JP4326415B2 - 車両用の電源装置 - Google Patents

車両用の電源装置 Download PDF

Info

Publication number
JP4326415B2
JP4326415B2 JP2004199861A JP2004199861A JP4326415B2 JP 4326415 B2 JP4326415 B2 JP 4326415B2 JP 2004199861 A JP2004199861 A JP 2004199861A JP 2004199861 A JP2004199861 A JP 2004199861A JP 4326415 B2 JP4326415 B2 JP 4326415B2
Authority
JP
Japan
Prior art keywords
voltage
leakage
battery
chassis
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199861A
Other languages
English (en)
Other versions
JP2006025502A (ja
Inventor
公彦 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004199861A priority Critical patent/JP4326415B2/ja
Priority to DE102005031146A priority patent/DE102005031146B4/de
Priority to CNB2005100821837A priority patent/CN100511907C/zh
Priority to US11/172,824 priority patent/US7453232B2/en
Publication of JP2006025502A publication Critical patent/JP2006025502A/ja
Application granted granted Critical
Publication of JP4326415B2 publication Critical patent/JP4326415B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、ハイブリッドカーや電気自動車等の電動車両を走行させるモーターを駆動する電源装置であって、簡単な回路構成としながら、走行用バッテリの出力側の漏電を正確に検出できる車両用の電源装置に関する。
電動車両を走行させる電源装置は、出力を大きくするために電圧を高くする必要がある。出力が電圧と電流の積に比例すること、また電圧が高いほどモーター駆動時に有利であるからである。たとえば、ハイブリッドカーや電気自動車を走行させる電源装置の出力電圧は200V以上と極めて高い。高電圧の電源装置は、メンテナンス時に作業者が触れることにより感電する恐れがあるので、安全性を考慮してシャーシーには接続されない。そのため、この電源装置には、感電を検出して回路を切り離すために、漏電抵抗を検出する機能が備わっている。漏電抵抗は、電源装置とシャーシーとの間の抵抗である。図1は、電源装置が漏電抵抗を検出する検出回路を示す。この図に示す漏電検出回路50は、漏電検出抵抗51と漏電検出スイッチ52と漏電検出抵抗51に発生する電圧を検出する電圧検出回路53とを備える。漏電抵抗Rrがあると、漏電検出スイッチ52をオンにする状態で、漏電検出抵抗51に電流が流れる。したがって、漏電検出抵抗51の電圧を検出して漏電を検出できる。
この図に示すように、特定部分の電圧を検出して漏電抵抗を検出する電源装置は開発されている(特許文献1参照)。
特開2003−169401号公報
走行用バッテリの出力側とシャーシーとの漏電抵抗を検出するために、特定点の電圧を検出する電源装置は、専用の電圧検出回路を設けて電圧を検出する必要がある。このため、漏電抵抗を検出するために回路構成が複雑になる欠点がある。
本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、回路構成を複雑にすることなく、車両用の電源装置にすでに備えている電圧検出回路を特別な状態で使用して、専用の電圧検出回路を設けることなく走行用バッテリの出力側とシャーシーとの漏電抵抗を正確に検出できる車両用の電源装置を提供することにある。
本発明の車両用の電源装置は、複数の電池モジュール2を直列に接続している走行用バッテリ1と、この走行用バッテリ1の電池電圧を検出する電圧検出回路3とを備える。電圧検出回路3は、電圧を検出する電池モジュール2を時分割に切り換えるマルチプレクサ4と、このマルチプレクサ4で切り換えられる電池モジュール2の電圧を検出する電圧検出部5とを備える。電源装置は、電池モジュール2の中間電圧となる位置、もしくは中間電圧からずれた位置を特定点10とし、この特定点10を漏電検出抵抗6を介してシャーシー7に接続すると共に、電圧検出回路3のマルチプレクサ4を切り換えて、電圧検出回路3でもって走行用バッテリ1のプラス側出力電圧と、マイナス側出力電圧と、漏電検出抵抗6の両端に誘導されるシャーシー電圧と、を検出し、この検出されたプラス側出力電圧とマイナス側出力電圧とシャーシー電圧を演算して、プラス出力側とシャーシー7との漏電抵抗及びマイナス出力側とのシャーシー7の漏電抵抗を検出する。
本発明の請求項2の車両用の電源装置は、電圧検出回路3が、漏電抵抗を検出する状態で、電池モジュール2の特定点10を漏電検出抵抗6を介してシャーシー7に接続する検出スイッチ8を備える。この検出スイッチ8をオンに切り換えて、電池モジュール2の特定点10をシャーシー7に接続し、漏電検出抵抗6に誘導されるシャーシー電圧を検出する。
本発明の車両用の電源装置は、回路構成を複雑にすることなく、走行用バッテリの出力側とシャーシーとの漏電抵抗を正確に検出できる特長がある。それは、本発明の車両用の電源装置が、走行用バッテリの電池モジュールの中間電圧となる位置、もしくは中間電圧からずれた位置を特定点とし、この特定点を漏電検出抵抗を介してシャーシーに接続すると共に、走行用バッテリの電池電圧を検出する電圧検出回路のマルチプレクサを切り換えて、走行用バッテリのプラス側出力電圧と、マイナス側出力電圧と、漏電検出抵抗の両端に誘導されるシャーシー電圧と、を検出し、この検出されたプラス側出力電圧とマイナス側出力電圧とシャーシー電圧を演算して、プラス出力側とシャーシーとの漏電抵抗及びマイナス出力側とシャーシーとの漏電抵抗を検出しているからである。すなわち、本発明の電源装置は、漏電抵抗を検出するための専用の電圧検出回路を設けることなく、走行用バッテリの電池電圧を検出するために既に備えている電圧検出回路を使用して、走行用バッテリの出力側とシャーシーとの漏電抵抗用を検出する。したがって、簡単な回路構成として製造コストを低減しながら走行用バッテリの漏電を確実に検出できる。
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
図2と図3に示す車両用の電源装置は、複数の電池モジュール2を直列に接続している走行用バッテリ1と、この走行用バッテリ1の電池電圧を検出する電圧検出回路3とを備える。
電圧検出回路3は、複数の電池モジュール2の電圧を時分割に切り換えて検出するためのマルチプレクサ4と、このマルチプレクサ4で選択された電池モジュール2の電圧を検出する電圧検出部5と、漏電抵抗を検出するときに限って、電池モジュール2の特定点10、すなわち特定点10に接続している電圧検出部5の基準入力端子11を漏電検出抵抗6を介してシャーシー7に接続する検出スイッチ8を備えている。
電圧検出回路3は、全ての電池モジュール2の電圧を検出するために電源装置に装備する回路である。たとえば、50個の電池モジュール2を直列に接続している走行用バッテリ1の電源装置は、50個の全ての電池モジュール2の電圧を電圧検出回路3で検出する。検出された各々の電池モジュール2の電圧は、電池モジュール2の残容量の検出に使用され、あるいは充放電の電流を積算して演算される残容量の補正に使用され、あるいはまた、残容量が0になって完全に放電されたことを検出して過充電にされる状態では放電電流を遮断し、さらに満充電されたことを検出して、過充電される状態になると充電電流を遮断するために使用される。
