WO2020235658A1 - オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法 - Google Patents

オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法 Download PDF

Info

Publication number
WO2020235658A1
WO2020235658A1 PCT/JP2020/020203 JP2020020203W WO2020235658A1 WO 2020235658 A1 WO2020235658 A1 WO 2020235658A1 JP 2020020203 W JP2020020203 W JP 2020020203W WO 2020235658 A1 WO2020235658 A1 WO 2020235658A1
Authority
WO
WIPO (PCT)
Prior art keywords
protecting group
protected
group
nucleoside
alkyl
Prior art date
Application number
PCT/JP2020/020203
Other languages
English (en)
French (fr)
Inventor
正典 片岡
守 兵藤
Original Assignee
株式会社四国核酸化学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社四国核酸化学 filed Critical 株式会社四国核酸化学
Priority to CN202080037793.8A priority Critical patent/CN113924309A/zh
Priority to EP20809071.2A priority patent/EP3960749A4/en
Priority to US17/595,613 priority patent/US20220235089A1/en
Priority to JP2021520862A priority patent/JP7393807B2/ja
Priority to KR1020217038369A priority patent/KR20220002469A/ko
Publication of WO2020235658A1 publication Critical patent/WO2020235658A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids

Definitions

  • the present invention relates to a multifluorous blocker in oligonucleotide synthesis and an oligonucleotide synthesis method using the same.
  • nucleic acid drugs based on natural or modified oligonucleotides. Chemical synthesis methods are widely used to obtain nucleic acid drugs designed to achieve the desired effect.
  • a coupling reaction between amidite and a nucleoside or a deprotection reaction for obtaining the next reaction base point even for synthesizing a relatively short-chain oligonucleotide.
  • Dozens of steps of reaction are required. Many of the steps require purification using column chromatography or the like. Since purification is often complicated, it is not easy to synthesize a large amount of oligonucleotide by a widely used liquid phase synthesis method.
  • the present invention has been made in view of such circumstances, and a multifluorous blocker used for oligonucleotide synthesis, which can reduce the purification load by using an easily available fluorous tag, and an oligonucleotide synthesis using the same.
  • the purpose is to provide a method.
  • the first aspect of the present invention is a nucleoside protector represented by the following formula (I).
  • B is a natural or modified nucleoside base
  • R 1 , R 2 are independently H or protecting groups that can be deprotected under acidic, basic or neutral conditions.
  • the F-protector is O (CH 2 ) n (CF 2 ) m CF 3 when the protected part of the nucleoside base B is O, and N when the protected part of the nucleoside base B is N.
  • Y is H, OH, halogen, OCH 3 , Methoxyethyl, CN, CF 3, or hydroxyl groups protected by acyl-based protecting groups, ether-based protecting groups, silyl-based protecting groups;
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen. There is or forms a ZZ bond with the Y.
  • a second aspect of the present invention is a 5'-terminal protected nucleoside phosphoramidite represented by the following formula (II).
  • B is a natural or modified nucleoside base
  • R 1 is a deprotectable protecting group under acidic, basic or neutral conditions
  • R 3 a ring and one R 4 bonded to the nitrogen atom attached to the phosphorus atom is formed by bonding,;
  • R 4 is a substituted or unsubstituted aliphatic It is a group, substituted or unsubstituted aromatic group;
  • the F-projector is O (CH 2 ) n (CF 2 ) m CF 3 when the protected portion of the nucleoside base B is O, and the nucleoside.
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, CN, CF 3, or a hydroxyl group protected by an acyl protecting group, an ether protecting group, a silyl protecting group;
  • Z is H. , Alkyl, O-alkyl, N-alkyl, halogen, or form a ZZ bond with the Y.
  • a third aspect of the present invention is a fluorolas blocker amidite represented by the following formula (III).
  • B is a natural or modified nucleoside base
  • R 1 is a deprotectable protecting group under acidic, basic or neutral conditions
  • R 3 is a ring of the one of R 5 bonded to the nitrogen atom attached to the phosphorus atom to form a amidite portion is formed by bonding;
  • R 5 is a substituted Alternatively, it is an unsubstituted aliphatic group, a substituted or unsubstituted aromatic group;
  • Pro is an unprotected, nucleoside base protecting group or an F-projector, and the F-projector is a protected portion of the nucleoside base B.
  • Is O (CH 2 ) n (CF 2 ) m CF 3 and NH (C O) (CH 2 ) n (CF) when the protected portion of the nucleoside base B is N.
  • n 1 or 2 and m is an integer from 1 to 20;
  • X is O or S;
  • p is an integer from 0 to 27;
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, CN, CF 3, or hydroxyl groups protected by acyl protecting groups, ether protecting groups, silyl protecting groups;
  • Z is H, alkyl, O-alkyl, It is N-alkyl, halogen, or forms a ZZ bond with said Y.
  • the fluorolas blocker amidite represented by the above formula (III) has at least one F-projector in either Pro or R 1 , R 3 .
  • a fourth aspect of the present invention is a multifluorous blocker represented by the following formula (IV).
  • B is a natural or modified nucleoside base
  • R 1 is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • R 3 is a phosphoric acid protecting group.
  • R is NH or S and G is an allyl or acyl group.
  • t is 0 to 3
  • Pro is an unprotected, protecting group or F-projector of the nucleoside base, and the F-projector is O (CH 2 ) when the protected portion of the nucleoside base B is O.
  • n 1 or 2
  • X is O or S
  • l is an integer from 0 to 58
  • Y is H, OH, halogen, OCH 3 , Methoxyethyl, CN, CF 3, or a hydroxyl group protected with an acyl protecting group, an ether protecting group, a silyl protecting group
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen. There is or forms a ZZ bond with the Y.
  • a fifth aspect of the present invention comprises a fluorolas blocker amidite represented by the above formula (III), a 5'-terminal protected nucleoside H-phosphonate represented by the following formula (II'), and the following formula (V).
  • B is a natural or modified nucleoside base
  • R 1 is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • F-projector is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • Is O (CH 2 ) n (CF 2 ) m CF 3 when the protected portion of the nucleoside base B is O, and NH (C ) when the protected portion of the nucleoside base B is N.
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, A hydroxyl group protected with CN, CF 3, or an acyl-based protecting group, an ether-based protecting group, or a silyl-based protecting group;
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen, or , A ZZ bond is formed with the Y.
  • the structure of a fluorolas anchor By adjusting the number of introductions, the solubility of the intermediate for oligonucleotide synthesis and the purification load can be reduced. This makes it possible to synthesize oligonucleotides by a more versatile method.
  • the nucleoside protector in the first embodiment has a structure represented by the following formula (I).
  • B is a natural or modified nucleoside base
  • R 1 , R 2 are independently H or protecting groups that can be deprotected under acidic, basic or neutral conditions.
  • the F-protector is O (CH 2 ) n (CF 2 ) m CF 3 when the protected part of the nucleoside base B is O, and N when the protected part of the nucleoside base B is N.
  • Y is H, OH, halogen, OCH 3 , Methoxyethyl, CN, CF 3, or hydroxyl groups protected by acyl-based protecting groups, ether-based protecting groups, silyl-based protecting groups;
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen. There is or forms a ZZ bond with the Y.
  • ZZ bonds are substituted or unsubstituted C2-C6 alkylene groups, -S-, -CO-, -CS-, -COO-, -OCONR 6- (R 6 is H or C1-C6 alkyl groups. ), -CONR 6- , -CSNR 6- and the like.
  • the nucleoside protecting group according to the above formula (I) protects the base by reacting a commercially available fluorous alcohol with the base portion of the nucleoside in which (1) 3', 5'-hydroxyl group is protected, and (2) (1). ),
  • the compound can be synthesized by deprotecting the protecting group of the 3', 5'-hydroxyl group.
  • the protection of the base portion can be carried out by applying a Mitsunobu reaction or a reaction using benzenesulfonic acid chloride using a commercially available fluorus alcohol.
  • a Mitsunobu reaction or a reaction using benzenesulfonic acid chloride using a commercially available fluorus alcohol.
  • 1H, 1H, 2H, 2H-nonafluoro-1-hexanol, 1H, 1H, 2H, 2H-tridecafluoro-1-octanol, 1H, 1H-pentadecafluoro-1-octanol and the like are used. be able to.
  • nucleoside protectant described in the above formula (I) can be synthesized more easily and at a lower cost than the conventional method.
  • Specific examples of the nucleoside derivative into which the F-projector has been introduced include the following compounds.
  • the second embodiment is a 5'-terminal protected nucleoside phosphoramidite represented by the following formula (II).
  • B is a natural or modified nucleoside base
  • R 1 is a deprotectable protecting group under acidic, basic or neutral conditions
  • R 4 is a substituted or unsubstituted aliphatic group , Substituted or unsubstituted aromatic group
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, CN, CF 3, or a hydroxyl group protected by an acyl protecting group, an ether protecting group, or a silyl protecting group
  • Z is H, alkyl. , O-alkyl, N-
  • the 3'-phosphoromidite described in the above formula (II) selectively selects the 5'-hydroxyl group of the 3', 5'-unprotected nucleoside represented by the above formula (I) by a known method.
  • NCCH 2 CH 2 OP [N (i-C 3 H 7 ) 2 ] 2 , CH 2 CHCH 2 to the 5'-protected 3'-unprotected nucleoside obtained in (2) and (1).
  • It can be synthesized by reacting with a trivalent phosphorylating agent such as OP [N (i-C 3 H 7 ) 2 ] 2 .
  • Step (2) can be performed by a known method.
  • the third embodiment is a fluorolas blocker amidite represented by the following formula (III).
  • B is a natural or modified nucleoside base
  • R 1 is a deprotectable protecting group under acidic, basic or neutral conditions
  • R 3 is a ring of the one of R 5 bonded to the nitrogen atom attached to the phosphorus atom is formed by bond;
  • R 5 is an aliphatic substituted or unsubstituted A group, substituted or unsubstituted aromatic group;
  • Pro is an unprotected, nucleoside base protecting group or F-projector, and the F-projector is when the protected portion of the nucleoside base B is O.
  • Is O (CH 2 ) n (CF 2 ) m CF 3 and is NH (C O) (CH 2 ) n (CF 2 ) m CF 3 when the protected portion of the nucleoside base B is N.
  • n is 1 or 2
  • m is an integer from 1 to 20
  • p is an integer from 0 to 27
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, CN, CF 3, Alternatively, it is a hydroxyl group protected with an acyl protecting group, an ether protecting group, or a silyl protecting group
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen, or with Y.
  • a ZZ bond is formed between them.
  • An example of the ZZ bond is the same as that of the compound represented by the above formula (I).
  • the fluorolas blocker amidite represented by the above formula (III) has at least one F-projector in either Pro or R 1 , R 3 .
  • blockmer is a dimer or more nucleotide, and a longer chain nucleotide is formed by performing a condensation reaction with amidite, a 3'-or 5'-hydroxyl group-unprotected nucleoside, a nucleotide, or the like. It is a nucleotide unit that serves as a synthetic block for the purpose.
  • a multi-fluorous blockmer is a blockmer containing a plurality of fluorous tags.
  • the fluorus blocker amidite represented by the above formula (III) is represented by (1) the 5'-terminal protected nucleoside phosphoramidite represented by the above formula (II) or the following formula (II').
  • An intermediate was synthesized by reacting 5'-terminal protected nucleoside H-phosphonate with a nucleoside in which a fluorus anchor was bound to the 3'-terminal represented by the following formula (V), and (2) the obtained intermediate.
  • B is a natural or modified nucleoside base
  • R 1 is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • n is 1 or 2
  • m is an integer from 1 to 20
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, A hydroxyl group protected with CN, CF 3, or an acyl-based protecting group, an ether-based protecting group, or a silyl-based protecting group
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen, or , A ZZ bond is formed with the Y.
  • the fourth embodiment is a multifluorous blocker represented by the following formula (IV).
  • B is a natural or modified nucleoside base
  • R 1 is a deprotectable protecting group under acidic, basic or neutral conditions
  • Pro is an unprotected, protecting group or F-projector of the nucleoside base, and the F-projector is O (CH 2 ) when the protected portion of the nucleoside base B is O.
  • a ZZ bond is formed with the Y.
  • An example of the ZZ bond is the same as that of the compound represented by the above formula (I).
  • the multifluorous blocker represented by the above formula (IV) has at least one F-projector in either Pro or R 1 , R 3 .
  • the fifth embodiment is a fluorolas blocker amidite represented by the above formula (III) or a 5'-terminal protected nucleoside H-phosphonate represented by the following formula (II') and a following formula (V). It is a method for synthesizing a multifluorous blocker represented by the above formula (IV), which comprises a step of coupling a nucleoside having a fluorous anchor bonded to the 3'-terminal represented by the above formula (IV).
  • B is a natural or modified nucleoside base
  • R 1 is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • F-projector is a protecting group that can be deprotected under acidic, basic or neutral conditions
  • Is O (CH 2 ) n (CF 2 ) m CF 3 when the protected portion of the nucleoside base B is O, and NH (C ) when the protected portion of the nucleoside base B is N.
  • Y is H, OH, halogen, OCH 3 , methoxyethyl, A hydroxyl group protected with CN, CF 3, or an acyl-based protecting group, an ether-based protecting group, or a silyl-based protecting group;
  • Z is H, alkyl, O-alkyl, N-alkyl, halogen, or , A ZZ bond is formed with the Y.
  • the multifluorous blocker in the present embodiment is (1) a 5'-terminal protected nucleoside phosphoramidite represented by the above formula (II) or a 5'-terminal protected represented by the above formula (II').
  • An intermediate was synthesized by reacting a nucleoside H-phosphonate with a nucleoside in which a fluorus anchor was bound to the 3'-terminal represented by the above formula (V), and (2) the 3'-terminal of the obtained intermediate.
  • the nucleoside anchor bound to the nucleoside was removed to obtain a 3'-unprotected form, and (3) NCCH 2 CH 2 OP [N (i-C) was added to the unprotected 3'-hydroxyl oxide.
  • the multifluorous blocker in the above embodiment can also be synthesized by another method described below.
  • a multifluorous blockmer having a desired chain length can be obtained by coupling a multifluorous blockmer represented by the above formula (IV) with the 5'-end deprotected in a so-called one-pot. it can.
