WO2018047636A1 - 車載用のバックアップ装置 - Google Patents

車載用のバックアップ装置 Download PDF

Info

Publication number
WO2018047636A1
WO2018047636A1 PCT/JP2017/030505 JP2017030505W WO2018047636A1 WO 2018047636 A1 WO2018047636 A1 WO 2018047636A1 JP 2017030505 W JP2017030505 W JP 2017030505W WO 2018047636 A1 WO2018047636 A1 WO 2018047636A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive path
power supply
unit
voltage
storage unit
Prior art date
Application number
PCT/JP2017/030505
Other languages
English (en)
French (fr)
Inventor
一志 深江
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201780024690.6A priority Critical patent/CN109075602A/zh
Priority to US16/086,872 priority patent/US20190103758A1/en
Publication of WO2018047636A1 publication Critical patent/WO2018047636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles

Definitions

  • the present invention relates to an in-vehicle backup device that backs up an in-vehicle power supply unit.
  • Patent Document 1 As a vehicle power supply system, there is known a technique of applying a voltage adjusted by a step-up / down circuit based on an output voltage of a capacitor as a power storage unit to a load when a failure or the like occurs in a battery as a power source unit. After detecting that the battery has failed, the system applies the voltage adjusted by the buck-boost circuit based on the output voltage of the capacitor to the load, so the voltage applied to the load is interrupted for a short time. There is a fear. In order to solve this problem, in Patent Document 1, a smoothing capacitor is provided in the booster circuit. As a result, in Patent Document 1, after the battery has failed, the accumulated output voltage of the smoothing capacitor can be applied to the load until the output voltage of the capacitor is adjusted by the booster circuit and applied to the load.
  • the present invention has been made based on the above circumstances, and even when power supply from the power supply unit is interrupted, the supply source can be switched to the power storage unit without interrupting power supply to the power supply target.
  • An object is to realize a possible device with a simpler configuration.
  • a backup device for an in-vehicle power supply system comprising: a power supply unit that supplies power to a power supply target; and a power storage unit that serves as a power supply source when power supply from at least the power supply unit is interrupted, A first conductive path provided between the power supply unit and the power supply target, to which a voltage based on an output voltage of the power supply unit is applied when power supply from the power supply unit is in a normal state; A second conductive path provided between the power storage unit and the first conductive path; The first conductive path is provided between the first conductive path and the second conductive path, and when the voltage of the second conductive path is lower than the voltage of the first conductive path, the second conductive path to the first conductive path.
  • An element portion that restricts the flow of current to the first conductive path and allows the current to flow from the second conductive path to the first conductive path when the voltage of the second conductive path is larger than the voltage of the first conductive path.
  • This backup device can supply power to the power supply target using the power source as a supply source and the first conductive path as a path when the power source is in a normal state. Further, since the power storage unit that can supply power to the first conductive path via the element unit is provided, when the power from the power source unit is not supplied to the first conductive path due to a failure of the power source unit or the like, the power storage unit Can be backed up so as to supply the power from the power supply target. Further, the element unit restricts current from flowing from the second conductive path to the first conductive path when the voltage of the second conductive path is smaller than the voltage of the first conductive path, and is higher than the voltage of the first conductive path.
  • the element portion is configured in this manner, when the voltage of the first conductive path is higher than that of the second conductive path due to the power supply from the power supply unit (the voltage of the second conductive path is higher than the voltage of the first conductive path). When the voltage is small), it is possible to prevent current from flowing from the power storage unit to the first conductive path via the second conductive path. That is, when the power supply from the power supply unit is in a normal state, discharge of the power storage unit can be suppressed.
  • the discharge current from the power storage unit is immediately reduced. It can flow to the first conductive path through the second conductive path.
  • the supply source can be switched to the power storage unit without interrupting the power supply to the power supply target.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle power supply system including a backup device according to a first embodiment. It is a circuit diagram which shows roughly the vehicle-mounted power supply system provided with the backup device of Example 2.
  • FIG. 6 is a circuit diagram schematically illustrating an in-vehicle power supply system including a backup device according to a third embodiment.
  • FIG. 6 is a circuit diagram schematically illustrating an in-vehicle power supply system including a backup device according to a fourth embodiment.
  • the backup device of the present invention is provided in parallel with the second conductive path between the power storage unit and the first conductive path, and a target voltage set toward the first conductive path based on the output voltage from the power storage unit
  • a discharge circuit that performs an output discharge operation and a stop operation that stops the discharge operation, and a control unit that controls the discharge circuit may be provided.
  • the control unit can function to cause the discharge circuit to perform a discharge operation at least when power supply from the power supply unit to the first conductive path is stopped.
  • the backup device configured as described above can apply the target voltage set by the discharge operation of the discharge circuit to the first conductive path. Even if it takes time for the target voltage to be applied to the first conductive path by the discharge circuit after a failure or the like occurs in the power supply unit, immediately after the occurrence of the failure or the like, it immediately passes through the second conductive path. Since power is supplied to the power supply, it is possible to prevent power interruption more reliably.
  • the output voltage when the power storage unit is fully charged is smaller than the voltage applied to the first conductive path based on the output voltage of the power supply unit. Also good.
  • the element unit may be a diode whose anode is electrically connected to the power storage unit via the second conductive path and whose cathode is electrically connected to the first conductive path.
  • the voltage of the second conductive path disposed on the anode side of the diode is the voltage of the first conductive path disposed on the cathode side. Therefore, it is possible to restrict the current from flowing from the second conductive path to the first conductive path.
  • the voltage of the second conductive path disposed on the anode side of the diode becomes larger than the voltage of the first conductive path disposed on the cathode side. A current can be immediately passed from the path to the first conductive path. Moreover, such a function can be more easily realized mainly with a diode.
  • the output voltage when the power storage unit is fully charged may be higher than the voltage applied to the first conductive path based on the output voltage of the power supply unit.
  • a Zener diode having a cathode electrically connected to the power storage unit side and an anode electrically connected to the element unit side may be provided between the power storage unit and the second conductive path.
  • the element unit may be a diode having an anode electrically connected to the second conductive path and a cathode electrically connected to the first conductive path.
  • the backup device configured as described above can reduce the voltage applied to the second conductive path (the voltage applied via the Zener diode based on the power supply from the power storage unit) due to the presence of the Zener diode. . If the voltage of the second conductive path thus lowered is lower than the voltage applied to the first conductive path when the power supply from the power supply unit is in a normal state, the second conductive path side to the first conductive path side Can be prevented, and discharge of the power storage unit in a normal state can be prevented. Thus, even if it is a structure where the voltage at the time of a full charge of an electrical storage part is high, it becomes a structure which is easy to prevent discharge of an electrical storage part.
  • the output voltage when the power storage unit is fully charged may be higher than the voltage applied to the first conductive path based on the output voltage of the power supply unit.
  • a Zener diode provided between the power storage unit and the second conductive path, having a cathode electrically connected to the power storage unit side and an anode electrically connected to the element unit side, and the power storage unit and the second conductive path And a switching element that is turned on when the Zener diode breaks down and conducts between the power storage unit and the second conductive path.
  • the element unit may be a diode having an anode electrically connected to the second conductive path and a cathode electrically connected to the first conductive path.
  • the backup device configured as described above can reduce the voltage applied to the second conductive path (the voltage applied via the Zener diode based on the power supply from the power storage unit) due to the presence of the Zener diode. . If the voltage of the second conductive path thus lowered is lower than the voltage applied to the first conductive path when the power supply from the power supply unit is in a normal state, the second conductive path side to the first conductive path side Can be prevented, and discharge of the power storage unit in a normal state can be prevented.
  • FIG. 1 is a block diagram of an in-vehicle power supply system 100 including an in-vehicle backup device 1 according to the first embodiment.
  • the in-vehicle power supply system 100 includes a power supply unit 91 serving as a main power source for supplying power to a load 93 (power supply target) and a power storage unit serving as a power supply source when power supply from at least the power supply unit 91 is interrupted. 7 and the backup device 1 having a function of quickly discharging from the power storage unit 7 when the power supply from the power source unit 91 is interrupted, using the power source unit 91 or the power storage unit as a power supply source.
  • the system is configured to supply power to the load 93.
  • the in-vehicle power supply system 100 applies a voltage based on the output voltage of the power supply unit 91 to the wiring unit 81 (first conductive path) when the power supply from the power supply unit 91 is in a normal state.
  • the power is supplied to the load 93 (power supply target) via 81.
  • “when the power supply from the power supply unit 91 is in a normal state” refers to the case where the output voltage of the power supply unit 91 exceeds a “predetermined value”.
  • the voltage applied to the wiring unit 81 (first conductive path) (specifically, the voltage applied to the wiring unit 81 based on the power supplied from the power supply unit 91 via the wiring unit 83 and the diode 83A) ) Is larger than the voltage applied to the wiring part 82 based on the output voltage of the power storage part 7.
  • the backup device 1 includes a discharge circuit 3B, and is configured to be able to switch between discharging and stopping of the power storage unit 7 by the discharge circuit 3B and supplying power from the power storage unit 7 to the load 93 at the time of discharging.
  • the power supply unit 91 is configured as a known in-vehicle battery such as a lead battery.
  • the power supply unit 91 has a high potential side terminal electrically connected to the wiring unit 85 and the wiring unit 83, and applies a predetermined output voltage (hereinafter also referred to as + B voltage) to the wiring unit 85 and the wiring unit 83. To do.
  • the power storage unit 7 is configured by known power storage means such as an electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • the power storage unit 7 is electrically connected to the charge / discharge circuit unit 3 and is charged or discharged by the charge / discharge circuit unit 3.
  • the voltage when the power storage unit 7 is fully charged is larger than the voltage when the power supply unit 91 is fully charged.
  • the load 93 corresponds to an example of a power supply target, and is configured as a known on-vehicle electrical component.
  • the load 93 is preferably an electrical component that is desired to be supplied with power even when the power supply unit 91 fails, such as an ECU or an actuator in a shift-by-wire system.
  • the load 93 operates based on the electric power supplied from the power supply unit 91 in the normal state described above, and operates based on the electric power supplied from the power storage unit 7 in the abnormal state.
  • the IG relay 6 switches to an on state when a predetermined start operation (ignition on operation (IG on operation)) for starting the engine is performed with respect to an operation unit (not shown) provided in the vehicle.
  • the relay is switched to an off state when a predetermined stop operation (ignition off operation (IG off operation)) for stopping the engine is performed.
  • the IG relay 6 is energized when in the on state, and conducts the wiring portion 85 and the charging circuit side conductive path 21.
  • the power supply voltage (+ B voltage) of the power supply unit 91 is supplied to the charging circuit side conductive path 21.
  • the IG relay 6 is in an off state, the IG relay 6 is in a non-energized state.
  • the power supply voltage (+ B voltage) applied to the wiring portion 85 is not supplied to the charging circuit side conductive path 21.
  • the power supply voltage (+ B voltage) applied to the charging circuit side conductive path 21 via the IG relay 6 is also referred to as IG voltage.
  • the backup device 1 mainly includes a charging circuit side conductive path 21, a discharge circuit side conductive path 22, a power storage unit side conductive path 23, a charge / discharge circuit unit 3, a wiring unit 81, a wiring unit 83, an auxiliary circuit unit 84, and a control unit 5. Etc.
  • the charging circuit side conductive path 21 is a conductive path that conducts to the wiring portion 85 when the ignition relay 6 (hereinafter also referred to as the IG relay 6) is turned on (during conduction), and is an input side conductive path for the charging circuit 3A. It is.
  • the discharge circuit side conductive path 22 is a conductive path serving as a path when a current flows from the discharge circuit 3B to the wiring portion 81.
  • the discharge circuit side conductive path 22 is provided with a diode 22A.
  • the diode 22A has an anode electrically connected to the discharge circuit 3B via the discharge circuit side conductive path 22 and a cathode electrically connected to the load 93 via the wiring portion 81. Since the diode 22A is provided in this way, no current flows from the wiring portion 81 side to the discharging circuit 3B side, and the voltage of the discharging circuit side conductive path 22 is higher than the voltage of the wiring portion 81 by the discharging operation of the discharging circuit 3B. When it becomes larger, the output current from the discharge circuit 3B flows into the wiring portion 81.
  • the power storage unit side conductive path 23 is a conductive path that is electrically connected to the power storage unit 7 and serves as a charge path from the charging circuit 3A to the power storage unit 7 and a discharge path from the power storage unit 7 to the discharge circuit 3B.
  • the charging / discharging circuit unit 3 includes a charging circuit 3A and a discharging circuit 3B, and can perform a charging operation for charging the power storage unit 7 based on electric power from the power supply unit 91 and a discharging operation for discharging the power storage unit 7.
  • the charging operation by the charging circuit 3A is controlled by the control unit 5, and the discharging operation by the discharging circuit 3B is also controlled by the control unit 5.
  • the charging circuit 3 ⁇ / b> A is given a charging instruction signal for instructing charging of the power storage unit 7 or a charging stop signal for instructing charging stop of the power storage unit 7 by the control unit 5.
  • the charging circuit 3A is configured as a known charging circuit such as a step-up DCDC converter, for example.
  • the charging instruction signal is given from the control unit 5 to the charging circuit 3A
