WO2018211727A1 - 無電解白金めっき液及びそれを用いて得られた白金皮膜 - Google Patents
無電解白金めっき液及びそれを用いて得られた白金皮膜 Download PDFInfo
- Publication number
- WO2018211727A1 WO2018211727A1 PCT/JP2017/044265 JP2017044265W WO2018211727A1 WO 2018211727 A1 WO2018211727 A1 WO 2018211727A1 JP 2017044265 W JP2017044265 W JP 2017044265W WO 2018211727 A1 WO2018211727 A1 WO 2018211727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plating solution
- platinum
- compound
- platinum plating
- electroless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1605—Process or apparatus coating on selected surface areas by masking
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1675—Process conditions
- C23C18/168—Control of temperature, e.g. temperature of bath, substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
Definitions
- the present invention relates to an electroless platinum plating solution having a specific composition, a building bath solution for obtaining the electroless platinum plating solution, a method for producing a platinum plating film using the electroless platinum plating solution, and a non-obtainable product obtained thereby.
- the present invention relates to an electrolytic platinum plating film (in particular, an electroless platinum plating film formed on a ceramic substrate).
- electrolytic platinum plating film in particular, an electroless platinum plating film formed on a ceramic substrate.
- electrolytic platinum plating film in particular, an electroless platinum plating film formed on a ceramic substrate.
- Platinum is extremely stable chemically and difficult to oxidize, and its melting point is higher than other precious metals. Therefore, platinum is widely used for parts exposed to harsh environments due to its durability. Since ceramic also has heat resistance, if a platinum film is formed on the ceramic, it can be widely used as an electrode having excellent heat resistance.
- a platinum plating film is often formed only at a necessary location. That is, instead of forming a platinum plating film on the entire surface of the substrate, it is necessary to form a pattern using the catalyst layer on the substrate and selectively form the platinum plating film only on the pattern. In this case, if the platinum plating film protrudes beyond the pattern, it is not preferable because the cost is increased and the performance of the parts is deteriorated, and an electroless platinum plating solution that hardly deposits outside the pattern is required.
- Patent Document 1 discloses an electroless platinum plating solution containing a thiol compound as an additive.
- the invention described in Patent Document 1 has a problem that the plating rate is slow although the thiol compound effectively suppresses the self-decomposition of the plating solution.
- a sulfur compound having a low valence such as a thiol compound is not preferable because sulfur co-deposits in the platinum plating film.
- Patent Document 2 discloses that in an electroless platinum plating solution using a borohydride salt as a reducing agent, a small amount of thallium (Tl) ion or tellurium (Te) ion is allowed to coexist, and a specific oxidizing agent (such as sodium nitrobenzenesulfonate) is used.
- a plating solution that prevents decomposition of the plating solution by containing a nitro compound) and suppresses out-of-pattern precipitation of the platinum plating film is disclosed.
- this plating solution has a problem that thallium ions and tellurium ions, which are stabilizers, are co-deposited in the platinum plating film, and a pure platinum film cannot be obtained.
- a specific oxidant nitro compound
- Patent Document 3 discloses a hydrazine compound as a stabilizer in an electroless platinum plating solution using a borohydride compound as a reducing agent in order to suppress self-decomposition of the borohydride compound as a reducing agent and to prevent abnormal precipitation of platinum.
- An electroless platinum plating solution to which is added is disclosed.
- this plating solution does not contain heavy metal ions, a pure platinum plating film can be obtained, but a significant improvement in bath stability due to the addition of hydrazine cannot be obtained (described later).
- Example it is described that a specific oxidizing agent (nitro compound) is added as a long-term stabilizer to prevent out-of-pattern precipitation, which is within the same idea as Patent Document 2, and a remarkable effect cannot be obtained. It has been found.
- Patent Document 4 describes that by using a hydrazine compound as a reducing agent and devising a platinum complex to be used in an electroless platinum plating solution containing ammonia, it is excellent in high temperature stability and can prevent out-of-pattern precipitation. Yes. However, according to the inventor's follow-up test, it has been found that a sufficient effect cannot be obtained for the suppression of out-of-pattern precipitation (examples described later).
- the conventional technology has both high efficiency in deposition and suppression of out-of-pattern precipitation, and has sufficient performance to obtain a pure platinum plating film free from impurities such as sulfur and heavy metals. It could not be said that further improvement was necessary.
- the present inventor has used an electroless platinum plating solution in which a specific compound having an aldehyde group or a ketone group is used in combination with a specific reducing agent and the pH is 7 or more.
- a platinum plating film is formed by using this, the above-mentioned problems are solved, and it has been found that it is possible to achieve both high-speed and high deposition efficiency plating and pattern plating, and the present invention has been completed.
- the present invention includes an electroless platinum plating containing a soluble platinum salt, a complexing agent, and a reducing agent, wherein the reducing agent is any one of a borohydride compound, an aminoborane compound, and a hydrazine compound.
- An electroless platinum plating solution characterized by containing a specific hydroxymethyl compound represented by the following general formula (1) or a salt thereof.
- R 1 —CH 2 —OH (1) [R 1 is an atomic group having an aldehyde group or a ketone group. ]
- the present invention is a building bath solution for building the above electroless platinum plating solution, which contains a soluble platinum salt and a specific hydroxymethyl compound represented by the following general formula (1) or a salt thereof.
- the bath preparation liquid A is characterized by the above.
- R 1 is an atomic group having an aldehyde group or a ketone group.
- the present invention is also a building bath solution for building the above electroless platinum plating solution, comprising a complexing agent and a reducing agent, wherein the reducing agent is a borohydride compound, an aminoborane compound, or a hydrazine.
- a bath preparation liquid B which is any one of compounds, is provided.
- the present invention also provides an electroless platinum plating solution prepared by premixing the above-described building bath liquid A and the above-described building bath liquid B, and using the electroless platinum plating solution at 20 to 90 ° C.
- the present invention provides a method for producing a platinum plating film characterized in that it is immersed in a plating solution to form a platinum plating film.
- the present invention also provides a platinum plating film characterized by being formed on an object to be plated by the above-described method for producing a platinum plating film.
- the present invention also provides an electroless platinum plating for preparing the above electroless platinum plating solution by adding a soluble platinum salt and a reducing agent which is any one of a borohydride compound, an aminoborane compound or a hydrazine compound.
- An aqueous solution for preparing an electroless solution comprising: a complexing agent and a specific hydroxymethyl compound represented by the following general formula (1) or a salt thereof: is there.
- R 1 is an atomic group having an aldehyde group or a ketone group. ]
- the electroless platinum plating solution of the present invention it is possible to suppress the platinum deposition to other than the pattern, and to perform platinum plating only at a necessary location and to perform plating at high speed and high deposition efficiency. Production costs can be greatly reduced.
- a platinum pattern film in an electroless platinum plating process which has been difficult in the past, can be stably formed with a high yield.
- the platinum plating film of the present invention is formed on a ceramic surface such as alumina, silicon nitride, and aluminum nitride, there are few defective parts such as cracks and pinholes, and the yield of products using the platinum plating film is improved. It is industrially useful.
- the electroless platinum plating solution of the present invention contains a soluble platinum salt, a complexing agent, a specific reducing agent, and a specific hydroxymethyl compound represented by the following general formula (1) or a salt thereof, and has a pH of 7 or more. is there. Furthermore, the electroless platinum plating solution of the present invention may contain an aliphatic unsaturated compound, an N-containing heterocyclic compound, and other components.
- the electroless platinum plating solution of the present invention must contain a soluble platinum salt.
- the soluble platinum salt is used as a platinum source for the electroless platinum plating solution of the present invention.
- the soluble platinum salt is not limited to one type of use, and two or more types can be used in combination. “Soluble” means soluble in water.
- the soluble platinum salt include, for example, tetraammineplatinum (II) salt, hexaammineplatinum (IV) salt, tetrachloroplatinum (II) acid salt, hexachloroplatinum (IV) acid salt, and tetranitroplatinum (II) acid salt. , Hexanitroplatinum (IV) acid salt, dinitrodiammine platinum (II), dinitrodichloroplatinum (II) acid salt, diamminedichloroplatinum (II) (the cis form is known as “cisplatin”) and the like.
- These soluble platinum salts easily exert the effects of the present invention described above, and also from the viewpoint of good electroless platinum plating performance, ease of dissolution in water, availability, low cost, etc. preferable.
- tetraammine platinum (II) salt tetrachloroplatinum (II) acid salt
- tetranitroplatinum (II) acid salt tetranitroplatinum (II) acid salt
- dinitrodiammine platinum (II) dinitrodichloroplatinum (II) acid
- divalent platinum salts such as salts.
- halogen ions chlorine ions, bromine ions, iodine ions
- hydroxide ions nitrate ions
- sulfate ions sulfamate ions
- examples thereof include phosphate ions, hydrogen carbonate ions, acetate ions, oxalate ions, and citrate ions.
- particularly preferred soluble platinum salts include, for example, tetraammineplatinum (II) hydrochloride, tetraammineplatinum (II) hydrochloride, tetraammineplatinum (II) bicarbonate, tetraammineplatinum (II) acetate, tetraammineplatinum (II ) Nitrate, tetraammineplatinum (II) citrate, tetrachloroplatinum (II), tetranitroplatinum (II), dinitrodiammineplatinum (II), dinitrodichloroplatinum (II), and the like.
- the content of the soluble platinum salt in the electroless platinum plating solution of the present invention is not particularly limited, and may be 0.001 g / L to 100 g / L as metal platinum with respect to the entire electroless platinum plating solution. It is preferably 0.01 g / L to 50 g / L, more preferably 0.05 g / L to 30 g / L.
