WO2017043311A1 - 車載用電源装置 - Google Patents

車載用電源装置 Download PDF

Info

Publication number
WO2017043311A1
WO2017043311A1 PCT/JP2016/074594 JP2016074594W WO2017043311A1 WO 2017043311 A1 WO2017043311 A1 WO 2017043311A1 JP 2016074594 W JP2016074594 W JP 2016074594W WO 2017043311 A1 WO2017043311 A1 WO 2017043311A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
voltage
converter
switch
Prior art date
Application number
PCT/JP2016/074594
Other languages
English (en)
French (fr)
Inventor
裕通 安則
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US15/758,620 priority Critical patent/US11066027B2/en
Priority to CN201680048645.XA priority patent/CN107921916B/zh
Publication of WO2017043311A1 publication Critical patent/WO2017043311A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to an in-vehicle power supply device.
  • Patent Document 1 describes an in-vehicle power supply device having a main battery and a sub battery. The main battery and the sub battery are charged by an alternator.
  • an object of the present application is to provide an in-vehicle power supply device that can charge a plurality of power storage devices with voltages suitable for each of them and can reduce manufacturing costs.
  • the in-vehicle power supply device selects a converter that outputs DC power, a first power storage device and a second power storage device that are charged via the converter, and ON / OFF between the converter and the first power storage device
  • a first switch that performs switching
  • a second switch that selects on / off between the converter and the second power storage device, and on the converter side of the first switch and the second switch, on the output side of the converter
  • ⁇ Charging can be performed at a voltage suitable for each of a plurality of power storage devices, and manufacturing costs can be reduced.
  • FIG. 1 is a diagram schematically illustrating an example of a configuration of an in-vehicle power supply device mounted on a vehicle.
  • a generator 1 is provided.
  • the generator 1 is an alternator, for example, and generates electric power based on a driving force that drives the vehicle and outputs a DC voltage.
  • a main power storage device 31 is connected to the generator 1.
  • the main power storage device 31 is charged by the generator 1.
  • a lead storage battery is employed for the main power storage device 31.
  • auxiliary power storage devices 32 to 34 are connected to the generator 1 via a converter 4 (denoted as “DCDC converter” in FIG. 1).
  • a converter 4 denoted as “DCDC converter” in FIG. 1.
  • the auxiliary power storage device 32 is, for example, a lithium ion battery
  • the auxiliary power storage devices 33, 34 are, for example, capacitors.
  • the characteristics of the auxiliary power storage devices 32 to 34 may be different from each other.
  • the rated voltage of auxiliary power storage device 32 is larger than the rated voltage of auxiliary power storage device 33, and the rated voltage of auxiliary power storage device 33 is higher than the rated voltage of auxiliary power storage device 34.
  • the auxiliary power storage device 32 is charged to 12V and fully charged, the auxiliary power storage device 33 is charged to 7V and fully charged, and the auxiliary power storage device 34 is charged to 5V and fully charged.
  • a power storage device with a higher rated voltage has a higher voltage when fully charged.
  • a switch (for example, a relay) 52 is connected between the converter 4 and the auxiliary power storage device 32.
  • Switch 52 selects on / off between converter 4 and auxiliary power storage device 32.
  • a switch (for example, a relay) 53 is connected between the converter 4 and the auxiliary power storage device 33, and a switch (for example, a relay) 54 is connected between the converter 4 and the auxiliary power storage device 34.
  • one ends of the switches 52 to 54 are commonly connected to the output end of the converter 4, and the other ends of the switches 52 to 54 are connected to the auxiliary power storage devices 32 to 34, respectively. On / off of the switches 52 to 54 is controlled by the control unit 41.
  • the converter 4 is, for example, a DC-DC converter, and is a H-bridge type step-up / down circuit as a more specific example.
  • Converter 4 is controlled by control unit 41 to step up or step down the DC voltage from generator 1 or main power storage device 31 and output it.
  • Converter 4 controls charging of auxiliary power storage devices 32 to 34, as will be described in detail later.
  • the auxiliary power storage devices 32 to 34 are charged with, for example, different voltages or different currents.
  • the control unit 41 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized.
  • the control unit 41 is not limited to this, and various procedures executed by the control unit 41 or various means or various functions to be realized may be realized by hardware.
  • the control unit 41 outputs a control signal to the converter 4 in order to control the output voltage or output current of the converter 4.
  • the control unit 41 also outputs a control signal to the switches 52 to 54 in order to control on / off of the switches 52 to 54.
  • the DC voltage V on the output side (switches 52 to 54 side) of the converter 4 is monitored by the voltage monitoring circuit 42.
  • the voltage monitoring circuit 42 detects the DC voltage V on the converter 4 side of the switches 52 to 54. For example, when switch 52 is turned on and switches 53 and 54 are turned off, the output terminal of converter 4 is connected to auxiliary power storage device 32. At this time, if converter 4 has stopped operating, DC voltage V substantially matches the charging voltage of auxiliary power storage device 32. That is, at this time, the voltage monitoring circuit 42 can detect the charging voltage of the auxiliary power storage device 32.
  • the voltage monitoring circuit 42 can detect the charging voltage of the auxiliary power storage device 33 and the switch 54 is turned on.
  • the voltage monitoring circuit 42 can detect the charging voltage of the auxiliary power storage device 34.
  • the voltage monitoring circuit 42 determines whether it is necessary to start each charging based on the charging voltage of each of the auxiliary power storage devices 32 to 34.
  • the charging rate may be calculated based on the detected charging voltage, and it may be determined whether or not the charging rate is greater than a charging reference value. More specifically, when it is determined that the charging rate is smaller than the charging reference value, it may be determined that the start of charging is necessary. Alternatively, when the detected charging voltage is smaller than a predetermined reference value, it may be determined that charging needs to be started.
  • the voltage monitoring circuit 42 determines that charging needs to be started, the voltage monitoring circuit 42 notifies the control unit 41 accordingly.
  • the voltage monitoring circuit 42 may be configured by software, or all or a part thereof may be configured by hardware.
  • the control unit 41 may determine whether or not to start charging. In this case, the control unit 41 functions as a part of the voltage monitoring circuit.
  • one of the voltage monitoring circuits 42 is connected to the auxiliary power storage devices 32 to 34 by exclusively turning on the switches 52 to 54 while the operation of the converter 4 is stopped.
  • the charging voltage can be monitored. Therefore, the manufacturing cost can be reduced as compared with the case where the voltage monitoring circuit is provided for each of the auxiliary power storage devices 32 to.
  • the converter 4 can output voltages to the plurality of auxiliary power storage devices 32 to 34 individually or in parallel. Therefore, the manufacturing cost can be reduced as compared with the case where a converter is provided for each of auxiliary power storage devices 32 to.
  • the power storage device can be easily added.
  • the main power storage device 31 supplies power to the rescue loads 22 to 24, and the auxiliary power storage devices 32 to 34 also supply power to the rescue loads 22 to 24, respectively. It is desired that the relief loads 22 to 24 maintain the power supply even if the power supply from the main power storage device 31 is lost (including the loss due to malfunction of the main power storage device 31) (relieved from the power shortage due to the loss).
  • by-wire electronics eg shift levers
  • by-wire actuators eg steering, brakes
  • parking brakes e.g electronically controlled braking force distribution systems
  • the main power storage device 31 is connected to the relief loads 22 to 24 without going through the converter 4, and feeds power to these without going up and down.
  • the auxiliary power storage device 32 is connected to the relief load 22 without passing through the booster circuit, and the auxiliary power storage devices 33 and 34 are connected to the relief loads 23 and 24 via the booster circuits 63 and 64, respectively. It is connected to the.
  • the booster circuit 63 boosts the voltage of the auxiliary power storage device 33 and outputs the boosted voltage to the relief load 23.
  • the booster circuit 64 boosts the voltage of the auxiliary power storage device 34 and outputs the boosted voltage to the relief load 24.
  • auxiliary power storage devices 32 to 34 can supply power to the rescue loads 22 to 24, respectively, even if the power supply of the main power storage device 31 is lost, power supply to the rescue loads 22 to 24 is maintained. Therefore, the auxiliary power storage devices 32 to 34 can function as so-called backup power storage devices.
  • auxiliary power storage devices 32 to 34 are provided, the influence of the voltage drop generated in the main power storage device 31 can be suppressed or avoided as described below. For example, even if the main power storage device 31 outputs a large current and a voltage drop occurs in the main power storage device 31, an appropriate voltage can be applied to the relief loads 22 to 24 by the auxiliary power storage devices 32 to 34, respectively. it can.
  • FIG. 2 is a diagram for explaining an example of the charging operation.
  • the output voltage output by the converter 4 and the charging voltages of the auxiliary power storage devices 32 to 34 are shown. Also shown are the on / off states of the switches 52-54.
  • the control unit 41 Upon receiving this notification, the control unit 41 causes the converter 4 to output DC power with a voltage or current suitable for the auxiliary power storage device 32 at time t2. For example, the control unit 41 causes the converter 4 to output a voltage suitable for the auxiliary power storage device 32, for example, a voltage of 12 [V]. Thereby, auxiliary power storage device 32 is charged, and its charging voltage increases with the passage of time.