  • the charging circuit 3A is connected to the charging circuit side.
  • a voltage conversion operation for boosting the power supply voltage input via the conductive path 21 is performed, and the boosted voltage is applied to the power storage unit 7 via the power storage unit side conductive path 23.
  • the charging stop signal is given from the control unit 5 to the charging circuit 3A, the charging circuit 3A does not perform the charging operation. At this time, the charging circuit side conductive path 21 and the power storage unit side conductive path 23 are not electrically connected. State.
  • the discharge circuit 3B includes a wiring section 82 (second conductive path) between the power storage section 7 and the wiring section 81 (first conductive path) (specifically, between the power storage section side conductive path 23 and the wiring section 81). ) And a discharge operation for discharging the power storage unit 7 and a discharge stop operation for stopping the discharge of the power storage unit 7 can be performed.
  • the discharge circuit 3B is configured as a known discharge circuit such as a step-up / step-down DCDC converter.
  • the discharge circuit 3 ⁇ / b> B is based on the input voltage (output voltage from the power storage unit 7) applied to the power storage unit side conductive path 23 and the wiring unit 81 (first A discharge operation (specifically, a discharge operation in which the target voltage instructed by the control unit 5 is applied to the discharge circuit side conductive path 22) is output to output the target voltage set toward the conductive path), and the control unit
  • first A discharge operation specifically, a discharge operation in which the target voltage instructed by the control unit 5 is applied to the discharge circuit side conductive path 22
  • the control unit When the discharge stop signal is given from 5, such a discharge operation is stopped, and the non-conduction state is established between the power storage unit side conductive path 23 and the discharge circuit side conductive path 22.
  • the wiring unit 83 is provided between the power supply unit 91 and the wiring unit 81 and is configured as a path to which the output voltage of the power supply unit 91 is applied.
  • the wiring part 83 is provided with a diode 83A.
  • the diode 83A has an anode electrically connected to the power supply part 91 via the wiring part 83 and a cathode electrically connected to the wiring part 81.
  • the diode 83 ⁇ / b> A allows current to flow from the power supply unit 91 to the wiring unit 81 side, and blocks current flow from the wiring unit 81 to the power supply unit 91 side. For example, even if an abnormality such as a ground fault occurs in the wiring part 83, no current flows from the wiring part 81 to the wiring part 83 side.
  • the auxiliary circuit unit 84 is provided between the power storage unit side conductive path 23 and the wiring unit 81, and serves as a path for supplying power from the power storage unit 7 when power supply from the power supply unit 91 to the wiring unit 81 is interrupted. It is configured.
  • the auxiliary circuit portion 84 includes a wiring portion 82, a diode 80, a Zener diode 84C, a switching element 84E, and a resistance portion 84D, and is provided in parallel with the discharge circuit 3B.
  • the wiring portion 82 corresponds to an example of a second conductive path, is provided between the power storage unit 7 and the wiring unit 81 (first conductive path), and is a conductive material to which a voltage according to the output voltage of the power storage unit 7 can be applied. It is a road.
  • the diode 80 corresponds to an example of an element unit, and is provided between the wiring unit 81 (first conductive path) and the wiring unit 82 (second conductive path), and the anode is electrically connected to the wiring unit 82, The cathode is electrically connected to the wiring portion 81.
  • This diode 80 does not flow current from the wiring portion 81 side to the wiring portion 82 side, and current flows from the wiring portion 82 to the wiring portion 81 when the voltage of the wiring portion 82 is larger than the voltage of the wiring portion 81. Allow.
  • the auxiliary circuit unit 84 is provided between the diode 80 and the power storage unit side conductive path 23.
  • the auxiliary circuit unit 84 includes a Zener diode 84C, a resistor unit 84D, and a switching element 84E.
  • the Zener diode 84C has a cathode electrically connected to the power storage unit side conductive path 23, and an anode electrically connected to one end of the resistor unit 84D and the gate of the switching element 84E.
  • the other end of the resistor portion 84D opposite to the Zener diode 84C side is electrically connected to the wiring portion 82. That is, the Zener diode 84 ⁇ / b> C and the resistance unit 84 ⁇ / b> D are connected in series between the power storage unit side conductive path 23 and the wiring unit 82.
  • the switching element 84E is configured as an N-channel MOSFET, and its drain is electrically connected to the power storage unit side conductive path 23 and electrically connected to the cathode of the Zener diode 84C and the power storage unit 7 via the power storage unit side conductive path 23. Connected.
  • the source of the switching element 84E is electrically connected to the wiring part 82 and is electrically connected to the anode of the diode 80 via the wiring part 82.
  • the gate of the switching element 84E is electrically connected to the anode of the Zener diode 84C and one end of the resistor portion 84D, when the Zener diode 84C breaks down and a current flows through the Zener diode 84C and the resistor portion 84D, When the gate-source voltage VGS exceeds a predetermined threshold value, it is turned on and becomes conductive.
  • the control unit 5 is configured as a microcomputer, for example, and includes an arithmetic device such as a CPU, a memory such as a ROM or a RAM, an AD converter, and the like.
  • the voltage of the wiring unit 83 (that is, the output voltage value of the power supply unit 91) is input to the control unit 5, and the control unit 5 can continuously monitor the voltage of the wiring unit 83.
  • the configuration illustrated in FIG. 1 is merely an example, and any configuration that allows the control unit 5 to detect the output voltage of the power supply unit 91 may be used as long as the path is electrically connected to the power supply unit 91. May be monitored.
  • the configuration in which the value indicating the voltage of the path electrically connected to the power supply unit 91 is input to the control unit 5 may be a configuration in which the voltage of the path is directly input to the control unit 5 as shown in FIG.
  • a voltage obtained by dividing the voltage of the path by a voltage dividing circuit or the like may be input to the control unit 5.
  • the control unit 5 can control the charging operation and the discharging operation by the charging / discharging circuit unit 3. Specifically, the control unit 5 can give a charge instruction signal or a charge stop signal to the charging circuit 3A, and can give a discharge instruction signal or a discharge stop signal to the discharge circuit 3B.
  • the operation of the backup device 1 will be described.
  • an IG on operation on operation for turning on the ignition switch
  • the IG relay 6 is switched from the off state to the on state, and the wiring unit 85 and the charging circuit The side conductive path 21 is conducted. Thereby, the IG voltage is applied to the backup device 1.
  • the control unit 5 monitors the output voltage of the power supply unit 91 at least from when the ignition switch is turned on to when it is turned off.
  • the voltage V2 when the power storage unit 7 is fully charged is greater than the value obtained by subtracting the breakdown voltage VZ of the Zener diode 84C (V2 ⁇ VZ) and is smaller than the voltage when the power supply unit 91 is fully charged.
  • a predetermined threshold value Vth is set, and the control unit 5 continuously monitors whether or not the voltage of the wiring unit 83 (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth.
  • the case where the voltage of the wiring unit 83 (the output voltage of the power supply unit 91) is larger than the threshold value Vth is a state in which power is properly supplied from the power supply unit 91 to the wiring unit 81 and the wiring unit 82. In this state, the flow of current from the wiring to the wiring portion 81 is interrupted.
  • the charging operation by the charging circuit 3A is executed at the start of predetermined charging (for example, immediately after the ignition switch is turned on) when the voltage of the wiring unit 83 (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth. Then, a charging instruction signal is given from the control unit 5 to the charging circuit 3A until the output voltage (charging voltage) of the power storage unit 7 reaches a predetermined target voltage.
  • This “predetermined target voltage” corresponds to an example of the “output voltage when fully charged” of the power storage unit 7, and is set to V2 in this description.
  • the discharging operation by the discharging circuit 3B starts after the predetermined discharge starts.
  • the output voltage (charging voltage) of the power storage unit 7 is maintained at a predetermined target voltage (output voltage at full charge).
  • the predetermined target voltage (output voltage when the power storage unit 7 is fully charged) is applied to the wiring unit 81 (first conductive path) based on the output voltage of the power supply unit 91 when the power supply unit 91 is fully charged. It is larger than the applied voltage.
  • a Zener diode 84C and a resistor 84D are provided in series between the power storage unit 7 and the wiring unit 82 (second conductive path), and the cathode of the Zener diode 84C is electrically connected to the power storage unit 7 side.
  • An anode is electrically connected to the diode 80 side.
  • the threshold value Vth is larger than the value (V2 ⁇ VZ) obtained by subtracting the breakdown voltage VZ of the Zener diode 84C from the voltage V2 when the power storage unit 7 is fully charged, at least the voltage of the wiring unit 83 (power supply unit) 91) is greater than the threshold value Vth, the potential difference between the power storage unit side conductive path 23 and the wiring unit 82 does not exceed the breakdown voltage of the Zener diode 84C, and no current flows through the Zener diode 84C and the resistor unit 84D. Not flowing.
  • the switching element 84E does not turn on, so that the power storage portion side conductive path 23 and the wiring portion 82 are maintained in a non-energized state.
  • the power supply by the power storage unit 7 is also connected to the wiring unit 82 from the path of the discharge circuit 3B. Since it cannot be performed from the route, the power storage unit 7 is maintained in the discharge stopped state, and the load 93 is operated by the power of the power supply unit 91 alone.
  • the IG relay 6 When the IG off operation (operation for turning off the ignition switch) is performed in such a normal state, the IG relay 6 is switched from the on state to the off state, and between the wiring portion 85 and the charging circuit side conductive path 21. Is interrupted. In addition, after the IG relay 6 is switched from the on state to the off state, the discharge circuit 3B is operated to perform discharge, and the output voltage (charge voltage) of the power storage unit 7 is obtained from the voltage V2 when the IG relay 6 is in the on state. May be maintained at a low value.
  • the control unit 5 (specifically, when the voltage of the wiring unit 83 becomes less than the threshold value Vth), The signal applied to the discharge circuit 3B is switched from the discharge stop signal to the discharge instruction signal, and a predetermined target voltage (for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge) is applied to the discharge circuit side conductive path 22.
  • a predetermined target voltage for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge
  • the discharge circuit 3B is configured as a step-up / step-down DCDC converter that outputs a desired voltage to the discharge circuit side conductive path 22 using the voltage applied to the power storage unit side conductive path 23 as an input voltage.
  • the control unit 5 causes the discharging circuit 3B to perform a boosting operation, and the discharging circuit 3B A predetermined target voltage is applied to the discharge circuit side conductive path 22.
  • control unit 5 When the output voltage (charge voltage) of the power storage unit 7 applied to the power storage unit side conductive path 23 is higher than a predetermined target voltage, the control unit 5 causes the discharge circuit 3B to perform a step-down operation to discharge A predetermined target voltage is applied to the discharge circuit side conductive path 22 by the circuit 3B. Control unit 5 also has a function of detecting the voltage of power storage unit side conductive path 23 (the output voltage of power storage unit 7).
  • the control unit 5 detects that the voltage of the wiring unit 83 is less than the threshold value Vth, and then the discharge circuit 3B performs the discharge operation after the control unit 5 starts the discharge instruction signal. Therefore, it takes time from when the power supply abnormality occurs until the target voltage is applied by the discharge circuit 3B. Therefore, this configuration solves this problem by adopting a configuration in which power can be supplied immediately via the wiring section 82 when such an abnormality occurs.
  • the voltage of the wiring unit 81 when the voltage of the wiring unit 81 is significantly lower than that in the normal state due to the interruption of the power supply from the power supply unit 91, the voltage of the wiring unit 82 connected to the anode side of the diode 80 is set to the cathode side. Since the voltage is higher than the voltage of the connected wiring part 81, a current immediately flows from the wiring part 82 to the wiring part 81. As described above, since the current can flow immediately through the wiring portion 81, the power supply to the load 93 is maintained until the discharge operation of the discharge circuit 3B is started.
  • the switching element 84E functions to turn on when the Zener diode 84C breaks down, to connect the power storage unit 7 and the wiring unit 82, and to suppress the current of the Zener diode 84C.
  • the backup device 1 of the present configuration uses the power supply unit 91 as a supply source when the power supply unit 91 is in a normal state and supplies power to the load 93 (power supply target) using the wiring unit 81 (first conductive path) as a route. Can be supplied. Further, since the power storage unit 7 that can supply power to the wiring unit 81 (first conductive path) via the diode 80 (element unit) is provided, the power from the power source unit 91 due to the failure of the power source unit 91 or the like. Can be backed up so that the power from the power storage unit 7 is supplied to the power supply target.
  • the diode 80 (element unit) restricts the flow of current from the wiring unit 82 to the wiring unit 81 when the voltage of the wiring unit 82 is lower than the voltage of the wiring unit 81, and the wiring is higher than the voltage of the wiring unit 81.
  • the voltage of the part 82 is large, a configuration is adopted in which current is allowed to flow from the wiring part 82 to the wiring part 81. Since the diode 80 (element unit) is configured in this manner, when the voltage of the wiring unit 81 is higher than that of the wiring unit 82 due to power supply from the power supply unit 91 (the wiring unit 82 is higher than the voltage of the wiring unit 81).
  • the supply source can be switched to the power storage unit 7 without interrupting the power supply to the load 93 (power supply target).
  • the backup device 1 having this configuration includes a discharge circuit 3B and a control unit 5 that controls the discharge circuit 3B.
  • Discharging circuit 3B is provided in parallel with wiring unit 82 between power storage unit 7 and wiring unit 81, and outputs a target voltage set toward wiring unit 81 based on the output voltage from power storage unit 7. A discharge operation and a stop operation for stopping the discharge operation are performed.
  • the control unit 5 functions to cause the discharge circuit 3B to perform a discharge operation at least when power supply from the power supply unit 91 to the wiring unit 81 is stopped.
  • the backup device 1 configured as described above can apply the target voltage set by the discharge operation of the discharge circuit 3B to the wiring unit 81. Even if it takes time until the target voltage is applied to the wiring unit 81 by the discharge circuit 3B after the failure or the like occurs in the power supply unit 91, immediately after the occurrence of the failure or the like, immediately through the wiring unit 82. Since power is supplied to the power supply, it is possible to prevent power interruption more reliably.
  • the output voltage V2 when the power storage unit 7 is fully charged is more than the voltage applied to the wiring unit 81 based on the output voltage of the power supply unit 91 when the power supply unit 91 is fully charged. It is getting bigger.