多数の電池モジュール2を直列に接続している走行用バッテリ1は、同じ電流で充放電される。したがって、全ての電池モジュール2の充電量と放電量は同じになる。しかしながら、必ずしも全ての電池モジュール2の電気特性は、等しく揃って変化するわけではない。とくに、充放電の回数が多くなると、各々の電池モジュール2は劣化する程度が異なって、満充電できる容量が変化する。この状態になると、満充電できる容量が減少した電池モジュール2は、過充電されやすく、また過放電もされやすくなる。電池モジュール2は過充電と過放電で著しく電気特性が劣化するので、満充電できる容量が減少した電池モジュール2が過充電や過放電されると急激に劣化してしまう。このため、走行用バッテリ1は多数の電池モジュール2を直列に接続しているが、全ての電池モジュール2の過充電と過放電を防止しながら、すなわち、電池モジュール2を保護しながら充放電することが大切となる。電圧検出回路3は、全ての電池モジュール2を保護しながら充放電するために、各々の電池モジュール2の電圧を検出している。
図2と図3の電源装置は、全体の電池モジュール2を2ブロックに分割している。2ブロックに分割された電池モジュール2の電圧を検出するために、2組の電圧検出回路3を備える。たとえば、50個の電池モジュール2を直列に接続している走行用バッテリ1は、25個の同数の電池モジュール2に2分割する。あるいは24個と26個等と異なる個数に分割してがトータルで50個となるように2ブロックに分割してもよい。電池モジュール2は、5個のニッケル水素電池を直列に接続している。この走行用バッテリ1は、全体で250個のニッケル水素電池を直列に接続して、出力電圧を300Vとしている。電池モジュールは、必ずしも5個の電池を直列に接続するものではなく、たとえば、4個以下、あるいは6個以上の二次電池を直列に接続することもできる。また、走行用バッテリは、必ずしも50個の電池モジュールを直列に接続する必要はなく、これよりも少なく、あるいは多くの電池モジュールを直列に接続することができる。
50個の電池モジュール2を直列に接続して、これを2組の電圧検出回路3で電圧を検出する電源装置は、ひとつの電圧検出回路3で25個の電池モジュール2の電圧を検出する。電圧検出回路3のマルチプレクサ4は、電圧を検出する電池モジュール2を切り換えて、順番に全ての電池モジュール2の電圧を検出する。したがって、マルチプレクサ4は、電圧検出部5の入力側に接続されて、電圧検出部5が検出する電池モジュール2を順番に切り換える。
ところで、マルチプレクサは、一般的に、2チャンネル、4チャンネル、8チャンネル、16チャンネル、32チャンネル、64チャンネルと、チャンネル数を2倍単位で多くするものが使用される。マルチプレクサ4には、全ての電池モジュール2に切り換えできるように、電池モジュール2の個数以上のチャンネル数のものを使用する。たとえば、25個の電池モジュール2の電圧を検出する電圧検出回路3には、32チャンネルのマルチプレクサ4を使用する。したがって、マルチプレクサ4のチャンネル数と電池モジュール2の個数とは、ほとんどの場合は一致せず、マルチプレクサ4のチャンネル数が電池モジュール2の個数よりも多くなる。このため、マルチプレクサ4には使用されないチャンネルができる。
たとえば、32チャンネルのマルチプレクサ4が25個の電池モジュール2を切り換える場合、マルチプレクサ4の2〜8チャンネルは、電池モジュール2の切り換えに使用されない。
本発明は、電池モジュール2の切り換えに使用されないでマルチプレクサ4に残る余分のチャンネルを、漏電抵抗を検出するため必要な電圧検出に有効利用する。さらに、マルチプレクサ4に接続している電圧検出部5も、漏電抵抗を検出するための電圧検出に併用する。したがって、この電源装置は、マルチプレクサ4の残余のチャンネルに、漏電抵抗を検出するために必要な電圧の検出ポイントを接続して漏電抵抗を検出するので、専用の電圧検出回路を設ける必要がない。
さらに、検出した電圧から漏電抵抗を演算する演算回路には、電源装置に内蔵しているCPU12を併用する。車両用の電源装置は、バッテリーECU9にCPU12を内蔵している。また、電圧検出回路にCPU12を内蔵することもできる。CPU12を内蔵する電圧検出回路3は、残容量を演算して、残容量をバッテリーECU9に通信回線で伝送することができる。CPU12を内蔵するバッテリーECU9は、電圧検出回路3から入力される電圧信号を演算して、電池モジュール2の残容量を演算し、さらに各々の電池モジュール2の電圧から過充電や過放電を検出して、走行用バッテリ1の充放電を制御し、さらに漏電抵抗の演算処理もする。
また前述したように、電池モジュールを24個と26個といった異なる個数に分割する場合、電圧検出回路を制御するソフトウエアは、24個側と26個側で処理すべき個数が変わるため、各々処理個数が異なるソフトウエアが必要となるが、マルチプレクサに残る余分のチャンネルを利用して、ソフトウエアによりどちらに搭載されたかを判別することができる。例えば24個側の余分のチャンネルのうち1点ないし複数点を通常動作であれば、ありえない電圧値に設定する回路を追加することにより、これをサンプリングすることで同じソフトウエアの動作を24個用もしくは26個用として処理内容を切り替えることが可能である。電圧値を設定する回路は、抵抗により容易に分圧回路を構成することで実現可能である。他の判定方法としては例えばEEPROMといった不揮発性メモリに、24個側と26個側を判別する識別情報を予め書き込む方法がある。
以上の電源装置は、極めて簡単な回路構成で、漏電抵抗を検出する。漏電抵抗を検出するための電圧検出回路が、電池モジュール2の電圧を検出するための電圧検出回路3に併用され、とくに、マルチプレクサ4の使用されないで残っているチャンネルを有効に使用して漏電抵抗検出のための電圧を検出するので、電圧を検出するために特別に回路を付加することなく、漏電抵抗を演算するための電圧を検出できる。マルチプレクサに不使用チャンネルがない場合、電圧検出回路の電圧検出部のみを併用して、漏電抵抗を検出するための電圧を検出できる。この電源装置は、マルチプレクサのみを追加して、電池モジュールの電圧を検出する電圧検出部を併用する。検出した電圧から漏電抵抗を検出する処理は、バッテリーECU9等に装備されるCPU12で処理するので、検出電圧から漏電抵抗を演算する専用の演算回路を設ける必要はない。ただ、専用の演算回路を設けて演算することもできるのは言うまでもない。
電圧検出部5は、一対の入力端子の間に入力される電圧差を検出する差動アンプ5Aである。図の電圧検出部5は、一方の入力端子を基準入力端子11とし、この基準入力端子11を電池モジュール2の特定点10に接続している。走行用バッテリ1は、好ましくは、2ブロックに分割された複数の電池モジュール2の中間電圧となる中間点を特定点10として、この特定点10に基準入力端子11を接続する。ただ、電圧検出部の基準入力端子を接続する特定点は、必ずしも中間電圧とする必要はなく、中間電圧からずれた位置を特定点として、ここに電圧検出部の基準入力端子を接続することもできる。電圧検出部5は、他方の入力端子をマルチプレクサ4の出力側に接続している。差動アンプ5Aからなる電圧検出部5は、特定点10を差動アンプ5Aの基準入力端子11であるマイナス側、マルチプレクサ4をプラス側に接続する。ただし、差動アンプからなる電圧検出部は、入力端子のプラスとマイナスを逆にして、出力を反転することもできる。
電圧検出部5の出力は、A/Dコンバータ13でデジタル信号に変換され、さらに出力を絶縁回路14で絶縁して、言いかえると、A/Dコンバータ13とアースを切り離してバッテリーECU9にデジタル信号を出力する。絶縁回路14には、発光ダイオード14aとフォトトランジスター14bとを光で結合しているフォトモスリレー14Aが使用される。絶縁回路には、アースを切り離して信号を伝送するトランスも使用できる。
図の電源装置は、図4に示す動作原理で漏電抵抗を検出する。
