WO2017071594A1 - 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用 - Google Patents

一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2017071594A1
WO2017071594A1 PCT/CN2016/103423 CN2016103423W WO2017071594A1 WO 2017071594 A1 WO2017071594 A1 WO 2017071594A1 CN 2016103423 W CN2016103423 W CN 2016103423W WO 2017071594 A1 WO2017071594 A1 WO 2017071594A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
thermoplastic resin
composite
long carbon
fiber reinforced
Prior art date
Application number
PCT/CN2016/103423
Other languages
English (en)
French (fr)
Inventor
方鲲
方铮
李玫
Original Assignee
北京纳盛通新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳盛通新材料科技有限公司 filed Critical 北京纳盛通新材料科技有限公司
Priority to EP16859029.7A priority Critical patent/EP3369779A1/en
Priority to JP2018541473A priority patent/JP2018535133A/ja
Publication of WO2017071594A1 publication Critical patent/WO2017071594A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to a Long Carbon Fiber Reinforced Thermoplastic Composites (LCFRT), a preparation method and an application thereof, and belongs to a high-performance, lightweight, environmentally-friendly, recyclable long carbon fiber.
  • Thermoplastic resin matrix composite is a Long Carbon Fiber Reinforced Thermoplastic Composites (LCFRT), a preparation method and an application thereof, and belongs to a high-performance, lightweight, environmentally-friendly, recyclable long carbon fiber.
  • the mechanical properties of composite materials and metal materials are significantly different, mainly in two aspects: 1) the mechanical properties of composite materials have obvious anisotropy and exhibit strong designability, while metal materials are To the sameness, the composition of the material composition remains unchanged after the determination of the composition of the material; 2) the impact failure mode of the composite material and the metal material is different, and the impact failure mode of the composite material presents a complex diversity feature, which belongs to the multi-scale progressive rigid tough gradient failure.
  • the impact failure mode of the metal material is plastic deformation-induced yield fracture failure.
  • fiber composite materials have become the most important, most numerous, and most widely used lightweight high-strength composite materials, mainly divided into: thermosetting composites (thermosetting composites) and thermoplastic composites (thermoplastic composites).
  • thermosetting resin-based composite material has the advantages of high rigidity, excellent fatigue resistance, integral molding, and relatively light weight, but at the same time, the manufacturing process cost is high, and the control process is complicated, and it is difficult to realize high-volume, standardized industrial production.
  • the thermoplastic resin-based composite material has the advantages of light weight, high rigidity, good low-temperature impact resistance, simple processing and forming process, integral and modular molding, short production cycle and low cost, and can realize standardization and mass production, and at the same time, The remarkable characteristics of green environmental protection processing and recyclable recycling are in line with the advanced technology trends of new composite materials with high performance, light weight and low processing cost, and various government regulations.
  • the carbon fiber (CF) retention size of the carbon fiber (CF) in the resin matrix thermosetting resin matrix and thermoplastic resin matrix
  • it can be divided into: chopped carbon fiber (SCF), long carbon fiber (LCF), continuous carbon fiber (CCF,
  • SCF chopped carbon fiber
  • CCF continuous carbon fiber
  • the chopped carbon fiber (SCF) length in the chopped carbon fiber reinforced thermoplastic resin matrix composite (SCFRT) is 3-5 mm
  • the carbon fiber (SCF) retention length in the product is 0.1-0.3.
  • the fiber length to diameter ratio is small, the reinforcing effect is limited, the carbon fiber (SCF) weight content is: 10-35 wt%; the carbon fiber (LCF) length dimension in the continuous long carbon fiber reinforced thermoplastic resin matrix composite (pellet, LCFRT) is: 5-25mm, and the carbon fiber (LCF) retention length in the product is: 5-8mm, the fiber aspect ratio is large, the reinforcing effect is obviously improved, and the carbon fiber (LCF) weight content is 40-70wt%.
  • CFRP thermosetting epoxy resin composites
  • the technical problem to be solved by the invention is to provide a light weight, high strength, good impact toughness, good heat dissipation performance, wear resistance, corrosion resistance, fatigue resistance, excellent forming processing performance, simple manufacturing process and low cost of parts. At the same time, it has a designable and recyclable, green continuous continuous carbon fiber reinforced thermoplastic resin-based nanocomposite (LCFRT) and its preparation method and application.
  • LCFRT green continuous continuous carbon fiber reinforced thermoplastic resin-based nanocomposite
  • the invention provides a continuous long carbon fiber reinforced thermoplastic resin-based nano composite material, the composite material comprising: long carbon fiber, thermoplastic resin, filler and auxiliary agent;
  • the weight content of the long carbon fiber is: 40-70 wt%; the weight content of the thermoplastic resin is 25-40 wt%; the weight content of the filler is 3-15 wt%; and the weight content of the auxiliary agent is 2-5 wt%.
  • the continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite according to the present invention having a length dimension of 5-25 mm, wherein the preferred pellet length dimension is 10-15 mm, and the diameter dimension is: 4-7mm.
  • the long carbon fiber (LCF) retention length dimension in the processed product of the nanocomposite is 0.5-15 mm, wherein the preferred long carbon fiber ( The LCF) retention length dimension is 5-8 mm and meets the normal distribution requirement of ⁇ 80%.
  • the thermoplastic resin comprises: polyamide (PA), polycarbonate (PC), polybutylene terephthalate (PBT), Polyethylene terephthalate (PET), polyoxymethylene (POM), polyketone (POK), polyether ketone (PEK), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSF), polysulfide sulfone (PTES), polyarylene sulfide (PAS), polyimide (PI), polyamideimide (PAI) Polyetherimide (PEI), thermoplastic polyester (TPEE), thermoplastic polyurethane (TPU), or a multi-phase multi-component formed by physical or mechanical blending or chemical modification of two or more varieties Polymer blend.
  • PA polyamide
  • PC polycarbonate
  • PBT polybutylene terephthalate
  • PET Polyethylene terephthalate
  • POM polyoxym
  • the continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite wherein the filler contains: 5-35 wt% conductive filler, 10-55 wt% wear-resistant filler, and 35-70 wt% heat-conductive filler
  • the conductive filler is a blend of one or more of conductive carbon black, conductive graphite and carbon nanotubes;
  • the wear-resistant filler is: polytetrafluoroethylene, molybdenum disulfide One or more of the blend composites formed;
  • the heat conductive filler is: micron aluminum fiber, nano silicon carbide fiber, nano graphene, nano aluminum nitride, nanometer molybdenum nitride, nano alumina, nano oxidation A blend of one or more of the magnesium forms.
  • the additive contains a blend of one or more of a toughening agent, a flame retardant, an antioxidant, an anti-UV agent, a lubricant, a nucleating agent, a coupling agent, and an impact modifier. Complex.
  • the surface resistance of the composite material after injection molding is: 10-10000/ ⁇ cm
  • the thermal conductivity is 2-100 W/m ⁇ K
  • the coefficient of static friction is: 0.09-0.18/ ⁇ s.
  • the invention also provides a preparation method of a continuous long carbon fiber reinforced thermoplastic resin-based nano composite material, wherein the preparation method adopts an isostatic pressing resin impregnation composite process to prepare a multi-component blend compound having multi-phase structure characteristics.
  • the material that is, the continuous carbon fiber long yarn roll (CCF) is first passed through the preheating device to control the yarn feeding tensioner and the yarn (beam) airflow dynamic dispersing device to form a parallel monodisperse arrangement, which is conveyed by the guiding roller shaft and the twin screw Multi-phase multi-component blended composite formed by melt blending of thermoplastic resin matrix, filler and auxiliary agent extruded by extruder, while being heated and pressurized in a dipping die mold, and is constant Under the condition of static pressure and controlled yarn tension, the rapid traction is carried out by the 11-15 unequal spacing reduction roller shafts placed inside the impregnation die for the molten resin impregnation and composite forming process to form a molten multi-phase multi
  • the invention also provides a continuous long carbon fiber reinforced thermoplastic resin-based nano composite material for use on a wheel hub, and the dynamic bending fatigue performance of a composite wheel hub for a low load pure electric vehicle is ⁇ 350Kg, and the loading offset is ⁇ 4%. Dynamic radial fatigue performance ⁇ 450Kg, loading offset ⁇ 2%.