  • the control unit 41 stops the operation of the converter 4 and turns off the switch 52.
  • the fact that the charging rate has reached the full charge reference value may be determined, for example, by the fact that the current flowing to the auxiliary power storage device 32 has become the reference value or less. This current can be detected by providing a current detector on the output side of the converter 4, for example. Alternatively, it may be determined that the charging rate has reached the full charge reference value due to the elapse of a predetermined period from the start of charging. In the illustration of FIG. 2, the charging voltage of the auxiliary power storage device 32 is 12 [V] at time t3.
  • the control unit 41 turns on the switch 53. Thereby, DC voltage V on the output side of converter 4 substantially matches the charging voltage of auxiliary power storage device 33.
  • voltage monitoring circuit 42 determines whether or not it is necessary to start charging of auxiliary power storage device 33 based on DC voltage V. Here, the voltage monitoring circuit 42 notifies the control unit 41 that charging is necessary.
  • the control unit 41 Upon receiving this notification, the control unit 41 causes the converter 4 to output DC power with a voltage or current suitable for the auxiliary power storage device 33 at time t5. For example, the control unit 41 causes the converter 4 to output a voltage suitable for the auxiliary power storage device 33, for example, a voltage of 7 [V]. Thereby, auxiliary power storage device 33 is charged, and its voltage increases with the passage of time.
  • the control unit 41 stops the operation of the converter 4 and turns off the switch 53. Thereby, the charging of the auxiliary power storage device 33 is completed.
  • the charging voltage of the auxiliary power storage device 33 at time t6 is 7 [V].
  • the control unit 41 turns on the switch 54. Thereby, DC voltage V on the output side of converter 4 substantially matches the charging voltage of auxiliary power storage device 34.
  • voltage monitoring circuit 42 determines whether or not it is necessary to start charging of auxiliary power storage device 34 based on DC voltage V. In the illustration of FIG. 2, since the charging voltage of the auxiliary power storage device 34 is 5 V, the voltage monitoring circuit 42 notifies the control unit 41 that charging is unnecessary.
  • Control unit 41 receives this notification and turns off switch 54 at time t8.
  • converter 4 can output DC power to each auxiliary power storage device at a voltage or current suitable for each auxiliary power storage device at each timing.
  • the converter 4 outputs a voltage of 12 [V] to charge the auxiliary power storage device 32, outputs a voltage of 7 [V] to charge the auxiliary power storage device 32, and outputs a voltage of 5 [V].
  • the auxiliary power storage device 32 can be charged.
  • Auxiliary power storage devices with a higher rated voltage can be charged more quickly by charging with a higher voltage.
  • the voltage output by converter 4 to auxiliary power storage devices 32 and 33 is the rated voltage of auxiliary power storage devices 32 and 33, respectively.
  • the output current of the converter 4 may be controlled.
  • the rated current of the auxiliary power storage device 33 is smaller than the rated current of the auxiliary power storage device 32 is considered.
  • a power storage device with a larger rated current can be charged with a larger current.
  • control unit 41 When it is determined that charging of the auxiliary power storage device 32 is necessary, the control unit 41 causes the converter 4 to output DC power with the first DC current while only the switch 52 is turned on among the switches 52 to 54. Thereby, auxiliary power storage device 32 is charged. On the other hand, when it is determined that it is necessary to start charging of auxiliary power storage device 33, control unit 41 performs a second DC current smaller than the first DC current with only switch 53 turned on among switches 52 to 54. Thus, the converter 4 is caused to output DC power. Thereby, the auxiliary power storage device 33 is charged.
  • an auxiliary power storage device with a larger rated current can be charged quickly by charging with a larger current.
  • the current output by converter 4 to auxiliary power storage devices 32 and 33 is 1/10 of the rated current of auxiliary power storage devices 32 and 33, respectively.
  • the converter 4 may control both the output voltage and the output current. For example, DC power may be output to the converter 4 at a constant current at the beginning of charging, and DC power may be output to the converter 4 at a constant voltage after the charging voltage reaches the rated voltage.
  • FIG. 3 is a diagram for explaining an example of the charging operation. Initially, the operation of the converter 4 is stopped and the switches 52 to 54 are off. At time t11, the control unit 41 turns on the switch 52. Thereby, DC voltage V on the output side of converter 4 matches the charging voltage of auxiliary power storage device 32. The voltage monitoring circuit 42 determines whether or not the auxiliary power storage device 32 needs to be charged based on the DC voltage V, and notifies the control unit 41 of the determination result. Here, for example, it is determined that the auxiliary power storage device 32 needs to be charged.
  • the control unit 41 turns off the switch 52 and turns on the switch 53. Thereby, DC voltage V on the output side of converter 4 matches the charging voltage of auxiliary power storage device 33.
  • the voltage monitoring circuit 42 determines whether it is necessary to start charging the auxiliary power storage device 33 based on the DC voltage V, and notifies the control unit 41 of the determination result. Here, for example, it is determined that the auxiliary power storage device 33 also needs to be charged.
  • the control unit 41 turns on the switch connected to the auxiliary power storage device that requires charging, and keeps the other switches off.
  • the control unit 41 determines that charging of auxiliary power storage devices 32 and 33 is necessary, and it is determined that charging of auxiliary power storage device 34 is unnecessary. Therefore, as shown in FIG. 3, switches 52 and 53 are turned on at time t14. Then, the switch 54 is turned off.
  • control unit 41 causes the converter 4 to output the minimum voltage or current suitable for the plurality of auxiliary power storage devices to be charged.
  • the control unit 41 causes the converter 4 to output a voltage having a value (here, 7 [V]) suitable for the smaller rated voltage of the auxiliary power storage devices 32 and 33.
  • a voltage having a value here, 7 [V]
  • the voltage of the auxiliary power storage devices 32 and 33 appropriately increases with the passage of time.
  • the control unit 41 turns off the switch 53. That is, since charging of the auxiliary power storage device 33 is unnecessary, the switch 53 is turned off.
  • the switch 53 is turned off at a time t15 after a predetermined time has elapsed from the time when the voltage of the auxiliary power storage device 33 reaches 7 [V], but the voltage of the auxiliary power storage device 33 is 7 [V].
  • the switch 53 may be turned off immediately after the time when V] is reached, in other words, immediately after the charging rate of the auxiliary power storage device 33 reaches the full charge reference value.
  • the control unit 41 causes the converter 4 to output a voltage (here, 12 [V]) larger than the voltage (7 [V]) that the converter 4 has output so far.
  • the voltage of the auxiliary power storage device 32 further increases with the passage of time.
  • the control unit 41 turns off the switch 52 and stops the operation of the converter 4. In the example of FIG.
  • the switch 52 is turned off after a lapse of a predetermined time from the time when the voltage of the auxiliary power storage device 32 reaches 12 [V], but the voltage of the auxiliary power storage device 32 reaches 12 [V].
  • the switch 52 may be turned off immediately after the time point, in other words, immediately after the charging rate of the auxiliary power storage device 32 reaches the full charge reference value.
  • converter 4 when it is determined that charging of both auxiliary power storage device 32 and auxiliary power storage device 33 is necessary, converter 4 first outputs a small first DC voltage, and then switch 53 is turned off. The converter 4 outputs a second DC voltage that is greater than the first DC voltage.
  • the first DC voltage and the second DC voltage are set to the rated voltage of the auxiliary power storage device 33 and the rated voltage of the auxiliary power storage device 32, respectively.
  • control unit 41 outputs the first DC current to converter 4 with switches 52 and 53 turned on among switches 52 to 54. Let Thereby, auxiliary power storage devices 32 and 33 are charged. Thereafter, with switch 53 turned off, control unit 41 causes converter 4 to output a second DC current larger than the first DC current.
  • the auxiliary power storage device 32 can be charged with a current suitable for the auxiliary power storage device 32.
  • the current output by converter 4 to auxiliary power storage devices 32 and 33 is 1/10 of the rated current of auxiliary power storage devices 32 and 33, respectively.
  • auxiliary power storage device 32 is charged in parallel during the period of charging auxiliary power storage device 33. Can be charged quickly.
  • the auxiliary power storage device 33 does not start charging until the auxiliary power storage device 32 is fully charged. Therefore, there is a possibility that the auxiliary power storage device 33 cannot execute sufficient power supply to the relief load 23 during that period.
  • the auxiliary power storage devices 32 and 33 are charged in parallel, so that sufficient power can be quickly supplied to the rescue load 23.
  • the voltage confirmation period is shown to be relatively long, but actually it is sufficiently shorter than the charging period. According to the charging method of FIG. 3, although the timing of starting charging of the auxiliary power storage device 32 is later than that of FIG. 2, the voltage check period is sufficiently shorter than the charging period, and the delay is actually small.
  • the switch 53 is turned off and the converter 4 outputs a voltage suitable for the auxiliary power storage device 32.
  • the converter 4 may output a voltage suitable for the auxiliary power storage device 32 after turning off the switch 53 during the charging of the auxiliary power storage device 33. This also makes it possible to increase the charging rate of the auxiliary power storage device 33 to some extent early.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