  • the backup device 1 is provided between the power storage unit 7 and the wiring unit 82, and has a Zener diode 84C having a cathode electrically connected to the power storage unit 7 side and an anode electrically connected to the diode 80 side;
  • a switching element 84E is provided between the power storage unit 7 and the wiring unit 82, and is turned on when the Zener diode 84C breaks down to conduct between the power storage unit 7 and the wiring unit 82.
  • the backup device 1 configured as described above reduces the voltage applied to the wiring unit 82 (the voltage applied via the zener diode 84C based on the power supply from the power storage unit 7) due to the presence of the zener diode 84C. be able to. If the voltage of the wiring part 82 thus lowered is lower than the voltage applied to the wiring part 81 when the power supply from the power supply part 91 is in a normal state, the wiring part 82 side is moved to the wiring part 81 side. Can be prevented, and discharge of the power storage unit 7 in a normal state can be prevented.
  • FIG. 2 shows an in-vehicle power supply system 200 using the backup device 201 of the second embodiment.
  • the in-vehicle power supply system 200 and the backup device 201 are different from the first embodiment in that a Zener diode 184C is provided instead of the auxiliary circuit unit 84, and other circuit configurations are the same as those in the first embodiment.
  • Various controls by the control unit 5 can be performed in the same manner as in the first embodiment.
  • portions having the same configuration as that of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
  • the wiring unit 81 (first conductive path) is provided between the power supply unit 91 and the load 93 (power supply target), and the power supply unit 91 is in a normal state when the power supply from the power supply unit 91 is in a normal state.
  • a voltage based on the output voltage is applied.
  • the wiring unit 82 is provided between the power storage unit 7 and the wiring unit 81 and is configured to be applied with a voltage corresponding to the output voltage of the power storage unit 7.
  • the diode 80 functions as an example of an element unit, and is provided between the wiring unit 81 and the wiring unit 82.
  • the wiring unit 82 changes to the wiring unit 81.
  • the configuration is such that current is restricted and current is allowed to flow from the wiring portion 82 to the wiring portion 81 when the voltage of the wiring portion 82 is higher than the voltage of the wiring portion 81.
  • a Zener diode 184C is provided between the power storage unit 7 and the wiring unit 82 (second conductive path), and the Zener diode 184C has a cathode electrically connected to the power storage unit 7 side and an anode connected to the diode 80 side. Are electrically connected. Specifically, the output voltage of the power storage unit 7 is applied to the cathode of the Zener diode 184C via the power storage unit side conductive path 23, and the anode of the Zener diode 184C is electrically connected to the anode on the diode 80 side via the wiring unit 82. Connected.
  • the operation of the backup device 201 will be described. Even in this configuration, when an IG ON operation (an ON operation for turning on the ignition switch) is performed in a vehicle equipped with the in-vehicle power supply system 200, the IG relay 6 is switched from the OFF state to the ON state, and the wiring portion 85 and the charging circuit side conductive path 21 are electrically connected. Thereby, the IG voltage is applied to the backup device 201.
  • an IG ON operation an ON operation for turning on the ignition switch
  • the control part 5 monitors the output voltage of the power supply part 91 at least until an ignition switch turns into an OFF state from an ON state.
  • the voltage V2 when the power storage unit 7 is fully charged is greater than the value obtained by subtracting the breakdown voltage VZ of the Zener diode 84C (V2 ⁇ VZ) and is smaller than the voltage when the power supply unit 91 is fully charged.
  • a predetermined threshold value Vth is set, and the control unit 5 continuously monitors whether or not the voltage of the wiring unit 83 (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth.
  • the case where the voltage of the wiring unit 83 (the output voltage of the power supply unit 91) is larger than the threshold value Vth is a state in which power is appropriately supplied from the power supply unit 91 to the wiring unit 81, and the wiring In this state, the flow of current from the portion 82 to the wiring portion 81 is interrupted.
  • the charging operation by the charging circuit 3A is performed at a predetermined charging start time (for example, immediately after the ignition switch is turned on) when the voltage of the wiring unit 83 (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth. Etc.) and the charging instruction signal is given from the control unit 5 to the charging circuit 3A until the output voltage (charging voltage) of the power storage unit 7 reaches a predetermined target voltage.
  • This “predetermined target voltage” corresponds to an example of the “output voltage when fully charged” of the power storage unit 7, and is set to V2 in this description.
  • the discharging operation by the discharging circuit 3B starts after the predetermined discharge starts.
  • the output voltage (charging voltage) of the power storage unit 7 is maintained at a predetermined target voltage (output voltage at full charge).
  • the predetermined target voltage (output voltage when the power storage unit 7 is fully charged) is applied to the wiring unit 81 (first conductive path) based on the output voltage of the power supply unit 91 when the power supply unit 91 is fully charged. It is larger than the applied voltage.
  • the ignition switch when the ignition switch is in the on state (when the IG relay 6 is in the on state), if the voltage of the wiring unit 83 (the output voltage of the power supply unit 91) is larger than the threshold value Vth, the discharge is performed.
  • the circuit 3B is maintained in a discharge stopped state, and the conduction between the power storage unit side conductive path 23 and the discharge circuit side conductive path 22 is interrupted. In this case, the flow of current from the wiring portion 82 to the wiring portion 81 is also blocked.
  • the Zener diode 184C is provided between the power storage unit 7 and the wiring unit 82 (second conductive path), the cathode of the Zener diode 84C is electrically connected to the power storage unit 7 side, and the anode is connected to the diode 80 side. Are electrically connected.
  • the threshold value Vth is larger than the value (V2 ⁇ VZ) obtained by subtracting the breakdown voltage VZ of the Zener diode 84C from the voltage V2 when the power storage unit 7 is fully charged, at least the voltage of the wiring unit 83 (power supply unit) 91) is greater than the threshold value Vth, the potential difference between the power storage unit side conductive path 23 and the wiring unit 82 does not exceed the breakdown voltage of the Zener diode 84C, and no current flows through the Zener diode 84C. No current flows from the portion 82 to the wiring portion 81.
  • the control unit 5 (specifically, when the voltage of the wiring unit 83 becomes less than the threshold value Vth), The signal applied to the discharge circuit 3B is switched from the discharge stop signal to the discharge instruction signal, and a predetermined target voltage (for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge) is applied to the discharge circuit side conductive path 22.
  • a predetermined target voltage for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge
  • the control of the control unit 5 and the operation of the discharge circuit 3B at this time are the same as in the first embodiment.
  • the voltage applied to the wiring unit 82 (second conductive path) due to the presence of the Zener diode 184C (the voltage applied via the Zener diode 184C based on the power supply from the power storage unit 7). ) Can be reduced, so that even when the voltage of the power storage unit 7 at full charge is high, it is possible to cope. If the voltage of the wiring part 82 thus lowered is lower than the voltage applied to the wiring part 81 (first wiring part) when the power supply from the power supply part 91 is in a normal state, the wiring part 82 side Can be prevented from flowing into the wiring unit 81 side, and the electric storage unit 7 can be prevented from being discharged in a normal state. Thus, even if it is a structure where the voltage at the time of the full charge of the electrical storage part 7 is high, it becomes a structure which is easy to prevent the discharge of the electrical storage part 7.
  • FIG. 2 shows an in-vehicle power supply system 200 using the backup device 301 of the third embodiment.
  • the in-vehicle power supply system 300 and the backup device 301 are different from the first embodiment in that the auxiliary circuit unit 84 is omitted in the path between the power storage unit side conductive path 23 and the diode 80 and only the wiring unit 82 is used.
  • Other circuit configurations are the same as those of the first embodiment.
  • Various controls by the control unit 5 can be performed in the same manner as in the first embodiment.
  • the same reference numerals as those in the first embodiment are given to portions having the same configurations as those in the first embodiment, and detailed description thereof is omitted.
  • the wiring unit 81 (first conductive path) is provided between the power supply unit 91 and the load 93 (power supply target), and the power supply unit 91 is in a normal state when the power supply from the power supply unit 91 is in a normal state.
  • a voltage based on the output voltage is applied.
  • the wiring unit 82 is provided between the power storage unit 7 and the wiring unit 81 and is configured to be applied with a voltage corresponding to the output voltage of the power storage unit 7.
  • the diode 80 functions as an example of an element unit, and is provided between the wiring unit 81 and the wiring unit 82.
  • the wiring unit 82 changes to the wiring unit 81.
  • the configuration is such that current is restricted and current is allowed to flow from the wiring portion 82 to the wiring portion 81 when the voltage of the wiring portion 82 is higher than the voltage of the wiring portion 81.
  • the operation of the backup device 301 will be described. Even in this configuration, when an IG ON operation (an ON operation for turning on the ignition switch) is performed in a vehicle equipped with the in-vehicle power supply system 300, the IG relay 6 is switched from the OFF state to the ON state, and the wiring portion 85 and the charging circuit side conductive path 21 are electrically connected. Thereby, the IG voltage is applied to the backup device 301.
  • an IG ON operation an ON operation for turning on the ignition switch
  • a predetermined threshold Vth is set as a value that is larger than the voltage V ⁇ b> 2 when the power storage unit 7 is fully charged and smaller than the voltage when the power supply unit 91 is fully charged. Whether or not the voltage (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth is continuously monitored.
  • the case where the voltage of the wiring unit 83 (the output voltage of the power supply unit 91) is larger than the threshold value Vth is a state in which power is appropriately supplied from the power supply unit 91 to the wiring unit 81, and the wiring In this state, the flow of current from the portion 82 to the wiring portion 81 is interrupted.
  • the charging operation by the charging circuit 3A is performed at a predetermined charging start time (for example, immediately after the ignition switch is turned on) when the voltage of the wiring unit 83 (that is, the output voltage of the power supply unit 91) is larger than the threshold value Vth. Etc.) and the charging instruction signal is given from the control unit 5 to the charging circuit 3A until the output voltage (charging voltage) of the power storage unit 7 reaches a predetermined target voltage.
  • This “predetermined target voltage” corresponds to an example of the “output voltage when fully charged” of the power storage unit 7, and is set to V2 in this description.
  • the discharging operation by the discharging circuit 3B starts after the predetermined discharge starts.
  • the output voltage (charging voltage) of the power storage unit 7 is maintained at a predetermined target voltage (output voltage at full charge).
  • the predetermined target voltage (output voltage when the power storage unit 7 is fully charged) is applied to the wiring unit 81 (first conductive path) based on the output voltage of the power supply unit 91 when the power supply unit 91 is fully charged. It is smaller than the applied voltage.
  • the charging circuit 3A can be configured as a step-down DCDC converter that can perform at least a step-down operation, and the target voltage (output voltage at full charge) is lower than the output voltage of the power supply unit 91.
  • the charging current can be supplied to the power storage unit 7 by the step-down operation of the charging circuit 3A.
  • the ignition switch when the ignition switch is in the on state (when the IG relay 6 is in the on state), if the voltage of the wiring unit 83 (the output voltage of the power supply unit 91) is larger than the threshold value Vth, the discharge is performed.
  • the circuit 3B is maintained in a discharge stopped state, and the conduction between the power storage unit side conductive path 23 and the discharge circuit side conductive path 22 is interrupted.
  • the voltage of the wiring unit 81 applied based on the power of the power supply unit 91 is larger than the voltage of the wiring unit 82 to which the output voltage of the power storage unit 7 is applied. Current flow into 81 is also cut off.
  • the control unit 5 (specifically, when the voltage of the wiring unit 83 becomes less than the threshold value Vth), The signal applied to the discharge circuit 3B is switched from the discharge stop signal to the discharge instruction signal, and a predetermined target voltage (for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge) is applied to the discharge circuit side conductive path 22.
  • a predetermined target voltage for example, a voltage equivalent to the output voltage of the power supply unit 91 at the time of full charge
  • the control of the control unit 5 and the operation of the discharge circuit 3B at this time are the same as in the first embodiment.
  • the voltage of the wiring unit 82 disposed on the anode side of the diode 80 is the wiring unit 81 disposed on the cathode side. Therefore, it is possible to limit the flow of current from the wiring portion 82 to the wiring portion 81.
  • the voltage of the wiring unit 82 arranged on the anode side of the diode 80 becomes higher than the voltage of the wiring unit 81 arranged on the cathode side. Thus, a current can be immediately supplied to the wiring portion 81. Further, such a function can be realized more simply with the diode 80 as a main component.
  • a lead battery is used for the power supply unit 91.
  • the present invention is not limited to this configuration.
  • a power source is used instead of the lead battery or in combination with the lead battery.
  • Other power source means other known power storage means, power generation means, etc. may be used for the unit 91.
  • the number of power supply means configuring the power supply unit 91 is not limited to one, and may be configured by a plurality of power supply means.
  • the power storage unit 7 includes a lithium ion battery.
  • Other power storage means such as a lithium ion capacitor or a nickel hydride rechargeable battery may be used.
  • the number of power storage means constituting the power storage unit 7 is not limited to one, and may be configured by a plurality of power storage means.
  • the MOSFET is exemplified as the switching element of the heat dissipation circuit.
  • the present invention is not limited to this configuration, and other known semiconductor switching elements may be used. Specifically, it is provided in parallel with the Zener diode 84C disposed between the power storage unit side conductive path 23 and the wiring unit 82, and is turned on when the Zener diode 84C breaks down, so that the power storage unit side conductive path 23 and the wiring unit 82 are turned on. Any switching element may be used as long as it is provided to conduct between the two.
  • the control unit 5 is provided separately from the discharge circuit 3B.
  • the IC 3C is provided in the discharge circuit 3B, and the control unit 5 controls the discharge circuit 3B.
  • a function equivalent to this function may be provided in the IC 3C.
  • the IC 3C may be configured as a control circuit such as a microcomputer so that the output voltage of the power supply unit 91 and the output voltage of the power storage unit 7 can be grasped.
  • 4 shows a configuration obtained by changing FIG. 3, but the configurations shown in FIGS. 1 and 2 can be similarly changed.
  • the IC 3C is provided in the discharge circuit 3B.
  • the IC is provided in the charging circuit 3A, and the function equivalent to the function for controlling the charging circuit 3A by the control unit 5 is provided in the charging circuit. It may be provided in the IC.