  • the 5'-terminal of the compound obtained by coupling with 5'-protected fluorous blocker amidite and fluorolas blocker H-phosphonate is deprotected, and again with fluorolas blocker amidite.
  • the 5'-terminal may be deprotected and subjected to the above-mentioned one-pot coupling reaction.
  • the above reaction can also be carried out by using a multifluorous blocker in which the 3'-terminal of the multifluorous blocker is bound to a solid phase carrier instead of a fluorous anchor, and the multifluorous blocker bound to the solid phase carrier is also used.
  • a multifluorous blocker in which the 3'-terminal of the multifluorous blocker is bound to a solid phase carrier instead of a fluorous anchor, and the multifluorous blocker bound to the solid phase carrier is also used.
  • the oligonucleotide can be obtained by performing a deprotection reaction at each site. can get.
  • the multifluorous blocker represented by the above formula (IV) has at least one F-projector in either Pro or R 1 , R 3 .
  • the affinity of the multifluorous blocker can be utilized to simplify the separation and purification of intermediates and products as compared with the case of using a widely used protecting group.
  • the nucleoside base in the above embodiment includes a natural base such as an adenyl group, a guanyl group, a cytosynyl group, a timyl group and a uracil group, a 5-methylcytosynyl group, a 5-fluorouracil group, a 7-methylguanyl group, a 7-deazaadenyl group and the like.
  • a natural base such as an adenyl group, a guanyl group, a cytosynyl group, a timyl group and a uracil group, a 5-methylcytosynyl group, a 5-fluorouracil group, a 7-methylguanyl group, a 7-deazaadenyl group and the like.
  • the "modified nucleoside base” in the present specification includes a base having a reactive functional group such as an amino group, a carbonyl group, a hydroxy
  • a fluorous protecting group derived from a fluorous alcohol is introduced into the above-mentioned reactive functional groups.
  • the protecting group that protects the nucleoside base include an acyl group, a benzoyl group, and an allyloxycarbonyl group.
  • Aliphatic group in the above embodiments include saturated or unsaturated, C 1 -C 18 hydrocarbons which are linear or branched, cyclic C 3 -C 18 saturated or unsaturated hydrocarbon.
  • the aromatic group in the present embodiment includes a carbocyclic aromatic ring such as a phenyl group, a carbocyclic aromatic ring such as a naphthyl group, or a carbocyclic aromatic ring condensed with a non-carbon aromatic ring.
  • Aliphatic group in the present embodiment the aromatic group, substituted saturated or unsaturated, C 1 -C 8 hydrocarbon or C 3 -C 8 cyclic hydrocarbons, halogen, cyano, nitro, with a substituent such as an aromatic ring It may have been.
  • What is bonded to the nitrogen atom bonded to the phosphorus atom is preferably a linear or branched alkyl group, a secondary amino group such as pyrrolidine, diethylamine, or morpholino group, and more preferably an isopropyl group. Is.
  • one end of the alkyl group bonded to the nitrogen atom bonded to the phosphorus atom may be a ring formed by bonding to the adjacent nitrogen atom.
  • a phosphoric acid protecting group that is widely used in oligonucleotide synthesis can be used.
  • -CH 2 CH 2 CN, -CH 2 CH CH 2 , -OCH 3, 2-chlorophenyl group, phenyl group, or R ′ and R ′′ bonded to the nitrogen atom bonded to the phosphorus atom. It may be a ring formed by combining one with one.
  • the protecting group other than the above include -CH 2 CH 2 E (E is an electron-withdrawing group) and a fluorine-containing protecting group that can be deprotected under basic conditions.
  • the 5'-hydroxyl protecting group in this embodiment contains a protecting group that can be removed under acidic, basic or neutral conditions.
  • Protecting groups that can be removed under acidic conditions include ether-based protecting groups containing substituted or unsubstituted trityl groups, pixyl groups, substituted or unsubstituted tetrahydropyranyl (THP) groups, and 4 as typical protecting groups. , 4'-dimethoxytrityl group.
  • Examples of protecting groups that can be removed under neutral conditions include silyl protecting groups, specifically, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, and triphenylsilyl group. including.
  • Examples of protecting groups that can be removed under basic conditions include Fmoc group and pivaloyl group.
  • Examples of the protecting group other than the above include an alkyl group, an acyl group, an acetyl group, a benzoyl group, a benzyl group, an alkoxyalkyl group, a carbamoyl group and the like.
  • a trivalent phosphorylating agent (3'-unprotected) is added to a solution of the 3'-unprotected nucleoside (0.1 to 0.4 M). Add 1.05-2.0 eq of nucleoside) and activator (0.4-0.8 eq of 3'-unprotected nucleoside) and stir at room temperature for 10-20 hours. The obtained 3'-phosphoromidite is purified on silica gel.
  • the above formula (V) is used.
  • an activator that activates the amidite moiety to 3'-phosphoromidite represented by the formula (II) or the formula (III)
  • the above formula (V) is used.
  • a nucleoside to which a fluorolas anchor is bound By coupling a nucleoside to which a fluorolas anchor is bound to the 3'-terminal to be formed, a multifluorous blocker represented by the formula (IV) can be obtained.
  • Representative activators include, but are not limited to, 1H-tetrazole, S-ethylthiotetrazole, dicyanoimidazole, dichloroimidazole, salts of sulfonic acid and azole or tertiary amines.
  • the reaction is carried out in a dried solvent such as dichloromethane, acetonitrile, tetrahydrofuran, DMF, toluene and the like.
  • blockmer amidite When synthesizing blocker amidite or multifluorous blockmer in the above embodiment, as another method of extending one base at a time, blockmer amidite that is already a dimer or more is 3'-terminal. It is also possible to extend two or more bases at once by condensing with a nucleoside to which a fluorolas anchor is bound.
  • the synthesis of phosphoramidite using the blockmer amidite represented by the above formula (III) can be carried out in a solution (hereinafter referred to as "liquid phase synthesis method").
  • liquid phase synthesis method After synthesizing the multifluorous blocker by the method described above, it can be easily purified by column chromatography using commercially available silica gel, silica gel modified with octadecyl or diol, or silica gel for solid-phase extraction of fluorous. it can.
  • silica gel for solid-phase extraction of fluorolas 40 ⁇ m of Fluoroflash silica gel, which can be purchased from Aldrich, can be mentioned.
  • liquid phase synthesis method it can be synthesized on a large scale (10 times to 100 times or more) as compared with the solid phase synthesis method in which a coupling reaction is carried out on a solid phase resin. Therefore, it is possible to synthesize a multifluorous blocker for oligonucleotide synthesis at a lower cost.
  • Liquid separation operation using an organic solvent and water or a fluorus solvent and an organic solvent, a fluorus solvent and water, countercurrent chromatography of these two phases, and simple purification by crystallization / powdering are also applicable.
  • the number of F-anchors of the present invention to be introduced as a protecting group into the nucleoside base portion of multifluorous blocker is adjusted, in other words, the F-anchor of the present invention is introduced into some nucleoside base portions, and the rest.
  • the affinity with silica gel for fluorolas solid-phase extraction can be changed. This allows the multifluorous blocker to remain on the silica gel side for fluorolas solid-phase extraction, making it easier to separate the reaction by-products and excess reagents.
  • the solubility in a solvent can be changed even at the intermediate stage of the synthesis of multifluorous blocker
  • purification by affinity chromatography or a fluorous solvent-hydrocarbon-based organic solvent is used instead of purification by silica gel chromatography. Purification by distribution of.
  • the purification method can be appropriately selected according to the amount to be synthesized and the chain length thereof.
  • oligonucleotides using the multifluorous broccyl represented by the above formula (IV) for example, in the stage of multifluorous brocmer synthesis, trivalent phosphoric acid is reacted with a sulfide agent instead of an oxidizing agent.
  • a part of the pentavalent phosphoric acid can be thiophosphate. Therefore, by synthesizing a multifluorous blockmer made into thiophosphate in the middle of the blockmer synthesis, it is possible to surely synthesize an oligonucleotide in which thiophosphate is introduced at a target position.
  • Example 1 a base fluorine-protected phosphoramidite, which is an example of the compound represented by the above formula (II), was produced. Further, according to the procedure shown in Example 2, a multifluorous blocker, which is an example of the compound represented by the above formula (IV), was produced. Further, according to the procedure shown in Example 3, an example of a blockmer phosphoramidite hexamer phosphoramidite, which is one of the compounds represented by the above formula (III), and a compound represented by the above formula (IV). Oligonucleotide 19-mer was synthesized using the above multifluorous blocker.
  • 3', 5'-bis-O-tert-butyldimethylsilylthymidine 1 (2.4 g, 5.0 mmol), which can be synthesized by a known method, was dissolved in tetrahydrofuran (25 mL) to 0 ° C. There, triphenylphosphine (1.4 g, 5.5 mmol), 40% diethylazodicarboxylate / toluene solution (2.5 mL, 5.5 mmol), and 1H, 1H, 2H, 2H-tridecafluoro-1- Octanol 2 (2.0 g, 1.2 mL, 5.5 mmol) was added, and the mixture was stirred for 12 hours.
  • Step 2 3', 5'-Protection-Base Fluorous Protection Nucleoside 3', 5'deprotection
  • Step 3 3', 5'-Unprotected-Base Fluorous Protected Nucleoside 5'-Protected
  • Step 4 5'-Protected-3'-Unprotected-Base Fluorous Protected Nucleoside amidite
  • Step 7 5'-Protecting-3'-Five'-deprotection of fluorolas anchor-binding nucleotide dimer
  • Step 8 Synthesis of 5'-protected nucleotide 13-mer by condensation of 5'-protected hexamer blocker amidite with 5'-unprotected-3'-fluorous anchor-linked nucleotide 7-mer
  • Step 10 5'-Protected -3'-Fluorous Anchor-Binding Nucleotide 19-Medium Synthesis by Condensation of 5'-Protected Hexomer Block Maramidite with 5'-Unprotected-3'-Fluorous Anchor-Binding Nucleotide 13-Mer
  • Step 11 Deprotection of 5'-protecting-3'-fluorous anchor-binding nucleotide 19-mer synthesis
  • Step 13 3'-deprotection of a 5', 3'-protected nucleotide tetramer containing a base fluorous-protected nucleoside Acetic acid (51.4 ⁇ L, 0.900 mmol) was added to 5', 3'-protected nucleotide tetramer 17 (1.87 g, 0.900 mmol), and the mixture was cooled to 0 ° C. 1.0 M TBAF in THF (1.80 mL, 1.80 mmol) was added dropwise and the mixture was stirred for 3 hours.
  • Step 14 3'-Amiditeization of a 5'-protected nucleotide tetramer containing a base fluorolas-protected nucleoside Compound 18 (1.27 g, 0.65 mmol) was dissolved in a dichloromethane-acetonitrile 1: 1 mixture (16 mL), followed by 1H-tetrazole (59.0 mg, 0.845 mmol) and N-methylimidazole (21.0 ⁇ L, 0. 260 mmol) was added to bring the temperature to 0 ° C.
  • Step 15 Containing a base fluorus-protected nucleoside by condensation of a 5'-protected nucleotide tetramer 3'-amidite containing a base fluorus-protected nucleoside with a 5'-unprotected-3'-protected nucleotide trimer 5 ⁇ , 3 ′-Protected nucleotide nucleoside synthesis
  • Compound 16 0.537 g, 0.25 mmol
  • tetrameric amidite 19 0.288 g, 0.275 mmol
  • Step 16 5'-deprotection of a 5', 3'-protected nucleotide dimer containing a base fluorous-protected nucleoside Dichloromethane (4 mL) was added to compound 20 (0.655 g, 0.211 mmol), and the mixture was cooled to 0 ° C.
  • Step 17 Base by condensation of 5'-protected nucleotide tetramer 3'-amidite containing basic fluorous-protected nucleoside and 5'-unprotected-3'-protected nucleotide nucleoside containing base fluoro-protected nucleoside.
  • a nucleotide 11-mer from which a protecting group has been removed can be obtained by deprotecting the obtained 5', 3'-protected nucleotide 11-mer 22 containing the obtained base fluorine-protected nucleoside by a general-purpose method. it can.
  • FIG. (A) is the spectrum of the dTA 19 20mer synthesized by the conventional method
  • (b) is the spectrum of the dTA 19 20mer having the fluorous tag of the present invention at the base portion of the 5'-terminal T.
  • the 20-mer was obtained with a higher purity than the 20-mer synthesized by the conventional method by deprotecting the product so as to leave the fluorous tag and subjecting it to purification. It was shown that due to the high lipophilicity of fluorous tags, the retention time for separation and purification changes significantly, which makes isolation and purification easier than with conventional methods.
  • the multifluorous blocker of the present embodiment can be synthesized by introducing a fluorous anchor using a commercially available fluorocarbon derivative as it is.
  • the introduction of fluorolas tags into nucleosides by the conventional method has a limit on the number of fluorolas tags that can be introduced, and is not highly versatile.
  • the solubility of the intermediate in the oligonucleotide synthesis and the purification load can be reduced by adjusting the number of introduced fluorous anchors.
  • the fluorous tag can be introduced into the nucleoside base moiety or the protecting group at the 3'-terminal of the nucleoside, depending on the length and sequence of the blockmer or oligonucleotide to be synthesized.
  • a pentavalent phosphate-bonded moiety that has been oxidized / sulfurized at the blockmer stage can be formed. Therefore, even when only a part of the phosphate bond in the oligonucleotide is in an oxidation / sulfide state different from that of the other part of the phosphate bond, the object is more easily and easily without changing the procedure of oligonucleotide synthesis. Oligonucleotides containing modified phosphate binding moieties can be synthesized.
  • the blockmer into which the fluorolas tag used so far has been introduced is affected by the physical properties of the fluorolas tag, so that the purification method at the time of chain length extension in oligonucleotide synthesis has become complicated.
  • the method for synthesizing multifluorous bromine and the method for synthesizing an oligonucleotide using multifluorous bromar are silica gel filtration, purification by affinity chromatography, and fluorous solvent-hydrocarbon-based organic solvent, depending on the chain length. There is a great deal of freedom in selecting the purification method, such as the distribution of silica gel. Therefore, the desired oligonucleotide can be obtained by simpler purification than the conventional method for synthesizing an oligonucleotide using a fluorous tag.
  • the oligonucleotide synthesis method using the multifluorous blocker of the present embodiment when synthesizing the oligonucleotide of the same N-mer, the method of extending one base at a time by the commonly used liquid phase synthesis method is used. In comparison, the number of steps required can be reduced. Therefore, the yield of the oligonucleotide of the desired length can be improved.