複数の蓄電装置を設けつつも製造コストを低減できる車載用電源装置を提供する。コンバータは直流電力を出力する。第1蓄電装置および第2蓄電装置はコンバータを介して充電される。第1スイッチはコンバータと第1蓄電装置との間のオン/オフを選択する。第2スイッチはコンバータと第2蓄電装置との間のオン/オフを選択する。電圧監視回路は第1スイッチおよび第2スイッチよりもコンバータ側において、コンバータの出力側の直流電圧を検出する。

Description

車載用電源装置
 この発明は、車載用電源装置に関する。
 特許文献1には、主バッテリと副バッテリとを有する車載用電源装置が記載されている。主バッテリと副バッテリとはオルタネータによって充電される。
特開2015-83404号公報
 副バッテリを複数設けることは、特許文献1には記載も示唆もなく、考察されていない。複数のバッテリを設けた場合には、それぞれ適した電圧で充電されることが望まれ、また製造コストは小さいことが望まれる。
 そこで本願は、複数の蓄電装置にそれぞれに適した電圧で充電可能であり、製造コストを低減できる車載用電源装置を提供することを目的とする。
 車載用電源装置は、直流電力を出力するコンバータと、前記コンバータを介して充電される第1蓄電装置および第2蓄電装置と、前記コンバータと前記第1蓄電装置との間のオン/オフを選択する第1スイッチと、前記コンバータと前記第2蓄電装置との間のオン/オフを選択する第2スイッチと、第1スイッチおよび前記第2スイッチよりも前記コンバータ側において、前記コンバータの出力側の直流電圧を検出する電圧監視部とを備える。
 複数の蓄電装置にそれぞれ適した電圧で充電可能であり、製造コストを低減できる。
車載用電源装置の構成の一例を概略的に示す図である。 充電動作の一例を説明する図である。 充電動作の一例を説明する図である。
 <車載用電源装置の構成>
 図1は、車両に搭載される車載用電源装置の構成の一例を概略的に示す図である。図1の例示では、発電機1が設けられている。発電機1は例えばオルタネータであり、車両を駆動させる駆動力に基づいて発電して、直流電圧を出力する。
 図1の例示では、発電機1には主蓄電装置31が接続されている。主蓄電装置31は発電機1によって充電される。主蓄電装置31には例えば鉛蓄電池が採用される。
 また発電機1には、コンバータ4(図1においては「DCDCコンバータ」と表記)を介して複数の補助蓄電装置32~34が接続されている。補助蓄電装置32~34には例えばリチウムイオン電池、ニッケル水素電池またはキャパシタを採用できる。ここでは、補助蓄電装置32は例えばリチウムイオン電池であり、補助蓄電装置33,34は例えばキャパシタである。補助蓄電装置32~34の特性は互いに相違していてもよい。例えば補助蓄電装置32の定格電圧は補助蓄電装置33の定格電圧よりも大きく、補助蓄電装置33の定格電圧は補助蓄電装置34の定格電圧よりも高い。例えば、補助蓄電装置32は12Vまで充電されて満充電となり、補助蓄電装置33は7Vまで充電されて満充電となり、補助蓄電装置34は5Vまで充電されて満充電となる。通常、定格電圧が大きい蓄電装置ほど、満充電時の電圧は大きい。
 図1の例示では、コンバータ4と補助蓄電装置32との間には、スイッチ(例えばリレー)52が接続されている。スイッチ52は、コンバータ4と補助蓄電装置32との間のオン/オフを選択する。同様に、コンバータ4と補助蓄電装置33との間には、スイッチ(例えばリレー)53が接続され、コンバータ4と補助蓄電装置34との間には、スイッチ(例えばリレー)54が接続されている。例えばスイッチ52~54の一端は共通してコンバータ4の出力端に接続され、スイッチ52~54の他端は、それぞれ補助蓄電装置32~34に接続される。スイッチ52~54のオン/オフは制御部41によって制御される。
 コンバータ4は例えばDC-DCコンバータであって、より具体的な一例としてHブリッジ型の昇降圧回路である。コンバータ4は制御部41によって制御され、発電機1または主蓄電装置31からの直流電圧を昇圧または降圧し、これを出力する。コンバータ4は後に詳述するように、補助蓄電装置32~34の充電を制御する。補助蓄電装置32~34は例えば互いに異なる電圧、または異なる電流で充電される。
 なおここでは、制御部41はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部41はこれに限らず、制御部41によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。
 制御部41は、コンバータ4の出力電圧または出力電流を制御すべく、コンバータ4に対して制御信号を出力する。制御部41はまた、スイッチ52~54のオン/オフを制御すべく、スイッチ52~54に制御信号を出力する。
 コンバータ4の出力側(スイッチ52~54側)の直流電圧Vは電圧監視回路42によって監視される。この電圧監視回路42はスイッチ52~54よりもコンバータ4側において、直流電圧Vを検出する。例えばスイッチ52をオンし、スイッチ53,54をオフしたときには、コンバータ4の出力端が補助蓄電装置32に接続される。このとき、コンバータ4が動作を停止していれば、この直流電圧Vは補助蓄電装置32の充電電圧とほぼ一致する。つまり、このとき、電圧監視回路42は補助蓄電装置32の充電電圧を検出することができる。同様に、スイッチ53をオンし、スイッチ52,54をオフし、コンバータ4の動作を停止するときに、電圧監視回路42は補助蓄電装置33の充電電圧を検出することができ、スイッチ54をオンし、スイッチ52,53をオフし、コンバータ4の動作を停止するときに、電圧監視回路42は補助蓄電装置34の充電電圧を検出することができる。
 電圧監視回路42は、補助蓄電装置32~34の各々の充電電圧に基づいて、各々の充電を開始する必要があるか否かを判断する。例えば、検出した充電電圧に基づいて充電率を算出し、その充電率が充電基準値よりも大きいか否かを判断してもよい。より具体的には、充電率が充電基準値よりも小さいと判断したときに、充電の開始が必要であると判断してもよい。あるいは、検出した充電電圧が所定の基準値よりも小さいときに、充電の開始が必要であると判断してもよい。電圧監視回路42は、充電の開始が必要であると判断したときに、その旨を制御部41へと通知する。なお、電圧監視回路42はソフトウェアで構成されてもよく、その全部または一部がハードウェアで構成されてもよい。また、充電開始の要否の判断は制御部41が行ってもよい。この場合、制御部41が電圧監視回路の一部として機能する。
 以上のように、この車載用電源装置によれば、コンバータ4の動作を停止させた状態でスイッチ52~54を排他的にオンすることで、一つの電圧監視回路42が補助蓄電装置32~34の充電電圧を監視することができる。よって、補助蓄電装置32~34のそれぞれに対して電圧監視回路を設ける場合に比べて、製造コストを低減することができる。
 またコンバータ4は複数の補助蓄電装置32~34に対して電圧を個別に、もしくは並行して出力することができる。よって、補助蓄電装置32~34のそれぞれに対してコンバータを設ける場合に比べて、製造コストを低減することができる。