この図は、プラス側の電圧検出回路3Aで漏電抵抗を検出する。電圧検出回路3は、漏電抵抗を検出するときに、検出スイッチ8をオンにする。検出スイッチ8は、電池モジュール2の特定点10を漏電検出抵抗6を介してシャーシー7に接続する。走行用バッテリ1が漏電して、いいかえると漏電抵抗が無限大でないと、矢印Aで示すループでシャーシー7を通じて漏電電流(I)が流れる。この漏電電流(I)は、漏電検出抵抗6の両端にシャーシー電圧(Vl)を発生させる。シャーシー電圧(Vl)は、マルチプレクサ4を切り換えて、電圧検出部5に検出される。すなわち、図に示すように、一対の入力端子がマルチプレクサ4を介して漏電検出抵抗6の両端に接続されて、プラス側電位はシャーシー電圧(Vl)を検出する。
シャーシー電圧(Vl)が検出されると、漏電検出抵抗6に流れる電流(I)は、以下の数1で計算される。
Figure 0004326415
この式において、Rcは漏電検出抵抗6の電気抵抗である。
漏電検出抵抗6に流れる電流が漏電抵抗にも流れるので、この電流(I)によって、漏電抵抗の両端に、以下の数2で示される電圧(VR)が発生する。
Figure 0004326415
漏電抵抗の両端の電圧と漏電検出抵抗6の両端の電圧の和が、走行用バッテリ1の特定点10からプラス側までの電圧である、プラス側出力電圧(Va)となる。したがって、以下の数3が成立する。
Figure 0004326415
この式から、漏電抵抗の電気抵抗(Rl)は以下の数4で演算される。
Figure 0004326415
この式において、Rcは漏電検出抵抗6の電気抵抗で既知の抵抗、Vaは走行用バッテリ1の特定点10からプラス側出力までのプラス側出力電圧、Vlはシャーシー電圧であるから、シャーシー電圧のみを検出して漏電抵抗の電気抵抗を検出することができる。特定点10に対するプラス側出力電圧は、必ずしも測定しないでほぼ特定できる。特定点10からプラス側出力までの電池モジュール2の個数と、1個の電池モジュール2の電圧の積がプラス側出力電圧となるからである。ただ、電池モジュール2の電圧は、充放電の状態や電流によって多少は変動するので、特定点10からプラス側出力までのプラス側出力電圧(Va)は、マルチプレクサ4を切り換えて測定して正確に検出できる。プラス側出力電圧が正確に検出できると、漏電抵抗の電気抵抗も正確に検出できる。
走行用バッテリ1のプラス側が漏電していない状態、言いかえると漏電抵抗が無限大であるとき、漏電検出抵抗6に漏電電流は流れない。この状態で、漏電検出抵抗6の両端に発生するシャーシー電圧は0Vとなるので、数4においてVlが0となり、漏電抵抗は無限大となる。数4で演算された漏電抵抗が設定抵抗よりも小さくなると、前述した感電の問題が発生する恐れがある。したがって、電源装置は、たとえば漏電抵抗が第1設定抵抗よりも小さくなると、運転者もしくはサービスマンに対して警告を促すランプを点灯させる。さらに漏電抵抗が小さくなって第2設定抵抗よりも小さくなると、コンタクタが閉じないように制御する。第1設定抵抗は、走行用バッテリ1の出力電圧により一定でないが、たとえば、定格出力電圧が300Vの電源装置にあっては、100kΩ〜200kΩ、好ましくは約150kΩとし、第2設定抵抗は、40kΩ〜80kΩと、好ましくは50kΩ〜60kΩとする。
図4は走行用バッテリ1のプラス側出力の漏電を検出する状態を示しているが、走行用バッテリ1は、マイナス側出力が漏電することもある。図5は、マイナス側出力の漏電を検出する動作原理を示す。走行用バッテリ1のマイナス側が漏電すると、矢印Bで示すループでシャーシー7を通じて漏電電流(I)が流れる。この状態で漏電すると、漏電抵抗(Rl2)は以下の数5で演算できる。
Figure 0004326415
この式においてVbは、特定点10からマイナス側出力までの電圧であるマイナス側出力電圧である。この電圧も、必ずしも検出しないでほぼ特定できるが、マルチプレクサ4を切り換えて正確に検出して、漏電抵抗を正確に検出することができる。Vlは、漏電検出抵抗6に誘導される電圧であるが、この電圧は、図4の場合と逆方向となる。すなわち、図4において、差動アンプ5Aの出力はプラスとなる。基準入力端子11に対してシャーシー側がプラスとなるからである。しかしながら、漏電抵抗(Rl2)でマイナス側に漏電が発生すると、漏電検出抵抗6に逆方向の電圧が発生するので、差動アンプ5Aの出力はマイナスとなる。
図4に示すようにプラス側が漏電する場合は、数4で漏電抵抗を演算し、図5に示すようにマイナス側が漏電する場合は、数5で漏電抵抗を演算する。いずれの式で漏電抵抗を検出するかは、漏電検出抵抗6に誘導される電圧の方向、すなわち、差動アンプ5Aの出力が正であるか負であるか、いいかえると、基準入力端子11に対してシャーシー側がプラスになるかマイナスになるかで、演算する式を特定する。差動アンプ5Aの出力がプラスとなる場合は、プラス側が漏電するので、数4で漏電抵抗を演算する。また、差動アンプ5Aの出力がマイナスの場合は、マイナス側が漏電するので、数5で漏電抵抗を演算する。
以上の電源装置は、2組の電圧検出回路3を備える。図4と図5は、2分割されたプラス側の電池モジュール2の電圧を検出するプラス側の電圧検出回路3Aで漏電抵抗を検出する。電源装置は、図6と図7に示す動作原理で、2分割されたマイナス側の電池モジュール2の電圧を検出するマイナス側の電圧検出回路3Bで漏電抵抗を検出することもできる。プラス側の電圧検出回路3Aと、マイナス側の電圧検出回路3Bの両方で漏電抵抗を検出する電源装置は、プラス側とマイナス側のいずれか一方の電圧検出回路3が故障しても、漏電抵抗を検出できる。
図6は、マイナス側の電圧検出回路3Bで、走行用バッテリ1のプラス側出力の漏電を検出する状態を示す。マイナス側の電圧検出回路3Bは、漏電検出抵抗6をシャーシー7に接続するマイナス側の検出スイッチ8をオンにして漏電抵抗を検出する。このとき、プラス側の電圧検出回路3Aの検出スイッチ8はオフに保持される。検出スイッチ8は、漏電抵抗を検出しない状態では、常にオフに保持されて、走行用バッテリ1をシャーシー7に接続しない状態とする。
この状態で走行用バッテリ1のプラス側が漏電すると、矢印Cで示すループでシャーシー7を通じて漏電電流(I)が流れる。このとき、漏電抵抗(Rl3)は、以下の数6で演算できる。
Figure 0004326415
この式においてVcは、特定点10からプラス側出力までのプラス側出力電圧である。この電圧も、必ずしも検出しないでほぼ特定できるが、マルチプレクサ4を切り換えて正確に検出して、漏電抵抗を正確に検出することができる。
図7は、マイナス側出力の漏電をマイナス側の電圧検出回路3Bで検出する動作原理を示している。この状態で走行用バッテリ1のマイナス側が漏電すると、矢印Dで示すループでシャーシー7を通じて漏電電流(I)が流れる。漏電抵抗(Rl4)は、以下の数7で演算できる。
Figure 0004326415
この式においてVdは、特定点10からマイナス側出力までのマイナス側出力電圧である。この電圧も、必ずしも検出しないでほぼ特定できるが、マルチプレクサ4を切り換えて正確に検出して、漏電抵抗を正確に検出することができる。
数7のVlは、漏電検出抵抗6に誘導されるシャーシー電圧であるが、この電圧は、図6の場合と逆方向となる。すなわち、図6において、差動アンプ5Aの出力はプラスとなる。基準入力端子11に対してシャーシー側がプラスとなるからである。しかしながら、漏電抵抗(Rl4)でマイナス側に漏電が発生すると、漏電検出抵抗6に逆方向の電圧が発生するので、差動アンプ5Aの出力はマイナスとなる。
図6に示すようにプラス側が漏電する場合は、数6で漏電抵抗を演算し、図7に示すようにマイナス側が漏電する場合は、数7で漏電抵抗を演算する。いずれの式で漏電抵抗を検出するかは、漏電検出抵抗6に誘導される電圧の方向、すなわち、差動アンプ5Aの出力が正であるか負であるか、いいかえると、基準入力端子11に対してシャーシー側がプラスになるかマイナスになるかで、演算する式を特定する。差動アンプ5Aの出力がプラスとなる場合は、プラス側が漏電するので、数6で漏電抵抗を演算する。また、差動アンプ5Aの出力がマイナスの場合は、マイナス側が漏電するので、数7で漏電抵抗を演算する。