  • the carbon fiber (LCF) retention length dimension of the continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite (LCFRT) according to the present invention in the processed component product is 0.5-15 mm, wherein the preferred carbon fiber (LCF) retention length dimension It is: 5-8mm, and meets the normal distribution requirement ⁇ 80%, and has small specific gravity, high strength, good low temperature impact resistance, and wing distortion. Small size, stable size, low moisture absorption, good heat dissipation performance, scratch resistance, UV aging resistance, chemical solvent corrosion resistance, long service life, recyclable recycling, aluminum replacement in automotive parts manufacturing Alloy materials have broad application prospects and comply with the nationally established low carbon economic regulations and environmental protection requirements for energy conservation and emission reduction.
  • Figure 1 is a schematic view showing the structure of SCFRT-G composite pellets and LCFRT-G composite pellets.
  • FIG. 2 is a schematic view showing the structure of a continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite (LCFRT).
  • Figure 3 is a hub made of continuous long carbon fiber reinforced thermoplastic resin based nanocomposite (LCFRT).
  • the invention provides a preparation method of a continuous long carbon fiber reinforced thermoplastic resin-based nano composite material (LCFRT), comprising the steps of: controlling a continuous carbon fiber bundle (CCF) and a low viscosity melt thermoplastic using a precision sensor (viscosity, temperature and pressure).
  • a precision sensor viscosity, temperature and pressure.
  • the temperature at which the resin blend is heated, the pressure of the pressurization, the tension of the traction, and the 11-15 rolling roll shafts with different chamfers in the extrusion immersed notch mold are used to distribute the carbon fibers (bundles) in a distributed manner to form a continuous length.
  • Monofilament carbon fiber (CCF), and simultaneously control the effective isostatic pressure inside the dipping tank while maintaining the melting temperature and low viscosity fluid It is: 85-250MPa, which makes the continuous monofilament carbon fiber (CCF) fully melt-melted, wetted and pressed densely formed (process), and the interface strength between the two phases can be significantly improved.
  • the melt-blown and formed composite (process) co-extruded composite brace, and then pressed and compacted at 50-180 MPa for compact consolidation for 1-3 min, thereby preparing a high-performance continuous long carbon fiber reinforced thermoplastic resin base.
  • Nanocomposites (LCFRT) are finally cut into composites (pellets) of different lengths according to performance requirements.
  • the one-step method solves the problem that the continuous monofilament carbon fiber (CCF) can be monodispersed into the forming and compounding process of impregnation, wetting and compaction of the melted thermoplastic resin (matrix), so that the impregnation efficiency is significantly improved. And can form a good interface (phase) microstructure, carbon fiber (CCF) distribution is more uniform, carbon fiber (LCF) retention length size is significantly increased, enhanced toughening effect (effect) is significantly improved, processing rheological properties are improved, The mechanical properties and dimensional stability of the parts, fatigue resistance, and impact resistance at high and low temperatures are significantly improved.
  • the surface resistance of the continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite (LCFRT) of the present invention is: 10-10000/ ⁇ cm, thermal conductivity: 2-100 W/m ⁇ K, and static friction coefficient: 0.09- 0.18/ ⁇ s.
  • the carbon fiber (LCF) retention length in the low-load pure electric vehicle composite wheel using the continuous long carbon fiber reinforced thermoplastic resin-based nanocomposite (LCFRT) of the present invention is 5-8 mm, and satisfies Normal distribution requirements: ⁇ 80%.
  • the dynamic bending fatigue performance of the composite automobile wheel hub is ⁇ 350Kg, the loading offset is ⁇ 4%; the dynamic radial fatigue performance is ⁇ 450Kg, and the loading offset is ⁇ 2%.
  • Pure electric vehicle composite wheel hub is manufactured by precision injection molding technology. It has simple processing technology, low production cost, long service life, light weight, small wing deformation, stable size, low moisture absorption, high strength and good heat dissipation. High and low temperature impact resistance, scratch resistance, UV aging resistance, chemical solvent corrosion resistance, safety and reliability, environmental protection, and recyclable use of remarkable features and excellent performance, but in actual use, composite materials
  • the weight of the wheel is loaded The limited capacity requirements, fatigue strength and service life will have the upper limit of its use, so this product is currently suitable for low-speed, light-load miniature cars, pure electric vehicles or electric bicycles, as shown in Figure 3.
  • Continuously controlled carbon fiber filament yarn (CF, Toray T700, 12K, Japan) blended with the above multicomponents at a pulling rate of 25 m/s, special impregnation notch on a 45 twin-screw extruder
  • the composite (granular) brace is prepared by heating and pressurizing in the mold, and simultaneously melting and co-extruding, wherein the weight of the carbon fiber (LCF) is calculated according to the total weight of the long carbon fiber reinforced PA66 nano composite (LCFRT): 40 wt%, a multicomponent blend composite forming a multi-phase (nano-micron) structural feature: 60 wt%.
  • the head of the Type 45 twin-screw extruder is equipped with a specially designed carbon fiber (LCF) melt-dipping tank that is automatically controlled by sensors (viscosity, temperature and pressure), while the melting temperature in the barrel of the extruder is set to 235 respectively.
  • °C section
  • 245 ° C two sections
  • 250 ° C three sections
  • 267 ° C four sections
  • the static pressure inside the impregnated slot die is controlled to 165 MPa
  • the long carbon fiber reinforced PA66 nanocomposite is prepared.
  • Pellet, LFT-PA66-LCF40 after cooling, apply a constant pressure of 125 MPa Compact compacted and consolidated for 2 min, and the composite (prepreg particles) strands were cut into pellets (particles) of different length according to the performance requirements.
  • the pellet length was 10.83 mm and the diameter was 5.71 mm.
  • the physical and mechanical properties of the test are shown in Table 1.
  • Test results Test basis 1 density g/cm 3 1.312 ISO1183-1:2004 2 Tensile Strength MPa 323 ISO527-1:1993 3 Flexural modulus MPa 32800 ISO178:2010(E) 4 Cantilever beam notched impact toughness (+25°C) KJ/m 2 25 ISO180-2000/A 5 Cantilever beam notched impact toughness (-60 ° C) KJ/m 2 twenty four ISO180-2000/A
  • PA66 nanocomposites granules, LFT-PA66-LCF50: the ratio of the total weight of each component is: 28.5 wt% PA66, 3 wt% maleic anhydride grafted POE (compatibility agent), 2wt% conductive carbon black, 3wt% conductive graphite, 0.3wt% carbon nanotube, 0.3wt% polytetrafluoroethylene, 2wt% molybdenum disulfide, 1wt% micron aluminum fiber, 0.2wt% nano silicon carbide fiber, 0.5wt% nanometer Graphene, 3wt% nano-aluminum nitride, 2wt% nano-molybdenum nitride, 1wt% nano-alumina, 0.2wt% nano-magnesia, 1wt% alkyl bis-fatty acid amide, 1wt% anti-ultraviolet 745, 1wt% anti-oxidation Blend of the agent (
  • a specially controlled continuous carbon fiber yarn (CF, Toray T700, 12K, Japan) at a traction rate of 21 m/s and a special impregnation of the above thermoplastic resin blend on a 45-type twin-screw extruder under heat and pressure Co-extruded composite (granular) brace at the slot die, wherein the carbon fiber (LCF) weight is 50% by weight based on the total weight of the long carbon fiber reinforced PA66 nanocomposite (granules, LFT-PA66-LCF50).
  • the multicomponent blended composites forming multiphase (nano-micron) structural features are present in an amount of 50% by weight.
  • the head of the Type 45 twin-screw extruder is equipped with a specially designed melt-dip tank for automatic control of the sensor (viscosity, temperature and pressure), while the melting temperature in the barrel of the extruder is 245 ° C (section), 255 ° C (two sections), 275 ° C (three sections), 285 ° C (four sections), the static pressure inside the impregnated slot die is controlled to 125 MPa, and the long carbon fiber reinforced PA66 thermoplastic nanocomposite prepreg (pellets) is prepared.
  • LFT-PA66-LCF50 after cooling, apply a constant pressure of 150MPa for compaction and cold consolidation for 3min, and cut the composite prepreg (grain) strand into pellets of size length according to the performance requirements.
  • the length of the pellets is 11.52 mm and the diameter is 4.39 mm.
  • the physical and mechanical properties of the test are shown in Table 3.
  • the physical and mechanical properties, dimensional stability, fatigue resistance, and impact resistance test parameters of pure electric vehicle hubs prepared by injection molding are shown in Table 4.
  • Test results Test basis 1 density g/cm 3 1.346 ISO1183-1:2004 2 Tensile Strength MPa 379 ISO527-1:1993 3 Flexural modulus MPa 34500 ISO178:2010(E) 4 Cantilever beam notched impact toughness (+25°C) KJ/m 2 18 ISO180-2000/A 5 Cantilever beam notched impact toughness (-60 ° C) KJ/m 2 16 ISO180-2000/A