 またリレーと蓄電装置とをコンバータ4に対して接続することで、蓄電装置を容易に増設できる。
 主蓄電装置31は救済負荷22~24へと給電するとともに、補助蓄電装置32~34もそれぞれ救済負荷22~24へと給電する。救済負荷22~24は主蓄電装置31からの給電が消失(主蓄電装置31の機能不全による消失を含む)しても電力供給が維持されることが望まれる(当該消失による電力不足から救済されるべき)負荷であり、たとえばバイワイヤー用の電子機器(例えばシフトレバー)、バイワイヤー用アクチュエータ(例えば、ステアリング、ブレーキ)、パーキングブレーキまたは電子制御制動力配分システムを例として挙げることができる。
 図1の例示では、主蓄電装置31はコンバータ4を介さずに救済負荷22~24に接続されており、昇降圧することなくこれらに給電する。また図1の例示では、補助蓄電装置32は救済負荷22に対して昇圧回路を介さずに接続されており、補助蓄電装置33,34はそれぞれ昇圧回路63,64を介して救済負荷23,24に接続されている。昇圧回路63は補助蓄電装置33の電圧を昇圧し、昇圧後の電圧を救済負荷23に出力する。昇圧回路64は補助蓄電装置34の電圧を昇圧し、昇圧後の電圧を救済負荷24に出力する。
 補助蓄電装置32~34がそれぞれ救済負荷22~24へと給電可能であるので、主蓄電装置31の給電が消失しても、救済負荷22~24には給電が維持される。よって補助蓄電装置32~34はいわゆるバックアップ用の蓄電装置として機能することができる。
 また補助蓄電装置32~34が設けられていることで、次で説明するように、主蓄電装置31に生じた電圧低下の影響を抑制あるいは回避できる。例えば主蓄電装置31が大きな電流を出力することにより、主蓄電装置31に電圧低下が発生しても、救済負荷22~24にはそれぞれ補助蓄電装置32~34によって適切な電圧を印加することができる。
 <充電動作1>
 図2は充電動作の一例を説明するための図である。図2の例示では、コンバータ4が出力する出力電圧と、各補助蓄電装置32~34の充電電圧が示されている。また、スイッチ52~54のオン/オフの状態も示されている。
 図2の例示では、初期的には、コンバータ4の動作は停止しており、スイッチ52~54はオフしている。時点t1にて、制御部41はスイッチ52をターンオンする。これにより、コンバータ4の出力側の直流電圧V(不図示)は補助蓄電装置32の充電電圧とほぼ一致する。そして、電圧監視回路42はこの直流電圧Vに基づいて補助蓄電装置32の充電の開始の要否を判断する。ここでは電圧監視回路42は、充電の開始が必要であることを制御部41へと通知する。
 制御部41は、この通知を受けて、時点t2において、補助蓄電装置32に適した電圧もしくは電流で直流電力をコンバータ4に出力させる。例えば制御部41は、補助蓄電装置32に適した電圧、例えば12[V]の電圧をコンバータ4に出力させる。これにより、補助蓄電装置32は充電され、その充電電圧は時間の経過と共に増大する。
 そして、補助蓄電装置32の充電率が満充電基準値に達すると、例えば時点t3において制御部41はコンバータ4の動作を停止するとともに、スイッチ52をターンオフする。なお充電率が満充電基準値に至ったことは、例えば、補助蓄電装置32へ流れる電流が基準値以下になったことによって判断してもよい。この電流は、例えばコンバータ4の出力側において電流検出部を設けることで検出できる。或いは、充電の開始から、予め決められた期間が経過したことにより、充電率が満充電基準値に至ったと判断してもよい。図2の例示では、時点t3において補助蓄電装置32の充電電圧は12[V]となる。
 時点t3の後の時点t4において、制御部41はスイッチ53をターンオンする。これにより、コンバータ4の出力側の直流電圧Vは補助蓄電装置33の充電電圧とほぼ一致する。このとき、電圧監視回路42はこの直流電圧Vに基づいて補助蓄電装置33の充電の開始の要否を判断する。ここでは電圧監視回路42は、充電が必要であることを制御部41へと通知する。
 制御部41は、この通知を受けて、時点t5において、補助蓄電装置33に適した電圧もしくは電流で直流電力をコンバータ4に出力させる。例えば制御部41は補助蓄電装置33に適した電圧、例えば7[V]の電圧をコンバータ4に出力させる。これにより、補助蓄電装置33は充電され、その電圧は時間の経過と共に増大する。
 そして、補助蓄電装置33の充電率が満充電基準値に達すると、例えば時点t6において制御部41はコンバータ4の動作を停止するとともに、スイッチ53をターンオフする。これにより、補助蓄電装置33の充電が完了する。図2の例示では、時点t6における補助蓄電装置33の充電電圧は7[V]となる。
 時点t6の後の時点t7において、制御部41はスイッチ54をターンオンする。これにより、コンバータ4の出力側の直流電圧Vは補助蓄電装置34の充電電圧とほぼ一致する。このとき、電圧監視回路42はこの直流電圧Vに基づいて補助蓄電装置34の充電の開始の要否を判断する。図2の例示では補助蓄電装置34の充電電圧は5Vであるので、電圧監視回路42は、充電が不要であることを制御部41へと通知する。
 制御部41は、この通知を受けて、時点t8においてスイッチ54をターンオフする。
 上述の充電動作によれば、充電を要する補助蓄電装置が互いに異なるタイミングで充電される。したがって、コンバータ4はそれぞれのタイミングにおいて、それぞれの補助蓄電装置に適した電圧もしくは電流で直流電力を当該補助蓄電装置へと出力できるのである。例えば、コンバータ4は、12[V]の電圧を出力して補助蓄電装置32を充電し、7[V]の電圧を出力して補助蓄電装置32を充電し、5[V]の電圧を出力して補助蓄電装置32を充電することができる。
 定格電圧の大きい補助蓄電装置ほど、大きな電圧を採用して充電することにより、迅速な充電が可能となる。もちろん、過電圧充電を避けるために適切にコンバータ4から出力される電圧を設定することが望ましい。例えばコンバータ4が補助蓄電装置32,33に出力する電圧は、それぞれ補助蓄電装置32,33の定格電圧とする。
 なお上述の例では、コンバータ4の出力電圧を制御しているものの、出力電流を制御してもよい。例えば補助蓄電装置33の定格電流が補助蓄電装置32の定格電流よりも小さな場合について考慮する。通常、定格電流が大きな蓄電装置ほど、大きな電流で充電できる。
 補助蓄電装置32の充電の開始が必要と判断されたときには、スイッチ52~54のうちスイッチ52のみをオンした状態で、制御部41は第1直流電流でコンバータ4に直流電力を出力させる。これにより、補助蓄電装置32が充電される。一方で、補助蓄電装置33の充電の開始が必要と判断されたときには、スイッチ52~54のうち、スイッチ53のみをオンした状態で、制御部41は第1直流電流よりも小さな第2直流電流でコンバータ4に直流電力を出力させる。これにより、補助蓄電装置33が充電される。
 このように定格電流の大きい補助蓄電装置ほど、大きな電流を採用して充電することにより、迅速な充電が可能となる。もちろん、過電流充電を避けるために適切にコンバータ4から出力される電流を設定することが望ましい。例えばコンバータ4が補助蓄電装置32,33に出力する電流は、それぞれ補助蓄電装置32,33の定格電流の1/10とする。