以上の動作原理で、走行用バッテリ1のプラス側又はマイナス側の漏電を検出する電源装置の回路図を図3に示す。この電源装置は、●で示すマルチプレクサ4の不使用のチャンネルを、シャーシー電圧の検出と、特定点10に対するプラス側出力電圧やマイナス側出力電圧の検出に使用している。図3は、上側にプラス側の電圧検出回路3Aを、下側にマイナス側の電圧検出回路3Bを示している。
プラス側の電圧検出回路3Aは、●で示すマルチプレクサ4の不使用の第1チャンネルと第2チャンネルを以下に接続している。
[第1チャンネル]
漏電検出抵抗6と検出スイッチ8との接続点に接続。
マルチプレクサ4が、第1チャンネル(1ch)に切り換えられると、電圧検出部5は、漏電検出抵抗6の両端の電圧を検出する。漏電検出抵抗6の両端の電圧は、特定点10に対するシャーシー7の電圧、すなわちシャーシー電圧(Vl)となる。したがって、マルチプレクサ4が第1チャンネルに切り換えられる状態で、電圧検出部5はシャーシー電圧(Vl)を検出する。
[第2チャンネル]
走行用バッテリ1のマイナス側出力に接続。
マルチプレクサ4が、第2チャンネル(2ch)に切り換えられると、電圧検出部5は、特定点10に対するマイナス側出力電圧(Vb)を検出する。この電圧は、電池モジュール2を直列に接続している個数で特定されるので、必ずしも電圧検出回路3で検出しないで推定できるが、電圧検出回路3で検出すると正確に特定できる。
図3の下側に示すマイナス側の電圧検出回路3Bは、●で示すマルチプレクサ4の不使用の第1チャンネルと第2チャンネルを以下に接続している。
[第1チャンネル]
プラス側の電圧検出回路3Aと同じように、漏電検出抵抗6と検出スイッチ8との接続点に接続。
マルチプレクサ4が、第1チャンネル(1ch)に切り換えられると、電圧検出部5は、漏電検出抵抗6の両端の電圧を検出する。漏電検出抵抗6の両端の電圧は、特定点10に対するシャーシー7の電圧、すなわちシャーシー電圧(Vl)となる。したがって、マルチプレクサ4が第1チャンネルに切り換えられる状態で、電圧検出部5はシャーシー電圧(Vl)を検出する。
[第2チャンネル]
走行用バッテリ1のプラス側出力に接続。
マルチプレクサ4が、第2チャンネル(2ch)に切り換えられると、電圧検出部5は、特定点10に対するプラス側出力電圧(Vc)を検出する。この電圧も、電池モジュール2を直列に接続している個数で特定されるので、必ずしも電圧検出回路3で検出しないで推定できるが、電圧検出回路3で検出すると正確に特定できる。
図3の電源装置のマルチプレクサ4は、一定の周期でチャンネルを順番に切り換えて、各々の電池モジュール2の電圧を検出し、さらに、シャーシー電圧と、特定点10に対するプラス側出力電圧及びマイナス側出力電圧を検出する。マルチプレクサ4は、たとえば1〜5秒の周期で、シャーシー電圧と特定点10に対するプラス側出力電圧とマイナス側出力電圧を検出する。検出された電圧は、バッテリーECU9のCPU12、あるいは電圧検出回路に内蔵されるCPUで演算されて、漏電抵抗が検出される。この電源装置は、1〜5秒周期で漏電抵抗を検出するので、漏電抵抗の電気抵抗が設定抵抗よりも小さくなると、直ちに充放電の電流を制限し、あるいはコンタクターを遮断して安全に使用できる状態とする。
マルチプレクサ4のチャンネル切り換えと、検出スイッチ8のオンオフは、制御回路15で制御される。制御回路15は、バッテリーECU9に内蔵されるCPU12に併用され、あるいは電圧検出回路にCPUを内蔵して、このCPUに併用される。ただ、専用の制御回路を設けることもできる。制御回路15は、漏電抵抗を検出するときに、一方の検出スイッチ8をオン、他方の検出スイッチ8をオフにする。
図3において、プラス側の電圧検出回路3Aで漏電抵抗を検出するときに、制御回路15は、プラス側の電圧検出回路3Aの検出スイッチ8をオン、マイナス側の電圧検出回路3Bの検出スイッチ8をオフにする。この状態で、制御回路15は、マルチプレクサ4を第1、第2、第3チャンネルと順番に切り換えて、シャーシー電圧(Vl)と、基準入力端子11に対するプラス側出力電圧(Va)とマイナス側出力電圧(Vb)を検出する。検出されたシャーシー電圧(Vl)と、プラス側出力電圧(Va)とマイナス側出力電圧(Vb)から数4または数5で漏電抵抗を演算する。数4を使用するか、数5を使用するかは、電圧検出部5の差動アンプ5Aの出力が正か負かで特定する。電圧検出部5の出力が正であると、数4でプラス側出力の漏電抵抗を演算し、電圧検出部5の出力が負であると、数5でマイナス側出力の漏電抵抗を演算する。
また、図3において、マイナス側の電圧検出回路3Bで漏電抵抗を検出するときに、制御回路15は、マイナス側の電圧検出回路3Bの検出スイッチ8をオン、プラス側の電圧検出回路3Aの検出スイッチ8をオフにする。この状態で、制御回路15は、マルチプレクサ4を第1、第2、第3チャンネルと順番に切り換えて、シャーシー電圧(Vl)と、基準入力端子11に対するプラス側出力電圧(Vc)とマイナス側出力電圧(Vd)を検出する。検出されたシャーシー電圧(Vl)と、プラス側出力電圧(Vc)とマイナス側出力電圧(Vd)から数6または数7で漏電抵抗を演算する。電圧検出部5の出力が正であると、数6でプラス側出力の漏電抵抗を演算し、プラス側出力電圧の出力が負であると、数7でマイナス側出力の漏電抵抗を演算する。
漏電抵抗を検出しないタイミングにおいて、制御回路15はマルチプレクサ4を電池モジュール2の接続点に切り換えて、電池モジュール2の電圧を検出する。
さらに、図2の電源装置は、走行用バッテリ1のプラス側とシャーシー7との間に、スイッチング素子17を介して漏電試験抵抗16を接続している。この電源装置は、スイッチング素子17をオンに切り換えて漏電試験抵抗16で走行用バッテリ1をシャーシー7に接続する状態で漏電抵抗を検出する。電圧検出回路3が正常に動作して漏電抵抗が検出されると、検出された漏電抵抗は漏電試験抵抗16と同じもしくは小さい値となる。したがって、この状態で漏電抵抗を検出して、正常に漏電抵抗を検出できるかどうかの判定ができる。
全電池モジュール2を個数が異なる複数のブロックに分割し、同じチャンネル数のマルチプレクサ4で切り換えて、各々の電池モジュール2の電圧を検出する電源装置は、電池モジュール2の個数の差に相当して、マルチプレクサ4に使用されないチャンネルができる。たとえば、50個の電池モジュール2を26個と24個の2ブロックに分割する電源装置は、分割された各々の電池モジュール2を同じチャンネル数のマルチプレクサ4で切り換えて電圧を検出すると、一方のマルチプレクサ4が2個多く、使用されないチャンネルができる。図3の電源装置は、下側に示すマイナス側の電池モジュール2の個数を、上側に示すプラス側よりも2個少なくしている。この電源装置は、図の●で示すように、マイナス側の電圧検出回路3Bのマルチプレクサ4に2個の使用されないチャンネル(3chと4ch)ができる。この不使用の2チャンネルは、電圧検出回路3の信号アース18(シャーシーアースとは切り離されている)に接続している。不使用チャンネルを電源回路のアースに接続している電圧検出回路3は、不使用チャンネルの電圧をほぼ0Vとして出力する。この不使用チャンネルの出力電圧0Vでもって、プラス側の電圧検出回路3Aとマイナス側の電圧検出回路3Bとを識別できる。電圧検出回路3は、不使用チャンネルに特定の基準電圧を入力して識別用に使用することもできる。ただし、基準電圧が電池モジュールの電圧に近似する場合、電池モジュールの電圧と基準電圧と区別できなくなるので、基準電圧は電池モジュールと異なるように、たとえば、電池モジュールの電圧よりも低く、あるいは電池モジュールの電圧よりも高く設定される。