Abstract

入手が容易なフルオラスタグを用いて精製負荷を低減できるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法を提供する。Bは天然型または修飾核酸塩基であり;Rは酸性または中性条件下で脱保護可能な保護基であり;Rはリン酸保護基であり;Proは無保護、保護またはF-protectorであってヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;XはOまたはSであり;lは0から58の整数であり;Rは、(C=O)(CH(C=O)(CH)n(CF)mCFまたはシリル系保護基であり、nは1または2であり、mは1~20の整数である、下記式で表されるマルチフルオラスブロックマーを合成する。

Description

オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法
 本発明は、オリゴヌクレオチド合成におけるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法に関するものである。
 近年、天然型または修飾オリゴヌクレオチドを基本骨格とする核酸医薬への注目度が高まっている。目的とした作用が得られるように設計した核酸医薬を得るために、化学合成法が広く用いられている。
 化学合成法の一つとして、比較的短鎖のオリゴヌクレオチド合成に用いられる、液相中で全ての反応を進めていく液相合成法が広く知られている。最近では、その液相合成法に、フルオラスタグ(親フルオロカーボン性の置換基)を適用しようとする試みが行われている(特許文献1、特許文献2)。
国際公開第2005/070859号 国際公開第2017/086397号
 汎用されている液相合成法においては、比較的短鎖のオリゴヌクレオチドを合成するためであっても、例えば、アミダイトとヌクレオシドとのカップリング反応や、次の反応基点を得るための脱保護反応など、数十工程の反応が必要となる。その多くの工程において、カラムクロマトグラフィー等を用いた精製を必要とする。精製は、多くの場合が煩雑であるため、汎用されている液相合成法によって大量のオリゴヌクレオチドを合成することは容易ではない。
 また、特許文献1、特許文献2などで用いられているフルオラスタグは、その構造が複雑であり、容易に入手することができないため、コストも高くなる。
 本発明は、このような事情に鑑みてなされたものであって、入手が容易なフルオラスタグを用い、精製負荷を低減できる、オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法を提供することを目的とする。
 上記課題を解決するために、本発明のオリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法は以下の手段を採用する。
 本発明の第1の態様は、下記式(I)で表されるヌクレオシド保護体であって、
Figure JPOXMLDOC01-appb-C000007
 前記式(I)中、Bは天然型または修飾ヌクレオシド塩基であり;R、Rは、独立して、Hまたは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。
 本発明の第2の態様は、下記式(II)で表される5´-末端保護ヌクレオシドホスホロアミダイトであって、
Figure JPOXMLDOC01-appb-C000008
 前記式(II)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸保護基、好ましくはCHCHCN、CHCH=CH、OCH、またはCH(CHYGであって、YがNHまたはSであり、Gがアリルまたはアシル基であり、xが0~3であるか、または、Rと、リン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり、;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。
 本発明の第3の態様は、下記式(III)で表されるフルオラスブロックマーアミダイトである。
Figure JPOXMLDOC01-appb-C000009
 前記式(III)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸保護基、好ましくはCHCHCN、CHCH=CH、OCH3、または、CH(CHRGであって、RがNHまたはSであり、Gがアリルまたはアシル基であり、tが0~3であるか、または、Rと、アミダイト部分を形成するリン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Xは、OまたはSであり;pは0~27の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。上記式(III)で表されるフルオラスブロックマーアミダイトは、ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する。
 本発明の第4の態様は、下記式(IV)で表されるマルチフルオラスブロックマーである。
Figure JPOXMLDOC01-appb-C000010
 前記式(IV)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸の保護基、好ましくはCHCHCN、CHCH=CH、OCH3、または、CH(CHRGであって、RがNHまたはSであり、Gがアリルまたはアシル基であり、tが0~3であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;XはOまたはSであり;lは0から58の整数であり;Rは、(C=O)(CH(C=O)(CH)n(CF)mCFまたはシリル系保護基であり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。上記式(IV)で表されるマルチフルオラスブロックマーは、ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する。
 本発明の第5の態様は、上記式(III)で表されるフルオラスブロックマーアミダイトまたは、下記式(II´)で表される、5´-末端保護ヌクレオシドH-ホスホネートと、下記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドとをカップリング反応させる工程を含む、上記式(IV)で表されるマルチフルオラスブロックマーの合成方法である。下記式(II´)および式(V)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 本発明の塩基部分をフルオラス保護したヌクレオシド、塩基部分をフルオラス保護した5´-末端保護ヌクレオシドホスホロアミダイト、およびマルチフルオラスブロックマーを用いてオリゴヌクレオチドを合成する方法によれば、フルオラスアンカーの構造やその導入数を調製することで、オリゴヌクレオチド合成の中間体の溶解性や、精製負荷を低減することができる。これにより、より汎用性の高い方法でオリゴヌクレオチドを合成することができる。
本発明の実施例より得られた化合物6のESI-TOFマススペクトルを示した図である。 本発明の実施例より得られた化合物8のESI-TOFマススペクトルを示した図である。 本発明の実施例より得られた化合物15のUPLCスペクトルを示した図である。 本発明の実施例より得られた化合物15のESI-TOFマススペクトルを示した図である。 本発明の実施例より得られた化合物22のUPLCスペクトルを示した図である。 本発明の合成方法によって合成された20量体のスペクトルと、従来法で合成された20量体のスペクトルとを示した図である。
 以下に、本発明に係るオリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法の実施形態について説明する。
 第1の実施形態におけるヌクレオシド保護体は、下記式(I)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000013
 上記式(I)中、Bは天然型または修飾ヌクレオシド塩基であり;R、Rは、独立して、Hまたは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。Z-Y結合の例として、置換または無置換のC2~C6アルキレン基、-S-、-CO-、-CS-、-COO-、-OCONR-(RはHまたはC1~C6アルキル基)、-CONR-、-CSNR-などが挙げられる。
 上記式(I)に記載のヌクレオシド保護体は、(1)3´,5´-水酸基を保護したヌクレオシドの塩基部分に、市販のフルオラスアルコールを反応させて塩基を保護し、(2)(1)で得られた化合物の3´,5´-水酸基の保護基を脱保護することで合成することができる。
 上記式(I)に記載のヌクレオシド保護体において、塩基部分の保護は、市販されているフルオラスアルコールを用いて、光延反応や塩化ベンゼンスルホン酸を用いる反応を適用することで行うことができる。本実施形態においては、1H,1H,2H,2H-ノナフルオロ-1-ヘキサノール、1H,1H,2H,2H-トリデカフルオロ-1-オクタノール、1H,1H-ペンタデカフルオロ-1-オクタノールなどを用いることができる。市販されているフルオラスアルコールを用いることができるため、従来法よりも、より簡便かつ低コストで上記式(I)に記載のヌクレオシド保護体を合成することができる。F-protectorを導入したヌクレオシド誘導体の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 第2の実施形態は、下記式(II)で表される5´-末端保護ヌクレオシドホスホロアミダイトである。
Figure JPOXMLDOC01-appb-C000015
 上記式(II)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸保護基、好ましくはCHCHCN、CHCH=CH、OCHまたは、CH(CHYGであって、YがNHまたはSであり、Gがアリルまたはアシル基であり、xが0~3であるか、または、Rとリン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。Z-Y結合の例は、上記式(I)で表される化合物と同様である。
 上記式(II)に記載の3´-ホスホロアミダイトは、(1)上記式(I)で表される3´,5´-無保護ヌクレオシドの5´-水酸基を、公知の方法で選択的に保護し、(2)(1)で得られた5´-保護3´-無保護ヌクレオシドに、NCCHCHOP[N(i-C、CH=CHCHOP[N(i-Cなどといった3価のリン酸化剤と反応させることで合成することができる。工程(2)は、公知の方法で行うことが可能である。
  第3の実施形態は、下記式(III)で表されるフルオラスブロックマーアミダイトである。
Figure JPOXMLDOC01-appb-C000016
 前記式(III)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸保護基、好ましくはCHCHCN、CHCH=CH、OCH、または、CH(CHYGであって、YがNHまたはSであり、Gがアリルまたはアシル基であり、xが0~3であるか、またはRと、リン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;pは0~27の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。Z-Y結合の例は、上記式(I)で表される化合物と同様である。上記式(III)で表されるフルオラスブロックマーアミダイトは、ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する。本明細書においてブロックマーとは、2量体以上のヌクレオチドであって、アミダイトや3´-または5´-水酸基無保護のヌクレオシド、ヌクレオチド等と縮合反応を行うことでさらに長鎖のヌクレオチドを形成するための合成ブロックとなるヌクレオチド単位である。マルチフルオラスブロックマーとは、フルオラスタグを複数含むブロックマーである。