 また、コンバータ4は出力電圧および出力電流の両方を制御してもよい。例えば、充電初期にはコンバータ4に定電流で直流電力を出力させ、充電電圧が定格電圧に達した以降では、定電圧でコンバータ4に直流電力を出力させてもよい。
 <充電動作2>
 図3は充電動作の一例を説明するための図である。初期的には、コンバータ4の動作は停止しており、スイッチ52~54はオフしている。時点t11において、制御部41はスイッチ52をターンオンする。これにより、コンバータ4の出力側の直流電圧Vは補助蓄電装置32の充電電圧に一致する。電圧監視回路42は、直流電圧Vに基づいて補助蓄電装置32の充電の開始の要否を判断し、その判断結果を制御部41に通知する。ここでは、例えば補助蓄電装置32は充電が必要であると判断される。
 この通知を受けた後の時点t12において、制御部41はスイッチ52をターンオフし、スイッチ53をターンオンする。これにより、コンバータ4の出力側の直流電圧Vは補助蓄電装置33の充電電圧に一致する。電圧監視回路42は、直流電圧Vに基づいて補助蓄電装置33の充電の開始の要否を判断し、その判断結果を制御部41に通知する。ここでは、例えば補助蓄電装置33も充電が必要であると判断される。
 この通知を受けた後の時点t13において、スイッチ53をターンオフし、スイッチ54をターンオンする。これにより、コンバータ4の出力側の直流電圧Vは補助蓄電装置34の充電電圧に一致する。電圧監視回路42は、直流電圧Vに基づいて補助蓄電装置34の充電の開始の要否を判断し、その判断結果を制御部41に通知する。ここでは、例えば補助蓄電装置34の充電は不要であると判断される。
 このように、補助蓄電装置32~34の充電に先立って、まず複数の補助蓄電装置32~34の充電の開始の要否を判断する。
 この通知を受けた後の時点t14において、制御部41は、充電を要する補助蓄電装置に接続されるスイッチをターンオンし、他のスイッチをオフに維持する。ここでは補助蓄電装置32,33の充電が必要であると判断され、補助蓄電装置34の充電が不要であると判断されたので、図3に示すように、時点t14においてスイッチ52,53をターンオンし、スイッチ54をターンオフする。
 また制御部41は、充電対象となる複数の補助蓄電装置に適した電圧または電流のうち最小をコンバータ4に出力させる。例えば制御部41は、補助蓄電装置32,33のうち定格電圧の小さい方に適した値(ここでは7[V])の電圧を、コンバータ4に出力させる。これにより、補助蓄電装置32,33の電圧は適切に時間の経過とともに増大する。
 そして補助蓄電装置32,33の電圧が7[V]に達すると、補助蓄電装置33は満充電となる。補助蓄電装置33が満充電となった以後の時点t15にて、制御部41はスイッチ53をターンオフする。つまり補助蓄電装置33の充電は不要なので、スイッチ53をターンオフする。なお図3の例示では、補助蓄電装置33の電圧が7[V]に達した時点から所定時間経過後の時点t15において、スイッチ53をターンオフしているものの、補助蓄電装置33の電圧が7[V]に達した時点の直後に、言い換えれば、補助蓄電装置33の充電率が満充電基準値に達した時点の直後に、スイッチ53をターンオフしてもよい。
 また制御部41は、時点t15において、それまでにおいてコンバータ4が出力していた電圧(7[V])よりも大きな電圧(ここでは12[V])を、コンバータ4に出力させる。これにより、補助蓄電装置32の電圧は時間の経過と共に更に増大する。そして、補助蓄電装置32の充電電圧が12[V]に達すると、補助蓄電装置32も満充電となる。補助蓄電装置34が満充電となった以後の時点t16にて、制御部41はスイッチ52をターンオフし、コンバータ4の動作を停止する。なお図3の例示では、補助蓄電装置32の電圧が12[V]に達した時点から所定時間経過後に、スイッチ52をターンオフしているものの、補助蓄電装置32の電圧が12[V]に達した時点の直後に、言い換えれば補助蓄電装置32の充電率が満充電基準値に達した時点の直後に、スイッチ52をターンオフしてもよい。
 以上のように、補助蓄電装置32および補助蓄電装置33の両方の充電が必要と判断されたときに、コンバータ4は、まず小さい第1直流電圧を出力し、その後、スイッチ53がオフした上で、コンバータ4は第1直流電圧より大きい第2の直流電圧を出力する。もちろん、充電動作1と同様に、過電圧充電を避けるために第1直流電圧、第2直流電圧を適切に設定することが望ましい。例えば第1直流電圧、第2直流電圧はそれぞれ補助蓄電装置33の定格電圧、補助蓄電装置32の定格電圧に設定される。
 なお上述の例では、コンバータ4の出力電圧を制御しているものの、出力電流を制御してもよい。例えば補助蓄電装置32の定格電流よりも補助蓄電装置33の定格電流の方が小さい場合について考慮する。補助蓄電装置32,33の両方の充電の開始が必要と判断されたときには、スイッチ52~54のうちスイッチ52,53をオンした状態で、制御部41は、第1直流電流をコンバータ4に出力させる。これにより、補助蓄電装置32,33が充電される。その後、スイッチ53をオフした状態で、制御部41は第1直流電流よりも大きな第2直流電流をコンバータ4に出力させる。これにより、補助蓄電装置33の充電を停止した上で、補助蓄電装置32に適した電流で補助蓄電装置32の充電を行うことができる。例えばコンバータ4が補助蓄電装置32,33に出力する電流は、それぞれ補助蓄電装置32,33の定格電流の1/10とする。
 上述の充電動作によれば、補助蓄電装置33の満充電時の充電電圧よりも補助蓄電装置32の充電電圧が低ければ、補助蓄電装置33を充電する期間において補助蓄電装置32を並行して充電することでき、迅速に充電される。一方で、図2の充電動作によれば、例えば補助蓄電装置33は補助蓄電装置32の充電が完了するまで、充電が開始されない。よって補助蓄電装置33はその期間において救済負荷23へと十分な給電を実行できない可能性がある。他方、図3の充電動作によれば、補助蓄電装置32,33が並行して充電されるので、救済負荷23に対して速やかに十分な給電を行うことができる。
 なお図2および図3の例示では、電圧確認期間が比較的長く示されているものの、実際には充電期間に比べて十分に短い。図3の充電方法によれば、補助蓄電装置32の充電開始のタイミングが図2に比べて遅いものの、電圧確認期間は充電期間に比べて十分に短く、その遅れは実際には小さい。
 なお充電動作2における上述の例では、補助蓄電装置33の充電が完了した後に、スイッチ53をオフした上で、コンバータ4は補助蓄電装置32に適した電圧を出力しているものの、必ずしもこれに限らない。補助蓄電装置33の充電途中で、スイッチ53をオフした上で、コンバータ4が補助蓄電装置32に適した電圧を出力してもよい。これによっても、補助蓄電装置33の充電率をある程度まで早期に上昇することができる。
 上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせることができる。
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 4 コンバータ
 32~34 補助蓄電装置
 52~54 スイッチ
 42 電圧監視回路

