, for example, a tetrahydrofuran (THF) solution is used.
  • first nucleic acid into the chimeric molecule can be carried out using the aforementioned (3) second chimeric molecule precursor or deprotected second chimeric molecule precursor (in this section, simply referred to as "second chimeric molecule precursor"). It can be carried out in the same manner as the introduction of the first nucleic acid (manufacture of a chimeric molecule) into the body (also referred to as "the body”). Introduction of the second nucleic acid is carried out by F. Bergmann, et al. , Tetrahedron Lett. , 1995, 36(38), 6823-6826 or a method similar thereto, or a method described in International Publication No. 2017/086397 or a method similar thereto can be adopted.
  • the lipophilic anchor By separating the lipophilic anchor from the thus produced chimeric molecule containing the lipophilic anchor as part of its structure, it is possible to produce a chimeric molecule that does not contain the lipophilic anchor as part of its structure.
  • the lipophilic anchor is not cleaved during the production of the chimeric molecule, while being capable of being cleaved at any stage.
  • the lipophilic anchor is not removed under acidic conditions and is removable under basic conditions.
  • the fat-soluble anchor is a fat-soluble anchor represented by formula (i) or formula (ii), it can be separated by the method described in Patent Documents 2 and 7 mentioned above or a method similar thereto.
  • the residue of the lipophilic anchor is precipitated, and the target chimeric molecule can be isolated from the supernatant.
  • a group that detaches from an oxygen atom under weak basic conditions a group indicated by LV
  • the protecting group for the amino group for example, Fmoc
  • the method for producing a chimeric molecule according to the second embodiment includes the following step (B1). (B1) Introduction of the second nucleic acid via the amino group of the third chimeric molecule precursor having an amino group.
  • the manufacturing method of the second aspect of the present invention will be described below.
  • a DNA-PNA chimera molecule (a chimera molecule in which PNA is fused to the 3'-position of DNA) is produced using PNA as the first nucleic acid and DNA as the second nucleic acid as necessary.
  • the third chimeric molecule precursor has a partial structure derived from the first nucleic acid, and the amino group possessed by the third chimeric molecule precursor is derived from the first nucleic acid.
  • the third chimeric molecule precursor having a partial structure derived from the first nucleic acid means that the first nucleic acid, preferably PNA or PRNA, more preferably PNA, has a partial structure derived from the first nucleic acid at the C-terminus of the third chimeric molecule precursor. It means that the N-terminus of the first nucleic acid, preferably PNA or PRNA, more preferably PNA, is exposed by binding to another moiety.
  • the exposed N-terminus of PNA may exist, for example, as a quaternary ammonium salt.
  • the exposed N-terminus of the first nucleic acid, preferably PNA is the amino group of the third chimeric molecule precursor and serves as a foothold for introducing the second nucleic acid.
  • the second nucleic acid undergoes nucleophilic attack from the amino group possessed by the third chimera molecule precursor, and the nitrogen derived from the amino group possessed by the third chimera molecule precursor A bond is formed between the atom and the phosphorus atom of the second nucleic acid, DNA, preferably the phosphorus atom connected to the 3'-position of the deoxyribose of the DNA.
  • the second nucleic acid may be a combination of two or more second nucleic acids.
  • the phosphorus atom of the second nucleic acid that undergoes nucleophilic attack is preferably an oxidized pentavalent phosphorus atom.
  • one bond is substituted with the oxygen atom at the 3'-position of deoxyribose (ribose in the case of RNA), and another bond is replaced with -O - .
  • the resulting group is substituted, and a hydrogen atom is bonded to the remaining bond.
  • the second nucleic acid used in this step has the following structure.
  • p is preferably 0 to 40, more preferably 0 to 20, even more preferably 0 to 10, even more preferably 0 to 5, even more preferably 0 to 1, and particularly preferably 0.
  • the optionally protected amino group or hydroxyl group in AG/HG serves as a clue for further elongating the nucleic acid from the chimera molecule produced in this step.
  • a protected amino group or hydroxyl group is preferred.
  • the optionally protected amino group or hydroxyl group in AG/HG is preferably an optionally protected hydroxyl group, and more preferably a protected hydroxyl group.
  • the protecting group for the amino group is not particularly limited as long as it can be removed under acidic conditions, and in the first embodiment, the second nucleic acid introduced via the hydroxyl group of the first chimera molecule precursor has Any protecting group acceptable to the optionally protected amino group can be employed.
  • the protecting group for the hydroxyl group is not particularly limited as long as it can be removed under acidic conditions.
  • Groups in Organic Synthesis (4th edition, 2006) an optionally substituted trityl group is preferred, and in another embodiment, an optionally substituted fluorenylmethoxycarbonyl group (Fmoc ) is preferred.
  • the optionally substituted trityl group include a trityl group (Tr), p-methoxyphenyldiphenylmethyl group (MMTr), and di(p-methoxyphenyl)phenylmethyl group (DMTr), with DMTr being more preferred. .
  • the fluorenyl group in fluorenylmethoxycarbonyl is halogen, nitro, cyano, trifluoromethyl, and/or carbonyl (carboxy, alkyloxycarbonyl, dialkylcarbamoyl, fluorenylmethoxycarbonyl group substituted with alkylcarbonyl).
  • the second nucleic acid used in this step can be prepared, for example, from the compound of formula (4) described above (the second nucleic acid used in step A1 of the first embodiment) by a known method or a method described in the Examples of the present application. Alternatively, it can be manufactured by a method similar to these.
  • the embodiment described in the manufacturing method of the first embodiment can be adopted.
  • the above-mentioned organic group having an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker is, for example, an organic group having the following structure.
  • An organic group having a structure represented by the following formula (ii) is preferable.
  • the position bonding to the structure containing the first nucleic acid or the second nucleic acid represented by NA is a nitrogen atom
  • the carbonyl carbon of PNA or PRNA that is the first nucleic acid It is preferable that the compound is bonded to form an amide bond.
  • the third chimeric molecule precursor is a third chimeric molecule precursor in which a partial structure derived from the first nucleic acid possessed by the third chimeric molecule precursor is directly substituted at the NA position of the lipophilic anchor represented by formula (ii). It may be the chimeric molecule precursor A of No. 3.
  • the third chimeric molecule precursor A has, for example, the following structure.
  • Ar * represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms to which an aliphatic hydrocarbon group having 10 to 40 carbon atoms is bonded via a single bond or a linker; R each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; Base indicates a base portion.
  • the third chimeric molecule precursor is such that the partial structure derived from the first nucleic acid possessed by the third chimeric molecule precursor and the NA position of the lipophilic anchor represented by formula (ii) are at one or more positions of the lipophilic anchor.
  • the third chimeric molecule precursor B may be bonded via the first nucleic acid and/or the second nucleic acid (it may be a combination of the first nucleic acid and the second nucleic acid). .
  • the third chimeric molecule precursor B has, for example, the following structure.
  • Ar * , R and Base have the above-mentioned meanings;
  • Z represents a single bond or one or more first nucleic acids and/or second nucleic acids through a bond between a nitrogen atom and a carbonyl carbon atom that are bonded to Z.
  • each deoxyribose may independently have a hydroxyl group that may be protected at the 2'-position.
  • the third chimeric molecule precursor comprises a hydroxyl group at the 5'-position of deoxyribose or ribose of a nucleoside with an oxygen atom at the 3'-position bonded to the NA position of the lipophilic anchor represented by formula (i);
  • the hydroxyl group at the 5'-position of deoxyribose or ribose and the partial structure derived from the first nucleic acid possessed by the third chimeric molecule precursor are present in one or more first nucleic acids and/or second nucleic acids (
  • the third chimeric molecule precursor C may be a combination of one nucleic acid and a second nucleic acid.
  • the third chimeric molecule precursor C has, for example, the following structure.
  • Ar * , R and Base have the above-mentioned meanings;
  • W represents a single bond or represents one or more first nucleic acids and/or second nucleic acids through a bond between an oxygen atom bonded to Z and a carbonyl carbon atom.
  • each deoxyribose may independently have a hydroxyl group that may be protected at the 2'-position.
  • the total number of nucleic acids may be 1 to 70, preferably 1 to 31, more preferably 1 to 21, and still more preferably 1 to 10. It is even more preferably 1 to 5, particularly preferably 1 to 3.
  • the third chimeric molecule precursor has a molecular weight of 300 to 6,000 in order to solidify the target object and facilitate recovery by adding a specific solvent to the solution after the reaction. It is preferably 300 to 5,000, more preferably 300 to 4,000.
  • the third chimeric molecule precursor used in this step can be produced, for example, by the method described in the above-mentioned patent documents, the method described in the Examples of the present application, or a method analogous thereto. Also, K. Ogami, et al. , Chem. Lett. , 2018, 47, 138-140.
  • This step is performed in a solvent inert to the reaction using an excess amount of the second nucleic acid relative to the third chimeric molecule precursor.
  • solvent used here examples include, but are not particularly limited to, halogenated hydrocarbons; aromatic hydrocarbons; nonpolar/polar ethers; nitriles; amides; and any combination thereof.
  • the mixing ratio may be 50:50 to 99:1, preferably 80:20 to 99:1, and more preferably 80:20 to 95:5.
  • the second nucleic acid used in excess amount with respect to the third chimeric molecule precursor is 1.5 to 50 equivalents, preferably 3 to 30 equivalents, more preferably 3 to 30 equivalents, based on the number of moles of the third chimeric molecule precursor used. can be used in an amount of 5 to 20 equivalents, more preferably 8 to 15 equivalents.
  • the phosphorus atom of the second nucleic acid used in this step is activated by oxidatively halogenating, preferably chlorinating, and the phosphorus atom in the third chimeric molecule precursor used in this step is activated.
  • This is a reaction that creates a bond between amino groups derived from nucleic acids.
  • This reaction can be carried out by applying reaction conditions known as Atherton-Todd reaction. As for the reaction conditions, for example, Atherton, F. R. et al. , J. Chem. Soc. , 1945, 660.
  • a reagent for oxidatively halogenating the phosphorus atom of the second nucleic acid used in this step and a base to prevent acidification in the reaction system are used. It can be done by Examples of reagents for oxidatively halogenating the phosphorus atom of the second nucleic acid used in this step include carbon tetrachloride, sulfuryl chloride, trichloroisocyanuric acid, iodine, and iodoform. Carbon tetrachloride is preferred.
  • the base for preventing acidification in the reaction system various organic bases and inorganic bases can be used, but it is preferable to use tertiary amines such as triethylamine and diisopropylethylamine.
  • these reagents may be used in an excess amount relative to the third chimeric molecule precursor used in this step.
  • a reagent for oxidatively halogenating the phosphorus atom of the second nucleic acid and a base for preventing acidification in the reaction system are each added to the number of moles of the third chimeric molecule precursor used. It can be used in an amount of 1.5 to 50 equivalents, preferably 3 to 30 equivalents, more preferably 5 to 20 equivalents, still more preferably 8 to 15 equivalents.
  • the base for preventing acidification in the reaction system may be used in an equivalent amount or more than the reagent for oxidatively halogenating the phosphorus atom of the second nucleic acid, in order to prevent acidification in the reaction system. good.
  • the reaction temperature and reaction time can be changed as appropriate depending on the type and amount of the reagent used. For example, stirring may be performed at 0 to 100°C, preferably 15 to 50°C, more preferably 20 to 30°C, for 5 minutes to 24 hours.
  • the substrate concentration in the reaction can be changed as appropriate depending on the type and amount of the reagent used.
  • the concentration of the third chimeric molecule precursor in the reaction solution is 0.01 to 0.2 mol/L, preferably 0.02 to 0.1 mol/L, more preferably 0.025 to 0.08 mol/L.
  • the amount of the solvent used can be adjusted so that it is more preferably 0.03 to 0.05 mol/L.
  • the target object (chimera molecule) may be solidified and recovered by adding a polar solvent to the reaction solution. Since the third chimeric molecule precursor used in the production method of the present invention contains a lipophilic anchor, the target object (chimeric molecule) of this step is solidified and precipitated by the addition of a polar solvent. Therefore, the target product of this step can be recovered by filtration.
  • a polar solvent acetonitrile and methanol are preferably used from the viewpoint of versatility and cost, and methanol is particularly preferably used.
  • the amount of polar solvent added to the reaction solution after the completion of the reaction in order to recover the target product by filtration depends on the substrate concentration in the reaction, but for example, the amount of polar solvent added to the reaction solution is 5 to 50% based on the total amount (volume) of the reaction solvent used. The amount is 50 times, preferably 5 to 30 times, more preferably 8 to 20 times, even more preferably 10 to 15 times.
  • the amount of polar solvent to be added may be adjusted, preferably increased, or after the addition of the polar solvent.
  • the reaction solution may be cooled.
  • the chimeric molecule obtained in the above step may be further bound to the first nucleic acid or the second nucleic acid via the 5'-position amino group or hydroxyl group of the introduced second nucleic acid.
  • the protecting group for the amino group or hydroxy group at the 5'-position of the introduced second nucleic acid is removed, and the first nucleic acid or the second nucleic acid is bonded using the amino group or hydroxy group as a clue. be able to.
  • the method for removing the protecting group for the amino group or hydroxyl group of the introduced second nucleic acid may be selected depending on the type of protecting group, and is described in the above-mentioned "Greene's Protective Groups in Organic Synthesis (4th edition, 2006)". ” can be adopted.
  • the protecting group for the hydroxy group of the introduced second nucleic acid is an optionally substituted trityl group, for example, DMTr, it can be removed using an acid in a solvent inert to the reaction. .
  • acids examples include, but are not particularly limited to, halogenoacetic acids such as trichloroacetic acid, trifluoroacetic acid, and dichloroacetic acid; sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. From the viewpoint of obtaining good results, halogenoacetic acids are preferred, and trichloroacetic acid is particularly preferred.
  • the amount of acid used is, for example, 1 to 100 mol, preferably 5 to 80 mol, more preferably 10 to 60 mol, and even more preferably 20 to 50 mol, per mole of chimeric molecule used.
  • the lipophilic anchor By separating the lipophilic anchor from the thus produced chimeric molecule containing the lipophilic anchor as part of its structure, it is possible to produce a chimeric molecule that does not contain the lipophilic anchor as part of its structure.
  • the lipophilic anchor is not cleaved during the production of the chimeric molecule, while being capable of being cleaved at any stage.
  • the lipophilic anchor is not removed under acidic conditions and is removable under basic conditions.
  • the fat-soluble anchor is a fat-soluble anchor represented by formula (i) or formula (ii), it can be separated by the method described in Patent Documents 2 and 7 mentioned above or a method similar thereto.
  • the residue of the lipophilic anchor is precipitated, and the target chimeric molecule can be isolated from the supernatant.
  • a group that detaches from an oxygen atom under weak basic conditions a group indicated by LV
  • the protecting group for the amino group for example, Fmoc
  • a solution of benzyl alcohol derivative (100 mg, 0.109 mmol) in THF (2.00 mL) contains nucleoside-3'-O-succinate (122 mg, 0.164 mmol), EDC hydrochloride (52.3 mg, 0.273 mmol) and DMAP ( 4-dimethylaminopyridine) (33.4 mg, 0.273 mmol) was added. After stirring for 3 hours at room temperature, the reaction mixture was suspended by the addition of methanol. The resulting precipitate was collected by filtration and rinsed with methanol. The pellet was dried under reduced pressure to obtain the target compound (154 mg, 91.7% yield) as a white solid.
  • the resulting suspension was filtered to collect a precipitate, and the solid obtained on the filter paper was washed with methanol. Subsequently, the obtained solid was dried under vacuum overnight to obtain the target dinucleotide as a white powder (17.9 mg, yield 58.3%).
  • Acetonitrile (43.6 ⁇ L) was added to a dichloromethane solution (463 ⁇ L) of 3'-O-lipid-soluble anchor-modified thymidine (20.0 mg, 16.2 ⁇ mol).
  • 5'-MMTr-aminated thymidine phosphoramidite (23.1 mg, 32.4 ⁇ mol) and 1H-tetrazole (11.3 mg, 162 ⁇ mol) were added and reacted at room temperature for 5 hours.
  • dichloromethane (200 ⁇ L) was added to the reaction solution, 5'-MMTr-aminated thymidine phosphoramidite (11.6 mg, 16.2 ⁇ mol) and 1H-tetrazole (5.65 mg, 81.0 ⁇ mol) were added.
  • Acetonitrile (40.3 ⁇ L) was added to a dichloromethane solution (403 ⁇ L) of 3'-O-lipid-soluble anchor-modified thymidine (17.4 mg, 14.1 ⁇ mol).
  • 5'-MMTr-aminated thymidine phosphoramidite (20.1 mg, 28.2 ⁇ mol) and 4,5-dicyanoimidazole (16.7 mg, 141 ⁇ mol) were added and reacted at room temperature for 6 hours.
  • 5'-MMTr-aminated thymidine phosphoramidite (20.1 mg, 28.2 ⁇ mol) was additionally added to the reaction solution, and the reaction was allowed to proceed at room temperature for 3 hours.
  • Example A4 Introduction of first nucleic acid into second chimeric molecule precursor; production of chimeric molecule
  • Fmoc-PNA-T monomer (3.35 mg, 6.62 ⁇ mol), COMU (7.60 mg, 17.8 ⁇ mol), N,N-diisopropylethylamine ( 1.78 mg, 2.38 ⁇ L, 13.8 ⁇ mol) were added in this order and allowed to react at room temperature for 20 hours. After the reaction was completed, methanol was added to the reaction solution to suspend it. The suspension was diluted 10 times with acetonitrile, and the resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes. The obtained precipitate was washed three times with methanol, and the obtained solid was dried under vacuum overnight to obtain a PNA-DNA chimera molecule as a white solid (7.90 mg, yield 70.5%).
  • Protecting group/anchored PNA-DNA chimera (4.60 mg, 2.20 ⁇ mol) was suspended in ethanol (400 ⁇ L) and 28% aqueous ammonia (1.20 mL), and treated at 80° C. for 5 hours. After the reaction solution was returned to room temperature, it was concentrated to dryness. The obtained white solid was suspended in methanol, the obtained suspension was transferred to a centrifuge tube, and centrifuged at 4,000 rpm for 15 minutes. The supernatant was collected, concentrated to dryness, and then dissolved in ultra-deionized water, followed by purity analysis by LC-MS and absorbance measurement by NanoDrop.
  • Production example A8 (elongation of second nucleic acid, oxidation of phosphorus atom, removal of trityl; production of first chimeric molecule precursor)
  • 5'-O-DMTr-thymidine phosphoramidite (195 mg, 262 ⁇ mol) and 1H-tetrazole (61.2 mg, 874 ⁇ mol) were added and allowed to react at room temperature for 7.5 hours.
  • a 5-6 M tert-butyl hydroperoxide/decane solution (69.8 ⁇ L, 349 ⁇ mol) was added to the reaction solution, and the mixture was allowed to react at room temperature for 1 hour.
  • the reaction solution was suspended by diluting it with methanol. The resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the resulting precipitate was washed three times with methanol, and the resulting solid was dissolved in dichloromethane (4.74 mL). After cooling the obtained dichloromethane solution in an ice bath, 184 mM trichloroacetic acid/dichloromethane solution (4.74 mL) was added on the ice bath, and the mixture was stirred for 2 minutes. After the reaction solution was returned to room temperature, it was further stirred for 1 hour. After the reaction was completed, the reaction solution was diluted with methanol to suspend the reaction solution. The resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the obtained precipitate was washed three times with methanol, and the obtained solid was dissolved in dichloromethane. After performing benzene azeotropy three times, the obtained solid was dried under vacuum overnight to obtain a dinucleotide compound as a white solid (136 mg, yield 97.8%).
  • Production example A9 (elongation of second nucleic acid, oxidation of phosphorus atom, removal of trityl; production of first chimeric molecule precursor)
  • a 5-6 M tert-butyl hydroperoxide/decane solution (68.2 ⁇ L, 341 ⁇ mol) was added to the reaction solution, and the mixture was allowed to react at room temperature for 1 hour.
  • the reaction solution was suspended by diluting it with methanol.
  • the resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the resulting precipitate was washed three times with methanol, and the resulting solid was dissolved in dichloromethane (4.74 mL).
  • dichloromethane 4.74 mL
  • 184 mM trichloroacetic acid/dichloromethane solution (4.74 mL) was added on the ice bath, and the mixture was stirred for 2 minutes.
  • 2 to 3 drops of trifluoroacetic acid were added and stirred for 1 hour.
  • reaction solution was diluted with methanol to suspend the reaction solution.
  • the resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the obtained precipitate was washed three times with methanol, and the obtained solid was dissolved in dichloromethane. After performing benzene azeotropy three times, the obtained solid was dried under vacuum overnight to obtain a trinucleotide compound as a white solid (82.6 mg, yield 49.5%).
  • Example A8 Introduction of second nucleic acid into first chimeric molecule precursor: Production/deprotection of second chimeric molecule precursor
  • the reaction solution was suspended by diluting it with methanol.
  • the resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the resulting precipitate was washed three times with methanol, and the resulting solid was dissolved in dichloromethane (2.00 mL).
  • a 184 mM trichloroacetic acid/dichloromethane solution (10.0 mL) was added to the obtained dichloromethane solution, and the mixture was stirred at room temperature for 45 minutes.
  • the reaction solution was diluted with methanol to suspend the reaction solution.
  • the resulting suspension was transferred to a centrifuge tube and centrifuged at 4,000 rpm for 20 minutes.
  • the obtained precipitate was washed three times with methanol, and the obtained solid was dissolved in dichloromethane. After performing benzene azeotropy three times, the obtained solid was dried under vacuum overnight to obtain a 5'-aminated tetranucleotide as a brown solid (75.4 mg, yield 77.2%).
  • MALDI-TOF-MS analysis confirmed that the obtained tetranucleotides were a mixture of those with all three cyanoethyl groups on the phosphate backbone, those with one missing, and those with two missing.
  • Production example B3 immobilization of first nucleic acid on anchor
  • Production example B4 production of third chimeric molecule precursor
  • Production example B5 (preparation of second nucleic acid to be introduced)
  • Example B1 Introduction of second nucleic acid into third chimeric molecule precursor: production of chimeric molecule
  • Example B3 (cleavage of lipophilic anchor from chimeric molecule)
  • a nucleic acid whose main chain skeleton is anionic, such as RNA or DNA, or a derivative thereof, has a neutral or cationic main chain skeleton, such as PNA or PRNA, or a nucleic acid thereof, whose main chain skeleton is neutral or cationic, such as PNA or PRNA. It is possible to provide a method for producing a chimeric molecule by a liquid phase synthesis method in which a derivative is introduced.