 前記式(III)で表されるフルオラスブロックマーアミダイトは、(1)上記式(II)で表される5´-末端保護ヌクレオシドホスホロアミダイト、または、下記式(II´)で表される、5´-末端保護ヌクレオシドH-ホスホネートと、下記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドとを反応させて中間体を合成し、(2)得られた中間体の3´-末端に結合したフルオラスアンカーが結合したヌクレオシドのフルオラスアンカーを除去して3´-無保護体を得て、(3)無保護となった3´-水酸基にNCCHCHOP[N(i-C、CH=CHCHOP[N(i-Cなどといった3価のリン酸化剤と反応させて3´-ホスホロアミダイトを生成させるか、または、トリフェニルホスファイトと反応させた後にトリエチルアミンで加水分解を行う条件、三塩化リンを反応させた後に加水分解を行う、などといった条件下で3´-H-ホスホネートを生成させ、(4)目的とする鎖長のフルオラスブロックマーアミダイトが得られるまで、上記工程(1)から(3)を繰り返すことで合成することができる。下記式(II´)および式(V)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
  第4の実施形態は、下記式(IV)で表されるマルチフルオラスブロックマーである。
Figure JPOXMLDOC01-appb-C000019
 前記式(IV)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸保護基、好ましくはCHCHCN、CHCH=CH、OCH3、または、CH(CHYGであって、YがNHまたはSであり、Gがアリルまたはアシル基であり、xが0~3であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;XはOまたはSであり;lは0~58の整数であり;Rは、(C=O)(CH(C=O)(CH)n(CF)mCFまたはシリル系保護基であり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。Z-Y結合の例は、上記式(I)で表される化合物と同様である。上記式(IV)で表されるマルチフルオラスブロックマーは、ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する。
 第5の実施形態は、上記式(III)で表されるフルオラスブロックマーアミダイトまたは、下記式(II´)で表される、5´-末端保護ヌクレオシドH-ホスホネートと、下記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドとをカップリング反応させる工程を含む、上記式(IV)で表されるマルチフルオラスブロックマーの合成方法である。下記式(II´)および式(V)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本実施形態におけるマルチフルオラスブロックマーは、(1)上記式(II)で表される5´-末端保護ヌクレオシドホスホロアミダイト、または、上記式(II´)で表される、5´-末端保護ヌクレオシドH-ホスホネートと、上記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドとを反応させて中間体を合成し、(2)得られた中間体の3´-末端に結合したフルオラスアンカーが結合したヌクレオシドのフルオラスアンカーを除去して3´-無保護体を得て、(3)無保護となった3´-水酸基にNCCHCHOP[N(i-C、CH=CHCHOP[N(i-Cなどといった3価のリン酸化剤と反応させて3´-ホスホロアミダイトを生成させるか、または、トリフェニルホスファイト、ジフェニルホスファイト、三塩化リン、2-クロロ-4H-1,3,2-ジオキサホスホリン-4-オンなどといったリン酸化剤と反応させた後に加水分解を行って3´-H-ホスホネートを生成させ、(4)目的とする鎖長のフルオラスブロックマーアミダイトが得られるまで、上記工程(1)から(3)を繰り返すことで合成することができる。
 上記実施形態におけるマルチフルオラスブロックマーは、以下に記載する別法でも合成することができる。上記式(III)で表されるフルオラスブロックマーアミダイトと、下記式(VI)で表される、5´-末端が無保護、3´-末端にH-ホスホネートを有するフルオラスブロックマーH-ホスホネートと、上記式(IV)で表されるマルチフルオラスブロックマーの5´-末端を脱保護したものとを、いわゆるワンポットでカップリングさせことによって、目的の鎖長を有するマルチフルオラスブロックマーを得ることができる。目的物の鎖長に応じて、5´-保護フルオラスブロックマーアミダイトとフルオラスブロックマーH-ホスホネートとのカップリングで得られた化合物の5´-末端を脱保護し、再度、フルオラスブロックマーアミダイトと反応させて、鎖長が伸びたフルオラスブロックマーH-ホスホネートを合成した後に5´-末端を脱保護して、上記のワンポットカップリング反応に供してもよい。さらなる別法として、マルチフルオラスブロックマーの3´-末端を、フルオラスアンカーに替えて固相担体に結合させたものを用いて上記反応を行うことによっても、固相担体に結合したマルチフルオラスブロックマーを合成することができる。なお、3´-末端にフルオラスアンカーを有するマルチフルオラスブロックマー、3´-末端が固相担体に結合したマルチフルオラスブロックマーのいずれについても、各部位の脱保護反応を行うことで、オリゴヌクレオチドが得られる。脱保護条件を選択することで、必要な部分にのみ保護基を残した修飾オリゴヌクレオチドを合成することも可能である。上記式(IV)で表されるマルチフルオラスブロックマーは、ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する。これにより、マルチフルオラスブロックマーの有する親和性を利用して、汎用されている保護基を用いる場合と比べて、中間体や生成物の分離精製を簡便にすることができる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記実施形態におけるヌクレオシド塩基は、アデニル基、グアニル基、シトシニル基、チミニル基、ウラシル基などの天然型塩基、5-メチルシトシニル基、5-フルオロウラシル基、7-メチルグアニル基、7-デアザアデニル基などの修飾塩基を含む。本明細書中の「修飾ヌクレオシド塩基」には、アミノ基、カルボニル基、ヒドロキシル基、チオール基など、反応性官能基を有する塩基が含まれる。上記のような反応性官能基に対して、フルオラスアルコール由来のフルオラス保護基が導入される。ヌクレオシド塩基を保護する保護基としては、アシル基、ベンゾイル基、アリルオキシカルボニル基などが挙げられる。
 上記実施形態における脂肪族基は、飽和または不飽和の、直鎖状または分岐しているC-C18炭化水素、飽和または不飽和の環状C-C18炭化水素を含む。好ましくは、飽和または不飽和の、C-C炭化水素またはC-C環状炭化水素である。本実施形態における芳香族基は、フェニル基などの炭素環式芳香環、ナフチル基などの炭素環式芳香環または非炭素式芳香環に縮合した炭素環式芳香環を含む。本実施形態における脂肪族基、芳香族基は、飽和または不飽和の、C-C炭化水素またはC-C環状炭化水素、ハロゲン、シアノ、ニトロ、芳香環などの置換基で置換されていてもよい。リン原子に結合した窒素原子に結合しているのは、好ましくは、直鎖状または分岐しているアルキル基や、ピロリジン、ジエチルアミン、モルホリノ基などの2級アミノ基であり、さらに好ましくはイソプロピル基である。また、リン原子に結合した窒素原子に結合したアルキル基の一端部が、隣接する窒素原子に結合して形成されている環であってもよい。
 上記実施形態における、隣接するヌクレオシドを結合するリン酸の保護基としては、オリゴヌクレオチド合成で汎用されるリン酸保護基を用いることができる。好ましくは、-CHCHCN、-CHCH=CH、-OCH3、2-クロロフェニル基、フェニル基、または、R´と、リン原子に結合する窒素原子に結合するR´´の一つとが結合して形成される環であってもよい。上記以外の保護基として、塩基性条件下で脱保護可能な-CHCHE(Eは電子吸引性基)、フッ素含有保護基が挙げられる。
 本実施形態における5´-水酸基の保護基は、酸性条件、塩基性条件または中性条件下で除去可能な保護基を含む。酸性条件下で除去可能な保護基は、置換または未置換のトリチル基を含むエーテル系保護基、ピキシル基、置換または未置換のテトラヒドロピラニル(THP)基を含み、代表的な保護基として4,4´-ジメトキシトリチル基がある。中性条件下で除去可能な保護基の例としてシリル系保護基があり、具体的には、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基を含む。塩基性条件下で除去可能な保護基の例として、Fmoc基、ピバロイル基がある。上記以外の保護基として、アルキル基、アシル基、アセチル基、ベンゾイル基、ベンジル基、アルコキシアルキル基、カルバモイル基等が挙げられる。
 上記実施形態において、3´-無保護水酸基をアミダイト化する工程においては、3´-無保護ヌクレオシドの溶液(0.1~0.4M)に、3価のリン酸化剤(3´-無保護ヌクレオシドの1.05~2.0当量)および活性化剤(3´-無保護ヌクレオシドの0.4~0.8当量)を加え、室温で10~20時間攪拌する。得られた3´-ホスホロアミダイトをシリカゲルで精製する。
 上記実施形態においては、式(II)または式(III)で表される3´-ホスホロアミダイトに対して、アミダイト部分を活性化する活性化剤を添加した後、上記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドをカップリングさせることで、式(IV)で表されるマルチフルオラスブロックマーが得られる。活性化剤の代表的なものとしては、1H-テトラゾール、S-エチルチオテトラゾール、ジシアノイミダゾール、ジクロロイミダゾール、スルホン酸とアゾールまたは3級アミンの塩があるが、これらに限定されない。反応は、ジクロロメタン、アセトニトリル、テトラヒドロフラン、DMF、トルエン等の溶媒を乾燥させたものの中で行う。
 上記実施形態におけるブロックマーアミダイトやマルチフルオラスブロックマーを合成する場合には、1塩基ずつ伸張させていく方法の別法として、既に2量体以上となっているブロックマーアミダイトを、3´-末端にフルオラスアンカーが結合したヌクレオシドと縮合させることで、2以上の塩基分を一度に伸張させることもできる。
 上記式(III)で表されるブロックマーアミダイトを用いて行うマルチフルオラスブロックマーの合成は、溶液中で行う(以下、「液相合成法」という)ことができる。上述した方法でマルチフルオラスブロックマーを合成した後、市販されているシリカゲル、オクタデシルやジオール等で修飾されたシリカゲル、フルオラス固相抽出用のシリカゲルを用いたカラムクロマトグラフィーにて簡便に精製することができる。市販されているフルオラス固相抽出用のシリカゲルとしては、Aldrich社から購入可能なFluoroflash silica gel 40μmが一例としてあげられる。液相合成法では、固相樹脂上でカップリング反応を行う固相合成法と比べて、大量スケール(10倍~100倍以上)で合成することができる。よって、より低コストでオリゴヌクレオチド合成用のマルチフルオラスブロックマーを合成することができる。有機溶媒と水またはフルオラス溶媒と有機溶媒、フルオラス溶媒と水による分液操作や、それら2相系の向流クロマトグラフィー、晶析・粉体化による簡易精製なども適用可能である。
