WO2017064874A1 - 無電解白金めっき液 - Google Patents

無電解白金めっき液 Download PDF

Info

Publication number
WO2017064874A1
WO2017064874A1 PCT/JP2016/056047 JP2016056047W WO2017064874A1 WO 2017064874 A1 WO2017064874 A1 WO 2017064874A1 JP 2016056047 W JP2016056047 W JP 2016056047W WO 2017064874 A1 WO2017064874 A1 WO 2017064874A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
electroless
plating solution
acid
platinum plating
Prior art date
Application number
PCT/JP2016/056047
Other languages
English (en)
French (fr)
Inventor
友人 加藤
秀人 渡邊
Original Assignee
小島化学薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58518047&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017064874(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 小島化学薬品株式会社 filed Critical 小島化学薬品株式会社
Priority to US15/767,817 priority Critical patent/US20180305819A1/en
Priority to EP16855128.1A priority patent/EP3363928A4/en
Publication of WO2017064874A1 publication Critical patent/WO2017064874A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Definitions

  • the present invention relates to an electroless platinum plating solution.
  • an electroless platinum plating solution contains dinitrodiamine platinum or dinitrotetraammine platinum as a platinum salt, ethylenediamine or ammonia as a complexing agent, and hydrazine monohydrate or sodium borohydride as a reducing agent.
  • dinitrodiamine platinum or dinitrotetraammine platinum as a platinum salt
  • ethylenediamine or ammonia as a complexing agent
  • hydrazine monohydrate or sodium borohydride as a reducing agent.
  • Dinitrodiamine platinum and dinitrotetraammine platinum are sparingly soluble in water. Therefore, by adding ethylenediamine or ammonia as a complexing agent to the electroless platinum plating solution, a platinum complex in which ethylenediamine or ammonia is coordinated to platinum is formed and dissolved in water.
  • metal ions or metal complexes can be reduced on the surface of the plating substrate to deposit a metal.
  • a reducing agent for adding a reducing agent to the electroless platinum plating solution, metal ions or metal complexes can be reduced on the surface of the plating substrate to deposit a metal.
  • the platinum complex in which ethylenediamine or ammonia is coordinated to platinum is not easily reduced, hydrazine monohydrate or sodium borohydride having a strong reducing action is added to the electroless platinum plating solution as a reducing agent.
  • hydrazine monohydrate and sodium borohydride have too much reducing power, there is a problem that platinum is precipitated in the plating solution due to the reduction of the platinum complex and hydrogen is generated in accordance with the reduction reaction. .
  • the stability of the solution is improved by adding heavy metal ions such as lead and thallium and thiol compounds as stabilizers.
  • the concentration control of the heavy metal ions and thiol compounds is necessary, the operation of the plating solution becomes complicated.
  • the heavy metal ions are harmful to the human body and may be co-deposited on the deposited platinum film to lower the film purity.
  • ammonia gas is generated from the plating solution with use, the working environment is lowered by the odor accompanying the generation of ammonia gas.
  • an object of the present invention is to provide an electroless platinum plating solution that can obtain excellent solution stability without using heavy metal ions or thiol compounds and can prevent generation of ammonia gas. There is.
  • the inventors of the present invention have found that the conventional electroless platinum plating solution decreases the stability of the solution for the following reason. That is, in a conventional electroless platinum plating solution, a platinum complex is formed by coordination of ethylenediamine or ammonia used as a complexing agent to platinum ions. Since ethylenediamine or ammonia forms a strong complex with platinum ions, a reducing agent with a strong reducing action is required to reduce the platinum complex and deposit it on the surface of the plating substrate. As a result, the electroless platinum plating solution is reduced and decomposed by the reducing power of the reducing agent having a strong reducing action. Therefore, the present inventors have achieved the above problem by employing the following electroless platinum plating solution.
  • the electroless platinum plating solution of the present invention includes a water-soluble platinum compound and one or more reducing agents selected from the group consisting of formalin, glucose, formic acid, and formate.
  • the water-soluble platinum compound includes platinum (II) chloride, platinum (II) chloride, platinum (II) chloride, platinum (IV) chloride, and chloride.
  • platinum (IV) acid platinum chloride (IV) acid salt
  • hexahydroxoplatinum (IV) acid platinum chloride (IV) acid salt
  • dichlorotetraammineplatinum (II) A platinum compound is preferred.
  • the electroless platinum plating solution according to the present invention preferably contains an organic acid as a complexing agent.
  • the organic acid is preferably one or more compounds selected from aliphatic hydroxy acids having a molecular weight of 90 to 500.
  • the platinum compound since a water-soluble platinum compound is used, the platinum compound generates a platinum complex even if it does not contain a complexing agent that strongly forms a complex with platinum ions such as ethylenediamine and ammonia. Almost dissolved in water.
  • a platinum complex produced from a water-soluble platinum compound is easily reduced as compared with a platinum complex in which ethylenediamine or ammonia is coordinated to platinum produced by a conventional electroless platinum plating solution. For this reason, even if formalin, glucose, and formate having a weak reducing action are used as the reducing agent, the platinum complex can be easily reduced.
  • formalin, glucose, formic acid, and formate as reducing agents all have a weaker reducing action than hydrazine monohydrate and sodium borohydride. For this reason, the electroless platinum plating solution is not decomposed by the reducing agent. Therefore, the electroless platinum plating solution can obtain excellent solution stability as compared with the conventional electroless platinum plating solution without using heavy metal ions or thiol compounds. Also, formalin, glucose, formic acid, and formate are all suitable in that the amount of hydrogen generation is small compared to hydrazine monohydrate and sodium borohydride as conventional reducing agents.
  • the electroless platinum plating solution does not contain a compound capable of generating ammonia gas such as ethylenediamine and ammonia, generation of ammonia gas can be prevented.
  • FIG. 2 is an SEM image of a platinum electroless coating obtained by electroless plating treatment with an electroless platinum plating solution of Example 1.
  • FIG. 3 is an SEM image of a platinum electroless coating obtained by electroless plating treatment with an electroless platinum plating solution of Example 2.
  • the electroless platinum plating solution of the present invention is an aqueous solution containing a water-soluble platinum compound and one or more reducing agents selected from the group consisting of formalin, glucose, formic acid, and formate.
  • water-soluble platinum compound examples include platinum (II) chloride, platinum (II) chloride, platinum (II) chloride, platinum (IV) chloride, platinum (IV) acid, and platinum chloride (IV).
  • Acid salt hexahydroxoplatinum (IV) acid, hexahydroxoplatinum (IV) acid salt, one or more water-soluble platinum compounds selected from the group consisting of dichlorotetraammineplatinum (II).
  • the electroless platinum plating solution preferably contains the water-soluble platinum compound in the range of 0.0005 mol / L to 0.05 mol / L, and in the range of 0.0025 mol / L to 0.01 mol / L. It is more preferable to contain. If the content of the water-soluble platinum compound in the electroless platinum plating solution is less than 0.0005 mol / L, it may be difficult to form a platinum electroless coating or the plating rate may be reduced. When L is exceeded, although the plating itself can be performed satisfactorily, the economic efficiency decreases.