Abstract

DNAを含む陰イオン性主鎖骨格核酸と、PNAを含む中性又は陽イオン性主鎖骨格核酸とを結合させることを含む、液相合成法によるキメラ分子の製造方法を提供する。本発明の一の態様によるキメラ分子の製造方法は、第1の核酸と第2の核酸とが融合したキメラ分子の製造方法であって、第1のキメラ分子前駆体の水酸基を介した、第2の核酸の導入による第2のキメラ分子前駆体の準備と必要に応じた脱保護、及び第2のキメラ分子前駆体への第1の核酸の導入によるキメラ分子の製造を含み、第1のキメラ分子前駆体は脂溶性アンカーを含み、第2の核酸は保護されていてもよいアミノ基を有し、第2のキメラ分子前駆体の脱保護が第2のキメラ分子前駆体に導入された第2の核酸の保護されたアミノ基の脱保護であり、第1の核酸の導入は第2の核酸のアミノ基を介した導入であり、いずれの工程も液相合成法により行われる。

Description

キメラ分子の製造方法
 本発明は、キメラ分子の製造方法に関する。
 本願は2022年3月14日に日本出願された、特願2022-039293号に基づき優先権を主張し、その内容をここに援用する。
 近年、核酸医薬が抗体医薬と同様に次世代型分子標的薬として注目されている。
 核酸医薬における薬剤戦略として、例えば、疾患進行に関与するメッセンジャーRNA(mRNA)やマイクロRNA(miRNA)、エスアイRNA(siRNA)などを標的とし、塩基配列選択的に標的を認識し、複合体を形成することで標的RNAの機能を抑制し治療効果を発現するアンチセンス核酸(ASO)が知られている。これら核酸医薬が有効に薬効発現するためには、1)高い生体内安定性、2)標的核酸への高い特異性と複合体安定性、が求められ、天然型DNA/RNAに化学修飾を施した修飾オリゴ核酸/人工オリゴ核酸の開発が精力的に研究されている。
 核酸医薬における広義のオフターゲット効果(標的核酸認識に依存しない核酸医薬特有の毒性)の克服へ向けた方法論として、核酸医薬の投与量の低減が提案されている。しかし、投与量を低減すると当然標的RNAとの複合体形成量の低下が起こり、効果的な薬効発現は期待できない。その解決法として、少量のASOで標的RNAを触媒のように切断する、RNaseHを活用した触媒様の機能を有する核酸医薬が注目されている(非特許文献1)。
 RNaseHを活用した触媒様の機能を有する核酸医薬としては、RNA切断後の解離過程に着目した、切断後標的RNAの複合体から迅速解離可能なオリゴ核酸系構築に資する、低濃度で標的核酸の機能を抑止でき、オフターゲット効果を抑制できるキメラ分子が報告されている(特許文献1)。
 オリゴ核酸の合成には固相合成法が汎用されている。また、ペプチドの合成にも固相合成法が汎用されている。
 固相合成法は、プロセス最適化がなされ自動化も進んでいるが、本質的に不均一系であり、その低い反応性を補うため、例えば6~10当量以上の大過剰量の試薬を用いる必要があり、コスト面で改善の余地がある。また、単離精製に高度な技術を要するほか、反応用固相樹脂に対する官能基の担持量の限界からスケールアップが難しく、ラボスケールには向くが、工業化を見据えると固相合成法の適用は困難であると言わざるを得ない。
 反応後の単離精製を、ろ過及び洗浄のみで行える固相合成法のメリットを活かしつつ、前述の固相合成法の欠点を解消する試みとして、液相に溶解している特定の成分のみを沈殿化させ、固体として単離することにより、反応後の単離精製を容易化する方法が提案されている(特許文献2~7)。
国際公開第2021/015234号 国際公開第2012/157723号 国際公開第2014/189142号 国際公開第2010/104169号 国際公開第2010/113939号 国際公開第2011/078295号 国際公開第2016/117663号
Liang,X.et al.,Mol.Ther.、2017、25(9)、2075
 例えば、前述の特許文献2~7に示されるように、オリゴリボ核酸やオリゴデオキシリボ核酸、あるいはオリゴペプチドと言った、異種分子同士の融合のないオリゴマーにあっては、これまでも液相合成法による製造の報告がある。
 しかし、特許文献1で報告されるような、代表的にはリボ核酸(RNA)やデオキシリボ核酸(DNA)と、オリゴペプチド骨格を有するペプチド核酸(PNA)やペプチドリボ核酸(PRNA)とを任意に組み合わせて融合したキメラ分子の製造方法としては、固相合成法による製造方法しか知られていない。
 特に、オリゴRNAやオリゴDNAに対して、オリゴRNAやオリゴDNAの末端窒素原子を介したPNAやPRNAの導入、又はオリゴPNAやオリゴPRNAに対して、オリゴPNAやオリゴPRNAの末端窒素原子を介したRNAやDNAの導入に係る液相合成法による報告はない。
 すなわち、これまで同種分子同士を結合させる手法に関しては液相合成法による報告はあったものの、RNAやDNAに対してPNAやPRNAを融合させたPNA-DNA構造、あるいはPNAやPRNAに対してRNAやDNAを融合させたDNA-PNA構造の構築については、現状では少なくとも一部の工程を固相合成法に頼る他ない。
 また、固相合成法において、DNAを手掛かりにDNAをさらに伸長する手法は、各ステップにおいてほぼ定量的に自動合成機を用いて反応を進行させることが可能なため、複数のDNAの伸長に際しても十分な収率を維持することができる。その一方、固相合成法において、DNAを足掛かりにPNA-DNA構造を構築する場合、その収率は最大でも70%程度にとどまっており、さらにそこからPNAの伸長が進むにつれて数%ずつ収率が低下する。その結果、固相合成法を用いたとしても、PNA-DNA構造の構築は満足な収率が得られないばかりか、多くの副反応により反応系が複雑になり、単離に非常に多くの労力を要する。
 上記の課題に鑑み、本発明においては、後述する第2のキメラ分子前駆体の製造、及び第2のキメラ分子前駆体を用いたキメラ分子の製造を含む、RNAやDNAに代表される主鎖骨格が陰イオン性である核酸又はその誘導体に、PNAやPRNAに代表される主鎖骨格が中性又は陽イオン性である核酸又はその誘導体を導入する、液相合成法によるキメラ分子の製造方法を提供することを目的とする。
 また、本発明の別の態様においては、後述する第3のキメラ分子前駆体を用いたキメラ分子の製造を含む、PNAやPRNAに代表される主鎖骨格が中性又は陽イオン性である核酸又はその誘導体に、RNAやDNAに代表される主鎖骨格が陰イオン性である核酸又はその誘導体を導入する、液相合成法によるキメラ分子の製造方法を提供することを目的とする。
 本発明は、以下の要旨を有する。
 主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体と、主鎖骨格が陰イオン性である第2の核酸又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
 前記製造方法が、水酸基を有する第1のキメラ分子前駆体の前記水酸基を介した、前記第2の核酸又はその誘導体の導入による第2のキメラ分子前駆体の準備、
 必要に応じて、前記第2のキメラ分子前駆体の脱保護、及び
 前記第2のキメラ分子前駆体又は脱保護された前記第2のキメラ分子前駆体への、前記第1の核酸又はその誘導体の導入を含み、
 前記水酸基を有する第1のキメラ分子前駆体は、脂溶性アンカーを含み、
 前記第2の核酸又はその誘導体は、保護されていてもよいアミノ基を有し、
 第2のキメラ分子前駆体の前記脱保護が、前記第2のキメラ分子前駆体に導入された前記第2の核酸又はその誘導体の保護された前記アミノ基の脱保護であり、
 第1の核酸又はその誘導体の前記導入は、前記第2の核酸又はその誘導体の前記アミノ基を介した導入であり、
 第2のキメラ分子前駆体の前記準備、第2のキメラ分子前駆体の前記脱保護、及びキメラ分子の前記製造が、いずれも液相合成法により行われることを特徴とする製造方法。
 前記第1の核酸がPNA、PRNA、PNA/PRNA、若しくはLNAであり、前記第2の核酸がRNA若しくはDNAであることが好ましい。
 前記第1の核酸がPNAであり、前記第2の核酸がDNAであることが好ましい。
 キメラ分子が、第2の核酸又はその誘導体の5’末端に第1の核酸又はその誘導体が結合している部分を有することが好ましい。
 前記第1のキメラ分子前駆体が、後述する特定の式で表される化合物であることが好ましい。
 前記第2の核酸又はその誘導体が、後述する特定の式で表される化合物であることが好ましい。
 前記保護されていてもよいアミノ基が保護されたアミノ基であり、前記保護されたアミノ基の保護基が置換されていてもよいトリチル基であることが好ましい。
 前記第1の核酸又はその誘導体が、後述する特定の式で表される化合物であることが好ましい。
 本発明の別の態様は、以下の要旨を有する。
 主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体と、主鎖骨格が陰イオン性である第2の核酸又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
 前記製造方法が、アミノ基を有する第3のキメラ分子前駆体の前記アミノ基を介した、前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への導入を含み、
 前記アミノ基を有する第3のキメラ分子前駆体は、第1の核酸又はその誘導体に由来する部分構造、第1の核酸又はその誘導体に由来するアミノ基、及び脂溶性アンカーを含み、
 前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への前記導入が、液相合成法により行われることを特徴とする製造方法。
 前記第1の核酸がPNA、PRNA、PNA/PRNA、若しくはLNAであり、前記第2の核酸がRNA若しくはDNAであることが好ましい。
 前記第1の核酸がPNAであり、前記第2の核酸がDNAであることが好ましい。
 キメラ分子が、第2の核酸又はその誘導体の3’末端に第1の核酸又はその誘導体が結合している部分を有することが好ましい。
 前記第3のキメラ分子前駆体が、後述する特定の式で表される化合物であることが好ましい。
 前記第2の核酸又はその誘導体が、後述する特定の式で表される化合物であることが好ましい。
 本発明のさらに別の態様は、以下の要旨を有する。
[1]PNA、PRNA、PNA/PRNA、若しくはLNAである第1の核酸、又はその誘導体と、RNA若しくはDNAである第2の核酸、又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
 前記第1の核酸の誘導体は、前記第1の核酸に結合している塩基部のハロゲン化誘導体、脱アミノ誘導体、若しくは酸素原子に代えて硫黄原子を有する誘導体であり、
 前記第2の核酸の誘導体は、前記第2の核酸に結合している塩基部のハロゲン化誘導体、脱アミノ誘導体、若しくは酸素原子に代えて硫黄原子を有する誘導体、又はホスホロチオエート型DNA若しくはRNA、ホスホロジチオエート型DNA若しくはRNA、モルホリノ型核酸であり、
 前記塩基部は、核酸に結合しているウラシル、シトシン、チミン、アデニン、グアニン、プリン環若しくはピリミジン環を意味し、
 前記製造方法が、水酸基を有する第1のキメラ分子前駆体のRNA若しくはDNAの5’位の水酸基を介した、前記第2の核酸又はその誘導体の導入による第2のキメラ分子前駆体の準備、
 過酸化物を用いた、前記第2のキメラ分子前駆体のリン原子の酸化、
 必要に応じて、前記第2のキメラ分子前駆体の脱保護、及び
 前記第2のキメラ分子前駆体又は脱保護された前記第2のキメラ分子前駆体への、前記第1の核酸又はその誘導体の導入を含み、
 前記第1のキメラ分子前駆体が、式(1)
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;Baseは、前記塩基部を示し;式中のデオキシリボースは2’-位に保護されていてもよい水酸基を有していてもよい。前記リンカーは、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-S-、-S(=O)-、又は-S(=O)-である。)で表される構造、若しくは、式(2)
Figure JPOXMLDOC01-appb-C000011
(式(2)中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;Baseは、前記塩基部を示し;Xは、単結合を示すか、又はXに結合する酸素原子とリン原子との結合を介する1以上の第1の核酸若しくはその誘導体及び/又は第2の核酸若しくはその誘導体を示し;式中のデオキシリボースは2’-位に保護されていてもよい水酸基を有していてもよい。前記リンカーは、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-S-、-S(=O)-、又は-S(=O)-である。)で表される構造を有し、
 前記第2の核酸が、式(4)
Figure JPOXMLDOC01-appb-C000012
(式(4)中、pは0以上の整数を示し;AGは、保護されていてもよいアミノ基を示し;Baseは、前記塩基部を示し;NRは、ジアルキルアミノ基を示し;LVは、2-シアノエチル基、アリル基、又はベンジル基を示し;式中のデオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)で表される構造を有し、
 第2のキメラ分子前駆体の前記脱保護が、前記第2のキメラ分子前駆体に導入された前記第2の核酸又はその誘導体の保護された前記アミノ基の脱保護であり、
 第1の核酸又はその誘導体の前記導入は、前記第2の核酸又はその誘導体の前記アミノ基を介した導入であり、
 前記第1の核酸が、式(5)
Figure JPOXMLDOC01-appb-C000013
(式(5)中、qは0以上の整数を示し;PGは、隣接するアミノ基の保護基を示し;Baseは、前記塩基部を示す。)で表される構造を有し、
 第2のキメラ分子前駆体の前記準備、第2のキメラ分子前駆体の前記脱保護、及びキメラ分子の前記製造が、いずれも液相合成法により行われることを特徴とする製造方法。
[2]前記第1の核酸がPNAであり、前記第2の核酸がDNAである、[1]の製造方法。
[3]前記第1の核酸又はその誘導体がPNAであり、前記第2の核酸又はその誘導体がDNAである、[1]又は[2]の製造方法。
[4]前記過酸化物が、tert-ブチルヒドロペルオキシド、又はメタクロロ過安息香酸であり、用いられる前記過酸化物の使用量が、第2のキメラ分子前駆体の使用モル数あたり2~5モル、若しくは第2のキメラ分子前駆体の準備に用いた第1のキメラ分子前駆体の使用モル数あたり2~5モルである、[1]~[3]のいずれかの製造方法。
[5]前記式(1)及び前記式(2)における前記リンカーが-O-であり、前記炭素数6~14の芳香族炭化水素環がベンゼン環であり、前記Rが水素原子である、[1]~[4]のいずれかの製造方法。
[6]前記式(4)における前記LVが2-シアノエチル基である、[1]~[5]のいずれかの製造方法。
[7]前記式(4)の前記AGにおける、前記保護されていてもよいアミノ基が保護されたアミノ基であり、前記保護されたアミノ基の保護基がトリチル基、p-メトキシフェニルジフェニルメチル基、又はジ(p-メトキシフェニル)フェニルメチル基である、[1]~[6]のいずれかの製造方法。
[8]前記式(5)の前記PGにおける、前記隣接するアミノ基の保護基が、フルオレニル基がハロゲン、ニトロ、シアノ、トリフルオロメチル、カルボキシ、アルキルオキシカルボニル、ジアルキルカルバモイル、及びアルキルカルボニルからなる群より選択される基で置換されていてもよいフルオレニルメトキシカルボニル基;トリチル基;p-メトキシフェニルジフェニルメチル基;ジ(p-メトキシフェニル)フェニルメチル基;又はフタルイミド型保護基である、[1]~[7]のいずれかの製造方法。
[9]前記式(1)、前記式(2)、前記式(4)におけるデオキシリボースの2’-位に置換することが許容される保護されていてもよい水酸基が、保護されていない水酸基である、[1]の製造方法。
[10]PNA、PRNA、PNA/PRNA、若しくはLNAである第1の核酸、又はその誘導体と、RNA若しくはDNAである第2の核酸、又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
 前記第1の核酸の誘導体は、前記第1の核酸に結合している塩基部のハロゲン化誘導体、脱アミノ誘導体、若しくは酸素原子に代えて硫黄原子を有する誘導体であり、
 前記第2の核酸の誘導体は、前記第2の核酸に結合している塩基部のハロゲン化誘導体、脱アミノ誘導体、若しくは酸素原子に代えて硫黄原子を有する誘導体、又はホスホロチオエート型DNA若しくはRNA、ホスホロジチオエート型DNA若しくはRNA、モルホリノ型核酸であり、
 前記塩基部は、核酸に結合しているウラシル、シトシン、チミン、アデニン、グアニン、プリン環若しくはピリミジン環を意味し、
 前記製造方法が、アミノ基を有する第3のキメラ分子前駆体の前記アミノ基を介した、前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への導入を含み、
 前記第3のキメラ分子前駆体が、式(11)
Figure JPOXMLDOC01-appb-C000014
(式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;Baseは、前記塩基部を示す。前記リンカーは、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-S-、-S(=O)-、又は-S(=O)-である。)で表される構造、若しくは、式(12)
Figure JPOXMLDOC01-appb-C000015
(式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;Baseは、前記塩基部を示し;Zは、単結合を示すか、又はZに結合する窒素原子とカルボニル性炭素原子との結合を介する1以上の第1の核酸若しくはその誘導体及び/又は第2の核酸若しくはその誘導体を示し;式中のデオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。前記リンカーは、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-S-、-S(=O)-、又は-S(=O)-である。)で表される構造を有し、
 前記第2の核酸が、式(14)
Figure JPOXMLDOC01-appb-C000016
(式中、pは0以上の整数を示し;AG/HGは、保護されていてもよいアミノ基若しくは水酸基を示し;Baseは、前記塩基部を示し;LVは、2-シアノエチル基、アリル基、又はベンジル基を示し;式中のデオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)で表される構造を有し、
 前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への前記導入が、液相合成法により行われることを特徴とする製造方法。
 本発明によれば、RNAやDNAに代表される主鎖骨格が陰イオン性である核酸又はその誘導体に、PNAやPRNAに代表される主鎖骨格が中性又は陽イオン性である核酸又はその誘導体を導入する、液相合成法によるキメラ分子の製造方法を提供できる。
 この方法を利用することにより、オリゴRNAやオリゴDNAにPNA構造を融合させた、若しくはこの構造にさらにPNA構造を結合させたPNA-DNA構造;あるいは、DNA-PNA構造にさらにPNA構造を融合させた、若しくはこの構造にさらにPNA構造を結合させたPNA-DNA-PNA構造の液相合成法による製造が可能となる。
 また、本発明の別の態様によれば、PNAやPRNAに代表される主鎖骨格が中性又は陽イオン性である核酸又はその誘導体に、RNAやDNAに代表される主鎖骨格が陰イオン性である核酸又はその誘導体を導入する、液相合成法によるキメラ分子の製造方法を提供できる。
 この方法を利用することにより、オリゴPNAやオリゴPRNAにDNA構造やRNA構造を融合させた、若しくはこの構造にさらにDNA構造やRNA構造を結合させたDNA-PNA構造;あるいは、PNA-DNA構造にさらにDNA構造やRNA構造を融合させた、若しくはこの構造にさらにDNA構造やRNA構造を結合させたDNA-PNA-DNA構造の液相合成による製造が可能となる。
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変更して実施できる。
 本発明の製造方法の目的物であるキメラ分子は、主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体(以下、誘導体を含めて、単に「第1の核酸」とも言う。)と、主鎖骨格が陰イオン性である第2の核酸又はその誘導体(以下、誘導体を含めて、単に「第2の核酸」とも言う。)とが、少なくとも一つずつ融合した化合物である。すなわち、本発明の製造方法の目的物であるキメラ分子は、第1の核酸と第2の核酸が融合した部分構造を有していればよい。
 本発明の製造方法の目的物であるキメラ分子は、複数の核酸が結合しており、その任意の一部が第1の核酸であって、残りの部分が第2の核酸であってよい。
 複数の核酸が結合するキメラ分子において、その核酸の総数の下限は2であってよく、3であってよく、5であってよく、10であってよく、16であってよい。核酸の総数の上限は80であってよく、40であってよく、30であってよく、23であってよく、15であってよく、10であってよく、5であってよい。上記の上限及び下限は任意に組み合わせることができる。例えば、2~80であってよく、2~40であってよく、2~15であってよく、2~10であってよく、2~5であってよく、3~80であってよく、3~40であってよく、3~10であってよく、5~40であってよく、10~30であってよく、16~23であってよい。
 複数の核酸が結合するキメラ分子において、その核酸の総数における第1の核酸と第2の核酸の個数の比率は、特に制限されないが、第1の核酸の個数:第2の核酸の個数として、1:10~10:1であってよく、好ましくは1:3~3:1であり、より好ましくは1:2~2:1である。
 本発明における第1の核酸及び第2の核酸は、それぞれ標的核酸に対して結合する能力を有することが好ましい。
 標的核酸としては、本発明の製造方法の目的物であるキメラ分子が結合できる標的配列を有する核酸又はその誘導体であれば特に制限はないが、RNA又はDNAが好ましく、キメラ分子を医薬組成物の有効成分として用いる場合には、標的核酸は、医薬組成物を用いて治療する疾患の原因となるたんぱく質をコードするRNA又はDNA、及び疾患に関連するmRNA、miRNA又はsiRNAであることが好ましい。
 本発明において核酸とは、一般的に核酸と定義されるRNA及びDNAの他、いわゆる人工核酸と呼ばれるPNA、PRNA、LNA(架橋型人工核酸)等を含む広義の核酸を意味する。核酸の誘導体としては、特に制限されないが、例えば、核酸に結合している塩基部(ウラシル、シトシン、チミン、アデニン、グアニン若しくはプリン環やピリミジン環)のハロゲン化誘導体、脱アミノ誘導体、各核酸塩基の酸素原子に代えて硫黄原子を有する誘導体が挙げられる。その他、核酸の誘導体としては、ホスホロチオエート型DNA及びRNA、並びにホスホロジチオエート型DNA及びRNAに加え、例えば、前述の特許文献3に開示されるようなモルホリノ型核酸が挙げられる。
 本明細書において、「ハロゲン」とは、フルオロ、クロロ、ブロモ、ヨードを意味し、好ましくはフルオロ、クロロ、ブロモである。
 RNA、DNA、PRNAにおけるリボース又はデオキシリボースにあっては、LNA等の2位及び4位の炭素原子が2価の有機基により結合されたリボース又はデオキシリボースであってもよく、このようなリボース又はデオキシリボースとしては、前述の特許文献7に記載された構造のリボース又はデオキシリボースが挙げられる。RNA、DNA、PRNAにおけるリボース又はデオキシリボースにあっては、リボース又はデオキシリボースであることが好ましい。
 本発明における、主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体は、主鎖骨格が中性であることが好ましい。
 中性の主鎖骨格としては、特に制限されないが、例えば、アミド骨格(代表的には、N-(2-アミノエチル)グリシンを単位とする骨格)が挙げられる。アミド骨格を有する核酸又はその誘導体としては、例えば、PNA又はその誘導体、PRNA又はその誘導体、PNAとPRNAとの組み合わせ(以下、「PNA/PRNA」とも言う。)又はその誘導体が挙げられる。
 PNA/PRNAにおいて、PNAにおけるPRNAの結合位置は、PNAのいずれの位置でもよく、PNAの途中に結合されていてもよい。例えば、PNA-PRNA-PNAのような組み合わせであってもよい。
 陽イオン性の主鎖骨格としては、特に制限されないが、例えば、イミノ骨格、リン酸アミド骨格、ホスホロアミダイト骨格、並びにアミド骨格側鎖にアミノ基やグアニジウム基など陽イオン性側鎖を有する骨格が挙げられる。
 本発明における、主鎖骨格が陰イオン性である第2の核酸又はその誘導体において、陰イオン性の主鎖骨格としては、特に制限されないが、例えば、糖-リン酸骨格、糖-チオリン酸骨格が挙げられる。糖-リン酸骨格、糖-チオリン酸骨格を有する核酸又はその誘導体としては、例えば、RNA又はその誘導体、DNA又はその誘導体が挙げられる。