 また、マルチフルオラスブロックマーのヌクレオシド塩基部分に保護基として導入する本発明のF-アンカーの数を調整する、換言すると、一部のヌクレオシド塩基部分には本発明のF-アンカーを導入し、残りのヌクレオシド塩基部分には汎用される保護基を用いることで、フルオラス固相抽出用のシリカゲルとのアフィニティを変化させることができる。これにより、マルチフルオラスブロックマーをフルオラス固相抽出用のシリカゲル側に残るようにし、反応の副生成物や過剰な試薬との分離をより簡便に行うことができる。またマルチフルオラスブロックマー合成の中間体の段階でも、溶媒への溶解性を変化させることができることで、シリカゲルクロマトグラフィーによる精製ではなく、アフィニティクロマトグラフィーによる精製や、フルオラス溶媒-炭化水素系有機溶媒での分配による精製が可能となる。このように、本発明のマルチフルオラスブロックマーは、合成する量やその鎖長に応じて、精製方法を適宜選択することができる。
 上記式(IV)で表されるマルチフルオラスブロックマーを用いたオリゴヌクレオチドの合成においては、例えば、マルチフルオラスブロックマー合成の段階で、3価のリン酸を酸化剤ではなく硫化剤と反応させて、5価のリン酸の一部をチオホスフェートとすることができる。したがって、ブロックマー合成の途中段階でチオホスフェートとしたマルチフルオラスブロックマーを合成しておくことで、狙った位置に確実にチオホスフェートを導入したオリゴヌクレオチドを合成することができる。
 以下の実施例は、本発明の実施形態を説明し、例示するものである。実施例1に示す手順に従い、上記式(II)で表される化合物の一例である塩基部フルオラス保護ホスホロアミダイトを製造した。また、実施例2に示す手順に従い、上記式(IV)で表される化合物の一例であるマルチフルオラスブロックマーを製造した。さらに、実施例3に示す手順に従い、上記式(III)で表される化合物の一つであるブロックマーホスホロアミダイト6量体ホスホロアミダイトと、上記式(IV)で表される化合物の一例であるマルチフルオラスブロックマーとを用いてオリゴヌクレオチド19量体の合成を行った。
(実施例1)ヌクレオシド塩基部フルオラス保護ホスホロアミダイトの合成
ステップ1:3´,5´-保護ヌクレオシドの塩基部のフルオラス保護
Figure JPOXMLDOC01-appb-C000025
 公知の方法により合成可能である3´,5´-ビス-O-tert-ブチルジメチルシリルチミジン1(2.4g,5.0mmol)をテトラヒドロフラン(25mL)に溶かし、0°Cにした。そこへトリフェニルホスフィン(1.4g,5.5mmol)、40%ジエチルアゾジカルボキシレート/トルエン溶液(2.5mL,5.5mmol)、さらに1H,1H,2H,2H-トリデカフルオロ-1-オクタノール2(2.0g,1.2mL,5.5mmol)を加え、12時間撹拌した。反応溶液をそのまま濃縮し、析出した固体を濾別、ヘキサン:酢酸エチル=1:1溶液で洗浄したのち、得られた溶液を再び濃縮し、粗生成物とした。これをシリカゲルカラムクロマトグラフィーに供した。ヘキサン:酢酸エチル=4:1で溶出された分画を回収し、目的とする3´,5´-ビス-O-tert-ブチルジメチルシリル-4-O-1H,1H,2H,2H-トリデカフルオロ-1H-オクチルチミジン3を3.3g(4.1mmol)、81%収率にて得た。ESI-TOF Mass:840.3[M+Na
ステップ2:3´,5´-保護-塩基部フルオラス保護ヌクレオシドの3´,5´脱保護
Figure JPOXMLDOC01-appb-C000026
 化合物3(1.6g,2.0mmol)をテトラヒドロフラン(32mL)に溶かし、0°Cにした。そこへ酢酸(120mg,0.11mL,2.0mol)、さらに1.0Mテトラブチルアンモニウムフルオリド/テトラヒドロフラン溶液(8.0mL,8.0mmol)を加え、12時間撹拌した。反応溶液を一部濃縮して5mL程度の容積とし、得られた反応混合物をシリカゲルカラムクロマトグラフィーに供した。酢酸エチルで溶出された分画を回収し、目的とする4-O-1H,1H,2H,2H-トリデカフルオロ-1H-オクチルチミジン4を1.2g(2.0mmol)、98%収率にて得た。ESI-TOF Mass:612.0[M+Na
ステップ3:3´,5´-無保護-塩基部フルオラス保護ヌクレオシドの5´-保護
Figure JPOXMLDOC01-appb-C000027
 化合物4(1.2g,2.0mmol)をジメチルホルムアミド:ピリジン=1:1溶液(10mL)に溶かし、そこへ4,4-ジメチルアミノピリジン(24mg,0.20mmol)、および、ジメトキシトリチルクロリド(810mg,2.4mmol)を加え、90分撹拌した。反応溶液に酢酸エチル(100mL)を加え、0.2N塩酸水溶液で3回有機層を洗浄した。有機層を硫酸ナトリウムにて乾燥させ、濾過後溶媒を留去し、粗生成物を得た。これをシリカゲルカラムクロマトグラフィーに供し、ヘキサン:酢酸エチル=7:3で溶出された分画を回収し、目的とする5´-ジメトキシトリチル-4-O-1H,1H,2H,2H-トリデカフルオロ-1H-オクチルチミジン5を1.5g(1.7mmol)、83%収率にて得た。ESI-TOF Mass:914.7[M+Na.
ステップ4:5´-保護-3´-無保護-塩基部フルオラス保護ヌクレオシドのアミダイト化
Figure JPOXMLDOC01-appb-C000028
 化合物5(1.4g,1.6mmol)をジクロロメタン:アセトニトリル=1:1溶液(16mL)に溶かし、そこへ1H-テトラゾール(80mg,1.1mmol)を加え、0°Cにて15分撹拌した。そこへアリルテトライソプロピルホスホロアミダイト(710mg,0.74mL,2.4mmol)を加え、反応を開始した。15時間後、この反応混合物をそのままシリカゲルカラムクロマトグラフィーに供し、ヘキサン:酢酸エチル=9:1で溶出された分画を回収し、目的とするアリル5’-ジメトキシトリチル-4-O-1H,1H,2H,2H-トリデカフルオロ-1H-オクチルチミジン-3’-ホスホロアミダイト6を1.6g(1.4mmol)、89%収率にて得た。UPLC測定により97%純度であることが示された。ESI-TOF Mass:1079.2[M+H.化合物6のESI-TOFスペクトルを図1に示した。
(実施例2)マルチフルオラスブロックマーの合成
ステップ5:塩基部フルオラス保護ヌクレオシドの2量体合成
Figure JPOXMLDOC01-appb-C000029
 化合物6(520mg,0.48mmol)と文献記載の方法により合成可能な化合物7(280mg,0.40mmol)を混合後、真空乾燥させ、そこへアルゴン気流を充填し常圧にした。ここへモレキュラーシーブス3A(800mg)を加え、次いでジクロロメタン:アセトニトリル=1:1溶液(8mL)を加え、2時間撹拌した。そこへ1H-テトラゾール(110mg,1.6mmol)を加え、室温にて30分撹拌した。反応の進行を確認した後、31wt%2-ブタノンペルオキシド/ジイソ酪酸-2,2,4-トリメチル-1,3-ペンタン溶液(0.39mL,0.6mmol)を加え、反応を継続した。30分後、この反応混合物をセライト濾過し、溶液量が8mLになるまで濃縮したのち、シリカゲルカラムクロマトグラフィーに供した。ヘキサン:酢酸エチル=2:3で溶出された分画を回収し、目的とするビスフルオラスTTブロックマー8を640mg(0.38mmol)、94%収率にて得た。UPLC測定により98%純度であることが示された。ESI-TOF Mass:1680.6[M-H.化合物8のESI-TOFスペクトルを図2に示した。
(実施例3)6量体ホスホロアミダイトを用いるオリゴヌクレオチド19量体の液相合成
ステップ6:6量体ホスホロアミダイトと5´-保護-3´-フルオラスアンカー結合ヌクレオシドとの縮合反応
Figure JPOXMLDOC01-appb-C000030
 化合物9(400mg,0.17mmol)と公知の方法により合成可能な化合物7(100mg,0.15mmol)を混合後、真空乾燥させ、そこへアルゴン気流を充填し常圧にした。ここへモレキュラーシーブス3A(600mg)を加え、次いでジクロロメタン:アセトニトリル=1:1溶液(6mL)を加え、2時間撹拌した。そこへ5-エチル-1H-テトラゾール(78mg,0.60mmol)を加え、室温にて30分撹拌した。反応の進行を確認した後、31wt%2-ブタノンペルオキシド/ジイソ酪酸-2,2,4-トリメチル-1,3-ペンタン溶液(0.15mL,0.30mmol)を加え、反応を継続した。30分後、この反応混合物をセライト濾過し、溶液量が5mLになるまで濃縮したのち、シリカゲルカラムクロマトグラフィーに供した。ジクロロメタン:メタノール=20:1で溶出された分画を回収し、目的とするT7量体10を260mg(0.084mmol)、56%収率にて得た。ESI-TOF Mass:1552.2[M+2Na
ステップ7:5´-保護-3´-フルオラスアンカー結合ヌクレオチド7量体の5´-脱保護
Figure JPOXMLDOC01-appb-C000031
 化合物10(230mg,0.076mmol)をジクロロメタン:アセトニトリル=4:1溶液(4mL)を加え、溶解させた後、氷浴に浸し0°Cとした。そこへジクロロ酢酸(200mg,0.13mL,1.5mmol)を加え、30分撹拌した。反応の進行を確認した後、この反応混合物をそのままシリカゲルカラムクロマトグラフィーに供した。ジクロロメタン:メタノール=13:1で溶出された分画を回収し、目的とする脱トリチルされたT7量体11を180mg(0.065mmol)、86%収率にて得た。
ステップ8:5´-保護6量体ブロックマーアミダイトと5´-無保護-3´-フルオラスアンカー結合ヌクレオチド7量体との縮合による5´-保護ヌクレオチド13量体合成
Figure JPOXMLDOC01-appb-C000032
 化合物9(240mg,0.10mmol)と化合物11(210mg,0.076mmol)を混合後、真空乾燥させ、そこへアルゴン気流を充填し常圧にした。ここへモレキュラーシーブス3A(500mg)を加え、次いでジクロロメタン:アセトニトリル=1:1溶液(5mL)を加え、2時間撹拌した。そこへ5-エチル-1H-テトラゾール(40mg,0.30mmol)を加え、室温にて30分撹拌した。反応の進行を確認した後、31wt%2-ブタノンペルオキシド/ジイソ酪酸-2,2,4-トリメチル-1,3-ペンタン溶液(0.073mL,0.11mmol)を加え、反応を継続した。30分後、この反応混合物をセライト濾過し、溶液量が5mLになるまで濃縮したのち、シリカゲルカラムクロマトグラフィーに供した。ジクロロメタン:メタノール=9:1で溶出された分画を回収し、目的とするT13量体12を260mg(0.051mmol)、73%収率にて得た。
ステップ9:5´-保護ヌクレオチド13量体の5´-脱保護
Figure JPOXMLDOC01-appb-C000033
 化合物12(480mg,0.093mmol)をジクロロメタン:アセトニトリル=4:1溶液(4.5mL)を加え、溶解させた後、氷浴に浸し0°Cとした。そこへジクロロ酢酸(240mg,0.15mL,1.9mmol)を加え、30分撹拌した。反応の進行を確認した後、この反応混合物をそのままシリカゲルカラムクロマトグラフィーに供した。ジクロロメタン:メタノール=9:1で溶出された分画を回収し、目的とする脱トリチルされたT13量体13を240mg(0.050mmol)、52%収率にて得た。得られた化合物が、目的とする13量体であることは、得られた化合物の一部をアンモニア加水分解に供し、T13量体を示す分子イオンピーク[M-H3889.67(計算値3889.64)を観測したことにより確認している。