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用。所述复合材料中包含:长碳纤维、热塑性树脂、填充料和助剂,并采用等静压熔融树脂浸渍复合工艺方法制备具有多相态结构特征的多组份共混物复合材料。其中,长碳纤维(LCF)重量含量为:40-70wt%;热塑性树脂重量含量为:25-40wt%;填充料重量含量为:3-15wt%;助剂重量含量为:2-5wt%。在加工成形部件制品中的长碳纤维(LCF)保留长度尺寸为:0.5-15mm,且满足正态分布要求≥80%。本发明的复合材料具有:比重小、强度高、韧性好、导电导热好、耐磨损、耐腐蚀、耐疲劳、生产工艺简单、制件加工成本低等优异性能与特点。

Description

一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用 技术领域
本发明涉及一种连续长碳纤维增强热塑性树脂基纳米复合材料(Long Carbon Fiber Reinforced Thermoplastic Composites,LCFRT)及其制备方法和应用,属于高性能化、轻量化、环保化、可回收循环使用的长碳纤维热塑性树脂基复合材料。
背景技术
复合材料和金属材料的力学性能具有明显的不同,主要体现在两个方面:1)复合材料的力学性能具有明显的各向异性,且呈现出很强的可设计性,而金属材料则为各向同性,材料组份构成确定后其性能保持不变;2)复合材料和金属材料的冲击破坏模式不同,复合材料的冲击破坏模式呈现复杂多样性特征,属于多尺度渐进式的刚韧渐变破坏,而金属材料的冲击破坏模式为塑性变形为主导的屈服断裂破坏。目前,纤维复合材料己成为最重要、数量最多、应用最广泛的轻质高强复合材料品种,主要分为:热固性树脂基复合材料(thermosetting composites)和热塑性树脂基复合材料(thermoplastic composites)。其中,热固性树脂基复合材料具有:刚性大、抗疲劳性能优异、能够整体化成型、重量相对较轻,但是同时制造工艺成本高,且控制过程复杂,难以实现大批量、标准化的工业生产。热塑性树脂基复合材料具有:重量轻、刚性大、低温抗冲击韧性好、加工成形过程简单、能够整体化与模块化成型、生产周期短、成本低,可以实现标准化、大批量化生产,同时又具有绿色环保加工、可回收循环使用的显著特点,符合当今时代产业化发展对高性能化、轻量化、加工成本低的新型复合材料的先进技术趋势和政府的各项行业法规要求。
根据碳纤维(CF)在树脂基体(热固性树脂基体和热塑性树脂基体)中的碳纤维(CF)保留尺寸长度大小,可以分为:短切碳纤维(SCF)、长碳纤维(LCF)、连续碳纤维(CCF,包括二维纺织布和三维织物)三种碳纤维(CF)长度尺寸的形态结构。其中,短切碳纤维增强热塑性树脂基复合材料(粒料,SCFRT)中的短切碳纤维(SCF)长度尺寸为:3-5mm,且在制品中的碳纤维(SCF)保留长度尺寸为:0.1-0.3mm,纤维长径比小,增强效应有限,碳纤维(SCF)重量含量为:10-35wt%;连续长碳纤维增强热塑性树脂基复合材料(粒料,LCFRT)中的碳纤维(LCF)长度尺寸为:5-25mm,且在制品中的碳纤维(LCF)保留长度尺寸为:5-8mm,纤维长径比大,增强效应明显提高,碳纤维(LCF)重量含量为:40-70wt%。
目前常规使用的连续碳纤维增强热固性环氧树脂复合材料(CFRP)制造的复合材料汽车轮毂普遍存在以下缺点或不足:比重大、易吸潮易变形、低温抗冲击性能差、制造加工成本高、产品合格率低等许多不足或缺陷,不能够满足特殊应用的批量化、低成本化的使用要求。
发明内容
技术问题
本发明所要解决的技术问题是提供一种重量轻、强度高、抗冲击韧性好、散热性能好、耐磨损、耐腐蚀、耐疲劳、成形加工性能优良、制造生产工艺简单、制件成本低,同时又具有可设计性与可重复循环使用、绿色环保的连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)及其制备方法和应用。
解决方案
本发明提供一种连续长碳纤维增强热塑性树脂基纳米复合材料,所述复合材料中包含:长碳纤维、热塑性树脂、填充料和助剂;
其中,长碳纤维重量含量为:40-70wt%;热塑性树脂重量含量为:25-40wt%;填充料重量含量为:3-15wt%;助剂重量含量为:2-5wt%。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,所述复合材料的粒料的长度尺寸为:5-25mm,其中优选的粒料长度尺寸为:10-15mm,直径尺寸为:4-7mm。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,在所述纳米复合材料的加工成形部件制品中的长碳纤维(LCF)保留长度尺寸为:0.5-15mm,其中优选的长碳纤维(LCF)保留长度尺寸为:5-8mm,且满足正态分布要求≥80%。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,所述的热塑性树脂包括:聚酰胺(PA)、聚碳酸酯(PC)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚甲醛(POM)、聚酮(POK)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚砜(PSU)、聚醚砜(PES)、聚苯砜(PPSF)、聚硫醚砜(PTES)、聚芳硫醚(PAS)、聚酰亚胺(PI)、聚酰胺酰亚胺(PAI)、聚醚酰亚胺(PEI)、热塑性聚酯(TPEE)、热塑性聚氨酯(TPU)中的一种,或两种以上品种再经过物理机械共混或化学改性形成的多相态多组份聚合物共混物。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,所述的填充料之中含有:5-35wt%导电填充料、10-55wt%耐磨损填充料和35-70wt%导热填充料,其中,导电填充料为:导电炭黑、导电石墨、碳纳米管中的一种或两种以上形成的共混物复合物;耐磨损填充料为:聚四氟乙烯、二硫化钼中的一种或两种以上形成的共混物复合物;导热填充料为:微米铝纤维、纳米碳化硅纤维、纳米石墨烯、纳米氮化铝、纳米氮化钼、纳米氧化铝、纳米氧化镁中的一种或两种以上形成的共混物复合物。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,所述 助剂含有:增韧剂、阻燃剂、抗氧剂、抗紫外光剂、润滑剂、成核剂、偶联剂、抗冲击改性剂中的一种或两种以上形成的共混物复合物。
根据本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料,所述复合材料注塑成形后的平板表面电阻为:10-10000/Ω·cm,导热率为:2-100W/m·K,静摩擦系数为:0.09-0.18/μs。
本发明还提供一种连续长碳纤维增强热塑性树脂基纳米复合材料的制备方法,所述的制备方法采用等静压熔融树脂浸渍复合工艺制备得到具有多相态结构特征的多组份共混物复合材料,即用连续碳纤维长纱卷(CCF)先经过预加热装置,控制放纱输送张力器、纱线(束)气流动态分散装置后形成平行的单分散排列,经过导向辊轴输送与双螺杆挤出机挤出的由热塑性树脂基体、填充料、助剂熔融共混复合形成的多相态多组份共混复合材料,同时经过浸渍槽口模模具内加热、加压,并且在恒定等静压力和控制放纱张力条件下,快速牵引通过浸渍模具内部安置的11-15个不等间距的变径辊轴进行熔融树脂浸渍与复合成形过程,形成熔融的多相态多组份共混高分子复合粘流体系,再经过拉伸、冷却、压实定型、吹干、切割,最后可以制备得到复合材料粒料(LCFRT)。
本发明还提供一种连续长碳纤维增强热塑性树脂基纳米复合材料在车轮轮毂上的应用,用于低载荷的纯电动汽车的复合材料车轮轮毂的动态弯曲疲劳性能≥350Kg,加载偏移≤4%;动态径向疲劳性能≥450Kg,加载偏移≤2%。
有益效果
应用本发明所述的连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)在加工成形零部件制品中的碳纤维(LCF)保留长度尺寸为:0.5-15mm,其中优选的碳纤维(LCF)保留长度尺寸为:5-8mm,且满足正态分布要求≥80%,同时具有比重小、强度高、低温耐冲击性能好、翅曲变 形小、尺寸稳定、吸水吸潮低、导电散热性能好、抗划痕、抗紫外光老化、耐化学溶剂腐蚀性能优异、使用寿命长、可回收循环使用,在汽车零部件制造领域可替代铝合金材料,具有广泛应用前景,符合国家制订的低碳经济法规与节能减排的环保要求。
附图说明
图1是SCFRT-G复合材料粒料和LCFRT-G复合材料粒料的结构示意图。
图2是连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)的结构示意图。