 キメラ分子において、第1の核酸又はその誘導体が、PNA、PRNA、PNA/PRNA、及びLNA、並びにそれらの誘導体からなる群より選択されるいずれかであることが好ましく、PNA及びその誘導体からなる群より選択されるいずれかであることがより好ましい。また、キメラ分子において、第2の核酸又はその誘導体が、RNA及びDNA、並びにそれらの誘導体からなる群より選択されるいずれかであることが好ましい。特に、キメラ分子において、第1の核酸又はその誘導体が、PNA、PRNA、PNA/PRNA、及びLNA、並びにそれらの誘導体からなる群より選択されるいずれかであり、かつ、第2の核酸又はその誘導体が、RNA及びDNA、並びにそれらの誘導体からなる群より選択されるいずれかであることが好ましく;第1の核酸又はその誘導体が、PNA及びその誘導体からなる群より選択されるいずれかであり、かつ、第2の核酸又はその誘導体が、RNA及びDNA、並びにそれらの誘導体からなる群より選択されるいずれかであることがより好ましく;第1の核酸又はその誘導体が、PNA及びその誘導体からなる群より選択されるいずれかであり、かつ、第2の核酸又はその誘導体が、DNA及びその誘導体からなる群より選択されるいずれかであることがさらに好ましい。キメラ分子において、分子内に複数の第1の核酸又はその誘導体、あるいは第2の核酸又はその誘導体が含まれる場合、複数の第1の核酸又はその誘導体は、同一であってもそれぞれ異なっていてもよく、複数の第2の核酸又はその誘導体は、同一であってもそれぞれ異なっていてもよい。
 キメラ分子において、第1の核酸は、第2の核酸の3’末端及び5’末端のいずれに結合していてもよい。
 本発明の一の態様においては、第2の核酸の5’末端に第1の核酸が結合している部分が少なくとも1つあることが好ましい。あるいは、第2の核酸の5’末端に第1の核酸が結合している部分が少なくとも1つあることが必要である。
 本発明の別の態様においては、第2の核酸の3’末端に第1の核酸が結合している部分が少なくとも1つあることが好ましい。あるいは、第2の核酸の3’末端に第1の核酸が結合している部分が少なくとも1つあることが必要である。
 第1の核酸と第2の核酸とが、少なくとも一つずつ融合したキメラ分子としては、例えば、第1の核酸であるPNA(又はその誘導体。以下同様。)と、第2の核酸であるDNAとの融合体、第1の核酸であるPNA/PRNAと、第2の核酸であるDNAとの融合体が挙げられる。
 PNAとDNAとの融合体としては、DNAの5’-位側にPNAが融合したキメラ分子(以下、「PNA-DNAキメラ分子」とも言う。)、DNAの3’-位側にPNAが融合したキメラ分子(以下、「DNA-PNAキメラ分子」とも言う。)が挙げられる。本発明の一の態様においては、PNA-DNAキメラ分子が好ましい。本発明の別の態様においては、DNA-PNAキメラ分子が好ましい。
 PNA/PRNAとDNAとの融合体としては、DNAの5’-位側にPNA/PRNAが融合したキメラ分子(以下、「PNA/PRNA-DNAキメラ分子」若しくは「PPD」とも言う。)、DNAの3’-位側にPNA/PRNAが融合したキメラ分子(以下、「DNA-PNA/PRNAキメラ分子」若しくは「DPP」とも言う。)が挙げられる。本発明の一の態様においては、PPDが好ましい。本発明の別の態様においては、DPPが好ましい。
 本発明の製造方法の目的物であるキメラ分子は、複数の核酸が結合しており、その任意の一部が第1の核酸であって、残りの部分が第2の核酸であってよい。したがって、
・第1の核酸を手掛かりとした(好ましくは、第1の核酸のN末端を介した)、第1の核酸の伸長(好ましくは、第1の核酸のN末端と、第1の核酸のC末端との間に結合を生成する伸長)、
・第1の核酸を手掛かりとした(好ましくは、第1の核酸のN末端を介した)、第2の核酸の伸長(好ましくは、第1の核酸のN末端と、第2の核酸の3’-位との間に結合を生成する伸長)、
・第2の核酸を手掛かりとした(好ましくは、第2の核酸の5’-位を介した)、第1の核酸の伸長(好ましくは、第2の核酸の5’-位と、第1の核酸のC末端との間に結合を生成する伸長)、及び、
・第2の核酸を手掛かりとした(好ましくは、第2の核酸の5’-位を介した)、第2の核酸の伸長(好ましくは、第2の核酸の5’-位と、第2の核酸の3’-位との間に結合を生成する伸長)、
を組み合わせることにより、第1の核酸及び第2の核酸が任意の順序で組み合わせられたキメラ分子を製造することができる。
 これらのうち、第1の核酸を手掛かりとした第1の核酸の伸長、及び第2の核酸を手掛かりとした第2の核酸の伸長については、固相合成法を含めた公知の方法を採用することができる。
 例えば、第1の核酸を手掛かりとした第1の核酸の伸長は、前述の特許文献4~6に記載の方法若しくはK.Ogami,et al.,Chem.Lett.,2018、47、138-140、又はこれらに準じた方法を採用することができる。
 例えば、第2の核酸を手掛かりとした第2の核酸の伸長は、前述の特許文献2及び7に記載の方法若しくはこれに準じた方法を採用することができる。
 第2の核酸を手掛かりとした第1の核酸の伸長、特に、第2の核酸の5’-位を介した、第1の核酸のC末端との結合を生成する伸長は、以下に説明する本発明の製造方法(以下、本発明の第一の態様とも言う。)を採用することができる。
 第1の核酸を手掛かりとした第2の核酸の伸長、特に、第1の核酸のN末端への、第2の核酸の3’-位を介した伸長は、以下に説明する本発明の製造方法(以下、本発明の第二の態様とも言う。)を採用することができる。
[本発明の第一の態様]
 第一の態様のキメラ分子の製造方法は、以下の(A1)~(A3)の工程を含む。
(A1)水酸基を有する第1のキメラ分子前駆体の水酸基を介した、第2の核酸の導入、
(A2)必要に応じた、第2のキメラ分子前駆体の脱保護、及び
(A3)第2のキメラ分子前駆体又は脱保護された第2のキメラ分子前駆体への、第1の核酸の導入。
 以下、本発明の第一の態様の製造方法について説明する。必要に応じて第1の核酸としてPNA、第2の核酸としてDNAを用いた、PNA-DNAキメラ分子(DNAの5’-位側にPNAが融合したキメラ分子)の製造を例とする。
(A1)水酸基を有する第1のキメラ分子前駆体(以下、単に「第1のキメラ分子前駆体」とも言う。)の水酸基を介した、第2の核酸の導入(第2のキメラ分子前駆体の準備)
 本工程は、第1のキメラ分子前駆体が有する水酸基を足掛かりとして、第2の核酸を導入する工程である。その結果、第2のキメラ分子前駆体が製造される。
 第1のキメラ分子前駆体は、第2の核酸を導入するための水酸基を有することに加え、反応後の溶液に特定の溶媒を加えることにより目的物を固化させて回収の容易化に資する脂溶性アンカーを含む。
 第2の核酸の導入の後、導入された第2の核酸を手掛かりとして第1の核酸を導入するため、第2の核酸は5’-位に保護されていてもよいアミノ基を有する。
 本工程における第2の核酸の導入においては、第1のキメラ分子前駆体が有する水酸基から第2の核酸が求核攻撃を受けて、第1のキメラ分子前駆体が有する水酸基由来の酸素原子と、第2の核酸であるDNAのリン原子、好ましくは、DNAのデオキシリボースの3’-位に接続するリン原子との間に結合が生じる。第2の核酸は、2以上の第2の核酸が結合したものであってもよい。
 求核攻撃を受ける第2の核酸のリン原子は3価であることが好ましい。この場合、1つの結合手にはデオキシリボース(RNAの場合にはリボース)の3’-位の酸素原子が置換し、別の1つの結合手には脱離基が置換し、残る1つの結合手には、最終的に-Oを生じさせることができる基が置換している。
 脱離基としては、弱酸性条件下、リン原子への酸素原子の求核置換反応に用いられる脱離基であればよい。例えば、ジアルキルアミノ基が挙げられる。ジアルキルアミノ基としては、ジイソプロピルアミノ基が好ましく用いられ、例えば、ジエチルアミノ基、エチルイソプロピルアミノ基を用いることもできる。
 最終的に-Oを生じさせることができる基としては、キメラ分子若しくはキメラ分子前駆体にある他の構造に影響を与えない条件下、酸素原子から脱離する基が酸素原子に置換した基であればよい。例えば、弱塩基性条件下で-Oを生じさせることができる、2位に電子吸引基が置換したエトキシ基が挙げられ、2-シアノエトキシ基が好ましい。また、例えば、パラジウム触媒存在下、パラジウム触媒の酸化的付加により-Oを生じさせることができるアリルオキシ基、パラジウム担持炭素存在下、接触水素還元により-Oを生じさせることができるベンジルオキシ基が挙げられる。
 2位に電子吸引基が置換したエトキシ基のような、弱塩基条件下、-Oを生じさせることができる基は、最終的に脂溶性アンカーの切り離しの際に脱離させることができる。また、弱塩基条件下、酸素原子から脱離する基は、本工程の第1のキメラ分子前駆体からの求核攻撃の際には必要な官能基であるが、それ以外の工程においては、脱離していても、脱離していなくてもよく、積極的に脱離させても、反応条件に起因して脱離してしまってもよい。
 第2の核酸が有する保護されていてもよいアミノ基(後述するように、このアミノ基を介して、第1の核酸が導入される。)としては、アミノ基、保護されたアミノ基が挙げられる。本工程を円滑に進行させるために、保護されたアミノ基が好ましい。
 アミノ基の保護基としては、酸性条件下で除去できる基であれば特に制限されず、例えば、ウッツ(P.G.M.Wuts)及びグリーン(T.W.Greene)著、「Greene‘s Protective Groups in Organic Synthesis(第4版、2006年)」に記載の基が挙げられ、置換されていてもよいトリチル基が好ましい。置換されていてもよいトリチル基としては、トリチル基(Tr)、p-メトキシフェニルジフェニルメチル基(MMTr)や、ジ(p-メトキシフェニル)フェニルメチル基(DMTr)が挙げられ、MMTrがより好ましい。
 2以上の第2の核酸が結合した化合物を本工程における第2の核酸として用いる場合、第2の核酸が有する保護されていてもよいアミノ基は当該2以上の第2の核酸が結合した化合物の5’-末端に存する第2の核酸のみが有していればよく、5’-末端に存する第2の核酸以外の第2の核酸は、それぞれ酸素原子を介して結合していてよい。
 例えば、本工程で用いられる第2の核酸は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000017
 式中、pは0以上の整数を示し;
 AGは、保護されていてもよいアミノ基を示し;
 Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
 NRは、弱酸性条件下、リン原子への酸素原子の求核置換反応に用いられる脱離基を示し;
 LVは、酸素原子から脱離する基を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 pは0~40が好ましく、0~20がより好ましく、0~10がさらに好ましく、0~5がよりさらに好ましく、0~1がことさらに好ましく、0であることが特に好ましい。
 デオキシリボースが2’-位に有することが許容される保護されていてもよい水酸基としては、メトキシ基やメトキシエチルオキシ基に代表される2’-修飾体、ならびに合成後に選択的に除去し水酸基を生成可能な、例えば、tert-ブチルジメチルシリルオキシ基、トリイソプロピルオキシメチルオキシ基、テトラヒドロピラニルオキシ基、ビス(2-アセチルメトキシ)メチルオキシ基、レブリニルオキシ基が挙げられる。以下、本明細書において、2’-位に保護されていてもよい水酸基を有することが許容されるデオキシリボースにおいて同様である。
 本工程で用いられる第2の核酸、例えば、リン原子の1つの結合手にデオキシリボースの3’-位の酸素原子が置換し、別の1つの結合手に脱離基が置換し、残る1つの結合手に、最終的に-Oを生じさせることができる基が置換している第2の核酸は、例えば、米国特許出願公開US2020/0399304、Tetrahedron Letters、39(24)、4215-4218、1998、若しくはJournal of Carbohydrate Chemistry、24(2)、145-160、2005に記載された方法、又はこれらに準じた方法で製造することができる。
 第1のキメラ分子前駆体が有する脂溶性アンカーとしては、反応後の溶液に特定の溶媒を加えることにより目的物を固化させて回収の容易化に資する部分構造であればよい。例えば、前述の特許文献2~6に開示された部分構造が挙げられ、特に、前述の特許文献2に開示された疑似固相保護基を使用できる。
 本発明のキメラ分子の製造方法においては、脂溶性アンカーを構造の一部として含む出発原料を用いるため、脂溶性アンカーを構造の一部として含むキメラ分子が製造されうる。本発明のキメラ分子の製造方法によって製造された脂溶性アンカーを構造の一部として含むキメラ分子から脂溶性アンカーを切り離すことにより、脂溶性アンカーを構造の一部として含まないキメラ分子が製造されてもよい。脂溶性アンカーは、キメラ分子の製造においては切り離されず、その一方で任意の段階で切り離すことができることが好ましい。脂溶性アンカーは、酸性条件下では除去されず、塩基性条件下で除去可能であることが好ましい。
 脂溶性アンカーとしては、1以上の炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を有する有機基が挙げられる。
 炭素数10~40の脂肪族炭化水素基において、脂肪族炭化水素基は直鎖状、分枝状、環状いずれでもよく、これらが混在していてもよい。脂肪族炭化水素基は、1又は2個の不飽和結合を有していてもよい。脂肪族炭化水素基において、1又は2個のメチレン性炭素原子はエーテル性酸素原子で置き換えられていてもよい。
 脂肪族炭化水素基は直鎖状であることが好ましく;直鎖状であって、不飽和結合を有していないことがより好ましく;直鎖状であって、不飽和結合及びエーテル性酸素原子を有していないことがさらに好ましい。
 炭素数10~40の脂肪族炭化水素基の炭素数としては、10~30が好ましく、12~28がより好ましく、14~22がさらに好ましく、16~20が特に好ましい。
 炭素数10~40の脂肪族炭化水素基としては、炭素数14~22の直鎖状アルキル基が好ましく、炭素数16~20の直鎖状アルキル基がより好ましく、炭素数17~19の直鎖状アルキル基がさらに好ましく、炭素数18の直鎖状アルキル基が特に好ましい。
 炭素数10~40の脂肪族炭化水素基と炭素数6~14の芳香族炭化水素環とは、リンカーを介して結合していることが好ましい。リンカーとしては、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-S-、-S(=O)-、-S(=O)-が挙げられ、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-が好ましく、-O-がより好ましい。
 炭素数6~14の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環が挙げられ、ベンゼン環、ナフタレン環が好ましく、ベンゼン環がより好ましい。
 炭素数6~14の芳香族炭化水素環においては、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して1~5個結合していてよく、好ましくは1~4個であり、より好ましくは1~3個であり、さらに好ましくは2~3個であり、特に好ましくは3個である。
 脂溶性アンカーとしては、炭素数14~22の脂肪族炭化水素基が-O-リンカーを介して1~5個結合した、ベンゼン環を有する有機基が挙げられ;炭素数16~20の脂肪族炭化水素基が-O-リンカーを介して2~3個結合した、ベンゼン環を有する有機基が好ましく;炭素数18の脂肪族炭化水素基が-O-リンカーを介して3個結合した、ベンゼン環を有する有機基がより好ましく;3,4,5-トリ(n-オクタデカニルオキシ)フェニルを有する有機基がさらに好ましい。
 炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を有する有機基としては、例えば、以下の構造の有機基が挙げられ、下記式(i)で示される構造の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000018
 式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
 Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
 NAは、それぞれ独立に、第1の核酸又は第2の核酸を含む構造と結合する位置を示す。
 Rにおける炭素数1~6のアルキル基は、直鎖状、分枝状、環状いずれでもよく、これらが混在していてもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられ、メチル基、エチル基が好ましく、メチル基がより好ましい。
 Rとしては、水素原子であることが好ましい。
 例えば、式(i)のように、NAで示される第1の核酸又は第2の核酸を含む構造と結合する位置がカルボニル性炭素である場合、ヌクレオシドのデオキシリボース若しくはリボースの3’-位若しくは5’-位、好ましくは3’-位の酸素原子と結合していることが好ましい。
 第1のキメラ分子前駆体が有する水酸基は、好ましくは、ヌクレオシドのデオキシリボース及びリボースの3’-位及び5’-位の水酸基、並びに、第2の核酸であるDNA及びRNAのデオキシリボース及びリボースの3’-位及び5’-位の水酸基からなる群より選択される水酸基であり;より好ましくは、ヌクレオシドのデオキシリボース及びリボースの5’-位の水酸基、並びに、第2の核酸であるDNA及びRNAのデオキシリボース及びリボースの5’-位の水酸基からなる群より選択される水酸基である。
 第1のキメラ分子前駆体が有する水酸基が、ヌクレオシドのデオキシリボース若しくはリボースの5’-位の水酸基である場合、当該ヌクレオシドのデオキシリボース若しくはリボースの3’-位の酸素原子が、式(i)で示される脂溶性アンカーのNAの位置に直接置換された、第1のキメラ分子前駆体Aであってよい。
 第1のキメラ分子前駆体Aは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000019
 式中、Ar及びRは、前述の意味を示し;
 Baseは、塩基部を示す。
 なお、デオキシリボースは2’-位に保護されていてもよい水酸基を有していてもよい。
 第1のキメラ分子前駆体が有する水酸基が、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの5’-位の水酸基である場合、第1のキメラ分子前駆体Aの水酸基の酸素原子と、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの3’-位のリン酸部位とが直結しているか、第1のキメラ分子前駆体Aの水酸基の酸素原子と、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの3’-位のリン酸部位とが、1以上の第1の核酸及び/又は第2の核酸(第1の核酸と第2の核酸との組み合わせであってもよい。)を介して結合している、第1のキメラ分子前駆体Bであってよい。
 第1のキメラ分子前駆体Bは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000020
 式中、Ar、R及びBaseは、前述の意味を示し;
 Xは、単結合を示すか、又はXに結合する酸素原子とリン原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 第1のキメラ分子前駆体が有する水酸基が、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの5’-位の水酸基である場合、式(ii)で示される脂溶性アンカーのNAの位置にC末端が結合した第1の核酸であるPNA若しくはPRNAのN末端と、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの3’-位のリン酸部位とが直結しているか、式(ii)で示される脂溶性アンカーのNAの位置にC末端が結合した第1の核酸であるPNA若しくはPRNAのN末端と、第2の核酸であるDNA若しくはRNAのデオキシリボース若しくはリボースの3’-位のリン酸部位とが1以上の第1の核酸及び/又は第2の核酸(第1の核酸と第2の核酸との組み合わせであってもよい。)を介して結合していている、第1のキメラ分子前駆体Cであってよい。
 第1のキメラ分子前駆体Cは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000021
 式中、Ar、R及びBaseは、前述の意味を示し;
 Yは、単結合を示すか、又はYに結合する窒素原子とリン原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 第1のキメラ分子前駆体BのX、及び第1のキメラ分子前駆体CのYにおける、X(若しくはY)に結合する酸素原子(若しくは窒素原子)とリン原子との結合を介する1以上の第1の核酸及び/又は第2の核酸において、核酸の総数は1~70であってよく、好ましくは1~31であり、より好ましくは1~21であり、さらに好ましくは1~10であり、よりさらに好ましくは1~5であり、特に好ましくは1~3である。
 前述の脂溶性アンカーが、反応後の溶液に特定の溶媒を加えることにより目的物を固化させて回収の容易化に資するために、第1のキメラ分子前駆体はその分子量が300~6,000であることが好ましく、300~5,000であることがより好ましく、300~4,000であることがさらに好ましい。
 本工程で用いられる第1のキメラ分子前駆体は、例えば、前述の特許文献、特に特許文献2及び7に記載された方法や本願実施例に記載の方法、あるいはこれらに準じた方法で製造することができる。
 本工程は、第1のキメラ分子前駆体に対して第2の核酸を過剰量用い、反応に不活性な溶媒中で行う。
 反応溶媒としては、非極性溶媒を用いることが好ましい。非極性溶媒としては、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類;酢酸エチル、酢酸イソプロピル等の脂肪酸エステル類;ヘキサン、ペンタン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類;ジエチルエーテル、シクロペンチルメチルエーテル等の非極性エーテル類;これらの任意の組み合わせ;が挙げられる。ハロゲン化炭化水素類が好ましい。
 また、反応溶媒全体に占める非極性溶媒の割合が50体積%以上であれば、極性溶媒を組み合わせてもよい。極性溶媒としては、アセトニトリル、プロピオニトリル等のニトリル類;1,4-ジオキサン、テトラヒドロフラン等の極性エーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等のアミド類;これらの任意の組み合わせ;が挙げられる。
 例えば、ハロゲン化炭化水素類とニトリル類の組み合わせが好ましく、ジクロロメタンとアセトニトリルの組み合わせがより好ましい。この場合、その混合比(体積%)は、50:50~99:1であってよく、80:20~99:1が好ましく、80:20~95:5がより好ましい。
 第1のキメラ分子前駆体に対して過剰量用いる第2の核酸は、第1のキメラ分子前駆体の使用モル数に対して、1.5~10当量、好ましくは1.6~8当量、より好ましくは1.8~5当量、さらに好ましくは2~4当量用いることができる。
 本工程を円滑に進行させる目的で、1H-テトラゾール、4,5-ジシアノイミダゾール等の活性化剤を使用してもよい。これらの活性化剤を使用する場合、第1のキメラ分子前駆体の使用モル数に対して、1~25当量、好ましくは5~20当量、より好ましくは8~15当量、さらに好ましくは8~12当量用いることができる。
 反応温度と反応時間は、使用する試薬の種類や量によって適宜変更することができる。例えば、0~100℃、好ましくは15~50℃、より好ましくは20~30℃において、5分~24時間攪拌してもよい。
 反応における基質濃度は、使用する試薬の種類や量によって適宜変更することができる。例えば、第1のキメラ分子前駆体の反応溶液中濃度が、0.01~0.2mol/L、好ましくは0.02~0.1mol/L、より好ましくは0.025~0.08mol/L、さらに好ましくは0.03~0.05mol/Lとなるように溶媒の使用量を調整することができる。
 本工程に続いて、必要に応じて、第2のキメラ分子前駆体のリン原子を酸化若しくはチオ酸化してもよい。
 リン原子の酸化若しくはチオ酸化は常法を採用することができる。例えば、前述の特許文献7の、ホスファイトトリエステル結合をホスフェートトリエステル結合又はチオホスフェートトリエステル結合へと変換する工程を参照できる。
 リン原子の酸化に当たっては、過酸化物が好ましく用いられる。過酸化物としては、tert-ブチルヒドロペルオキシド、メタクロロ過安息香酸が好ましく、tert-ブチルヒドロペルオキシドは、市販されているデカン溶液若しくはトルエン溶液を、そのまま若しくは1~3倍に希釈して用いることができる。
 酸化剤若しくはチオ酸化剤の使用量は、第2のキメラ分子前駆体、若しくは前工程における第1のキメラ分子前駆体の使用モル数あたり、例えば、1~50モル、好ましくは1~10モル、より好ましくは2~5モルである。
 なお、リン原子の酸化若しくはチオ酸化は、第2の核酸の導入後の第2のキメラ分子前駆体の単離精製を経ずに、第2の核酸の導入の工程に引き続いて、いわゆるワンポットで行ってもよい。
 反応終了後、反応溶液に極性溶媒を添加することにより、目的物(第2のキメラ分子前駆体)を固化させて回収してもよい。本発明の製造方法で用いる第1のキメラ分子前駆体は脂溶性アンカーを含むため、本工程の目的物(第2のキメラ分子前駆体)は極性溶媒の添加により固化して沈殿を生じる。したがって、本工程の目的物をろ過により回収することができる。