各々の電圧検出回路3は、プラス側とマイナス側を識別するための信号を、たとえばEPROM(図示せず)に記憶している。したがってEPROMが正常に動作するかぎり、このEPROMに記憶する信号で、電圧検出回路3から出力される信号を、プラス側の電圧検出回路3Aの信号と、マイナス側の電圧検出回路3Bの信号とに判別できる。しかしながら、EPROMが故障して正常に動作しない場合、EPROMの信号で、電圧検出回路3から出力される信号を、プラス側の電圧検出回路3Aからの信号と、マイナス側の電圧検出回路3Bからの信号とに識別できなくなる。この場合、マルチプレクサ4の不使用チャンネルから出力される信号でもって、プラス側の電圧検出回路3Aの信号と、マイナス側の電圧検出回路3Bからの信号とを識別できる。図3の電源装置は、マイナス側の電圧検出回路3Bのマルチプレクサ4に2チャンネルの不使用チャンネルがある。不使用チャンネルは、入力側を信号アース18に接続している。したがって、不使用チャンネルの電圧として、0Vの信号が出力されると、マイナス側の電圧検出回路3Bと判別することかできる。図の電源装置は、不使用チャンネルを0Vラインに接続しているので、不使用チャンネルから0Vが出力されると、不使用チャンネル側の電圧検出回路と判別できる。ただし、不使用チャンネルは必ずしも0Vラインに接続する必要はなく、特定の電圧ライン、たとえば5Vの電源ラインに接続して、不使用チャンネルの電圧検出回路を判別することもできる。これにより、本機能をソフトウエアで実現させようとした場合、2組の電圧検出回路に適用させるソフトは、判定機能を持たせることで同じ物を使用するように構成することができる。
以上のように、本実施例の電源装置は、プラス側の電圧検出回路3Aとマイナス側の電圧検出回路3Bの各々で漏電抵抗を検出できるので、プラス側の電圧検出回路3A、マイナス側の電圧検出回路3Bのいずれか一方が故障等の不具合時においても、他方の正常な電圧検出回路にて、漏電抵抗を検出することができる。なお、本実施例において、プラス側の電圧検出回路3Aとマイナス側の電圧検出回路3Bの両方が正常に動作する通常時には、本願出願人が先に出願した漏電検出方法(特願2004−160344号)にて漏電抵抗を検出することができる。この検出方法の詳細を以下に説明する。
この検出方法は、図8〜10に示す漏電検出回路にて、以下のようにして、漏電抵抗Rlを正確に検出する。なお、これらの図に示す漏電検出回路は、本発明の電源装置を図11に示す回路構成として実現できる。図11に示す回路は、図3に示す回路のプラス側の電圧検出回路3Aにおいて、マルチプレクサ4を1chに切り換え、漏電検出抵抗6を漏電抵抗Ra、検出スイッチ8を漏電検出スイッチSW1とし、検出スイッチ8のシャーシー7側に漏電抵抗Rbを設けると共に、マイナス側の電圧検出回路3Bにおいて、マルチプレクサ4を1chに切り換え、漏電検出抵抗6を漏電抵抗Ra、検出スイッチ8を漏電検出スイッチSW2とし、検出スイッチ8のシャーシー7側に漏電抵抗Rbを設けたものである。また、図8においては、漏電電流を検出する電流検出回路30’が開示されているが、後述するように、漏電電流は計算式に利用するだけであり、実際には使用していない。
図8ないし図10の漏電検出回路100’は、電動車両用の組電池10’の漏電を検出するための漏電検出回路であって、複数の電池11’を直列に接続した組電池10’と、電池11’の任意の高電圧側と低電圧側との2箇所の電池端子とグランドとの間に、それぞれ直列に接続された漏電検出抵抗Ra、Rbと、tのタイミングで、高電圧側の電池端子での電圧をVg11(t)、低電圧側の電池端子での電圧をVg12(t)として測定する電圧検出手段200’と、漏電検出抵抗Ra、Rbの間に直列に接続された漏電検出スイッチSW1、SW2と、高電圧側の電池端子に接続された一方の漏電検出スイッチSW1をtのタイミングで閉じ、他方の漏電検出スイッチSW2を開いたとき漏電検出スイッチSW1と接続された漏電検出抵抗Raに発生する電圧Vl11(t)、及び、低電圧側の電池端子に接続された他方の漏電検出スイッチSW2をtのタイミングで閉じ、一方の漏電検出スイッチSW1を開いたとき他方の漏電検出スイッチSW2と接続された漏電検出抵抗Raに発生する電圧Vl12(t)を検出する電圧検出回路20’、20’とを備える。さらに、漏電抵抗の合成値Rlを、異なる時間tを、t1、t2とするとき、以下の数8に基づいて漏電抵抗Rlを演算する漏電演算部40’を備える。
Figure 0004326415
この構成によって漏電抵抗値を容易に得ることができ、漏電箇所が複数あっても回路全体の漏電抵抗値を演算することが可能である。
また、この漏電検出回路100’は、tのタイミングで組電池10’の両端の端子間電圧VT(t)を測定する回路を備え、漏電演算部40’が、漏電箇所が一箇所である場合に、tのタイミングで漏電が発生した電池端子の電圧をVl(t)として、この電圧を端子間電圧VT(t)と比例定数KlとによりKlVT(t)と表わされるときに、以下の数9に基づいてを演算し、klに基づいて漏電箇所を推定する。
Figure 0004326415
この構成によって、漏電抵抗値のみならず漏電位置を特定できる。
以上のようにして、漏電抵抗を検出する方法は、特定の数式に基づいて漏電に関する情報を演算でき、しかも特別な装置を付加する必要がないため既存の設備に容易に適用して、安価かつ簡単に漏電抵抗値や漏電の位置などを特定して速やかに必要な策を講じ、電動車両を安全に使用することができる。
以下に、漏電検出回路100’と、この回路を用いた漏電検出方法を詳細に説明する。
図8に示す漏電検出回路100’は、n個の電池11’を直列に接続した組電池10’に対して付加されるものであって、説明のため組電池10’の充放電回路等は図示していない。なお、電池11’は、図においては単位セルとして示されているが、複数セルを直列或いは並列接続したものでも良い。
この漏電検出回路100’は、各電池11’の端子位置における電圧V0〜nを所定のタイミングで測定可能な電圧検出手段200’を備えている。ここで電圧検出手段200’で時間tに測定された電圧をV0〜n(t)とする。ここで、V0(t)、V1(t)、V2(t)、…、Vn-1(t)、Vn(t)は、V0(t)に対する電位とする。また、いずれかの電池11’で漏電が発生した場合は各電池11’の端子から接地まで通電するため、漏電の等価回路として各電池11’の端子が漏電抵抗R0〜nを介してグランドに接地(ここでは車両のシャーシに接続)されたものとする。さらに各漏電抵抗R0〜nには、電流I0〜nが流れていると想定している。ここで電流測定回路で時間tに測定された電流をI0〜n(t)とする。図8において、I0〜n(t1、t2)と示されるのは、I0〜n(t1)または、I0〜n(t2)ということを意味している。
さらに、高電圧側と低電圧側との任意の2つの電池端子A、Bに、それぞれ漏電検出抵抗Ra、漏電検出スイッチSW1、SW2、漏電検出抵抗Rbを直列に接続して接地する。ここで、電池端子A、Bは、組電池10’の両端子でも良い。A、B点にそれぞれ接続される漏電検出抵抗Ra、Rbの抵抗値はそれぞれ同じとし、漏電検出スイッチSW1、SW2は個別のタイミングで開閉可能とする。図8の例では、A点に接続された漏電検出スイッチSW1をt1のタイミングで閉じたとき、漏電検出抵抗Ra、Rbに流れる電流をIg11(t1)とし、t2のタイミングで閉じたとき、漏電検出抵抗Ra、Rbに流れる電流をIg11(t2)とする。またB点に接続された漏電検出スイッチSW2をt1のタイミングで閉じたとき、漏電検出抵抗Ra、Rbに流れる電流をIg12(t1)とし、t2のタイミングで閉じたとき、漏電検出抵抗Ra、Rbに流れる電流をIg12(t2)とする(ここで計測される電流は、電流検出回路30’を利用している)。さらにまた、A、B点における電圧を、それぞれt1、t2のタイミングで 電圧検出回路20’を用いて測定された電圧をVl11(t1)、Vl11(t2)、Vl12(t1)、Vl12(t2)とする。ここで、漏電検出抵抗Ra、Rbの合成抵抗をRとし、またA−B間の電圧をVf(t1、t2)とすると、以下の数10が成立する。
Figure 0004326415
ここで、Vg11(t)は、上述の電池端子Aでの電圧(図8においてはVn-2(t))であり、Vg12(t)は、上述の電池端子Bでの電圧(図8においてはV2(t))である。下記に詳細に説明するが、上式を利用すると、図8の漏電抵抗値Rlは、以下の数11で表現できる。
Figure 0004326415