Abstract

電源部からの電力供給が途絶えた場合であっても電力供給対象への電力供給を途切れさせることなく供給源を蓄電部に切り替えることが可能な装置を、より簡易な構成で実現する。 バックアップ装置(1)は、電源部(91)と負荷(93)との間に設けられ、電源部(91)からの電力供給が正常状態であるときに電源部(91)の出力に基づく電圧が印加される配線部(81)と、蓄電部(7)と配線部(81)との間に設けられた配線部(82)と、配線部(81)と配線部(82)の間に設けられるダイオード(80)とを備える。ダイオード(80)は、配線部(81)の電圧よりも配線部(82)の電圧が小さい場合に配線部(82)から配線部(81)に電流が流れることを制限し、配線部(81)の電圧よりも配線部(82)の電圧が大きい場合に配線部(82)から配線部(81)に電流が流れることを許容する。

Description

車載用のバックアップ装置
 本発明は、車載用電源部をバックアップする車載用のバックアップ装置に関するものである。
 車載用電源システムとして、電源部であるバッテリに失陥等が発生した場合に蓄電部であるコンデンサの出力電圧に基づいて昇降圧回路で調節した電圧を負荷に印加する技術が知られている。このシステムはバッテリが失陥したことを検知した後、コンデンサの出力電圧に基づいて昇降圧回路で調節した電圧を負荷に印加することになるため、負荷に印加する電圧が、僅かな間、途切れるおそれがある。この問題点を解決するため、特許文献1では昇圧回路に平滑コンデンサを設けている。これにより、特許文献1ではバッテリが失陥した後、コンデンサの出力電圧を昇圧回路で調節して負荷に印加するまでの時間、蓄電された平滑コンデンサの出力電圧を負荷に印加することができる。
特許第5618024号公報
 しかし、特許文献1で開示されるシステムは、電力の供給対象である負荷の消費電力が大きい場合、より大容量の平滑コンデンサを設ける必要があるため、複数の平滑コンデンサを設けたり、より大型の平滑コンデンサを設けたりする必要がある。このため、特許文献1で開示されるシステムでは、負荷の消費電力が大きい場合に回路規模の大型化を招きやすく、消費電力が大きくなるほどこの問題は顕著となる。
 本発明は上記した事情に基づいてなされたものであり、電源部からの電力供給が途絶えた場合であっても電力供給対象への電力供給を途切れさせることなく供給源を蓄電部に切り替えることが可能な装置を、より簡易な構成で実現することを目的とする。
 本発明は、
 電力供給対象へ電力を供給する電源部と、少なくとも前記電源部からの電力供給が途絶えたときに電力供給源となる蓄電部とを備えた車載用電源システムのバックアップ装置であって、
 前記電源部と前記電力供給対象との間に設けられ、前記電源部からの電力供給が正常状態であるときに前記電源部の出力電圧に基づく電圧が印加される第1導電路と、
 前記蓄電部と前記第1導電路との間に設けられる第2導電路と、
 前記第1導電路と前記第2導電路との間に設けられるとともに、前記第1導電路の電圧よりも前記第2導電路の電圧が小さい場合に前記第2導電路から前記第1導電路に電流が流れることを制限し、前記第1導電路の電圧よりも前記第2導電路の電圧が大きい場合に前記第2導電路から前記第1導電路に電流が流れることを許容する素子部と、
を有する。
 このバックアップ装置は、電源部が正常状態のときには電源部を供給源とし、且つ第1導電路を経路として電力供給対象に電力を供給することができる。更に、素子部を介して第1導電路に電力を供給し得る蓄電部が設けられているため、電源部の失陥などにより電源部からの電力が第1導電路に供給されないときには、蓄電部からの電力を電力供給対象に供給するようにバックアップを行うことができる。更に、素子部は、第1導電路の電圧よりも第2導電路の電圧が小さい場合に第2導電路から第1導電路に電流が流れることを制限し、第1導電路の電圧よりも第2導電路の電圧が大きい場合に第2導電路から第1導電路に電流が流れることを許容する構成をなす。このように素子部が構成されるため、電源部からの電力供給によって第1導電路の電圧が第2導電路よりも大きくなっている場合(第1導電路の電圧よりも第2導電路の電圧が小さい場合)には、蓄電部から第2導電路を介して第1導電路に電流が流れ込むことを防止することができる。つまり、電源部からの電力供給が正常状態のときには蓄電部の放電を抑えることができる。一方、電源部の失陥等によって第1導電路の電圧が低下し、第1導電路の電圧よりも第2導電路の電圧が大きくなった場合には、即座に蓄電部からの放電電流を第2導電路を介して第1導電路に流すことができる。
 このように、電源部からの電力供給が途絶えた場合であっても電力供給対象への電力供給を途切れさせることなく供給源を蓄電部に切り替えることができる。
実施例1のバックアップ装置を備えた車載用電源システムを概略的に示す回路図である。 実施例2のバックアップ装置を備えた車載用電源システムを概略的に示す回路図である。 実施例3のバックアップ装置を備えた車載用電源システムを概略的に示す回路図である。 実施例4のバックアップ装置を備えた車載用電源システムを概略的に示す回路図である。
 ここで、本発明の望ましい例を示す。但し、本発明は以下の例に限定されない。
 本発明のバックアップ装置、蓄電部と第1導電路との間において第2導電路に対して並列に設けられ、蓄電部からの出力電圧に基づき第1導電路に向けて設定された目標電圧を出力する放電動作及び放電動作を停止させる停止動作を行う放電回路と、放電回路を制御する制御部と、を備え得る。制御部は、少なくとも電源部から第1導電路への電力供給が停止した場合に放電回路に放電動作を行わせるように機能し得る。
 このように構成されたバックアップ装置は、放電回路の放電動作によって設定された目標電圧を第1導電路に印加することができる。仮に、電源部に失陥等が生じてから放電回路によって第1導電路に目標電圧が印加されるまで時間を要しても、失陥等が生じた直後から第2導電路を介して即座に電力が供給されるため電力の途切れをより確実に防ぐことができる。
 本発明のバックアップ装置は、電源部が満充電であるときに電源部の出力電圧に基づいて第1導電路に印加される電圧よりも蓄電部の満充電時の出力電圧のほうが小さくなっていてもよい。素子部は、アノードが第2導電路を介して蓄電部に電気的に接続され且つカソードが第1導電路に電気的に接続されるダイオードであってもよい。
 このように構成されたバックアップ装置は、電源部からの電力供給が正常状態のときには、ダイオードのアノード側に配置される第2導電路の電圧のほうがカソード側に配置される第1導電路の電圧よりも小さくなるため、第2導電路から第1導電路に電流が流れることを制限することができる。また、電源部からの電力供給が途絶えたときには、ダイオードのアノード側に配置される第2導電路の電圧のほうがカソード側に配置される第1導電路の電圧よりも大きくなるため、第2導電路から第1導電路に即座に電流を流すことができる。また、このような機能を、ダイオードを主体としてより簡易に実現することができる。
 電源部が満充電であるときに電源部の出力電圧に基づいて第1導電路に印加される電圧よりも蓄電部の満充電時の出力電圧のほうが大きくなっていてもよい。蓄電部と第2導電路との間には、蓄電部側にカソードが電気的に接続され且つ素子部側にアノードが電気的に接続されたツェナーダイオードが設けられていてもよい。素子部は、アノードが第2導電路に電気的に接続され且つカソードが第1導電路に電気的に接続されるダイオードであってもよい。
 このように構成されたバックアップ装置は、ツェナーダイオードの存在により、第2導電路に印加される電圧(蓄電部からの電力供給に基づき、ツェナーダイオードを介して印加される電圧)を下げることができる。このように下げられる第2導電路の電圧が、電源部からの電力供給が正常状態のときに第1導電路に印加される電圧を下回る関係であれば、第2導電路側から第1導電路側への流れ込みを防ぐことができ、正常状態のときの蓄電部の放電を防ぐことができる。このように、蓄電部の満充電時の電圧が高い構成であっても蓄電部の放電を防ぎやすい構成となる。
 電源部が満充電であるときに電源部の出力電圧に基づいて第1導電路に印加される電圧よりも蓄電部の満充電時の出力電圧のほうが大きくなっていてもよい。蓄電部と第2導電路との間に設けられるとともに、蓄電部側にカソードが電気的に接続され且つ素子部側にアノードが電気的に接続されたツェナーダイオードと、蓄電部と第2導電路との間に設けられるとともに、ツェナーダイオードの降伏時にオン動作して蓄電部と第2導電路との間を導通させるスイッチング素子と、を有していてもよい。素子部は、アノードが第2導電路に電気的に接続され且つカソードが第1導電路に電気的に接続されるダイオードであってもよい。
 このように構成されたバックアップ装置は、ツェナーダイオードの存在により、第2導電路に印加される電圧(蓄電部からの電力供給に基づき、ツェナーダイオードを介して印加される電圧)を下げることができる。このように下げられる第2導電路の電圧が、電源部からの電力供給が正常状態のときに第1導電路に印加される電圧を下回る関係であれば、第2導電路側から第1導電路側への流れ込みを防ぐことができ、正常状態のときの蓄電部の放電を防ぐことができる。一方、電源部に失陥等が生じることで第1導電路の電圧が第2導電路の電圧を下回った場合、蓄電部側と第2導電路との間の電位差が大きくなり、ツェナーダイオードの降伏によって蓄電部から第1導電路側へ電流が流れ込む。更に、ツェナーダイオードの降伏に応じてスイッチング素子がオン動作するため、ツェナーダイオードを介さずに流れる電流(スイッチング素子を介して流れる電流)を大きくすることができる。これにより、ツェナーダイオードに大きな電流が流れることに起因するツェナーダイオードの発熱を抑制することができる。
 以下、本発明を具体化した実施例1~4について説明する。
 <実施例1>
 図1に、実施例1に係る車載用のバックアップ装置1を備えた車載用電源システム100のブロック図を示す。車載用電源システム100は、負荷93(電力供給対象)へ電力を供給するための主電源となる電源部91と、少なくとも電源部91からの電力供給が途絶えたときに電力供給源となる蓄電部7と、電源部91からの電力供給が途絶えたときに蓄電部7からの放電を迅速に行う機能を備えたバックアップ装置1とを有しており、電源部91又は蓄電部を電力供給源として負荷93に電力を供給するシステムとして構成されている。
 この車載用電源システム100は、電源部91からの電力供給が正常状態のときに電源部91の出力電圧に基づく電圧を配線部81(第1導電路)に印加し、電源部91から配線部81を介して負荷93(電力供給対象)に電力を供給する構成をなす。本構成において「電源部91からの電力供給が正常状態のとき」とは、電源部91の出力電圧が「所定の値」を超える場合であり、具体的には、電源部91の出力電圧に基づいて配線部81(第1導電路)に印加される電圧(具体的には、電源部91から配線部83及びダイオード83Aを介して供給される電力に基づいて配線部81に印加される電圧)が蓄電部7の出力電圧に基づいて配線部82に印加される電圧よりも大きい場合である。
 バックアップ装置1は、放電回路3Bを有し、放電回路3Bによって蓄電部7の放電と放電停止とを切り替え、放電時には蓄電部7からの電力を負荷93に供給し得る構成となっている。
 電源部91は、例えば、鉛バッテリ等の公知の車載バッテリとして構成されている。電源部91は、高電位側の端子が配線部85及び配線部83に電気的に接続され、配線部85及び配線部83に対して所定の出力電圧(以降、+B電圧ともいう。)を印加する。
 蓄電部7は、例えば、電気二重層キャパシタ(EDLC)等の公知の蓄電手段によって構成されている。蓄電部7は充放電回路部3に電気的に接続されており、充放電回路部3によって充電又は放電がなされる。なお、実施例1において、蓄電部7の満充電時の電圧は、電源部91の満充電時の電圧よりも大きくなっている。
 負荷93は電力供給対象の一例に相当し、公知の車載用電気部品として構成されている。負荷93は、例えば、シフトバイワイヤシステムにおけるECUやアクチュエータ等、電源部91が失陥した場合でも電力供給が望まれる電気部品が好適例である。負荷93は上述した正常状態のときには電源部91から供給される電力に基づいて動作し、異常状態のときには蓄電部7から供給される電力に基づいて動作する。