  • Platinum chloride (IV) is easily dissolved in the electroless platinum plating solution to form a platinum complex represented by the following formula (1).
  • the platinum complexes represented by the above formulas (1) and (2) are more susceptible to reduction as compared with platinum complexes in which ethylenediamine is coordinated to platinum produced by a conventional electroless platinum plating solution. .
  • the electroless platinum plating solution does not need to use a reducing agent having a strong reducing action, and even if a reducing agent having a weak reducing action is used, the platinum complex can be easily reduced.
  • One or more reducing agents selected from the group consisting of formalin, glucose, formic acid, and formate all reduce the platinum complex represented by the above formulas (1) and (2), although the reducing action is small. It is possible to make it easy to do.
  • the decomposition products generated in the reduction reaction are mainly carbon dioxide and water, and there is an advantage that the amount of hydrogen generation is small compared to hydrazine monohydrate or sodium borohydride.
  • the electroless platinum plating solution is adjusted to a pH range of 6.5 to 12.0 as will be described later, but the reducing agent can be used over the entire pH range.
  • the electroless platinum plating solution preferably contains the reducing agent in a range of 0.1 mol / L to 1.0 mol / L, and in a range of 0.2 mol / L to 0.8 mol / L. More preferably.
  • the content of the reducing agent in the electroless platinum plating solution is less than 0.1 / mol L, an undeposited portion may occur.
  • the content exceeds 1.0 mol / L, the reducing agent has an excessive reducing action. Solution stability may be impaired.
  • sodium formate sodium formate, potassium formate, and ammonium formate can be used.
  • Sodium formate is preferred in terms of easy water solubility and ease of handling.
  • the electroless platinum plating solution uses a water-soluble platinum compound, a complexing agent is not necessarily required to dissolve the platinum compound in water. However, the electroless platinum plating solution can be further stabilized by adding a complexing agent.
  • the organic acid is preferably one or more compounds selected from aliphatic hydroxy acids having a molecular weight of 90 to 500, such as lactic acid, malic acid, citric acid, trisodium citrate, ammonium citrate, glycine, One or more compounds selected from the group consisting of gluconic acid, malonic acid, oxalic acid, succinic acid, acetic acid, maleic acid, and fumaric acid can be used.
  • the complexing agent also acts as a pH buffer material.
  • the electroless platinum plating solution preferably contains the organic acid in a range of 0.01 mol / L to 0.5 mol / L, and in a range of 0.02 mol / L to 0.3 mol / L. More preferably. If the content of the organic acid in the electroless platinum plating solution is less than 0.01 mol / L, it may not act as a complexing agent, and if it exceeds 0.5 mol / L, the plating itself can be performed satisfactorily. Decreases.
  • the electroless platinum plating solution may further include various components such as a surfactant, a stress relaxation agent, and a pH adjuster.
  • polyethylene glycol can be used, and various conventionally known surfactants can be used.
  • polyethylene glycol when polyethylene glycol is used as a surfactant, it improves the wettability of the surface of the plating substrate, and when bubbles are generated on the surface of the plating substrate, the bubbles can be easily separated from the surface of the plating substrate. it can.
  • stress relaxation agent saccharin, 1.4-butynediol, benzenesulfonic acid, naphthalenedisulfonic acid can be used, and various conventionally known stress relaxation agents can be used.
  • the electroless platinum plating solution is preferably adjusted to a pH range of 6.5 to 13.0 by adding a pH adjusting agent. If the pH in the electroless platinum plating solution is less than 6.5, the reducing action of the reducing agent may be reduced. Even if the pH of the electroless platinum plating solution exceeds 13.0, no particular problem occurs, but it is preferably 13.0 or less from the viewpoint of workability such as pH adjustment and bath management.
  • the electroless platinum plating solution can change the appearance of the obtained platinum electroless coating by adjusting the pH within the above range. For example, when the pH of the electroless platinum plating solution is 7, a gray platinum electroless coating can be obtained, and when the pH is 12, a white platinum electroless coating can be obtained.
  • a water-soluble platinum compound such as platinum (II) chloride, platinum (IV) chloride, hexahydroxoplatinum (IV), dichlorotetraammine platinum (II), etc. Therefore, even if it does not contain a complexing agent, this platinum compound forms a platinum complex and can be easily dissolved in water. Moreover, the platinum complex produced
  • formalin, glucose, formic acid, and formate as reducing agents all have a weaker reducing action than hydrazine monohydrate and sodium borohydride. For this reason, the electroless platinum plating solution is not decomposed by the reducing agent. Therefore, the electroless platinum plating solution can obtain excellent solution stability as compared with the conventional electroless platinum plating solution without using heavy metal ions or thiol compounds. Also, formalin, glucose, formic acid, and formate are all suitable in that the amount of hydrogen generation is small compared to hydrazine monohydrate and sodium borohydride as conventional reducing agents.
  • the electroless platinum plating solution does not include a compound capable of generating ammonia gas such as ethylenediamine, generation of ammonia gas can be prevented.
  • a platinum film (platinum electrolytic film) is formed on the surface of the nickel film by performing electrolytic plating on the plating substrate.
  • an electroless plating process is performed by immersing a plating base material having a platinum electrolytic film formed on the surface of the nickel film in the electroless platinum plating solution of the present embodiment.
  • the platinum complex in the electroless platinum plating solution is reduced and deposited on the surface of the platinum electrolytic film, whereby a platinum film (platinum electroless film) can be formed on the surface of the platinum electrolytic film.
  • the electroless plating treatment using the electroless platinum plating solution of the present embodiment has a deposition rate of 1 to 2 ⁇ m / hour, and a deposition rate comparable to that of the conventional electroless platinum plating solution containing dinitrodiamine platinum or dinitrotetraammine platinum. Can be obtained.
  • the operating temperature of the electroless platinum plating solution is preferably in the range of 40 to 90 ° C. If the temperature is lower than 40 ° C., the plating rate may be slow, and if it exceeds 90 ° C., the amount of water evaporation increases and the composition variation may increase.
  • the plating time with the electroless platinum plating solution depends on the thickness of the platinum electroless film to be formed.
  • an electroless platinum plating solution containing 1.05 mol / L of dichlorotetraammineplatinum (II) as a water-soluble platinum compound (1.0 g / L in terms of platinum) by setting the plating time to 30 minutes A platinum electroless film having a thickness of 0.5 ⁇ m can be formed.
  • the above reducing agent mainly generates carbon dioxide and water along with the reduction reaction. Since carbon dioxide and water do not accumulate in the electroless platinum plating solution, the electroless platinum plating solution is not altered and can be used for a long time.
  • the electroless platinum plating solution of this embodiment is suitable for plating of electronic parts made of metal, electrode materials, synthetic resins such as ABS resin, polyamide resin, polycarbonate resin, non-conductive ceramics such as alumina and zirconia. It is. In particular, it can be suitably used for applications of oxygen sensor electrodes made of ceramics such as zirconia, and various jewelry.