- the content of the soluble platinum salt in the electroless platinum plating solution is too small, it may be difficult to form a platinum film having a normal and uniform color. That is, when the color and surroundings of the platinum film are visually observed, an abnormal precipitation of platinum may be observed.
- the content of the soluble platinum salt in the electroless platinum plating solution is too high, there is no particular problem with the performance of the electroless platinum plating solution, but the soluble platinum salt is very expensive, and the electroless platinum plating It may be uneconomical to store in a state of being contained in the liquid.
- the description about the above-mentioned soluble platinum salt specifies the form present in the electroless platinum plating solution of the present invention, but as a raw material to be dissolved in the preparation of the electroless platinum plating solution of the present invention, It is preferable to use the above-mentioned soluble platinum salt.
- the electroless platinum plating solution of the present invention contains a complexing agent.
- the complexing agent is used as a ligand source for the electroless platinum plating solution of the present invention and contributes to the stability of the plating solution.
- a complexing agent may be used individually by 1 type, and may use 2 or more types together.
- complexing agents include ethylenediamine, propanediamine, diethylenetriamine, triethylenetetramine, tris (2-aminoethyl) amine, tetraethylenepentamine, pentaethylenehexamine, N, N-bis (3-aminopropyl) ethylenediamine.
- Polyamine compounds compounds having a plurality of amino groups (—NH 2 )); ammonia and the like.
- polyamine compounds are preferable from the viewpoints of easily exerting the above-described effects of the present invention, and further, good electroless platinum plating performance, ease of dissolution in water, availability, and low cost. .
- ethylenediamine, propanediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N, N′-bis (3-aminopropyl) ethylenediamine Linear polyamine compounds such as
- the content of the complexing agent in the electroless platinum plating solution of the present invention is preferably an amount capable of coordinating at least equivalent to the platinum ions in the plating solution.
- the complexing agent is more preferably 0.1 g / L to 1000 g / L, more preferably 1 g / L to 500 g / L, more preferably 10 g / L to the entire electroless platinum plating solution. Particularly preferred is 300 g / L.
- the content of complexing agent in the electroless platinum plating solution is too small, the stability of the plating solution will decrease, and platinum may be abnormally deposited in the plating solution during plating or heating, resulting in decomposition of the plating solution. There is.
- the complexing agent content in the electroless platinum plating solution is too high, the solubility of coexisting components may decrease due to a decrease in the amount of water in the plating solution, or the viscosity of the plating solution may increase. May adversely affect the uniformity of the platinum plating film thickness.
- the electroless platinum plating solution of the present invention must contain a borohydride compound, an aminoborane compound or a hydrazine compound as a reducing agent. By using these reducing agents, practical high-speed platinum plating can be performed by batch processing.
- the content (total content) of the borohydride salt in the electroless platinum plating solution of the present invention is not particularly limited, but 0.01 g / b as the borohydride salt with respect to the entire electroless platinum plating solution. It is more preferably L to 20 g / L, more preferably 0.05 g / L to 10 g / L, and particularly preferably 0.1 g / L to 5 g / L. If it is at least the above lower limit, the deposition rate of platinum tends to be sufficient. If it is not more than the above upper limit, it is advantageous in terms of cost, and impurities are hardly generated in the plating film.
- the content (total content) of the aminoborane compound in the electroless platinum plating solution of the present invention is not particularly limited, but is 0.005 g / L to 5 g / L with respect to the entire electroless platinum plating solution. Is more preferable, 0.02 g / L to 2 g / L is more preferable, and 0.05 g / L to 1 g / L is particularly preferable. If it is at least the above lower limit, the deposition rate of platinum tends to be sufficient. If it is not more than the above upper limit, it is advantageous in terms of cost, and impurities are hardly generated in the plating film.
- Hydrazine Compound Examples of the hydrazine compound (hydrazine derivative) contained in the electroless platinum plating solution of the present invention include hydrazine monohydrate, hydrazine sulfate, hydrazine hydrochloride, and hydrazine phosphate, and these may be used alone. Alternatively, two or more kinds may be mixed and used. Among these, hydrazine monohydrate is preferable.
- the content (total content) of the hydrazine compound in the electroless platinum plating solution of the present invention is not particularly limited, but is 0.005 g / L to 5 g / L with respect to the entire electroless platinum plating solution. Is more preferable, 0.02 g / L to 2 g / L is more preferable, and 0.05 g / L to 1 g / L is particularly preferable. If it is at least the above lower limit, the deposition rate of platinum tends to be sufficient. If it is not more than the above upper limit, it is advantageous in terms of cost, and impurities are hardly generated in the plating film.
- the electroless platinum plating solution of the present invention contains a specific hydroxymethyl compound represented by the following general formula (1) or a salt thereof.
- R 1 is an atomic group having an aldehyde group (formyl group) or a ketone group.
- R 1 may consist of only a carbon atom, a hydrogen atom, or an oxygen atom, or may have a nitrogen atom, a halogen atom, or the like in addition to these atoms.
- the number of aldehyde or ketone group has the R 1 may be a one or may be two or more. You may have both an aldehyde group and a ketone group.
- the specific hydroxymethyl compound (or salt thereof) represented by the general formula (1) has an aldehyde group (formyl group) or a ketone group.
- Examples of the specific hydroxymethyl compound (or salt thereof) represented by the general formula (1) include sugar, specific cyclic carboxylic acid (or salt thereof), hydroxymethylfurfural and the like.
- the sugar represented by the general formula (1) is not particularly limited as long as it has an aldehyde group (formyl group) or a ketone group and has reducibility.
- a ketone group there is no particular limitation as long as it isomerizes to a sugar having an aldehyde group (formyl group) by keto-enol tautomerism.
- sugar represented by the general formula (1) examples include glyceraldehyde, dihydroxyacetone, erythrose, threose, ribulose, xylulose, ribose, deoxyribose, arabinose, xylose, lyxose, psicose, fructose, sorbose, tagatose, Examples thereof include monosaccharides such as glucose, galactose, mannose, allose and altrose; disaccharides such as dihydroxyacetone dimer, lactose, lactulose, maltose and cellobiose; trisaccharides such as maltotriose; tetrasaccharides such as acarbose;
- sucrose and trehalose are sugars but do not correspond to the specific hydroxymethyl compound represented by the general formula (1) because they do not have a reducing property (cannot have a ring-opening structure).
- Examples of the cyclic carboxylic acid represented by the general formula (1) include ascorbic acid, erythorbic acid, dehydroascorbic acid, dehydroerythorbic acid, diketogronic acid and the like.
- Examples of the salt of the cyclic carboxylic acid represented by the general formula (1) include the potassium salt, sodium salt, lithium salt, and ammonium salt of the acid described above.
- hydroxymethylfurfural represented by the general formula (1) examples include 5-hydroxymethylfurfural.
- the electroless platinum plating solution of the present invention may contain an aliphatic unsaturated compound.
- the aliphatic unsaturated compound exhibits an action as a stabilizer in the plating solution, and maintains the performance of the plating solution when stored for a long period of time.
- aliphatic unsaturated compounds aliphatic unsaturated alcohols and aliphatic unsaturated carboxylic acids are preferable from the viewpoint of easily exerting the above effects.
- aliphatic unsaturated alcohol examples include alcohols having a double bond such as butenediol, pentenediol, hexenediol, heptenediol, octenediol, and nonenediol; propargyl alcohol, methylbutynol, methylpentinol, butynediol, Examples thereof include alcohols having triple bonds such as pentynediol, hexynediol, heptindiol, octynediol, and noninediol.
- aliphatic unsaturated carboxylic acid examples include double bonds such as acrylic acid, methacrylic acid, crotonic acid, angelic acid, tiglic acid, fumaric acid, maleic acid, glutaconic acid, citraconic acid, mesaconic acid, and aconitic acid.
- carboxylic acids having a triple bond such as 3-butynoic acid and 2-butynedioic acid (acetylenedicarboxylic acid).
- aliphatic unsaturated alcohols aliphatic unsaturated diols having two hydroxyl groups in the molecule are particularly preferred.
- aliphatic unsaturated carboxylic acids aliphatic unsaturated dicarboxylic acids having two carboxyl groups in the molecule are particularly preferred.
- the aliphatic unsaturated compounds may be used alone or in combination of two or more.
- the content (total content) of the aliphatic unsaturated compound in the electroless platinum plating solution of the present invention is not particularly limited, but is 0.01 g / L to 10 g / L with respect to the entire electroless platinum plating solution. Is more preferable, 0.05 g / L to 5 g / L is more preferable, and 0.1 g / L to 3 g / L is particularly preferable. Storage stability is easy to improve that it is in the above-mentioned range.
- the electroless platinum plating solution of the present invention may contain an N-containing heterocyclic compound.
- the N-containing heterocyclic compound exhibits an action as a stabilizer in the plating solution, and maintains the performance of the plating solution when stored for a long period of time.
- N-containing heterocyclic compound examples include triazine, piperazine, piperidine, pyrazine, pyridine, pyrimidine, pyridazine, morpholine, and derivatives thereof.
- “These derivatives” have the basic skeleton of any compound in the above-mentioned compound group (that is, for example, part or all of the hydrogen atoms in the ring are substituted; the ethylene group in the ring is 2 Substituted with a valent linking group; etc.) refers to a compound.
- substituent include an alkyl group, an alkoxy group, a hydroxy group, an amino group, and a halogen atom. Further, the alkyl group or the alkoxy group may further have a substituent (hydroxy group, amino group, halogen atom, etc.).
- the “divalent linking group” include a carbonyl group and an ether bond.
- N-containing heterocyclic compounds may be used singly or in combination of two or more. Moreover, you may use together N containing heterocyclic compound and an above-mentioned aliphatic unsaturated compound.