 IGリレー6は、車両に設けられた操作部(図示せず)に対してエンジンを始動させるための所定の始動操作(イグニッションオン操作(IGオン操作))がなされた場合にオン状態に切り替わり、エンジンを停止させるための所定の停止操作(イグニッションオフ操作(IGオフ操作))がなされた場合にオフ状態に切り替わるリレーである。このIGリレー6は、オン状態のときに通電状態となり、配線部85と充電回路側導電路21とを導通させる。このようなIGリレー6のオン動作により、電源部91の電源電圧(+B電圧)が充電回路側導電路21に供給される。IGリレー6は、オフ状態のときに非通電状態となり、このときには配線部85に印加された電源電圧(+B電圧)は充電回路側導電路21に供給されない。なお、以降の説明において、IGリレー6を介して充電回路側導電路21に印加される電源電圧(+B電圧)をIG電圧ともいう。
 バックアップ装置1は、主として、充電回路側導電路21、放電回路側導電路22、蓄電部側導電路23、充放電回路部3、配線部81、配線部83、補助回路部84、制御部5などを備える。
 充電回路側導電路21は、イグニッションリレー6(以下、IGリレー6ともいう)のオン動作時(導通動作時)に配線部85に導通する導電路であり、充電回路3Aに対する入力側の導電路である。
 放電回路側導電路22は、放電回路3Bから配線部81に電流を流すときの経路となる導電路である。また、放電回路側導電路22にはダイオード22Aが設けられている。ダイオード22Aはアノードが放電回路側導電路22を介して放電回路3Bに電気的に接続され、カソードが配線部81を介して負荷93に電気的に接続されている。このようにダイオード22Aが設けられているため、配線部81側から放電回路3B側に電流が流れ込まず、放電回路3Bの放電動作によって放電回路側導電路22の電圧が配線部81の電圧よりも大きくなった場合には放電回路3Bからの出力電流が配線部81に流れ込むようになっている。
 蓄電部側導電路23は、蓄電部7に電気的に接続されるととともに充電回路3Aから蓄電部7への充電経路及び蓄電部7から放電回路3Bへの放電経路となる導電路である。
 充放電回路部3は充電回路3Aと放電回路3Bとを有し、電源部91からの電力に基づいて蓄電部7を充電する充電動作と、蓄電部7を放電させる放電動作とを行い得る。充電回路3Aによる充電動作は制御部5によって制御され、放電回路3Bによる放電動作も制御部5によって制御される。
 充電回路3Aには、制御部5によって、蓄電部7の充電を指示する充電指示信号、又は蓄電部7の充電停止を指示する充電停止信号が与えられる。充電回路3Aは、例えば、昇圧型DCDCコンバータ等の公知の充電回路として構成されており、制御部5から充電回路3Aに対して充電指示信号が与えられているときに電源部91から充電回路側導電路21を介して入力される電源電圧を昇圧する電圧変換動作を行い、その昇圧した電圧を蓄電部側導電路23を介して蓄電部7に印加する。制御部5から充電回路3Aに対して充電停止信号が与えられているときには、充電回路3Aは充電動作を行わず、このときには、充電回路側導電路21と蓄電部側導電路23とを非導通状態とする。
 放電回路3Bは、蓄電部7と配線部81(第1導電路)との間(具体的には、蓄電部側導電路23と配線部81との間)において配線部82(第2導電路)に対して並列に設けられ、蓄電部7を放電させる放電動作と、蓄電部7の放電を停止させる放電停止動作とを行い得る。放電回路3Bは、例えば昇降圧型DCDCコンバータ等の公知の放電回路として構成される。この放電回路3Bは、制御部5から放電指示信号が与えられている場合、蓄電部側導電路23に印加された入力電圧(蓄電部7からの出力電圧)に基づき、配線部81(第1導電路)に向けて設定された目標電圧を出力する放電動作(具体的には、放電回路側導電路22に対し制御部5で指示される目標電圧を印加する放電動作)を行い、制御部5から放電停止信号が与えられている場合には、このような放電動作を停止させ、蓄電部側導電路23と放電回路側導電路22との間を非導通状態とする。
 配線部83は電源部91と配線部81との間に設けられており、電源部91の出力電圧が印加される経路として構成されている。配線部83にはダイオード83Aが設けられ、ダイオード83Aはアノードが配線部83を介して電源部91に電気的に接続され、カソードが配線部81に電気的に接続されている。このダイオード83Aは、電源部91から配線部81側への電流の流れ込みを許容し、配線部81から電源部91側への電流の流れ込みを遮断する。例えば、配線部83に地絡等の異常が発生しても、配線部81から配線部83側へは電流が流れ込まないようになっている。
 補助回路部84は、蓄電部側導電路23と配線部81との間に設けられ、電源部91から配線部81への電力供給が途絶えたときに蓄電部7からの電力を供給する経路として構成されている。補助回路部84は、配線部82、ダイオード80、ツェナーダイオード84C、スイッチング素子84E、抵抗部84Dを備えており、放電回路3Bと並列に設けられている。
 配線部82は、第2導電路の一例に相当し、蓄電部7と配線部81(第1導電路)との間に設けられ、蓄電部7の出力電圧に応じた電圧が印加され得る導電路となっている。
 ダイオード80は素子部の一例に相当し、配線部81(第1導電路)と配線部82(第2導電路)との間に設けられるとともに、アノードが配線部82に電気的に接続され、カソードが配線部81に電気的に接続されている。このダイオード80は、配線部81側から配線部82側へは電流を流さず、配線部82の電圧が配線部81の電圧よりも大きい場合に配線部82から配線部81に電流が流れることを許容する。また、配線部81の電圧よりも配線部82の電圧が小さい場合には、配線部82から配線部81に電流が流れることを制限し、配線部82から配線部81への電流の流れ込みを遮断する。
 補助回路部84はダイオード80と蓄電部側導電路23との間に設けられている。補助回路部84は、ツェナーダイオード84C、抵抗部84D、及びスイッチング素子84Eを具備している。ツェナーダイオード84Cはカソードが蓄電部側導電路23に電気的に接続され、アノードが抵抗部84Dの一端及びスイッチング素子84Eのゲートに電気的に接続されている。抵抗部84Dはツェナーダイオード84C側とは反対の他端が配線部82に電気的に接続されている。つまり、蓄電部側導電路23と配線部82との間にツェナーダイオード84Cと抵抗部84Dとが直列に接続されている。
 スイッチング素子84Eは、Nチャネル型のMOSFETとして構成され、ドレインが蓄電部側導電路23に電気的に接続されるとともに蓄電部側導電路23を介してツェナーダイオード84Cのカソード及び蓄電部7に電気的に接続されている。スイッチング素子84Eのソースは配線部82に電気的に接続されるとともに配線部82を介してダイオード80のアノードに電気的に接続されている。このスイッチング素子84Eは、ゲートがツェナーダイオード84Cのアノード及び抵抗部84Dの一端に電気的に接続されているため、ツェナーダイオード84Cが降伏してツェナーダイオード84C及び抵抗部84Dに電流が流れた場合、ゲートソース間電圧VGSが所定閾値を超えたときにオン動作し、導通状態となる。
 制御部5は、例えばマイクロコンピュータとして構成されており、CPU等の演算装置、ROM又はRAM等のメモリ、AD変換器等を有している。制御部5には配線部83の電圧(即ち、電源部91の出力電圧値)が入力され、制御部5は配線部83の電圧を継続的に監視し得る構成となっている。なお、図1で示す構成はあくまで一例であり、制御部5が電源部91の出力電圧を検出し得る構成であればよく、電源部91に電気的に接続された経路であれば他の位置の電圧を監視してもよい。また、電源部91に電気的に接続された経路の電圧を示す値を制御部5に入力する構成は、図1のように経路の電圧を直接制御部5に入力する構成であってもよく、経路の電圧を分圧回路等によって分圧した電圧を制御部5に入力してもよい。
 制御部5は充放電回路部3による充電動作及び放電動作を制御することができる。具体的には、制御部5は充電回路3Aに充電指示信号又は充電停止信号を与えることができ、放電回路3Bに放電指示信号又は放電停止信号を与えることができる。
 次に、バックアップ装置1の動作について説明する。
 車載用電源システム100が搭載された車両内においてIGオン操作(イグニッションスイッチをオン動作させるためのオン操作)がなされると、IGリレー6がオフ状態からオン状態に切り替わり、配線部85と充電回路側導電路21とが導通する。これにより、IG電圧がバックアップ装置1に印加される。
 制御部5は、少なくともイグニッションスイッチがオン状態となってからオフ状態となるまでの間、電源部91の出力電圧を監視する。バックアップ装置1では、蓄電部7の満充電時の電圧V2からツェナーダイオード84Cの降伏電圧VZを差し引いた値(V2-VZ)よりも大きく且つ電源部91の満充電時の電圧よりも小さい値として所定の閾値Vthが定められ、制御部5は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きいか否かを継続的に監視している。なお、配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合とは、電源部91から配線部81に適正に電力が供給されている状態であり、且つ、配線部82から配線部81への電流の流れ込みが遮断されている状態である。
 充電回路3Aによる充電動作は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きい場合において所定の充電開始時(例えばイグニッションスイッチがオン状態になった直後など)に実行され、蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達するまで制御部5から充電回路3Aに対して充電指示信号が与えられる。この「所定の目標電圧」は、蓄電部7の「満充電時の出力電圧」の一例に相当し、本説明ではV2としている。本構成では、所定の充電開始時に充電動作が開始されて蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達した後、所定の放電開始時(放電回路3Bによる放電動作が開始する時、又は配線部82を介して配線部81に放電電流が流れ始める時)までは、蓄電部7の出力電圧(充電電圧)は所定の目標電圧(満充電時の出力電圧)で維持される。そして、この所定の目標電圧(蓄電部7の満充電時の出力電圧)は、電源部91が満充電であるときに電源部91の出力電圧に基づいて配線部81(第1導電路)に印加される電圧よりも大きくなっている。
 ここで、電源部91からの電力供給が正常状態である場合について説明する。
 イグニッションスイッチがオン状態となっている場合(IGリレー6がオン状態となっている場合)、配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きければ電源部91からの電力供給が正常であるといえる。制御部5は、IGリレー6がオン状態となっている場合において配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合、放電回路3Bを放電停止状態で維持し、蓄電部側導電路23と放電回路側導電路22との間の導通を遮断する。
 また、IGリレー6がオン状態となっている場合において配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合、配線部82から配線部81への電流の流れ込みも遮断される。本構成では、蓄電部7と配線部82(第2導電路)との間にツェナーダイオード84Cと抵抗部84Dが直列に設けられ、蓄電部7側にツェナーダイオード84Cのカソードが電気的に接続され且つダイオード80側にアノードが電気的に接続されている。そして、蓄電部7の満充電時の電圧V2からツェナーダイオード84Cの降伏電圧VZを差し引いた値(V2-VZ)よりも閾値Vthのほうが大きくなっているため、少なくとも配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きければ、蓄電部側導電路23と配線部82との間の電位差はツェナーダイオード84Cの降伏電圧を超えず、ツェナーダイオード84C及び抵抗部84Dには電流が流れない。また、ツェナーダイオード84C及び抵抗部84Dに電流が流れない状態では、スイッチング素子84Eがオン動作しないため、蓄電部側導電路23と配線部82の間は非通電状態で維持される。