  • a nickel film having a thickness of 3 ⁇ m was formed on a copper plate by electrolytic plating.
  • a plating base material was prepared by forming a platinum film (platinum electrolytic film) having a thickness of 0.1 ⁇ m on the surface of the nickel film by electrolytic plating.
  • Electroless plating treatment The obtained electroless platinum plating solution is heated to a temperature of 70 ° C., and the plating base material on which the platinum electrolytic film is formed is immersed in the electroless platinum plating solution to perform the electroless plating treatment, thereby obtaining a platinum electrolytic film.
  • a platinum film platinum electroless film was formed on the surface.
  • the thickness of the platinum electroless coating was measured every 10 minutes until the immersion time reached 60 minutes. The results are shown in FIG. From FIG. 1, it was confirmed that the deposition rate in the electroless plating process was 1.0 ⁇ m / hour.
  • a platinum electroless coating having a thickness of 0.5 ⁇ m was formed by performing electroless plating treatment for 60 minutes. It was visually confirmed that the obtained platinum electroless coating was gray. Further, when the surface of the obtained platinum electroless coating was observed with a scanning electron microscope (SEM) at a magnification of 30,000 times, as shown in FIG. Met.
  • SEM scanning electron microscope
  • the temperature of the electroless platinum plating solution is changed to 50 ° C., 60 ° C., 70 ° C., and 80 ° C., and the plating base material on which the platinum electrolytic film is formed is immersed in the electroless platinum plating solution for 2 hours.
  • the electroless plating process was performed.
  • disassembly of the said electroless platinum plating solution was determined by observing whether the platinum deposit produced in the said electroless platinum plating solution.
  • Table 1 shows the results.
  • “X” means that the electroless platinum plating solution was decomposed within 1 hour
  • “ ⁇ ” means that it was decomposed within 2 hours
  • “ ⁇ ” indicates that it was completely decomposed after 2 hours. It means no.
  • the electroless platinum plating solution maintained at a temperature of 50 to 80 ° C. for 2 hours is naturally cooled, it is heated again to the same temperature the next day, and the plating substrate is immersed for 2 hours to be electroless. Plating treatment was performed. Even when the electroless platinum plating solution was heated to any temperature, the electroless plating treatment could be normally performed. From this, it is clear that the electroless platinum plating solution can be used continuously.
  • an electroless platinum plating solution was prepared in exactly the same manner as in Example 1 except that the pH (temperature 25 ° C.) was adjusted to 11.0.
  • the obtained electroless platinum plating solution is heated to a temperature of 70 ° C., and the plating base material on which the platinum electrolytic film is formed is immersed in the electroless platinum plating solution for 60 minutes to perform the electroless plating treatment.
  • a platinum electroless film having a thickness of 0.5 ⁇ m was formed on the surface of the electrolytic film. It was confirmed visually that the obtained platinum electroless coating had a white glossy appearance. Further, when the surface of the obtained platinum electroless coating was observed with an SEM at a magnification of 30,000, the surface shape of the platinum particles was small and smooth as shown in FIG.
  • the electroless platinum plating solution kept at a temperature of 50 to 80 ° C. for 2 hours was subjected to electroless plating treatment the same day as in Example 1 in the same manner. Even when the electroless platinum plating solution was heated to any temperature, the electroless plating treatment could be normally performed. From this, it is clear that the electroless platinum plating solution can be used continuously.
  • Example 1 an electroless platinum plating solution was prepared in exactly the same manner as in Example 2 except that hydrazine monohydrate 0.5 mol / L was used instead of sodium formate as the reducing agent. The pH (temperature 25 ° C.) was adjusted to 11.0. Next, the presence or absence of decomposition of the electroless platinum plating solution was determined using the obtained electroless platinum plating solution exactly as in Example 1. Table 1 shows the results.
  • Example 2 an electroless platinum plating solution was prepared in exactly the same manner as in Example 2 except that sodium borohydride 0.5 mol / L was used instead of sodium formate as the reducing agent. The pH (temperature 25 ° C.) was adjusted to 11.0. Next, the presence or absence of decomposition of the electroless platinum plating solution was determined using the obtained electroless platinum plating solution exactly as in Example 1. Table 1 shows the results.
  • Comparative Example 3 In this comparative example, it was completely the same as Comparative Example 1 except that 0.005 mol / L (1.0 g / L in terms of platinum) of dinitrodiammine platinum (II) was used as the platinum compound instead of dichlorotetraammine platinum (II).
  • An electroless platinum plating solution was prepared in the same manner, and then the pH (temperature 25 ° C.) was adjusted to 11.0. Next, the presence or absence of decomposition of the electroless platinum plating solution was determined using the obtained electroless platinum plating solution exactly as in Example 1. Table 1 shows the results.
  • Comparative Example 4 This comparative example is exactly the same as Comparative Example 2 except that 0.005 mol / L of dinitrodiammine platinum (II) (1.0 g / L in terms of platinum) was used as the platinum compound instead of dichlorotetraammine platinum (II).
  • An electroless platinum plating solution was prepared in the same manner, and then the pH (temperature 25 ° C.) was adjusted to 11.0. Next, the presence or absence of decomposition of the electroless platinum plating solution was determined using the obtained electroless platinum plating solution exactly as in Example 1. Table 1 shows the results.
  • the electroless platinum plating solutions of Examples 1 and 2 in which the platinum compound is dichlorotetraammineplatinum (II) and the reducing agent is sodium formate are both at a temperature of 50 to 80 ° C. It is clear that it does not decompose even after 2 hours in the range and has excellent solution stability.
  • the electroless platinum plating solutions of Comparative Examples 1 to 4 in which the reducing agent is hydrazine monohydrate or sodium borohydride are all decomposed within one hour at a temperature range of 70 to 80 ° C. It is apparent that the solution decomposes within 2 hours even in the temperature range of 50 to 60 ° C. and the solution stability is poor.
  • the electroless platinum plating solution of the present invention since the electroless platinum plating solution of the present invention has excellent solution stability, it can withstand long-term use. Further, since the electroless platinum plating solution does not contain a compound capable of generating ammonia gas such as ethylenediamine and ammonia, generation of ammonia gas can be prevented. For this reason, it is possible to prevent the work environment from being deteriorated due to the odor accompanying the generation of ammonia gas. In addition, the electroless platinum plating solution does not use a complexing agent that forms a strong complex with platinum ions such as ethylenediamine and ammonia, so use a reducing agent with a weak reducing action such as formalin, glucose, formic acid, and formate. can do. Moreover, these reducing agents can reduce the generation amount of hydrogen gas compared with hydrazine monohydrate and sodium borohydride.
  • the electroless platinum plating solution of the present embodiment is suitable for plating of electronic parts made of metal or the like, electrode materials, various synthetic resins, ceramics, and the like.
  • it can be suitably used for applications of oxygen sensor electrodes made of ceramics such as zirconia, and various jewelry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