 極性溶媒としては、汎用性やコスト面から、アセトニトリル、メタノールが好ましく用いられ、メタノールを用いることが特に好ましい。
 目的物をろ過により回収するために反応終了後に反応溶液に添加される極性溶媒の量は、反応における基質濃度にもよるが、例えば、使用した反応溶媒の総量(体積)に対して、5~50倍量、好ましくは5~30倍量、より好ましくは8~20倍量、さらに好ましくは10~15倍量である。
(A2)必要に応じた、第2のキメラ分子前駆体の脱保護
 前述の工程で得た第2のキメラ分子前駆体は、導入された第2の核酸に由来する、保護されていてもよいアミノ基を有する。次工程においてこのアミノ基を介して第1の核酸を導入するため、保護されていてもよいアミノ基が、保護されたアミノ基である場合、アミノ基の脱保護が必要である。
 アミノ基の脱保護は、使用した保護基に応じて適宜条件を変更することができる。具体的には、前述の「Greene‘s Protective Groups in Organic Synthesis(第4版、2006年)」に記載の方法を採用することができる。
 例えば、アミノ基の保護基がMMTrである場合には、酸を用いて、反応に不活性な溶媒中で行う。
 使用できる酸としては、特に制限されないが、トリクロロ酢酸、トリフルオロ酢酸、ジクロロ酢酸等のハロゲノ酢酸類;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類;が挙げられる。良好な結果が得られる点から、ハロゲノ酢酸類が好ましく、トリクロロ酢酸が特に好ましい。
 酸の使用量は、第2のキメラ分子前駆体の使用モル数あたり、例えば、1~100モル、好ましくは5~80モル、より好ましくは10~60モル、さらに好ましくは20~50モルである。
 前工程と同様に、反応終了後、反応溶液に極性溶媒を添加することにより、目的物(脱保護された第2のキメラ分子前駆体)を固化させて回収してもよい。
 脱保護された第2のキメラ分子前駆体は、そのまま次工程に付してもよいし、上記式中LVで示された、弱塩基条件下、酸素原子から脱離する基を脱離させてから次工程に付してもよい。
 酸素原子から脱離する基の脱離は、常法を採用することができる。弱塩基条件下、酸素原子から脱離する基の脱離は、例えば、De Napoli et al.,Chem.Commun.,2005、2586-2588、U.Pradere et al.,Chem.Rev.,2014、114、9154-9218を参照できる。
(A3)第2のキメラ分子前駆体又は脱保護された第2のキメラ分子前駆体(本項において、単に「第2のキメラ分子前駆体」とも言う。)への、第1の核酸の導入(キメラ分子の製造)
 本工程は、第2のキメラ分子前駆体が有するアミノ基を足掛かりとして、第1の核酸を導入する工程である。その結果、キメラ分子が製造される。
 本工程における第1の核酸の導入においては、第2のキメラ分子前駆体が有するアミノ基と、第1の核酸が有するカルボキシ基との間のアミド化反応若しくはこれに準じた反応により、アミド結合を形成する。第1の核酸は、1以上の第1の核酸が結合したものであってもよい。
 第1の核酸としては、Fmoc型PNAモノマーに代表されるN末端が保護されたPNAモノマーを使用できる。なお、Fmoc型PNAモノマー中のFmoc(フルオレニルメトキシカルボニル)中のフルオレニル基は、Fmocの除去に際して反応性を調整するため、任意の置換位置に1~2個の置換基を有していてもよい。置換基としては電子吸引基が好ましく、例えば、ハロゲン、ニトロ、シアノ、トリフルオロメチル、カルボニル(カルボキシ、アルキルオキシカルボニル、ジアルキルカルバモイル、アルキルカルボニル)が挙げられる。
 例えば、本工程で用いられる第1の核酸は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000022
 式中、qは0以上の整数を示し;
 PGは、隣接するアミノ基の保護基を示し;
 Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示す。
 qは0~40が好ましく、0~30がより好ましく、0~20がさらに好ましく、0~10がよりさらに好ましく、0であることが特に好ましい。
 本工程で用いられる第1の核酸として、市販されている化合物を用いてもよい。また、市販されているモノマー同士を、通常のアミド化反応に付して、2以上の第1の核酸が結合したものを準備することができる。
 アミノ基の保護基としては、好ましくは置換基を有していてもよいFmoc、より好ましくはFmocを用いることができる。また、Tr、MMTr、DMTrを含むトリチル、より好ましくはMMTr、あるいはヒドラジンを用いて除去することができる、フタルイミド型の保護基を用いることもできる。
 本工程は、第2のキメラ分子前駆体に対して第1の核酸を過剰量用い、必要に応じて縮合剤の存在下、反応に不活性な溶媒中で行う。
 ここで用いられる溶媒の例としては、特に限定されないが、ハロゲン化炭化水素類;芳香族炭化水素類;脂肪酸エステル類;非極性/極性エーテル類;ニトリル類;アミド類;これらの任意の組み合わせ;が挙げられる。例えば、テトラヒドロフランが好ましい。
 第2のキメラ分子前駆体に対して過剰量用いる第1の核酸は、第2のキメラ分子前駆体の使用モル数に対して、1.01~5当量、好ましくは1.05~3当量、より好ましくは1.1~2.5当量、さらに好ましくは1.1~2.2当量用いることができる。
 本工程を円滑に進行させる目的で、縮合剤を使用してもよい。
 縮合剤としては、例えば、ジシクロヘキシルカルボジイミド、1,1’-カルボニルジイミダゾール、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロホスファート(COMU)、ジフェニルリン酸アジド、オキシ塩化リンが挙げられるが、これらに限定されるものではない。例えば、COMUが好ましい。
 縮合剤、好ましくは縮合剤としてCOMUを用いる場合、第2のキメラ分子前駆体の使用モル数に対して、1~10当量、好ましくは1.5~8当量、より好ましくは2~6当量、さらに好ましくは2.5~5当量、特に好ましくは3~4.5当量用いることができる。
 第1の核酸におけるカルボキシ基を反応性誘導体に変換してから第2のキメラ分子前駆体と反応させることもできる。カルボキシ基の反応性誘導体としては、例えば、オキシ塩化リン、塩化チオニル等のハロゲン化剤と反応して得られる酸ハロゲン化物;クロロギ酸イソブチル等と反応して得られる混合酸無水物;1-ヒドロキシベンゾトリアゾール等と縮合して得られる活性エステル;が挙げられる。これらの反応性誘導体と第2のキメラ分子前駆体との反応は、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類等の反応に不活性な溶媒中で行う。トリエチルアミン、N,N-ジイソプロピルエチルアミン、N-メチルモルホリン等の有機塩基を用いることが反応を円滑に進行させる上で有利な場合がある。
 本工程では、添加剤(例えば、1-ヒドロキシベンゾトリアゾールなど)を用いることが反応に好ましい場合がある。
 また、有機塩基;又は、炭酸カリウム、炭酸ナトリウム、水酸化カリウム等の無機塩基;の存在下で反応を行うことが、反応を円滑に進行させる上で有利な場合がある。例えば、N,N-ジイソプロピルエチルアミンが好ましい。
 有機塩基、好ましくは有機塩基としてN,N-ジイソプロピルエチルアミンを用いる場合、第2のキメラ分子前駆体の使用モル数に対して、1~10当量、好ましくは1.5~8当量、より好ましくは1.5~5当量、さらに好ましくは2~4当量、特に好ましくは2~3当量用いることができる。また、第2のキメラ分子前駆体のリン酸バックボーンの数に対して、1~10倍モル量、好ましくは1.5~5倍モル量、より好ましくは2~4倍モル量、さらに好ましくは2.5~3倍モル量用いることができる。
 反応温度と反応時間は、使用する試薬の種類や量によって適宜変更することができる。例えば、0~100℃、好ましくは15~50℃、より好ましくは20~30℃において、5分~24時間攪拌してもよい。
 反応における基質濃度は、使用する試薬の種類や量によって適宜変更することができる。例えば、第1のキメラ分子前駆体の反応溶液中濃度が、0.01~0.2mol/L、好ましくは0.02~0.1mol/L、より好ましくは0.025~0.08mol/L、さらに好ましくは0.03~0.05mol/Lとなるように溶媒の使用量を調整することができる。
 前工程と同様に、反応終了後、反応溶液に極性溶媒を添加することにより、目的物(キメラ分子)を固化させて回収してもよい。
 上記の工程で得られたキメラ分子は、導入された第1の核酸のN末端を介して、さらに第1の核酸又は第2の核酸を結合させてもよい。
 その場合、導入された第1の核酸のアミノ基の保護基を除去し、当該アミノ基を手掛かりとして、第1の核酸又は第2の核酸を結合させることができる。
 導入された第1の核酸のアミノ基の保護基の除去方法は、保護基の種類によって選択すればよく、前述の「Greene‘s Protective Groups in Organic Synthesis(第4版、2006年)」に記載の方法を採用することができる。
 導入された第1の核酸のアミノ基の保護基がFmocである場合、例えば、2体積%の1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)と2体積%のピペリジンとの溶液、例えばテトラヒドロフラン(THF)溶液を作用させる方法が挙げられる。
 キメラ分子へのさらなる第1の核酸の導入は、前述の(3)第2のキメラ分子前駆体又は脱保護された第2のキメラ分子前駆体(本項において、単に「第2のキメラ分子前駆体」とも言う。)への、第1の核酸の導入(キメラ分子の製造)に準じて行うことができる。
 第2の核酸の導入は、F. Bergmann,et al.、Tetrahedron Lett.、1995、36(38)、6823-6826に記載の方法若しくはこれに準じた方法、又は国際公開第2017/086397号に記載の方法若しくはこれに準じた方法を採用することができる。
 このように製造された脂溶性アンカーを構造の一部として含むキメラ分子から、脂溶性アンカーを切り離すことにより、脂溶性アンカーを構造の一部として含まないキメラ分子を製造することができる。
 前述のように、脂溶性アンカーは、キメラ分子の製造においては切り離されず、その一方で任意の段階で切り離すことができることが好ましい。脂溶性アンカーは、酸性条件下では除去されず、塩基性条件下で除去可能であることが好ましい。
 脂溶性アンカーが式(i)や式(ii)で示される脂溶性アンカーである場合、前述の特許文献2及び7に記載の方法若しくはこれに準じた方法により切り離すことができる。例えば、極性溶媒、好ましくはエタノール中、水酸化アンモニウム水溶液を作用させることにより、脂溶性アンカーの残渣が沈殿し、上澄みから目的物であるキメラ分子を単離することができる。なお、導入された第2の核酸のリン酸部位に、弱塩基条件下、酸素原子から脱離する基(LVで示した基)が脱離せず残っていたり、導入された第1の核酸のアミノ基の保護基(例えばFmoc)が除去されず残っていたりした場合、これらの基も脱離したキメラ分子が得られる。
[本発明の第二の態様]
 第二の態様のキメラ分子の製造方法は、以下の(B1)の工程を含む。
(B1)アミノ基を有する第3のキメラ分子前駆体のアミノ基を介した、第2の核酸の導入。
 以下、本発明の第二の態様の製造方法について説明する。必要に応じて第1の核酸としてPNA、第2の核酸としてDNAを用いた、DNA-PNAキメラ分子(DNAの3’-位側にPNAが融合したキメラ分子)の製造を例とする。
(B1)アミノ基を有する第3のキメラ分子前駆体(以下、単に「第3のキメラ分子前駆体」とも言う。)のアミノ基を介した、第2の核酸の導入(キメラ分子の製造)
 本工程は、第3のキメラ分子前駆体が有するアミノ基を足掛かりとして、第2の核酸を導入する工程である。その結果、キメラ分子が製造される。
 第3のキメラ分子前駆体は、第2の核酸を導入するためのアミノ基を有することに加え、反応後の溶液に特定の溶媒を加えることにより目的物を固化させて回収の容易化に資する脂溶性アンカーを含む。また、第3のキメラ分子前駆体は、第1の核酸に由来する部分構造を有し、第3のキメラ分子前駆体が有するアミノ基は、第1の核酸に由来する。
 第3のキメラ分子前駆体が第1の核酸に由来する部分構造を有するとは、第1の核酸、好ましくはPNA若しくはPRNA、より好ましくはPNAが、C末端において第3のキメラ分子前駆体の他の部分と結合し、第1の核酸、好ましくはPNA若しくはPRNA、より好ましくはPNAのN末端が露出していることを意味する。なお、露出しているPNAのN末端は、例えば4級アンモニウム塩として存在していてもよい。そして、第1の核酸、好ましくはPNAの露出したN末端が、第3のキメラ分子前駆体が有するアミノ基であり、第2の核酸を導入するための足掛かりとなる。
 本工程における第2の核酸の導入においては、第3のキメラ分子前駆体が有するアミノ基から第2の核酸が求核攻撃を受けて、第3のキメラ分子前駆体が有するアミノ基由来の窒素原子と、第2の核酸であるDNAのリン原子、好ましくはDNAのデオキシリボースの3’-位に接続するリン原子との間に結合が生じる。第2の核酸は、2以上の第2の核酸が結合したものであってもよい。
 求核攻撃を受ける第2の核酸のリン原子は酸化された5価のリン原子であることが好ましい。この場合、1つの結合手にはデオキシリボース(RNAの場合にはリボース)の3’-位の酸素原子が置換し、別の1つの結合手には最終的に-Oを生じさせることができる基が置換し、残る1つの結合手には水素原子が結合している。
 最終的に-Oを生じさせることができる基としては、第一の態様の製造方法で説明した態様が採用できる。
 例えば、本工程で用いられる第2の核酸は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000023
 式中、pは0以上の整数を示し;
 AG/HGは、保護されていてもよいアミノ基若しくは水酸基を示し;
 Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
 LVは、酸素原子から脱離する基を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 pは0~40が好ましく、0~20がより好ましく、0~10がさらに好ましく、0~5がよりさらに好ましく、0~1がことさらに好ましく、0であることが特に好ましい。
 AG/HGにおける保護されていてもよいアミノ基若しくは水酸基は、本工程で製造されたキメラ分子から、さらに核酸を伸長するための手がかりとなる。本工程を円滑に進行させるために、保護されたアミノ基若しくは水酸基が好ましい。また、別の態様として、AG/HGにおける保護されていてもよいアミノ基若しくは水酸基は、保護されていてもよい水酸基が好ましく、保護された水酸基がより好ましい。
 アミノ基の保護基としては、酸性条件下で除去できる基であれば特に制限されず、第一の態様において、第1のキメラ分子前駆体の水酸基を介して導入される第2の核酸が有する保護されていてもよいアミノ基で許容される保護基を採用することができる。
 水酸基の保護基としては、酸性条件下で除去できる基であれば特に制限されず、例えば、ウッツ(P.G.M.Wuts)及びグリーン(T.W.Greene)著、「Greene‘s Protective Groups in Organic Synthesis(第4版、2006年)」に記載の基が挙げられ、置換されていてもよいトリチル基が好ましく、別の態様として置換されていてもよいフルオレニルメトキシカルボニル基(Fmoc)が好ましい。
 置換されていてもよいトリチル基としては、トリチル基(Tr)、p-メトキシフェニルジフェニルメチル基(MMTr)や、ジ(p-メトキシフェニル)フェニルメチル基(DMTr)が挙げられ、DMTrがより好ましい。
 置換されていてもよいフルオレニルメトキシカルボニル基としては、フルオレニルメトキシカルボニル中のフルオレニル基が、ハロゲン、ニトロ、シアノ、トリフルオロメチル、及び/又はカルボニル(カルボキシ、アルキルオキシカルボニル、ジアルキルカルバモイル、アルキルカルボニル)で置換されたフルオレニルメトキシカルボニル基が挙げられる。
 本工程で用いられる第2の核酸は、例えば、前述の式(4)の化合物(第一の態様のA1工程で用いられる第2の核酸)から公知の方法や本願実施例に記載の方法、あるいはこれらに準じた方法により製造することができる。
 第3のキメラ分子前駆体が有する脂溶性アンカーとしては、第一の態様の製造方法で説明した態様が採用できる。
 なお、前述した炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を有する有機基としては、例えば、以下の構造の有機基が挙げられ、下記式(ii)で示される構造の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000024
 式中の記号は前述のとおりである。
 例えば、式(ii)のように、NAで示される第1の核酸又は第2の核酸を含む構造と結合する位置が窒素原子である場合、第1の核酸であるPNA若しくはPRNAのカルボニル性炭素と結合してアミド結合を形成していることが好ましい。
 第3のキメラ分子前駆体は、第3のキメラ分子前駆体が有する第1の核酸に由来する部分構造が、式(ii)で示される脂溶性アンカーのNAの位置に直接置換された、第3のキメラ分子前駆体Aであってよい。
 第3のキメラ分子前駆体Aは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000025
 式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
 Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
 Baseは、塩基部を示す。
 第3のキメラ分子前駆体は、第3のキメラ分子前駆体が有する第1の核酸に由来する部分構造と、式(ii)で示される脂溶性アンカーのNAの位置とが、1以上の第1の核酸及び/又は第2の核酸(第1の核酸と第2の核酸との組み合わせであってもよい。)を介して結合している、第3のキメラ分子前駆体Bであってよい。
 第3のキメラ分子前駆体Bは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000026
 式中、Ar、R及びBaseは、前述の意味を示し;
 Zは、単結合を示すか、又はZに結合する窒素原子とカルボニル性炭素原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 第3のキメラ分子前駆体は、式(i)で示される脂溶性アンカーのNAの位置に3’-位の酸素原子が結合したヌクレオシドのデオキシリボース若しくはリボースの5’-位の水酸基と、第3のキメラ分子前駆体が有する第1の核酸に由来する部分構造とが直結しているか、式(i)で示される脂溶性アンカーのNAの位置に3’-位の酸素原子が結合したヌクレオシドのデオキシリボース若しくはリボースの5’-位の水酸基と、第3のキメラ分子前駆体が有する第1の核酸に由来する部分構造とが1以上の第1の核酸及び/又は第2の核酸(第1の核酸と第2の核酸との組み合わせであってもよい。)を介して結合していている、第3のキメラ分子前駆体Cであってよい。
 第3のキメラ分子前駆体Cは、例えば、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000027
 式中、Ar、R及びBaseは、前述の意味を示し;
 Wは、単結合を示すか、又はZに結合する酸素原子とカルボニル性炭素原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
 なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。
 第3のキメラ分子前駆体BのZ、及び第3のキメラ分子前駆体CのWにおける、Z(若しくはW)に結合する窒素原子(若しくは酸素原子)とカルボニル性炭素原子との結合を介する1以上の第1の核酸及び/又は第2の核酸において、核酸の総数は1~70であってよく、好ましくは1~31であり、より好ましくは1~21であり、さらに好ましくは1~10であり、よりさらに好ましくは1~5であり、特に好ましくは1~3である。
 前述の脂溶性アンカーが、反応後の溶液に特定の溶媒を加えることにより目的物を固化させて回収の容易化に資するために、第3のキメラ分子前駆体はその分子量が300~6,000であることが好ましく、300~5,000であることがより好ましく、300~4,000であることがさらに好ましい。
 本工程で用いられる第3のキメラ分子前駆体は、例えば、前述の特許文献に記載された方法や本願実施例に記載の方法、あるいはこれらに準じた方法で製造することができる。また、K.Ogami,et al.,Chem.Lett.,2018,47,138-140に記載の方法に従って製造してもよい。
 本工程は、第3のキメラ分子前駆体に対して第2の核酸を過剰量用い、反応に不活性な溶媒中で行う。
 ここで用いられる溶媒の例としては、特に限定されないが、ハロゲン化炭化水素類;芳香族炭化水素類;非極性/極性エーテル類;ニトリル類;アミド類;これらの任意の組み合わせ;が挙げられる。
 例えば、ハロゲン化炭化水素類とニトリル類の組み合わせが好ましく、ジクロロメタンとアセトニトリルの組み合わせがより好ましい。この場合、その混合比(体積%)は、50:50~99:1であってよく、80:20~99:1が好ましく、80:20~95:5がより好ましい。
 第3のキメラ分子前駆体に対して過剰量用いる第2の核酸は、第3のキメラ分子前駆体の使用モル数に対して、1.5~50当量、好ましくは3~30当量、より好ましくは5~20当量、さらに好ましくは8~15当量用いることができる。
 本反応は、本工程で用いられる第2の核酸のリン原子を酸化的にハロゲン化、好ましくはクロロ化することにより活性化し、本工程で用いられる第3のキメラ分子前駆体中の第1の核酸に由来するアミノ基との間に結合を生じさせる反応である。
 本反応は、アサートン・トッド反応として知られる反応条件を適用して行うことができる。その反応条件としては、例えば、Atherton,F.R. et al.,J.Chem.Soc.,1945,660に記載の条件を参照してもよい。
 具体的には、反応に不活性な溶媒中、本工程で用いられる第2の核酸のリン原子を酸化的にハロゲン化するための試薬、及び反応系中の酸性化を防ぐための塩基を用いて行うことができる。
 本工程で用いられる第2の核酸のリン原子を酸化的にハロゲン化するための試薬としては、例えば、四塩化炭素、塩化スルフリル、トリクロロイソシアヌル酸、ヨウ素、ヨードホルムが挙げられ、取り扱いの容易性から四塩化炭素が好ましい。
 反応系中の酸性化を防ぐための塩基としては、各種の有機塩基や無機塩基を用いうるが、トリエチルアミン、ジイソプロピルエチルアミン等の第三級アミンを用いることが好ましい。
 反応を円滑に進行させるため、これらの試薬は本工程で用いられる第3のキメラ分子前駆体に対して過剰量用いてもよい。例えば、第3のキメラ分子前駆体の使用モル数に対して、第2の核酸のリン原子を酸化的にハロゲン化するための試薬、及び反応系中の酸性化を防ぐための塩基を、それぞれ1.5~50当量、好ましくは3~30当量、より好ましくは5~20当量、さらに好ましくは8~15当量用いることができる。反応系中の酸性化を防ぐための塩基は、反応系中の酸性化を防ぐために、第2の核酸のリン原子を酸化的にハロゲン化するための試薬と同当量若しくはそれ以上使用してもよい。
 反応温度と反応時間は、使用する試薬の種類や量によって適宜変更することができる。例えば、0~100℃、好ましくは15~50℃、より好ましくは20~30℃において、5分~24時間攪拌してもよい。
 反応における基質濃度は、使用する試薬の種類や量によって適宜変更することができる。例えば、第3のキメラ分子前駆体の反応溶液中濃度が、0.01~0.2mol/L、好ましくは0.02~0.1mol/L、より好ましくは0.025~0.08mol/L、さらに好ましくは0.03~0.05mol/Lとなるように溶媒の使用量を調整することができる。
 反応終了後、反応溶液に極性溶媒を添加することにより、目的物(キメラ分子)を固化させて回収してもよい。本発明の製造方法で用いる第3のキメラ分子前駆体は脂溶性アンカーを含むため、本工程の目的物(キメラ分子)は極性溶媒の添加により固化して沈殿を生じる。したがって、本工程の目的物をろ過により回収することができる。
 極性溶媒としては、汎用性やコスト面から、アセトニトリル、メタノールが好ましく用いられ、メタノールを用いることが特に好ましい。
 目的物をろ過により回収するために反応終了後に反応溶液に添加される極性溶媒の量は、反応における基質濃度にもよるが、例えば、使用した反応溶媒の総量(体積)に対して、5~50倍量、好ましくは5~30倍量、より好ましくは8~20倍量、さらに好ましくは10~15倍量である。
 目的物をろ過により回収するために行う反応溶液への極性溶媒の添加に際して、目的物の回収量が少ない場合には、添加する極性溶媒の量を調整、好ましくは増やしたり、極性溶媒の添加後の反応溶液を冷却したりしてもよい。
 上記の工程で得られたキメラ分子は、導入された第2の核酸の5’-位のアミノ基又はヒドロキシ基を介して、さらに第1の核酸又は第2の核酸を結合させてもよい。