 このように、IGリレー6がオン状態となっている場合において電源部91からの電力供給が正常状態である間は、蓄電部7による電力供給を、放電回路3Bの経路からも配線部82の経路からも行えないため、蓄電部7は放電停止状態で維持され、電源部91のみの電力によって負荷93が動作することになる。
 そして、このような正常状態のままIGオフ操作(イグニッションスイッチをオフ動作させる操作)がなされると、IGリレー6がオン状態からオフ状態に切り替わり、配線部85と充電回路側導電路21の間の導通が遮断される。なお、IGリレー6がオン状態からオフ状態に切り替わった後、放電回路3Bを動作させて放電を行い、蓄電部7の出力電圧(充電電圧)をIGリレー6がオン状態のときの電圧V2よりも低い値で維持してもよい。
 次に、イグニッションスイッチがオン状態のときに正常状態から異常状態に変化した場合の動作について説明する。
 イグニッションスイッチがオン状態のとき(即ち、IGリレー6がオン状態のとき)に電源部91からの電力供給の異常(例えば、電源部91付近での地絡発生や断線など)が生じ、電源部91から配線部81への電力供給が途絶えると、配線部83に印加された電圧(+B電圧)が閾値Vthよりも大きい値から閾値Vth以下の値に変化する。制御部5は、このように電源部91から配線部81(第1導電路)への電力供給が停止した場合(具体的には、配線部83の電圧が閾値Vth未満となった場合)、放電回路3Bに与える信号を放電停止信号から放電指示信号に切り替え、放電回路側導電路22に所定の目標電圧(例えば、満充電時の電源部91の出力電圧と同等の電圧)を印加するように放電回路3Bに放電動作を行わせる。
 本構成では、放電回路3Bは、蓄電部側導電路23に印加される電圧を入力電圧とし、放電回路側導電路22に所望の電圧を出力する昇降圧型のDCDCコンバータとして構成されており、蓄電部側導電路23に印加される蓄電部7の出力電圧(充電電圧)が予め定められた目標電圧よりも低い場合、制御部5は、放電回路3Bに昇圧動作を行わせ、放電回路3Bによって放電回路側導電路22に所定の目標電圧を印加する。また、蓄電部側導電路23に印加される蓄電部7の出力電圧(充電電圧)が予め定められた目標電圧よりも高い場合、制御部5は、放電回路3Bに降圧動作を行わせ、放電回路3Bによって放電回路側導電路22に所定の目標電圧を印加する。なお、制御部5は、蓄電部側導電路23の電圧(蓄電部7の出力電圧)を検出する機能も有する。
 ところで、本構成では、配線部83の電圧が閾値Vth未満となったことを制御部5が検出し、その後、制御部5が放電指示信号を開始してから放電回路3Bが放電動作を行うことになるため、電力供給の異常が発生した時点から放電回路3Bによって目標電圧が印加されるまで時間がかかってしまう。そこで、本構成では、このような異常発生時に配線部82を介して即座に電力供給を行い得る構成を採用することで、この問題を解消している。
 本構成では、電源部91からの電力供給が途絶えることによって配線部81の電圧が正常状態のときよりも大きく低下した場合、ダイオード80のアノード側に接続される配線部82の電圧がカソード側に接続される配線部81の電圧よりも大きくなるため、即座に配線部82から配線部81に電流が流れる。このように、即座に配線部81に電流を流すことができるため、放電回路3Bの放電動作を開始するまでの間も負荷93に対する電力供給が維持される。
 また、このように配線部81の電圧が正常状態のときよりも大きく低下した場合、蓄電部側導電路23と配線部82の電位差が大きくなり、ツェナーダイオード84Cの両端の電位差はツェナー電圧より大きい値となるため、ツェナーダイオード84Cの降伏によってツェナーダイオード84C及び抵抗部84Dに電流が流れる。そして、スイッチング素子84Eのゲートソース間の電位差が増大することによって、スイッチング素子84Eがオン動作すると、スイッチング素子84Eに電流が流れ、ツェナーダイオード84Cの電流は抑制される。このように、スイッチング素子84Eはツェナーダイオード84Cの降伏時にオン動作して蓄電部7と配線部82の間を導通させ、ツェナーダイオード84Cの電流を抑制するように機能する。
 このように、本構成のバックアップ装置1は、電源部91が正常状態のときには電源部91を供給源とし、且つ配線部81(第1導電路)を経路として負荷93(電力供給対象)に電力を供給することができる。更に、ダイオード80(素子部)を介して配線部81(第1導電路)に電力を供給し得る蓄電部7が設けられているため、電源部91の失陥などにより電源部91からの電力が配線部81(第1導電路)に供給されないときには、蓄電部7からの電力を電力供給対象に供給するようにバックアップを行うことができる。更に、ダイオード80(素子部)は、配線部81の電圧よりも配線部82の電圧が小さい場合に配線部82から配線部81に電流が流れることを制限し、配線部81の電圧よりも配線部82の電圧が大きい場合に配線部82から配線部81に電流が流れることを許容する構成をなす。このようにダイオード80(素子部)が構成されるため、電源部91からの電力供給によって配線部81の電圧が配線部82よりも大きくなっている場合(配線部81の電圧よりも配線部82の電圧が小さい場合)には、蓄電部7から配線部82を介して配線部81に電流が流れ込むことを防止することができる。つまり、電源部91からの電力供給が正常状態のときには蓄電部7の放電を抑えることができる。一方、電源部91の失陥等によって配線部81の電圧が低下し、配線部81の電圧よりも配線部82の電圧が大きくなった場合には、即座に蓄電部7からの放電電流を配線部82を介して配線部81に流すことができる。
 このように、電源部91からの電力供給が途絶えた場合であっても負荷93(電力供給対象)への電力供給を途切れさせることなく供給源を蓄電部7に切り替えることができる。
 本構成のバックアップ装置1は、放電回路3Bと、放電回路3Bを制御する制御部5とを備える。放電回路3Bは、蓄電部7と配線部81との間において配線部82に対して並列に設けられ、蓄電部7からの出力電圧に基づき配線部81に向けて設定された目標電圧を出力する放電動作及び放電動作を停止させる停止動作を行う。制御部5は、少なくとも電源部91から配線部81への電力供給が停止した場合に放電回路3Bに放電動作を行わせるように機能する。
 このように構成されたバックアップ装置1は、放電回路3Bの放電動作によって設定された目標電圧を配線部81に印加することができる。仮に、電源部91に失陥等が生じてから放電回路3Bによって配線部81に目標電圧が印加されるまで時間を要しても、失陥等が生じた直後から配線部82を介して即座に電力が供給されるため電力の途切れをより確実に防ぐことができる。
 本構成のバックアップ装置1は、電源部91が満充電であるときに電源部91の出力電圧に基づいて配線部81に印加される電圧よりも蓄電部7の満充電時の出力電圧V2のほうが大きくなっている。更に、バックアップ装置1は、蓄電部7と配線部82の間に設けられるとともに蓄電部7側にカソードが電気的に接続され且つダイオード80側にアノードが電気的に接続されたツェナーダイオード84Cと、蓄電部7と配線部82の間に設けられるとともにツェナーダイオード84Cの降伏時にオン動作して蓄電部7と配線部82の間を導通させるスイッチング素子84Eとを有する。
 このように構成されたバックアップ装置1は、ツェナーダイオード84Cの存在により、配線部82に印加される電圧(蓄電部7からの電力供給に基づき、ツェナーダイオード84Cを介して印加される電圧)を下げることができる。このように下げられる配線部82の電圧が、電源部91からの電力供給が正常状態のときに配線部81に印加される電圧を下回る関係であれば、配線部82側から配線部81側への流れ込みを防ぐことができ、正常状態のときの蓄電部7の放電を防ぐことができる。一方、電源部91に失陥等が生じることで配線部81の電圧が配線部82の電圧を下回った場合、蓄電部7側と配線部82との間の電位差が大きくなり、ツェナーダイオード84Cの降伏によって蓄電部7から配線部81側へ電流が流れ込む。更に、ツェナーダイオード84Cの降伏に応じてスイッチング素子84Eがオン動作するため、ツェナーダイオード84Cを介さずに流れる電流(スイッチング素子84Eを介して流れる電流)を大きくすることができる。これにより、ツェナーダイオード84Cに大きな電流が流れることに起因するツェナーダイオード84Cの発熱を抑制することができる。
 <実施例2>
 次に、本発明を具体化した実施例2について説明する。
 実施例2のバックアップ装置201を用いた車載用電源システム200を図2に示す。この車載用電源システム200及びバックアップ装置201は、補助回路部84に代えてツェナーダイオード184Cが設けられている点が実施例1と異なっており、他の回路構成は実施例1と同一である。また、制御部5による様々な制御も実施例1と同様に行うことができる。実施例2の車載用電源システム200において、実施例1と同一の構成をなす部分については実施例1と同一の符号を付し、詳細な説明を省略する。
 本構成でも、配線部81(第1導電路)は、電源部91と負荷93(電力供給対象)との間に設けられ、電源部91からの電力供給が正常状態であるときに電源部91の出力電圧に基づく電圧が印加される構成をなす。また、配線部82は、蓄電部7と配線部81との間に設けられ、蓄電部7の出力電圧に応じた電圧が印加される構成をなす。また、ダイオード80が素子部の一例として機能し、配線部81と配線部82の間に設けられ、配線部81の電圧よりも配線部82の電圧が小さい場合に配線部82から配線部81に電流が流れることを制限し、配線部81の電圧よりも配線部82の電圧が大きい場合に配線部82から配線部81に電流が流れることを許容する構成をなす。
 本構成では、蓄電部7と配線部82(第2導電路)の間にツェナーダイオード184Cが設けられ、ツェナーダイオード184Cは、蓄電部7側にカソードが電気的に接続され且つダイオード80側にアノードが電気的に接続されている。具体的には、蓄電部7の出力電圧が蓄電部側導電路23を介してツェナーダイオード184Cのカソードに印加され、ツェナーダイオード184Cのアノードは、配線部82を介してダイオード80側にアノードに電気的に接続されている。
 次に、バックアップ装置201の動作について説明する。
 本構成でも、車載用電源システム200が搭載された車両内においてIGオン操作(イグニッションスイッチをオン動作させるためのオン操作)がなされると、IGリレー6がオフ状態からオン状態に切り替わり、配線部85と充電回路側導電路21とが導通する。これにより、IG電圧がバックアップ装置201に印加される。
 そして、制御部5は、少なくともイグニッションスイッチがオン状態となってからオフ状態となるまでの間、電源部91の出力電圧を監視する。バックアップ装置201では、蓄電部7の満充電時の電圧V2からツェナーダイオード84Cの降伏電圧VZを差し引いた値(V2-VZ)よりも大きく且つ電源部91の満充電時の電圧よりも小さい値として所定の閾値Vthが定められ、制御部5は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きいか否かを継続的に監視している。この例でも、配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合とは、電源部91から配線部81に適正に電力が供給されている状態であり、且つ、配線部82から配線部81への電流の流れ込みが遮断されている状態である。
 本構成でも、充電回路3Aによる充電動作は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きい場合において所定の充電開始時(例えばイグニッションスイッチがオン状態になった直後など)に実行され、蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達するまで制御部5から充電回路3Aに対して充電指示信号が与えられる。この「所定の目標電圧」は、蓄電部7の「満充電時の出力電圧」の一例に相当し、本説明ではV2としている。本構成では、所定の充電開始時に充電動作が開始されて蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達した後、所定の放電開始時(放電回路3Bによる放電動作が開始する時、又は配線部82を介して配線部81に放電電流が流れ始める時)までは、蓄電部7の出力電圧(充電電圧)は所定の目標電圧(満充電時の出力電圧)で維持される。そして、この所定の目標電圧(蓄電部7の満充電時の出力電圧)は、電源部91が満充電であるときに電源部91の出力電圧に基づいて配線部81(第1導電路)に印加される電圧よりも大きくなっている。