重金属イオンやチオール化合物を使用しなくても優れた溶液安定性を得ることができ、且つ、アンモニアガスの発生を防止することができる無電解白金めっき液を提供する。無電解白金めっき液は、水溶性白金化合物と、ホルマリン、グルコース、ギ酸塩からなる群から選択される1種以上の還元剤とを含むことを特徴とする。前記水溶性白金化合物は、塩化第一白金(II)、塩化白金(II)酸、塩化白金(II)酸塩、塩化第二白金(IV)、塩化白金(IV)酸、塩化白金(IV)酸塩、ヘキサヒドロキソ白金(IV)酸、ヘキサヒドロキソ白金(IV)酸塩、ジクロロテトラアンミン白金(II)からなる群から選択される1種以上の水溶性白金化合物であることが好ましい。無電解白金めっき液は、有機酸を含むことが好ましい。

Description

無電解白金めっき液
 本件発明は、無電解白金めっき液に関する。
 従来、無電解白金めっき液は、白金塩としてのジニトロジアミン白金又はジニトロテトラアンミン白金と、錯化剤としてのエチレンジアミン又はアンモニアと、還元剤としてのヒドラジン一水和物又は水酸化ホウ素ナトリウムとを含むものが知られている(例えば、特許文献1~4参照)。
 ジニトロジアミン白金及びジニトロテトラアンミン白金は、水に難溶性である。そこで、錯化剤としてエチレンジアミン又はアンモニアを当該無電解白金めっき液に添加することにより、白金にエチレンジアミン又はアンモニアが配位した白金錯体を形成して水に溶解させている。
 一般に、無電解白金めっき液に還元剤を添加することにより、めっき基材の表面で金属イオン又は金属錯体を還元して金属を析出させることができる。白金にエチレンジアミン又はアンモニアが配位した上記白金錯体は還元を受けにくいため、還元剤として、還元作用が強いヒドラジン一水和物又は水酸化ホウ素ナトリウムが当該無電解白金めっき液に添加されている。しかしながら、ヒドラジン一水和物及び水素化ホウ素ナトリウムは、還元力が強すぎるため、上記白金錯体の還元によってめっき液中に白金が析出したり、還元反応に伴って水素が発生するという問題がある。
 そこで、上記問題を解決するために、上記無電解白金めっき液では、鉛、タリウム等の重金属イオンやチオール化合物を安定剤として添加することにより、溶液の安定性を向上させている。
日本国特開平5-222543号公報 日本国特開平9-287078号公報 国際公開2014/162935号公報 国際公開2013/094544号公報
 しかしながら、上記重金属イオンやチオール化合物の濃度管理が必要となるため、めっき液の操作が複雑になる。また、上記重金属イオンは人体に有害である上に、析出した白金皮膜に共析して皮膜純度を低下させることがある。また、使用に伴ってめっき液からアンモニアガスが発生するため、アンモニアガスの発生に伴う臭気によって作業環境が低下する。
 そこで、本件発明の課題は、重金属イオンやチオール化合物を使用しなくても優れた溶液安定性を得ることができ、且つ、アンモニアガスの発生を防止することができる無電解白金めっき液を提供することにある。
 本件発明者等は、鋭意検討を行った結果、従来の無電解白金めっき液では、以下の理由によって溶液の安定性が低下することを見出した。すなわち、従来の無電解白金めっき液では、錯化剤として用いるエチレンジアミン又はアンモニアが白金イオンに配位することにより白金錯体が形成される。エチレンジアミン又はアンモニアは白金イオンと強く錯体形成するため、当該白金錯体を還元してめっき基材の表面に析出させるためには、還元作用の強い還元剤が必要となる。この結果、還元作用の強い還元剤の還元力によって、当該無電解白金めっき液が還元されて分解されてしまう。
 そこで、本件発明者等は、以下の無電解白金めっき液を採用することで上記課題を達成するに至った。
 本件発明の無電解白金めっき液は、水溶性白金化合物と、ホルマリン、グルコース、ギ酸、ギ酸塩からなる群から選択される1種以上の還元剤とを含むことを特徴とする。
 本件発明に係る無電解白金めっき液において、前記水溶性白金化合物は、塩化第一白金(II)、塩化白金(II)酸、塩化白金(II)酸塩、塩化第二白金(IV)、塩化白金(IV)酸、塩化白金(IV)酸塩、ヘキサヒドロキソ白金(IV)酸、ヘキサヒドロキソ白金(IV)酸塩、ジクロロテトラアンミン白金(II)からなる群から選択される1種以上の水溶性白金化合物であることが好ましい。
 本件発明に係る無電解白金めっき液において、錯化剤として有機酸を含むことが好ましい。前記有機酸として、分子量が90~500の脂肪族ヒドロキシ酸から選択される1種以上の化合物が好ましい。
 本件発明に係る無電解白金めっき液では、水溶性白金化合物を用いるので、エチレンジアミン、アンモニア等の白金イオンと強く錯体形成するような錯化剤を含まなくても、白金化合物は白金錯体を生成して水に容易に溶解する。水溶性白金化合物から生成される白金錯体は、従来の無電解白金めっき液で生成される白金にエチレンジアミン又はアンモニアが配位した白金錯体と比較して、還元され易い。このため、還元剤として、還元作用が弱いホルマリン、グルコース、ギ酸塩を用いても、白金錯体を還元し易い状態にすることができる。
 また、還元剤としてのホルマリン、グルコース、ギ酸、ギ酸塩は、いずれも、ヒドラジン一水和物、水酸化ホウ素ナトリウムと比較して還元作用が弱い。このため、当該無電解白金めっき液は、当該還元剤によって分解されることがない。従って、当該無電解白金めっき液は、重金属イオンやチオール化合物を用いなくても、従来の無電解白金めっき液と比較して、優れた溶液安定性を得ることができる。また、ホルマリン、グルコース、ギ酸、ギ酸塩は、いずれも、従来の還元剤としてのヒドラジン一水和物、水酸化ホウ素ナトリウムと比較して水素発生量が少ないという点でも好適である。
 さらに、当該無電解白金めっき液は、エチレンジアミン、アンモニア等のアンモニアガスを発生しうる化合物を含まないため、アンモニアガスの発生を防止することができる。
本実施形態の無電解白金めっき液による析出特性を示すグラフである。 実施例1の無電解白金めっき液による無電解めっき処理により得られた白金無電解皮膜のSEM画像である。 実施例2の無電解白金めっき液による無電解めっき処理により得られた白金無電解皮膜のSEM画像である。
 以下、本件発明に係る無電解白金めっき液の実施の形態を説明する。
〔1.無電解白金めっき液〕
 本件発明の無電解白金めっき液は、水溶性白金化合物と、ホルマリン、グルコース、ギ酸、ギ酸塩からなる群から選択される1種以上の還元剤とを含む水溶液である。
 水溶性白金化合物として、例えば、塩化第一白金(II)、塩化白金(II)酸、塩化白金(II)酸塩、塩化第二白金(IV)、塩化白金(IV)酸、塩化白金(IV)酸塩、ヘキサヒドロキソ白金(IV)酸、ヘキサヒドロキソ白金(IV)酸塩、ジクロロテトラアンミン白金(II)からなる群から選択される1種以上の水溶性白金化合物を挙げることができる。
 当該無電解白金めっき液は、上記水溶性白金化合物を0.0005mol/L以上0.05mol/L以下の範囲で含有することが好ましく、0.0025mol/L以上0.01mol/L以下の範囲で含有することがさらに好ましい。無電解白金めっき液における水溶性白金化合物の含有量が0.0005mol/L未満であると、白金無電解皮膜の形成が困難となったり、めっき速度の低下が生じることがあり、0.05mol/Lを上回ると、めっき自体は良好に行えるものの経済性が低下する。
 塩化白金(IV)は、当該無電解白金めっき液に容易に溶解し、下記の式(1)で表される白金錯体を形成する。
Figure JPOXMLDOC01-appb-C000001
