WO2017077904A1 - 発光素子の駆動方法および発光装置 - Google Patents

発光素子の駆動方法および発光装置 Download PDF

Info

Publication number
WO2017077904A1
WO2017077904A1 PCT/JP2016/081540 JP2016081540W WO2017077904A1 WO 2017077904 A1 WO2017077904 A1 WO 2017077904A1 JP 2016081540 W JP2016081540 W JP 2016081540W WO 2017077904 A1 WO2017077904 A1 WO 2017077904A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
emitting element
light emitting
formula
substituent
Prior art date
Application number
PCT/JP2016/081540
Other languages
English (en)
French (fr)
Inventor
浩平 浅田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187015276A priority Critical patent/KR20180081083A/ko
Priority to CN201680062514.7A priority patent/CN108353479B/zh
Priority to EP16861966.6A priority patent/EP3373701A4/en
Priority to US15/770,806 priority patent/US10810929B2/en
Priority to JP2017516975A priority patent/JP6332557B2/ja
Publication of WO2017077904A1 publication Critical patent/WO2017077904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a driving method of a light emitting element and a light emitting device.
  • Organic electroluminescence elements (hereinafter also referred to as “light-emitting elements”) can be suitably used for display and lighting applications, and are actively researched and developed.
  • This light-emitting element includes organic layers such as a light-emitting layer and a charge transport layer.
  • a light emitting element has a light emission efficiency that decreases with the lapse of driving time, and that the light emission luminance decreases with a decrease in the light emission efficiency. Is short).
  • Patent Document 1 discloses a hole transport layer made of a hole transport material (specifically, a triphenyldiamine derivative) which is a low molecular compound and a light emitting material (specifically, tris (8 -A light emitting device having a light emitting layer made of (quinolinolate) aluminum complex) is alternately switched between a forward bias voltage (voltage in the direction in which the light emitting device emits light) and a reverse bias voltage (voltage in the direction in which the light emitting device emits light and in the reverse direction). It is described that the method of driving with the pulse voltage switched to the above can improve the luminance life of the light emitting element as compared with the method of driving with DC voltage.
  • a hole transport material specifically, a triphenyldiamine derivative
  • a light emitting material specifically, tris (8 -A light emitting device having a light emitting layer made of (quinolinolate) aluminum complex
  • Patent Document 2 discloses an anode buffer layer made of a conductive material that is a polymer compound (specifically, PEDOT / PSS (polyethylenedioxythiophene doped with polythiophene / sulfonic acid)), and a polymer compound.
  • a method of driving a light emitting element having a light emitting layer made of a light emitting material (specifically, a polyfluorene derivative, a polyphenylene derivative, etc.) with a pulse voltage obtained by alternately switching a forward bias voltage and a reverse bias voltage is It is described that the luminance life of the light emitting element can be improved as compared with the method of driving with a DC voltage.
  • the luminance life obtained by the driving method of the light emitting element is not always sufficient.
  • an object of the present invention is to provide a driving method of a light emitting element, which is excellent in luminance life.
  • Another object of the present invention is to provide a light emitting device including a light emitting element and a driving device for the driving method.
  • the present invention provides the following [1] to [13].
  • an anode A cathode, A light emitting layer provided between the anode and the cathode; A light-emitting element provided between the anode and the light-emitting layer and having a hole transport layer containing a cross-linked body of a cross-linking material, A driving method of a light emitting element, wherein the first voltage equal to or higher than the light emission starting voltage of the light emitting element and the second voltage lower than the light emission starting voltage of the light emitting element are driven by a pulse voltage that is alternately switched.
  • cross-linking material is a polymer compound including a structural unit represented by the formula (X) and a structural unit having a cross-linking group.
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R X2 and R X3 are present, they may be the same or different.
  • Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • L A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of LA are present, they may be the same or different.
  • X represents a crosslinking group selected from the crosslinking group A group.
  • X When two or more X exists, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents an integer of 0 or 1.
  • Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3, and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom, to form a ring.
  • K A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X ′ is a crosslinking group selected from the crosslinking group A group.
  • the polymer compound including the structural unit represented by the formula (X) and the structural unit having the crosslinking group further includes a structural unit represented by the formula (Y). 4] The method for driving a light-emitting element according to any one of [4].
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the cross-linking material is The method for driving a light-emitting element according to [1], which is a polymer compound including a structural unit represented by the formula (3). [Where: mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents an integer of 0 or 1. When a plurality of mA are present, they may be the same or different.
  • Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3, and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom, to form a ring. It may be.
  • K A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of K A When a plurality of K A are present, they may be the same or different.
  • X ′ represents a bridging group selected from the above bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. . However, at least one X ′ is a crosslinking group selected from the above-mentioned crosslinking group A group.
  • the polymer compound including the structural unit represented by the formula (3) further includes a structural unit represented by the formula (Y).
  • the cross-linking material is The manufacturing method of the light emitting element as described in [1] which is a low molecular compound represented by Formula (Z).
  • m B1 and m B2 each independently represent an integer of 0 or more.
  • a plurality of m B1 may be the same or different.
  • n B1 represents an integer of 0 or more. When a plurality of n B1 are present, they may be the same or different.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be. When a plurality of Ar 5 are present, they may be the same or different.
  • L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups have a substituent. Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • L B1 When a plurality of L B1 are present, they may be the same or different.
  • X ′′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Good.
  • a plurality of X ′′ may be the same or different. However, at least one of a plurality of X ′′ is a crosslinking group selected from the above-mentioned crosslinking group A group.
  • [9] Any of [1] to [8], wherein the first voltage is a forward bias voltage, the second voltage is a reverse bias voltage, and the polarities of the first voltage and the second voltage are different.
  • anode A cathode, A light emitting layer provided between the anode and the cathode; A light emitting device provided between the anode and the light emitting layer and having a hole transport layer containing a crosslinked material of a crosslinking material;
  • a light-emitting device comprising: a driving device that is driven by a pulse voltage obtained by alternately switching a first voltage that is equal to or higher than a light emission start voltage of the light-emitting element and a second voltage that is lower than the light emission start voltage of the light-emitting element.
  • a driving method for a light emitting element which is excellent in luminance life. Further, according to the present invention, it is possible to provide a light emitting device including a light emitting element and a driving device for the driving method.
  • FIG. 2 shows a waveform of a pulse voltage in the method for driving a light emitting element of the present invention.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroethyl group,
  • Fluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3- (4-methylphenyl) propyl group, 3- ( 3,5-Di-hexylphenyl) propyl group and 6-ethyloxyhexyl group may be mentioned.
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom or the like.
  • P-valent heterocyclic group (p represents an integer of 1 or more) is a p-group of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom.
  • this is an atomic group obtained by removing p hydrogen atoms from an aromatic heterocyclic compound directly bonded to carbon atoms or heteroatoms constituting the ring.
  • a “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and a group in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and cycloalkynyl group may have a substituent, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent, for example, phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of forming a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the present invention A light-emitting element having an anode, a cathode, a light-emitting layer provided between the anode and the cathode, and a hole-transporting layer provided between the anode and the light-emitting layer and containing a crosslinked material of a crosslinking material,
  • This is a driving method of a light emitting element that is driven by a pulse voltage obtained by alternately switching a first voltage equal to or higher than the light emission start voltage of the light emitting element and a second voltage lower than the light emission start voltage of the light emitting element.
  • the light emission starting voltage of the light emitting element is usually 2V to 4V. That is, the first voltage equal to or higher than the light emission start voltage of the light emitting element is a forward bias voltage.
  • the second voltage lower than the light emission start voltage of the light emitting element may be a forward bias voltage or a reverse bias voltage as long as it is lower than the light emission start voltage of the light emitting element, but is driven by the driving method of the present invention. Since the luminance lifetime of the light emitting element is more excellent, a reverse bias voltage is preferable.
  • the first voltage is a forward bias voltage
  • the second voltage is a reverse bias voltage
  • the first voltage and the second voltage It is preferable that the polarities of these are different.
  • the second voltage is preferably ⁇ 15 V or more and less than 0 V, more preferably ⁇ 10 V or more and ⁇ 5 V or less because the luminance life of the light emitting element driven by the driving method of the present invention is more excellent.
  • the waveform of the pulse voltage obtained by alternately switching the first voltage and the second voltage is usually a rectangular wave.
  • the frequency of the pulse voltage is preferably 0.1 Hz or more and 100 Hz or less because the luminance life of the light emitting element driven by the driving method of the present invention is more excellent.
  • the pulse width of the first voltage: T1 is usually 0.5 msec to 9500 msec, and preferably 5 msec to 9000 msec.
  • the pulse width of the second voltage: T2 is usually 0.5 msec to 9500 msec, preferably 5 msec to 500 msec.
  • the pulse width of the first voltage: T1 and the pulse width of the second voltage: T2 satisfy the equation (1-1) because the luminance life of the light emitting element driven by the driving method of the present invention is more excellent. It is preferable that the formula (1-2) is satisfied, and it is more preferable that the formula (1-3) is satisfied. 0.05 ⁇ T1 / (T1 + T2) ⁇ 0.95 (1-1) 0.50 ⁇ T1 / (T1 + T2) ⁇ 0.95 (1-2) 0.75 ⁇ T1 / (T1 + T2) ⁇ 0.90 (1-3)
  • the light emitting layer is a layer containing a light emitting material.
  • the light emitting material contained in the light emitting layer may be contained alone or in combination of two or more.
  • the light emitting material is classified into a fluorescent light emitting material and a phosphorescent light emitting material.
  • the light emitting material may have a crosslinking group.
  • fluorescent material examples include naphthalene and derivatives thereof, anthracene and derivatives thereof, and perylene and derivatives thereof.
  • Examples of the fluorescent light-emitting material that is a polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthrene diyl group, a group represented by the formula (X) described later, a carbazole diyl group, High molecular compounds containing a phenoxazinediyl group, a phenothiazinediyl group, an anthracenediyl group, a pyrenediyl group, and the like can be given.
  • the fluorescent light-emitting material that is a polymer compound is a polymer compound that includes at least one structural unit selected from the group consisting of a structural unit represented by formula (X) and a structural unit represented by formula (Y). It is preferable that the polymer compound includes a structural unit represented by the formula (X) and a structural unit represented by the formula (Y).
  • a X1 is preferably an integer of 2 or less, more preferably 1, because the light emitting device has excellent luminous efficiency.
  • a X2 is preferably an integer of 2 or less, more preferably 0, because the light emitting device has excellent light emission efficiency.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), more preferably a formula (A-1). These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by the formula (AA-1), the formula (AA-2) or the formula (AA-7)-(AA-26). These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • Further preferred ranges are the same as the more preferred ranges and further preferred ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • Examples of the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded include groups represented by the following formulae: These may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1)-(X-7), more preferably the formula (X-1)-(X-6) And more preferably a structural unit represented by the formula (X-3)-(X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) is preferably 0.1 to 50 mol% with respect to the total amount of the structural units contained in the polymer compound because the hole transport property of the light emitting device is excellent.
  • the amount is preferably 1 to 40 mol%, more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1)-(X1-11), preferably the formula (X1-3)-(X1-10). ).
  • the structural unit represented by the formula (X) may be included in the polymer compound alone or in combination of two or more.
  • the arylene group represented by Ar Y1 is more preferably the formula (A-1), the formula (A-2), the formula (A-6)-(A-10), the formula (A-19) or the formula (A A-20), more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a formula (AA-1)-(AA-4), a formula (AA-10)-(AA-15), a formula (AA-18) -(AA-21), a group represented by formula (AA-33) or formula (AA-34), and more preferably a group represented by formula (AA-4), formula (AA-10), formula (AA- 12) a group represented by formula (AA-14) or formula (AA-33), and these groups may have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the above-mentioned arylene group and divalent heterocyclic group represented by Ar Y1 .
  • the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded at least represented by Ar X2 and Ar X4 in the formula (X) Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1)-(Y-10). From the viewpoint of the luminance life of the light emitting element, the structural unit is preferably (Y-1)-(Y-3) is a structural unit represented by the formula (Y-4)-(Y-7), preferably from the viewpoint of electron transport properties of the light-emitting element From the viewpoint of light emission efficiency and hole transportability of the light emitting element, it is preferably a structural unit represented by the formula (Y-8)-(Y-10).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both are aryl groups, and both are monovalent complex A cyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group. May have a substituent.
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R Y2 forms a ring
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1)-(Y-A5), more preferably a group represented by the formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1)-(Y-B5), more preferably a group represented by the formula (Y-B3), and these groups are substituted. It may have a group.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • the structural unit represented by the formula (Y-3) is preferably a structural unit represented by the formula (Y-3 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • the structural unit represented by the formula (Y-4) is preferably a structural unit represented by the formula (Y-4 ′), and the structural unit represented by the formula (Y-6) is represented by the formula (Y -6 ′) is preferred.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • a structural unit represented by the formula (Y) for example, a structural unit comprising an arylene group represented by the formula (Y-101)-(Y-121), a formula (Y-201)-(Y-206)
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is preferable with respect to the total amount of the structural units contained in the polymer compound because the luminance life of the light-emitting element is excellent. Is 0.5 to 90 mol%, more preferably 30 to 80 mol%.
  • the structural unit which is a group is preferably 0.5 to 50 mol% with respect to the total amount of the structural units contained in the polymer compound, because the light emitting device has excellent luminous efficiency, hole transportability or electron transportability. More preferably, it is 3 to 30 mol%.
  • the structural unit represented by the formula (Y) may be included in the polymer compound alone or in combination of two or more.
  • Examples of the polymer compound that is a fluorescent light emitting material include polymer compounds (P-101) to (P-107) shown in Table 1.
  • the other structural unit means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X).
  • At least one structural unit selected from the group consisting of a structural unit represented by the formula (Y-8), a structural unit represented by the formula (Y-9), and a structural unit represented by the formula (Y-10) It is preferably a polymer compound containing More preferably, it is a polymer compound containing at least one structural unit selected from the group consisting of a structural unit represented by the formula (Y-8) and a structural unit represented by the formula (Y-9), A polymer compound containing a structural unit represented by the formula (Y-8) is more preferable.
  • a polymer compound that is a fluorescent material As a structural unit other than the structural unit represented by the formula (Y-8), the structural unit represented by the formula (Y-9) and the structural unit represented by the formula (Y-10), From the structural unit represented by the formula (Y-1), the structural unit represented by the formula (Y-2), the structural unit represented by the formula (Y-3), and the structural unit represented by the formula (X) It is preferably a polymer compound containing at least one structural unit selected from the group consisting of Including at least one structural unit selected from the group consisting of a structural unit represented by formula (Y-1), a structural unit represented by formula (Y-2), and a structural unit represented by formula (X) More preferably a polymer compound, More preferably, the polymer compound includes at least one structural unit selected from the group consisting of a structural unit represented by the formula (Y-2) and a structural unit represented by the formula (X), A polymer compound containing a structural unit represented by the formula (Y-2) and a structural unit represented by the formula (X
  • phosphorescent material examples include triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
  • iridium complexes such as metal complexes represented by the formulas Ir-1 to Ir-5 are preferable.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryl It represents an oxy group, a monovalent heterocyclic group or a halogen atom, and these groups optionally have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 may be the same or different.
  • a D1 ——A D2 — represents an anionic bidentate ligand, and A D1 and A D2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom bonded to an iridium atom, The atom may be an atom constituting a ring. When a plurality of -A D1 --- A D2 -are present, they may be the same or different. n D1 represents 1, 2 or 3, and n D2 represents 1 or 2. ]
  • At least one of R D1 to R D8 is preferably a group represented by the formula (DA).
  • R D11 to R D20 is a group represented by the formula (DA).
  • R D1 to R D8 and R D11 to R D20 is a group represented by the formula (DA).
  • R 21 to R D26 is a group represented by the formula (DA).
  • R D31 to R D37 is a group represented by the formula (DA).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 and m DA3 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 and m DA3 are preferably the same integer.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ (GDA -15), these groups may have a substituent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by the formulas (ArDA-1) to (ArDA-3).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ (TDA -3).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (D-A) is preferably a group represented by the formulas (D-A1) to (D-A3).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • a plurality of np1 may be the same or different.
  • Np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and still more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • Examples of the anionic bidentate ligand represented by —A D1 ——A D2 — include a ligand represented by the following formula.
  • the metal complex represented by the formula Ir-1 is preferably a metal complex represented by the formulas Ir-11 to Ir-13.
  • the metal complex represented by the formula Ir-2 is preferably a metal complex represented by the formula Ir-21.
  • the metal complex represented by the formula Ir-3 is preferably a metal complex represented by the formula Ir-31 to Ir-33.
  • the metal complex represented by the formula Ir-4 is preferably a metal complex represented by the formula Ir-41 to Ir-43.
  • the metal complex represented by the formula Ir-5 is preferably a metal complex represented by the formula Ir-51 to Ir-53.
  • D represents a group represented by the formula (DA).
  • a plurality of D may be the same or different.
  • R DC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DCs may be the same or different.
  • R DD represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DD may be the same or different.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the phosphorescent material is excellent in luminous efficiency of the light emitting device when used in combination with a host material having at least one function selected from the group consisting of hole transporting property, hole injecting property, electron transporting property and electron injecting property. It will be a thing. That is, when the light emitting layer contains a phosphorescent light emitting material, the light emitting layer preferably contains a phosphorescent light emitting material and a host material. When a light emitting layer contains a host material, the host material may be contained individually by 1 type and may be contained 2 or more types.
  • the content of the phosphorescent material is usually 0.05 to 80 parts by weight when the total content of the phosphorescent material and the host material is 100 parts by weight. Preferably, it is 0.1 to 50 parts by weight, and more preferably 0.5 to 40 parts by weight.
  • the lowest excited triplet state (T 1 ) of the host material is excellent in luminous efficiency of the light-emitting element, and thus is preferably an energy level equivalent to or higher than T 1 of the phosphorescent light-emitting material. .
  • Host materials are classified into low molecular weight compounds (hereinafter also referred to as “low molecular weight hosts”) and high molecular weight compounds (hereinafter also referred to as “high molecular weight hosts”), which are either low molecular weight hosts or high molecular weight hosts. However, it is preferably a polymer host.