 この例でも、イグニッションスイッチがオン状態となっている場合(IGリレー6がオン状態となっている場合)において配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合、放電回路3Bを放電停止状態で維持し、蓄電部側導電路23と放電回路側導電路22との間の導通を遮断する。また、この場合、配線部82から配線部81への電流の流れ込みも遮断される。本構成では、蓄電部7と配線部82(第2導電路)との間にツェナーダイオード184Cが設けられ、蓄電部7側にツェナーダイオード84Cのカソードが電気的に接続され且つダイオード80側にアノードが電気的に接続されている。そして、蓄電部7の満充電時の電圧V2からツェナーダイオード84Cの降伏電圧VZを差し引いた値(V2-VZ)よりも閾値Vthのほうが大きくなっているため、少なくとも配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きければ、蓄電部側導電路23と配線部82との間の電位差はツェナーダイオード84Cの降伏電圧を超えず、ツェナーダイオード84Cには電流が流れず、配線部82から配線部81への電流の流れ込みも生じない。
 一方、イグニッションスイッチがオン状態のとき(即ち、IGリレー6がオン状態のとき)に電源部91からの電力供給の異常(例えば、電源部91付近での地絡発生や断線など)が生じ、電源部91から配線部81への電力供給が途絶えると、配線部83に印加された電圧(+B電圧)が閾値Vth以上の値から閾値Vth未満の値に変化する。制御部5は、このように電源部91から配線部81(第1導電路)への電力供給が停止した場合(具体的には、配線部83の電圧が閾値Vth未満となった場合)、放電回路3Bに与える信号を放電停止信号から放電指示信号に切り替え、放電回路側導電路22に所定の目標電圧(例えば、満充電時の電源部91の出力電圧と同等の電圧)を印加するように放電回路3Bに放電動作を行わせる。このときの制御部5の制御及び放電回路3Bの動作は実施例1と同様である。
 本構成でも、電源部91からの電力供給が途絶えることによって配線部81の電圧が正常状態のときよりも大きく低下した場合、ダイオード80のアノード側に接続される配線部82の電圧がカソード側に接続される配線部81の電圧よりも大きくなるため、即座に配線部82から配線部81に電流が流れる。このように、即座に配線部81に電流を流すことができるため、放電回路3Bの放電動作を開始するまでの間も負荷93に対する電力供給が維持される。
 本構成のバックアップ装置201でも、ツェナーダイオード184Cの存在により、配線部82(第2導電路)に印加される電圧(蓄電部7からの電力供給に基づき、ツェナーダイオード184Cを介して印加される電圧)を下げることができるため、蓄電部7の満充電時の電圧が高い場合でも対応可能となる。このように下げられる配線部82の電圧が、電源部91からの電力供給が正常状態のときに配線部81(第1配線部)に印加される電圧を下回る関係であれば、配線部82側から配線部81側への流れ込みを防ぐことができ、正常状態のときの蓄電部7の放電を防ぐことができる。このように、蓄電部7の満充電時の電圧が高い構成であっても蓄電部7の放電を防ぎやすい構成となる。
 <実施例3>
 次に、本発明を具体化した実施例2について説明する。
 実施例3のバックアップ装置301を用いた車載用電源システム200を図2に示す。この車載用電源システム300及びバックアップ装置301は、蓄電部側導電路23とダイオード80の間の経路において補助回路部84を省略し、配線部82のみとした点が実施例1と異なっており、他の回路構成は実施例1と同一である。また、制御部5による様々な制御も実施例1と同様に行うことができる。実施例3の車載用電源システム300において、実施例1と同一の構成をなす部分については実施例1と同一の符号を付し、詳細な説明を省略する。
 本構成でも、配線部81(第1導電路)は、電源部91と負荷93(電力供給対象)との間に設けられ、電源部91からの電力供給が正常状態であるときに電源部91の出力電圧に基づく電圧が印加される構成をなす。また、配線部82は、蓄電部7と配線部81との間に設けられ、蓄電部7の出力電圧に応じた電圧が印加される構成をなす。また、ダイオード80が素子部の一例として機能し、配線部81と配線部82の間に設けられ、配線部81の電圧よりも配線部82の電圧が小さい場合に配線部82から配線部81に電流が流れることを制限し、配線部81の電圧よりも配線部82の電圧が大きい場合に配線部82から配線部81に電流が流れることを許容する構成をなす。
 次に、バックアップ装置301の動作について説明する。
 本構成でも、車載用電源システム300が搭載された車両内においてIGオン操作(イグニッションスイッチをオン動作させるためのオン操作)がなされると、IGリレー6がオフ状態からオン状態に切り替わり、配線部85と充電回路側導電路21とが導通する。これにより、IG電圧がバックアップ装置301に印加される。
 そして、制御部5は、少なくともイグニッションスイッチがオン状態となってからオフ状態となるまでの間、電源部91の出力電圧を監視する。バックアップ装置301では、蓄電部7の満充電時の電圧V2よりも大きく且つ電源部91の満充電時の電圧よりも小さい値として所定の閾値Vthが定められ、制御部5は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きいか否かを継続的に監視している。この例でも、配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合とは、電源部91から配線部81に適正に電力が供給されている状態であり、且つ、配線部82から配線部81への電流の流れ込みが遮断されている状態である。
 本構成でも、充電回路3Aによる充電動作は、配線部83の電圧(即ち電源部91の出力電圧)が閾値Vthよりも大きい場合において所定の充電開始時(例えばイグニッションスイッチがオン状態になった直後など)に実行され、蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達するまで制御部5から充電回路3Aに対して充電指示信号が与えられる。この「所定の目標電圧」は、蓄電部7の「満充電時の出力電圧」の一例に相当し、本説明ではV2としている。本構成では、所定の充電開始時に充電動作が開始されて蓄電部7の出力電圧(充電電圧)が所定の目標電圧に達した後、所定の放電開始時(放電回路3Bによる放電動作が開始する時、又は配線部82を介して配線部81に放電電流が流れ始める時)までは、蓄電部7の出力電圧(充電電圧)は所定の目標電圧(満充電時の出力電圧)で維持される。そして、この所定の目標電圧(蓄電部7の満充電時の出力電圧)は、電源部91が満充電であるときに電源部91の出力電圧に基づいて配線部81(第1導電路)に印加される電圧よりも小さくなっている。なお、本構成では、充電回路3Aは、少なくとも降圧動作を行い得る降圧型のDCDCコンバータとして構成することができ、電源部91の出力電圧よりも目標電圧(満充電時の出力電圧)が低い場合には、充電回路3Aの降圧動作によって蓄電部7に充電電流を供給することができる。
 この例でも、イグニッションスイッチがオン状態となっている場合(IGリレー6がオン状態となっている場合)において配線部83の電圧(電源部91の出力電圧)が閾値Vthよりも大きい場合、放電回路3Bを放電停止状態で維持し、蓄電部側導電路23と放電回路側導電路22との間の導通を遮断する。また、この場合、電源部91の電力に基づいて印加される配線部81の電圧のほうが蓄電部7の出力電圧が印加される配線部82の電圧よりも大きくなるため、配線部82から配線部81への電流の流れ込みも遮断される。
 一方、イグニッションスイッチがオン状態のとき(即ち、IGリレー6がオン状態のとき)に電源部91からの電力供給の異常(例えば、電源部91付近での地絡発生や断線など)が生じ、電源部91から配線部81への電力供給が途絶えると、配線部83に印加された電圧(+B電圧)が閾値Vth以上の値から閾値Vth未満の値に変化する。制御部5は、このように電源部91から配線部81(第1導電路)への電力供給が停止した場合(具体的には、配線部83の電圧が閾値Vth未満となった場合)、放電回路3Bに与える信号を放電停止信号から放電指示信号に切り替え、放電回路側導電路22に所定の目標電圧(例えば、満充電時の電源部91の出力電圧と同等の電圧)を印加するように放電回路3Bに放電動作を行わせる。このときの制御部5の制御及び放電回路3Bの動作は実施例1と同様である。
 本構成でも、電源部91からの電力供給が途絶えることによって配線部81の電圧が正常状態のときよりも大きく低下した場合、ダイオード80のアノード側に接続される配線部82の電圧がカソード側に接続される配線部81の電圧よりも大きくなるため、即座に配線部82から配線部81に電流が流れる。このように、即座に配線部81に電流を流すことができるため、放電回路3Bの放電動作を開始するまでの間も負荷93に対する電力供給が維持される。
 このように、本構成のバックアップ装置301は、電源部91からの電力供給が正常状態のときには、ダイオード80のアノード側に配置される配線部82の電圧のほうがカソード側に配置される配線部81の電圧よりも小さくなるため、配線部82から配線部81に電流が流れることを制限することができる。また、電源部91からの電力供給が途絶えたときには、ダイオード80のアノード側に配置される配線部82の電圧のほうがカソード側に配置される配線部81の電圧よりも大きくなるため、配線部82から配線部81に即座に電流を流すことができる。また、このような機能を、ダイオード80を主体としてより簡易に実現することができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例1~4に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 上述した実施例1~3では、電源部91に鉛バッテリ用いているが、この構成に限定されず、本明細書のいずれの例においても、鉛バッテリに代えて又は鉛バッテリと併用して電源部91に他の電源手段(公知の他の蓄電手段や発電手段など)を用いてもよい。電源部91を構成する電源手段の数は1つに限定されず、複数の電源手段によって構成されていてもよい。
 上述した実施例1~3では、蓄電部7に電気二重層キャパシタ(EDLC)を用いているが、この構成に限定されず、本明細書のいずれの例においても、蓄電部7にリチウムイオン電池、リチウムイオンキャパシタ、ニッケル水素充電池などの他の蓄電手段を用いてもよい。また、蓄電部7を構成する蓄電手段の数は1つに限定されず、複数の蓄電手段によって構成されていてもよい。
 上述した実施例1~3では、放熱回路のスイッチング素子として、MOSFETを例示したが、この構成に限定されず、公知の他の半導体スイッチング素子等を用いてもよい。具体的には、蓄電部側導電路23と配線部82の間に配されるツェナーダイオード84Cと並列に設けられ、ツェナーダイオード84Cの降伏時にオン動作して蓄電部側導電路23と配線部82との間を導通させるように設けられるスイッチング素子であればよい。
 上述した実施例1~3では、放電回路3Bとは別で制御部5を設けたが、図4のように、放電回路3B内にIC3Cを設け、制御部5によって放電回路3Bを制御するための機能と同等の機能をIC3C内に設けてもよい。この場合、IC3Cは、マイクロコンピュータなどの制御回路として構成し、電源部91の出力電圧や蓄電部7の出力電圧を把握し得る構成とすればよい。なお、図4は、図3を変更した構成であるが、図1、図2の構成も同様に変更することができる。また、図4の例では、放電回路3B内にIC3Cを設けているが、充電回路3A内にICを設け、制御部5によって充電回路3Aを制御するための機能と同等の機能を充電回路内のIC内に設けてもよい。
 1,201,301…バックアップ装置
 3B…放電回路
 7…蓄電部
 80…ダイオード(素子部)
 81…配線部(第1導電路)
 82…配線部(第2導電路)
 84C,184C…ツェナーダイオード
 84D…抵抗部
 84E…スイッチング素子
 91…電源部
 93…負荷(電力供給対象)