さらに、図8の漏電検出回路は、漏電を検出し、漏電抵抗を演算、あるいは漏電位置を検出するための漏電演算部40’を備える。漏電演算部40’は、ゲートアレイ(FPGAやASIC等)のハードウェアやソフトウェアで実現できる。また、演算結果として漏電抵抗値や漏電位置などを表示可能な表示部を備えてもよい。表示部はLEDによる7セグメント表示器や液晶モニタなどが利用できる。
以下、上式を求める手順を詳述する。まず、時間t1において、図9のように漏電検出スイッチSW2を開き、漏電検出スイッチSW1を閉じた時点では、A点に接続された漏電検出抵抗Raに流れる電流Ig11(t1)は、各漏電電流の総和となるから、以下の数12で表現できる。
Figure 0004326415
一方、漏電抵抗Rnに流れる電流In(t1)は、以下の数13のように求めることができる。ただし上述の通りR=Ra+Rbとする。
Figure 0004326415
上記数12、数13より、Ig11(t1)は、以下の数14のように表現できる。
Figure 0004326415
よって、上記数14を変形して、Ig11(t1)は、以下の数15のように表現できる。
Figure 0004326415
一方、図10のように時間t2において、漏電検出スイッチSW1を開き、漏電検出スイッチSW2を閉じた時点では、B点に接続された漏電検出抵抗Raに流れる電流Ig12(t2)は、各漏電電流の総和となるから、以下の数16で表現できる。
Figure 0004326415
上述の通り、漏電抵抗Rnに流れる電流In(t2)より、上記数16は以下の数17のように変形できる。
Figure 0004326415
ゆえに、上記数17を変形して電流Ig12(t2)は、以下の数18で表現できる。
Figure 0004326415
ここで、漏電が発生している位置、漏電抵抗値は、検出中、時間にかかわらず変化しないとしている。よって、漏電が発生している位置は、漏電検出スイッチSW1、SW2を切り替えても変化しないため、以下の数19が成立する。
更には、ここでは、漏電抵抗値が十分に大きい範囲において漏電を想定しているので、漏電があってもなくても、漏電の大小にかかわらず、漏電が発生している位置が変化しないなら、任意の端子位置におけるVi(t)は、後述する端子間電圧VT(t)に比例定数kiを掛けた値として表すことができる。そして、t1、t2において、同じ端子位置のVi、端子間電圧VTは変動するかもしれないが、比例定数kiは変動しないことになる。よって、次の数19が成り立つ。
Figure 0004326415
ここで、VT(t)は、組電池10’の両端に位置する端子間電圧、すなわち総電圧を表す。よって、各電池11’は直列に接続されていることより、上記数19を用いて、上記数15、数18は、以下の数20、数21のように変形できる。また、この検出方法において、端子間電圧VT(t)は、電圧検出手段200’にて電圧Vn(t)、V0(t)を測定し、漏電演算部40’にて差を求めることで得ることができる。つまり、ここでは、端子間電圧VT(t)の測定は、電圧検出手段200’及び漏電演算部40’の回路にて行われる。これに代わって、端子間電圧VT(t)を直接測定する回路を設けて測定し、測定値を漏電演算部40’に出力しても良い。
Figure 0004326415
Figure 0004326415
上記数20は、以下の数22のように変形できる。
Figure 0004326415
数22を数21に代入すると、以下の数23が得られる。
Figure 0004326415
ここで、Vg11(t1)とVg12(t2)の位置は、総電圧VT(t1)、VT(t2)に対して変化しないため、以下の数24が成立する。
Figure 0004326415
上記においてεは定数である。したがって上記数23は、さらに以下の数25のように変形できる。
Figure 0004326415
ここで、以下の数26〜数29が成立する。
Figure 0004326415
Figure 0004326415
Figure 0004326415
Figure 0004326415
したがって、上記数26〜数29を数25に代入すると、以下の数30、即ち、数11のRlが得られる。
Figure 0004326415
以上のようにして、漏電抵抗の合成抵抗値が演算により求められる。そして、漏電演算部40’において、この演算された漏電抵抗が、所定値と比較し、所定値以下である場合、警告表示等の対策を取ることになる。一方、漏電が一箇所で発生している場合は、抵抗値のみならず漏電の発生している部位についても演算することが可能となる。ここで、漏電がl点のみで発生したと想定し、l点以外の漏電抵抗値が無限大であると仮定すると、以下の数31が成立する。ただし、0≦l≦nとする。
Figure 0004326415
このとき、上記数20を変形してIg11(t1)を求めると、以下の数32が成立する。
Figure 0004326415
よって、上記数10に数32を代入すると、以下の数33が成立する。
Figure 0004326415
この式から、数31より、1/∞=0として展開すると、klは、以下の数34のように演算できる。
Figure 0004326415
ここで、上式の分母のVT(t1)は、数19より、Vn(t1)−V0(t1)である。
したがって、前述の数30に基づき各測定値よりRlが求めるまることより、上記数34を演算することでklの値を得ることができる。そして、上述の数19で示されるように、比例定数klは、漏電抵抗Rlが接続された電池端子での電圧Vl(t)(=klVT(t))を表すときにおいて、端子間電圧VT(t)に掛ける比例定数klである。したがって、この比例定数klとは、漏電抵抗Rlが接続された電池端子の位置を意味することになるので、この値に基づいて漏電の発生部位を知ることが可能となる。なお、上記の方法では漏電箇所が一箇所の場合はklを正しく演算できるが、漏電が複数の部位で発生している場合には発生箇所を特定することは困難となる。ただ、この場合においても回路全体の漏電抵抗の合成値は上記数30から得ることができる。
以上のようにして漏電演算部40’で漏電抵抗Rlや漏電位置を示すklなどを演算し、必要に応じて演算結果を他の処理のため送出し、あるいは表示部で表示する。この方法は2つの時点における測定値に基づき、演算のみで漏電に関する情報を取得できるので、極めて容易に漏電を把握でき、特別なハードウェアを付加することなく既存の設備に適用できるという優れた特長が実現される。
従来の電源装置の漏電検出回路を示す回路図である。 本発明の一実施例にかかる車両用の電源装置の概略構成図である。 図2に示す車両用の電源装置の回路図である。 プラス側の電圧検出回路がプラス側出力の漏電を検出する動作原理を示す図である。 プラス側の電圧検出回路がマイナス側出力の漏電を検出する動作原理を示す図である。 マイナス側の電圧検出回路がプラス側出力の漏電を検出する動作原理を示す図である。 マイナス側の電圧検出回路がマイナス側出力の漏電を検出する動作原理を示す図である。 本出願人が先に出願した漏電検出方法に使用する漏電検出回路を示す回路図である。 図8の回路において、時間t1での動作を示す回路図である。 図1の回路において、時間t2での動作を示す回路図である。 図3に示す電源装置を使用して図8に示す漏電検出回路を実現する一例を示す回路図である。
符号の説明
1…走行用バッテリ
2…電池モジュール
3…電圧検出回路 3A…プラス側の電圧検出回路
3B…マイナス側の電圧検出回路
4…マルチプレクサ
5…電圧検出部 5A…差動アンプ
6…漏電検出抵抗
7…シャーシー
8…検出スイッチ
9…バッテリーECU
10…特定点
11…基準入力端子
12…CPU
13…A/Dコンバータ
14…絶縁回路 14A…フォトモスリレー
14a…発光ダイオード
14b…フォトトランジスター
15…制御回路
16…漏電試験抵抗
17…スイッチング素子
18…信号アース
50…漏電検出回路
51…漏電検出抵抗
52…漏電検出スイッチ
53…電圧検出回路
100’…電動車両用漏電検出回路
200’…電圧検出手段
10’…組電池
11’…電池
20’…電圧検出回路
30’…電流検出回路
40’…漏電演算部
SW1 …漏電検出スイッチ
SW2 …漏電検出スイッチ
R0〜n…漏電抵抗
Ra …漏電検出抵抗
Rb …漏電検出抵抗