图3是连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)制成的轮毂。
具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。
本发明提供一种连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)的制备方法,包括以下步骤:采用精密传感器(粘度、温度和压力)控制连续碳纤维束(CCF)与低粘度的融熔热塑性树脂共混物进行加热的温度、加压压力、牵引张力,在挤出浸淆槽口模具内部装置倒角不同的11-15个滚动辊轴用于分散分布的碳纤维(束)排列形成连续长单丝碳纤维(CCF),并且在保持融溶温度和低粘流体下同时控制浸渍槽中内部的有效等静压力 为:85-250MPa,使连续单丝碳纤维(CCF)得到完全的热融熔浸渍、润湿与加压密实成形复合(过程),两相之间的界面强度则可以得到显著提高,一步法完成融熔浸淆与成形复合(过程)共挤出复合材料拉条,再经加压:50-180MPa下密实加压冷固结1-3min,从而制备得到高性能的连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT),最终再根据使用性能要求切割成不同长度尺寸的复合材料(粒料)。
采用上述方法,一步法解决了连续单丝碳纤维(CCF)可以单分散排到与被融熔的热塑性树脂(基体)浸渍、润湿与密实压紧的成形复合过程,从而使浸渍效率得到明显提高,并且可以形成良好的界面(相)微观结构,碳纤维(CCF)分布的更加均匀,碳纤维(LCF)保留长度尺寸明显增大,增强增韧作用(效应)显著提高,加工流变性能提高,制件的机械力学性能和尺寸稳定性、耐疲劳性、高低温度下的抗冲击性能等得到显著提高。
本发明的连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)注塑成形的平板表面电阻为:10-10000/Ω·cm,导热率为:2-100W/m·K,静摩擦系数为:0.09-0.18/μs。
使用本发明的连续长碳纤维增强热塑性树脂基纳米复合材料(LCFRT)精密注塑加工成形得到的低载荷使用的纯电动汽车复合材料轮毂中的碳纤维(LCF)保留长度尺寸为:5-8mm,且满足正态分布要求:≥80%。复合材料汽车轮毂的动态弯曲疲劳性能≥350Kg,加载偏移≤4%;动态径向疲劳性能≥450Kg,加载偏移≤2%。
纯电动汽车复合材料轮毂是采用精密注塑成形技术制造,具有加工工艺简单、生产成本低、使用寿命长、重量轻、翅曲变形小、尺寸稳定、吸水吸潮小、强度高、散热性好、高低温度下耐冲击性能好、抗划痕、抗紫外光老化、耐化学溶剂腐蚀、安全可靠、绿色环保、又可循环再回收使用的显著特点与优异性能,但是在实际使用过程中,复合材料轮毂所承受载荷重量的 能力有限度要求,疲劳强度与使用寿命均会有其使用的上极限值,故此本产品目前适合低速度、轻载荷的微型汽车、纯电动汽车或电动自行车使用,如图3所示。
实施例
实施例1
长碳纤维增强PA66纳米复合材料(粒料,LFT-PA66-LCF40)制备:各组成成份所占总重量份数配比为:40wt%PA66、3wt%马来酸酐接枝POE(相容剂)、2wt%导电炭黑、2wt%导电石墨、0.3wt%碳纳米管、0.2wt%聚四氟乙烯、1.5wt%二硫化钼、1wt%微米铝纤维、0.5wt%纳米碳化硅纤维、0.5wt%纳米石墨烯、3wt%纳米氮化铝、2wt%纳米氮化钼、1wt%纳米氧化铝、0.5wt%纳米氧化镁、0.5wt%烷基双脂肪酸酰胺、1wt%抗紫外光剂745、1wt%抗氧剂(0.5wt%1010和0.5wt%164)的共混物,然后在高速混合机上先低速度(35转/分)、高速度(85转/分)下均匀混合搅拌,则可得到多相态多组份共混物复合物。
采用精密控制的连续碳纤维长丝纱(CF,日本东丽公司T700,12K)在25m/s牵引速率下与上述多组份共混复合物,在45型双螺杆挤出机上的特殊浸渍槽口模模具内加热、加压,并同时熔融浸淆共挤出制备复合材料(粒料)拉条,其中按照长碳纤维增强PA66纳米复合材料(LCFRT)总重量计算,碳纤维(LCF)重量含量为:40wt%,形成多相态(纳米-微米)结构特征的多组份共混物复合物为:60wt%。
45型双螺杆挤出机的机头装配有传感器(粘度、温度和压力)自动控制的特殊设计碳纤维(LCF)融熔浸渍槽,同时挤出机料筒内融熔温度分别设定为:235℃(一节),245℃(二节),250℃(三节),267℃(四节),浸渍槽口模模具内部里的静压力控制为165MPa,制备得到长碳纤维增强PA66纳米复合材料(粒料,LFT-PA66-LCF40),冷却后再施加恒定压力125MPa进行 密实压冷固结2min,并根据性能使用要求将复合材料(预浸料颗料)拉条切割成尺寸长度的粒料(颗粒),粒料长度尺寸为:10.83mm,直径尺寸为:5.71mm,对其的物理和力学性能参数测试如表1所示。
长碳纤维增强PA66纳米复合材料(粒料,LFT-PA66-LCF40)注塑成形得到纯电动汽车复合材料轮毂的物理和机械力学性能测试如表2所示。
表1.长碳纤维增强PA66纳米复合材料(PA66-LCF40)的物理和力学性能测试结果
序号 测试项目名称 单位 测试结果 测试依据
1 密度 g/cm3 1.312 ISO1183-1:2004
2 拉伸强度 MPa 323 ISO527-1:1993
3 弯曲模量 MPa 32800 ISO178:2010(E)
4 悬壁梁缺口冲击韧性(+25℃) KJ/m2 25 ISO180-2000/A
5 悬壁梁缺口冲击韧性(-60℃) KJ/m2 24 ISO180-2000/A
表2.长碳纤维增强PA66纳米复合材料(PA66-LCF40)汽车轮毂物理性能测试结果(轮毂直经15英寸)
Figure PCTCN2016103423-appb-000001
实施例2
长碳纤维增强PA66纳米复合材料(粒料,LFT-PA66-LCF50)制备:各组成成份所占总重量的配比为:28.5wt%PA66、3wt%马来酸酐接枝POE(相容剂)、2wt%导电炭黑、3wt%导电石墨、0.3wt%碳纳米管、0.3wt%聚四氟乙烯、2wt%二硫化钼、1wt%微米铝纤维、0.2wt%纳米碳化硅纤维、0.5wt%纳米石墨烯、3wt%纳米氮化铝、2wt%纳米氮化钼、1wt%纳米氧化铝、0.2wt%纳米氧化镁、1wt%烷基双脂肪酸酰胺、1wt%抗紫外光剂745、1wt%抗氧剂(0.5wt%1010和0.5wt%164)的共混物,先低速(35转/分钟)再高速度(125转/分钟),在高速混合机中均匀搅拌混合,则得到多相态多组份共混物复合物。
采用精密控制的连续碳纤维丝纱(CF,日本东丽公司T700,12K)在21m/s牵引速率下与上述热塑性树脂共混物在45型双螺杆挤出机上的可以加热加压下的特殊浸渍槽口模模具处共挤出复合材料(粒料)拉条,其中以长碳纤维增强PA66纳米复合材料(粒料,LFT-PA66-LCF50)总重量计算,碳纤维(LCF)重量含量占50wt%,形成多相态(纳米-微米)结构特征的多组份共混复合物重量含量占50wt%。
45型双螺杆挤出机的机头装配有传感器(粘度、温度和压力)自动控制的特殊设计融熔浸渍槽,同时挤出机料筒内融熔温度分别为:245℃(一节),255℃(二节),275℃(三节),285℃(四节),浸渍槽口模模具内部里的静压力控制为125MPa,制备得到长碳纤维增强PA66热塑性纳米复合材料预浸料(粒料,LFT-PA66-LCF50),冷却后再施加恒定压力150MPa进行密实压冷固结3min,并根据性能使用要求将复合材料预浸料(颗料)拉条切割成尺寸长度的粒料(颗粒),粒料长度尺寸为:11.52mm,直径尺寸为:4.39mm。对其的物理和力学性能参数测试如表3所示。注塑成形制备纯电动汽车轮毂的物理和机械力学性能、尺寸稳定性、耐疲劳性、高低温度下的抗冲击性能参数测试如表4所示。
表3.长碳纤维增强PA66纳米复合材料(PA66-LCF50)的物理和力学性能测试结果
序号 测试项目名称 单位 测试结果 测试依据
1 密度 g/cm3 1.346 ISO1183-1:2004
2 拉伸强度 MPa 379 ISO527-1:1993
3 弯曲模量 MPa 34500 ISO178:2010(E)
4 悬壁梁缺口冲击韧性(+25℃) KJ/m2 18 ISO180-2000/A
5 悬壁梁缺口冲击韧性(-60℃) KJ/m2 16 ISO180-2000/A
表4.长碳纤维增强PA66纳米复合材料(PA66-LCF50)汽车轮毂物理性能测试结果(轮毂直径15英寸)
Figure PCTCN2016103423-appb-000002
以上所述仅为本发明列出的几个较佳实施方案,并不用以限制本发明,凡在本发明可用其他的不违背本发明的精神或主要特征及原则的具体形式之内来概述。因此,凡与本发明的权利要求书相当的含有和范围、概念、技术途径中所作的任何修改、等同替换、改进等等,均应都认为是包含在本发明的保护范围之内。