 その場合、導入された第2の核酸の5’-位のアミノ基若しくはヒドロキシ基の保護基を除去し、当該アミノ基若しくはヒドロキシ基を手掛かりとして、第1の核酸又は第2の核酸を結合させることができる。
 導入された第2の核酸のアミノ基若しくはヒドロキシ基の保護基の除去方法は、保護基の種類によって選択すればよく、前述の「Greene‘s Protective Groups in Organic Synthesis(第4版、2006年)」に記載の方法を採用することができる。
 導入された第2の核酸のヒドロキシ基の保護基が置換されていてもよいトリチル基、例えば、DMTrである場合には、酸を用いて、反応に不活性な溶媒中で除去することができる。
 使用できる酸としては、特に制限されないが、トリクロロ酢酸、トリフルオロ酢酸、ジクロロ酢酸等のハロゲノ酢酸類;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類;が挙げられる。良好な結果が得られる点から、ハロゲノ酢酸類が好ましく、トリクロロ酢酸が特に好ましい。
 酸の使用量は、キメラ分子の使用モル数あたり、例えば、1~100モル、好ましくは5~80モル、より好ましくは10~60モル、さらに好ましくは20~50モルである。
 このように製造された脂溶性アンカーを構造の一部として含むキメラ分子から、脂溶性アンカーを切り離すことにより、脂溶性アンカーを構造の一部として含まないキメラ分子を製造することができる。
 前述のように、脂溶性アンカーは、キメラ分子の製造においては切り離されず、その一方で任意の段階で切り離すことができることが好ましい。脂溶性アンカーは、酸性条件下では除去されず、塩基性条件下で除去可能であることが好ましい。
 脂溶性アンカーが式(i)や式(ii)で示される脂溶性アンカーである場合、前述の特許文献2及び7に記載の方法若しくはこれに準じた方法により切り離すことができる。例えば、極性溶媒、好ましくはエタノール中、水酸化アンモニウム水溶液を作用させることにより、脂溶性アンカーの残渣が沈殿し、上澄みから目的物であるキメラ分子を単離することができる。なお、導入された第2の核酸のリン酸部位に、弱塩基条件下、酸素原子から脱離する基(LVで示した基)が脱離せず残っていたり、導入された第1の核酸のアミノ基の保護基(例えばFmoc)が除去されず残っていたりした場合、これらの基も脱離したキメラ分子が得られる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
製造例A1(アルキル化)
Figure JPOXMLDOC01-appb-C000028
 没食子酸メチル(15.0 g、81.5 mmol)、1-ブロモオクタデカン(89.7 g、269 mmol)、及び炭酸カリウム(67.2 g、486 mmol)のDMF(N,N-ジメチルホルムアミド)(300 mL)中の混合物に対して、80℃で1日間撹拌した。反応混合物を室温に冷却し、トルエンで希釈した。これを水で洗った。有機層を部分的に濃縮し、メタノールの添加により懸濁させた。得られた沈殿物を濾過により回収し、固体を減圧下で乾燥させて、標的化合物(80.1 g、定量的)を白色の固体として得た。
 1H NMR (600 MHz, CDCl3) δ 7.24 (s, 2H), 4.00 (td, J = 6.5, 3.4 Hz, 7H), 3.91-3.86 (m, 4H), 1.84-1.69 (m, 7H), 1.45 (td, J = 8.9, 5.1 Hz, 7H), 1.24 (s, 98H), 0.87 (t, J = 7.0 Hz, 11H) ppm.
 NMRデータは既存文献に記載のデータと一致した(S. Kim, et al., Eur. J. Chem., 2013, 19, 8615-8620)。
製造例A2(LAH還元)
Figure JPOXMLDOC01-appb-C000029
 THF(81.0 mL)中のLiAlH4(1.00 g, 21.1 mmol)の溶液に、室温でのカニューレ挿入技術により、THF(96.0 mL)中のメチルエステル(5.01 g, 5.32 mmol)の溶液を滴下して加えた。室温で3時間撹拌した後、反応混合物を氷浴で冷却し、水(1.00 mL)、続いて15%NaOH水溶液(3.00 mL)を加えることによりクエンチした。混合物を室温に温め、1時間撹拌した。水(3.00 mL)を加えた後、混合物をNa2SO4で乾燥させ、濾過した。濾液を濃縮し、粗生成物をジクロロメタン(30.0 mL)に溶解した。メタノール(200 mL)を加えることにより生成物を再結晶化し、沈殿物を濾過により収集した。固体を減圧下で乾燥させて、標的化合物(4.55 g、収率93.6%)を白色粉末として得た。
 1H NMR (400 MHz, CDCl3) δ 6.54 (s, 2H), 4.58 (s, 2H), 3.94 (dt, J = 15.4, 6.6 Hz, 6H), 1.84-1.66 (m, 6H), 1.46 (d, J = 7.9 Hz, 7H), 1.24 (s, 67H), 0.91-0.82 (m, 9H) ppm.
 NMRデータは既存文献に記載のデータと一致した(H. Tamiaki, et al., Bull. Chem. Soc. Jpn., 2001, 74, 733-738)。
製造例A3(リンカーの導入)
Figure JPOXMLDOC01-appb-C000030
 ジクロロメタン(8.26 mL)中の5'-O-DMTr-チミジン(3.00 g、5.51 mmol)及び無水コハク酸(1.10 g、11.0 mmol)の溶液に、トリエチルアミン(2.79 g、3.83 mL、27.6 mmol)を加えた。室温で7.5時間撹拌した後、反応混合物をジクロロメタンで希釈し、飽和水溶液で洗浄した。NH4Clに続いてブラインで洗浄した。水相をジクロロメタンで2回抽出した。合わせた有機層をNa2SO4で乾燥し、濃縮して、標的化合物(4.40 g、定量的)を淡黄色の泡として得た。
 1H NMR (600 MHz, CDCl3) δ 7.61 (s, 1H), 7.38-7.33 (m, 2H), 7.30-7.25 (m, 4H), 7.25-7.18 (m, 6H), 6.84-6.78 (m, 4H), 6.36 (dd, J = 9.3, 5.2 Hz, 1H), 5.41 (d, J = 5.3 Hz, 1H), 5.29 (s, 1H), 4.17 (s, 1H), 3.76 (d, J = 2.6 Hz, 6H), 3.44 (dd, J = 10.2, 2.5 Hz, 1H), 3.39 (dd, J = 10.5, 2.8 Hz, 1H), 3.02 (q, J = 7.3 Hz, 4H), 2.57 (s, 3H), 2.50 (dd, J = 13.6, 5.0 Hz, 1H), 2.40-2.35 (m, 1H), 1.35-1.32 (m, 3H), 1.27 (t, J = 7.3 Hz, 5H) ppm.
 NMRデータは既存文献に記載のデータと一致した(P. Kumar, et al., Nucleosides Nucleotides, 1993, 12, 565-584; C. Johnston, et al., Chemistry-Methods, 2021, 1, 1-8)。
製造例A4(アンカー上へのヌクレオシドの固定化)
Figure JPOXMLDOC01-appb-C000031
 ベンジルアルコール誘導体(100 mg、0.109 mmol)のTHF(2.00 mL)溶液に、ヌクレオシド-3'-O-コハク酸塩(122 mg、0.164 mmol)、EDC塩酸塩(52.3 mg、0.273 mmol)及びDMAP(4-ジメチルアミノピリジン)(33.4 mg、0.273 mmol)を加えた。室温で3時間撹拌した後、反応混合物をメタノールの添加により懸濁させた。得られた沈殿物を濾過により収集し、メタノールですすいだ。ペレットを減圧下で乾燥させて、標的化合物(154 mg、収率 91.7%)を白色固体として得た。
 1H NMR (600 MHz, CDCl3) δ 8.19 (s, 1H), 7.60 (d, J = 1.7 Hz, 1H), 7.39-7.34 (m, 2H), 7.32-7.20 (m, 9H), 6.83 (d, J = 8.8 Hz, 4H), 6.52 (s, 2H), 6.42 (dd, J = 8.5, 6.1 Hz, 1H), 5.47 (dd, J = 4.4, 2.7 Hz, 1H), 5.00 (s, 2H), 4.13 (q, J = 2.4 Hz, 1H), 3.94 (d, J = 6.5 Hz, 3H), 3.93-3.88 (m, 3H), 3.78 (s, 6H), 3.50-3.41 (m, 2H), 2.66 (dq, J = 8.5, 5.9 Hz, 4H), 2.48-2.40 (m, 2H), 1.81-1.75 (m, 4H), 1.72 (dt, J = 15.0, 7.6 Hz, 3H), 1.50-1.38 (m, 6H), 1.24 (s, 96H), 0.87 (t, J = 7.1 Hz, 9H) ppm.
 13C NMR (151 MHz, CDCl3) δ 172.10, 171.91, 163.42, 158.87, 153.32, 150.28, 144.25, 138.32, 135.58, 135.31, 135.19, 130.53, 130.18, 128.23, 128.16, 127.35, 113.42, 111.71, 107.11, 87.32, 84.43, 84.05, 75.95, 73.53, 69.22, 67.29, 63.81, 55.35, 37.94, 32.03, 30.43, 29.87, 29.83, 29.77, 29.73, 29.55, 29.51, 29.47, 29.16, 29.03, 26.23, 22.79, 14.23, 11.65 ppm.
 HRESIMS calcd. for C96H150N2NaO13, 1562.1030 [M+Na]+; found 1562.1060.
製造例A5(トリチル除去;第1のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000032
 クロロホルム(5.49 mL)中の出発物質(156 mg、101 mmol)の冷却溶液に、氷浴中の184 mMトリクロロ酢酸/ジクロロメタン(2.74 mL、トリクロロ酢酸:505 mmol)を加えた。混合物を0℃で1.5時間撹拌し、次に室温に温めた。室温で4.5時間撹拌した後、反応混合物をメタノールで希釈した。得られた沈殿物を濾過により収集し、メタノールですすいだ。固体を減圧下で乾燥させて、標的化合物(117 mg、収率93.6%)を白色の泡として得た。
 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.49 (t, J = 1.3 Hz, 1H), 6.52 (s, 2H), 6.18 (dd, J = 8.3, 6.1 Hz, 1H), 5.26 (dt, J = 6.3, 2.4 Hz, 1H), 5.01 (s, 2H), 4.03 (q, J = 2.5 Hz, 1H), 4.01-3.75 (m, 9H), 2.74-2.61 (m, 4H), 2.56 (t, J = 4.9 Hz, 1H), 2.47-2.27 (m, 2H), 1.91 (d, J = 1.2 Hz, 3H), 1.86-1.66 (m, 7H), 1.51-1.38 (m, 7H), 1.24 (s, 97H), 0.91-0.82 (m, 10H) ppm.
 13C NMR (101 MHz, CDCl3) δ 172.11, 172.03, 163.46, 153.29, 150.33, 138.23, 136.48, 130.64, 111.45, 107.16, 86.26, 85.08, 77.31, 75.19, 73.57, 69.24, 67.20, 62.65, 37.16, 32.02, 30.41, 29.86, 29.82, 29.76, 29.72, 29.54, 29.50, 29.47, 29.18, 29.14, 26.22, 22.79, 14.22, 12.68 ppm.
 HRESIMS calcd. for C75H132N2NaO11, 1259.9724 [M+Na]+; found 1259.9734.
製造例A6(第2の核酸の伸長)
Figure JPOXMLDOC01-appb-C000033
 3'-O-脂溶性アンカー修飾チミジン(20.0 mg, 16.2 μmol)及び5'-O-DMTr-チミジンホスホロアミダイト(24.1 mg, 32.4 μmol)のジクロロメタン溶液(1.62 mL)に対して、0.25 Mの5-ベンジルチオ-1H-テトラゾール(BTT)のアセトニトリル溶液(162 μL, 40.5 μmol)を加えた。室温で8時間反応させた後、反応溶液にメタクロロ過安息香酸(mCPBA)を21.5 mg(81 μmol)加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、フィルター濾過を行うことにより沈殿物を回収し、濾紙上に得られた固体をメタノールで洗浄した。つづいて得られた固体を真空条件下一晩乾燥し、白色粉末として目的物のジヌクレオチドを得た(17.9 mg、収率58.3%)。
 1H NMR (600 MHz, CDCl3) δ 9.26-8.55 (m, 2H), 7.51 (t, J = 12.3 Hz, 1H), 7.43 (d, J = 4.0 Hz, 1H), 7.38-7.27 (m, 9H), 7.27-7.19 (m, 12H), 6.83 (dd, J = 8.5, 3.7 Hz, 6H), 6.52 (d, J = 3.4 Hz, 6H), 6.46-6.33 (m, 1H), 6.33-6.09 (m, 4H), 5.38-5.24 (m, 3H), 5.17 (s, 3H), 5.09-4.90 (m, 6H), 4.40-4.00 (m, 17H), 4.00-3.89 (m, 20H), 3.85 (s, 4H), 3.77 (dd, J = 3.9, 1.7 Hz, 9H), 3.61-3.45 (m, 1H), 3.37 (d, J = 10.3 Hz, 1H), 3.32-3.13 (m, 1H), 2.84-2.73 (m, 4H), 2.73-2.59 (m, 17H), 2.59-2.21 (m, 10H), 1.96-1.85 (m, 14H), 1.85-1.64 (m, 45H), 1.50-1.37 (m, 27H), 1.24 (s, 294H), 0.86 (td, J = 7.0, 1.5 Hz, 31H) ppm.
 13C NMR (151 MHz, CDCl3) δ 172.11, 163.85, 163.65, 158.94, 153.33, 150.49, 144.05, 138.34, 136.60, 135.85, 135.73, 135.19, 135.04, 130.51, 130.22, 128.24, 128.17, 127.44, 116.59, 116.44, 116.26, 113.45, 111.88, 111.71, 111.45, 107.15, 87.43, 86.40, 86.27, 85.67, 85.10, 84.39, 82.48, 79.12, 75.17, 74.00, 73.88, 73.58, 73.56, 69.27, 67.69, 67.30, 63.30, 62.61, 62.48, 62.08, 55.38, 39.01, 38.47, 37.16, 36.76, 36.53, 32.02, 30.44, 29.86, 29.82, 29.76, 29.73, 29.55, 29.52, 29.46, 29.18, 29.02, 26.23, 22.78, 19.81, 19.71, 19.67, 14.20, 12.61, 12.53, 11.78 ppm.
 31P NMR (243 MHz, CDCl3) δ -1.86, -1.94, -2.09, -2.15 ppm.
 HRESIMS calcd. for C109H166N5NaO20P, 1920.1790 [M+Na]+; found 1920.1878.
製造例A7(トリチル除去;第1のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000034
 出発物質(17.9 mg, 9.43 μmol)のジクロロメタン(2.00 mL)溶液に対して、氷浴上で184 mMトリクロロ酢酸/ジクロロメタン溶液(2.00 mL、トリクロロ酢酸:368 μmol)を加えた。混合物を0℃で4分間撹拌したのち、室温に戻し、さらに1時間攪拌した。反応混合物をメタノールで希釈した。得られた沈殿物をフィルター濾過により回収し、得られた固体をメタノールで洗浄した。固体を減圧下で乾燥させて、標的化合物(16.9 mg、収率>99.0%)を白色粉末として得た。
 1H NMR (600 MHz, CDCl3) δ 9.37-8.78 (m, 1H), 7.49 (d, J = 1.3 Hz, 1H), 7.43 (q, J = 2.5 Hz, 1H), 7.37-7.29 (m, 1H), 7.25 (s, 2H), 6.52 (s, 3H), 6.26-6.09 (m, 2H), 5.40-5.24 (m, 1H), 5.17 (td, J = 6.0, 3.0 Hz, 1H), 5.01 (d, J = 3.9 Hz, 3H), 4.42-4.25 (m, 5H), 4.21 (dq, J = 5.4, 2.8 Hz, 1H), 4.15 (t, J = 4.1 Hz, 1H), 4.00-3.89 (m, 9H), 3.85 (s, 3H), 3.28-3.04 (m, 1H), 2.79 (td, J = 6.1, 3.3 Hz, 2H), 2.68 (dh, J = 15.8, 4.2 Hz, 6H), 2.58-2.27 (m, 5H), 1.97-1.84 (m, 8H), 1.81-1.63 (m, 17H), 1.52-1.38 (m, 10H), 1.24 (s, 98H), 0.86 (t, J = 7.0 Hz, 15H) ppm.
 13C NMR (151 MHz, CDCl3) δ 172.14, 163.76, 153.33, 150.47, 138.35, 136.67, 135.87, 130.51, 116.59, 111.87, 111.41, 107.12, 86.47, 86.34, 85.70, 82.56, 79.14, 74.02, 73.88, 73.58, 69.27, 67.65, 67.30, 62.61, 62.10, 62.00, 38.46, 37.15, 36.53, 32.02, 30.44, 29.86, 29.82, 29.76, 29.73, 29.55, 29.52, 29.46, 29.04, 26.23, 22.78, 19.86, 19.82, 14.20, 12.66, 12.61, 12.53, 1.10 ppm.
 31P NMR (243 MHz, CDCl3) δ -1.86, -1.94 ppm.
 HRESIMS calcd. for C88H148N5NaO18P, 1617.0450 [M+Na]+; found 1617.0467.
実施例A1(第2のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000035
 3'-O-脂溶性アンカー修飾チミジン(20.0 mg, 16.2 μmol)のジクロロメタン溶液(463 μL)に対して、アセトニトリル(43.6 μL)を加えた。次いで、5'-MMTr-アミノ化チミジンホスホロアミダイト(23.1 mg, 32.4 μmol)及び1H-テトラゾール(11.3 mg, 162 μmol)を加え、室温で5時間反応させた。反応溶液にジクロロメタン(200 μL)を加えたのち、5'-MMTr-アミノ化チミジンホスホロアミダイト(11.6 mg, 16.2 μmol)及び1H-テトラゾール(5.65 mg, 81.0 μmol)を加えた。室温で6.5時間反応させた後、反応溶液に5~6 Mのtert-ブチルハイドロペルオキシド/デカン溶液(13.0 μL, 64.8 μmol)を加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し3,500 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体を真空条件下一晩乾燥し、白色固体として目的物のジヌクレオチドを得た(23.3 mg、収率77.2%)。
 31P NMR (243 MHz, CDCl3) δ -1.84, -1.95 ppm.
実施例A2(第2のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000036
 3'-O-脂溶性アンカー修飾チミジン(17.4 mg, 14.1 μmol)のジクロロメタン溶液(403 μL)に対して、アセトニトリル(40.3 μL)を加えた。次いで、5'-MMTr-アミノ化チミジンホスホロアミダイト(20.1 mg, 28.2 μmol)及び4,5-ジシアノイミダゾール(16.7 mg, 141 μmol)を加え、室温で6時間反応させた。反応溶液に5'-MMTr-アミノ化チミジンホスホロアミダイト(20.1 mg, 28.2 μmol)を追加で加え、室温で3時間反応させた。反応終了後、反応溶液に5~6 Mのtert-ブチルハイドロペルオキシド/デカン溶液(11.3 μL, 56.4 μmol)を加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた沈殿物をフィルター濾過により回収し、得られた固体をメタノールで洗浄した。固体を減圧下で乾燥させて、標的化合物(22.9 mg、収率75.6%)を白色固体として得た。
 1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.0 Hz, 3H), 7.33 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 4.4 Hz, 3H), 7.05 (s, 1H), 6.87 - 6.75 (m, 2H), 6.52 (s, 2H), 6.22 (s, 2H), 5.29 (s, 2H), 5.06 - 4.93 (m, 3H), 4.41 - 4.07 (m, 7H), 3.93 (d, J = 9.6 Hz, 7H), 3.76 (d, J = 3.6 Hz, 3H), 2.86 - 2.45 (m, 10H), 2.45 - 2.20 (m, 4H), 2.16 (s, 4H), 1.90 (d, J = 3.5 Hz, 4H), 1.87 - 1.67 (m, 11H), 1.45 (s, 10H), 1.24 (s, 92H), 0.87 (t, J = 6.8 Hz, 11H) ppm.
 31P NMR (162 MHz, CDCl3) δ -1.95 ppm.
実施例A3(第2のキメラ分子前駆体の脱保護)
Figure JPOXMLDOC01-appb-C000037
 出発物質(23.3 mg, 12.5 μmol)のジクロロメタン(2.70 mL)溶液に対して、氷浴上で184 mMトリクロロ酢酸/ジクロロメタン溶液(2.70 mL、トリクロロ酢酸:488 μmol)を加えた。混合物を0℃で8分間撹拌したのち、室温に戻し、さらに1時間攪拌した。反応混合物をメタノールで希釈した。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体を真空条件下一晩乾燥し、白色固体として目的物のジヌクレオチドを得た(8.80 mg、収率44.2%)。
 31P NMR (162 MHz, CDCl3) δ -2.02 ppm.
実施例A4(第2のキメラ分子前駆体への第1の核酸の導入;キメラ分子の製造)
Figure JPOXMLDOC01-appb-C000038
 出発物質(8.80 mg, 5.52 μmol)のテトラヒドロフラン溶液(552 μL)に対して、Fmoc-PNA-Tモノマー(3.35 mg, 6.62 μmol)、COMU(7.60 mg, 17.8 μmol)、N,N-ジイソプロピルエチルアミン(1.78 mg, 2.38 μL, 13.8 μmol)を順番に加え、室温で20時間反応させた。反応終了後、反応溶液にメタノールを加え懸濁させた。アセトニトリルで懸濁液を10倍希釈し、得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体を真空条件下一晩乾燥し、白色固体としてPNA-DNAキメラ分子を得た(7.90 mg、収率70.5%)。
 31P NMR (243 MHz, CDCl3) δ -1.64 ppm.
 MALDI-TOF-MS calcd. for C111H169N9O23P, 2028.587 [M-H]-; found 2028.657.
実施例A5(キメラ分子の脱保護)
Figure JPOXMLDOC01-appb-C000039