  • Examples of the low molecular weight host include a compound having a carbazole structure, a compound having a triarylamine structure, a compound having a phenanthroline structure, a compound having a triaryltriazine structure, a compound having an azole structure, a compound having a benzothiophene structure, and a benzofuran
  • Examples thereof include compounds having a structure, compounds having a fluorene structure, and compounds having a spirofluorene structure.
  • low molecular weight host examples include compounds represented by the following formula.
  • the polymer host is preferably a polymer compound containing at least one structural unit selected from the group consisting of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y).
  • a structural unit represented by the formula (Y-4), a structural unit represented by the formula (Y-5), a structural unit represented by the formula (Y-6), and a structure represented by the formula (Y-7) It is preferably a polymer compound containing at least one structural unit selected from the group consisting of units, More preferably, it is a polymer compound containing at least one structural unit selected from the group consisting of a structural unit represented by the formula (Y-4) and a structural unit represented by the formula (Y-6), A polymer compound containing a structural unit represented by the formula (Y-4) is more preferable.
  • the polymer host includes a structural unit represented by the formula (Y-4), a structural unit represented by the formula (Y-5), a structural unit represented by the formula (Y-6), and the formula (Y As a structural unit other than the structural unit represented by -7), From the structural unit represented by the formula (Y-1), the structural unit represented by the formula (Y-2), the structural unit represented by the formula (Y-3), and the structural unit represented by the formula (X) It is preferably a polymer compound containing at least one structural unit selected from the group consisting of Including at least one structural unit selected from the group consisting of a structural unit represented by formula (Y-1), a structural unit represented by formula (Y-2), and a structural unit represented by formula (X) A polymer compound is more preferable.
  • the polymer compound and the polymer host, which are fluorescent materials can be produced using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pages 897-1091 (2009), etc. Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as Suzuki reaction, Yamamoto reaction, Buchwald reaction, Stille reaction, Negishi reaction and Kumada reaction.
  • a method of charging the monomer a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • transition metal catalysts examples include palladium catalysts and nickel catalysts.
  • the post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • these methods are performed alone or in combination.
  • the purity of the polymer compound is low, it can be purified by a usual method such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the light emitting layer includes the above light emitting material and at least one material selected from the group consisting of the above host material, hole transport material, hole injection material, electron transport material, electron injection material, and antioxidant. It may be a layer containing a composition (hereinafter also referred to as “a composition of a light emitting layer”).
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight when the light emitting material is 100 parts by weight.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Low molecular weight compounds include, for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. As well as these derivatives.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight, when the light emitting material is 100 parts by weight.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
  • the compounding amounts of the hole injecting material and the electron injecting material are each usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight, when the light emitting material is 100 parts by weight. is there.
  • Each of the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • the antioxidant may be any compound that is soluble in the same solvent as the light-emitting material and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight when the light emitting material is 100 parts by weight.
  • Antioxidants may be used alone or in combination of two or more.
  • a composition of a light emitting layer containing a light emitting material and a solvent (hereinafter also referred to as “light emitting layer ink”) is formed by a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll.
  • Suitable for coating methods such as coating methods, wire bar coating methods, dip coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, capillary coating methods, nozzle coating methods, etc. Can do.
  • the viscosity of the ink in the light emitting layer may be adjusted depending on the type of coating method. However, when a solution such as an ink jet printing method is applied to a printing method that passes through a discharge device, clogging and flight bending at the time of discharge occur. Since it is difficult, it is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink of the light emitting layer is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvents such
  • the amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight when the light emitting material is 100 parts by weight.
  • the hole transport layer contains a crosslinked body of a crosslinking material.
  • the cross-linked body of the cross-linking material is a cross-linked body in which the cross-linking material is cross-linked within a molecule or between molecules or within a molecule and between molecules.
  • the crosslinked material of the crosslinking material contained in the hole transport layer may be a crosslinked material in which a crosslinking material and another compound are crosslinked between molecules.
  • the crosslinked material of the crosslinking material contained in the hole transport layer may be a crosslinked material of a polymer compound (hereinafter also referred to as “polymer compound of the hole transport layer”) or a low molecular compound (hereinafter referred to as “ Although it may be a crosslinked product of a “low molecular compound of a hole transport layer”), it is preferably a crosslinked product of a polymer compound because the light emitting device can be easily produced.
  • the layer containing the polymer compound cross-linked body of the hole transport layer is a layer obtained by cross-linking the layer containing the polymer compound of the hole transport layer by external stimulation such as heating or light irradiation. Since the layer containing the crosslinked polymer compound in the hole transport layer is substantially insoluble in the solvent, it can be suitably used for laminating light-emitting elements described later.
  • the layer containing a low molecular weight compound cross-linked body of the hole transport layer is a layer obtained by cross-linking the layer containing the low molecular weight compound of the hole transport layer by external stimulation such as heating or light irradiation. Since the layer containing the cross-linked product of the low-molecular compound in the hole transport layer is substantially insolubilized in the solvent, it can be suitably used for laminating a light-emitting element described later.
  • the polymer compound of the hole transport layer Since the polymer compound of the hole transport layer has excellent luminance lifetime of the light-emitting element, the polymer compound containing the structural unit represented by the formula (X) and the structural unit having a crosslinking group (hereinafter referred to as “hole transporting”).
  • the first polymer compound of the layer ") or a polymer compound containing the structural unit represented by the formula (3) (hereinafter also referred to as” second polymer compound of the hole transport layer "). ) Is preferable.
  • the structural unit represented by the formula (X) is preferably 20 to 90 mol%, more preferably 25%, based on the total amount of the structural units contained in the polymer compound, because the luminance life of the light emitting device is excellent. It is ⁇ 70 mol%, more preferably 30 to 50 mol%.
  • the structural unit represented by the formula (X) may be included in the first polymer compound of the hole transport layer, or may be included in two or more types.
  • the structural unit having a crosslinkable group contained in the first polymer compound of the hole transport layer is excellent in the crosslinkability of the first polymer compound of the hole transport layer, and therefore at least one selected from the crosslinkable group A group. It is preferably a structural unit having a kind of cross-linking group, and has the formula (XL-1), (XL-3), (XL-5), (XL-7), (XL-16) or (XL-17) And more preferably a structural unit having a crosslinking group represented by the formula (XL-1) or the formula (XL-17).
  • the structural unit having a crosslinking group is preferably a structural unit represented by the formula (2) described later or a structural unit represented by the formula (3). Good.
  • the structural unit having at least one cross-linking group selected from the cross-linking group A group is preferably a structural unit represented by the formula (2) or a structural unit represented by the formula (3).
  • NA is preferably 0 or 1, more preferably 0, because the luminance lifetime of the light-emitting element is excellent.
  • N is preferably 2 because the luminance life of the light emitting device is excellent.
  • Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light-emitting element is excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by the formula (A-1) to the formula (A-20), More preferably, groups represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) And more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), This group may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar 1 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar 1 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 1 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10. Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 20.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • Alkylene group and cycloalkylene group represented by L A may have a substituent.
  • substituents that the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom, and a cyano group.
  • Arylene group represented by L A may have a substituent.
  • the arylene group include o-phenylene, m-phenylene, and p-phenylene.
  • substituent that the arylene group may have include, for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, and a bridge. Examples thereof include a crosslinking group selected from the group A.
  • L A is preferably a phenylene group or an alkylene group because the production of the first polymer compound of the hole transport layer is facilitated, and these groups may have a substituent.
  • the cross-linking group represented by X since the cross-linkability of the first polymer compound of the hole transport layer is excellent, the formula (XL-1), (XL-3), (XL-5), ( XL-7), a crosslinking group represented by (XL-16) or (XL-17), more preferably a crosslinking group represented by formula (XL-1) or formula (XL-17).
  • the structural unit represented by the formula (2) is excellent in stability and crosslinkability of the first polymer compound of the hole transport layer, it is preferably based on the total amount of the structural units contained in the polymer compound. It is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%.
  • the structural unit represented by the formula (2) may be included in the first polymer compound of the hole transport layer only in one kind, or in two or more kinds.
  • MA is preferably 0 or 1, more preferably 0, because the luminance lifetime of the light-emitting element is excellent.
  • M is preferably 2 because the luminance life of the light emitting device is excellent.
  • C is preferably 0, because the production of the first polymer compound of the hole transport layer is facilitated and the luminance life of the light emitting device is excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light-emitting element is excellent.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar 3 are the same as the definition and example of the arylene group represented by Ar X2 in the formula (X) described above. It is.
  • divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar 3 are the divalent heterocyclic group represented by Ar X2 in the formula (X) described above. Same as definition and example of part.
  • the definition and examples of the divalent group excluding m substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 3 and at least one heterocycle are directly bonded are defined by the formula (
  • the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 in X) and at least one divalent heterocyclic group are directly bonded are the same.
  • Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since the luminance lifetime of the light-emitting element is excellent.
  • the definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the above-described formula (X).
  • the definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in Formula (X) described above. is there.
  • the groups represented by Ar 2 , Ar 3 and Ar 4 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, Examples thereof include a halogen atom, a monovalent heterocyclic group, and a cyano group.
  • L A the alkylene group represented by L A
  • a cycloalkylene group an arylene group
  • a divalent heterocyclic The definition and examples of the ring group are the same.
  • the cross-linking group represented by X ′ since the cross-linkability of the first polymer compound of the hole transport layer is excellent, the formula (XL-1), (XL-3), (XL-5), A crosslinking group represented by (XL-7), (XL-16) or (XL-17), more preferably a crosslinking group represented by formula (XL-1) or formula (XL-17) .
  • the structural unit represented by the formula (3) is excellent in stability of the first polymer compound in the hole transport layer and in crosslinkability of the first polymer compound in the hole transport layer.
  • the amount is preferably 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%, based on the total amount of the structural units contained in the molecular compound.
  • the structural unit represented by the formula (3) may be included in the first polymer compound of the hole transport layer only in one kind, or in two or more kinds.
  • Examples of the structural unit represented by the formula (2) include structural units represented by the formulas (2-1) to (2-30).
  • Examples of the structural unit represented by the formula (3) include: Examples thereof include structural units represented by the formulas (3-1) to (3-9).
  • it is preferably a structural unit represented by the formula (2-1) to the formula (2-30), more preferably the formula (2-1) to (2-15), (2-19), (2-20), (2-23), (2-25) or (2-30) More preferred are structural units represented by formula (2-1) to formula (2-9) or formula (2-30).
  • the first polymer compound of the hole transport layer preferably includes a structural unit represented by the formula (Y) because the luminance lifetime of the light-emitting element is excellent.
  • the definition and examples of the structural unit represented by the formula (Y) that may be contained in the first polymer compound of the hole transport layer are formulas that may be contained in the polymer compound that is a fluorescent light-emitting material.
  • the definition and example of the structural unit represented by (Y) are the same.
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is preferable with respect to the total amount of the structural units contained in the polymer compound because the luminance life of the light-emitting element is excellent. Is 0.5 to 80 mol%, more preferably 30 to 60 mol%.
  • the structural unit which is a group is preferably 0.5 to 40 mol%, more preferably 3 to 30 mol% with respect to the total amount of the structural units contained in the polymer compound, since the charge transport property of the light-emitting element is excellent. It is.
  • the structural unit represented by the formula (Y) may be included in the first polymer compound of the hole transport layer, or may be included in two or more types.
  • Examples of the first polymer compound of the hole transport layer include polymer compounds (P-201) to (P-206) shown in Table 2.
  • the “other structural unit” means a structural unit other than the structural units represented by Formula (X), Formula (2), Formula (3), and Formula (Y).
  • the structural unit represented by the formula (3) is excellent in stability of the second polymer compound in the hole transport layer and in crosslinkability of the second polymer compound in the hole transport layer.
  • the amount is preferably 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%, based on the total amount of the structural units contained in the molecular compound.
  • the structural unit represented by the formula (3) may be included in the second polymer compound of the hole transport layer only in one kind, or in two or more kinds.
  • the second polymer compound of the hole transport layer may further include a structural unit represented by the formula (2).
  • the definition and examples of the structural unit represented by the formula (2) that may be included in the second polymer compound of the hole transport layer are included in the first polymer compound of the hole transport layer. This is the same as the definition and example of the structural unit represented by the formula (2).
  • the structural unit represented by the formula (2) is excellent in stability and crosslinkability of the second polymer compound of the hole transport layer, it is preferably based on the total amount of the structural units contained in the polymer compound. It is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%.
  • the structural unit represented by the formula (2) may be included in the second polymer compound of the hole transport layer only in one kind, or in two or more kinds.
  • the second polymer compound of the hole transport layer preferably has a structural unit represented by the formula (Y) because the luminance life of the light emitting element is excellent.
  • the definition and examples of the structural unit represented by the formula (Y) that may be contained in the second polymer compound of the hole transport layer are formulas that may be contained in the polymer compound that is a fluorescent material.
  • the definition and example of the structural unit represented by (Y) are the same.
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is preferable with respect to the total amount of the structural units contained in the polymer compound because the luminance life of the light-emitting element is excellent. Is 0.5 to 80 mol%, more preferably 30 to 60 mol%.
  • the structural unit which is a group is preferably 0.5 to 40 mol%, more preferably 3 to 30 mol% with respect to the total amount of the structural units contained in the polymer compound, since the charge transport property of the light-emitting element is excellent. It is.
  • the structural unit represented by the formula (Y) may be included in the second polymer compound of the hole transport layer only in one kind, or in two or more kinds.
  • Examples of the second polymer compound of the hole transport layer include polymer compounds (P-301) to (P-303) shown in Table 2.
  • the “other structural unit” means a structural unit other than the structural units represented by Formula (3), Formula (2), and Formula (Y).
  • the first and second polymer compounds of the hole transport layer can be produced by a method similar to the method for producing the polymer compound and polymer host, which are the fluorescent light-emitting materials described above.
  • the low molecular compound of the hole transport layer is preferably a low molecular compound having at least one cross-linking group selected from the cross-linking group A group because the cross-linkability of the low molecular compound of the hole transport layer is excellent. It is a low molecular compound having a crosslinking group represented by (XL-1), (XL-3), (XL-5), (XL-7), (XL-16) or (XL-17) More preferred is a low molecular weight compound having a crosslinking group represented by formula (XL-1) or formula (XL-17).
  • the low-molecular compound having at least one crosslinking group selected from the crosslinking group A group is more preferably a low-molecular compound represented by the formula (Z).
  • m B1 is usually an integer of 0 to 10, and is preferably an integer of 0 to 5, more preferably an integer of 0 to 2, because it facilitates the synthesis of a low molecular compound for the hole transport layer. More preferably, it is 0 or 1, particularly preferably 0.
  • m B2 is usually an integer of 0 to 10, and is preferably an integer of 1 to 5 because it facilitates the synthesis of a low molecular compound of the hole transport layer and has an excellent luminance lifetime of the light emitting device.
  • the integer is preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • n B1 is usually an integer of 0 to 5, and is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, because it facilitates the synthesis of a low molecular compound for the hole transport layer. More preferably, it is 0.
  • the definition and examples of the arylene group part excluding the n B1 substituents of the aromatic hydrocarbon group represented by Ar 5 are the definitions and examples of the arylene group represented by Ar X2 in the above formula (X). The same.
  • the definition and example of the divalent heterocyclic group part excluding the n B1 substituents of the heterocyclic group represented by Ar 5 are the divalent heterocyclic ring represented by Ar X2 in the above formula (X). Same as definition and example of base part.
  • the definition and examples of the divalent group excluding the n B1 substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 5 and at least one heterocycle are directly bonded are the above-mentioned formulas
  • the definition and example of the divalent group in which at least one kind of arylene group represented by Ar X2 and at least one kind of divalent heterocyclic group in (X) are directly bonded are the same.
  • Ar 5 is preferably an aromatic hydrocarbon group since the luminance lifetime of the light-emitting element is excellent.
  • Alkylene group represented by L B1 a cycloalkylene group, an arylene group, a divalent definitions and examples of the heterocyclic group, respectively, the alkylene group represented by the above-mentioned L A, a cycloalkylene group, an arylene group, a divalent This is the same as the definition and example of the heterocyclic group of.
  • L B1 is preferably an alkylene group, an arylene group or an oxygen atom, more preferably an alkylene group or an arylene group, and still more preferably a phenylene group, because it facilitates the synthesis of a low molecular compound for the hole transport layer.
  • the cross-linking group represented by X ′′ since the cross-linkability of the low-molecular compound of the hole transport layer is excellent, the formula (XL-1), (XL-3), (XL-5), (XL -7), a crosslinking group represented by (XL-16) or (XL-17), more preferably a crosslinking group represented by formula (XL-1) or formula (XL-17).
  • Examples of the low molecular weight compound in the hole transport layer include low molecular weight compounds represented by the formulas (Z-1) to (Z-16), and preferably the formulas (Z-1) to (Z-10). ), And more preferably low molecular compounds represented by formulas (Z-5) to (Z-9).
  • the hole transport layer includes a crosslinked material of a crosslinking material and at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and an antioxidant. It may be a layer containing a composition containing the composition (hereinafter also referred to as “hole transport layer composition”).
  • Examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material and light emitting material contained in the composition of the hole transport layer are the hole transport contained in the composition of the light emitting layer. Examples and preferred ranges of the material, electron transport material, hole injection material, electron injection material and light emitting material are the same.
  • the amount of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light-emitting material is usually in the case where the cross-linked material of the cross-linking material is 100 parts by weight. 1 to 400 parts by weight, preferably 5 to 150 parts by weight.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight when the crosslinked material of the crosslinking material is 100 parts by weight.
  • a composition of a hole transport layer (hereinafter also referred to as “hole transport layer ink”) containing a cross-linking material and a solvent is used in the same manner as the ink of the light emitting layer.
  • Coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, capillary coating method, nozzle It can be suitably used for coating methods such as a coating method.