Claims (9)

  1. 一种连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述复合材料中包含:长碳纤维、热塑性树脂、填充料和助剂;
    其中,长碳纤维重量含量为:40-70wt%;热塑性树脂重量含量为:25-40wt%;填充料重量含量为:3-15wt%;助剂重量含量为:2-5wt%。
  2. 根据权利要求1所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述复合材料的粒料的长度尺寸为:5-25mm,其中优选的粒料长度尺寸为:10-15mm,直径尺寸为:4-7mm。
  3. 根据权利要求1或2所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,在所述纳米复合材料的加工成形部件制品中的长碳纤维(LCF)保留长度尺寸为:0.5-15mm,其中优选的长碳纤维(LCF)保留长度尺寸为:5-8mm,且满足正态分布要求≥80%。
  4. 根据权利要求1-3任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述的热塑性树脂包括:聚酰胺(PA)、聚碳酸酯(PC)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚甲醛(POM)、聚酮(POK)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚砜(PSU)、聚醚砜(PES)、聚苯砜(PPSF)、聚硫醚砜(PTES)、聚芳硫醚(PAS)、聚酰亚胺(PI)、聚酰胺酰亚胺(PAI)、聚醚酰亚胺(PEI)、热塑性聚酯(TPEE)、热塑性聚氨酯(TPU)中的一种,或两种以上再经过物理机械共混或化学改性形成的多相态多组份聚合物共混物。
  5. 根据权利要求1-4任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述的填充料之中含有:5-35wt%导电填充料、10-55wt%耐磨损填充料和35-70wt%导热填充料,其中,导电填充料为:导电炭黑、导电石墨、碳纳米管中的一种或两种以上形成的共混物复合物;耐磨损填充料为:聚四氟乙烯、二硫化钼中的一种或两种以上形成的共混物复合物;导热填充料为:微米铝纤维、纳米碳化硅纤维、纳米石墨烯、纳米氮 化铝、纳米氮化钼、纳米氧化铝、纳米氧化镁中的一种或两种以上形成的共混物复合物。
  6. 根据权利要求1-5任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述助剂含有:增韧剂、阻燃剂、抗氧剂、抗紫外光剂、润滑剂、成核剂、偶联剂、抗冲击改性剂中的一种或两种以上形成的共混物复合物。
  7. 根据权利要求1-6任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料,其特征在于,所述复合材料注塑成形后的平板表面电阻为:10-10000/Ω·cm,导热率为:2-100W/m·K,静摩擦系数为:0.09-0.18/μs。
  8. 一种权利要求1-7任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料的制备方法,其特征在于,所述的制备方法采用等静压熔融树脂浸渍复合工艺制备得到具有多相态结构特征的多组份共混物复合材料,即用连续碳纤维长纱卷(CCF)先经过预加热装置,控制放纱输送张力器、纱线(束)气流动态分散装置后形成平行的单分散排列,经过导向辊轴输送与双螺杆挤出机挤出的由热塑性树脂基体、填充料、助剂熔融共混复合形成的多相态多组份共混复合材料,同时经过浸渍槽口模模具内加热、加压,并且在恒定等静压力和控制放纱张力条件下,快速牵引通过浸渍模具内部安置的11-15个不等间距的变径辊轴进行熔融树脂浸渍与复合成形过程,形成熔融的多相态多组份共混高分子复合粘流体系,再经过拉伸、冷却、压实定型、吹干、切割,最后可以制备得到复合材料粒料(LCFRT)。
  9. 根据权利要求1-7任一项所述的连续长碳纤维增强热塑性树脂基纳米复合材料在车轮轮毂上的应用,其特征在于,其中用于低载荷的纯电动汽车的复合材料车轮轮毂的动态弯曲疲劳性能≥350Kg,加载偏移≤4%;动态径向疲劳性能≥450Kg,加载偏移≤2%。
PCT/CN2016/103423 2015-10-27 2016-10-26 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用 WO2017071594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16859029.7A EP3369779A1 (en) 2015-10-27 2016-10-26 Continuous long carbon fiber reinforced, thermoplastic resin-based nanocomposite material, preparation method and applications thereof
JP2018541473A JP2018535133A (ja) 2015-10-27 2016-10-26 連続炭素長繊維強化熱可塑性樹脂系ナノ複合材料及びその製造方法並びに使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510708712.3 2015-10-27
CN201510708712.3A CN105199379B (zh) 2015-10-27 2015-10-27 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017071594A1 true WO2017071594A1 (zh) 2017-05-04

Family

ID=54947353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103423 WO2017071594A1 (zh) 2015-10-27 2016-10-26 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用

Country Status (4)

Country Link
EP (1) EP3369779A1 (zh)
JP (1) JP2018535133A (zh)
CN (1) CN105199379B (zh)
WO (1) WO2017071594A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851985A (zh) * 2018-11-28 2019-06-07 金旸(厦门)新材料科技有限公司 一种阻燃增强导热聚酮复合材料及其制备方法
CN112341234A (zh) * 2020-11-24 2021-02-09 中国科学院金属研究所 一种低成本、高强度纤维增强纳米多孔炭复合材料的制备方法
CN112552683A (zh) * 2020-11-10 2021-03-26 中国航发北京航空材料研究院 一种抗老化的石墨烯3d打印材料及其制备方法
CN114249968A (zh) * 2022-01-19 2022-03-29 科恒高分子(广东)有限公司 一种阻燃导热高抗冲tpee组合物及其制备方法
CN114456592A (zh) * 2022-02-22 2022-05-10 金发科技股份有限公司 一种尼龙复合材料及其制备和应用
CN114591593A (zh) * 2022-03-10 2022-06-07 吉林大学 一种MXene石墨烯协同强化高含量碳纤维增强PEEK基复合材料及其制备方法
US11491747B2 (en) 2018-05-17 2022-11-08 Siemens Gamesa Renewable Energy A/S Pultrusion method and apparatus