- the content (total content) of the N-containing heterocyclic compound in the electroless platinum plating solution of the present invention is not particularly limited, but is 0.01 g / L to 10 g / L with respect to the entire electroless platinum plating solution. Is more preferable, 0.05 g / L to 5 g / L is more preferable, and 0.1 g / L to 3 g / L is particularly preferable. Storage stability is easy to improve that it is in the above-mentioned range.
- a pH buffer for keeping the pH of the electroless platinum plating solution constant, and an impurity metal is mixed in the electroless platinum plating solution.
- a sequestering agent for removing the influence, a surfactant for improving the foaming of the electroless platinum plating solution, and the like can be appropriately contained and used.
- the pH buffering agent contained as necessary in the electroless platinum plating solution of the present invention is not particularly limited as long as it is a known buffering agent, but preferred are inorganic acids such as boric acid and phosphoric acid; Examples thereof include oxycarboxylic acids such as acid, tartaric acid and malic acid; salts of these acids (potassium salt, sodium salt, ammonium salt) and the like. These may be used alone or in combination of two or more.
- the content of the buffering agent in the electroless platinum plating solution of the present invention is not particularly limited, but is preferably 0.5 g / L to 200 g / L with respect to the entire electroless platinum plating solution, and 1 g / L to 100 g / L. L is particularly preferred. If the content of the buffering agent in the electroless platinum plating solution is too small, the buffering effect may be difficult to be exhibited. On the other hand, if the content is too large, the buffering effect may not be increased and it may be uneconomical.
- the pH of the electroless platinum plating solution of the present invention is essential to be 7 or higher, preferably 9 or higher, and particularly preferably 11 or higher. Moreover, it is preferable that it is 14 or less, and it is especially preferable that it is 13.8 or less.
- the effect by having added the specific hydroxymethyl compound (or its salt) represented by General formula (1) as the minimum of pH is more than the above becomes enough.
- the means for adjusting the pH to a desired value is not particularly limited, but potassium hydroxide, sodium hydroxide or the like can be used to raise the pH.
- potassium hydroxide, sodium hydroxide or the like can be used in order to lower the pH.
- nitric acid, sulfuric acid, boric acid, phosphoric acid and the like can be used in order to lower the pH.
- the present invention is a building bath solution for bathing the above-described electroless platinum plating solution, comprising a soluble platinum salt and the specific hydroxymethyl compound represented by the general formula (1) or a salt thereof. It also relates to the characteristic bathing solution A.
- the building bath liquid A may be weakly acidic or weakly alkaline. desirable.
- the pH of the building bath liquid A is preferably 2.0 or more, and particularly preferably 3.0 or more.
- the present invention is also a building bath solution for building the above electroless platinum plating solution, comprising a complexing agent and a reducing agent, wherein the reducing agent is a borohydride compound, an aminoborane compound or a hydrazine. It also relates to a building bath liquid B, characterized in that it is any compound.
- the building bath liquid B may contain an aliphatic unsaturated compound, an N-containing heterocyclic compound, or both.
- the building bath liquid B contains a reducing agent, it is preferably strongly alkaline to avoid self-decomposition of the reducing agent.
- the pH of the building bath liquid B is preferably 12.0 or more, and particularly preferably 13.5 or more.
- a building bath solution A and a building bath solution B are prepared and mixed.
- a method of constructing the above-described electroless platinum plating solution of the present invention by diluting with water as necessary may be mentioned. By doing in this way, there exists an effect that it can build in a plating tank (container) directly in a short time.
- the object to be plated is a small piece and it is desired to avoid contact with other small pieces as much as possible
- a large number of small-sized plating tanks are prepared, and small pieces are provided for each plating tank (container). Only one substrate is added and plating is performed in parallel.
- the reduced electroless plating solution is bathed in a control tank other than the plating tank (container) and left for a long time, the reducing agent will be decomposed by air oxidation and the deposition rate will decrease. May occur.
- each plating tank (container) with a dispensing device
- platinum may be reduced and deposited on a dispensing nozzle or the like, which may cause a problem that the injection amount is not constant.
- the timing of starting plating is often not constant every time due to the balance between the previous process and the like, and it is also necessary to be able to prepare the plating solution in a timely manner. For these reasons, there is often a desire for a system that allows direct bathing in a plating tank (container).
- the plating solution can be directly bathed in the plating tank (container) by adding water as necessary.
- the soluble platinum salt is very expensive, and it may be uneconomical to store in a state in which it is contained in the electroless platinum plating solution, and the platinum is stored in the form of an aqueous solution. And various performances as a plating solution may be deteriorated. Further, if the reducing agent (borohydride compound, aminoborane compound or hydrazine compound) is stored in the form of an aqueous solution for a long period of time, the reducing agent may be decomposed by air oxidation.
- the reducing agent borohydride compound, aminoborane compound or hydrazine compound
- the electroless platinum plating solution of the present invention is stored as “an aqueous solution for preparing an electroless platinum plating solution containing main components other than a soluble platinum salt and a reducing agent”, and when performing platinum plating. It is also preferable that the user of the plating solution separately add a soluble platinum salt / reducing agent or the like.
- the present invention provides an electroless platinum plating for preparing the electroless platinum plating solution by adding a soluble platinum salt and a reducing agent which is any one of a borohydride compound, an aminoborane compound or a hydrazine compound. It also relates to an aqueous solution for liquid preparation.
- the aqueous solution for preparing an electroless platinum plating solution of the present invention contains a complexing agent, the specific hydroxymethyl compound represented by the general formula (1) or a salt thereof.
- the aqueous solution for preparing an electroless platinum plating solution of the present invention may further contain the aliphatic unsaturated compound and / or the N-containing heterocyclic compound, or both.
- the aqueous solution for preparing an electroless platinum plating solution is preferably weakly acidic or weakly alkaline.
- the pH of the building bath liquid A is preferably 2.0 or more, and particularly preferably 3.0 or more.
- a soluble platinum salt and a reducing agent that is one of a borohydride compound, an aminoborane compound, and a hydrazine compound are added to the aqueous solution for preparing an electroless platinum plating solution of the present invention, and the pH is adjusted to 7 or more as necessary.
- the electroless platinum plating solution of the present invention can be prepared.
- the present invention provides an electroless platinum plating solution obtained by premixing the above-described building bath liquid A and the above-described building bath solution B, or a platinum salt soluble in an aqueous solution for preparing the above electroless platinum plating solution, hydrogen Immerse the object to be plated in an electroless platinum plating solution at 20 to 90 ° C. using an electroless platinum plating solution that has been added with a reducing agent that is either a boron halide compound, an aminoborane compound, or a hydrazine compound.
- the present invention also relates to a method for producing a platinum plating film characterized by forming a platinum plating film.
- the temperature of the plating solution is preferably 30 to 80 ° C, particularly preferably 40 to 70 ° C. If the temperature is too high, the stability of the plating solution may decrease, and if the temperature is too low, a practical plating rate may not be obtained.
- Examples of the object to be plated include ceramic, glass, metal and the like.
- the object to be plated is a non-conductive ceramic or glass, it is preferable to perform a catalyst treatment with palladium or platinum in advance by a known technique.
- Bath loading of making the fabrication of plated film in the present invention is preferably 0.001Dm 2 / L or more 1000Dm 2 / L or less, 0.01Dm more preferably 2 / L or more 500 dm 2 / L or less, 0.02Dm 2 / L or more and 200 dm 2 / L or less is particularly preferable.
- the larger the bath load the higher the proportion of unstable substances in the plating reaction that occupy per volume of the plating solution, so the stability of the plating solution decreases. Is highly stable and can be plated without deposition outside the pattern.
- the plating time is preferably 5 minutes or longer, particularly preferably 10 minutes or longer. Moreover, 360 minutes or less are preferable and 120 minutes or less are especially preferable. Within the above range, it is easy to form a plating film having a sufficient thickness, which is advantageous in terms of cost.
- the present invention also relates to a platinum plating film characterized by being formed on an object to be plated by the method for producing a platinum plating film.
- the platinum plating film of the present invention is a high-purity platinum plating film that does not contain sulfur or heavy metals.
- the platinum plating film obtained by plating using the plating solution of the present invention has no cracks and pinholes observed immediately after plating and after annealing, and has good quality with few defects. It is a good plating film.
- cracks and pinholes have various sizes and shapes, and the cracks and pinholes appear at irregular positions in the plating film. Therefore, it is impossible or nearly impractical to directly identify the platinum plating film obtained by plating using the plating solution of the present invention by its structure or characteristics.
- the action / principle that the electroless platinum plating solution of the present invention exhibits excellent stability and pattern plating properties is not clear, but the following may be considered. However, the present invention is not limited to the range of the following effects.
- the electroless platinum plating solution of the present invention is considered to have improved precipitation selectivity by containing the specific hydroxymethyl compound (or salt thereof) represented by the general formula (1). This is considered to be due to the following reasons. That is, the surface of a base material made of a metal oxide such as ceramic or glass (-MOMM) adsorbs moisture in water to form surface hydroxyl groups (-M-OH).
- the specific hydroxymethyl compound represented by the general formula (1) reversibly desorbs via hydrogen bonds, thereby protecting against abnormal precipitation of platinum on the substrate other than the pattern and improving the precipitation selectivity. It is thought that it is letting. For this reason, platinum fine particles with poor adhesion that are abnormally deposited on the base material are peeled off in the plating solution, and the route leading to the decomposition of the plating solution is blocked, which is considered to improve the stability.
- B1 solution a building bath solution B1 (hereinafter referred to as “B1 solution”).
- the plating is performed without stirring, and the state in which the base material for evaluation 3 is submerged at the bottom of the glass beaker 2 is maintained.