 ジクロロテトラアンミン白金(II)は、当該無電解白金めっき液に容易に溶解し、下記の式(2)で表される白金錯体を形成する。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)及び式(2)で表される白金錯体は、いずれも、従来の無電解白金めっき液で生成される白金にエチレンジアミンが配位した白金錯体と比較して、還元を受け易い。このため、当該無電解白金めっき液は、還元作用が強い還元剤を用いる必要がなく、還元作用が弱い還元剤を用いても、白金錯体を還元し易い状態にすることができる。
 ホルマリン、グルコース、ギ酸、ギ酸塩からなる群から選択される1種以上の還元剤は、いずれも、還元作用が小さいが、上記式(1)及び式(2)で表される白金錯体を還元し易い状態にすることができる。上記還元剤は、いずれも、還元反応に伴って生じる分解物が主に二酸化炭素及び水であり、ヒドラジン一水和物又は水酸化ホウ素ナトリウムと比較して水素発生量が少ないという利点がある。また、当該無電解白金めっき液は、後述するようにpH6.5~12.0の範囲に調整されるが、上記還元剤はこのpH領域全体に亘って使用可能である。
 当該無電解白金めっき液は、上記還元剤を0.1mol/L以上1.0mol/L以下の範囲で含有することが好ましく、0.2mol/L以上0.8mol/L以下の範囲で含有することがさらに好ましい。無電解白金めっき液における上記還元剤の含有量が0.1/molL未満であると、未析出部が生じることがあり、1.0mol/Lを上回ると、上記還元剤の還元作用が過剰となり、溶液安定性を損なうことがある。
 また、ギ酸塩としては、ギ酸ナトリウム、ギ酸カリウム、ギ酸アンモニウムを用いることができる。水易溶性、取り扱い容易性の点で、ギ酸ナトリウムが好適である。
 当該無電解白金めっき液では、水溶性白金化合物を用いるので、白金化合物を水に溶解するために必ずしも錯化剤を必要としない。しかし、錯化剤を添加することにより、当該無電解白金めっき液をさらに安定化させることができる。
 錯化剤として、有機酸を用いることが好ましい。有機酸として、分子量が90~500の脂肪族ヒドロキシ酸から選択される1種以上の化合物であることが好ましく、例えば、乳酸、リンゴ酸、クエン酸、クエン酸3ナトリウム、クエン酸アンモニウム、グリシン、グルコン酸、マロン酸、シュウ酸、コハク酸、酢酸、マレイン酸、フマル酸からなる群から選択される1種以上の化合物を用いることができる。当該錯化剤は、pH緩衝材としても作用する。
 当該無電解白金めっき液は、上記有機酸を0.01mol/L以上0.5mol/L以下の範囲で含有することが好ましく、0.02mol/L以上0.3mol/L以下の範囲で含有することがさらに好ましい。無電解白金めっき液における上記有機酸の含有量が0.01mol/Lを下回ると、錯化剤として作用しないことがあり、0.5mol/Lを超えると、めっき自体は良好に行えるものの経済性が低下する。
 当該無電解白金めっき液は、さらに、界面活性剤、応力緩和剤、pH調整剤等の各種の成分を含む構成とすることができる。
 界面活性剤として、ポリエチレングリコールを用いることができる他、従来公知の種々の界面活性剤を用いることができる。界面活性剤としてポリエチレングリコールを用いる場合、めっき基材の表面の濡れ性を向上すると共に、めっき基材の表面で気泡が生じたときに、その気泡をめっき基材の表面から離れ易くすることができる。
 応力緩和剤として、サッカリン、1.4-ブチンジオール、ベンゼンスルホン酸、ナフタレンジスルホン酸を用いることができる他、従来公知の種々の応力緩和剤を用いることができる。
 pH調整剤として、水酸化ナトリウム、硫酸等を用いることができる。当該無電解白金めっき液は、pH調整剤の添加によって、pH6.5~13.0の範囲に調整されることが好ましい。当該無電解白金めっき液におけるpHが6.5未満であると、上記還元剤の還元作用が低下することがある。当該無電解白金めっき液におけるpHが13.0を上回ったとしても特に問題が生じることはないが、pH調整等の作業性や浴管理の点から13.0以下とすることが好ましい。
 また、当該無電解白金めっき液は、pHを上記範囲で調整することにより、得られる白金無電解皮膜の外観を変えることができる。例えば、当該無電解白金めっき液のpHが7の場合には、灰色の白金無電解皮膜を得ることができ、pHが12の場合には白色の白金無電解皮膜を得ることができる。
 本実施形態の無電解白金めっき液によれば、塩化第一白金(II)、塩化第二白金(IV)、ヘキサヒドロキソ白金(IV)酸塩、ジクロロテトラアンミン白金(II)等の水溶性白金化合物を用いるので、錯化剤を含まなくても、この白金化合物は白金錯体を形成して水に容易に溶解することができる。また、上記水溶性白金化合物から生成する白金錯体は、従来の無電解白金めっき液で生成される白金にエチレンジアミンが配位した白金錯体と比較して、還元を受け易い。このため、還元剤として、還元作用が弱いホルマリン、グルコース、ギ酸、ギ酸塩を用いても、白金錯体を還元し易い状態にすることができる。
 また、還元剤としてのホルマリン、グルコース、ギ酸、ギ酸塩は、いずれも、ヒドラジン一水和物、水酸化ホウ素ナトリウムと比較して還元作用が弱い。このため、当該無電解白金めっき液は、当該還元剤によって分解されることがない。従って、当該無電解白金めっき液は、重金属イオンやチオール化合物を用いなくても、従来の無電解白金めっき液と比較して、優れた溶液安定性を得ることができる。また、ホルマリン、グルコース、ギ酸、ギ酸塩は、いずれも、従来の還元剤としてのヒドラジン一水和物、水酸化ホウ素ナトリウムと比較して水素発生量が少ないという点でも好適である。
 さらに、当該無電解白金めっき液は、エチレンジアミン等のアンモニアガスを発生しうる化合物を含まないため、アンモニアガスの発生を防止することができる。
〔2.無電解白金めっき液による無電解めっき処理〕
 本実施形態の無電解白金めっき液によるめっき方法の一例を以下に説明する。ここでは、被めっき物であるめっき基材として、無電解めっき処理によって、絶縁基材の表面に銅皮膜及びニッケル皮膜を順に形成しためっき基材を用いる場合について説明する。めっき基材は、上記のものに限定されず、従来公知のめっき基材を用いることができる。
 まず、めっき基材に対して電解めっきを行うことにより、ニッケル皮膜の表面に白金皮膜(白金電解皮膜)を形成する。
 続いて、ニッケル皮膜の表面に白金電解皮膜が形成されためっき基材を、本実施形態の無電解白金めっき液に浸漬することにより、無電解めっき処理を行う。無電解白金めっき液中の白金錯体が、白金電解皮膜の表面で還元されて析出することにより、白金電解皮膜の表面に白金皮膜(白金無電解皮膜)を形成することができる。
 本実施形態の無電解白金めっき液を用いる無電解めっき処理は、析出速度が1~2μm/時間であり、従来のジニトロジアミン白金又はジニトロテトラアンミン白金を含む無電解白金めっき液と同程度の析出速度を得ることができる。
 当該無電解白金めっき液の使用温度は、40~90℃の範囲であることが好ましい。温度が40℃未満であると、めっき速度が遅いことがあり、90℃を上回ると、水分蒸発量が多くなり組成変動が大きくなることがある。
 当該無電解白金めっき液によるめっき時間は、形成する白金無電解皮膜の厚さに依存する。例えば、水溶性白金化合物としてジクロロテトラアンミン白金(II)を0.005mol/L含有する無電解白金めっき液(白金換算で1.0g/L)の場合には、めっき時間を30分とすることにより、厚さ0.5μmの白金無電解皮膜を形成することができる。
 上記還元剤は、還元反応に伴って主に二酸化炭素及び水を生成する。二酸化炭素及び水は当該無電解白金めっき液に蓄積しないため、当該無電解白金めっき液が変質することはなく長期間使用することができる。
〔3.無電解白金めっき液の用途〕