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105199379B (zh) * 2015-10-27 2017-12-19 北京纳盛通新材料科技有限公司 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用
CN105542440A (zh) * 2016-03-08 2016-05-04 苏州珍展科技材料有限公司 一种高导热碳纤维复合材料及其制备方法
CN105778470A (zh) * 2016-04-12 2016-07-20 苏州甫众塑胶有限公司 一种环保型塑胶材料及其制备方法
CN105693953B (zh) * 2016-04-18 2018-10-23 河南工业大学 碳纤维增强热塑性复合材料单向带的制备方法
CN105733116B (zh) * 2016-05-09 2018-11-16 安徽江淮汽车集团股份有限公司 一种耐磨导电性高的pe-ps合金及其制备方法
CN106009669B (zh) * 2016-05-25 2018-06-19 河北立格新材料科技股份有限公司 一种高阻燃长纤维增强热塑性复合材料及其应用
CN107434914A (zh) * 2016-05-27 2017-12-05 株洲时代新材料科技股份有限公司 新型纤维增强复合材料及采用该材料制作的限位侧挡板
CN106065194A (zh) * 2016-06-12 2016-11-02 王海刚 一种连续纤维增强的木塑复合材料及其制备方法
CN106084377A (zh) * 2016-06-15 2016-11-09 朱森 一种石墨烯改性材料汽车轮毂
CN107513262B (zh) * 2016-06-18 2021-03-26 合肥杰事杰新材料股份有限公司 聚酮组合物
CN106221178A (zh) * 2016-08-24 2016-12-14 五行科技股份有限公司 一种阻燃型碳纤维增强聚酮复合材料
CN106589803B (zh) * 2016-11-09 2020-07-24 许隆嘉 一种用于制备航空弹匣的复合材料及其航空弹匣制备方法
CN106751654A (zh) * 2016-11-29 2017-05-31 中广核俊尔新材料有限公司 一种耐磨再生pc/pok合金材料及其制备方法和应用
CN106751713A (zh) * 2016-11-30 2017-05-31 五行科技股份有限公司 一种阻燃型碳纤维增强的聚酮复合材料及其制备方法
CN106633827A (zh) * 2016-12-29 2017-05-10 宁波墨西科技有限公司 一种石墨烯尼龙复合材料及其制备方法
CN106905695A (zh) * 2017-03-02 2017-06-30 黄河科技学院 一种用于汽车轮毂的碳纳米管改性碳纤维复合材料及其制备方法
CN106977921A (zh) * 2017-04-07 2017-07-25 深圳市华盈新材料有限公司 纳米注塑用pps复合材料及其制备工艺
CN108727819B (zh) * 2017-04-13 2021-01-26 青岛创合新材料有限公司 一种碳纤维增强聚苯硫醚纳米复合材料及制备方法和新型散热管应用
CN108342084A (zh) * 2017-05-22 2018-07-31 安徽旭升新材料有限公司 一种碳纤维增强热塑性复合材料及其制备方法
CN107189420B (zh) * 2017-06-14 2019-09-27 上海长伟锦磁工程塑料有限公司 一种高耐磨抗静电低翘曲pok-pa合金材料
CN107383874A (zh) * 2017-09-15 2017-11-24 长沙新材料产业研究院有限公司 一种耐磨抗静电聚酰亚胺复合材料及其制备方法
CN109517385B (zh) * 2017-09-20 2021-03-12 江苏澳盛复合材料科技有限公司 一种碳纤维复合材料
CN109593353A (zh) * 2017-09-30 2019-04-09 中国石油天然气股份有限公司 滑轮的原料与滑轮
WO2019099458A1 (en) * 2017-11-20 2019-05-23 Ticona Llc Fiber-reinforced polymer composition for use in an electronic module
CN111357104A (zh) * 2017-11-20 2020-06-30 提克纳有限责任公司 用于在汽车中使用的电子模块
CN108203294A (zh) * 2017-12-25 2018-06-26 高瑞贤 一种导电性能好的复合陶瓷及其制备方法
CN108274682A (zh) * 2018-03-20 2018-07-13 曲振征 碳纤维增强聚醚醚酮热塑型复合材料汽车轮毂及其制造方法
CN108612762B (zh) * 2018-04-28 2020-05-05 天津大学 一种具有全寿命表面织构的自润滑滑动轴承
CN108559255A (zh) * 2018-05-08 2018-09-21 安徽旭升新材料有限公司 一种碳纤维热塑性复合材料及熔融浸渍工艺
CN108560243B (zh) * 2018-05-12 2020-12-25 中国科学院山西煤炭化学研究所 一种碳纤维表面处理的方法及应用
CN108638601A (zh) * 2018-05-12 2018-10-12 中国科学院山西煤炭化学研究所 碳纤维增强热塑性树脂复合材料及其制造方法
CN108864664B (zh) * 2018-06-08 2020-05-05 黑龙江鑫达企业集团有限公司 一种长纤维增强热塑性复合材料及其制备方法
CN108912621A (zh) * 2018-06-25 2018-11-30 广东格瑞新材料股份有限公司 一种用于变压器骨架的pet材料及其制备方法
CN109096748A (zh) * 2018-07-18 2018-12-28 安徽旭升新材料有限公司 一种热塑性碳纤维复合材料鞋中底及其制备方法
CN109096726A (zh) * 2018-07-26 2018-12-28 广东华领智能制造有限公司 一种pc/pbt合金3d打印材料及其制备方法
CN109265923A (zh) * 2018-08-29 2019-01-25 清华大学深圳研究生院 一种连续碳纤维复合材料及其制备方法
CN109470761B (zh) * 2018-10-19 2020-12-04 重庆医科大学 一种用于玉米赤霉烯酮zen检测的电化学dna适体传感器及检测zen的方法
CN109627672A (zh) * 2018-12-05 2019-04-16 深圳市飞荣达科技股份有限公司 导电母料及其制备方法