- the activation treatment surface (the surface on which the catalyst layer 3a is patterned) is always made of the electroless platinum plating solution 1. The state facing the liquid surface direction was maintained. After the plating treatment, the evaluation base material 3 was taken out, washed with water and dried with a dryer to obtain an electroless platinum plating film.
- Table 3 shows the results of each evaluation item.
- Examples a1 to a4 relate to an electroless platinum plating solution containing one of the specific hydroxymethyl compounds belonging to the sugar.
- the plating time was 2 hours (120 minutes), the plating adhesion efficiency was 95% or more, and no out-of-pattern deposition or decomposition of the plating solution was confirmed.
- Example a5 relates to an electroless platinum plating solution containing ascorbic acid among the specific hydroxymethyl compounds.
- the plating time was 2 hours (120 minutes), the plating adhesion efficiency was 95% or more, and no out-of-pattern precipitation or decomposition of the plating solution was confirmed.
- Example b1 to b3 m-nitrobenzenesulfonate, thallium compound, or both were blended in place of the specific hydroxymethyl compound.
- Example b1 precipitation outside the pattern and decomposition of the plating solution were confirmed.
- Examples b2 and b3 although no decomposition of the plating solution was confirmed, deterioration of the plating adhesion efficiency and slight out-of-pattern precipitation were confirmed.
- Example b4 was formulated with hydrazine monohydrate instead of the specific hydroxymethyl compound. In Example b4, the decomposition of the plating solution was confirmed during the temperature increase of the plating solution.
- Example b5 m-nitrobenzenesulfonate and hydrazine monohydrate were blended in place of the specific hydroxymethyl compound. In Example b5, the decomposition of the plating solution was confirmed during the temperature increase of the plating solution.
- Example a4 and Example b2 The platinum plating film formed on the pattern in Example a4 and Example b2 was observed from above with a field emission scanning electron microscope (S-4300, manufactured by Hitachi High-Technologies Corporation). The platinum plating film was observed immediately after plating (as plated) and after annealing. The annealing process was performed for 1 hour using a small box furnace (KBF422N1, manufactured by Koyo Thermo System Co., Ltd.) while being heated to 400 ° C. in the atmosphere. The observation result of the platinum plating film is shown in FIG.
- the platinum plating film obtained by the method for producing a platinum plating film of the present invention is a high-quality plating film with few defects and no cracks or pinholes observed immediately after plating and after annealing. I understand that.
- pin holes were observed after annealing in the platinum plating film obtained from the electroless platinum plating solution containing no specific hydroxymethyl compound and containing thallium (Tl).
- Experimental Example 2 [Examples c1 to c4, Examples d1 to d3] ⁇ Preparation of electroless platinum plating solution>
- A1 solution and B1 solution were prepared.
- the A1 solution, the B1 solution and deionized water were mixed to obtain an electroless platinum plating solution shown in Table 4.
- platinum catalyst paste JP1 platinum content 0.02 g / L, aqueous, manufactured by Nippon Kosei Chemical Co., Ltd.
- the substrate was applied with a brush and dried at 600 ° C. in a standing state with the coating side down, and the catalyst layer 3 a was patterned only on the lower half side of the alumina substrate to obtain a substrate 3 for evaluation.
- the pattern area was about 0.02 dm 2 .
- the substrate for evaluation 3 is immersed in a glass beaker 2 filled with electroless platinum plating solution 1 (6.2 mL) shown in Table 4, and subjected to a plating treatment for 2 hours while heating to 50 ° C. in a water bath. did.
- Plating was performed using the stirrer 4 while stirring at 200 rpm, and the evaluation substrate 3 was kept in contact with the glass beaker 2 and the stirrer 4 by suspending the evaluation substrate 3.
- the evaluation base material 3 was taken out, washed with water and dried with a dryer to obtain an electroless platinum plating film.
- Examples c1 to c4 relate to an electroless platinum plating solution containing one of the specific hydroxymethyl compounds belonging to the sugar.
- the plating time was 2 hours (120 minutes), the plating adhesion efficiency was 98% or more, and no out-of-pattern deposition or decomposition of the plating solution was confirmed. Further, it was confirmed that the deposition efficiency (plating adhesion efficiency) tends to be improved as compared with Examples a1 to a5 without stirring.
- Example d1 to d3 m-nitrobenzenesulfonate, thallium compound, or both were blended in place of the specific hydroxymethyl compound.
- Example d1 precipitation outside the pattern and decomposition of the plating solution were confirmed.
- Examples d2 and d3 although the decomposition of the plating solution was not confirmed, precipitation outside the pattern was confirmed.
- the deposition efficiency (plating adhesion efficiency) was improved compared to the cases b1 to b3 without stirring, and out-of-pattern deposition was likely to occur.
- the electroless platinum plating solution of the present invention by adding a specific hydroxymethyl compound, deterioration of out-of-pattern precipitation due to solution stirring is suppressed, and only the deposition efficiency (plating adhesion efficiency) is improved. Can do.
- the substrate for evaluation 3 was immersed in a glass beaker 2 filled with electroless platinum plating solution 1 (10 mL) shown in Table 7 and heated to the temperature shown in Table 7 in a water bath while The plating process was performed for the time shown in FIG. Plating was performed without stirring, and the evaluation base material 3 was kept in contact with the glass beaker 2 by suspending the evaluation base material 3. After the plating treatment, the evaluation base material 3 was taken out, washed with water and dried with a dryer to obtain an electroless platinum plating film.
- plating thickness For the measurement, a fluorescent X-ray analyzer SFT-9255 (manufactured by Seiko Instruments Inc.) was used. The inside of the pattern was divided into nine equal parts, and the average value of nine points measured near the center was defined as the plating film thickness.
- Table 7 shows the results of each evaluation item.
- Examples e1 to e3 relate to an electroless platinum plating solution containing one compound belonging to sugar among specific hydroxymethyl compounds in a state where the soluble platinum salt (platinum complex) is in a high concentration state.
- the plating time was 40 minutes in all cases, the plating film thickness was 1.1 ⁇ m or more, and no out-of-pattern deposition or decomposition of the plating solution was confirmed.
- Examples f1 and f2 relate to an electroless platinum plating solution that does not contain a specific hydroxymethyl compound.
- plating was performed at 50 ° C. for 40 minutes, decomposition of the plating solution was confirmed, and precipitation outside the pattern was confirmed. Further, when plating was performed at a temperature of 30 ° C., the plating solution was not decomposed, but the plating film thickness was as thin as 0.3 ⁇ m, and out-of-pattern precipitation was confirmed.
- Examples f3 to f5 were formulated with m-nitrobenzenesulfonate, thallium compound, or both instead of the specific hydroxymethyl compound.
- Example f3 decomposition of the plating solution and precipitation outside the pattern were not confirmed, but the plating film thickness was as thin as 0.3 ⁇ m.
- Examples f4 and f5 although attempts were made to increase the plating speed by increasing the plating temperature, decomposition of the plating solution was confirmed.
- Example f6 was formulated with hydrazine monohydrate instead of the specific hydroxymethyl compound. In Example f6, the decomposition of the plating solution was confirmed during the temperature increase of the plating.
- Example f7 hydrazine monohydrate and m-nitrobenzenesulfonate were blended in place of the specific hydroxymethyl compound. In Example f7, decomposition of the plating solution was confirmed during plating.
- the stability is excellent and high-speed plating is possible. It can be seen that an excellent patterning property is exhibited without lowering.
- Examples g1 to g7 relate to an electroless platinum plating solution containing an N-containing heterocyclic compound as a stabilizer and further containing glucose as a specific hydroxymethyl compound.
- the plating time was 2 hours (120 minutes), the plating adhesion efficiency was 95% or more, and no out-of-pattern deposition or decomposition of the plating solution was confirmed.
- Examples g8 to g9 relate to an electroless platinum plating solution containing an aliphatic unsaturated compound as a stabilizer and further containing glucose as a specific hydroxymethyl compound.
- the plating time was 2 hours (120 minutes), the plating adhesion efficiency was 95% or more, and no out-of-pattern deposition or decomposition of the plating solution was confirmed.
- Examples h1 and h2 relate to an electroless platinum plating solution that does not contain a stabilizer and contains a specific hydroxymethyl compound.
- the plating time was 2 hours (120 minutes), and the out-of-pattern precipitation and the decomposition of the plating solution were confirmed.
- the electroless platinum plating solution of the present invention has excellent long-term performance without deterioration in patternability and stability even when left for a long time in the state of the plating solution. It can be seen that storability is expressed.
- the substrate for evaluation 3 is immersed in a glass beaker 2 filled with electroless platinum plating solution 1 (33.4 mL) shown in Table 13, and subjected to plating treatment for 2 hours while heating to 50 ° C. in a water bath. did.
- Plating was performed in a state of stirring at 200 rpm using the stirrer 4, and the evaluation base material 3 was maintained in contact with the glass beaker 2 and the stirrer 4 by hanging the evaluation base material 3.
- the evaluation base material 3 was taken out, washed with water and dried with a dryer to obtain an electroless platinum plating film.
- Examples i1 to i6 relate to an electroless platinum plating solution using a hydrazine compound as a reducing agent and containing a specific hydroxymethyl compound and a compound belonging to a sugar.
- the plating time is 2 hours (120 minutes), and the plating adhesion efficiency is 97% or more.
- Examples j1 to j6 relate to an electroless platinum plating solution containing a hydrazine compound as a reducing agent, an N-containing heterocyclic compound or an aliphatic unsaturated compound as a stabilizer, and glucose as a specific hydroxymethyl compound.
- the plating time is 2 hours (120 minutes), and the plating adhesion efficiency is 96% or more.