Claims (6)

  1.  車載用電源装置であって、
     直流電力を出力するコンバータと、
     前記コンバータを介して充電される第1蓄電装置および第2蓄電装置と、
     前記コンバータと前記第1蓄電装置との間のオン/オフを選択する第1スイッチと、
     前記コンバータと前記第2蓄電装置との間のオン/オフを選択する第2スイッチと、
     第1スイッチおよび前記第2スイッチよりも前記コンバータ側において、前記コンバータの出力側の電圧を検出する電圧監視回路と
    を備える、車載用電源装置。
  2.  請求項1に記載の車載用電源装置であって、
     前記電圧監視回路は、
      前記第1スイッチがオンし、前記第2スイッチがオフし、かつ前記コンバータが動作を停止しているときの前記出力側の前記電圧に基づいて、前記第1蓄電装置の充電の開始の要否を判断し、
      前記第1スイッチがオフし、前記第2スイッチがオンし、かつ前記コンバータが動作を停止しているときの前記出力側の前記電圧に基づいて、前記第2蓄電装置の充電の開始の要否を判断する、車載用電源装置。
  3.  請求項2に記載の車載用電源装置であって、
     前記第1蓄電装置の定格電圧は前記第2蓄電装置の定格電圧よりも大きく、
     前記第1蓄電装置の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがそれぞれオン/オフした状態で、前記コンバータは第1直流電圧で前記直流電力を出力し、
     前記第2蓄電装置の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがそれぞれオフ/オンした状態で、前記コンバータは前記第1直流電圧より小さな第2直流電圧で前記直流電力を出力する、車載用電源装置。
  4.  請求項2に記載の車載用電源装置であって、
     前記第1蓄電装置の定格電流は前記第2蓄電装置の定格電流よりも大きく、
     前記第1蓄電装置の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがそれぞれオン/オフした状態で、前記コンバータは第1直流電流で前記直流電力を出力し、
     前記第2蓄電装置の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがそれぞれオフ/オンした状態で、前記コンバータは前記第1直流電流より小さな第2直流電流で前記直流電力を出力する、車載用電源装置。
  5.  請求項2に記載の車載用電源装置であって、
     前記第1蓄電装置の定格電圧は前記第2蓄電装置の定格電圧よりも大きく、
     前記第1蓄電装置および前記第2蓄電装置の両方の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがオンした上で、前記コンバータは第1直流電圧で前記直流電力を出力し、その後、前記第2スイッチがオフした上で、前記コンバータは前記第1直流電圧よりも大きな第2直流電圧で前記直流電力を出力する、車載用電源装置。
  6.  請求項2に記載の車載用電源装置であって、
     前記第1蓄電装置の定格電流は前記第2蓄電装置の定格電流よりも大きく、
     前記第1蓄電装置および前記第2蓄電装置の両方の充電の開始が必要と判断されたときに、前記第1スイッチおよび前記第2スイッチがオンした上で、前記コンバータは第1直流電流で前記直流電力を出力し、その後、前記第2スイッチがオフした上で、前記コンバータは前記第1直流電流よりも大きな第2直流電流で前記直流電力を出力する、車載用電源装置。
PCT/JP2016/074594 2015-09-11 2016-08-24 車載用電源装置 WO2017043311A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/758,620 US11066027B2 (en) 2015-09-11 2016-08-24 In-vehicle power supply apparatus configured to charge a plurality of batteries
CN201680048645.XA CN107921916B (zh) 2015-09-11 2016-08-24 车载用电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179319A JP6551089B2 (ja) 2015-09-11 2015-09-11 車載用電源装置
JP2015-179319 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043311A1 true WO2017043311A1 (ja) 2017-03-16

Family

ID=58240803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074594 WO2017043311A1 (ja) 2015-09-11 2016-08-24 車載用電源装置

Country Status (4)

Country Link
US (1) US11066027B2 (ja)
JP (1) JP6551089B2 (ja)
CN (1) CN107921916B (ja)
WO (1) WO2017043311A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182935A (ja) * 2017-04-17 2018-11-15 株式会社今仙電機製作所 電源システムおよび電源バックアップ回路ユニット
CN107745689A (zh) * 2017-10-26 2018-03-02 成都西加云杉科技有限公司 车载备用供电系统及机动车
US11135934B2 (en) * 2019-09-06 2021-10-05 Nio Usa, Inc. Vehicle power devices, systems, and methods for sleep mode
US11345253B2 (en) * 2019-09-19 2022-05-31 Nio Usa, Inc. Vehicle power devices, systems, and methods for fail operational electronic control unit power management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103033A (ja) * 1995-10-04 1997-04-15 Sony Corp 充電装置および方法
JPH09327133A (ja) * 1996-06-05 1997-12-16 Zexel Corp 車載用電源回路
JP2003140755A (ja) * 2001-11-07 2003-05-16 Mitsubishi Electric Corp 車載用電子制御装置
JP2005132190A (ja) * 2003-10-29 2005-05-26 Denso Corp 車両用電源システム
JP2007300693A (ja) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd 車両用マルチ電圧対応電源システム
JP2008037239A (ja) * 2006-08-04 2008-02-21 Nissan Motor Co Ltd 車両用電源制御装置
JP2014151873A (ja) * 2013-02-13 2014-08-25 Yazaki Corp 車両用電源管理装置および車両用電源システム