CN110079074A (zh) * 2019-05-15 2019-08-02 武汉鑫碳科技有限公司 一种碳纤维增强聚氨酯基复合材料及其制备方法
CN110041700B (zh) * 2019-05-17 2021-05-25 金旸(厦门)新材料科技有限公司 一种碳纤维增强尼龙材料和制备原料及其制备方法和应用
JP7294882B2 (ja) * 2019-05-21 2023-06-20 芝浦機械株式会社 再生炭素繊維を含有する成形体および成形体の製造方法
CN110760183A (zh) * 2019-09-16 2020-02-07 安徽旭升新材料有限公司 一种pa66碳纤维复合材料的制备方法
WO2021092788A1 (zh) * 2019-11-13 2021-05-20 远景能源有限公司 一种用于制造石墨烯改性纤维增强材料的方法及设备
WO2021092787A1 (zh) * 2019-11-13 2021-05-20 远景能源有限公司 一种用于制造碳纳米管改性纤维增强材料的方法及设备
CN112406132B (zh) * 2020-10-19 2022-06-28 广西北海跃达玻璃钢制品有限公司 一种阻燃玻璃钢管材及其生产工艺
CN112538193A (zh) * 2020-12-16 2021-03-23 上海中镭新材料科技有限公司 一种双模碳纤维及其制备方法和在pc/abs合金材料中的应用
CN114292490B (zh) * 2022-01-06 2023-11-28 深圳市爱康运动用品有限公司 一种连续纤维增强热塑性复合材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342192A (ja) * 2005-06-07 2006-12-21 Daisee Kogyo Kk 電気絶縁性でかつ熱伝導性に優れた成形用樹脂
CN101333320A (zh) * 2007-06-25 2008-12-31 晟茂(青岛)先进材料有限公司 一种导电导热材料及其制造方法
CN102241884A (zh) * 2011-06-21 2011-11-16 赖彪 机动车使用的轻型塑料轮毂及制造方法
CN103073789A (zh) * 2012-12-24 2013-05-01 安徽科聚新材料有限公司 一种长碳纤维导电增强改性pp材料及其制备方法
CN104559150A (zh) * 2014-12-16 2015-04-29 惠州力王佐信科技有限公司 一种抗静电己内酰胺导热材料及其制备方法
CN204415020U (zh) * 2014-09-01 2015-06-24 北京纳盛通新材料科技有限公司 一种长碳纤维增强热塑性复合材料汽车轮毂
CN104744926A (zh) * 2013-12-30 2015-07-01 上海杰事杰新材料(集团)股份有限公司 一种具有高耐磨性和高自润滑性连续长纤增强耐高温尼龙复合材料及其制备方法
CN105199379A (zh) * 2015-10-27 2015-12-30 北京纳盛通新材料科技有限公司 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342192A (ja) * 2005-06-07 2006-12-21 Daisee Kogyo Kk 電気絶縁性でかつ熱伝導性に優れた成形用樹脂
CN101333320A (zh) * 2007-06-25 2008-12-31 晟茂(青岛)先进材料有限公司 一种导电导热材料及其制造方法
CN102241884A (zh) * 2011-06-21 2011-11-16 赖彪 机动车使用的轻型塑料轮毂及制造方法
CN103073789A (zh) * 2012-12-24 2013-05-01 安徽科聚新材料有限公司 一种长碳纤维导电增强改性pp材料及其制备方法
CN104744926A (zh) * 2013-12-30 2015-07-01 上海杰事杰新材料(集团)股份有限公司 一种具有高耐磨性和高自润滑性连续长纤增强耐高温尼龙复合材料及其制备方法
CN204415020U (zh) * 2014-09-01 2015-06-24 北京纳盛通新材料科技有限公司 一种长碳纤维增强热塑性复合材料汽车轮毂
CN104559150A (zh) * 2014-12-16 2015-04-29 惠州力王佐信科技有限公司 一种抗静电己内酰胺导热材料及其制备方法
CN105199379A (zh) * 2015-10-27 2015-12-30 北京纳盛通新材料科技有限公司 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491747B2 (en) 2018-05-17 2022-11-08 Siemens Gamesa Renewable Energy A/S Pultrusion method and apparatus
CN109851985A (zh) * 2018-11-28 2019-06-07 金旸(厦门)新材料科技有限公司 一种阻燃增强导热聚酮复合材料及其制备方法
CN109851985B (zh) * 2018-11-28 2022-04-22 金旸(厦门)新材料科技有限公司 一种阻燃增强导热聚酮复合材料及其制备方法
CN112552683A (zh) * 2020-11-10 2021-03-26 中国航发北京航空材料研究院 一种抗老化的石墨烯3d打印材料及其制备方法
CN112552683B (zh) * 2020-11-10 2022-06-28 中国航发北京航空材料研究院 一种抗老化的石墨烯3d打印材料及其制备方法
CN112341234A (zh) * 2020-11-24 2021-02-09 中国科学院金属研究所 一种低成本、高强度纤维增强纳米多孔炭复合材料的制备方法
CN114249968A (zh) * 2022-01-19 2022-03-29 科恒高分子(广东)有限公司 一种阻燃导热高抗冲tpee组合物及其制备方法
CN114249968B (zh) * 2022-01-19 2023-09-29 科恒高分子(广东)有限公司 一种阻燃导热高抗冲tpee组合物及其制备方法
CN114456592A (zh) * 2022-02-22 2022-05-10 金发科技股份有限公司 一种尼龙复合材料及其制备和应用
CN114456592B (zh) * 2022-02-22 2023-08-29 金发科技股份有限公司 一种尼龙复合材料及其制备和应用
CN114591593A (zh) * 2022-03-10 2022-06-07 吉林大学 一种MXene石墨烯协同强化高含量碳纤维增强PEEK基复合材料及其制备方法
CN114591593B (zh) * 2022-03-10 2023-03-28 吉林大学 一种MXene石墨烯协同强化高含量碳纤维增强PEEK基复合材料及其制备方法