  • the preferable range of the viscosity of the ink of the hole transport layer is the same as the preferable range of the viscosity of the ink of the light emitting layer.
  • Examples and preferred ranges of the solvent contained in the ink of the hole transport layer are the same as examples and preferred ranges of the solvent contained in the ink of the light emitting layer.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight when the crosslinking material is 100 parts by weight.
  • the light emitting element may have a layer other than the anode, the cathode, the light emitting layer, and the hole transport layer (hereinafter also referred to as “other layer”).
  • other layers include a hole injection layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer, the electron transport layer, and the electron injection layer include a hole injection material, an electron transport material, and an electron injection material, respectively, and can be formed using the hole injection material, the electron transport material, and the electron injection material, respectively. it can.
  • the order, number and thickness of the layers to be laminated are adjusted in consideration of the external quantum efficiency and the luminance lifetime.
  • the thickness of the light emitting layer, hole transport layer, hole injection layer, electron transport layer and electron injection layer is usually 1 nm to 10 ⁇ m.
  • the light emitting element preferably has a hole injection layer between the anode and the hole transport layer from the viewpoint of hole injection, and from the viewpoint of electron injection and electron transport, the cathode and the light emitting layer. It is preferable to have at least one layer of an electron injection layer and an electron transport layer.
  • the hole transport layer, the hole injection layer, the electron transport layer and the electron injection layer when using a low molecular weight compound, for example, vacuum deposition from powder, solution or molten state
  • a low molecular weight compound for example, vacuum deposition from powder, solution or molten state
  • the method by the film-forming from is mentioned.
  • a formation method of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer when using a high molecular compound
  • the method by the film-forming from a solution or a molten state is mentioned, for example. .
  • the hole injection layer, the electron transport layer, and the electron injection layer may be formed using, for example, a spin coating method, a casting method, a micro gravure coating method, a gravure, using an ink containing a hole injection material, an electron transport material, and an electron injection material, respectively.
  • Coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, nozzle coating method can do.
  • the preferable range of the viscosity of the ink is the same as the preferable range of the viscosity of the ink of the light emitting layer.
  • Examples and preferred ranges of the solvent contained in the ink are the same as examples and preferred ranges of the solvent contained in the ink of the light emitting layer.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight with respect to 100 parts by weight of the hole injection material, electron transport material or electron injection material.
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used as solvents used in forming the layer adjacent to the hole transport layer, the electron transport layer and the light emitting layer, respectively, in the production of the light emitting device.
  • the material When dissolved, the material preferably has a cross-linking group in order to avoid dissolution of the material in the solvent. After forming each layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • the heating temperature for cross-linking each layer is usually 25 to 300 ° C., and the luminance life of the light emitting device is excellent, so that it is preferably 50 to 250 ° C., more preferably 150 to 200 ° C.
  • the types of light used for light irradiation for crosslinking each layer are, for example, ultraviolet light, near ultraviolet light, and visible light.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds.
  • the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode, or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like.
  • These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can also be used as a curved light source and display device.
  • the light emitting device of the present invention is A light emitting device having an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole transport layer provided between the anode and the light emitting layer and containing a crosslinked material of a crosslinking material;
  • a light-emitting device includes a driving device that is driven by a pulse voltage obtained by alternately switching a first voltage that is equal to or higher than a light emission start voltage of a light-emitting element and a second voltage that is lower than the light emission start voltage of the light-emitting element.
  • a driving device that is driven by a pulse voltage obtained by alternately switching a first voltage that is equal to or higher than the light emission start voltage of the light emitting element and a second voltage that is lower than the light emission start voltage of the light emitting element
  • a pulse voltage obtained by alternately switching a first voltage that is equal to or higher than the light emission start voltage of the light emitting element and a second voltage that is lower than the light emission start voltage of the light emitting element
  • an organic manufactured by Micrel EL driver MIC4826, LGDP4216 manufactured by Crystalfontz, and the like for example, an organic manufactured by Micrel EL driver MIC4826, LGDP4216 manufactured by Crystalfontz, and the like.
  • Examples of the light emitting device of the present invention include a segment type display device, a display unit of a dot matrix display device, a planar light source for backlight of a liquid crystal display device, and a planar illumination light source.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound are either one of the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. Determined by The SEC measurement conditions are as follows.
  • ⁇ Measurement condition 1> The polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by weight, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 2.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Shimadzu Corporation, trade name: SPD-10Avp was used as the detector.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as the detector.
  • ⁇ Measurement condition 3> The polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by weight, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 0.6 mL / min. As the column, one each of TSKguardcolumn SuperAW-H, TSKgel Super AWM-H, and TSKgel SuperAW3000 (all manufactured by Tosoh Corporation) were connected in series. A UV-VIS detector (manufactured by Tosoh, trade name: UV-8320GPC) was used as the detector.
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry) or an ODS column having equivalent performance was used.
  • the detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • the pulse voltage drive of the light emitting element was performed using the following pulse voltage drive condition 1. Note that, in the pulse voltage driving of the light emitting element, the time until the luminance of the light emitting element reaches 95% or 60% of the initial luminance is the integrated time in which the first voltage is applied in the pulse voltage driving.
  • the first voltage was set to a voltage that gives a current value set at a constant current so that the initial luminance of the light emitting element becomes a predetermined luminance.
  • the second voltage was set to -10V.
  • As the pulse voltage a rectangular wave in which the first voltage and the second voltage are alternately switched is set.
  • the frequency of the pulse voltage was set to 1 Hz.
  • ⁇ Synthesis Example 1 Synthesis of iridium complexes M1 to M2 and monomers CM1 to CM13 and CM15 to CM17>
  • the iridium complex M1 was synthesized according to the method described in WO2009 / 131255.
  • the iridium complex M2 was synthesized according to the method described in JP2011-105701A.
  • Monomer CM1 was synthesized according to the method described in JP2011-174062.
  • Monomer CM2 was synthesized according to the method described in WO 2005/049546. A commercial product was used as the monomer CM3.
  • Monomer CM4 was synthesized according to the method described in JP-A-2008-106241.
  • Monomer CM5 was synthesized according to the method described in JP2011-174062.
  • Monomer CM6 was synthesized according to the method described in JP2012-144722A.
  • Monomer CM7 was synthesized according to the method described in JP-A No. 2004-143419.
  • Monomer CM8 was synthesized according to the method described in JP 2010-031259 A.
  • As the monomer CM9 a commercially available product was used.
  • Monomer CM10 was synthesized according to the method described in JP 2010-189630 A.
  • Monomer CM11 was synthesized according to the method described in International Publication No. 2012/86671.
  • Monomer CM12 was synthesized according to the method described in JP 2010-189630 A.
  • Monomer CM13 was synthesized according to the method described in WO2009 / 131255.
  • Monomer CM15 was synthesized according to the method described in WO2000 / 46321.
  • Monomer CM16 was synthesized according to the method described in WO2000 / 46321.
  • Monomer CM17 was synthesized according to the method described in JP-A-2007-511636.
  • Compound CM14a was synthesized according to the method described in International Publication No. 2012/088671.
  • Step 1> After making the inside of the reaction vessel a nitrogen gas atmosphere, 4-bromo-n-octylbenzene (250 g) and tetrahydrofuran (dehydrated product, 2.5 L) were added and cooled to ⁇ 70 ° C. or lower. Thereafter, a 2.5 mol / L n-butyllithium-hexane solution (355 mL) was added dropwise thereto, and the mixture was stirred at ⁇ 70 ° C. or lower for 3 hours.
  • Step 2> After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound CM14b (330 g) and dichloromethane (900 mL) were added and cooled to 5 ° C. or lower. Thereafter, a 2.0 mol / L boron trifluoride diethyl ether complex (245 mL) was added dropwise thereto. Then, it heated up to room temperature and stirred at room temperature overnight. The obtained reaction mixture was added to a container containing ice water (2 L), stirred for 30 minutes, and then the aqueous layer was removed.
  • the obtained organic layer was washed once with a 10 wt% aqueous potassium phosphate solution (1 L) and twice with water (1 L), and then dried over magnesium sulfate.
  • the obtained mixture was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain an oily substance.
  • the obtained oil was dissolved in toluene (200 mL), and then passed through a filter covered with silica gel to obtain a toluene solution 1.
  • the toluene solution 2 was obtained by further passing toluene (about 3 L) through a filter covered with silica gel.
  • the toluene solution 1 and the toluene solution 2 were combined, and then concentrated under reduced pressure to obtain an oily substance.
  • the resulting reaction mixture was cooled to ⁇ 30 ° C., and a 2.0 mol / L hydrochloric acid-diethyl ether solution (143 mL) was added dropwise. Then, it heated up to room temperature and solid was obtained by concentrate
  • ⁇ Synthesis Example 3 Synthesis of Polymer Compound P1>
  • the polymer compound P1 was synthesized according to the method described in JP 2012-144722 A using monomers shown in Table 4 below.
  • the Mn of the polymer compound P1 was 8.4 ⁇ 10 4
  • the Mw was 3.4 ⁇ 10 5 .
  • the polymer compound P1 is a copolymer in which the structural units derived from the respective monomers are configured in the molar ratio shown in Table 4 below, according to the theoretical values obtained from the charged raw materials.
  • ⁇ Synthesis Example 4 Synthesis of Polymer Compound P2>
  • the polymer compound P2 was synthesized according to the method described in JP 2012-144722 A using monomers shown in Table 5 below.
  • the Mn of the polymer compound P2 was 8.4 ⁇ 10 4 and the Mw was 2.3 ⁇ 10 5 .
  • the polymer compound P2 is a copolymer in which the structural units derived from the respective monomers are composed of the molar ratios shown in Table 5 below according to the theoretical values obtained from the raw materials.
  • ⁇ Synthesis Example 5 Synthesis of polymer compound P3>
  • the polymer compound P3 was synthesized according to the method described in JP 2012-144722 A using monomers shown in Table 6 below.
  • the Mn of the polymer compound P3 was 1.2 ⁇ 10 5 and the Mw was 3.1 ⁇ 10 5 .
  • the polymer compound P3 is a copolymer in which the structural units derived from the respective monomers are composed of the molar ratios shown in Table 6 below according to the theoretical values obtained from the charged raw materials.
  • ⁇ Synthesis Example 6 Synthesis of polymer compound P4>
  • the polymer compound P4 was synthesized according to the method described in JP 2012-36388 A using monomers shown in Table 7 below.
  • the Mn of the polymer compound P4 was 9.2 ⁇ 10 4 and the Mw was 2.3 ⁇ 10 5 .
  • the polymer compound P4 is a copolymer in which the structural units derived from the respective monomers are composed of the molar ratios shown in Table 7 below according to the theoretical values obtained from the raw materials.
  • the obtained organic layer was added dropwise to methanol to precipitate a solid, which was collected by filtration and dried to obtain a solid.
  • the obtained solid was dissolved in toluene and passed through a silica gel column and an alumina column through which toluene was passed in advance.
  • the obtained solution was added dropwise to methanol to precipitate a solid, which was collected by filtration and dried to obtain polymer compound P5 (4.95 g).
  • the Mn of the polymer compound P5 was 1.4 ⁇ 10 5 and the Mw was 4.1 ⁇ 10 5 .
  • the polymer compound P5 is a copolymer in which the structural units derived from the respective monomers are composed of the molar ratios shown in Table 8 below according to the theoretical values obtained from the charged raw materials.
  • ⁇ Synthesis Example 8 Synthesis of polymer compound P6>
  • the polymer compound P6 was synthesized according to the method described in Japanese Patent No. 5516317 using the monomers shown in Table 8 below.
  • the Mn of the polymer compound P6 was 6.0 ⁇ 10 4 and the Mw was 4.0 ⁇ 10 5 .
  • the polymer compound P6 is a copolymer in which the structural units derived from the respective monomers are composed of the molar ratios shown in Table 8 below according to the theoretical values obtained from the charged raw materials.
  • ⁇ Comparative example 1 DC voltage drive of light emitting element 1>
  • the current value was set so that the initial luminance of the light-emitting element 1 was 1000 cd / m 2 , the device was then driven at a constant current, and the change in luminance with time was measured. As a result, the time until the luminance became 95% of the initial luminance (hereinafter also referred to as “LT95”) was 3.3 hours.
  • Example 1 Pulse Voltage Drive of Light-Emitting Element 1 After setting the current value so that the initial luminance of the light-emitting element 1 was 1000 cd / m 2 , the light-emitting element 1 was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 5.5 hours. The LT95 of Example 1 was 1.67 times that of Comparative Example 1.
  • Example 2 Pulse Voltage Drive of Light-Emitting Element 2 After setting the current value so that the initial luminance of the light-emitting element 2 was 3000 cd / m 2 , the light-emitting element 2 was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 20.3 hours. The LT95 of Example 2 was 1.41 times that of Comparative Example 2.
  • Example 3 Pulse Voltage Drive of Light-Emitting Element 3 After setting the current value so that the initial luminance of the light-emitting element 3 was 3000 cd / m 2 , the light-emitting element 3 was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 19.4 hours. The LT95 of Example 3 was 3.34 times that of LT95 of Comparative Example 3.
  • EL light emission having a maximum peak wavelength of an emission spectrum at 615 nm was observed.
  • the light emission starting voltage of the light-emitting element 4 was 2.7 V, and the light emission efficiency at 1000 cd / m 2 was 18.2 cd / A.
  • Example 4 Pulse voltage drive of light-emitting element 4> After setting the current value so that the initial luminance of the light-emitting element 4 was 3000 cd / m 2 , the device was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 31.1 hours. The LT95 of Example 4 was 1.39 times that of Comparative Example 4.
  • Example 5 Pulse voltage drive of light-emitting element 5> After setting the current value so that the initial luminance of the light-emitting element 5 was 3000 cd / m 2 , the device was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 41.5 hours. The LT95 of Example 5 was 2.04 times that of Comparative Example 5.
  • Example 6 Pulse voltage drive of light-emitting element 6> The current value was set so that the initial luminance of the light-emitting element 6 was 3000 cd / m 2 , the device was then driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 14.5 hours. The LT95 of Example 6 was 1.38 times that of Comparative Example 6.
  • ⁇ Comparative Example 7-2 Pulse Voltage Drive of Light-Emitting Element 7>
  • the current value was set so that the initial luminance of the light-emitting element 7 was 1000 cd / m 2 , the device was then driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured.
  • LT95 was 0.1 hour.
  • the LT95 of Comparative Example 7-2 was 1.00 times that of Comparative Example 7-1.
  • HM-1 Liescence Technology, manufactured by LT, Ltd.
  • a hole transport layer was formed by depositing -E115) by a vacuum deposition method at a deposition rate of 1.5 ⁇ / sec and a thickness of 60 nm.
  • the substrate on which the hole transport layer was formed was depressurized to 1 ⁇ 10 ⁇ 5 Pa or less in a vapor deposition machine, and then a light emitting material (Lumescence Technology) represented by the following formula (EM-1) was formed on the hole transport layer.
  • a light emitting layer was formed by depositing a 40 nm thick LT-E401) by vacuum deposition at a deposition rate of 1.5 ⁇ / sec.
  • ⁇ Comparative Example 8-1 Pulse Voltage Drive of Light-Emitting Element 8>
  • the current value was set so that the initial luminance of the light-emitting element 8 was 200 cd / m 2 , the device was then driven at a constant current, and the change in luminance with time was measured. As a result, the time until the luminance became 60% of the initial luminance (hereinafter also referred to as “LT60”) was 454.9 hours.
  • ⁇ Comparative Example 8-2 Pulse Voltage Drive of Light-Emitting Element 8> After setting the current value so that the initial luminance of the light-emitting element 8 was 200 cd / m 2 , the light-emitting element 8 was driven under the above-described pulse voltage driving condition 1, and the temporal change in luminance was measured. As a result, LT60 was 493.2 hours. The LT60 of Comparative Example 8-2 was 1.08 times LT95 of Comparative Example 8-1.
  • the substrate on which the hole transport layer is formed is depressurized to 1 ⁇ 10 ⁇ 5 Pa or less in a vapor deposition machine, and then the light emitting material represented by the above formula (EM-1) is vacuum deposited on the hole transport layer.
  • EM-1 the light emitting material represented by the above formula
  • Example 9 Pulse Voltage Drive of Light-Emitting Element 9 After setting the current value so that the initial luminance of the light-emitting element 9 was 200 cd / m 2 , the light-emitting element 9 was driven under the above-described pulse voltage driving condition 1, and the temporal change in luminance was measured. As a result, LT60 was 668.7 hours. The LT95 of Example 9 was 1.46 times the LT60 of Comparative Example 9.
  • the substrate on which the hole transport layer is formed is depressurized to 1 ⁇ 10 ⁇ 5 Pa or less in a vapor deposition machine, and then the hole transport material represented by the above formula (HM-1) is vacuum deposited on the anode.
  • HM-1 hole transport material represented by the above formula (HM-1) is vacuum deposited on the anode.
  • a hole transport layer was formed by forming a film with a thickness of 60 nm at a deposition rate of 1.5 ⁇ / sec.
  • the substrate on which the hole transport layer is formed is depressurized to 1 ⁇ 10 ⁇ 5 Pa or less in a vapor deposition machine, and then the light emitting material represented by the above formula (EM-1) is vacuum deposited on the hole transport layer.
  • EM-1 the light emitting material represented by the above formula
  • ⁇ Comparative Example 10-2 Pulse Voltage Drive of Light-Emitting Element 10> After setting the current value so that the initial luminance of the light-emitting element 10 was 200 cd / m 2 , the light-emitting element 10 was driven under the above-described pulse voltage driving condition 1, and the temporal change in luminance was measured. As a result, LT60 was 2271.6 hours. The LT60 of Comparative Example 10-2 was 0.54 times that of Comparative Example 10-1.
  • a light-emitting element 11 was produced in the same manner as in Element Production Example 3, except that the hole transport layer in Element Production Example 3 was not formed. By applying a voltage to the light emitting element 11, EL light emission having a maximum peak wavelength of an emission spectrum at 520 nm was observed. The light emission starting voltage of the light emitting element 11 was 2.7 V, and the light emission efficiency at 1000 cd / m 2 was 51.7 cd / A.
  • ⁇ Comparative Example 11-2 Pulse Voltage Drive of Light-Emitting Element 11> After setting the current value so that the initial luminance of the light-emitting element 11 was 3000 cd / m 2 , the device was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 0.677 hours. The LT95 of Comparative Example 11-2 was 0.99 times that of Comparative Example 11-1.
  • a light-emitting element 12 was produced in the same manner as in Element Production Example 6 except that the hole transport layer in Element Production Example 6 was not formed. By applying a voltage to the light emitting element 12, EL light emission having the maximum peak wavelength of the emission spectrum at 620 nm was observed. The light emission starting voltage of the light emitting element 12 was 2.5 V, and the light emission efficiency at 1000 cd / m 2 was 5.0 cd / A.
  • ⁇ Comparative Example 12-2 Pulse Voltage Drive of Light-Emitting Element 12> The current value was set so that the initial luminance of the light-emitting element 12 was 3000 cd / m 2 , the device was then driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 0.0297 hours. The LT95 of Comparative Example 12-2 was 1.06 times that of Comparative Example 12-1.
  • EL light emission having a maximum peak wavelength of an emission spectrum at 520 nm was observed.
  • the light emission starting voltage of the light emitting element 13 was 2.8 V, and the light emission efficiency at 1000 cd / m 2 was 54.0 cd / A.
  • Example 13 Pulse voltage drive of light-emitting element 13> After setting the current value so that the initial luminance of the light-emitting element 13 was 3000 cd / m 2 , the light-emitting element 13 was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 24.8 hours. The LT95 of Example 13 was 2.53 times that of Comparative Example 13.
  • ⁇ Element Preparation Example 14 Preparation of Light-Emitting Element 14 and Evaluation of Light-Emitting Characteristics>
  • a hole transport material represented by the following formula (HM-2) manufactured by Luminescence Technology, LT-N157
  • a light-emitting element 14 was produced in the same manner as in Element Production Example 13, except that a chlorobenzene solution (0.9% by weight) was used.
  • ⁇ Comparative Example 14 DC voltage drive of light emitting element 14> The current value was set so that the initial luminance of the light-emitting element 14 was 3000 cd / m 2 , the device was then driven at a constant current, and the change in luminance with time was measured. As a result, LT95 was 0.40 hours.
  • Example 14 Pulse voltage drive of light-emitting element 14> After setting the current value so that the initial luminance of the light-emitting element 14 was 3000 cd / m 2 , the light-emitting element 14 was driven under the above-described pulse voltage driving condition 1, and the change in luminance with time was measured. As a result, LT95 was 0.70 hours. The LT95 of Example 14 was 1.90 times that of Comparative Example 14.
  • a driving method for a light emitting element which is excellent in luminance life. Further, according to the present invention, it is possible to provide a light emitting device including a light emitting element and a driving device for the driving method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