- Example k1 relates to an electroless platinum plating solution that uses a hydrazine compound as a reducing agent and does not contain a stabilizer and a specific hydroxymethyl compound.
- the plating time was 2 hours (120 minutes), and when the prepared plating solution was immediately subjected to a plating treatment, precipitation outside the pattern and decomposition of the plating solution were confirmed. Further, in the same evaluation after the plating solution was stored for a long time, the out-of-pattern precipitation and the decomposition of the plating solution were confirmed.
- Example 11 relates to electroless platinum plating using a hydrazine compound as a reducing agent and using ammonia and ethylenediamine in combination as a complexing agent and not containing a specific hydroxymethyl compound.
- the plating time was 2 hours (120 minutes), and the plating adhesion efficiency was 97% or more.
- decomposition of the plating solution was not confirmed, Precipitation outside the pattern was confirmed.
- the decomposition of the plating solution was confirmed.
- the deposition efficiency is high and a plating film can be formed with high pattern properties.
- the electroless platinum plating film obtained by the electroless platinum plating solution of the present invention does not contain impurities such as sulfur and heavy metals.
- the electroless platinum plating solution of the present invention is widely used for the formation of platinum plating films such as electronic parts, ornaments and heat-resistant materials.
- Electroless platinum plating solution 2 Glass beaker 3: Base material for evaluation 3a: Catalyst layer 4: Stir bar
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
なお、以下、本明細書において、「無電解白金めっき液」を単に「めっき液」、「(無電解)白金めっき皮膜」を単に「めっき皮膜」又は「白金皮膜」、「(無電解)白金めっき」を単に「めっき」、とそれぞれ略記する場合がある。
バッチ処理の場合、多数の小型のめっき槽(容器)を並列に用意してそれぞれに部品を投入し、一遍にめっき処理を行う。めっき液は使い切りであるため、めっき廃液からの白金回収コストを削減するために、めっき液中に含有される白金を無駄なく基材にめっき析出させることができる、つまりは高い析出効率でめっき可能な無電解白金めっき液が求められている。
一方、連続処理の場合、大型のめっき槽を用意し、複数の部品が面付けされた基材を投入することを繰り返しながら連続的にめっき処理を行う。従って、短時間で所望の膜厚を得ることができる高速かつ安定性に優れた無電解白金めっき液が求められている。
この場合、パターン外にまで白金めっき皮膜がはみ出してしまうとコスト高や部品性能の低下を招くため好ましくなく、パターン外析出しにくい無電解白金めっき液が求められている。
しかし、このめっき液では安定剤であるタリウムイオンやテルルイオンが白金めっき皮膜中に共析し、純白金皮膜が得られないという課題がある。また、さらに特定の酸化剤(ニトロ化合物)を含有させることでパターン外析出の抑制を図っているものの、本発明者らの追試によると効果が不十分であることが判明した(後述の実施例)。
しかしながら、本発明者らの追試によると、このめっき液は重金属イオンを含まないため純白金めっき皮膜が得られるものの、ヒドラジン添加による浴安定性の顕著な向上は得られないことが判明した(後述の実施例)。また、パターン外析出の防止には特定の酸化剤(ニトロ化合物)を長期安定剤として添加する旨が記載されており、特許文献2と同じ思想の範囲内であり、顕著な効果は得られないことが判明した。
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。]
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。]
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。]
本発明の無電解白金めっき液は、可溶性白金塩、錯化剤、特定の還元剤及び後述する一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有し、pHが7以上である。
更に、本発明の無電解白金めっき液は、脂肪族不飽和化合物、N含有複素環化合物や、その他の成分を含有してもよい。
本発明の無電解白金めっき液は、可溶性白金塩を含有することが必須である。該可溶性白金塩は、本発明の無電解白金めっき液の白金源として用いられる。可溶性白金塩は、1種の使用に限定されず2種以上を併用することができる。「可溶性」とは、水に可溶という意味である。
これらの可溶性白金塩は、前記した本発明の効果を発揮し易く、更に、良好な無電解白金めっき性能、水への溶解のし易さ、入手のし易さ、低コスト等の観点からも好ましい。
一方、無電解白金めっき液中の可溶性白金塩の含有量が多すぎる場合は、無電解白金めっき液の性能としては特に問題はないが、可溶性白金塩は非常に高価であり、無電解白金めっき液中に含有した状態で保存するのは不経済となる場合がある。
本発明の無電解白金めっき液は、錯化剤を含有することが必須である。該錯化剤は、本発明の無電解白金めっき液の配位子源として用いられ、めっき液の安定性に寄与する。錯化剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
一方、無電解白金めっき液中の錯化剤の含有量が多すぎる場合は、めっき液中の水の量が低下することで共存成分の溶解度が低下する場合や、めっき液の粘性が上がることで白金めっき膜厚の均一性に悪影響を及ぼす場合がある。
本発明の無電解白金めっき液は、還元剤として、水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物を含有することが必須である。これらの還元剤を使用することで、バッチ処理で実用的な白金の高速めっきが可能となる。
本発明の無電解白金めっき液が含有する水素化ホウ素化合物(水素化ホウ素塩)としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム等が挙げられ、これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
これらの中でも、水素化ホウ素ナトリウムが、入手のし易さ、低コスト等の観点から好ましい。
上記下限以上であると白金の析出速度が十分となりやすい。上記上限以下であると、コスト的に有利であり、また、めっき皮膜中に不純物が生じにくい。
本発明の無電解白金めっき液が含有するアミノボラン化合物としては、アミノボラン、ジメチルアミノボラン、ジエチルアミノボラン等が挙げられ、これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
上記下限以上であると白金の析出速度が十分となりやすい。上記上限以下であると、コスト的に有利であり、また、めっき皮膜中に不純物が生じにくい。
本発明の無電解白金めっき液が含有するヒドラジン化合物(ヒドラジン誘導体)としては、ヒドラジン一水和物、硫酸ヒドラジン、塩酸ヒドラジン、リン酸ヒドラジン等が挙げられ、これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
これらの中でも、ヒドラジン一水和物が好ましい。
上記下限以上であると白金の析出速度が十分となりやすい。上記上限以下であると、コスト的に有利であり、また、めっき皮膜中に不純物が生じにくい。
本発明の無電解白金めっき液は、下記一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有する。
R1-CH2-OH (1)
R1は、炭素原子、水素原子、酸素原子のみからなっていてもよいし、これらの原子に加えて、窒素原子やハロゲン原子等を有していてもよい。
また、R1の有するアルデヒド基又はケトン基の数は、1つであってもよいし、2つ以上であってもよい。アルデヒド基とケトン基の両方を有していてもよい。
一般式(1)で表される特定ヒドロキシメチル化合物(又はその塩)を、上述の還元剤と併用することにより、前記した本発明の効果が奏される。
一般式(1)で表される糖の具体例としては、グリセルアルデヒド、ジヒドロキシアセトン、エリトロース、トレオース、リブロース、キシルロース、リボース、デオキシリボース、アラビノース、キシロース、リキソース、プシコース、フルクトース、ソルボース、タガトース、グルコース、ガラクトース、マンノース、アロース、アルトロース等の単糖;ジヒドロキシアセトンダイマー、ラクトース、ラクツロース、マルトース、セロビオース等の二糖;マルトトリオース等の三糖;アカルボース等の四糖;等が挙げられる。
また、一般式(1)で表される環状カルボン酸の塩の例としては、上記した酸のカリウム塩、ナトリウム塩、リチウム塩、アンモニウム塩等が挙げられる。
本発明の無電解白金めっき液は、脂肪族不飽和化合物を含有させてもよい。脂肪族不飽和化合物は、めっき液中で、安定剤としての作用を示し、長期間保存した際にめっき液の性能を保つ。
脂肪族不飽和カルボン酸の中でも、分子内にカルボキシル基を2つ有する脂肪族不飽和ジカルボン酸が特に好ましい。
上記範囲内であると、保存安定性が向上しやすい。
本発明の無電解白金めっき液は、N含有複素環化合物を含有させてもよい。N含有複素環化合物は、めっき液中で、安定剤としての作用を示し、長期間保存した際にめっき液の性能を保つ。
「これらの誘導体」とは、上記した化合物群の何れかの化合物の基本骨格を持つ(すなわち、例えば、環中の水素原子の一部又は全部が置換されている;環中のエチレン基が2価の連結基で置換されている;等)化合物のことをいう。