ステップ10:5´-保護6量体ブロックマーアミダイトと5´-無保護-3´-フルオラスアンカー結合ヌクレオチド13量体との縮合による5´-保護-3´-フルオラスアンカー結合ヌクレオチド19量体合成
Figure JPOXMLDOC01-appb-C000034
 化合物9(230mg,0.093mmol)と化合物13(300mg,0.062mmol)を混合後、真空乾燥させ、そこへアルゴン気流を充填し常圧にした。ここへモレキュラーシーブス3A(500mg)を加え、次いでジクロロメタン:アセトニトリル=1:1溶液(5mL)を加え、2時間撹拌した。そこへ5-エチル-1H-テトラゾール(32mg,0.25mmol)を加え、室温にて30分撹拌した。反応の進行を確認した後、31wt%2-ブタノンペルオキシド/ジイソ酪酸-2,2,4-トリメチル-1,3-ペンタン溶液(0.060mL,0.093mmol)を加え、反応を継続した。30分後、この反応混合物をセライト濾過し、溶液量が5mLになるまで濃縮したのち、シリカゲルカラムクロマトグラフィーに供した。ジクロロメタン:メタノール=6:1で溶出された分画を回収し、目的とする、5´-保護-リン酸保護-3´-フルオラスアンカー結合T19量体14を82mg(0.011mmol)、18%収率にて得た。
ステップ11:5´-保護-3´-フルオラスアンカー結合ヌクレオチド19量体合成の脱保護
Figure JPOXMLDOC01-appb-C000035
 化合物14を1% β-mercaptoethanolのメタノール:濃アンモニア水=1:1溶液に溶解させ、50°Cで12時間撹拌した。反応生成物を、市販の精製キットに供し、ジメトキシトリチル基の除去および精製を行うことで、目的とする化合物15が得られることを確認した。目的とする19量体であることは、T19量体を示す分子イオンピーク[M-H5714.00(分子式C1902473813118 ,計算値5713.91)を観測したことにより確認している。得られたT19量体15のUPLCスペクトルを図3に、ESI-TOFマススペクトルを図4に、それぞれ示した。
(実施例4)塩基部がフルオラス保護されたヌクレオシドを用いた11量体の合成
ステップ12:5´-保護-塩基部フルオラス保護ヌクレオシド-3´-アミダイトと5´-無保護-3´-保護-ヌクレオチド3量体との縮合による、塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド4量体合成
Figure JPOXMLDOC01-appb-C000036
 化合物16(1.05g,1.00mmol)と化合物4(1.34g,1.20mmol)をジクロロメタン-アセトニトリル1:1混合物(16mL)に溶かし、さらに1H-テトラゾール(350mg,5.00mmol)を加え撹拌した。15分後、31wt% 2-butanone peroxide(966μL,1.50mmol)を滴下して15分撹拌した。TLC(酢酸エチル100%)にて原料がほぼ消失したことを確認し、分液洗浄後、カラムクロマトグラフィーに供し、目的とする5´,3´-保護ヌクレオチド4量体17を得た(1.93g,0.93mmol,93%収率,純度97%)。構造は31PNMR、ESI-MSにより、純度はUPLCにて確認した)。
ステップ13:塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド4量体の3´-脱保護
Figure JPOXMLDOC01-appb-C000037
 5´,3´-保護ヌクレオチド4量体17(1.87g,0.900mmol)に酢酸(51.4μL,0.900mmol)を加え0℃まで冷却した。1.0M TBAF in THF(1.80mL,1.80mmol)を滴下して3時間撹拌した。TLC(酢酸エチル=100%)にて原料がほぼ消失したことを確認し、分液洗浄後、カラムクロマトグラフィーに供し、目的とする3´-脱保護4量体18を得た(1.35g,0.689mmol,76.7%収率,純度93%)。構造は31PNMR、ESI-MSにより、純度はUPLCにて確認した。
ステップ14:塩基部フルオラス保護ヌクレオシドを含む5´-保護ヌクレオチド4量体の3´-アミダイト化
Figure JPOXMLDOC01-appb-C000038
 化合物18(1.27g,0.65mmol)をジクロロメタン-アセトニトリル1:1混合物(16mL)に溶かし、さらに1H-テトラゾール(59.0mg,0.845mmol)とN-メチルイミダゾール(21.0μL,0.260mmol)を加え、0℃にした。15分後、アリル-N,N,N’,N’-テトライソプロピルホスホロアミダイト(469μL,1.63mmol)を滴下して加えた。4日後、TLC(ヘキサン:酢酸エチル=2:1)にて原料がほぼ消失したことを確認し、反応混合液をそのままカラムクロマトグラフィーに供し、目的とする4量体アミダイト体19を得た(0.873g,0.40mmol,62.6%収率,純度98.3%)。構造はESI-MSにより、純度はUPLCにて確認した。
ステップ15:塩基部フルオラス保護ヌクレオシドを含む5´-保護ヌクレオチド4量体3´-アミダイトと5´-無保護-3´-保護ヌクレオチド3量体との縮合による、塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド7量体合成
Figure JPOXMLDOC01-appb-C000039
 化合物16(0.537g,0.25mmol)と4量体アミダイト19(0.288g,0.275mmol)をジクロロメタン-アセトニトリル1:1混合物(5mL)に溶かし、さらに5-エチルチオ-1H-テトラゾール(70.1mg,1.00mmol)を加え撹拌した。90分後、31wt% 2-butanone peroxide(241μL,0.375mmol)を滴下して60分撹拌した。TLC(酢酸エチル:メタノール=9:1)にて原料がほぼ消失したことを確認し、分液洗浄後、カラムクロマトグラフィーに供し、目的とする7量体20を得た(0.655g,0.211mmol,84.3%収率,純度96.7%)。構造はESI-MSにより、純度はUPLCにて確認した。
ステップ16:塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド7量体の5´-脱保護
Figure JPOXMLDOC01-appb-C000040
 化合物20(0.655g,0.211mmol)にジクロロメタン(4mL)を加え0℃まで冷却した。ジクロロ酢酸(0.349mL,4.22mmol)を滴下して30分撹拌した。TLC(酢酸エチル:メタノール=9:1)にて原料がほぼ消失したことを確認し、反応液をカラムクロマトグラフィーに供し、目的とする5´-無保護7量体21を得た(0.468g,0.689mmol,79.1%収率,純度92.4%)。純度はUPLCにて確認した。
ステップ17:塩基部フルオラス保護ヌクレオシドを含む5´-保護ヌクレオチド4量体3´-アミダイトと塩基部フルオラス保護ヌクレオシドを含む5´-無保護-3´-保護ヌクレオチド7量体との縮合による、塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド11量体合成
Figure JPOXMLDOC01-appb-C000041
 5´-無保護7量体21(0.311g,0.100mmol)と4量体アミダイト19(0.236g,0.110mmol)をジクロロメタン-アセトニトリル1:1混合物(2mL)に溶かし、さらに1H-テトラゾール(42.0mg,6.00mmol)およびN-メチルイミダゾール(16μL,0.200mmol)を加え撹拌した。90分後、31wt% 2-butanone peroxide(100μL,0.150mmol)を滴下して60分撹拌した。TLC(酢酸エチル:メタノール=9:1)にて原料がほぼ消失したことを確認し、分液洗浄後、カラムクロマトグラフィーに供し、目的とする塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド11量体22を得た(0.450g,0.0920mmol,92%収率,純度96.7%)。純度はUPLCにて確認した。UPLCスペクトルを図5に示した。
 得られた塩基部フルオラス保護ヌクレオシドを含む5´,3´-保護ヌクレオチド11量体22に対して汎用される方法で脱保護を行うことで、保護基を除去したヌクレオチド11量体を得ることができる。
 従来法で合成したdTA19配列を有するヌクレオチド20量体の脱保護後の純度と、本発明のフルオラスタグを用いた合成法によって合成したdTA19配列を有するヌクレオチド20量体の脱保護後の純度とを比較したUPLCスペクトルを図6に示す。(a)が従来法で合成したdTA1920量体のスペクトル、(b)が本発明のフルオラスタグを5´-末端Tの塩基部分に有するdTA1920量体のスペクトルである。フルオラスタグを残した状態となるように脱保護を行い、精製に供したことで、従来法で合成した20量体よりも高い純度で20量体が得られたことが分かる。フルオラスタグが有する高い脂溶性により、分離精製にあたって保持時間が大きく変わることで、従来法よりも簡便に単離精製を行うことができることが示された。
 本実施形態のマルチフルオラスブロックマーは、市販されているフッ化炭素誘導体をそのまま用いてフルオラスアンカーを導入することで合成することができる。また、目的に応じて、フルオラスアンカー中のフッ素の数を変更することが容易に可能である。このため、目的とするフルオラスタグを得るために複雑な工程を必要とする、従来法によるヌクレオシドへのフルオラスタグ導入よりも、低コストかつ容易に目的物を得ることができる。
 また、先述したような問題に起因して、従来法によるヌクレオシドへのフルオラスタグ導入は、フルオラスタグの導入数に制限があり、汎用性が高くない。これに対して、本実施形態のマルチフルオラスブロックマーの合成は、フルオラスアンカーの導入数を調製することで、オリゴヌクレオチド合成の中間体の溶解性や、精製負荷を低減することができる。これにより、より汎用性が高い合成法とすることができる。また、フルオラスタグは、合成するブロックマーやオリゴヌクレオチドの長さや配列に応じて、ヌクレオシド塩基部分に導入したり,ヌクレオシドの3´-末端の保護基に導入することができる。
 また、本実施形態のマルチフルオラスブロックマーを用いたオリゴヌクレオチド合成方法は、ブロックマーの段階で酸化/硫化した5価のリン酸結合部分を形成しておくことができる。したがって、オリゴヌクレオチド中の一部のリン酸結合のみを他の部分のリン酸結合と異なる酸化/硫化状態とする場合においても、オリゴヌクレオチド合成の手順を変えることなく、より簡便に、目的とする修飾されたリン酸結合部分を含むオリゴヌクレオチドを合成することができる。
 また、これまでに用いられているフルオラスタグを導入したブロックマーは、そのフルオラスタグの物性に影響を受けることで、オリゴヌクレオチド合成における鎖長伸張時の精製方法が煩雑となっていた。これに対し、マルチフルオラスブロックマーの合成方法およびマルチフルオラスブロックマーを用いたオリゴヌクレオチド合成方法は、その鎖長に応じて、シリカゲル濾過、アフィニティクロマトグラフィーによる精製、フルオラス溶媒-炭化水素系有機溶媒での分配など、精製方法の選択の自由度が大きい。このため、従来法によるフルオラスタグを用いたオリゴヌクレオチド合成方法よりも、より簡便な精製で目的とするオリゴヌクレオチドを得ることができる。
 また、本実施形態のマルチフルオラスブロックマーを用いたオリゴヌクレオチド合成方法によれば、同じN量体のオリゴヌクレオチドを合成するにあたって、汎用されてきた液相合成法で1塩基ずつ伸長を行う方法と比べて、必要となる工程数を減らすことができる。したがって、目的とする長さのオリゴヌクレオチドの収率を向上させることができる。