発光素子の駆動方法であって、輝度寿命に優れる駆動方法を提供する。 陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられており、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子を、発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する、発光素子の駆動方法。 陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられており、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子と、発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する駆動装置とを備える発光装置。

Description

発光素子の駆動方法および発光装置
 本発明は、発光素子の駆動方法および発光装置に関する。
 有機エレクトロルミネッセンス素子(以下、「発光素子」ともいう。)は、ディスプレイおよび照明の用途に好適に使用することが可能であり、研究開発が盛んに行われている。この発光素子は、発光層、電荷輸送層等の有機層を備える。
 発光素子は、駆動時間の経過に伴って発光効率が低下し、発光効率の低下に伴って発光輝度が低下することが知られており、発光輝度が低下する時間が短いこと(すなわち、輝度寿命が短いこと)が問題となっている。
 特許文献1には、低分子化合物である正孔輸送材料(具体的には、トリフェニルジアミン誘導体)からなる正孔輸送層と、低分子化合物である発光材料(具体的には、トリス(8-キノリノレート)アルミニウム錯体)からなる発光層とを有する発光素子を、順バイアス電圧(発光素子を発光させる方向の電圧)と逆バイアス電圧(発光素子を発光させる方向と逆方向の電圧)とを交互にスイッチングさせたパルス電圧により駆動する方法は、直流電圧駆動する方法に比べて、発光素子の輝度寿命を改善できることが記載されている。
 また、特許文献2には、高分子化合物である導電性材料(具体的には、PEDOT/PSS(ポリチオフェン・スルホン酸がドープされたポリエチレンジオキシチオフェン))からなる陽極バッファ層と、高分子化合物である発光材料(具体的には、ポリフルオレン誘導体、ポリフェニレン誘導体等)からなる発光層とを有する発光素子を、順バイアス電圧と逆バイアス電圧とを交互にスイッチングさせたパルス電圧により駆動する方法は、直流電圧駆動する方法に比べて、発光素子の輝度寿命を改善できることが記載されている。
特開平9-293588号公報 特開2006-235492号公報
 しかしながら、上記の発光素子の駆動方法により得られる輝度寿命は、必ずしも十分ではなかった。
 そこで、本発明は、発光素子の駆動方法であって、輝度寿命に優れる駆動方法を提供することを目的とする。また、本発明は、発光素子と、該駆動方法のための駆動装置とを備える発光装置を提供することを目的とする。
 本発明は、以下の[1]~[13]を提供する。
[1]陽極と、
 陰極と、
 陽極および陰極の間に設けられた発光層と、
 陽極および発光層の間に設けられており、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子を、
 発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する、発光素子の駆動方法。
[2]前記架橋材料が、式(X)で表される構成単位と、架橋基を有する構成単位とを含む高分子化合物である、[1]に記載の発光素子の駆動方法。
Figure JPOXMLDOC01-appb-C000011
[式中、
 aX1およびaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1およびArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2およびArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2およびArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2およびRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2およびRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
[3]前記架橋基を有する構成単位が、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位である、[2]に記載の発光素子の駆動方法。

(架橋基A群)
Figure JPOXMLDOC01-appb-C000012
[式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
[4]前記架橋基を有する構成単位が、式(2)で表される構成単位または(3)で表される構成単位である、[3]に記載の発光素子の駆動方法。
Figure JPOXMLDOC01-appb-C000013
[式中、
 nAは0~5の整数を表し、nは1または2を表す。
 Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000014
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。]
[5]前記式(X)で表される構成単位と、前記架橋基を有する構成単位とを含む高分子化合物が、式(Y)で表される構成単位を更に含む、[2]~[4]のいずれかに記載の発光素子の駆動方法。
Figure JPOXMLDOC01-appb-C000015
[式中、ArY1は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
[6]前記架橋材料が、
 式(3)で表される構成単位を含む高分子化合物である、[1]に記載の発光素子の駆動方法。
Figure JPOXMLDOC01-appb-C000016
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、上記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、上記架橋基A群から選ばれる架橋基である。]
[7]前記式(3)で表される構成単位を含む高分子化合物が、上記式(Y)で表される構成単位を更に含む、[6]に記載の発光素子の駆動方法。
[8]前記架橋材料が、
 式(Z)で表される低分子化合物である、[1]に記載の発光素子の製造方法。
Figure JPOXMLDOC01-appb-C000017
[式中、
 mB1およびmB2は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。
 nB1は0以上の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
 LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
 X’’は、上記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、上記架橋基A群から選ばれる架橋基である。]
[9]前記第1の電圧が順バイアス電圧であり、前記第2の電圧が逆バイアス電圧であり、第1の電圧および第2の電圧の極性が異なる、[1]~[8]のいずれかに記載の発光素子の駆動方法。
[10]前記第2の電圧が、-15V以上0V未満である、[9]に記載の発光素子の駆動方法。
[11]前記パルス電圧の周波数が、0.1Hz以上100Hz以下である、[1]~[10]のいずれかに記載の発光素子の駆動方法。
[12]前記第1の電圧のパルス幅:T1と、前記第2の電圧のパルス幅:T2とが、式(1-1)を満たす、[1]~[11]のいずれかに記載の発光素子の駆動方法。

   0.05≦T1/(T1+T2)≦0.95     (1-1)

[13]陽極と、
 陰極と、
 陽極および陰極の間に設けられた発光層と、
 陽極および発光層の間に設けられ、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子と、
 発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する駆動装置とを備える発光装置。
 本発明によれば、発光素子の駆動方法であって、輝度寿命に優れる駆動方法を提供することができる。また、本発明によれば、発光素子と、該駆動方法のための駆動装置とを備える発光装置を提供することができる。
本発明の発光素子の駆動方法におけるパルス電圧の波形を示したものである。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合または配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖および分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖および分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、および、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基または1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基およびジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖および分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基およびシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、および、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖および分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基およびシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、および、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、および、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[式中、RおよびRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表す。複数存在するRおよびRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、RおよびRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~(XL-17)で表される架橋基である。
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基またはシクロアルキニル基を表す。置換基は架橋基であってもよい。
 本発明は、
 陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられ、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子を、
 発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する、発光素子の駆動方法である。
 <駆動方法>
 発光素子の発光開始電圧は、通常、2V~4Vである。すなわち、発光素子の発光開始電圧以上の第1の電圧は、順バイアス電圧である。
 発光素子の発光開始電圧未満の第2の電圧は、発光素子の発光開始電圧未満であれば、順バイアス電圧であっても逆バイアス電圧であってもよいが、本発明の駆動方法により駆動される発光素子の輝度寿命がより優れるので、逆バイアス電圧であることが好ましい。
 本発明の駆動方法により駆動される発光素子の輝度寿命がより優れるので、第1の電圧が順バイアス電圧であり、第2の電圧が逆バイアス電圧であり、第1の電圧および第2の電圧の極性が異なることが好ましい。
 第2の電圧は、本発明の駆動方法により駆動される発光素子の輝度寿命がより優れるので、-15V以上0V未満であることが好ましく、-10V以上―5V以下であることがより好ましい。
 第1の電圧と、第2の電圧とを交互にスイッチングさせたパルス電圧の波形は、通常、矩形波である。
 パルス電圧の周波数は、本発明の駆動方法により駆動される発光素子の輝度寿命がより優れるので、0.1Hz以上100Hz以下であることが好ましい。
 第1の電圧のパルス幅:T1は、通常、0.5msec~9500msecであり、好ましくは5msec~9000msecである。
 第2の電圧のパルス幅:T2は、通常、0.5msec~9500msecであり、好ましくは5msec~500msecである。
 第1の電圧のパルス幅:T1と、第2の電圧のパルス幅:T2とは、本発明の駆動方法により駆動される発光素子の輝度寿命がより優れるので、式(1-1)を満たすことが好ましいく、式(1-2)を満たすことがより好ましく、式(1-3)を満たすことが更に好ましい。