該置換基としては、アルキル基、アルコキシ基、ヒドロキシ基、アミノ基、ハロゲン原子等が例示できる。また、該アルキル基や該アルコキシ基は、更に置換基(ヒドロキシ基、アミノ基、ハロゲン原子等)を有していてもよい。
該「2価の連結基」としては、カルボニル基、エーテル結合等が例示できる。
また、N含有複素環化合物と、前記した脂肪族不飽和化合物を併用してもよい。
上記範囲内であると、保存安定性が向上しやすい。
本発明の無電解白金めっき液には、上記の成分以外に、必要に応じて、無電解白金めっき液のpHを一定に保つためのpH緩衝剤、無電解白金めっき液中に不純物金属が混入した場合にその影響を除去するための金属イオン封鎖剤、無電解白金めっき液の泡切れを良好にするための界面活性剤等を適宜含有させて用いることができる。
これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
無電解白金めっき液中の緩衝剤の含有量が少な過ぎると、緩衝効果が発揮され難い場合があり、一方、多すぎる場合は、緩衝効果の上昇が見られず不経済の場合がある。
本発明の無電解白金めっき液のpHは、7以上であることが必須であり、9以上であることが好ましく、11以上であることが特に好ましい。また、14以下であることが好ましく、13.8以下であることが特に好ましい。
pHの下限が上記以上であると、一般式(1)で表される特定ヒドロキシメチル化合物(又はその塩)を添加したことによる効果が十分となる。
本発明は、前記した無電解白金めっき液を建浴するための建浴用液であって、可溶性白金塩及び前記一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有することを特徴とする建浴用液Aにも関する。
該建浴用液Bは、脂肪族不飽和化合物、N含有複素環化合物、又はその両者を含有していてもよい。
このようにすることにより、めっき槽(容器)内で直接、短時間で建浴できるという効果を奏する。
しかしながら、還元型の無電解めっき液をめっき槽(容器)とは別の管理槽などで建浴してから長時間放置してしまうと、空気酸化によって還元剤の分解が生じ、析出速度の低下が起きる場合がある。また、めっき液を分注装置で各めっき槽(容器)に分注していくと、分注ノズル等に白金が還元析出してしまい、注入量が一定にならないといった問題が生じる場合がある。
さらに、量産レベルでは、前工程等の兼ね合いからめっき開始のタイミングが毎回一定にはできないことも多く、タイムリーにめっき液を準備できることも必要とされる。このような理由により、めっき槽(容器)内で直接建浴できる方式が望まれることも多い。
前記のように、可溶性白金塩は非常に高価であり、無電解白金めっき液中に含有した状態で保存するのは不経済となる場合があり、また、白金を水溶液の形で保存しておくと、めっき液としての諸性能が低下する場合がある。また、還元剤(水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物)を水溶液の形で長期間保存しておくと、空気酸化により還元剤の分解が起きる場合がある。
このため、本発明の無電解白金めっき液は、「可溶性白金塩と還元剤以外の主な成分を含有させた無電解白金めっき液調製用水溶液」として保存しておき、白金めっきを行う際に、めっき液の使用者が、可溶性白金塩・還元剤等を別途添加して使用するのも好ましい。
本発明の無電解白金めっき液調製用水溶液は、錯化剤、前記の一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有する。
本発明の無電解白金めっき液調製用水溶液は、更に、前記脂肪族不飽和化合物及び/又は前記N含有複素環化合物、又はその両者を含有していてもよい。
本発明は、前記した建浴用液Aと前記した建浴用液Bを予め混合して建浴した無電解白金めっき液、又は、前記した無電解白金めっき液調製用水溶液に可溶性白金塩と、水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物の何れかである還元剤とを添加して建浴した無電解白金めっき液を用いて、被めっき物を20~90℃で該無電解白金めっき液に浸漬し、白金めっき皮膜を形成させることを特徴とする白金めっき皮膜の製造方法にも関する。
めっき液の温度は、30~80℃が好ましく、40~70℃が特に好ましい。
温度が高すぎるとめっき液の安定性が低下する場合があり、温度が低すぎると実用的なめっき速度が得られない場合がある。
被めっき物が不導体であるセラミック、ガラスの場合は、予め公知の技術でパラジウムや白金による触媒化処理を行っておくことが好ましい。
このため、高価な搖動装置を要することなく、コストダウンが可能となる。
一般に、浴負荷が大きいほど、めっき液体積あたりに占めるめっき反応中の不安定な物質の割合が高くなるので、めっき液の安定性が下がるが、本発明のめっき液では、高浴負荷状態においても安定性が高く、パターン外析出せずにめっきが可能である。
上記範囲内であると、十分な厚さのめっき皮膜を形成しやすく、コスト的にも有利である。
本発明は、上記の白金めっき皮膜の製造方法で被めっき物上に形成されたことを特徴とする白金めっき皮膜にも関する。
本発明の白金めっき皮膜は、硫黄や重金属類を含有しない、純度の高い白金めっき皮膜である。
めっき皮膜中において、クラックやピンホールには、様々な大きさや形状のものが存在し、また、クラックやピンホールは、めっき皮膜中に、不規則な位置に出現する。
よって、本発明のめっき液を使用してめっきすることにより得られる白金めっき皮膜を、その構造又は特性により直接特定することは、不可能であるか、又はおよそ実際的でない。
本発明の無電解白金めっき液は、前記一般式(1)で表される特定ヒドロキシメチル化合物(又はその塩)を含有することにより、析出選択性が向上していると考えられる。これは、以下の理由によるものと考えられる。
すなわち、セラミックやガラス等の金属酸化物(-M-O-M-)から成る基材表面は、水中において水分を吸着して表面水酸基(-M-OH)が形成されており、この表面水酸基と前記一般式(1)で表される特定ヒドロキシメチル化合物が水素結合を介して可逆的に脱吸着することでパターン以外(基材)への白金の異常析出から保護し、析出選択性を向上させていると考えられる。このため、基材上に異常析出した密着性に乏しい白金微粒子がめっき液中に剥離し、めっき液が分解に至る経路を遮断するため、安定性が向上すると考えられる。
<建浴用液A1の調製>
表1に示す組成となるように、脱イオン水に、可溶性白金塩、特定ヒドロキシメチル化合物又はその他の添加化合物、pH緩衝剤を溶解し、水酸化ナトリウムでpHを7に調整して建浴用液A1(以下、「A1液」という場合がある。)を得た。
表2に示す組成となるように、脱イオン水に、還元剤及び錯化剤を溶解し、水酸化ナトリウムでpHを14に調整して建浴用液B1(以下、「B1液」という場合がある。)を得た。
ガラスビーカー内で、A1液、B1液及び脱イオン水を、体積比で[A1液]:[B1液]:[脱イオン水]=1:1:8の割合で混合し、表3に示す無電解白金めっき液を得た。
混合の際には、脱イオン水、A1液、B1液の順に添加した。
バッチ処理でめっき液中の白金を全て使い切り、パターン上に白金皮膜を1μm形成させることを想定した。めっきは静置状態で行った。図1に、評価用白金皮膜を無撹拌状態で無電解めっき処理により形成した際のガラスビーカー内の模式図を示す。
次いで、評価用基材3を、表3に示す無電解白金めっき液1(9.54mL)で満たしたガラスビーカー2の中に浸漬し、ウォーターバス内で50℃に加熱しながら2時間めっき処理をした。めっきは、無撹拌で行い、ガラスビーカー2の底部に評価用基材3が沈んだ状態を維持し、活性化処理面(触媒層3aをパターン形成した面)は常に無電解白金めっき液1の液面方向を向いた状態を維持させた。
めっき処理後に評価用基材3を取り出し、水洗後ドライヤーで乾燥し、無電解白金めっき皮膜を得た。
[めっき液の安定性]
2時間めっき後、めっき液が分解し、めっき液中に黒色の白金が異常析出(粉状析出や沈殿)した場合は「分解」(×)とし、白金の異常析出が観察されなかった場合は「良好」(○)とした。
めっき液の安定性が良好(○)だった場合は、めっき前後のめっき液中の白金濃度をICP発光分析装置ICPS-7510((株)島津製作所製)で測定し、下記式(X)よりめっき付着効率を算出した。
評価用基材3を目視観察し、触媒層を形成していない部位の全体に黒色ないし灰色の白金が析出していた場合は「著しい不良」(×)、触媒層3aを形成していない部位の一部に黒色ないし灰色の白金が析出していた場合は「不良」(△)、触媒層を形成していない部位に黒色ないし灰色の白金が析出せずに白色のまま(アルミナ基材の色のまま)の場合は「良好」(○)とした。
例a4及び例b2でパターン上に形成した白金めっき皮膜を、上方から電解放出型走査電子顕微鏡(S-4300、(株)日立ハイテクノロジーズ製)で観察した。白金めっき皮膜は、めっき直後(as plated)とアニール処理後に観察した。
アニール処理は、小型ボックス炉(KBF422N1、光洋サーモシステム(株)製)を使用し、大気下で400℃に加熱した状態で1時間実施した。
白金めっき皮膜の観察結果を図5に示す。
一方、図6に示すように、特定ヒドロキシメチル化合物を含有せず、タリウム(Tl)を含む無電解白金めっき液から得られた白金めっき皮膜は、アニール後にピンホールが観察された。
<無電解白金めっき液の調製>
実験例1の場合と同様にA1液、B1液を調製した。また、実験例1の場合と同様にA1液、B1液及び脱イオン水を混合し、表4に示す無電解白金めっき液を得た。
バッチ処理でめっき液中の白金を全て使い切り、パターン上に白金皮膜を1μm形成させることを想定した。めっきは撹拌を加えた状態で行った。図2に、評価用白金皮膜を撹拌状態で無電解めっき処理により形成した際のガラスビーカー内の模式図を示す。
次いで、評価用基材3を表4に示す無電解白金めっき液1(6.2mL)で満たしたガラスビーカー2の中に浸漬し、ウォーターバス内で50℃に加熱しながら2時間めっき処理をした。めっきは、撹拌子4を用いて200rpmの撹拌をしながら行い、評価用基材3を吊るすことでガラスビーカー2や撹拌子4に評価用基材3が接触しない状態を維持した。
めっき処理後に評価用基材3を取り出し、水洗後ドライヤーで乾燥し、無電解白金めっき皮膜を得た。
実験例1の場合と同様にして、めっき液の安定性、めっき付着効率及びめっき皮膜のパターン性を評価した。
各評価項目の結果を表4に示す。
また、無撹拌時の例a1~a5に比べ、析出効率(めっき付着効率)が向上されやすい傾向が確認された。
また、無撹拌時の例b1~b3に比べ、析出効率(めっき付着効率)が向上し、パターン外析出が起こりやすくなっていた。
<建浴用液A2の調製>
表5に示す組成となるように、脱イオン水に、可溶性白金塩、特定ヒドロキシメチル化合物又はその他の添加化合物、pH緩衝剤を溶解し、水酸化ナトリウムでpHを7に調整して建浴用液A2(以下、「A2液」という場合がある。)を得た。
表6に示す組成となるように、脱イオン水に、還元剤及び錯化剤を溶解し、水酸化ナトリウムでpHを14に調整して建浴用液B2(以下、「B2液」という場合がある。)を得た。
ガラスビーカー内で、A2液及びB2液を、体積比で[A2液]:[B2液]=1:1の割合で混合し、表7に示す無電解白金めっき液を得た。
混合の際には、A2液、B2液の順に添加した。
連続めっき処理を想定し、めっき液中の白金を使い切らず、パターン上に白金めっき皮膜を1μm形成させることを想定した。図3に、評価用白金皮膜を無撹拌状態で無電解めっき処理により形成した際のガラスビーカー内の模式図を示す。
次いで、評価用基材3を、表7に示す無電解白金めっき液1(10mL)で満たしたガラスビーカー2の中に浸漬し、ウォーターバス内で、表7に示す温度に加熱しながら、表7に示す時間の間めっき処理をした。めっきは、無撹拌で行い、評価用基材3を吊るすことでガラスビーカー2に評価用基材3が接触しない状態を維持した。