 出発物質(7.90 mg, 3.89 μmol)のテトラヒドロフラン溶液(500 μL)に対して、2%ピペリジン/2% DBUのテトラヒドロフラン溶液(500 μL)を加え、混合物を室温で1時間撹拌した。反応溶液のpHが5になるまで1 M塩酸を滴下し、反応を停止させた。つづいて、反応混合物にメタノール(5.00 mL)を加え懸濁させ、得られた懸濁液を遠沈管へ移した。懸濁液をアセトニトリル(34.0 mL)で希釈したのち、3,500 rpmで20分間遠心分離を行なった。得られた沈殿物をアセトニトリルで三回洗浄し、得られた固体を真空条件下一晩乾燥し、白色固体としてPNA-DNAキメラ分子を得た(6.80 mg、収率96.7%)。
 MALDI-TOF-MS calcd. for C96H159N9O21P, 1806.3443 [M-H]-; found 1806.446.
実施例A6(キメラ分子へのアミノ酸導入)
Figure JPOXMLDOC01-appb-C000040
 出発物質(6.80 mg, 3.76 μmol)のテトラヒドロフラン溶液(376 μL)に対して、Fmoc-グリシン-OH(2.24 mg, 7.52 μmol)、COMU(6.42 mg, 15.0 μmol)、N,N-ジイソプロピルエチルアミン(1.46 mg, 1.95 μL, 11.3 μmol)を順番に加え、室温で17.5時間反応させた。反応終了後、反応溶液にメタノールを加え懸濁させた。アセトニトリルで懸濁液を10倍希釈し、得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体を真空条件下一晩乾燥し、白色固体としてFmoc-Gly-PNA-DNAキメラ分子を得た(4.60 mg、収率58.5%)。
 MALDI-TOF-MS calcd. for C113H172N10O24P, 2085.639 [M-H]-; found 2086.052.
実施例A7(キメラ分子からの脂溶性アンカーの切り離し)
Figure JPOXMLDOC01-appb-C000041
 保護基/アンカー付PNA-DNAキメラ(4.60 mg, 2.20 μmol)をエタノール(400 μL)、28%アンモニア水(1.20 mL)に懸濁させ、80 ℃で5時間処理した。反応溶液を室温に戻したのち、濃縮乾固した。得られた白色固体をメタノールに懸濁させ、得られた懸濁液を遠沈管へ移し、4,000 rpmで15分間遠心分離を行なった。上清を回収し濃縮乾固後、超脱イオン水に溶解し、LC-MSによる純度解析及びNanoDropによる吸光度測定を行なった。その結果、目的物のキメラ分子N-Gly-T(PNA)TT(DNA)-3'の純度は63.4%であり、収率は26.8%(0.59 μmol, ε260 = 26,160 M-1・cm-1)であった。
 HRESIMS calcd. for C33H44N10O16P, 867.2680 [M-H]-; found 867.2758.
製造例A8(第2の核酸の伸長、リン原子の酸化、トリチル除去;第1のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000042
 3'-O-脂溶性アンカー修飾チミジン(108 mg, 87.3 μmol)のジクロロメタン(2.49 mL)-アセトニトリル(249 μL)混合溶液に対して、5'-O-DMTr-チミジンホスホロアミダイト(195 mg, 262 μmol)及び1H-テトラゾール(61.2 mg, 874 μmol)を加え、室温で7.5時間反応させた。反応溶液に5~6 Mのtert-ブチルハイドロペルオキシド/デカン溶液(69.8 μL, 349 μmol)を加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタン(4.74 mL)に溶解した。得られたジクロロメタン溶液を氷浴で冷却したのち、氷浴上にて184 mM トリクロロ酢酸/ジクロロメタン溶液(4.74 mL)を加え2分間攪拌した。反応溶液を室温に戻したのち、さらに1時間攪拌した。反応終了後、反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタンに溶解した。ベンゼン共沸を三回行なったのち、得られた固体を真空条件下一晩乾燥し、白色固体としてジヌクレオチド体を得た(136 mg、収率97.8%)。
 MALDI-TOF-MS calcd. for C88H148N5NaO18P, 1617.045 [M+Na]+; found 1617.119.
製造例A9(第2の核酸の伸長、リン原子の酸化、トリチル除去;第1のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000043
 3'-O-脂溶性アンカー修飾ジヌクレオチド(136 mg, 85.3 μmol)のジクロロメタン(2.44 mL)-アセトニトリル(244 μL)混合溶液に対して、5'-O-DMTr-チミジンホスホロアミダイト(191 mg, 256 μmol)及び1H-テトラゾール(59.8 mg, 853 μmol)を加え、室温で5時間反応させた。反応溶液に5~6 M tert-ブチルハイドロペルオキシド/デカン溶液(68.2 μL, 341 μmol)を加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタン(4.74 mL)に溶解した。得られたジクロロメタン溶液を氷浴で冷却したのち、氷浴上にて184 mMトリクロロ酢酸/ジクロロメタン溶液(4.74 mL)を加え2分間攪拌した。反応溶液を室温に戻したのち、トリフルオロ酢酸を2~3滴加え、1時間攪拌した。反応終了後、反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタンに溶解した。ベンゼン共沸を三回行なったのち、得られた固体を真空条件下一晩乾燥し、白色固体としてトリヌクレオチド体を得た(82.6 mg、収率49.5%)。
 MALDI-TOF-MS calcd. for C101H164N8NaO25P2, 1975.391 [M+Na]+; found 1975.886.
実施例A8(第1のキメラ分子前駆体への第2の核酸の導入:第2のキメラ分子前駆体の製造/脱保護)
Figure JPOXMLDOC01-appb-C000044
 3'-O-脂溶性アンカー修飾トリヌクレオチド(82.6 mg, 42.3 μmol)のジクロロメタン(1.21 mL)-アセトニトリル(121 μL)混合溶液に対して、5'-MMTrNH-チミジンホスホロアミダイト(90.7 mg, 127 μmol)及び1H-テトラゾール(29.6 mg, 423 μmol)を加え、室温で10時間反応させた。反応溶液に5~6 Mのtert-ブチルハイドロペルオキシド/デカン溶液(33.8 μL, 169 μmol)を加え、室温で1時間反応させた。反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタン(2.00 mL)に溶解した。得られたジクロロメタン溶液に対して、184 mM トリクロロ酢酸/ジクロロメタン溶液(10.0 mL)を加え、室温で45分間攪拌した。反応終了後、反応溶液をメタノールで希釈することにより反応溶液を懸濁させた。得られた懸濁液を、遠沈管へ移し4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタンに溶解した。ベンゼン共沸を三回行なったのち、得られた固体を真空条件下一晩乾燥し、茶褐色固体として5'-アミノ化テトラヌクレオチド体を得た(75.4 mg、収率77.2%)。得られたテトラヌクレオチドは、リン酸骨格上のシアノエチル基が三つ全て付いているもの、一つ外れたもの、二つ外れたものの混ざりであることをMALDI-TOF-MS分析により確認した。
 MALDI-TOF-MS calcd. for C114H182N12O31P3, 2309.684 [M+H]+; found 2310.708(シアノエチルが三つ全て付いているもの), C111H179N11O31P3, 2256.620 [M+H]+; found 2257.655(シアノエチルが一つ外れたもの), C108H176N10O31P3, 2203.566 [M+H]+; found 2204.544(シアノエチルが二つ外れたもの).
実施例A9(シアノエチル基の除去)
Figure JPOXMLDOC01-appb-C000045
 5'-アミノ化テトラヌクレオチド(75.4 mg, 32.7 μmol)のテトラヒドロフラン溶液(1.00 mL)に対して、2%ピペリジン/2% DBUのテトラヒドロフラン溶液(1.00 mL)を加え、混合物を室温で1時間撹拌した。反応溶液にメタノール(45.0 mL)を加え懸濁させ、得られた懸濁液を遠沈管へ移し、4,000 rpmで20分間遠心分離を行なった。得られた沈殿物をメタノールで三回洗浄し、得られた固体をジクロロメタンに溶解した。ベンゼン共沸を三回行なったのち、得られた固体を真空条件下一晩乾燥し、茶褐色固体として脱シアノエチル化体を得た(62.7 mg、収率89.2%)。
 MALDI-TOF-MS calcd. for C105H171N9O31P3, 2148.477 [M-H]-; found 2148.571.
製造例B1(エステル化)
Figure JPOXMLDOC01-appb-C000046
 製造例A2で製造したベンジルアルコール誘導体(1)(1.00 g, 1.09 mmol)をテトラヒドロフラン(20.0 mL)に溶解したのち、Fmoc-glycine (488 mg, 1.64 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(523 mg, 2.73 mmol)、4-ジメチルアミノピリジン(334 mg, 2.73 mmol)を加えた。得られた混合物を室温で20時間撹拌した。反応溶液にメタノール(150 mL)を加え、得られた沈殿物を吸引ろ過により回収した。得られた固体をメタノールで洗浄したのち、減圧下乾燥し、化合物2を白色粉末として得た(1.29 g, 収率99.2%)。
 1H NMR (600 MHz,CDCl3) δ 7.77 (d, J = 7.6 Hz, 1.5H), 7.60 (d, J = 7.4 Hz, 1.5H), 7.40 (t, J = 7.4 Hz, 2H), 7.34 - 7.28 (m, 2H), 6.54 (s, 2H), 5.32 - 5.27 (m, 0.5H), 5.12 - 5.04 (m, 2H), 4.41 (d, J = 7.1 Hz, 1.5H), 4.24 (t, J = 7.1 Hz, 0.5H), 4.05 (d, J = 5.6 Hz, 1.5H), 3.94 (ddq, J = 9.4, 6.6, 3.6 Hz, 6H), 1.82 - 1.69 (m, 6H), 1.49 - 1.42 (m, 6H), 1.26 (s, 87H), 0.88 (t, J = 7.1 Hz, 9H)ppm.
 13C NMR (151 MHz, CDCl3) δ 170.07, 156.41, 153.42, 153.39, 143.92, 141.44, 138.59, 130.07, 127.88, 127.22, 125.22, 120.14, 107.28, 73.58, 69.32, 67.85, 67.40, 47.24, 43.02, 32.08, 30.48, 29.91, 29.87, 29.81, 29.77, 29.58, 29.55, 29.52, 26.27, 26.25, 22.84, 14.26 ppm.
 ESI-TOF-MS C78H129NNa2O7 (M + 2Na)2+ calcd. m/z 618.9777, found m/z 619.4417.
製造例B2(Fmoc除去)
Figure JPOXMLDOC01-appb-C000047
 化合物2(500 mg, 419 μmol)をテトラヒドロフラン(21.0 mL)に溶解したのち、2%ピペリジン/2%ジアザビシクロウンデセン(DBU)/テトラヒドロフラン溶液(21.0 mL)を加え、室温で3時間撹拌した。反応溶液に1 M塩酸を滴下することにより、pH 5に調節した。つづいて、アセトニトリル(200 mL)を加えることにより、反応生成物を沈殿させた。得られた沈殿物を吸引ろ過により回収した。得られた固体をアセトニトリル(200 mL)で洗浄したのち、減圧下乾燥し、化合物3を白色固体として得た(429 mg, 収率99.2%)。
 1H NMR (600 MHz, CDCl3) δ 8.74 (s, 2H), 6.50 (s, 2H), 5.06 (s, 2H), 4.00 (s, 1H), 3.90 (q, J = 6.6 Hz, 6H), 1.81 - 1.68 (m, 9H), 1.44 (dp, J = 12.2, 7.0 Hz, 7H), 1.25 (d, J = 4.1 Hz, 80H), 0.90 - 0.85 (m, 10H) ppm.
 ESI-TOF-MS C63H120NO5 (M + H)+ calcd. m/z 970.9161, found m/z 970.9318.
製造例B3(アンカー上への第1の核酸の固定化)
Figure JPOXMLDOC01-appb-C000048
 化合物3(200 mg, 199 μmol)をテトラヒドロフラン(19.9 mL)に溶解し、Fmoc-PNA(Thymine)-OH(202 mg, 398 μmol)、エチル 2-シアノ-2-((ジメチルイミノ)(モルフォリノ)メトキシイミノ)アセテートヘキサフルオロホスフェート(COMU)(256 mg, 597 μmol)、ジイソプロピルエチルアミン(77.2 mg, 103 μL, 597 μmol)を加え、室温で6時間撹拌した。反応溶液にアセトニトリル(100 mL)を加え、生じた沈殿物を吸引ろ過により回収した。得られた固体をアセトニトリル(200 mL)で洗浄したのち、減圧下乾燥し、化合物4を薄茶色固体として得た(281 mg, 収率96.9%)。
 1H NMR (600 MHz, CDCl3) δ 8.37 (s, 0.4H), 8.13 (s, 0.6H), 7.74 (dd, J = 7.9, 4.4 Hz, 2H), 7.60 (dd, J = 16.0, 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.29 (dd, J = 14.9, 7.5 Hz, 2H), 7.05 (s, 0.6H), 6.94 (s, 0.3H), 6.77 (s, 0.5H), 6.60 - 6.54 (m, 0.5H), 6.49 (s, 2H), 5.07 (s, 1H), 5.01 (s, 0.5H), 4.44 (s, 1H), 4.38 (d, J = 7.4 Hz, 1.5H), 4.22 - 4.15 (m, 1H), 4.08 - 4.02 (m, 3H), 3.93 - 3.88 (m, 6H), 3.63 (s, 1H), 3.43 (d, J = 4.6 Hz, 1H), 2.16 (s, 0.2H), 2.00 (s, 0.8H), 1.82 (s, 2H), 1.78 - 1.68 (m, 7H), 1.57 (s, 7H), 1.43 (d, J = 7.7 Hz, 7H), 1.24 (s, 80H), 0.87 (t, J = 7.1 Hz, 10H) ppm. ESI-TOF-MS C89H144N5O11 (M + H)+ calcd. m/z 1460.1545, found m/z 1460.2759.
製造例B4(第3のキメラ分子前駆体の製造)
Figure JPOXMLDOC01-appb-C000049
 化合物4(250 mg, 171 μmol)をテトラヒドロフラン(17.1 mL)に溶解したのち、2%ピペリジン/2%ジアザビシクロウンデセン(DBU)/テトラヒドロフラン溶液(17.1 mL)を加え、室温で3時間撹拌した。反応溶液に1 M塩酸を滴下することにより、pH 5に調節した。つづいて、アセトニトリル(150 mL)を加えることにより、反応生成物を沈殿させた。得られた沈殿物を吸引ろ過により回収した。得られた固体をアセトニトリル(150 mL)で洗浄したのち、減圧下乾燥し、化合物5を白色固体として得た(207 mg, 収率95.0%)。
 1H NMR (600 MHz, CDCl3) δ 10.49 (br, 0.5H), 8.82 (br, 0.5H), 8.53 (m, 1H), 7.91 (m, 1.5H), 7.14 (m, 0.5H), 6.61 - 6.43 (m, 2H), 4.97 (s, 1.8H), 4.70 (m, 0.6H), 4.58 (s, 0.2H), 4.55 - 4.32 (m, 1.4H), 4.06 (m, 2H), 3.97 - 3.86 (m, 6.4H), 3.66 (m, 0.6H), 3.30 (m, 1.8H), 3.13 (m, 0.2H), 2.00 (d, J = 8.4 Hz, 1H), 1.87 - 1.70 (m, 11H), 1.42 (d, J = 15.3 Hz, 6H), 1.33 - 1.22 (m, 85H), 0.89 - 0.83 (m, 9H) ppm.
 ESI-TOF-MS C74H134N5O9 (M + H)+ calcd. m/z 1237.0176, found m/z 1237.0181.
製造例B5(導入する第2の核酸の準備)
Figure JPOXMLDOC01-appb-C000050
 5'-O-DMTr-チミジン3'-O-ホスホロアミダイト(1.00 g, 1.34 mmol)をアセトニトリル(22.3 mL)に溶解したのち、超脱イオン水(2.48 mL)を加えた。つづいて、0.25 M 5-(ベンジルチオ)-1H-テトラゾール/アセトニトリル溶液(10.7 mL, 2.68 mmol)を加え、室温で1時間撹拌した。反応溶液を酢酸エチル(150 mL)で希釈し、飽和炭酸水素ナトリウム水溶液(150 mL)で3回、飽和食塩水(150 mL)で一回洗浄した。有機層を無水硫酸ナトリウムで乾燥したのち、ロータリーエバポレーターで濃縮し、化合物7を白色泡状固体として得た(980 mg, >99%)。
 1H NMR (600 MHz, CDCl3) δ 9.30 - 9.14 (m, 1H), 7.45 - 7.41 (m, 1.5H), 7.29 - 7.26 (m, 2H), 7.23 - 7.14 (m, 7H), 6.75 (dq, J = 7.6, 1.0 Hz, 4H), 6.36 (ddd, J = 8.8, 5.5, 1.4 Hz, 1H), 6.22 (d, J = 11.2 Hz, 0.5H), 5.20 - 5.10 (m, 1H), 4.23 - 3.99 (m, 3H), 3.69 (d, J = 0.7 Hz, 6H), 3.45 (td, J = 10.8, 3.0 Hz, 1H), 3.31 (ddd, J = 10.7, 3.9, 2.6 Hz, 1H), 2.67 (t, J = 6.1 Hz, 1H), 2.61 - 2.47 (m, 2H), 2.37 (dtd, J = 14.3, 8.1, 5.9 Hz, 1H), 1.33 (t, J = 1.0 Hz, 3H) ppm.
 31P NMR (243 MHz, CDCl3) δ 7.56 ppm.
 ESI-TOF-MS C34H36N3NaO9P (M + Na)+ calcd. m/z 684.2081, found m/z 684.2104.
実施例B1(第3のキメラ分子前駆体への第2の核酸の導入:キメラ分子の製造)
Figure JPOXMLDOC01-appb-C000051
 化合物5(20.0 mg, 15.7 μmol)をジクロロメタン(449 μL)-アセトニトリル(45.0 μL)に懸濁させたのち、化合物7(104 mg, 157 μmol)、四塩化炭素(24.1 mg, 15.1 μL, 157 μmol)、トリエチルアミン(15.9 mg, 21.8 μL, 157 μmol)を加えた。得られた溶液を室温で6時間撹拌したのち、反応溶液にメタノール(13.0 mL)を加え、得られた懸濁液を遠沈管に移した。3,500 rpmで7分間遠心することで上清を除去し沈殿物を回収した。沈殿物を再度メタノール(13.0 mL)で懸濁し、遠心、上清の除去を行った。この操作を繰り返し3回行った。沈殿物を減圧下乾燥し、化合物8を白色粉体として得た(25.0 mg, 収率83.9%)。
 1H NMR (400 MHz, CDCl3) δ 7.50 (br, 0.6H), 7.35 (s, 0.4H), 7.30 - 7.25 (m, 3H), 7.18 - 7.14 (m, 3H), 7.03 (br, 0.5H), 6.84 - 6.80 (m, 3.5H), 6.55 - 6.49 (m, 2H), 6.18 (br, 1H), 5.29 (s, 6H), 5.11 (br, 1H), 5.05 - 5.02 (m, 2H), 4.29 - 4.19 (m, 4H), 4.09 - 4.03 (m, 2.5H), 3.95 - 3.90 (m, 8H), 3.79 - 3.77 (m, 6H), 2.77 (t, J = 4 Hz, 2H), 2.51 (br, 1H), 1.89 - 1.86 (m, 4H), 1.79 - 1.68 (m, 10H), 1.44 - 1.43 (m, 6.5H), 1.28 - 1.24 (m, 90H), 0.88 - 0.85 (m, 10H) ppm.
 31P NMR (162 MHz, CDCl3) δ 9.75, 9.55 ppm.
 ESI-TOF-MS C108H167KN8NaO18P (M + K + Na)2+ calcd. m/z 979.0847, found m/z 980.9728. 
実施例B2(キメラ分子の脱保護)
Figure JPOXMLDOC01-appb-C000052
 化合物8(14.6 mg, 7.70 μmol)をジクロロメタン(1.00 mL)に溶解したのち、184 mM トリクロロ酢酸/ジクロロメタン溶液(2.00 mL)を加え、室温で15分間撹拌した。反応溶液にメタノール(10.0 mL)を加え、得られた懸濁液を遠沈管に移した。3,500 rpmで7分間遠心することで上清を除去し沈殿物を回収した。沈殿物を再度メタノール(13.0 mL)で懸濁し、遠心、上清の除去を行った。この操作を繰り返し3回行った。沈殿物を減圧下乾燥し、化合物9を白色粉体として得た(8.60 mg, 収率69.9%)。
 1H NMR (400 MHz, CDCl3) δ 9.21 (m, 2H), 7.51 - 7.49 (m, 1.5H), 7.04 (m, 2H), 6.56 - 6.52 (m, 2H), 6.20 (m, 1.5H), 5.30 (s, 1.5H), 5.07 - 5.01 (m, 3H), 4.70 -4.47 (m, 3H), 4.30 - 4.05(m, 6H), 3.97 - 3.85 (m, 8H), 3.49 (m, 4H), 3.38 - 3.26 (m, 4H), 2.78 (m, 2H), 2.58 - 2.23 (m, 3H), 2.17 (s, 1H), 2.01 (s, 0.5H), 1.90 (m, 4H), 1.80 - 1.71 (m, 6H), 1.57 (m, 3H, overlapping with water signal), 1.46 (m, 7H), 1.30 - 1.25 (m, 73H), 1.11 (s, 2H), 0.89 -0.86 (m, 9H) ppm.
 31P NMR (162 MHz, CDCl3) δ 9.73, 9.54 ppm.
 ESI-TOF-MS C87H149N8NaO16P (M + Na)+ calcd. m/z 1616.0721, found m/z 1616.0783.
実施例B3(キメラ分子からの脂溶性アンカーの切り離し)
Figure JPOXMLDOC01-appb-C000053
 化合物9(5.00 mg, 3.14 μmol)をエタノール(400 μL)に懸濁させたのち、28%アンモニア水(1.20 mL)を加えた。得られた懸濁液を80℃で10.5時間インキュベートし、室温に戻したあと、濃縮した。残渣をメタノール(8.00 mL)に懸濁させ、遠沈管に移した。3,500 rpmで10分間遠心することで上清を回収し、沈殿物を除去した。回収した上清を濃縮し化合物10を白色固体として得た(318 μg, 0.480 μmol, 収率15.3%)。
 1H NMR (400 MHz, D2O) δ 7.48 - 7.42 (m, 1H), 7.26 - 7.14 (m, 1H), 6.08 (dt, J = 13.3, 7.0 Hz, 1H), 4.74 (s, 1H), 4.56 - 4.45 (m, 1.5H), 4.28 - 4.16 (m, 1H), 3.97 (s, 2H), 3.81 - 3.68 (m, 1.5H), 3.68 - 3.51 (m, 3H), 3.41 - 3.26 (m, 2H), 3.15 (td, J = 6.5, 1.2 Hz, 2.5H), 3.04 - 2.88 (m, 2H), 2.75 (td, J = 6.7, 1.1 Hz, 1.5H), 2.35 - 2.12 (m, 2H), 1.67 (tt, J = 3.1, 1.2 Hz, 6H) ppm. 31P NMR (161 MHz, D2O) δ 8.53, 8.35 ppm. ESI-TOF-MS C23H31N7O13P (M-H)- calcd. m/z 644.1723, found m/z 644.1963.
 本発明によれば、RNAやDNAに代表される主鎖骨格が陰イオン性である核酸又はその誘導体に、PNAやPRNAに代表される主鎖骨格が中性又は陽イオン性である核酸又はその誘導体を導入する、液相合成法によるキメラ分子の製造方法を提供できる。