   0.05≦T1/(T1+T2)≦0.95     (1-1)
   0.50≦T1/(T1+T2)≦0.95     (1-2)
   0.75≦T1/(T1+T2)≦0.90     (1-3)
 <発光層>
 発光層は、発光材料を含有する層である。発光層に含有される発光材料は、1種のみ含有されていても、2種以上含有されていてもよい。
 [発光材料]
 発光材料は、蛍光発光材料と、燐光発光材料とに分類される。発光材料は、架橋基を有していてもよい。
 [蛍光発光材料]
 低分子化合物である蛍光発光材料としては、例えば、ナフタレンおよびその誘導体、アントラセンおよびその誘導体、ペリレンおよびその誘導体が挙げられる。
 高分子化合物である蛍光発光材料としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、後述する式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 高分子化合物である蛍光発光材料は、式(X)で表される構成単位および式(Y)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましく、式(X)で表される構成単位および式(Y)で表される構成単位を含む高分子化合物であることがより好ましい。
 [式(X)で表される構成単位]
Figure JPOXMLDOC01-appb-C000029
 aX1は、発光素子の発光効率が優れるので、好ましくは2以下の整数であり、より好ましくは1である。
 aX2は、発光素子の発光効率が優れるので、好ましくは2以下の整数であり、より好ましくは0である。
 RX1、RX2およびRX3は、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3で表されるアリーレン基は、より好ましくは式(A-1)または式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)または式(AA-7)-(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2およびArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)-(A-11)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2およびArX4で表される2価の複素環基のより好ましい範囲は、ArX1およびArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1およびArX3で表されるアリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 ArX2およびArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4およびRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位は、好ましくは式(X-1)-(X-7)で表される構成単位であり、より好ましくは式(X-1)-(X-6)で表される構成単位であり、更に好ましくは式(X-3)-(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[式中、RX4およびRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基またはシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位は、発光素子の正孔輸送性が優れるので、高分子化合物中に含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)-(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)-(X1-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 式(X)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(Y)で表される構成単位]
Figure JPOXMLDOC01-appb-C000040
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)-(A-10)、式(A-19)または式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)-(AA-4)、式(AA-10)-(AA-15)、式(AA-18)-(AA-21)、式(AA-33)または式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)または式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(X)のArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)-(Y-10)で表される構成単位が挙げられ、発光素子の輝度寿命の観点からは、好ましくは式(Y-1)-(Y-3)で表される構成単位であり、発光素子の電子輸送性の観点からは、好ましくは式(Y-4)-(Y-7)で表される構成単位であり、発光素子の発光効率および正孔輸送性の観点からは、好ましくは式(Y-8)-(Y-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000041
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure JPOXMLDOC01-appb-C000042
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、より好ましくは、アルキル基またはシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000043
[式中、
 RY1は、前記と同じ意味を表す。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-または-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)-(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000044
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基またはシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)-(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000045
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
[式中、RY1およびXY1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000047
[式中、RY1およびXY1は、前記と同じ意味を表す。]
 式(Y-3)で表される構成単位は、式(Y-3')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000048
[式中、RY11およびXY1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
[式中、
 RY1は、前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-4)で表される構成単位は、式(Y-4')で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000051
[式中、RY1およびRY3は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000052
[式中、
 RY1は、前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-101)-(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)-(Y-206)で表される2価の複素環基からなる構成単位、式(Y-301)-(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、発光素子の発光効率、正孔輸送性または電子輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%である。
 式(Y)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 蛍光発光材料である高分子化合物としては、例えば、表1に示す高分子化合物(P-101)~(P-107)が挙げられる。ここで、その他の構成単位とは、式(Y)で表される構成単位、式(X)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000062

[表中、p、q、r、sおよびtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。]
 高分子化合物(P-101)~(P-107)における、式(Y)および式(X)で表される構成単位の例および好ましい範囲は、上述のとおりである。
 蛍光発光材料である高分子化合物としては、
 式(Y-8)で表される構成単位、式(Y-9)で表される構成単位および式(Y-10)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましく、
 式(Y-8)で表される構成単位および式(Y-9)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることがより好ましく、
 式(Y-8)で表される構成単位を含む高分子化合物であることが更に好ましい。
 また、蛍光発光材料である高分子化合物としては、
 式(Y-8)で表される構成単位、式(Y-9)で表される構成単位および式(Y-10)で表される構成単位以外の構成単位として、
 式(Y-1)で表される構成単位、式(Y-2)で表される構成単位、式(Y-3)で表される構成単位および式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましく、
 式(Y-1)で表される構成単位、式(Y-2)で表される構成単位および式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることがより好ましく、
 式(Y-2)で表される構成単位および式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが更に好ましく、
 式(Y-2)で表される構成単位および式(X)で表される構成単位を含む高分子化合物であることが特に好ましい。
 [燐光発光材料]
 燐光発光材料としては、イリジウム、白金またはユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 三重項発光錯体としては、式Ir-1~Ir-5で表される金属錯体等のイリジウム錯体が好ましい。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
[式中、
 RD1~RD8、RD11~RD20、RD21~RD26およびRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基またはハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26およびRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 -AD1---AD2-は、アニオン性の2座配位子を表し、AD1およびAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
 nD1は、1、2または3を表し、nD2は、1または2を表す。]
 式Ir-1で表される金属錯体において、RD1~RD8の少なくとも1つは、好ましくは、式(D-A)で表される基である。
 式Ir-2で表される金属錯体において、好ましくはRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-3で表される金属錯体において、好ましくはRD1~RD8およびRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-4で表される金属錯体において、好ましくはR21~RD26の少なくとも1つは式(D-A)で表される基である。
 式Ir-5で表される金属錯体において、好ましくはRD31~RD37の少なくとも1つは式(D-A)で表される基である。
Figure JPOXMLDOC01-appb-C000066
[式中、
 mDA1、mDA2およびmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2およびArDA3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2およびArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
 mDA1、mDA2およびmDA3は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0または1である。mDA1、mDA2およびmDA3は、同一の整数であることが好ましい。
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000067
[式中、
 *、**および***は、各々、ArDA1、ArDA2、ArDA3との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基またはシクロアルコキシ基であり、より好ましくは水素原子、アルキル基またはシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2およびArDA3は、好ましくは式(ArDA-1)~(ArDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000068
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000069
[式中、RDAおよびRDBは前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A3)で表される基である。
Figure JPOXMLDOC01-appb-C000070
[式中、
 Rp1、Rp2およびRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基またはハロゲン原子を表す。Rp1およびRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0または1を表す。複数あるnp1は、同一でも異なっていてもよい。]
 np1は、好ましくは0~3の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。np2は、好ましくは0または1であり、より好ましくは0である。np3は好ましくは0である。
 Rp1、Rp2およびRp3は、好ましくはアルキル基またはシクロアルキル基である。
 -AD1---AD2-で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000071
[式中、*は、Irと結合する部位を表す。]
 式Ir-1で表される金属錯体としては、好ましくは式Ir-11~Ir-13で表される金属錯体である。式Ir-2で表される金属錯体としては、好ましくは式Ir-21で表される金属錯体である。式Ir-3で表される金属錯体としては、好ましくは式Ir-31~Ir-33で表される金属錯体である。式Ir-4で表される金属錯体としては、好ましくは式Ir-41~Ir-43で表される金属錯体である。式Ir-5で表される金属錯体としては、好ましくは式Ir-51~Ir-53で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
[式中、
 nD2は、1または2を表す。
 Dは、式(D-A)で表される基を表す。複数存在するDは、同一でも異なっていてもよい。
 RDCは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDCは、同一でも異なっていてもよい。
 RDDは、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDDは、同一でも異なっていてもよい。]
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 燐光発光材料は、正孔輸送性、正孔注入性、電子輸送性および電子注入性からなる群から選ばれる少なくとも1つの機能を有するホスト材料と併用することで、発光素子の発光効率が優れたものとなる。すなわち、発光層が燐光発光材料を含有する場合、発光層は、燐光発光材料とホスト材料とを含有することが好ましい。
 発光層がホスト材料を含有される場合、ホスト材料は、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 発光層が、燐光発光材料とホスト材料とを含有する場合、燐光発光材料の含有量は、燐光発光材料とホスト材料との合計含有量を100重量部とした場合、通常、0.05~80重量部であり、好ましくは0.1~50重量部であり、より好ましくは0.5~40重量部である。
 ホスト材料の有する最低励起三重項状態(T1)は、発光素子の発光効率が優れるので、燐光発光材料の有するT1と同等のエネルギー準位、または、より高いエネルギー準位であることが好ましい。
 ホスト材料は、低分子化合物(以下、「低分子ホスト」ともいう。)と高分子化合物(以下、「高分子ホスト」ともいう。)に分類され、低分子ホストおよび高分子ホストのいずれであってもよいが、高分子ホストであることが好ましい。
 低分子ホストとしては、例えば、カルバゾール構造を有する化合物、トリアリールアミン構造を有する化合物、フェナントロリン構造を有する化合物、トリアリールトリアジン構造を有する化合物、アゾール構造を有する化合物、ベンゾチオフェン構造を有する化合物、ベンゾフラン構造を有する化合物、フルオレン構造を有する化合物、スピロフルオレン構造を有する化合物等が挙げられる。
 低分子ホストの具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
 高分子ホストとしては、前述した式(X)で表される構成単位および式(Y)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物が好ましい。
 これらの中でも、高分子ホストとしては、
 式(Y-4)で表される構成単位、式(Y-5)で表される構成単位、式(Y-6)で表される構成単位および式(Y-7)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましく、
 式(Y-4)で表される構成単位および式(Y-6)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることがより好ましく、
 式(Y-4)で表される構成単位を含む高分子化合物であることが更に好ましい。
 また、高分子ホストとしては、式(Y-4)で表される構成単位、式(Y-5)で表される構成単位、式(Y-6)で表される構成単位および式(Y-7)で表される構成単位以外の構成単位として、
 式(Y-1)で表される構成単位、式(Y-2)で表される構成単位、式(Y-3)で表される構成単位および式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましく、
 式(Y-1)で表される構成単位、式(Y-2)で表される構成単位および式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物であることがより好ましい。
 [蛍光発光材料である高分子化合物および高分子ホストの製造方法]
 蛍光発光材料である高分子化合物および高分子ホストは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応およびKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続または分割して仕込む方法、単量体を連続または分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿をろ過した後、乾燥させる方法等を単独または組み合わせて行う。高分子化合物の純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 [発光層の組成物]
 発光層は、前述の発光材料と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料および酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「発光層の組成物」ともいう。)を含有する層であってもよい。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
 高分子化合物としては、例えば、ポリビニルカルバゾールおよびその誘導体;側鎖または主鎖に芳香族アミン構造を有するポリアリーレンおよびその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 発光層の組成物において、正孔輸送材料の配合量は、発光材料を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレンおよびジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、および、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 発光層の組成物において、電子輸送材料の配合量は、発光材料を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [正孔注入材料および電子注入材料]
 正孔注入材料および電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料および電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリンおよびポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖または側鎖に含む重合体等の導電性高分子が挙げられる。
 発光層の組成物において、正孔注入材料および電子注入材料の配合量は、各々、発光材料を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 電子注入材料および正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 [イオンドープ]
 正孔注入材料または電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 [酸化防止剤]
 酸化防止剤は、発光材料と同じ溶媒に可溶であり、発光および電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 発光層の組成物において、酸化防止剤の配合量は、発光材料を100重量部とした場合、通常、0.001~10重量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 [発光層のインク]
 発光材料と、溶媒とを含有する発光層の組成物(以下、「発光層のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 発光層のインクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 発光層のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解または均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 発光層のインクにおいて、溶媒の配合量は、発光材料を100重量部とした場合、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 <正孔輸送層>
 正孔輸送層は、架橋材料の架橋体を含有する。ここで、架橋材料の架橋体とは、架橋材料が、分子内もしくは分子間、または、分子内および分子間で架橋した架橋体である。正孔輸送層に含有される架橋材料の架橋体は、架橋材料と、他の化合物とが、分子間で架橋した架橋体であってもよい。
 正孔輸送層に含有される架橋材料の架橋体は、高分子化合物(以下、「正孔輸送層の高分子化合物」ともいう。)の架橋体であっても、低分子化合物(以下、「正孔輸送層の低分子化合物」ともいう。)の架橋体であってもよいが、発光素子の製造が容易になるため、高分子化合物の架橋体であることが好ましい。
 正孔輸送層の高分子化合物の架橋体を含有する層は、正孔輸送層の高分子化合物を含有する層を、加熱、光照射等の外部刺激により架橋させて得られる層である。正孔輸送層の高分子化合物の架橋体を含有する層は、溶媒に対して実質的に不溶化されているため、後述する発光素子の積層化に好適に使用することができる。
 正孔輸送層の低分子化合物の架橋体を含有する層は、正孔輸送層の低分子化合物を含有する層を、加熱、光照射等の外部刺激により架橋させて得られる層である。正孔輸送層の低分子化合物の架橋体を含有する層は、溶媒に対して実質的に不溶化されているため、後述する発光素子の積層化に好適に使用することができる。
 [正孔輸送層の高分子化合物]
 正孔輸送層の高分子化合物は、発光素子の輝度寿命が優れるので、式(X)で表される構成単位と、架橋基を有する構成単位とを含む高分子化合物(以下、「正孔輸送層の第1の高分子化合物」ともいう。)、または、式(3)で表される構成単位を含む高分子化合物(以下、「正孔輸送層の第2の高分子化合物」ともいう。)であることが好ましい。
 [式(X)で表される構成単位]
 正孔輸送層の第1の高分子化合物に含まれる式(X)で表される構成単位の定義および例は、蛍光発光材料である高分子化合物に含まれていてもよい式(X)で表される構成単位の定義および例と同じである。
 式(X)で表される構成単位は、発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは20~90モル%であり、より好ましくは25~70モル%であり、更に好ましくは30~50モル%である。
 式(X)で表される構成単位は、正孔輸送層の第1の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [架橋基を有する構成単位]
 正孔輸送層の第1の高分子化合物に含まれる、架橋基を有する構成単位は、正孔輸送層の第1の高分子化合物の架橋性が優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位であることが好ましく、式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基を有する構成単位であることがより好ましく、式(XL-1)または式(XL-17)で表される架橋基を有する構成単位であることが更に好ましい。
 架橋基を有する構成単位は、後述する式(2)で表される構成単位または式(3)で表される構成単位であることが好ましいが、下記式で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000087
 架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位は、式(2)で表される構成単位または式(3)で表される構成単位であることが好ましい。
 [式(2)で表される構成単位]
Figure JPOXMLDOC01-appb-C000088
 nAは、発光素子の輝度寿命が優れるので、好ましくは0または1であり、より好ましくは0である。
 nは、発光素子の輝度寿命が優れるので、好ましくは2である。
 Arは、発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)または式(A-20)で表される基であり、さらに好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Arで表される芳香族炭化水素基および複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Lで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。Lで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基およびシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
 Lで表されるアルキレン基およびシクロアルキレン基は、置換基を有していてもよい。アルキレン基およびシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子およびシアノ基が挙げられる。
 Lで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、o-フェニレン、m-フェニレン、p-フェニレンが挙げられる。アリーレン基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基および架橋基A群から選ばれる架橋基が挙げられる。
 Lは、正孔輸送層の第1の高分子化合物の製造が容易になるため、好ましくはフェニレン基またはアルキレン基であり、これらの基は置換基を有していてもよい。
 Xで表される架橋基としては、正孔輸送層の第1の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基であり、より好ましくは式(XL-1)または式(XL-17)で表される架橋基である。
 式(2)で表される構成単位は、正孔輸送層の第1の高分子化合物の安定性および架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。
 式(2)で表される構成単位は、正孔輸送層の第1の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(3)で表される構成単位]
Figure JPOXMLDOC01-appb-C000089
 mAは、発光素子の輝度寿命が優れるので、好ましくは0または1であり、より好ましくは0である。
 mは、発光素子の輝度寿命が優れるので、好ましくは2である。
 cは、正孔輸送層の第1の高分子化合物の製造が容易になり、かつ、発光素子の輝度寿命が優れるので、好ましくは0である。
 Arは、発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、前述した式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、前述した式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、前述した式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 ArおよびArは、発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 ArおよびArで表されるアリーレン基の定義や例は、前述した式(X)におけるArX1およびArX3で表されるアリーレン基の定義や例と同じである。
 ArおよびArで表される2価の複素環基の定義や例は、前述した式(X)におけるArX1およびArX3で表される2価の複素環基の定義や例と同じである。
 Ar、ArおよびArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Kで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 Kは、正孔輸送層の第1の高分子化合物の製造が容易になるので、フェニレン基またはメチレン基であることが好ましい。
 X’で表される架橋基としては、正孔輸送層の第1の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基であり、より好ましくは式(XL-1)または式(XL-17)で表される架橋基である。
 式(3)で表される構成単位は、正孔輸送層の第1の高分子化合物の安定性が優れ、かつ、正孔輸送層の第1の高分子化合物の架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。
 式(3)で表される構成単位は、正孔輸送層の第1の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(2)または(3)で表される構成単位の好ましい態様]
 式(2)で表される構成単位としては、例えば、式(2-1)~式(2-30)で表される構成単位が挙げられ、式(3)で表される構成単位としては、例えば、式(3-1)~式(3-9)で表される構成単位が挙げられる。これらの中でも、正孔輸送層の第1の高分子化合物の架橋性が優れるので、好ましくは式(2-1)~式(2-30)で表される構成単位であり、より好ましくは式(2-1)~式(2-15)、式(2-19)、式(2-20)、式(2-23)、式(2-25)または式(2-30)で表される構成単位であり、更に好ましくは式(2-1)~式(2-9)または式(2-30)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
 [式(Y)で表される構成単位]
 正孔輸送層の第1の高分子化合物は、発光素子の輝度寿命が優れるので、式(Y)で表される構成単位を更に含むことが好ましい。
 正孔輸送層の第1の高分子化合物に含まれていてもよい式(Y)で表される構成単位の定義および例は、蛍光発光材料である高分子化合物に含まれていてもよい式(Y)で表される構成単位の定義および例と同じである。
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましく3~30モル%である。
 式(Y)で表される構成単位は、正孔輸送層の第1の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 正孔輸送層の第1の高分子化合物としては、例えば、表2に示す高分子化合物(P-201)~(P-206)が挙げられる。ここで、「その他の構成単位」とは、式(X)、式(2)、式(3)および式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000093

[表中、p'、q'、r'、s'およびt'は、各構成単位のモル比率を表す。p'+q'+r'+s'+t'=100であり、かつ、70≦p'+q'+r'+s'≦100である。]
 高分子化合物(P-201)~(P-206)における、式(X)、式(2)、式(3)および式(Y)で表される構成単位の例および好ましい範囲は、上述のとおりである。
 [式(3)で表される構成単位]
 正孔輸送層の第2の高分子化合物に含まれる式(3)で表される構成単位の定義および例は、正孔輸送層の第1の高分子化合物に含まれていてもよい式(3)で表される構成単位の定義および例と同じである。
 式(3)で表される構成単位は、正孔輸送層の第2の高分子化合物の安定性が優れ、かつ、正孔輸送層の第2の高分子化合物の架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。
 式(3)で表される構成単位は、正孔輸送層の第2の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(2)で表される構成単位]
 正孔輸送層の第2の高分子化合物は、式(2)で表される構成単位を更に含んでいてもよい。
 正孔輸送層の第2の高分子化合物に含まれていてもよい式(2)で表される構成単位の定義および例は、正孔輸送層の第1の高分子化合物に含まれていてもよい式(2)で表される構成単位の定義および例と同じである。
 式(2)で表される構成単位は、正孔輸送層の第2の高分子化合物の安定性および架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。
 式(2)で表される構成単位は、正孔輸送層の第2の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(Y)で表される構成単位]
 正孔輸送層の第2の高分子化合物は、発光素子の輝度寿命が優れるので、式(Y)で表される構成単位を更に含むことが好ましい。
 正孔輸送層の第2の高分子化合物に含まれていてもよい式(Y)で表される構成単位の定義および例は、蛍光発光材料である高分子化合物に含まれていてもよい式(Y)で表される構成単位の定義および例と同じである。
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましく3~30モル%である。
 式(Y)で表される構成単位は、正孔輸送層の第2の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 正孔輸送層の第2の高分子化合物としては、例えば、表2に示す高分子化合物(P-301)~(P-303)が挙げられる。ここで、「その他の構成単位」とは、式(3)、式(2)および式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000094