 本実施形態の無電解白金めっき液は、金属等からなる電子部品、電極材料、ABS樹脂、ポリアミド樹脂、ポリカーボネート樹脂等の合成樹脂、アルミナ、ジルコニア等の導電性を持たないセラミックス等のめっきに好適である。特に、ジルコニア等のセラミックス等からなる酸素センサの電極や、種々の宝飾品等の用途に好適に使用することができる。
 以下では実施例を挙げて、本件発明をより具体的に説明するが、下記実施例に本件発明が限定されるものではないのは勿論である。
 〔めっき基材の作成〕
 まず、電解めっき処理によって銅板上に厚さ3μmのニッケル皮膜を形成した。次に、電解めっき処理によってニッケル皮膜の表面に厚さ0.1μmの白金皮膜(白金電解皮膜)を形成することにより、めっき基材を作成した。
 〔無電解白金めっき液の調製〕
 本実施例では、水に、水溶性白金化合物としてジクロロテトラアンミン白金(II)0.005mol/L(白金換算で1.0g/L)と、還元剤としてギ酸ナトリウム0.5mol/Lと、錯化剤としてリンゴ酸0.1mol/Lとを溶解して、無電解白金めっき液を調製した。続いて、pH調整剤として水酸化ナトリウム及び硫酸を用いて、無電解白金めっき液のpH(温度25℃)を7.0に調整した。
 〔無電解めっき処理〕
 得られた無電解白金めっき液を温度70℃に加温し、白金電解皮膜が形成されためっき基材を当該無電解白金めっき液に浸漬して無電解めっき処理を行うことにより、白金電解皮膜の表面に白金皮膜(白金無電解皮膜)を形成した。
 このとき、浸漬時間が60分に達するまでの間、10分毎に白金無電解皮膜の厚さを測定した。結果を図1に示す。図1から、当該無電解めっき処理における析出速度は、1.0μm/時間であることが確認された。
 また、60分間無電解めっき処理を行うことにより、厚さ0.5μmの白金無電解皮膜を形成した。得られた白金無電解皮膜は、灰色を呈することが目視で確認された。また、得られた白金無電解皮膜の表面を、走査型電子顕微鏡(SEM)で倍率3万倍で観察したところ、図2に示すように、白金粒子の粒径が大きく、凹凸を有する表面形態であった。
 次に、当該無電解白金めっき液の温度を50℃、60℃、70℃、80℃に変化させて、白金電解皮膜が形成されためっき基材を当該無電解白金めっき液に2時間浸漬して無電解めっき処理を行った。このとき、当該無電解白金めっき液中に白金析出物が生じたか否かを観察することにより、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。表1において、×印は当該無電解白金めっき液が1時間以内に分解したことを意味し、△印は2時間以内に分解したことを意味し、○印は2時間経過後も全く分解しなかったことを意味する。
 次に、温度50~80℃に2時間保持された上記無電解白金めっき液を、自然冷却させた後、翌日、同一の温度に再び加温し、めっき基材を2時間浸漬して無電解めっき処理を行った。当該無電解白金めっき液は、いずれの温度に加温されたものでも、無電解めっき処理を正常に行うことができた。このことから、当該無電解白金めっき液は連続使用が可能であることが明らかである。
 本実施例では、pH(温度25℃)を11.0に調整した以外は、実施例1と全く同一にして、無電解白金めっき液を調製した。
 得られた無電解白金めっき液を温度70℃に加温し、白金電解皮膜が形成されためっき基材を当該無電解白金めっき液に60分間浸漬して無電解めっき処理を行うことにより、白金電解皮膜の表面に厚さ0.5μmの白金無電解皮膜を形成した。得られた白金無電解皮膜は、白色の光沢外観を呈することが目視で確認された。また、得られた白金無電解皮膜の表面を、SEMで倍率3万倍で観察したところ、図3に示すように、白金粒子の粒径が小さく、平滑性を有する表面形態であった。
 次に、得られた無電解白金めっき液を用いて、実施例1と全く同一にして、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。
 次に、温度50~80℃に2時間保持された上記無電解白金めっき液を、実施例1と全く同一にして、翌日、無電解めっき処理を行った。当該無電解白金めっき液は、いずれの温度に加温されたものでも、無電解めっき処理を正常に行うことができた。このことから、当該無電解白金めっき液は連続使用が可能であることが明らかである。
 〔比較例1〕
 本比較例では、還元剤としてギ酸ナトリウムに代えてヒドラジン一水和物0.5mol/Lを用いたこと以外は、実施例2と全く同一にして、無電解白金めっき液を調製し、続いて、pH(温度25℃)を11.0に調製した。次に、得られた無電解白金めっき液を用いて、実施例1と全く同一にして、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。
 〔比較例2〕
 本比較例では、還元剤としてギ酸ナトリウムに代えて水酸化ホウ素ナトリウム0.5mol/Lを用いたこと以外は、実施例2と全く同一にして、無電解白金めっき液を調製し、続いて、pH(温度25℃)を11.0に調製した。次に、得られた無電解白金めっき液を用いて、実施例1と全く同一にして、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。
 〔比較例3〕
 本比較例では、白金化合物としてジクロロテトラアンミン白金(II)に代えてジニトロジアンミン白金(II)0.005mol/L(白金換算で1.0g/L)を用いたこと以外は、比較例1と全く同一にして、無電解白金めっき液を調製し、続いて、pH(温度25℃)を11.0に調製した。次に、得られた無電解白金めっき液を用いて、実施例1と全く同一にして、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。
 〔比較例4〕
 本比較例では、白金化合物としてジクロロテトラアンミン白金(II)に代えてジニトロジアンミン白金(II)0.005mol/L(白金換算で1.0g/L)を用いたこと以外は、比較例2と全く同一にして、無電解白金めっき液を調製し、続いて、pH(温度25℃)を11.0に調製した。次に、得られた無電解白金めっき液を用いて、実施例1と全く同一にして、当該無電解白金めっき液の分解の有無を判定した。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 
 表1に示すように、白金化合物がジクロロテトラアンミン白金(II)であり、還元剤がギ酸ナトリウムである実施例1及び実施例2の無電解白金めっき液は、いずれも、50~80℃の温度範囲で2時間経過しても分解せず、優れた溶液安定性を備えることが明らかである。一方、還元剤がヒドラジン一水和物又は水素化ホウ素ナトリウムである比較例1~比較例4の無電解白金めっき液は、いずれも、70~80℃の温度範囲で1時間以内に分解し、50~60℃の温度範囲でも2時間以内に分解し、溶液安定性が劣ることが明らかである。
 以上説明したとおり、本件発明の無電解白金めっき液は、優れた溶液安定性を備えるので、長時間の使用に耐えることができる。また、当該無電解白金めっき液は、エチレンジアミン、アンモニア等のアンモニアガスを発生しうる化合物を含まないので、アンモニアガスの発生を防止することができる。このため、アンモニアガスの発生に伴う臭気による作業環境の低下を防ぐことができる。また、当該無電解白金めっき液では、エチレンジアミン、アンモニア等の白金イオンと強く錯体形成するような錯化剤を用いないため、ホルマリン、グルコース、ギ酸、ギ酸塩等の還元作用が弱い還元剤を使用することができる。また、これらの還元剤は、ヒドラジン一水和物、水酸化ホウ素ナトリウムと比較して、水素ガスの発生量を減らすことができる。
 また、本実施形態の無電解白金めっき液は、金属等からなる電子部品、電極材料、種々の合成樹脂やセラミックス等のめっきに好適である。特に、ジルコニア等のセラミックス等からなる酸素センサの電極や、種々の宝飾品等の用途に好適に使用することができる。
 