Claims (2)

  1. 複数の電池モジュール(2)を直列に接続している走行用バッテリ(1)と、この走行用バッテリ(1)の電池電圧を検出する電圧検出回路(3)とを備え、電圧検出回路(3)は、電圧を検出する電池モジュール(2)を時分割に切り換えるマルチプレクサ(4)と、このマルチプレクサ(4)で切り換えられる電池モジュール(2)の電圧を検出する電圧検出部(5)とを備えており、
    電池モジュール(2)の中間電圧となる位置、もしくは中間電圧からずれた位置を特定点(10)とし、この特定点(10)を漏電検出抵抗(6)を介してシャーシー(7)に接続すると共に、電圧検出回路(3)のマルチプレクサ(4)を切り換えて、電圧検出回路(3)でもって走行用バッテリ(1)のプラス側出力電圧と、マイナス側出力電圧と、漏電検出抵抗(6)の両端に誘導されるシャーシー電圧と、を検出し、この検出されたプラス側出力電圧とマイナス側出力電圧とシャーシー電圧を演算して、プラス出力側とシャーシー(7)との漏電抵抗及びマイナス出力側とシャーシー(7)との漏電抵抗を検出する車両用の電源装置。
  2. 電圧検出回路(3)が、漏電抵抗を検出する状態で、電池モジュール(2)の特定点(10)を漏電検出抵抗(6)を介してシャーシー(7)に接続する検出スイッチ(8)を備えており、この検出スイッチ(8)をオンに切り換えて、電池モジュール(2)の特定点(10)をシャーシー(7)に接続し、漏電検出抵抗(6)に誘導されるシャーシー電圧を検出する請求項1に記載される車両用の電源装置
JP2004199861A 2004-07-06 2004-07-06 車両用の電源装置 Expired - Fee Related JP4326415B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004199861A JP4326415B2 (ja) 2004-07-06 2004-07-06 車両用の電源装置
DE102005031146A DE102005031146B4 (de) 2004-07-06 2005-07-04 Energieversorgungsvorrichtung für ein Fahrzeug
CNB2005100821837A CN100511907C (zh) 2004-07-06 2005-07-04 车辆用电源装置
US11/172,824 US7453232B2 (en) 2004-07-06 2005-07-05 Leakage detector for a power supply apparatus for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199861A JP4326415B2 (ja) 2004-07-06 2004-07-06 車両用の電源装置