Claims (5)

  1.  電力供給対象へ電力を供給する電源部と、少なくとも前記電源部からの電力供給が途絶えたときに電力供給源となる蓄電部とを備えた車載用電源システムのバックアップ装置であって、
     前記電源部と前記電力供給対象との間に設けられ、前記電源部からの電力供給が正常状態であるときに前記電源部の出力電圧に基づく電圧が印加される第1導電路と、
     前記蓄電部と前記第1導電路との間に設けられる第2導電路と、
     前記第1導電路と前記第2導電路との間に設けられるとともに、前記第1導電路の電圧よりも前記第2導電路の電圧が小さい場合に前記第2導電路から前記第1導電路に電流が流れることを制限し、前記第1導電路の電圧よりも前記第2導電路の電圧が大きい場合に前記第2導電路から前記第1導電路に電流が流れることを許容する素子部と、
    を有する車載用のバックアップ装置。
  2.  前記蓄電部と前記第1導電路との間において前記第2導電路に対して並列に設けられ、前記蓄電部からの出力電圧に基づき前記第1導電路に向けて設定された目標電圧を出力する放電動作及び前記放電動作を停止させる停止動作を行う放電回路と、
     前記放電回路を制御する制御部と、
    を備え、
     前記制御部は、少なくとも前記電源部から前記第1導電路への電力供給が停止した場合に前記放電回路に前記放電動作を行わせる請求項1に記載の車載用のバックアップ装置。
  3.  前記電源部が満充電であるときに前記電源部の出力電圧に基づいて前記第1導電路に印加される電圧よりも前記蓄電部の満充電時の出力電圧のほうが小さくなっており、
     前記素子部は、アノードが前記第2導電路を介して前記蓄電部に電気的に接続され且つカソードが前記第1導電路に電気的に接続されるダイオードである請求項1又は2に記載の車載用のバックアップ装置。
  4.  前記電源部が満充電であるときに前記電源部の出力電圧に基づいて前記第1導電路に印加される電圧よりも前記蓄電部の満充電時の出力電圧のほうが大きくなっており、
     前記蓄電部と前記第2導電路との間には、前記蓄電部側にカソードが電気的に接続され且つ前記素子部側にアノードが電気的に接続されたツェナーダイオードが設けられ、
     前記素子部は、アノードが前記第2導電路に電気的に接続され且つカソードが前記第1導電路に電気的に接続されるダイオードである請求項1又は2に記載の車載用のバックアップ装置。
  5.  前記電源部が満充電であるときに前記電源部の出力電圧に基づいて前記第1導電路に印加される電圧よりも前記蓄電部の満充電時の出力電圧のほうが大きくなっており、
     前記蓄電部と前記第2導電路との間に設けられるとともに、前記蓄電部側にカソードが電気的に接続され且つ前記素子部側にアノードが電気的に接続されたツェナーダイオードと、
     前記蓄電部と前記第2導電路との間に設けられるとともに、前記ツェナーダイオードの降伏時にオン動作して前記蓄電部と前記第2導電路との間を導通させるスイッチング素子と、
    を有し、
     前記素子部は、アノードが前記第2導電路に電気的に接続され且つカソードが前記第1導電路に電気的に接続されるダイオードである請求項1又は2に記載の車載用のバックアップ装置。
PCT/JP2017/030505 2016-09-06 2017-08-25 車載用のバックアップ装置 WO2018047636A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780024690.6A CN109075602A (zh) 2016-09-06 2017-08-25 车载用的备用装置
US16/086,872 US20190103758A1 (en) 2016-09-06 2017-08-25 Vehicle-mounted backup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016173511A JP6451708B2 (ja) 2016-09-06 2016-09-06 車載用のバックアップ装置
JP2016-173511 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018047636A1 true WO2018047636A1 (ja) 2018-03-15

Family

ID=61561993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030505 WO2018047636A1 (ja) 2016-09-06 2017-08-25 車載用のバックアップ装置

Country Status (4)

Country Link
US (1) US20190103758A1 (ja)
JP (1) JP6451708B2 (ja)
CN (1) CN109075602A (ja)
WO (1) WO2018047636A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080548A (ja) * 2020-11-18 2022-05-30 矢崎総業株式会社 電源制御装置
JP2022080550A (ja) * 2020-11-18 2022-05-30 矢崎総業株式会社 電源制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705357B2 (ja) * 2016-10-14 2020-06-03 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
JP7108962B2 (ja) * 2018-12-03 2022-07-29 株式会社オートネットワーク技術研究所 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
CN110061559B (zh) 2019-05-24 2022-01-25 联正电子(深圳)有限公司 离线式不间断电源及其控制方法
US11962183B2 (en) * 2019-07-05 2024-04-16 Panasonic Intellectual Property Management Co., Ltd. Backup power system
EP3796501A1 (en) * 2019-09-20 2021-03-24 Carrier Corporation Dual power supply switching circuit
CN113054735A (zh) 2019-12-26 2021-06-29 西安华为技术有限公司 一种电路模块以及电子设备
CN115552762A (zh) * 2020-05-20 2022-12-30 松下知识产权经营株式会社 备用电源系统以及移动体
JP2023094319A (ja) * 2021-12-23 2023-07-05 ミネベアミツミ株式会社 車両用電源装置及びドアラッチ装置
JP2023094318A (ja) * 2021-12-23 2023-07-05 ミネベアミツミ株式会社 車両用電源装置及びドアラッチ装置
JP7173421B1 (ja) * 2022-05-24 2022-11-16 株式会社オートネットワーク技術研究所 給電制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524096U (ja) * 1978-08-04 1980-02-16
JPH11252825A (ja) * 1998-02-25 1999-09-17 Clarion Co Ltd 車載用電源供給システム
JP2014033533A (ja) * 2012-08-03 2014-02-20 Panasonic Corp バックアップ電源装置およびこれを用いた自動車
JP2016134926A (ja) * 2015-01-15 2016-07-25 三菱電機株式会社 電力供給システムおよび二次電池の劣化診断方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364331A (ja) * 1991-06-11 1992-12-16 Oki Electric Ind Co Ltd バッテリーバックアップ装置
US5789900A (en) * 1994-12-05 1998-08-04 Fuji Photo Film Co., Ltd. Device for protecting a secondary battery from overcharge and overdischarge
GB9907021D0 (en) * 1999-03-27 1999-05-19 Koninkl Philips Electronics Nv Switch circuit and semiconductor switch for battery-powered equipment
KR100648135B1 (ko) * 2005-07-28 2006-11-24 (주)엡스코어 직류전원 보상용 무정전 전원공급장치
US7872447B2 (en) * 2006-12-25 2011-01-18 Panasonic Corporation Electrical storage apparatus for use in auxiliary power supply supplying electric power from electric storage device upon voltage drop of main power supply
JP5315621B2 (ja) * 2007-03-15 2013-10-16 富士電機株式会社 無停電電源装置
JP2009095209A (ja) * 2007-10-12 2009-04-30 Panasonic Corp 蓄電装置
WO2010026715A1 (ja) * 2008-09-08 2010-03-11 株式会社オートネットワーク技術研究所 車両用電源装置
US9553483B2 (en) * 2013-03-01 2017-01-24 Toshiba Corporation System and method for limiting inrush current in solid state drives
CN104426138A (zh) * 2013-08-20 2015-03-18 深圳市海洋王照明工程有限公司 可充电电池的过放保护电路
JP6412757B2 (ja) * 2014-09-30 2018-10-24 Fdk株式会社 電源装置
CN204216780U (zh) * 2014-11-14 2015-03-18 广东易事特电源股份有限公司 一种不间断电源的直流母线软启动电路
JP2016111724A (ja) * 2014-12-02 2016-06-20 株式会社東芝 直流電源装置
US10516294B2 (en) * 2015-02-09 2019-12-24 Eaton Intelligent Power Limited Uninterruptible constant current regulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524096U (ja) * 1978-08-04 1980-02-16
JPH11252825A (ja) * 1998-02-25 1999-09-17 Clarion Co Ltd 車載用電源供給システム
JP2014033533A (ja) * 2012-08-03 2014-02-20 Panasonic Corp バックアップ電源装置およびこれを用いた自動車
JP2016134926A (ja) * 2015-01-15 2016-07-25 三菱電機株式会社 電力供給システムおよび二次電池の劣化診断方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080548A (ja) * 2020-11-18 2022-05-30 矢崎総業株式会社 電源制御装置
JP2022080550A (ja) * 2020-11-18 2022-05-30 矢崎総業株式会社 電源制御装置
JP7136871B2 (ja) 2020-11-18 2022-09-13 矢崎総業株式会社 電源制御装置
JP7136870B2 (ja) 2020-11-18 2022-09-13 矢崎総業株式会社 電源制御装置

Also Published As

Publication number Publication date
CN109075602A (zh) 2018-12-21
JP2018042334A (ja) 2018-03-15
US20190103758A1 (en) 2019-04-04
JP6451708B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6451708B2 (ja) 車載用のバックアップ装置
US10889201B2 (en) Power redundancy system
CN109792160B (zh) 车载用的备用装置
CN109417292B (zh) 电源装置
JP6801528B2 (ja) 車載用電源部の制御装置及び車載用電源装置
JP6623937B2 (ja) リレー装置及び電源装置
WO2019208203A1 (ja) 車載用のバックアップ回路及び車載用のバックアップ装置
US20190237988A1 (en) Relay device and power supply device
WO2020116260A1 (ja) 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
WO2017086110A1 (ja) 充放電装置
US11052771B2 (en) Vehicle-mounted power supply device
EP3553907B1 (en) Power supply device
WO2019239842A1 (ja) 車載用の電源制御装置および車載用電源システム
JP2022150075A (ja) 電源切替装置
JP2018050355A (ja) 車載用非常電源装置
WO2018043482A1 (ja) 蓄電部制御装置
WO2024018614A1 (ja) 車載用制御装置
WO2021100479A1 (ja) 車載用電源制御装置、及び車載用電源装置
JP7173421B1 (ja) 給電制御装置
WO2022130924A1 (ja) 電源制御装置
WO2024024087A1 (ja) 車載用のバックアップ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848577

Country of ref document: EP

Kind code of ref document: A1