Claims (4)

  1.  水溶性白金化合物と、ホルマリン、グルコース、ギ酸、ギ酸塩からなる群から選択される1種以上の還元剤とを含むことを特徴とする無電解白金めっき液。
  2.  前記水溶性白金化合物は、塩化第一白金(II)、塩化白金(II)酸、塩化白金(II)酸塩、塩化第二白金(IV)、塩化白金(IV)酸、塩化白金(IV)酸塩、ヘキサヒドロキソ白金(IV)酸、ヘキサヒドロキソ白金(IV)酸塩、ジクロロテトラアンミン白金(II)からなる群から選択される1種以上の水溶性白金化合物である請求項1記載の無電解白金めっき液。
  3.  錯化剤として有機酸を含む請求項1又は請求項2記載の無電解白金めっき液。
  4.  前記有機酸は、分子量が90~500の脂肪族ヒドロキシ酸から選択される1種以上の化合物である請求項1から請求項3のいずれか一項に記載の無電解白金めっき液。
PCT/JP2016/056047 2015-10-15 2016-02-29 無電解白金めっき液 WO2017064874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/767,817 US20180305819A1 (en) 2015-10-15 2016-02-29 Electroless platinum plating solution
EP16855128.1A EP3363928A4 (en) 2015-10-15 2016-02-29 AUTOCATALYTIC PLATE PLATING SOLUTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-203809 2015-10-15
JP2015203809A JP6352879B2 (ja) 2015-10-15 2015-10-15 無電解白金めっき液