Claims (5)

  1.  下記式(I)で表されるヌクレオシド保護体であって、
    Figure JPOXMLDOC01-appb-C000001
     前記式(I)中、Bは天然型または修飾ヌクレオシド塩基であり;R、Rは、独立して、Hまたは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する、ヌクレオシド保護体。
  2.  下記式(II)で表される5´-末端保護ヌクレオシドホスホロアミダイトであって、
    Figure JPOXMLDOC01-appb-C000002
     前記式(II)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性、または中性条件下で脱保護可能な保護基であり;Rは、リン酸基の保護基であるか、または、Rとリン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成する、5´-末端保護ヌクレオシドホスホロアミダイト。
  3.  下記式(III)で表されるフルオラスブロックマーアミダイトであって、
    Figure JPOXMLDOC01-appb-C000003
     前記式(III)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸基の保護基であるか、または、Rと、アミダイト部分を形成するリン原子に結合する窒素原子に結合するRの一つとが結合して形成される環であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;pは0~27の整数であり;;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成し;ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する、フルオラスブロックマーアミダイト。
  4.   下記式(IV)で表されるマルチフルオラスブロックマーであって、
    Figure JPOXMLDOC01-appb-C000004
     前記式(IV)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;Rは、リン酸基の保護基であり;Proは、無保護、ヌクレオシド塩基の保護基またはF-protectorであって、F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;XはOまたはSであり;lは0から58の整数であり;Rは、(C=O)(CH(C=O)(CH)n(CF)mCFまたはシリル系保護基であり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成し;ProまたはR,Rのいずれかにおいて、少なくとも一つのF-protectorを有する、マルチフルオラスブロックマー。
  5.  請求項3に記載の上記式(III)で表されるフルオラスブロックマーアミダイトまたは、下記式(II´)で表される、5´-末端保護ヌクレオシドH-ホスホネートと、下記式(V)で表される3´-末端にフルオラスアンカーが結合したヌクレオシドとをカップリング反応させる工程を含む、請求項4に記載の下記式(VI)で表されるマルチフルオラスブロックマーの合成方法であって、
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
     上記式(II´)および式(V)中、Bは天然型または修飾ヌクレオシド塩基であり;Rは、酸性、塩基性または中性条件下で脱保護可能な保護基であり;F-protectorは、ヌクレオシド塩基Bの被保護部がOである場合にはO(CH(CFCFであり、ヌクレオシド塩基Bの被保護部がNである場合にはNH(C=O)(CH(CFCFであり、nは1または2であり、mは1~20の整数であり;Yは、H、OH、ハロゲン、OCH、メトキシエチル、CN、CF3、または、アシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であり;Zは、H、アルキル、O-アルキル、N-アルキル、ハロゲンであるか、または、前記Yとの間でZ-Y結合を形成し;Rは、(C=O)(CH(C=O)(CH)n(CF)mCFまたはシリル系保護基であり、nは1または2である、マルチフルオラスブロックマーの合成方法。
PCT/JP2020/020203 2019-05-21 2020-05-21 オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法 WO2020235658A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080037793.8A CN113924309A (zh) 2019-05-21 2020-05-21 寡核苷酸合成中使用的多氟嵌段聚体以及使用其的寡核苷酸合成方法
EP20809071.2A EP3960749A4 (en) 2019-05-21 2020-05-21 MULTIFLUORINE BLOCKERS FOR OLIGONUCLEOTIDE SYNTHESIS AND METHODS OF OLIGONUCLEOTIDE SYNTHESIS USING THE SAME
US17/595,613 US20220235089A1 (en) 2019-05-21 2020-05-21 Multi-Fluorous Blockmer for Oligonucleotide Synthesis, and Oligonucleotide Synthesis Method Using the Same
JP2021520862A JP7393807B2 (ja) 2019-05-21 2020-05-21 オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法
KR1020217038369A KR20220002469A (ko) 2019-05-21 2020-05-21 올리고뉴클레오티드 합성에 사용하는 멀티플루오로스블록머 및 이를 사용한 올리고뉴클레오티드 합성방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-095591 2019-05-21
JP2019095591 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235658A1 true WO2020235658A1 (ja) 2020-11-26