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004208A (en) * 1973-12-17 1977-01-18 Pentti Juuse Tamminen Starting aid and reserve light for vehicles
US4540929A (en) * 1984-02-16 1985-09-10 Energy Exchange Systems Battery recharger
US5169735A (en) * 1987-03-03 1992-12-08 Pita Witehira Automotive battery and electrical system
JP3099405B2 (ja) * 1991-04-24 2000-10-16 株式会社デンソー 車両用電源装置
US6087802A (en) * 1995-08-24 2000-07-11 James; Ellen Lightweight, compact, on-board electric vehicle battery charger
US6225781B1 (en) * 1998-08-27 2001-05-01 Jeol Ltd. System for charging capacitors connected in series
JP3761336B2 (ja) * 1998-08-27 2006-03-29 株式会社パワーシステム キャパシタ蓄電装置
US6552511B1 (en) * 2000-04-07 2003-04-22 Pacesetter, Inc. Hybrid battery network for implantable medical device
US6377029B1 (en) * 2000-04-26 2002-04-23 Vector Manufacturing, Ltd. Current regulated mobile battery booster
US6734651B2 (en) * 2001-06-06 2004-05-11 Simtech Systems, Llc Battery backup system with remote switch for actuating backup battery
US20050062455A1 (en) * 2003-09-09 2005-03-24 Stavely Donald J. Battery powered device and method employing monitored usage to recommend battery type
JP4326415B2 (ja) * 2004-07-06 2009-09-09 三洋電機株式会社 車両用の電源装置
JP4254658B2 (ja) * 2004-08-23 2009-04-15 株式会社デンソー 車載電源システム
JP4211715B2 (ja) * 2004-08-23 2009-01-21 株式会社デンソー 車載電源システム
US7719284B2 (en) * 2004-11-30 2010-05-18 Keihin Corporation Apparatus for measuring voltage
US8004237B2 (en) * 2005-03-11 2011-08-23 Techtium , Ltd. Battery power supply with bidirectional battery charge controller
JP2007064209A (ja) * 2005-08-05 2007-03-15 Fujitsu Ten Ltd エンジン制御装置、制御方法、及び制御システム
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両
JP4501893B2 (ja) * 2006-04-24 2010-07-14 トヨタ自動車株式会社 電源システムおよび車両
JP4560501B2 (ja) * 2006-08-11 2010-10-13 矢崎総業株式会社 充電状態調整装置
US8030880B2 (en) * 2006-11-15 2011-10-04 Glacier Bay, Inc. Power generation and battery management systems
US7872443B2 (en) * 2007-02-23 2011-01-18 Ward Thomas A Current limiting parallel battery charging system to enable plug-in or solar power to supplement regenerative braking in hybrid or electric vehicle
JP2008220104A (ja) * 2007-03-06 2008-09-18 Canon Inc 充電装置および充電装置の充電制御方法。
JP4770798B2 (ja) * 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
JP2009033830A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 電気システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
KR100968350B1 (ko) * 2007-08-08 2010-07-08 주식회사 엘지화학 배터리의 누설전류 감지 장치 및 방법
CA2711382A1 (en) * 2008-01-03 2009-07-16 Idle Free Systems, Llc Charge circuit systems and methods of using the same
US20090278488A1 (en) * 2008-05-09 2009-11-12 Kai-Wai Alexander Choi Method for discharge balancing of a battery array
JP5621193B2 (ja) * 2009-01-15 2014-11-05 日産自動車株式会社 電力変換装置
KR101076786B1 (ko) * 2009-01-30 2011-10-25 한국과학기술원 직렬연결 배터리 스트링을 위한 지능제어 전하균일 장치 및방법
US8598734B2 (en) * 2009-05-08 2013-12-03 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with the same
EP2431215A4 (en) * 2009-05-14 2016-11-02 Toyota Motor Co Ltd ELECTRIC CAR AND ITS CONTROL METHOD
EP2439098A4 (en) * 2009-06-05 2017-05-17 Toyota Jidosha Kabushiki Kaisha Electric car, and wholly allowable discharge electric energy setting method in the electric car
JP2011015473A (ja) * 2009-06-30 2011-01-20 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
TWM370884U (en) * 2009-07-30 2009-12-11 Dah Ken Ind Co Ltd Control and management device for bicycle micro-power generation and distribution
US8541905B2 (en) * 2009-07-31 2013-09-24 Thermo King Corporation Bi-directional battery voltage converter
JP4893804B2 (ja) * 2009-11-05 2012-03-07 トヨタ自動車株式会社 車両用電源装置
US8390145B2 (en) * 2009-12-01 2013-03-05 Redarc Technologies Pty Ltd Battery isolator unit
KR101620873B1 (ko) * 2009-12-16 2016-05-13 삼성전자주식회사 휴대 단말기의 배터리 충전 제어 방법 및 충전 제어 장치
KR20120020554A (ko) * 2010-08-30 2012-03-08 삼성전기주식회사 전기 차량용 통합형 충전 장치
US9496735B2 (en) * 2010-09-21 2016-11-15 Proterra Inc. Methods for electric bus charging to increase battery life
CN102447270B (zh) * 2010-09-30 2014-01-01 比亚迪股份有限公司 车辆用太阳能供电控制系统及控制方法
WO2012085992A1 (ja) * 2010-12-20 2012-06-28 トヨタ自動車株式会社 電動車両およびその制御方法
KR101229441B1 (ko) * 2011-03-18 2013-02-06 주식회사 만도 배터리 충전 장치
DE102011101531B4 (de) * 2011-05-14 2015-09-24 Volkswagen Aktiengesellschaft Kraftfahrzeugbordnetz und Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes
JP5488529B2 (ja) * 2011-05-17 2014-05-14 マツダ株式会社 車両の電源制御装置
JP5609768B2 (ja) * 2011-05-17 2014-10-22 マツダ株式会社 車両の制御装置
KR101263463B1 (ko) * 2011-09-02 2013-05-10 주식회사 만도 배터리 충전 장치
KR101281066B1 (ko) * 2011-10-18 2013-07-09 송영길 전기자동차용 하이브리드 배터리 시스템
JP5821619B2 (ja) * 2011-12-26 2015-11-24 ソニー株式会社 電力貯蔵装置、電力システムおよび電動車両
JP2013172563A (ja) * 2012-02-21 2013-09-02 Toshiba Corp 二次電池充放電システム、充電器及び充電制御方法
WO2013141196A1 (ja) * 2012-03-23 2013-09-26 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両
CN104220293B (zh) * 2012-03-28 2016-12-14 三菱电机株式会社 铁道车辆系统
EP2858202B1 (en) * 2012-05-25 2020-07-15 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
US9221354B2 (en) * 2012-07-19 2015-12-29 Mitsubishi Electric Corporation Propulsion control apparatus of electric motor vehicle and control method for propulsion control apparatus
JP5772781B2 (ja) * 2012-10-10 2015-09-02 トヨタ自動車株式会社 車両、電源システムおよび電源システムの制御方法
JP5772784B2 (ja) * 2012-10-19 2015-09-02 トヨタ自動車株式会社 車両、電源システムおよび電源システムの制御方法
JP5704146B2 (ja) * 2012-10-22 2015-04-22 トヨタ自動車株式会社 蓄電システム
JP6215221B2 (ja) * 2012-10-29 2017-10-18 三洋電機株式会社 車両用電源装置
JP6187878B2 (ja) * 2012-11-16 2017-08-30 パナソニックIpマネジメント株式会社 車載電源装置
US9882403B2 (en) * 2012-11-23 2018-01-30 Htc Corporation Battery module
JP5776679B2 (ja) * 2012-12-21 2015-09-09 トヨタ自動車株式会社 電動車両および電動車両の制御方法
EP2983270A4 (en) * 2013-04-03 2016-07-27 Autonetworks Technologies Ltd CONTROL DEVICE, POWER SUPPLY CONTROL DEVICE, CHARGE CONTROL METHOD, CHARGE CONTROL DEVICE, AND POWER SUPPLY DEVICE FOR VEHICLE
DE102013213946B4 (de) * 2013-07-16 2018-07-19 Continental Automotive Gmbh Bordnetz und Verfahren zum Betreiben eines Bordnetzes
JP2015171280A (ja) * 2014-03-10 2015-09-28 ソニー株式会社 電圧均等化装置および蓄電装置
US9711979B2 (en) * 2014-03-12 2017-07-18 Mitsubishi Electric Corporation Power supply system
US9537333B2 (en) * 2014-04-22 2017-01-03 Lg Chem, Ltd. Voltage supply system and method for disabling operation of a DC-DC voltage converter
US9931951B2 (en) * 2014-06-13 2018-04-03 University Of Maryland Integrated dual-output grid-to-vehicle (G2V) and vehicle-to-grid (V2G) onboard charger for plug-in electric vehicles
JP6242008B2 (ja) * 2014-06-25 2017-12-06 Fdk株式会社 無停電電源装置
CN105990865A (zh) * 2015-02-06 2016-10-05 中兴通讯股份有限公司 一种蓄电池装置及其充放电监控方法、装置及相应的系统
JP6330691B2 (ja) * 2015-02-20 2018-05-30 株式会社オートネットワーク技術研究所 車両用電源装置
KR20170037260A (ko) * 2015-09-25 2017-04-04 현대자동차주식회사 차량용 배터리 시스템 및 그 제어 방법
TWM520197U (zh) * 2015-11-05 2016-04-11 榮世景科技股份有限公司 電池充電平衡裝置
DE102015226250B4 (de) * 2015-12-21 2018-07-12 Dialog Semiconductor B.V. Leistungseinsparungsvorrichtung
JP5980457B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
US10101799B2 (en) * 2016-04-01 2018-10-16 Quanta Computer Inc. System and method for smart power clamping of a redundant power supply
JP5973106B1 (ja) * 2016-04-06 2016-08-23 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、電流値を検出するセンサの状態を判定する判定方法、および該状態を判定するためのプログラム
US20170366019A1 (en) * 2016-06-16 2017-12-21 EcoReco Global Corporation Battery Switching System and Method Thereof
CN107546834A (zh) * 2016-06-27 2018-01-05 深圳市华思旭科技有限公司 供电组件和方法
JP6646540B2 (ja) * 2016-07-13 2020-02-14 矢崎総業株式会社 車両電源制御装置
US10439496B2 (en) * 2016-08-30 2019-10-08 Lg Chem, Ltd. Control system for transitioning a DC-DC voltage converter from a buck operational mode to a safe operational mode
JP6779317B2 (ja) * 2017-01-26 2020-11-04 株式会社ソニー・インタラクティブエンタテインメント 電気機器
JP6562015B2 (ja) * 2017-02-21 2019-08-21 トヨタ自動車株式会社 電源システム
US10320034B2 (en) * 2017-03-03 2019-06-11 The Boeing Company Modular battery with battery cell and submodule interconnectivity
KR102428658B1 (ko) * 2017-06-09 2022-08-03 현대자동차주식회사 전력 변환 장치, 상기 전력 변환 장치의 제어 방법 및 상기 전력 변환 장치가 설치된 차량
US11495839B2 (en) * 2017-10-18 2022-11-08 Textron Innovations, Inc. Internal battery heating
KR102022705B1 (ko) * 2017-11-13 2019-09-18 주식회사 이진스 전기자동차용 충전 및 저전압 변환 복합회로
US10946756B2 (en) * 2017-11-14 2021-03-16 Ford Global Technologies, Llc Bidirectional integrated charger for a vehicle battery
JP6802826B2 (ja) * 2018-09-13 2020-12-23 矢崎総業株式会社 車両電源装置
JP2020108236A (ja) * 2018-12-27 2020-07-09 矢崎総業株式会社 電力変換装置
US10790680B1 (en) * 2019-05-13 2020-09-29 James Nguyen Fast charging battery pack and methods to charge fast