めっき処理後に評価用基材3を取り出し、水洗後ドライヤーで乾燥し、無電解白金めっき皮膜を得た。
[めっき液の安定性・めっき皮膜のパターン性]
実験例1の場合と同様にして評価した。
測定には蛍光X線分析装置SFT-9255(セイコーインスツル(株)製)を使用した。パターン内を碁盤状に9等分し、その中心付近を測定した9点の平均値をめっき膜厚とした。
<建浴用液A3の調製>
表8に示す組成となるように、脱イオン水に、可溶性白金塩、特定ヒドロキシメチル化合物、pH緩衝剤を溶解し、水酸化ナトリウムでpHを7に調整して建浴用液A3(以下、「A3液」という場合がある。)を得た。
表9に示す組成となるように、脱イオン水に、還元剤、錯化剤及び安定剤を溶解し、水酸化ナトリウムでpHを14に調整して建浴用液B3(以下、「B3液」という場合がある。)を得た。
ガラスビーカー内で、A3液、B3液及び脱イオン水を、体積比で[A3液]:[B3液]:[脱イオン水]=1:1:8の割合で混合し、表10に示す無電解白金めっき液を得た。
混合の際には、脱イオン水、A3液、B3液の順に添加した。
調製した無電解白金めっき液をそれぞれ、室温(25℃)で24時間保管してから、めっき処理に供した以外は、実験例1の場合と同様にして、無電解白金めっき皮膜を得た。
実験例1の場合と同様にして、長期(24時間)保管後のめっき液を使用した場合における、めっき液の安定性、めっき付着効率及びめっき皮膜のパターン性を評価した。
各評価項目の結果を表10に示す。
<建浴用液A4の調製>
表11に示す組成となるように、脱イオン水に、可溶性白金塩、特定ヒドロキシメチル化合物、pH緩衝剤を溶解し、水酸化ナトリウムでpHを7に調整して建浴用液A4(以下、「A4液」という場合がある。)を得た。
表12に示す組成となるように、脱イオン水に、還元剤、錯化剤及び安定剤を溶解し、水酸化ナトリウムでpHを14に調整して建浴用液B4(以下、「B4液」という場合がある。)を得た。
ガラスビーカー内で、A4液、B4液及び脱イオン水を、体積比で[A4液]:[B4液]:[脱イオン水]=1:1:8の割合で混合し、表13に示す無電解白金めっき液を得た。
混合の際には、脱イオン水、A4液、B4液の順に添加した。
バッチ処理でめっき液中の白金を全て使い切り、パターン上に白金皮膜を1μm形成させることを想定した。めっきは撹拌を加えた状態で行った。図4に、評価用白金皮膜を撹拌状態で無電解めっき処理により形成した際のガラスビーカー内の模式図を示す。
次いで、評価用基材3を表13に示す無電解白金めっき液1(33.4mL)で満たしたガラスビーカー2の中に浸漬し、ウォーターバス内で50℃に加熱しながら2時間めっき処理をした。めっきは、撹拌子4を用いて200rpmで撹拌した状態で行い、評価用基材3を吊るすことでガラスビーカー2や撹拌子4に評価用基材3が接触しない状態を維持した。
めっき処理後に評価用基材3を取り出し、水洗後ドライヤーで乾燥し、無電解白金めっき皮膜を得た。
調製した無電解白金めっき液をそれぞれ、室温(25℃)で24時間保管してから、めっき処理に供した以外は、<評価用白金皮膜の形成1>と同様にして、無電解白金めっき皮膜を得た。
実験例1の場合と同様にして、調製しためっき液をすぐにめっき処理に供した場合(<評価用白金皮膜の形成1>の場合)と、調製しためっき液を長期(24時間)保管後にめっき処理に供した場合(<評価用白金皮膜の形成2>の場合)のそれぞれについて、めっき液の安定性、めっき付着効率及びめっき皮膜のパターン性を評価した。
各評価項目の結果を表13に示す。
一方、めっき液を長期保管後の同様の評価では、それぞれパターン外析出とめっき液の分解が確認された。
また、めっき液を長期保管後の同様の評価においても、それぞれパターン外析出とめっき液の分解は確認されなかった。
また、めっき液を長期保管後の同様の評価においても、パターン外析出とめっき液の分解が確認された。
また、めっき液を長期保管後の同様の評価においては、めっき液の分解が確認された。
2:ガラスビーカー
3:評価用基材
3a:触媒層
4:撹拌子
Claims (17)
- 可溶性白金塩、錯化剤及び還元剤を含有し、該還元剤が、水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物の何れかであり、pHが7以上の無電解白金めっき液であって、下記一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有することを特徴とする無電解白金めっき液。
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。] - 上記一般式(1)で表される特定ヒドロキシメチル化合物が、糖である請求項1に記載の無電解白金めっき液。
- 上記一般式(1)で表される特定ヒドロキシメチル化合物が、アスコルビン酸、エリソルビン酸、デヒドロアスコルビン酸、デヒドロエリソルビン酸及びジケトグロン酸並びにこれらの塩類からなる群より選ばれる1種以上の化合物である請求項1に記載の無電解白金めっき液。
- 上記可溶性白金塩が、テトラアンミン白金(II)塩、ヘキサアンミン白金(IV)塩、テトラクロロ白金(II)酸塩、ヘキサクロロ白金(IV)酸塩、テトラニトロ白金(II)酸塩、ヘキサニトロ白金(IV)酸塩及びジニトロジアンミン白金(II)からなる群より選ばれる1種以上の化合物である請求項1ないし請求項3の何れかの請求項に記載の無電解白金めっき液。
- 上記錯化剤が、直鎖状ポリアミン化合物又はアンモニアである請求項1ないし請求項4の何れかの請求項に記載の無電解白金めっき液。
- 更に、脂肪族不飽和化合物を含有する請求項1ないし請求項5の何れかの請求項に記載の無電解白金めっき液。
- 上記脂肪族不飽和化合物が、脂肪族不飽和アルコール及び/又は脂肪族不飽和カルボン酸である請求項6に記載の無電解白金めっき液。
- 更に、N含有複素環化合物を含有する請求項1ないし請求項5の何れかの請求項に記載の無電解白金めっき液。
- 上記N含有複素環化合物が、トリアジン、ピペラジン、ピペリジン、ピラジン、ピリジン、ピリミジン、ピリダジン及びモルホリン並びにこれらの誘導体からなる群より選ばれる1種以上の化合物である請求項8に記載の無電解白金めっき液。
- 請求項1ないし請求項9の何れかの請求項に記載の無電解白金めっき液を建浴するための建浴用液であって、可溶性白金塩及び下記一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有することを特徴とする建浴用液A。
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。] - 請求項1ないし請求項9の何れかの請求項に記載の無電解白金めっき液を建浴するための建浴用液であって、錯化剤及び還元剤を含有し、該還元剤が、水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物の何れかであることを特徴とする建浴用液B。
- 更に、脂肪族不飽和化合物及び/又はN含有複素環化合物を含有する請求項11に記載の建浴用液B。
- 請求項10に記載の建浴用液Aと、請求項11又は請求項12に記載の建浴用液Bを予め混合して建浴した無電解白金めっき液を用いて、被めっき物を20~90℃で該無電解白金めっき液に浸漬し、白金めっき皮膜を形成させることを特徴とする白金めっき皮膜の製造方法。
- 上記被めっき物がセラミックである請求項13に記載の白金めっき皮膜の製造方法。
- 上記無電解白金めっき液に、上記被めっき物を浸漬した後、該被めっき物の搖動又は回転を行わず、該被めっき物を静置したままパターンめっきする請求項13又は請求項14に記載の白金めっき皮膜の製造方法。
- 請求項13ないし請求項15の何れかの請求項に記載の白金めっき皮膜の製造方法で被めっき物上に形成されたことを特徴とする白金めっき皮膜。
- 可溶性白金塩と、水素化ホウ素化合物、アミノボラン化合物又はヒドラジン化合物の何れかである還元剤とを添加することによって請求項1ないし請求項9の何れかの請求項に記載の無電解白金めっき液を調製するための無電解白金めっき液調製用水溶液であって、錯化剤及び下記一般式(1)で表される特定ヒドロキシメチル化合物又はその塩を含有することを特徴とする無電解白金めっき液調製用水溶液。
R1-CH2-OH (1)
[R1は、アルデヒド基又はケトン基を有する原子団である。]
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17910486.4A EP3626857A4 (en) | 2017-05-18 | 2017-12-11 | SOLUTION FOR PLATING AUTOCATALYTIC PLATES AND PLATINUM FILM OBTAINED WITH THE SAID SOLUTION |
US16/612,942 US10941494B2 (en) | 2017-05-18 | 2017-12-11 | Electroless platinum plating solution and platinum film obtained using same |
KR1020197032667A KR102541103B1 (ko) | 2017-05-18 | 2017-12-11 | 무전해 백금 도금액 및 그것을 사용하여 얻어진 백금 피막 |
JP2019519044A JP7118446B2 (ja) | 2017-05-18 | 2017-12-11 | 無電解白金めっき液及びそれを用いて得られた白金皮膜 |
CN201780090500.0A CN110621806B (zh) | 2017-05-18 | 2017-12-11 | 化学镀铂液和使用该化学镀铂液得到的铂覆膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-098885 | 2017-05-18 | ||
JP2017098885 | 2017-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018211727A1 true WO2018211727A1 (ja) | 2018-11-22 |
Family
ID=64273499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044265 WO2018211727A1 (ja) | 2017-05-18 | 2017-12-11 | 無電解白金めっき液及びそれを用いて得られた白金皮膜 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10941494B2 (ja) |
EP (1) | EP3626857A4 (ja) |
JP (1) | JP7118446B2 (ja) |
KR (1) | KR102541103B1 (ja) |
CN (1) | CN110621806B (ja) |
WO (1) | WO2018211727A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12110594B2 (en) * | 2020-10-13 | 2024-10-08 | Foundation Of Soongsil University-Industry Cooperation | Composition for electroless platinum plating and electroless platinum plating method using the same |
KR102617653B1 (ko) * | 2020-10-13 | 2023-12-27 | 숭실대학교 산학협력단 | 무전해 백금 도금용 조성물 및 이를 이용한 무전해 백금 도금 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09287078A (ja) * | 1996-04-19 | 1997-11-04 | Japan Energy Corp | 白金の無電解めっき液並びに無電解めっき方法 |