Claims (14)

  1.  主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体と、主鎖骨格が陰イオン性である第2の核酸又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
     前記製造方法が、水酸基を有する第1のキメラ分子前駆体の前記水酸基を介した、前記第2の核酸又はその誘導体の導入による第2のキメラ分子前駆体の準備、
     必要に応じて、前記第2のキメラ分子前駆体の脱保護、及び
     前記第2のキメラ分子前駆体又は脱保護された前記第2のキメラ分子前駆体への、前記第1の核酸又はその誘導体の導入を含み、
     前記水酸基を有する第1のキメラ分子前駆体は、脂溶性アンカーを含み、
     前記第2の核酸又はその誘導体は、保護されていてもよいアミノ基を有し、
     第2のキメラ分子前駆体の前記脱保護が、前記第2のキメラ分子前駆体に導入された前記第2の核酸又はその誘導体の保護された前記アミノ基の脱保護であり、
     第1の核酸又はその誘導体の前記導入は、前記第2の核酸又はその誘導体の前記アミノ基を介した導入であり、
     第2のキメラ分子前駆体の前記準備、第2のキメラ分子前駆体の前記脱保護、及びキメラ分子の前記製造が、いずれも液相合成法により行われることを特徴とする製造方法。
  2.  前記第1の核酸がPNA、PRNA、PNA/PRNA、若しくはLNAであり、前記第2の核酸がRNA若しくはDNAである、請求項1に記載の製造方法。
  3.  前記第1の核酸がPNAであり、前記第2の核酸がDNAである、請求項2に記載の製造方法。
  4.  キメラ分子が、第2の核酸又はその誘導体の5’末端に第1の核酸又はその誘導体が結合している部分を有する、請求項2に記載の製造方法。
  5.  前記第1のキメラ分子前駆体が、式(1)、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部を示す。
     なお、デオキシリボースは2’-位に保護されていてもよい水酸基を有していてもよい。)
    式(2)、
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
     Xは、単結合を示すか、又はXに結合する酸素原子とリン原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)
    及び式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
     Yは、単結合を示すか、又はYに結合する窒素原子とリン原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)
    で表される化合物からなる群より選択される、請求項1に記載の製造方法。
  6.  前記第2の核酸又はその誘導体が、式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、pは0以上の整数を示し;
     AGは、保護されていてもよいアミノ基を示し;
     Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
     NRは、弱酸性条件下、リン原子への酸素原子の求核置換反応に用いられる脱離基を示し;
     LVは、酸素原子から脱離する基を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)
    で表される化合物である、請求項1に記載の製造方法。
  7.  前記保護されていてもよいアミノ基が保護されたアミノ基であり、前記保護されたアミノ基の保護基が置換されていてもよいトリチル基である、請求項1に記載の製造方法。
  8.  前記第1の核酸又はその誘導体が、式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、qは0以上の整数を示し;
     PGは、隣接するアミノ基の保護基を示し;
     Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示す。)
    で表される化合物である、請求項5~7のいずれか一項に記載の製造方法。
  9.  主鎖骨格が中性又は陽イオン性である第1の核酸又はその誘導体と、主鎖骨格が陰イオン性である第2の核酸又はその誘導体とが、少なくとも一つずつ融合したキメラ分子の製造方法であって、
     前記製造方法が、アミノ基を有する第3のキメラ分子前駆体の前記アミノ基を介した、前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への導入を含み、
     前記アミノ基を有する第3のキメラ分子前駆体は、第1の核酸又はその誘導体に由来する部分構造、第1の核酸又はその誘導体に由来するアミノ基、及び脂溶性アンカーを含み、
     前記第2の核酸又はその誘導体の前記アミノ基を有する第3のキメラ分子前駆体への前記導入が、液相合成法により行われることを特徴とする製造方法。
  10.  前記第1の核酸がPNA、PRNA、PNA/PRNA、若しくはLNAであり、前記第2の核酸がRNA若しくはDNAである、請求項9に記載の製造方法。
  11.  前記第1の核酸がPNAであり、前記第2の核酸がDNAである、請求項10に記載の製造方法。
  12.  キメラ分子が、第2の核酸又はその誘導体の3’末端に第1の核酸又はその誘導体が結合している部分を有する、請求項10に記載の製造方法。
  13.  前記第3のキメラ分子前駆体が、式(11)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部を示す。)、
    式(12)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部を示し;
     Zは、単結合を示すか、又はZに結合する窒素原子とカルボニル性炭素原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)、
    及び式(13)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Arは、炭素数10~40の脂肪族炭化水素基が単結合又はリンカーを介して結合した炭素数6~14の芳香族炭化水素環を示し;
     Rは、それぞれ独立に、水素原子又は炭素数1~6のアルキル基を示し;
     Baseは、塩基部を示し;
     Wは、単結合を示すか、又はZに結合する酸素原子とカルボニル性炭素原子との結合を介する1以上の第1の核酸及び/又は第2の核酸を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)
    で表される化合物からなる群より選択される、請求項9に記載の製造方法。
  14.  前記第2の核酸又はその誘導体が、式(14)
    Figure JPOXMLDOC01-appb-C000009
    (式中、pは0以上の整数を示し;
     AG/HGは、保護されていてもよいアミノ基若しくは水酸基を示し;
     Baseは、塩基部(それぞれ同一でも異なっていてもよい。)を示し;
     LVは、酸素原子から脱離する基を示す。
     なお、デオキシリボースはそれぞれ独立して2’-位に保護されていてもよい水酸基を有していてもよい。)
    で表される化合物である、請求項9に記載の製造方法。
PCT/JP2023/009612 2022-03-14 2023-03-13 キメラ分子の製造方法 WO2023176773A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039293A JP7220439B1 (ja) 2022-03-14 2022-03-14 キメラ分子の製造方法
JP2022-039293 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176773A1 true WO2023176773A1 (ja) 2023-09-21