[表中、p''、q''、r''およびs''は、各構成単位のモル比率を表す。p''+q''+r''+s''=100であり、かつ、70≦p''+q''+r''≦100である。]
 高分子化合物(P-301)~(P-303)における、式(3)、式(2)および式(Y)で表される構成単位の例および好ましい範囲は、上述のとおりである。
 [正孔輸送層の第1および第2の高分子化合物の製造方法]
 正孔輸送層の第1および第2の高分子化合物は、前述の蛍光発光材料である高分子化合物および高分子ホストの製造方法と同様の方法で製造することができる。
 [正孔輸送層の低分子化合物]
 正孔輸送層の低分子化合物は、正孔輸送層の低分子化合物の架橋性が優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物であることが好ましく、式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基を有する低分子化合物であることがより好ましく、式(XL-1)または式(XL-17)で表される架橋基を有する低分子化合物であることが更に好ましい。
 架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物は、式(Z)で表される低分子化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000095
 mB1は、通常、0~10の整数であり、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0または1であり、特に好ましくは0である。
 mB2は、通常、0~10の整数であり、正孔輸送層の低分子化合物の合成が容易となり、かつ、発光素子の輝度寿命が優れるため、好ましくは1~5の整数であり、より好ましくは1~3の整数であり、更に好ましくは1または2であり、特に好ましくは1である。
 nB1は、通常、0~5の整数であり、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは0~4の整数であり、より好ましくは0~2の整数であり、更に好ましくは0である。
 Arで表される芳香族炭化水素基のnB1個の置換基を除いたアリーレン基部分の定義や例は、前述の式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のnB1個の置換基を除いた2価の複素環基部分の定義や例は、前述の式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のnB1個の置換基を除いた2価の基の定義や例は、前述の式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Arは、発光素子の輝度寿命が優れるので、好ましくは芳香族炭化水素基である。
 LB1で表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、前述のLで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 LB1は、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは、アルキレン基、アリーレン基または酸素原子であり、より好ましくはアルキレン基またはアリーレン基であり、更に好ましくはフェニレン基、フルオレンジイル基またはアルキレン基であり、特に好ましくはフェニレン基またはアルキレン基であり、これらの基は置換基を有していてもよい。
 X’’で表される架橋基としては、正孔輸送層の低分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基であり、より好ましくは式(XL-1)または式(XL-17)で表される架橋基である。
 正孔輸送層の低分子化合物としては、例えば、式(Z-1)~(Z-16)で表される低分子化合物が挙げられ、好ましくは、式(Z-1)~(Z-10)で表される低分子化合物であり、より好ましくは、式(Z-5)~(Z-9)で表される低分子化合物である。
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
 正孔輸送層の低分子化合物は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。
 また、上記以外の入手方法として、例えば、国際公開第1997/033193号、国際公開第2005/035221号、国際公開第2005/049548に記載されている方法に従って合成することができる。
 [正孔輸送層の組成物]
 正孔輸送層は、架橋材料の架橋体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料および酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「正孔輸送層の組成物」ともいう。)を含有する層であってもよい。
 正孔輸送層の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の例および好ましい範囲は、発光層の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の例および好ましい範囲と同じである。正孔輸送層の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の配合量は、各々、架橋材料の架橋体を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔輸送層の組成物に含有される酸化防止剤の例および好ましい範囲は、発光層の組成物に含有される酸化防止剤の例および好ましい範囲と同じである。正孔輸送層の組成物において、酸化防止剤の配合量は、架橋材料の架橋体を100重量部とした場合、通常、0.001~10重量部である。
 [正孔輸送層のインク]
 架橋材料と、溶媒とを含有する正孔輸送層の組成物(以下、「正孔輸送層のインク」ともいう。)は、発光層のインクと同様に、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 正孔輸送層のインクの粘度の好ましい範囲は、発光層のインクの粘度の好ましい範囲と同じである。
 正孔輸送層のインクに含有される溶媒の例および好ましい範囲は、発光層のインクに含有される溶媒の例および好ましい範囲と同じである。
 正孔輸送層のインクにおいて、溶媒の配合量は、架橋材料を100重量部とした場合、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 <発光素子の層構成>
 発光素子は、陽極、陰極、発光層および正孔輸送層以外の層(以下、「その他の層」ともいう。)を有していてもよい。その他の層としては、例えば、正孔注入層、電子輸送層および電子注入層が挙げられる。正孔注入層、電子輸送層および電子注入層は、正孔注入材料、電子輸送材料および電子注入材料をそれぞれ含み、正孔注入材料、電子輸送材料および電子注入材料を用いてそれぞれ形成することができる。
 積層する層の順番、数および厚さは、外部量子効率および輝度寿命を勘案して調整する。
 発光層、正孔輸送層、正孔注入層、電子輸送層および電子注入層の厚さは、通常、1nm~10μmである。
 発光素子は、正孔注入性の観点からは、陽極と正孔輸送層との間に、正孔注入層を有することが好ましく、電子注入性および電子輸送性の観点からは、陰極と発光層の間に、電子注入層および電子輸送層の少なくとも1層を有することが好ましい。
 発光素子において、発光層、正孔輸送層、正孔注入層、電子輸送層および電子注入層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液または溶融状態からの成膜による方法が挙げられる。また、発光層、正孔輸送層、正孔注入層、電子輸送層および電子注入層の形成方法としては、高分子化合物を用いる場合、例えば、溶液または溶融状態からの成膜による方法が挙げられる。
 正孔注入層、電子輸送層および電子注入層は、正孔注入材料、電子輸送材料および電子注入材料をそれぞれ含有するインクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。
 インクの粘度の好ましい範囲は、発光層のインクの粘度の好ましい範囲と同じである。
 インクに含有される溶媒の例および好ましい範囲は、発光層のインクに含有される溶媒の例および好ましい範囲と同じである。
 インクにおいて、溶媒の配合量は、正孔注入材料、電子輸送材料または電子注入材料100重量部に対して、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 正孔輸送層の材料、電子輸送層の材料および発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層および発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 各層を架橋させるための加熱の温度は、通常、25~300℃であり、発光素子の輝度寿命が優れるので、好ましくは50~250℃であり、より好ましくは150~200℃である。
 各層を架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明または半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイトおよびグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極および陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極もしくは陰極、または、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、または、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源および表示装置としても使用できる。
 <発光装置>
 本発明の発光装置は、
 陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられ、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子と、
 発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する駆動装置とを備える発光装置である。
 発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する駆動装置としては、例えば、マイクレル社製の有機ELドライバーMIC4826、Crystalfontz社製のLGDP4216が挙げられる。
 本発明の発光装置としては、例えば、セグメントタイプの表示装置、ドットマトリックス表示装置の表示部、液晶表示装置のバックライト用の面状光源、面状の照明用光源が挙げられる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)およびポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)のいずれかにより求めた。なお、SECの各測定条件は、次のとおりである。
 <測定条件1>
 測定する高分子化合物を約0.05重量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
 <測定条件2>
 測定する高分子化合物を約0.05重量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 <測定条件3>
 測定する高分子化合物を約0.05重量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、0.6mL/分の流量で流した。カラムとして、TSKguardcolumn SuperAW-Hと、TSKgel Super AWM-Hと、TSKgel SuperAW3000(いずれも東ソー製)の各1本を直列につないで用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノールまたは重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300またはMERCURY 400VX)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにテトラヒドロフランまたはクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)または同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 実施例において、発光素子のパルス電圧駆動は、下記のパルス電圧駆動条件1を用いて行った。なお、発光素子のパルス電圧駆動において、発光素子の輝度が初期輝度の95%または60%となるまでの時間は、パルス電圧駆動における第1の電圧が印加された積算時間とした。
 <パルス電圧駆動条件1>
 第1の電圧は、発光素子の初期輝度が所定の輝度となるように設定された電流値を定電流で与える電圧に設定した。第2の電圧は、-10Vに設定した。パルス電圧は、第1の電圧と第2の電圧とが交互にスイッチングする矩形波を設定した。パルス電圧の周波数は、1Hzを設定した。第1の電圧のパルス幅:T1と、第2の電圧のパルス幅:T2とは、T1/(T1+T2)=0.9となるように設定した。
 <合成例1:イリジウム錯体M1~M2、並びに、単量体CM1~CM13およびCM15~CM17の合成>
 イリジウム錯体M1は、国際公開第2009/131255号記載の方法に従って合成した。
 イリジウム錯体M2は、特開2011-105701号公報記載の方法に従って合成した。
 単量体CM1は、特開2011-174062号公報記載の方法に従って合成した。
 単量体CM2は、国際公開第2005/049546号記載の方法に従って合成した。
 単量体CM3は、市販品を用いた。
 単量体CM4は、特開2008-106241号公報記載の方法に従って合成した。
 単量体CM5は、特開2011-174062号公報記載の方法に従って合成した。
 単量体CM6は、特開2012-144722号公報記載の方法に従って合成した。
 単量体CM7は、特開2004-143419号公報記載の方法に従って合成した。
 単量体CM8は、特開2010-031259号公報記載の方法に従って合成した。
 単量体CM9は、市販品を用いた。
 単量体CM10は、特開2010-189630号公報記載の方法に従って合成した。
 単量体CM11は、国際公開第2012/86671号記載の方法に従って合成した。
 単量体CM12は、特開2010-189630号公報記載の方法に従って合成した。
 単量体CM13は、国際公開第2009/131255号記載の方法に従って合成した。
 単量体CM15は、国際公開第2000/46321号記載の方法に従って合成した。
 単量体CM16は、国際公開第2000/46321号記載の方法に従って合成した。
 単量体CM17は、特開2007-511636号公報記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 <合成例2:単量体CM14の合成>
Figure JPOXMLDOC01-appb-C000104
 化合物CM14aは、国際公開第2012/086671号に記載の方法に従って合成した。
 <Step1>
 反応容器内を窒素ガス雰囲気とした後、4-ブロモ-n-オクチルベンゼン(250g)およびテトラヒドロフラン(脱水品、2.5L)を加え、-70℃以下に冷却した。その後、そこへ、2.5mol/L濃度のn-ブチルリチウム-ヘキサン溶液(355mL)を滴下し、-70℃以下にて3時間攪拌した。その後、そこへ、テトラヒドロフラン(脱水品、400mL)に化合物CM14a(148g)を溶解させた溶液を滴下した後、室温まで昇温し、室温にて一晩攪拌した。得られた反応混合物を0℃に冷却した後、水(150mL)を加えて攪拌した。得られた反応混合物を減圧濃縮し、有機溶媒を除去した。得られた反応混合物に、ヘキサン(1L)および水(200mL)を加え、分液操作によって水層を除去した。得られた有機層を飽和食塩水で洗浄した後、硫酸マグネシウムを加えて乾燥した。得られた混合物をろ過し、得られたろ液を減圧濃縮することで、化合物CM14b(330g)を黄色油状物として得た。
 <Step2>
 反応容器内を窒素ガス雰囲気とした後、化合物CM14b(330g)およびジクロロメタン(900mL)を加え、5℃以下に冷却した。その後、そこへ、2.0mol/L濃度の三フッ素化ホウ素ジエチルエーテル錯体(245mL)を滴下した。その後、室温まで昇温し、室温にて一晩攪拌した。得られた反応混合物を、氷水(2L)の入った容器に加え、30分間攪拌した後、水層を除去した。得られた有機層を、10重量%濃度のリン酸カリウム水溶液(1L)で1回、水(1L)で2回洗浄した後、硫酸マグネシウムで乾燥した。得られた混合物をろ過し、得られたろ液を減圧濃縮することで油状物を得た。得られた油状物をトルエン(200mL)に溶解させた後、シリカゲルを敷いたろ過器に通液することでトルエン溶液1を得た。トルエン溶液1を得た後、シリカゲルを敷いたろ過器に更にトルエン(約3L)を通液することでトルエン溶液2を得た。トルエン溶液1とトルエン溶液2を合一した後、減圧濃縮することで油状物を得た。得られた油状物にメタノール(500mL)を加え、攪拌した。得られた反応混合物をろ過することで固体を得た。得られた固体に、酢酸ブチルおよびメタノールの混合溶媒を加え、再結晶を繰り返すことにより、単量体CM14c(151g)を白色固体として得た。得られた単量体CM14cのHPLC面積百分率値(検出波長UV280nm)は99.0%以上を示した。
 H-NMR(400MHz/CDCl):δ(ppm)=7.56(d,2H),7.49(d,2H),7.46(dd,2H),7.06~7.01(m,8H),2.55(t,4H),1.61~1.54(m,4H),1.30~1.26(m,20H),0.87(t,6H).
 <Step3>
 反応容器内を窒素ガス雰囲気とした後、単量体CM14c(100g)およびテトラヒドロフラン(脱水品、1000mL)を加え、-70℃以下に冷却した。その後、そこへ、2.5mol/L濃度のn-ブチルリチウム-ヘキサン溶液(126mL)を滴下し、-70℃以下にて5時間攪拌した。その後、そこへ、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(81mL)を滴下した。その後、室温まで昇温し、室温にて一晩攪拌した。得られた反応混合物を-30℃に冷却し、2.0mol/Lの塩酸-ジエチルエーテル溶液(143mL)を滴下した。その後、室温まで昇温し、減圧濃縮することにより固体を得た。得られた固体にトルエン(1.2L)を加え、室温にて1時間攪拌した後、シリカゲルを敷いたろ過器に通液することによりろ液を得た。得られたろ液を減圧濃縮することにより固体を得た。得られた固体にメタノールを加えて攪拌した後、ろ過することにより固体を得た。得られた固体に対して、イソプロピルアルコールを用いた再結晶を繰り返すことにより精製した後、50℃にて一晩減圧乾燥することにより、単量体CM14(72g)を白色固体として得た。得られた単量体CM14のHPLC面積百分率値(検出波長UV280nm)は99.0%以上を示した。
 H-NMR(400MHz/CDCl):δ(ppm)=7.82(d,2H),7.81(s,2H),7.76(d,2H),7.11(d,4H)、7.00(d,4H),2.52(t,4H),1.59~1.54(m,4H),1.36~1.26(m,20H),1.31(s,24H),0.87(t,6H).
 <合成例3:高分子化合物P1の合成>
 高分子化合物P1は、下記表4に示される単量体を用いて、特開2012-144722号公報記載の方法に従って合成した。高分子化合物P1のMnは8.4×10であり、Mwは3.4×10であった。高分子化合物P1は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表4に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000105
 <合成例4:高分子化合物P2の合成>
 高分子化合物P2は、下記表5に示される単量体を用いて、特開2012-144722号公報記載の方法に従って合成した。高分子化合物P2のMnは8.4×10であり、Mwは2.3×10であった。高分子化合物P2は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表5に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000106
 <合成例5:高分子化合物P3の合成>
 高分子化合物P3は、下記表6に示される単量体を用いて、特開2012-144722号公報記載の方法に従って合成した。高分子化合物P3のMnは1.2×10であり、Mwは3.1×10であった。高分子化合物P3は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表6に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000107
 <合成例6:高分子化合物P4の合成>
 高分子化合物P4は、下記表7に示される単量体を用いて、特開2012-36388号公報記載の方法に従って合成した。高分子化合物P4のMnは9.2×10であり、Mwは2.3×10であった。高分子化合物P4は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表7に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000108
 <合成例7:高分子化合物P5の合成>
 反応容器内を不活性ガス雰囲気とした後、化合物CM14(4.7686g)、化合物CM11(0.7734g)、化合物CM3(1.9744g)、化合物CM13(0.3308g)、化合物CM7(0.4432g)およびトルエン(67mL)を加えて、105℃に加熱しながら攪拌した。その後、そこへ、ビストリフェニルホスフィンパラジウムジクロリド(4.2mg)を加え、次いで、20重量%テトラエチルアンモニウムヒドロキシド水溶液(20mL)を滴下した後、還流下で3時間攪拌した。
 その後、そこへ、フェニルボロン酸(0.077g)、ビストリフェニルホスフィンパラジウムジクロリド(4.2mg)、トルエン(60mL)および20重量%テトラエチルアンモニウムヒドロキシド水溶液(20mL)を加え、還流下で24時間攪拌した。
 有機層を水層と分離した後、得られた有機層に、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(3.33g)およびイオン交換水(67mL)を加え、85℃で2時間攪拌した。有機層を水層と分離した後、得られた有機層を、イオン交換水(78mL)で2回、3重量%酢酸水溶液(78mL)で2回、イオン交換水(78mL)で2回の順番で洗浄した。
 有機層を水層と分離した後、得られた有機層をメタノールに滴下することで固体を沈殿させ、ろ取し、乾燥させることにより、固体を得た。得られた固体をトルエンに溶解させ、予めトルエンを通液したシリカゲルカラムおよびアルミナカラムに通液させた。得られた溶液をメタノールに滴下することで固体を沈殿させ、ろ取し、乾燥させることにより、高分子化合物P5(4.95g)を得た。高分子化合物P5のMnは1.4×10であり、Mwは4.1×10であった。
 高分子化合物P5は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表8に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000109
 <合成例8:高分子化合物P6の合成>
 高分子化合物P6は、下記表8に示される単量体を用いて、特許第5516317号公報記載の方法に従って合成した。高分子化合物P6のMnは6.0×10であり、Mwは4.0×10であった。高分子化合物P6は、仕込み原料から求めた理論値では、それぞれの単量体から誘導される構成単位が、下記表8に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000110
 <素子作製例1:発光素子1の作製および発光特性評価>
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物P2および高分子化合物P3を1.2重量%の濃度で溶解させた(高分子化合物P2/高分子化合物P3=80重量%/20重量%)。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子1を作製した。
(発光素子の発光特性評価)
 発光素子1に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子1の発光開始電圧は2.8Vであり、1000cd/mにおける発光効率は10.4cd/Aであった。
 <比較例1:発光素子1の直流電圧駆動>
 発光素子1の初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度が初期輝度の95%となるまでの時間(以下、「LT95」ともいう。)は、3.3時間であった。
 <実施例1:発光素子1のパルス電圧駆動>
 発光素子1の初期輝度が1000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、5.5時間であった。実施例1のLT95は、比較例1のLT95の1.67倍であった。
 <素子作製例2:発光素子2の作製および発光特性評価>
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)をスピンコート法により65nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物P4およびイリジウム錯体M1を1.8重量%の濃度で溶解させた(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により80nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子2を作製した。
(発光素子の発光特性評価)
 発光素子2に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子2の発光開始電圧は3.1Vであり、1000cd/mにおける発光効率は43.5cd/Aであった。
 <比較例2:発光素子2の直流電圧駆動>
 発光素子2の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、14.3時間であった。
 <実施例2:発光素子2のパルス電圧駆動>
 発光素子2の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、20.3時間であった。実施例2のLT95は、比較例2のLT95の1.41倍であった。
 <素子作製例3:発光素子3の作製および発光特性評価>
 素子作製例2における、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)に代えて、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=70重量%/30重量%)を用いた以外は、素子作製例2と同様にして、発光素子3を作製した。
 発光素子3に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子3の発光開始電圧は2.9Vであり、1000cd/mにおける発光効率は55.3cd/Aであった。
 <比較例3:発光素子3の直流電圧駆動>
 発光素子3の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、5.8時間であった。
 <実施例3:発光素子3のパルス電圧駆動>
 発光素子3の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、19.4時間であった。実施例3のLT95は、比較例3のLT95の3.34倍であった。
 <素子作製例4:発光素子4の作製および発光特性評価>
 素子作製例2における、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)に代えて、高分子化合物P5およびイリジウム錯体M2のキシレン溶液(1.8重量%)(高分子化合物P5/イリジウム錯体M2=92.5重量%/7.5重量%)を用いた以外は、素子作製例2と同様にして、発光素子4を作製した。
 発光素子4に電圧を印加することにより、615nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子4の発光開始電圧は2.7Vであり、1000cd/mにおける発光効率は18.2cd/Aであった。
 <比較例4:発光素子4の直流電圧駆動>
 発光素子4の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、22.3時間であった。
 <実施例4:発光素子4のパルス電圧駆動>
 発光素子4の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、31.1時間であった。実施例4のLT95は、比較例4のLT95の1.39倍であった。
 <素子作製例5:発光素子5の作製および発光特性評価>
 素子作製例2における、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)に代えて、高分子化合物P5およびイリジウム錯体M2のキシレン溶液(1.8重量%)(高分子化合物P5/イリジウム錯体M2=85重量%/15重量%)を用いた以外は、素子作製例2と同様にして、発光素子5を作製した。
 発光素子5に電圧を印加することにより、615nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子5の発光開始電圧は2.6Vであり、1000cd/mにおける発光効率は16.6cd/Aであった。
 <比較例5:発光素子5の直流電圧駆動>
 発光素子5の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、20.3時間であった。
 <実施例5:発光素子5のパルス電圧駆動>
 発光素子5の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、41.5時間であった。実施例5のLT95は、比較例5のLT95の2.04倍であった。
 <素子作製例6:発光素子6の作製および発光特性評価>
 素子作製例2における、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)に代えて、高分子化合物P5およびイリジウム錯体M2のキシレン溶液(1.8重量%)(高分子化合物P5/イリジウム錯体M2=70重量%/30重量%)を用いた以外は、素子作製例2と同様にして、発光素子6を作製した。
 発光素子6に電圧を印加することにより、615nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子6の発光開始電圧は2.4Vであり、1000cd/mにおける発光効率は15.6cd/Aであった。
 <比較例6:発光素子6の直流電圧駆動>
 発光素子6の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、10.5時間であった。
 <実施例6:発光素子6のパルス電圧駆動>
 発光素子6の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、14.5時間であった。実施例6のLT95は、比較例6のLT95の1.38倍であった。
 <素子作製例7:発光素子7の作製および発光特性評価>
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(発光層の形成)
 キシレンに、高分子化合物P2および高分子化合物P3を1.2重量%の濃度で溶解させた(高分子化合物P2/高分子化合物P3=90重量%/10重量%)。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子7を作製した。
(発光素子の発光特性評価)
 発光素子7に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子7の発光開始電圧は2.8Vであり、1000cd/mにおける発光効率は1.9cd/Aであった。
 <比較例7-1:発光素子7の直流電圧駆動>
 発光素子7の初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.1時間であった。
 <比較例7-2:発光素子7のパルス電圧駆動>
 発光素子7の初期輝度が1000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.1時間であった。比較例7-2のLT95は、比較例7-1のLT95の1.00倍であった。
 <素子作製例8:発光素子8の作製および発光特性評価>
(陽極の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。
(正孔輸送層の形成)
 陽極を形成した基板を蒸着機内において、1×10-5Pa以下にまで減圧した後、陽極の上に、下記式(HM-1)で表される正孔輸送材料(Luminescence Technology社製、LT-E115)を真空蒸着法により、蒸着レート:1.5Å/secにて、60nmの厚さで成膜することにより正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000111
(発光層の形成)
 正孔輸送層を形成した基板を蒸着機内において、1×10-5Pa以下にまで減圧した後、正孔輸送層の上に、下記式(EM-1)で表される発光材料(Luminescence Technology社製、LT-E401)を真空蒸着法により、蒸着レート:1.5Å/secにて、40nmの厚さで成膜することにより発光層を形成した。
Figure JPOXMLDOC01-appb-C000112
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約0.5nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約150nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子8を作製した。
(発光素子の発光特性評価)
 発光素子8に電圧を印加することにより、525nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子8の発光開始電圧は2.9Vであり、1000cd/mにおける発光効率は0.99cd/Aであった。
 <比較例8-1:発光素子8のパルス電圧駆動>
 発光素子8の初期輝度が200cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度が初期輝度の60%となるまでの時間(以下、「LT60」ともいう。)は、454.9時間であった。
 <比較例8-2:発光素子8のパルス電圧駆動>
 発光素子8の初期輝度が200cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT60は、493.2時間であった。比較例8-2のLT60は、比較例8-1のLT95の1.08倍であった。
 <素子作製例9:発光素子9の作製および発光特性評価>
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)をスピンコート法により65nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 正孔輸送層を形成した基板を蒸着機内において、1×10-5Pa以下にまで減圧した後、正孔輸送層の上に、上記式(EM-1)で表される発光材料を真空蒸着法により、蒸着レート:1.5Å/secにて、40nmの厚さで成膜することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約0.5nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約150nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子9を作製した。
(発光素子の発光特性評価)
 発光素子9に電圧を印加することにより、525nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子9の発光開始電圧は3.7Vであり、1000cd/mにおける発光効率は3.5cd/Aであった。
 <比較例9:発光素子9の直流電圧駆動>
 発光素子9の初期輝度が200cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度が初期輝度の60%となるまでの時間(以下、「LT60」ともいう。)は、458.2時間であった。
 <実施例9:発光素子9のパルス電圧駆動>
 発光素子9の初期輝度が200cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT60は、668.7時間であった。実施例9のLT95は、比較例9のLT60の1.46倍であった。
 <素子作製例10:発光素子10の作製および発光特性評価>
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)をスピンコート法により65nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 正孔輸送層を形成した基板を蒸着機内において、1×10-5Pa以下にまで減圧した後、陽極の上に、上記式(HM-1)で表される正孔輸送材料を真空蒸着法により、蒸着レート:1.5Å/secにて、60nmの厚さで成膜することにより正孔輸送層を形成した。
(発光層の形成)
 正孔輸送層を形成した基板を蒸着機内において、1×10-5Pa以下にまで減圧した後、正孔輸送層の上に、上記式(EM-1)で表される発光材料を真空蒸着法により、蒸着レート:1.5Å/secにて、40nmの厚さで成膜することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約0.5nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約150nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子10を作製した。
(発光素子の発光特性評価)
 発光素子10に電圧を印加することにより、535nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子10の発光開始電圧は4.3Vであり、1000cd/mにおける発光効率は3.7cd/Aであった。
 <比較例10-1:発光素子10の直流電圧駆動>
 発光素子10の初期輝度が200cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT60は、3888.8時間であった。
 <比較例10-2:発光素子10のパルス電圧駆動>
 発光素子10の初期輝度が200cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT60は、2271.6時間であった。比較例10-2のLT60は、比較例10-1のLT60の0.54倍であった。
 <素子作製例11:発光素子11の作製および発光特性評価>
 素子作製例3における正孔輸送層を形成しなかったこと以外は、素子作製例3と同様にして、発光素子11を作製した。
 発光素子11に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子11の発光開始電圧は2.7Vであり、1000cd/mにおける発光効率は51.7cd/Aであった。
 <比較例11-1:発光素子11の直流電圧駆動>
 発光素子11の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.685時間であった。
 <比較例11-2:発光素子11のパルス電圧駆動>
 発光素子11の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.677時間であった。比較例11-2のLT95は、比較例11-1のLT95の0.99倍であった。
 <素子作製例12:発光素子12の作製および発光特性評価>
 素子作製例6における正孔輸送層を形成しなかったこと以外は、素子作製例6と同様にして、発光素子12を作製した。
 発光素子12に電圧を印加することにより、620nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子12の発光開始電圧は2.5Vであり、1000cd/mにおける発光効率は5.0cd/Aであった。
 <比較例12-1:発光素子12の直流電圧駆動>
 発光素子12の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.0278時間であった。
 <比較例12-2:発光素子12のパルス電圧駆動>
 発光素子12の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.0297時間であった。比較例12-2のLT95は、比較例12-1のLT95の1.06倍であった。
 <素子作製例13:発光素子13の作製および発光特性評価>
 素子作製例2における、高分子化合物P1に代えて、高分子化合物P6を用いたこと、および、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=80重量%/20重量%)に代えて、高分子化合物P4およびイリジウム錯体M1のキシレン溶液(1.8重量%)(高分子化合物P4/イリジウム錯体M1=60重量%/40重量%)を用いたこと以外は、素子作製例2と同様にして、発光素子13を作製した。
 発光素子13に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子13の発光開始電圧は2.8Vであり、1000cd/mにおける発光効率は54.0cd/Aであった。
 <比較例13:発光素子13の直流電圧駆動>
 発光素子13の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、9.8時間であった。
 <実施例13:発光素子13のパルス電圧駆動>
 発光素子13の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、24.8時間であった。実施例13のLT95は、比較例13のLT95の2.53倍であった。
 <素子作製例14:発光素子14の作製および発光特性評価>
 素子作製例13における、高分子化合物P6のキシレン溶液(0.7重量%)に代えて、下記式(HM-2)で表される正孔輸送材料(Luminescence Technology社製、LT-N157)のクロロベンゼン溶液(0.9重量%)を用いたこと以外は、素子作製例13と同様にして、発光素子14を作製した。
Figure JPOXMLDOC01-appb-C000113
(発光素子の発光特性評価)
 発光素子14に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。発光素子14の発光開始電圧は3.1Vであり、1000cd/mにおける発光効率は45.9cd/Aであった。
 <比較例14:発光素子14の直流電圧駆動>
 発光素子14の初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.40時間であった。
 <実施例14:発光素子14のパルス電圧駆動>
 発光素子14の初期輝度が3000cd/mとなるように電流値を設定後、上記のパルス電圧駆動条件1で駆動させ、輝度の時間変化を測定した。その結果、LT95は、0.70時間であった。実施例14のLT95は、比較例14のLT95の1.90倍であった。
 本発明によれば、発光素子の駆動方法であって、輝度寿命に優れる駆動方法を提供することができる。また、本発明によれば、発光素子と、該駆動方法のための駆動装置とを備える発光装置を提供することができる。

Claims (13)

  1.  陽極と、
     陰極と、
     陽極および陰極の間に設けられた発光層と、
     陽極および発光層の間に設けられており、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子を、
     発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する、発光素子の駆動方法。
  2.  前記架橋材料が、式(X)で表される構成単位と、架橋基を有する構成単位とを含む高分子化合物である、請求項1に記載の発光素子の駆動方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     aX1およびaX2は、それぞれ独立に、0以上の整数を表す。
     ArX1およびArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArX2およびArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2およびArX4が複数存在する場合、それらは同一でも異なっていてもよい。
     RX1、RX2およびRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2およびRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
  3.  前記架橋基を有する構成単位が、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位である、請求項2に記載の発光素子の駆動方法。

    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000002
    [式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
  4.  前記架橋基を有する構成単位が、式(2)で表される構成単位または(3)で表される構成単位である、請求項3に記載の発光素子の駆動方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     nAは0~5の整数を表し、nは1または2を表す。
     Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
     Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。]
  5.  前記式(X)で表される構成単位と、前記架橋基を有する構成単位とを含む高分子化合物が、式(Y)で表される構成単位を更に含む、請求項2~4のいずれか一項に記載の発光素子の駆動方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、ArY1は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
  6.  前記架橋材料が、
     式(3)で表される構成単位を含む高分子化合物である、請求項1に記載の発光素子の駆動方法。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。]

    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000007
    [式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
  7.  前記式(3)で表される構成単位を含む高分子化合物が、式(Y)で表される構成単位を更に含む、請求項6に記載の発光素子の駆動方法。
    [式中、ArY1は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
  8.  前記架橋材料が、
     式(Z)で表される低分子化合物である、請求項1に記載の発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    [式中、
     mB1およびmB2は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。
     nB1は0以上の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
     LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
     X’’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基A群から選ばれる架橋基である。]

    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000010
    [式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
  9.  前記第1の電圧が順バイアス電圧であり、前記第2の電圧が逆バイアス電圧であり、第1の電圧および第2の電圧の極性が異なる、請求項1~8のいずれか一項に記載の発光素子の駆動方法。
  10.  前記第2の電圧が、-15V以上0V未満である、請求項9に記載の発光素子の駆動方法。
  11.  前記パルス電圧の周波数が、0.1Hz以上100Hz以下である、請求項1~10のいずれか一項に記載の発光素子の駆動方法。
  12.  前記第1の電圧のパルス幅:T1と、前記第2の電圧のパルス幅:T2とが、式(1-1)を満たす、請求項1~11のいずれか一項に記載の発光素子の駆動方法。

       0.05≦T1/(T1+T2)≦0.95     (1-1)
  13.  陽極と、
     陰極と、
     陽極および陰極の間に設けられた発光層と、
     陽極および発光層の間に設けられ、架橋材料の架橋体を含有する正孔輸送層とを有する発光素子と、
     発光素子の発光開始電圧以上の第1の電圧と、発光素子の発光開始電圧未満の第2の電圧とを交互にスイッチングさせたパルス電圧により駆動する駆動装置とを備える発光装置。
PCT/JP2016/081540 2015-11-04 2016-10-25 発光素子の駆動方法および発光装置 WO2017077904A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187015276A KR20180081083A (ko) 2015-11-04 2016-10-25 발광 소자의 구동 방법 및 발광 장치
CN201680062514.7A CN108353479B (zh) 2015-11-04 2016-10-25 发光元件的驱动方法和发光装置
EP16861966.6A EP3373701A4 (en) 2015-11-04 2016-10-25 METHOD FOR CONTROLLING LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
US15/770,806 US10810929B2 (en) 2015-11-04 2016-10-25 Method for driving light emitting element and light emitting device
JP2017516975A JP6332557B2 (ja) 2015-11-04 2016-10-25 発光素子の駆動方法および発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216371 2015-11-04
JP2015216371 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077904A1 true WO2017077904A1 (ja) 2017-05-11

Family

ID=58662433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081540 WO2017077904A1 (ja) 2015-11-04 2016-10-25 発光素子の駆動方法および発光装置

Country Status (7)

Country Link
US (1) US10810929B2 (ja)
EP (1) EP3373701A4 (ja)
JP (1) JP6332557B2 (ja)
KR (1) KR20180081083A (ja)
CN (1) CN108353479B (ja)
TW (1) TWI693245B (ja)
WO (1) WO2017077904A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530580A (ja) * 2018-07-11 2021-11-11 メルク パテント ゲーエムベーハー 高度分枝ポリマーを含む調合物、高度分枝ポリマー、およびこの高度分枝ポリマーを含有する電気光学的デバイス
JP6545879B1 (ja) 2018-10-10 2019-07-17 住友化学株式会社 発光素子用膜及びそれを用いた発光素子
CN114560851B (zh) * 2022-03-14 2023-12-26 南京邮电大学 一类基于环氧丁烷的咔唑类衍生物及其制备方法和应用

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
JPH09293588A (ja) 1996-04-25 1997-11-11 Casio Comput Co Ltd 電界発光素子およびその駆動方法
WO2000046321A1 (en) 1999-02-04 2000-08-10 The Dow Chemical Company Fluorene copolymers and devices made therefrom
WO2003017730A1 (en) * 2001-08-09 2003-02-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence display and its driving method
JP2004143419A (ja) 2002-08-28 2004-05-20 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
WO2005035221A1 (de) 2003-10-14 2005-04-21 Bühler AG Verfahren zur herstellung eines formkörpers aus einem polykondensat
WO2005049548A1 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
JP2006235492A (ja) 2005-02-28 2006-09-07 Seiko Epson Corp 有機el装置及びその駆動方法並びに電子機器
JP2007511636A (ja) 2003-11-17 2007-05-10 住友化学株式会社 架橋性アリールアミン化合物、及びそれをベースにしたポリマーの共役オリゴマー又はポリマー
WO2008038747A1 (fr) * 2006-09-25 2008-04-03 Sumitomo Chemical Company, Limited composé polymère et dispositif électroluminescent polymère l'utilisant
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
WO2009123269A1 (ja) * 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2009252944A (ja) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc 有機エレクトロルミネセンス素子とその製造方法
JP2010031259A (ja) 2008-06-30 2010-02-12 Sumitomo Chemical Co Ltd フェノキサジン系高分子化合物及びそれを用いた発光素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2011510509A (ja) * 2008-01-23 2011-03-31 ケンブリッジ ディスプレイ テクノロジー リミテッド パルス駆動発光デバイスおよびそのための組成物
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
JP2011174062A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
JP2012036388A (ja) 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物及び該高分子化合物を含有する組成物
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
JP2012144722A (ja) 2010-12-21 2012-08-02 Sumitomo Chemical Co Ltd 組成物及びブロック型共重合体
JP5516317B2 (ja) 2009-10-22 2014-06-11 住友化学株式会社 有機エレクトロルミネッセンス素子
JP2015133362A (ja) * 2014-01-09 2015-07-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180802B2 (ja) * 1998-07-16 2001-06-25 住友電気工業株式会社 トリフェニルアミン誘導体とそれを用いた有機エレクトロルミネッセンス素子
JP2947276B1 (ja) 1998-07-17 1999-09-13 日本電気株式会社 有機elデバイスの駆動方法
JP2003323988A (ja) 2002-02-28 2003-11-14 Semiconductor Energy Lab Co Ltd 発光装置及びそれを用いた電気器具
JP2003272851A (ja) 2002-03-18 2003-09-26 Fuji Photo Film Co Ltd 有機el素子の駆動方法及び有機el発光装置
JP3861743B2 (ja) * 2002-05-01 2006-12-20 ソニー株式会社 電界発光素子の駆動方法
US8021765B2 (en) * 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
JP4244941B2 (ja) * 2005-02-25 2009-03-25 セイコーエプソン株式会社 発光素子、発光装置および電子機器
KR100981968B1 (ko) * 2007-11-16 2010-09-13 삼성모바일디스플레이주식회사 헤테로고리 화합물 및 이를 이용한 유기 전계 발광 장치
KR100948853B1 (ko) * 2007-11-16 2010-03-22 삼성모바일디스플레이주식회사 헤테로고리 화합물 및 이를 이용한 유기 전계 발광 장치
JP4751955B1 (ja) 2010-07-09 2011-08-17 富士フイルム株式会社 有機電界発光素子
KR20140100307A (ko) * 2013-02-06 2014-08-14 삼성디스플레이 주식회사 유기 발광 트랜지스터
US20150008140A1 (en) 2013-07-03 2015-01-08 General Electric Company Method for fabricating microchannels in fluid cooled components

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
JPH09293588A (ja) 1996-04-25 1997-11-11 Casio Comput Co Ltd 電界発光素子およびその駆動方法
WO2000046321A1 (en) 1999-02-04 2000-08-10 The Dow Chemical Company Fluorene copolymers and devices made therefrom
WO2003017730A1 (en) * 2001-08-09 2003-02-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence display and its driving method
JP2004143419A (ja) 2002-08-28 2004-05-20 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
WO2005035221A1 (de) 2003-10-14 2005-04-21 Bühler AG Verfahren zur herstellung eines formkörpers aus einem polykondensat
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
WO2005049548A1 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds
JP2007511636A (ja) 2003-11-17 2007-05-10 住友化学株式会社 架橋性アリールアミン化合物、及びそれをベースにしたポリマーの共役オリゴマー又はポリマー
JP2006235492A (ja) 2005-02-28 2006-09-07 Seiko Epson Corp 有機el装置及びその駆動方法並びに電子機器
WO2008038747A1 (fr) * 2006-09-25 2008-04-03 Sumitomo Chemical Company, Limited composé polymère et dispositif électroluminescent polymère l'utilisant
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP2011510509A (ja) * 2008-01-23 2011-03-31 ケンブリッジ ディスプレイ テクノロジー リミテッド パルス駆動発光デバイスおよびそのための組成物
WO2009123269A1 (ja) * 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2009252944A (ja) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc 有機エレクトロルミネセンス素子とその製造方法
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2010031259A (ja) 2008-06-30 2010-02-12 Sumitomo Chemical Co Ltd フェノキサジン系高分子化合物及びそれを用いた発光素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
JP5516317B2 (ja) 2009-10-22 2014-06-11 住友化学株式会社 有機エレクトロルミネッセンス素子
JP2011174062A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
JP2012036388A (ja) 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物及び該高分子化合物を含有する組成物
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
JP2012144722A (ja) 2010-12-21 2012-08-02 Sumitomo Chemical Co Ltd 組成物及びブロック型共重合体
JP2015133362A (ja) * 2014-01-09 2015-07-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEM. REV., vol. 109, 2009, pages 897 - 1091
See also references of EP3373701A4

Also Published As

Publication number Publication date
CN108353479A (zh) 2018-07-31
US20180308419A1 (en) 2018-10-25
EP3373701A1 (en) 2018-09-12
EP3373701A4 (en) 2019-07-31
TWI693245B (zh) 2020-05-11
CN108353479B (zh) 2020-06-30
JPWO2017077904A1 (ja) 2017-11-02
US10810929B2 (en) 2020-10-20
KR20180081083A (ko) 2018-07-13
JP6332557B2 (ja) 2018-05-30
TW201738293A (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6500891B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5867580B2 (ja) 発光素子
JP6108056B2 (ja) 組成物およびそれを用いた発光素子
JP6468289B2 (ja) 発光素子
JP5842989B2 (ja) 組成物およびそれを用いた発光素子
WO2018198975A1 (ja) 発光素子
WO2015163174A1 (ja) 発光素子
JP6652061B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2015156235A1 (ja) 発光素子およびそれに用いる組成物
WO2016140205A1 (ja) 組成物およびそれを用いた発光素子
JP5880679B2 (ja) 発光素子の製造方法
JP2017183724A (ja) 発光素子
JP6754774B2 (ja) 発光素子
JP6332557B2 (ja) 発光素子の駆動方法および発光装置
JP6573041B2 (ja) 発光素子
JP6642428B2 (ja) 高分子化合物およびそれを用いた発光素子
JP6972912B2 (ja) 組成物及びそれを用いた発光素子
JP2017125087A (ja) 高分子化合物及びそれを用いた発光素子
WO2018062277A1 (ja) 発光素子
JP6417785B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2017038613A1 (ja) 組成物及びそれを用いた発光素子
JP6707909B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2016064998A (ja) 金属錯体およびそれを用いた発光素子
JP6327019B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2016129140A (ja) 発光素子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015276

Country of ref document: KR

Kind code of ref document: A