Also Published As

Publication number Publication date
CN105199379A (zh) 2015-12-30
JP2018535133A (ja) 2018-11-29
EP3369779A1 (en) 2018-09-05
CN105199379B (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2017071594A1 (zh) 一种连续长碳纤维增强热塑性树脂基纳米复合材料及其制备方法和应用
Liu et al. High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites
Yao et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review
Qiu et al. Carbon nanotube integrated multifunctional multiscale composites
Erden et al. Fiber reinforced composites
Zhang et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review
Wang et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching
Isobe et al. Comparison of strength of 3D printing objects using short fiber and continuous long fiber
US7662321B2 (en) Nano-scaled graphene plate-reinforced composite materials and method of producing same
Mahltig et al. Inorganic and composite fibers: production, properties, and applications
Yousef et al. Wear characterization of carbon nanotubes reinforced acetal spur, helical, bevel and worm gears using a TS universal test rig
CN106633714A (zh) 复合微纤增强3d打印耗材及其制备方法与设备
JP5969714B2 (ja) 射出成形、押出成形、又は引抜成形用の成形材料の集合体、炭素繊維強化熱可塑性樹脂ペレット、成形体、及び射出成形体の製造方法
Jiménez-Suárez et al. Dispersion of carbon nanofibres in a low viscosity resin by calendering process to manufacture multiscale composites by VARIM
Irisawa et al. Effects of carbon nanofibers on carbon fiber reinforced thermoplastics made with in situ polymerizable polyamide 6
JP2013203941A (ja) 炭素繊維プリプレグ、炭素繊維プリプレグテープ、炭素繊維強化複合材料、ならびに炭素繊維強化複合材料を用いた自動車用部品
CN111057369A (zh) 一种碳纤维增强聚酰胺复合材料预浸润玄武岩纤维布及其制备方法
Kuba et al. 3D printing of composite materials using ultralow-melt-viscosity polymer and continuous carbon fiber
Gupta et al. Applications and challenges of carbon-fibres reinforced composites: a Review
JP6873360B2 (ja) 熱可塑性樹脂組成物
Ou et al. Hierarchical mode I interlaminar toughening of unidirectional CFRP laminates by the synergistic effects of CNT powders and veils
Srivastava et al. Effect of graphene coating on modified and pristine carbon fibers on the tribological response of carbon fiber epoxy composites
Hong et al. Preparation and characterization of carbon fiber reinforced plastics (CFRPs) incorporating through-plane-stitched carbon fibers
JP7325277B2 (ja) リサイクル炭素繊維含有樹脂複合材及びその製造方法
Pathak et al. Carbon nanomaterial-carbon fiber hybrid composite for lightweight structural composites in the aerospace industry: synthesis, processing, and properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018541473

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859029

Country of ref document: EP