Family

ID=85174596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009612 WO2023176773A1 (ja) 2022-03-14 2023-03-13 キメラ分子の製造方法

Country Status (2)

Country Link
JP (1) JP7220439B1 (ja)
WO (1) WO2023176773A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2017086397A1 (ja) * 2015-11-17 2017-05-26 日産化学工業株式会社 オリゴヌクレオチドの製造方法
WO2017104836A1 (ja) * 2015-12-16 2017-06-22 味の素株式会社 オリゴヌクレオチドの製造方法、およびヌクレオシド、ヌクレオチドまたはオリゴヌクレオチド
WO2017111137A1 (ja) * 2015-12-22 2017-06-29 味の素株式会社 オリゴヌクレオチドの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720615B1 (en) * 1993-09-21 2000-07-26 Amersham Pharmacia Biotech UK Limited Elongation, amplification and sequence determination using a chimeric oligonucleotide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2017086397A1 (ja) * 2015-11-17 2017-05-26 日産化学工業株式会社 オリゴヌクレオチドの製造方法
WO2017104836A1 (ja) * 2015-12-16 2017-06-22 味の素株式会社 オリゴヌクレオチドの製造方法、およびヌクレオシド、ヌクレオチドまたはオリゴヌクレオチド
WO2017111137A1 (ja) * 2015-12-22 2017-06-29 味の素株式会社 オリゴヌクレオチドの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAPASSO, D. DE NAPOLI, L. DI FABIO, G. MESSERE, A. MONTESARCHIO, D. PEDONE, C. PICCIALLI, G. SAVIANO, M.: "Solid phase synthesis of DNA-3'-PNA chimeras by using Bhoc/Fmoc PNA monomers", TETRAHEDRON, ELSEVIER SIENCE PUBLISHERS, AMSTERDAM, NL, vol. 57, no. 46, 12 November 2001 (2001-11-12), AMSTERDAM, NL , pages 9481 - 9486, XP004312081, ISSN: 0040-4020, DOI: 10.1016/S0040-4020(01)00944-9 *
LAAN VAN DER A C, ET AL.: "SOLID SUPPORT SYNTHESIS OF A PNA-DNA HYBRID", RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 114, 6 June 1995 (1995-06-06), Amsterdam, NL , pages 295 - 297, XP009003133, ISSN: 0165-0513 *
VAN DER LAAN, A.C. BRILL, R. KUIMELIS, R.G. KUYL-YEHESKIELY, E. VAN BOOM, J.H. ANDRUS, A. VINAYAK, R.: "A Convenient Automated Solid-Phase Synthesis of PNA-(5')-DNA-(3')-PNA Chimera", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 38, no. 13, 31 March 1997 (1997-03-31), Amsterdam , NL , pages 2249 - 2252, XP004056642, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(97)00344-4 *

Also Published As

Publication number Publication date
JP2023133992A (ja) 2023-09-27
JP7220439B1 (ja) 2023-02-10

Similar Documents

Publication Publication Date Title
US20230348524A1 (en) Technologies for oligonucleotide preparation
JP5645840B2 (ja) リン原子修飾核酸の合成方法
JPWO2014189142A1 (ja) モルフォリノオリゴヌクレオチドの製造方法
JP2001509828A (ja) 高分子のバイオコンジュゲーション
JP5812478B2 (ja) 抗癌剤結合性核酸アプタマー及びその利用
JP7190794B2 (ja) 核酸医薬及び多分岐脂質の複合体
IL270578B (en) Process for galnac oligonucleotide conjugates
CN109661233A (zh) 缀合低聚化合物的方法
JP2021512082A (ja) GalNAcオリゴヌクレオチド結合体の調製のための方法
JP4012145B2 (ja) ピロール−イミダゾールポリアミドの固相合成法
US20120035362A1 (en) Phosphoramidite derivatives of folic acid
CA2664632A1 (en) Means and methods of enhancing delivery to biological systems
US20230212178A1 (en) Method of producing photoreactive nucleotide analog
WO2023176773A1 (ja) キメラ分子の製造方法
JP2004520261A (ja) 改善された性質を有する正電荷を有するペプチド核酸類縁体
Mori et al. Bridged nucleic acid conjugates at 6′-thiol: synthesis, hybridization properties and nuclease resistances
EP4083054A1 (en) Method for producing pna oligomer in solution process
TW202237848A (zh) 靶向tau之寡核苷酸缺口體
CN114259570A (zh) 一种聚乙二醇修饰的抗肿瘤前药及其制备方法和应用
IL301185A (en) Lipid conjugates for the transport of medicinal substances
US20230235328A1 (en) Novel morpholino oligonucleotide derivatives
CN117624266A (zh) 一种肝靶向化合物及其寡核苷酸缀合物、偶联方法与应用
Raunkjær et al. Synthesis and thermal denaturation studies of novel 2′-O, 3′-C-linked bicyclic oligonucleotides with a methoxy or a piperazino group facing the major groove of nucleic acid duplexes
JP3837633B2 (ja) 新規な機能性ペプチド核酸およびその製法
WO2007026824A1 (ja) オリゴヌクレオチド類縁体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770728

Country of ref document: EP

Kind code of ref document: A1