Publications (1)

Publication Number Publication Date
WO2017064874A1 true WO2017064874A1 (ja) 2017-04-20

Family

ID=58518047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056047 WO2017064874A1 (ja) 2015-10-15 2016-02-29 無電解白金めっき液

Country Status (5)

Country Link
US (1) US20180305819A1 (ja)
EP (1) EP3363928A4 (ja)
JP (1) JP6352879B2 (ja)
TW (1) TWI586833B (ja)
WO (1) WO2017064874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211727A1 (ja) * 2017-05-18 2018-11-22 日本高純度化学株式会社 無電解白金めっき液及びそれを用いて得られた白金皮膜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018126804B4 (de) * 2018-10-26 2020-09-24 RF360 Europe GmbH Verfahren zur Herstellung eines elektroakustischen Resonators und elektroakustische Resonatorvorrichtung
JP6572376B1 (ja) 2018-11-30 2019-09-11 上村工業株式会社 無電解めっき浴
KR102293808B1 (ko) * 2019-12-02 2021-08-24 (재)한국건설생활환경시험연구원 무전해 백금 도금액 조성물 및 이를 이용한 도금방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856591A (ja) * 1971-11-22 1973-08-08
JPS54117329A (en) * 1978-03-06 1979-09-12 Ngk Spark Plug Co Electroless plating method
JPH01319683A (ja) * 1988-06-20 1989-12-25 Electroplating Eng Of Japan Co 白金コロイド溶液及びそれを用いた無電解白金メッキ方法ならびに白金担持体の製法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041196A (en) * 1989-12-26 1991-08-20 Olin Corporation Electrochemical method for producing chlorine dioxide solutions
JP3101061B2 (ja) * 1992-02-14 2000-10-23 日本エレクトロプレイテイング・エンジニヤース株式会社 白金無電解めっき浴及びそれを用いた白金めっき品の製造方法
DE10048844A1 (de) * 2000-10-02 2002-04-11 Basf Ag Verfahren zur Herstellung von Platinmetall-Katalysatoren
JP4849930B2 (ja) * 2006-03-28 2012-01-11 日本化学工業株式会社 導電性無電解めっき粉体およびその製造方法
US8317910B2 (en) * 2010-03-22 2012-11-27 Unity Semiconductor Corporation Immersion platinum plating solution
CN104126149B (zh) * 2012-02-28 2017-03-22 旭硝子株式会社 电湿润装置、显示装置、透镜
DE102014006739B3 (de) * 2014-05-12 2015-06-25 Albert-Ludwigs-Universität Freiburg Verfahren zur Beschichtung von Oberflächen mit Nanostrukturen, nach dem Verfahren her- gestelltes Bauteil und Verwendung des Bauteils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856591A (ja) * 1971-11-22 1973-08-08
JPS54117329A (en) * 1978-03-06 1979-09-12 Ngk Spark Plug Co Electroless plating method
JPH01319683A (ja) * 1988-06-20 1989-12-25 Electroplating Eng Of Japan Co 白金コロイド溶液及びそれを用いた無電解白金メッキ方法ならびに白金担持体の製法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211727A1 (ja) * 2017-05-18 2018-11-22 日本高純度化学株式会社 無電解白金めっき液及びそれを用いて得られた白金皮膜
JPWO2018211727A1 (ja) * 2017-05-18 2020-03-26 日本高純度化学株式会社 無電解白金めっき液及びそれを用いて得られた白金皮膜
US10941494B2 (en) 2017-05-18 2021-03-09 Japan Pure Chemical Co., Ltd. Electroless platinum plating solution and platinum film obtained using same
JP7118446B2 (ja) 2017-05-18 2022-08-16 日本高純度化学株式会社 無電解白金めっき液及びそれを用いて得られた白金皮膜

Also Published As

Publication number Publication date
TWI586833B (zh) 2017-06-11
EP3363928A1 (en) 2018-08-22
US20180305819A1 (en) 2018-10-25
TW201713798A (zh) 2017-04-16
JP6352879B2 (ja) 2018-07-04
EP3363928A4 (en) 2019-06-19
JP2017075379A (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5586587B2 (ja) Pd電解質浴およびPd−Ni電解質浴
WO2017064874A1 (ja) 無電解白金めっき液
KR20080017276A (ko) 경질금 합금 도금 배스
JP6144258B2 (ja) ノーシアン金めっき浴、及び、ノーシアン金めっき浴の製造方法
JP2017075379A5 (ja)
KR20230095905A (ko) 백금 전해 도금욕 및 백금 도금 제품
TWI385275B (zh) 將鎳電解地溶入無電鎳電鍍溶液中之方法
JPS6220279B2 (ja)
JP2003530486A (ja) パラジウム又はその合金を電気化学的に析出させるための電解浴
JP6336890B2 (ja) 無電解白金めっき浴
JP5312842B2 (ja) 電解合金めっき液及びそれを用いるめっき方法
JP2008174795A (ja) 金メッキ液および金メッキ方法
KR20180105287A (ko) 방사성동위원소 Ni의 전해 도금방법
TWI702313B (zh) 鍍鉻液、電鍍方法及鍍鉻液之製造方法
JP4740528B2 (ja) ニッケル−モリブデン合金めっき液とそのめっき皮膜及びめっき物品
JP4803550B2 (ja) 銀酸化物膜電解形成用組成物
CN105579620A (zh) 电镀浴
WO2022158291A1 (ja) 電解銀めっき浴およびこれを用いた電解銀めっき方法
WO2022148691A1 (en) Electroplating bath for depositing chromium or chromium alloy and process for depositing chromium or chromium alloy
RU2661644C1 (ru) Пирофосфатно-аммонийный электролит контактного серебрения
JP2013189715A (ja) Pd電解質浴およびPd−Ni電解質浴
JPH07166392A (ja) 金めっき液及び金めっき方法
JP2015134960A (ja) ストライク銅めっき液
JPH08193290A (ja) 光沢パラジウム系めっき浴およびめっき方法
CN104711648A (zh) 闪镀铜镀敷液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855128

Country of ref document: EP