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103033A (ja) * 1995-10-04 1997-04-15 Sony Corp 充電装置および方法
JPH09327133A (ja) * 1996-06-05 1997-12-16 Zexel Corp 車載用電源回路
JP2003140755A (ja) * 2001-11-07 2003-05-16 Mitsubishi Electric Corp 車載用電子制御装置
JP2005132190A (ja) * 2003-10-29 2005-05-26 Denso Corp 車両用電源システム
JP2007300693A (ja) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd 車両用マルチ電圧対応電源システム
JP2008037239A (ja) * 2006-08-04 2008-02-21 Nissan Motor Co Ltd 車両用電源制御装置
JP2014151873A (ja) * 2013-02-13 2014-08-25 Yazaki Corp 車両用電源管理装置および車両用電源システム

Also Published As

Publication number Publication date
US11066027B2 (en) 2021-07-20
US20180208137A1 (en) 2018-07-26
JP6551089B2 (ja) 2019-07-31
CN107921916A (zh) 2018-04-17
JP2017052466A (ja) 2017-03-16
CN107921916B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2018070231A1 (ja) 車載用のバックアップ装置
WO2019208203A1 (ja) 車載用のバックアップ回路及び車載用のバックアップ装置
WO2017043311A1 (ja) 車載用電源装置
WO2018047636A1 (ja) 車載用のバックアップ装置
US11052771B2 (en) Vehicle-mounted power supply device
US9499063B2 (en) Power-supply device
JP6848770B2 (ja) 車載用の電力制御システム
WO2020116260A1 (ja) 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
WO2017086110A1 (ja) 充放電装置
WO2019239842A1 (ja) 車載用の電源制御装置および車載用電源システム
JP2015012670A (ja) 電源装置
WO2017057211A1 (ja) 車載用電源装置
JP6406188B2 (ja) 車載用電源装置
JP2018082579A (ja) 制御装置、車載装置、制御方法及び充放電回路
US20190103759A1 (en) Power supply system
WO2018135330A1 (ja) 車載用電源装置
JP6375977B2 (ja) 電源装置
WO2021100479A1 (ja) 車載用電源制御装置、及び車載用電源装置
WO2018135331A1 (ja) 車載用制御装置及び車載用電源装置
JP6206292B2 (ja) 電源システム
WO2024004193A1 (ja) 車載用のバックアップ制御装置
JP2018164323A (ja) 車載用の制御装置及び車載用電源装置
JP2018117445A (ja) 車載用電源装置
JP2010143335A (ja) 車両用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844174

Country of ref document: EP

Kind code of ref document: A1