Family

ID=73458301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020203 WO2020235658A1 (ja) 2019-05-21 2020-05-21 オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法

Country Status (6)

Country Link
US (1) US20220235089A1 (ja)
EP (1) EP3960749A4 (ja)
JP (1) JP7393807B2 (ja)
KR (1) KR20220002469A (ja)
CN (1) CN113924309A (ja)
WO (1) WO2020235658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172994A1 (ja) 2021-02-12 2022-08-18 味の素株式会社 オリゴヌクレオチドの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210317158A1 (en) * 2018-05-02 2021-10-14 Natias Inc. Optically active segment for use in synthesis of stereocontrolled oligonucleotide, method for producing the same, and method for synthesizing stereocontrolled oligonucleotide using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070859A1 (ja) 2004-01-27 2005-08-04 Takeshi Wada フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
JP2008516938A (ja) * 2004-10-15 2008-05-22 アストラゼネカ アクチボラグ 置換アデニンとその使用
JP2009541438A (ja) * 2006-06-27 2009-11-26 ビオヴィトルム・アクチボラゲット(プブリクト) 治療用化合物
JP2014510743A (ja) * 2011-03-31 2014-05-01 シェファー、コンスタンツェ 核酸の非ウイルスの導入のためのパーフルオロ化化合物
WO2017086397A1 (ja) 2015-11-17 2017-05-26 日産化学工業株式会社 オリゴヌクレオチドの製造方法
WO2019042888A1 (de) * 2017-08-27 2019-03-07 Caperis Gmbh Perfluorierte nukleinsäuren als tenside mit spezifischen eigenschaften

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178507A1 (en) * 2004-12-30 2006-08-10 Berry & Associates, Inc. Fluorous oligonucleotide reagents and affinity purification of oligonucleotides
JP7431723B2 (ja) * 2017-08-18 2024-02-15 アジレント・テクノロジーズ・インク オリゴヌクレオチドのアフィニティー精製のためのオルトエステル組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070859A1 (ja) 2004-01-27 2005-08-04 Takeshi Wada フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
JP2008516938A (ja) * 2004-10-15 2008-05-22 アストラゼネカ アクチボラグ 置換アデニンとその使用
JP2009541438A (ja) * 2006-06-27 2009-11-26 ビオヴィトルム・アクチボラゲット(プブリクト) 治療用化合物
JP2014510743A (ja) * 2011-03-31 2014-05-01 シェファー、コンスタンツェ 核酸の非ウイルスの導入のためのパーフルオロ化化合物
WO2017086397A1 (ja) 2015-11-17 2017-05-26 日産化学工業株式会社 オリゴヌクレオチドの製造方法
WO2019042888A1 (de) * 2017-08-27 2019-03-07 Caperis Gmbh Perfluorierte nukleinsäuren als tenside mit spezifischen eigenschaften

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960749A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172994A1 (ja) 2021-02-12 2022-08-18 味の素株式会社 オリゴヌクレオチドの製造方法

Also Published As

Publication number Publication date
JP7393807B2 (ja) 2023-12-07
CN113924309A (zh) 2022-01-11
KR20220002469A (ko) 2022-01-06
EP3960749A1 (en) 2022-03-02
EP3960749A4 (en) 2023-02-22
US20220235089A1 (en) 2022-07-28
JPWO2020235658A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
EP2753607B1 (en) Bicyclo[6.1.0]non-4-yne reagents for chemical modification of oligonucleotides
JP2552048B2 (ja) ヌクレオチド鎖合成用試薬
JP7075680B2 (ja) オリゴヌクレオチド合成用セグメントおよびその製造方法、ならびにそれを用いたオリゴヌクレオチドの合成方法
JP5698206B2 (ja) ローダミン標識されたオリゴヌクレオチドを合成するために有用な試薬
EP2921499B1 (en) Method for liquid-phase synthesis of nucleic acids
JP3188243B2 (ja) 5’−修飾オリゴヌクレオチド
US20090012279A1 (en) Polynucleotide labeling reagent
CN112533892B (zh) 烷氧基苯基衍生物、核苷保护体和核苷酸保护体、寡核苷酸制造方法以及取代基除去方法
JPH01301691A (ja) 新規ヌクレオチド誘導体
WO2020235658A1 (ja) オリゴヌクレオチド合成に用いるマルチフルオラスブロックマーおよびこれを用いたオリゴヌクレオチド合成方法
US5623068A (en) Synthesis of DNA using substituted phenylacetyl-protected nucleotides
KR20030032924A (ko) 포스포로티오에이트 트리에스테르의 제조 방법
JP2794461B2 (ja) ホスホアミダイト化合物及びそれを用いたオリゴリボヌクレオチドの固相合成法
JP2024009042A (ja) 核酸化合物の製造方法、及び、核酸化合物
JPWO2020235658A5 (ja)
WO2020158687A1 (ja) 光応答性ヌクレオチドアナログの製造方法
JPWO2021039935A5 (ja)
JP7229539B2 (ja) 高脂溶性ホスホラミダイトの製造
JP7075681B2 (ja) 立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法
JPS6251695A (ja) ホスホロアミダイト類の合成法
WO2021080021A1 (ja) オリゴヌクレオチドを製造する方法
PL221806B1 (pl) Sposób wprowadzania acetalowych i acetaloestrowych grup ochronnych oraz związki do realizacji tego sposobu
JP2003292499A (ja) オリゴヌクレオチドの化学的合成法
Cramer et al. Nucleotides, Part LX, Synthesis and Characterization of New 2′‐O‐Methylriboside 3′‐O‐Phosphoramidites Useful for the Solid‐Phase Synthesis of 2′‐O‐Methyloligoribonucleotides
PL222577B1 (pl) Sposób ochrony funkcji hydroksylowych lub aminowych nowe związki do realizacji tego sposobu oraz sposób otrzymywania nowych związków

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038369

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020809071

Country of ref document: EP

Effective date: 20211122