JP2002173780A (ja) * | 2000-12-05 | 2002-06-21 | Tanaka Kikinzoku Kogyo Kk | 無電解白金めっき液の製造方法及び無電解白金めっき液並びに無電解白金めっき方法 |
WO2013094544A1 (ja) | 2011-12-20 | 2013-06-27 | メタローテクノロジーズジャパン株式会社 | 無電解白金めっき液、その製造方法、及び白金皮膜の形成方法 |
WO2014162935A1 (ja) | 2013-04-05 | 2014-10-09 | メタローテクノロジーズジャパン株式会社 | 無電解白金めっき液、及び同めっき液を用いる無電解白金めっき方法 |
JP2016037612A (ja) | 2014-08-05 | 2016-03-22 | 日本エレクトロプレイテイング・エンジニヤース株式会社 | 無電解白金メッキ液 |
WO2017064874A1 (ja) * | 2015-10-15 | 2017-04-20 | 小島化学薬品株式会社 | 無電解白金めっき液 |
WO2017069121A1 (ja) * | 2015-10-21 | 2017-04-27 | メタローテクノロジーズジャパン株式会社 | めっき液安定剤及び無電解白金めっき液、並びにこれらの製造方法、並びに無電解白金めっき方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB964913A (en) * | 1961-07-06 | 1964-07-29 | Henri Bernard Beer | A method of chemically plating base layers with precious metals |
JPH04141957A (ja) * | 1990-10-01 | 1992-05-15 | Hironari Iwahara | 固体電解質燃料電池の酸素ガス電極の製造方法 |
US6773573B2 (en) * | 2001-10-02 | 2004-08-10 | Shipley Company, L.L.C. | Plating bath and method for depositing a metal layer on a substrate |
JP4844716B2 (ja) * | 2005-09-27 | 2011-12-28 | 上村工業株式会社 | 無電解パラジウムめっき浴 |
JP5013077B2 (ja) * | 2007-04-16 | 2012-08-29 | 上村工業株式会社 | 無電解金めっき方法及び電子部品 |
US20100055422A1 (en) * | 2008-08-28 | 2010-03-04 | Bob Kong | Electroless Deposition of Platinum on Copper |
US8317910B2 (en) * | 2010-03-22 | 2012-11-27 | Unity Semiconductor Corporation | Immersion platinum plating solution |
JP5618298B2 (ja) * | 2010-12-01 | 2014-11-05 | 独立行政法人産業技術総合研究所 | 白金めっき体 |
CN102071413B (zh) * | 2010-12-22 | 2012-02-15 | 东北大学 | 一种在导电碳基表面化学镀铂的方法 |
JP2012001817A (ja) * | 2011-08-09 | 2012-01-05 | C Uyemura & Co Ltd | 無電解パラジウムめっき浴及び無電解パラジウムめっき方法 |
US20170175272A9 (en) * | 2013-09-04 | 2017-06-22 | Rohm And Haas Electronic Materials Llc | Electroless metallization of dielectrics with alkaline stable pyrimidine derivative containing catalysts |
JP7162904B2 (ja) * | 2017-06-06 | 2022-10-31 | ウニヘルシテット・ワルシャフスキ | 白金族金属およびそれらの合金の無電解析出方法ならびにそれに用いられるめっき浴 |
-
2017
- 2017-12-11 CN CN201780090500.0A patent/CN110621806B/zh active Active
- 2017-12-11 US US16/612,942 patent/US10941494B2/en active Active
- 2017-12-11 WO PCT/JP2017/044265 patent/WO2018211727A1/ja unknown
- 2017-12-11 JP JP2019519044A patent/JP7118446B2/ja active Active
- 2017-12-11 KR KR1020197032667A patent/KR102541103B1/ko active IP Right Grant
- 2017-12-11 EP EP17910486.4A patent/EP3626857A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09287078A (ja) * | 1996-04-19 | 1997-11-04 | Japan Energy Corp | 白金の無電解めっき液並びに無電解めっき方法 |
JP3416901B2 (ja) | 1996-04-19 | 2003-06-16 | 株式会社ジャパンエナジー | 白金の無電解めっき液並びに無電解めっき方法 |
JP2002173780A (ja) * | 2000-12-05 | 2002-06-21 | Tanaka Kikinzoku Kogyo Kk | 無電解白金めっき液の製造方法及び無電解白金めっき液並びに無電解白金めっき方法 |
WO2013094544A1 (ja) | 2011-12-20 | 2013-06-27 | メタローテクノロジーズジャパン株式会社 | 無電解白金めっき液、その製造方法、及び白金皮膜の形成方法 |
WO2014162935A1 (ja) | 2013-04-05 | 2014-10-09 | メタローテクノロジーズジャパン株式会社 | 無電解白金めっき液、及び同めっき液を用いる無電解白金めっき方法 |
JP2016037612A (ja) | 2014-08-05 | 2016-03-22 | 日本エレクトロプレイテイング・エンジニヤース株式会社 | 無電解白金メッキ液 |
WO2017064874A1 (ja) * | 2015-10-15 | 2017-04-20 | 小島化学薬品株式会社 | 無電解白金めっき液 |
WO2017069121A1 (ja) * | 2015-10-21 | 2017-04-27 | メタローテクノロジーズジャパン株式会社 | めっき液安定剤及び無電解白金めっき液、並びにこれらの製造方法、並びに無電解白金めっき方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3626857A4 |
Also Published As
Publication number | Publication date |
---|---|
CN110621806A (zh) | 2019-12-27 |
EP3626857A1 (en) | 2020-03-25 |
US10941494B2 (en) | 2021-03-09 |
KR102541103B1 (ko) | 2023-06-08 |
JPWO2018211727A1 (ja) | 2020-03-26 |
US20200157686A1 (en) | 2020-05-21 |
KR20200008113A (ko) | 2020-01-23 |
CN110621806B (zh) | 2022-04-29 |
EP3626857A4 (en) | 2021-07-14 |
JP7118446B2 (ja) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2357943T5 (es) | Procedimiento para la deposición de metales sin corriente | |
JP6980017B2 (ja) | 錫めっき浴および錫もしくは錫合金を基材の表面に析出させる方法 | |
WO2018211727A1 (ja) | 無電解白金めっき液及びそれを用いて得られた白金皮膜 | |
US4780342A (en) | Electroless nickel plating composition and method for its preparation and use | |
JP2006249485A (ja) | 金めっき液用亜硫酸金塩水溶液 | |
EP3363928A1 (en) | Electroless platinum plating solution | |
CN108998779B (zh) | 一种化学镀液以及环保型合金表面自催化处理方法 | |
US8961670B2 (en) | Alkaline plating bath for electroless deposition of cobalt alloys | |
JP5526462B2 (ja) | 無電解金めっき液及び無電解金めっき方法 | |
JP7352515B2 (ja) | 電解金合金めっき浴及び電解金合金めっき方法 | |
TWI690619B (zh) | 鈀之電鍍浴組合物及無電電鍍方法 | |
JP4992434B2 (ja) | 金メッキ液および金メッキ方法 | |
JP2008063644A (ja) | 無電解ニッケル合金めっき液 | |
JP4078977B2 (ja) | 無電解金めっき液及び無電解金めっき方法 | |
JP2013224496A (ja) | 金めっき液用亜硫酸金塩水溶液 | |
JP3697181B2 (ja) | 無電解金メッキ液 | |
Chen et al. | Effect of polyethylene glycol additives on pulse electroplating of SnAg solder | |
JP2008174796A (ja) | 金メッキ液および金メッキ方法 | |
EP3792374B1 (en) | Electroless copper plating bath | |
JP6842475B2 (ja) | シアンフリー置換金めっき液組成物 | |
CN113957422A (zh) | 一种不含铅的环保化学镍药水及其制备工艺 | |
KR101491980B1 (ko) | 팔라듐 및 팔라듐 합금의 고속 도금 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17910486 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019519044 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197032667 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017910486 Country of ref document: EP Effective date: 20191218 |