Publications (2)

Publication Number Publication Date
JP2006025502A JP2006025502A (ja) 2006-01-26
JP4326415B2 true JP4326415B2 (ja) 2009-09-09

Family

ID=35540618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199861A Expired - Fee Related JP4326415B2 (ja) 2004-07-06 2004-07-06 車両用の電源装置

Country Status (4)

Country Link
US (1) US7453232B2 (ja)
JP (1) JP4326415B2 (ja)
CN (1) CN100511907C (ja)
DE (1) DE102005031146B4 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683577B2 (en) * 2005-03-07 2010-03-23 O2Micro International Limited Battery state monitoring circuitry with low power consumption during a stand-by-state of a battery pack
KR100649570B1 (ko) * 2005-12-19 2006-11-27 삼성에스디아이 주식회사 전지 관리 시스템 및 방법과 전지 시스템
JP4241787B2 (ja) * 2006-09-06 2009-03-18 日立ビークルエナジー株式会社 組電池総電圧検出およびリーク検出装置
JP4707638B2 (ja) * 2006-09-30 2011-06-22 三洋電機株式会社 車両用の電源装置
US7459914B2 (en) * 2006-10-31 2008-12-02 Caterpillar Inc. Systems and methods for electrical leakage detection
US7626396B2 (en) * 2006-12-27 2009-12-01 Caterpillar Inc. Systems and methods for electrical leakage detection and compensation
US7714587B2 (en) * 2007-06-29 2010-05-11 Caterpillar Inc. Systems and methods for detecting a faulty ground strap connection
JP4942602B2 (ja) * 2007-09-26 2012-05-30 三洋電機株式会社 車両用の電源装置
US8143855B2 (en) * 2008-02-15 2012-03-27 Atieva, Inc. Rechargeable split battery system
EP2322945B1 (en) * 2008-08-11 2014-11-26 LG Chem, Ltd. Apparatus and method for sensing battery leakage current, and battery driving apparatus and battery pack comprising the apparatus
EP2336794B1 (en) * 2008-09-01 2014-11-26 LG Chem, Ltd. Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus
JP5254714B2 (ja) * 2008-09-05 2013-08-07 株式会社マキタ 電動工具用マイコン搭載システム及び電池パック
CN102196942B (zh) * 2008-10-28 2014-11-12 松下电器产业株式会社 用于电动车的充电电缆、充电电缆单元以及充电系统
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
WO2010135260A2 (en) * 2009-05-18 2010-11-25 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
WO2011028703A2 (en) * 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
WO2011100163A2 (en) 2010-02-11 2011-08-18 A123 Systems, Inc. System and method for assessing voltage threshold detecting circuitry within a battery pack
CN102652268A (zh) * 2010-08-31 2012-08-29 松下电器产业株式会社 电池电源装置以及电池电源系统
US20120221269A1 (en) * 2011-02-28 2012-08-30 Kent David Wanner Method and system for determining dc bus leakage
WO2012127270A1 (en) * 2011-03-23 2012-09-27 Indian Institute Of Technology Bombay Photo-voltaic array fed switched capacitor dc-dc converter based battery charging for li-ion batteries
US9945910B2 (en) * 2011-03-31 2018-04-17 Renesas Electronics Corporation Voltage monitoring module and voltage monitoring system which compares voltages to determine leakage
JP5348330B2 (ja) * 2011-09-21 2013-11-20 トヨタ自動車株式会社 電動車両の充電システムおよび充電制御方法
JP5767077B2 (ja) * 2011-10-24 2015-08-19 株式会社ケーヒン 漏電検出装置
US9404956B2 (en) * 2011-12-19 2016-08-02 Ford Global Technologies, Llc Vehicle with selectable battery pack isolation detection circuitry using precision resistors
DE102012221133A1 (de) * 2012-11-20 2014-05-22 Robert Bosch Gmbh Vorrichtung zum Testen und Warten einer Hochvoltbatterie und Verwendungen dieser Vorrichtung
WO2015000719A1 (en) * 2013-07-05 2015-01-08 Koninklijke Philips N.V. Control for safely servicing a dc bus
US9411004B2 (en) * 2014-05-28 2016-08-09 Ford Global Technologies, Llc Continuous leakage detection circuit with integrated robustness check and balanced fault detection
US10725115B2 (en) * 2014-10-16 2020-07-28 Ford Global Technologies, Llc Methods and apparatus for detecting electrical leakage in a vehicle
JP6551089B2 (ja) * 2015-09-11 2019-07-31 株式会社オートネットワーク技術研究所 車載用電源装置
GB2534314B (en) * 2016-03-18 2020-02-12 Johnson Matthey Battery Systems Ltd Battery system and method
KR102042756B1 (ko) * 2016-10-10 2019-11-08 주식회사 엘지화학 진단 장치 및 이를 포함하는 전원 시스템
JP6923840B2 (ja) * 2016-12-22 2021-08-25 三菱自動車工業株式会社 組電池電圧計測装置
US10391864B2 (en) * 2017-02-08 2019-08-27 Toyota Motor Engineering & Manufacturing North America, Inc. System to balance high voltage battery for vehicle
DE102017104958B4 (de) * 2017-03-09 2024-03-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriespeichersystem
CN107229018A (zh) * 2017-05-31 2017-10-03 深圳市靖洲科技有限公司 一种无人车电池组漏电流检测方法
KR102202012B1 (ko) * 2017-10-18 2021-01-11 주식회사 엘지화학 배터리팩 및 그것을 포함하는 전력 시스템
CN110677445A (zh) * 2018-07-03 2020-01-10 富春 动态分配电池模组的方法和相应的服务器
WO2021040900A1 (en) * 2019-08-23 2021-03-04 Stafl Systems, LLC Location-determinant fault monitoring for battery management system
US11762022B2 (en) 2019-10-29 2023-09-19 Lg Energy Solution, Ltd. Electric leakage detection apparatus, electric leakage detection method, and electric vehicle
CN111697662B (zh) * 2020-06-24 2023-10-20 东莞新能德科技有限公司 电池保护电路及方法、电化学装置及电子装置
CN112821504B (zh) * 2021-02-01 2021-09-14 深圳市南霸科技有限公司 一种应急启动电源
US20230168314A1 (en) * 2021-12-01 2023-06-01 Prime Planet Energy & Solutions, Inc. Electric leakage detection method
US20230280384A1 (en) * 2022-03-07 2023-09-07 Volvo Car Corporation Isolation resistance monitoring for high voltage systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140204A (ja) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd 組電池の監視装置
JP4421070B2 (ja) * 2000-04-10 2010-02-24 パナソニック株式会社 積層電圧計測装置
JP3679750B2 (ja) * 2001-11-30 2005-08-03 三洋電機株式会社 漏電検出回路を備える電動車両の電源装置
DE20219429U1 (de) * 2002-12-16 2003-03-13 Goethe Stefan Fehlerstrom-Schutzschalter zur Aufnahme von Anschlüssen

Also Published As

Publication number Publication date
JP2006025502A (ja) 2006-01-26
US7453232B2 (en) 2008-11-18
DE102005031146A1 (de) 2006-02-23
CN1719682A (zh) 2006-01-11
CN100511907C (zh) 2009-07-08
US20060006840A1 (en) 2006-01-12
DE102005031146B4 (de) 2012-07-05

Similar Documents

Publication Publication Date Title
JP4326415B2 (ja) 車両用の電源装置
JP4942602B2 (ja) 車両用の電源装置
JP4293942B2 (ja) 電動車両用漏電検出回路および電動車両用漏電検出方法
JP4963827B2 (ja) 組電池の漏電検出回路と漏電検出方法
EP1837944B1 (en) Electric power supply control apparatus
EP2360485B1 (en) Battery management system and driving method thereof
US9194918B2 (en) Leakage detection circuit with integral circuit robustness check
EP1873542B1 (en) Apparatus and method for estimating charge of a battery
CN108076658B (zh) 包括用于检测电绝缘故障的电路的电气系统
JP5274110B2 (ja) 車両用の電源装置
EP2348599A1 (en) Battery management system and driving method thereof
CN104471417A (zh) 用于诊断电池胞平衡电路的故障的设备和方法
US10663506B2 (en) System for diagnosing fault of relays for vehicle
EP3822109B1 (en) Ground fault detection device
CN110539664A (zh) 操作电池管理系统的方法、对应的设备和交通工具
US10353013B2 (en) Voltage detection device, voltage detection method, abnormality determination device, abnormality determination method, and battery pack system
EP2103947A1 (en) Voltage detector for storage element
KR101877564B1 (ko) 배터리 팩
JP2011038876A (ja) 複数組電池の電圧測定装置
EP4099027B1 (en) Earth fault detection apparatus
CN106959419A (zh) 电压检测装置
US20080202830A1 (en) Voltage measurement device and electric vehicle
KR20220045435A (ko) 릴레이 개방 고장 진단 방법 및 이를 이용한 배터리 시스템
JPH11317243A (ja) 自動車用電池交換時の容量演算方法
JP2015102336A (ja) 電池監視装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees