WO2017026519A1 - 積層造形用Ni基超合金粉末 - Google Patents

積層造形用Ni基超合金粉末 Download PDF

Info

Publication number
WO2017026519A1
WO2017026519A1 PCT/JP2016/073614 JP2016073614W WO2017026519A1 WO 2017026519 A1 WO2017026519 A1 WO 2017026519A1 JP 2016073614 W JP2016073614 W JP 2016073614W WO 2017026519 A1 WO2017026519 A1 WO 2017026519A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
powder
cracks
superalloy powder
Prior art date
Application number
PCT/JP2016/073614
Other languages
English (en)
French (fr)
Inventor
裕一 永富
西川 俊一郎
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to KR1020177032227A priority Critical patent/KR20180040513A/ko
Priority to US15/746,905 priority patent/US20190055627A1/en
Priority to EP16835216.9A priority patent/EP3336210A4/en
Priority to CN201680033677.2A priority patent/CN107709586A/zh
Publication of WO2017026519A1 publication Critical patent/WO2017026519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a Ni-based superalloy powder for additive manufacturing.
  • a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a laser or an electron beam (hereinafter referred to as a powder sintering lamination method) is known.
  • a powder sintering lamination method for example, as disclosed in Japanese Patent No. 4661842 (Patent Document 1), a powder layer made of metal powder is irradiated with a light beam to form a sintered layer to obtain a three-dimensional shaped object.
  • Patent Document 1 a method for producing one or more kinds of powders made of Fe-based powder, Ni, Ni-based, Cu, Cu-based alloy, and graphite, which are metal powders for optical modeling.
  • Ni-based superalloy powder is Ni-based superalloy powder.
  • Patent Document 2 a Ni-base superalloy is excellent in heat resistance by adding Ti, Al, etc., and precipitating intermetallic compounds by heat treatment. ⁇ Used in the form of castings and forgings for applications such as engine parts materials in the aircraft field, but due to poor workability, the application of the powder sintering lamination method that can produce parts with a near net shape is promoted It has been.
  • S has a liquid phase with a low melting point during solidification and is liable to cause solidification cracking.
  • the present invention finds that the reduction of S and N in the Ni-base superalloy powder is effective from the cause of cracks in the rapid melting and rapid solidification process, and realizes the formation of a Ni-base superalloy with few cracks. It is a thing.
  • an object of the present invention is to provide a Ni-based superalloy powder that is hard to be cracked inside and can obtain a sound sintered body even when sintering is performed by a rapid melting and rapid solidification process such as additive manufacturing. is there.
  • This Ni-base superalloy powder can be used as a base material for additive manufacturing regardless of the high energy irradiation method for sintering.
  • the feature is that by controlling the impurity components S and N to be low, it is possible to achieve sound modeling even in the rapid melting and rapid solidification process, improve the layered modeling density and strength, and obtain a sound sintered structure. It is to have done.
  • C 0 to 0.2% Si: 0.05 to 1.0%, Mn: 0.05 to 1.0%, Cr: 10.0-25.0%, Fe: 0.01 to 10%, Al: 0.1 to 8.0%, Ti: 0.1 to 8.0%, S: ⁇ 0.002% and / or N: ⁇ 0.10%,
  • Ni-based superalloy powder for additive manufacturing comprising the balance Ni and inevitable impurities.
  • Ni-base superalloy powder of the present invention it is possible to realize modeling with few cracks even by using a rapid melting and rapid solidification process.
  • the component amount of a composition is a value in mass%.
  • S promotes cracking during sintering in a rapid melting and rapid solidification process by producing a liquid phase having a low melting point during solidification. Since the said crack can be suppressed, it is preferable to make S content into 0.002% or less. More preferably, the S content is 0.0015% or less, more preferably 0.001% or less.
  • the N content is preferably 0.10% or less. More preferably, the N content is 0.08% or less, more preferably 0.06% or less.
  • Si is an element that acts as a deoxidizing material at the time of dissolution and imparts oxidation resistance at high temperatures. Therefore, 0.05% or more is added. However, if added in a large amount, the oxidation resistance at high temperatures deteriorates, so the content is made 1.0% or less.
  • the Si content is 0.1 to 0.8%, particularly preferably 0.2 to 0.6%.
  • Mn is an element that contributes to strengthening of the solid solution of the alloy and acts as a deoxidizing material at the time of dissolution in the same manner as Si, and is added in an amount of 0.05% or more.
  • the Mn content is 1.0% or less.
  • the Mn content is 0.1 to 0.8%, particularly preferably 0.2 to 0.6%.
  • Cr is an essential element that contributes to strengthening the solid solution of the alloy and improving the oxidation resistance. If the Cr content is less than 10%, the above effect cannot be obtained. If the Cr content exceeds 25%, the ⁇ phase is generated and the high-temperature strength and toughness are reduced, so that the content is 10.0-25.0%. To do.
  • the Cr content is more than 12.5% and less than 20%, particularly preferably 14 to 20%.
  • Fe is an element effective for cost reduction by substituting Ni, and may be added in an amount of 0.01% or more. However, addition exceeding 10% decreases the ductility due to the formation of the ⁇ phase, so the content is made 0.01 to 10%.
  • the Fe content is 0.01 to 8.0%, particularly preferably 0.01 to 6.0%.
  • Al is an element that forms a ⁇ 'phase and increases creep rupture strength and oxidation resistance, and may be added in an amount of 0.1% or more.
  • the Al content exceeds 8.0%, high temperature cracks are likely to occur, and cracks are likely to occur during layered manufacturing, so the content is set to 0.1 to 8.0%.
  • the Al content is 0.1 to 5.0%, particularly preferably 0.1 to 3.0%.
  • Ti is an element that forms a ⁇ 'phase like Al and increases creep rupture strength and oxidation resistance, and may be added in an amount of 0.1% or more. However, if the Ti content exceeds 8.0%, high temperature cracks are likely to occur, and cracks are likely to occur during layered manufacturing, so the content is set to 0.1 to 8.0%.
  • the Ti content is preferably 0.1 to 5.0%, particularly preferably 0.1 to 3.0%.
  • Mo, W, and Cu are effective elements for contributing to solid solution strengthening and increasing strength, and therefore may be contained by 0.1% or more as necessary. However, too much content promotes the formation of ⁇ phase or ⁇ phase and contributes to embrittlement, so the Mo content is 12% or less, and the W and Cu contents are each 10% or less. .
  • the Mo content is 1.0 to 8.0%, and particularly preferably, the Mo content is 1.0 to 6.0%.
  • Co may be contained in an amount of 0.1% or more as necessary in order to increase the solubility of the ⁇ 'phase in Ni solid solution and improve high temperature ductility and high temperature strength. However, since it will embrittle if there is too much content, the content shall be 20% or less.
  • the Co content is 0.1 to 15.0%, particularly preferably 0.1 to 10.0%.
  • Zr is an element effective for segregating at the grain boundaries to increase the creep strength, and may be contained in an amount of 0.01% or more as necessary. However, if the amount is too large, the toughness is deteriorated, so the content is made 0.2% or less.
  • the Zr content is preferably 0.01 to 0.15%, particularly preferably 0.01 to 0.1%.
  • the Ni-base superalloy powder of the present invention Nb and Ta form carbides and strengthen the ⁇ 'phase to improve the strength. Therefore, if necessary, the Ni-base superalloy powder may be contained in an amount of 0.1% or more. However, if the amount is too large, a Laves phase is generated and the strength is lowered. Therefore, the respective contents are set to 6.0% or less.
  • the Nb content is preferably 1.2 to 6.0%, and particularly preferably the Nb content is 3.0 to 6.0%.
  • B has the effect of strengthening the grain boundary and improving the strength, so it may be contained by 0.001% or more as necessary. However, if it is too much, boride precipitates and the toughness decreases, so the content is made 0.01% or less.
  • Hf has an effect of improving oxidation resistance, and may be contained by 0.1% or more as necessary. However, if the amount is too large, an embrittled phase is generated and the strength and toughness are lowered. Therefore, the content is made 2.0% or less.
  • C forms MC-type carbides with Nb, Ti, etc., and Cr, Mo, W, etc. and carbides such as M 6 C, M 7 C 3 , M 12 C 6, etc. It has the effect of increasing the high temperature strength of the alloy. Therefore, the content is 0% or more, preferably 0.001% or more. However, when a large amount of C is added, carbides continuously precipitate at the crystal grain boundaries, the crystal grain boundaries become weak, and the corrosion resistance and toughness deteriorate, so the content is made 0.2% or less. More preferably, the C content is 0.03-0.15%, more preferably 0.03-0.1%.
  • the average particle diameter is 10 to 100 ⁇ m and D90 is 150 ⁇ m or less.
  • the average particle size is 10 to 90 ⁇ m, and more preferably 30 to 90 ⁇ m.
  • D90 is 130 micrometers or less, More preferably, it is 120 micrometers or less.
  • O generates oxides with Fe, Ti, Al, etc., leading to a decrease in strength and ductility, so the content is preferably 0.02% or less.
  • No. No. 32 has a high content of S and N, so the number of cracks is as high as 129 and the relative density is 100 or less.
  • No. 33 has a high Si content and a high S content, the number of cracks is as high as 95 and the relative density is 100 or less.
  • No. No. 34 has a high Mn content and a high S content, so the number of cracks is as high as 110 and the relative density is 100 or less.
  • No. No. 35 has a high Mo content, an extremely high S content, and a high D90, so the number of cracks is as high as 125 and the relative density is extremely low.
  • No. No. 36 has a high Fe content and a high S content, so the number of cracks is as high as 62 and the relative density is 100 or less.
  • No. No. 37 has a high Al content, particularly an extremely high S content, so the number of cracks is as high as 174 and the relative density is 100 or less.
  • No. No. 38 has a low Cr content and a high Ti and N content, and therefore has a slightly high crack number of 98.
  • No. No. 39 has a low Cr content and an extremely high S content, so the number of cracks is as high as 111 and the relative density is 100 or less. In contrast, no. It can be seen that all of 1-31 have a small number of cracks and the relative density exceeds 100.
  • the base superalloy powder of the present invention can be used as a base material for additive manufacturing regardless of the high energy irradiation method for sintering.
  • the feature is an impurity component. In particular, by controlling S to a low level of 0.002% or less and N to a low level of 0.1% or less, it is possible to suppress cracking and produce a good shaped body free from internal cracks. It is possible to improve the additive manufacturing density and strength and obtain a sound sintered structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

質量%で、C:0~0.2%、Si:0.05~1.0%、Mn:0.05~1.0%、Cr:10.0~25.0%、Fe:0.01~10%、Al:0.1~8.0%、Ti:0.1~8.0%、S:≦0.002%及び/又はN:≦0.10%、残部Niおよび不可避的不純物からなる、積層造形用Ni基超合金粉末が提供される。この積層造形用Ni基超合金粉末によれば、積層造形法などの急速溶融急冷凝固プロセスで焼結を行った場合でも健全な焼結体が得られる。

Description

積層造形用Ni基超合金粉末
 本発明は、積層造形用Ni基超合金粉末に関する。
 従来より、粉末材料にレーザや電子ビームを照射して三次元形状造形物を製造する方法(以下、粉末焼結積層法と呼ぶ)が知られている。かかる方法として、例えば特許第4661842号(特許文献1)に開示されているように、金属粉末からなる粉末層に光ビームを照射して焼結層を形成し、三次元形状造形物を得る金属光造形用金属粉末であるFe系粉末、Ni、Ni系、Cu、Cu系合金、および黒鉛からなる1種類以上の粉末の製造方法が提案されている。
 このような粉末焼結積層法で用いられる粉末のひとつに、Ni基超合金粉末がある。例えば特許第5579839号(特許文献2)に開示されているように、Ni基超合金はTi、Alなどを添加、熱処理して金属間化合物を析出させることで、耐熱性に優れることから、宇宙・航空機分野のエンジン部品素材などの用途に、鋳造材、鍛造材の形で使用されているが、加工性が悪いことから、ニアネットシェイプで部品を作製できる粉末焼結積層法の適用が進められている。
特許第4661842号 特許第5579839号
 一方、Ni基超合金は粉末積層造形法などの急速溶融急冷凝固プロセスを適用すると、高合金組成かつ耐熱性向上のための金属間化合物の析出により、内部に微小なクラックが生じ、密度、強度が低下するという問題がある。
 上述したような課題を解決するために、本発明者らは鋭意検討した結果、Ni基超合金の成分規格JIS F 4901では、Sは0.015%以下、Nは規格無しと定められているが、S、Nをより低い値に制御を行うことで、粉末積層造形法などの急速溶融急冷凝固プロセスを適用し焼結された組織においても、微小クラックなどが生じることなく健全な焼結体を得ることができることを見出し、本発明に至った。
 すなわち、Ni基超合金の部品を一般の鋳造、鍛造プロセスを母材に作製した際には、割れは発生しないが、急速溶融急冷凝固プロセスで部品を造形した場合には、部品内部に割れが生じる。この割れの状況を調査した結果、凝固中に不純物成分偏析による濃化が生じ一部分に液相を生じるため、ここが再凝固するときに収縮し割れが生じることが分かった。
 急速急冷プロセスでは、一般の鋳造、鍛造プロセスよりも、短時間で溶融、凝固が繰り返されることから、不純物元素が拡散しきる前に、溶融、凝固に至る。そのため、凝固時に不純物元素が偏析する領域のみ液相が存在する状態となり、この液相、凝固領域の間にひずみが働くことにより割れが生じると考えた。そこで、Ni基超合金の造形実験における不純物成分と密度、強度の影響を鋭意検討した結果、Sを0.002%以下及び/又はNを0.10%以下に制御することにより、割れが抑制できることが分かった。
 そして、急速溶融急冷凝固プロセスにおいて、Sは凝固時に低融点の液相を生じ凝固割れを発生しやすいこと、Nは顕著に固溶強化に寄与することにより造形体自身の硬さを上げ、延性が低下し、凝固割れを助長することを明らかにした。本発明は、このように、急速溶融急冷凝固プロセスにおける割れの原因から、Ni基超合金粉末中のS、Nの低下が有効であることを見出し、割れの少ないNi基超合金の造形を実現したものである。
 したがって、本発明の目的は、積層造形法などの急速溶融急冷凝固プロセスで焼結を行っても、内部に割れを生じにくく健全な焼結体を得られるNi基超合金粉末を提供することである。このNi基超合金粉末は、焼結させるための高エネルギー照射方式を問わず積層造形用母材として用いることができる。その特徴は、不純物成分であるS、Nを低く制御することにより、急速溶融急冷凝固プロセスでも健全な造形を可能とし、積層造形密度、強度を改善し、健全な焼結組織を得られるようにしたことにある。
 本発明の一態様によれば、質量%で、
   C :0~0.2%、
   Si:0.05~1.0%、
   Mn:0.05~1.0%、
   Cr:10.0~25.0%、
   Fe:0.01~10%、
   Al:0.1~8.0%、
   Ti:0.1~8.0%、
   S :≦0.002%及び/又はN:≦0.10%、
残部Niおよび不可避的不純物からなる、積層造形用Ni基超合金粉末が提供される。
 本発明のNi基超合金粉末によれば、急速溶融急冷凝固プロセスにより焼結を用いても割れの少ない造形を実現することができる。
 次に、本発明のNi基超合金粉末の組成についての限定理由を説明する。なお、以下の説明において、組成の成分量は質量%での値である。
 本発明のNi基超合金粉末において、Sは凝固時に低融点の液相を生じることにより、急速溶融急冷凝固プロセスにおける焼結での割れを助長する。上記割れを抑制することができるため、S含有量を0.002%以下とすることが好ましい。さらに好ましくは、S含有量が0.0015%以下、より好ましくは0.001%以下である。
 本発明のNi基超合金粉末において、Nは顕著に固溶強化に寄与することにより、造形体自身の硬さを上げ、延性が低下することにより割れを助長する。上記割れを抑制することができるため、N含有量を0.10%以下とすることが好ましい。さらに好ましくは、N含有量が0.08%以下、より好ましくは0.06%以下である。
 本発明のNi基超合金粉末において、Siは溶解時の脱酸材として働くとともに、高温での耐酸化性を付与する元素であり、そのために0.05%以上添加する。しかし、多量に添加すると高温での耐酸化性が劣化するため、1.0%以下とする。好ましくは、Si含有量が0.1~0.8%であり、特に好ましくは0.2~0.6%である。
 本発明のNi基超合金粉末において、MnはSiと同様に溶解時の脱酸材として働くとともに、合金の固溶体強化に寄与する元素であり、0.05%以上添加する。しかし、多量に添加すると高温での耐酸化性が劣化するため、Mn含有量を1.0%以下とする。好ましくは、Mn含有量が0.1~0.8%であり、特に好ましくは0.2~0.6%である。
 本発明のNi基超合金粉末において、Crは合金の固溶体強化と耐酸化性の向上に寄与する必須元素である。Cr含有量が10%未満では上記効果が得られず、また、25%を超えるとδ相が生成し、高温強度と靭性が低下するため、その含有量を10.0~25.0%とする。好ましくは、Cr含有量が12.5%を超え20%未満であり、特に好ましくは14~20%である。
 本発明のNi基超合金粉末において、FeはNiの代替によるコスト低減に有効な元素であり、0.01%以上添加してもよい。しかし、10%を超える添加はσ相の生成により、延性が低下するため、その含有量を0.01~10%とする。好ましくは、Fe含有量が0.01~8.0%であり、特に好ましくは0.01~6.0%である。
 本発明のNi基超合金粉末において、Alはγ’相を形成し、クリープ破断強さと耐酸化性を上げる元素であり、0.1%以上添加してもよい。しかし、Al含有量が8.0%を超えると高温割れが発生しやすくなり、積層造形時に割れが発生しやすくなるため、その含有量を0.1~8.0%とする。好ましくは、Al含有量が0.1~5.0%であり、特に好ましくは0.1~3.0%である。
 本発明のNi基超合金粉末において、TiはAlと同様にγ’相を形成し、クリープ破断強さと耐酸化性を上げる元素であり、0.1%以上添加してもよい。しかし、Ti含有量が8.0%を超えると高温割れが発生しやすくなり、積層造形時に割れが発生しやすくなるため、その含有量を0.1~8.0%とする。好ましくは、Ti含有量が0.1~5.0%であり、特に好ましくは0.1~3.0%である。
 本発明のNi基超合金粉末において、Mo、W、Cuは、固溶体強化に寄与し強度を高めるのに有効な元素であるため、必要に応じて0.1%以上含有させてもよい。しかし、含有量が多すぎるとμ相またはσ相の生成を助長し、脆化の一因となるため、Moの含有量は12%以下、W及びCuの含有量はそれぞれ10%以下とする。好ましくは、Mo含有量が1.0~8.0%であり、特に好ましくは、Mo含有量が1.0~6.0%である。
 本発明のNi基超合金粉末において、Coはγ’相のNi固溶体に対する溶解度をまし、高温延性と高温強度を改善するため、必要に応じて0.1%以上含有させてもよい。しかし、含有量が多すぎると脆化するため、その含有量を20%以下とする。好ましくは、Co含有量が0.1~15.0%であり、特に好ましくは0.1~10.0%である。
 本発明のNi基超合金粉末において、Zrは粒界に偏析してクリープ強度を高めるのに有効な元素であり、必要に応じて0.01%以上含有させてもよい。しかし、多すぎると靭性を劣化させるので、その含有量を0.2%以下とする。好ましくは、Zr含有量が0.01~0.15%であり、特に好ましくは0.01~0.1%である。
 本発明のNi基超合金粉末において、Nb、Taは炭化物を形成するとともにγ’相を強化し強度を向上させるので、必要に応じて0.1%以上含有させてもよい。しかし、多すぎるとラーベス相を生成して、強度を低下させるので、それぞれの含有量を6.0%以下とする。好ましくは、Nb含有量が1.2~6.0%、特に好ましくは、Nb含有量が3.0~6.0%である。
 本発明のNi基超合金粉末において、Bは粒界を強化して強度を向上させる効果があるため、必要に応じて0.001%以上含有させてもよい。しかし、多すぎるとホウ化物が析出し靭性が低下するので、その含有量を0.01%以下とする。
 本発明のNi基超合金粉末において、Hfは耐酸化性を向上させる効果があるため、必要に応じて0.1%以上含有させてもよい。しかし、多すぎると脆化相を生成して、強度、靭性を低下させるので、その含有量を2.0%以下とする。
 本発明のNi基超合金粉末において、Cは、Nb、TiなどとMC型炭化物を形成するほか、Cr、Mo、WなどとM C、M C 、M12 などの炭化物をつくり、合金の高温強さを高める効果がある。そのため、その含有量を0%以上、好ましくは0.001%以上とする。しかし、Cを多量に添加すると、炭化物が結晶粒界に連続的に析出し、結晶粒界がぜい弱になり、耐食性、靭性が劣化するので、その含有量を0.2%以下とする。さらに好ましくは、C含有量が0.03~0.15%であり、より好ましくは0.03~0.1%である。
 本発明の硬質粉末を積層造形用粉末として用いる場合、平均粒径は10~100μmでかつD90が150μm以下であるのが好ましい。平均粒径を10μm以上とすることで、微粉化による粉末の流動性低下を抑制し、100μm以下とすることで、充填率低下及び造形体の密度低下を抑制する。さらに好ましくは、平均粒径が10~90μmであり、より好ましくは30~90μmである。また、D90を150μm以上とすることで、積層造形時に粉末の一部が溶け残って焼結され、欠陥として残存することを抑制する。さらに好ましくは、D90が130μm以下であり、より好ましくは120μm以下である。
 本発明のNi基超合金粉末において、OはFe、Ti、Alなどと酸化物を生成し、強度、延性低下につながるため、その含有量を0.02%以下にすることが好ましい。
 本発明を以下の例によってさらに具体的に説明する。
(1)合金粉末及びブロックの作製
 表1~3に示す供試材の作製に当たり、ガスアトマイズ法により所定の成分の粉末を作製し63μm以下に分級した。ガスアトマイズは、真空中にてアルミナ製坩堝で所定の配分となる様にした原料を高周波誘導加熱で溶解し、坩堝下の直径5mmのノズルから溶融した合金を落下させ、これに高圧アルゴンまたは高圧窒素を噴霧することで実施した。これを原料粉末とし、3次元積層造形装置(EOS-M280)を用いて角10mmのブロックを作製した。その供試材についての不純物S、Nの造形時割れに対する影響を詳細に評価した。その時の割れ数、相対密度に対する挙動を評価し、表1~3に示す。
(2)割れの評価
 角10mmブロックを造形方向に対して平行に切断した試験片を用い、光学顕微鏡を用いて、ブロック断面を×100で5視野撮影し、割れの数を画像解析により算出した。
(3)相対密度の評価
 相対密度は、角10mmブロックをアルキメデス法により測定した密度を、成分分析値から求められる計算比重で割った値とし、算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 No.32は、SおよびNの含有量が高いために、割れ数が129と高く、かつ相対密度が100以下である。No.33は、Si含有量が高く、かつSの含有量が高いために、割れ数が95と高く、かつ相対密度が100以下である。
 No.34は、Mn含有量が高く、かつSの含有量が高いために、割れ数が110と高く、かつ相対密度が100以下である。No.35は、Mo含有量が高く、かつSの含有量が極めて高く、D90が高いために、割れ数が125と高く、かつ相対密度が極めて低い。No.36は、Fe含有量が高く、かつSの含有量が高いために、割れ数が62とやや高く、かつ相対密度が100以下である。
 No.37は、Alの含有量が高く、特にSの含有量が極めて高いために、割れ数が174とやや高く、かつ相対密度が100以下である。No.38は、Crの含有量が低く、Ti、Nの含有量が高いために、割れ数が98とやや高い。No.39は、Crの含有量が低く、かつSの含有量が極めて高いために、割れ数が111と高く、かつ相対密度が100以下である。これに対し、No.1~31はいずれも割れ数は少なく、かつ相対密度は100を超していることが分かる。
 以上のように、本発明のNi基超合金粉末により、積層造形法などの急速溶融急冷凝固プロセスで焼結を行っても、内部に割れを生じにくく健全な焼結体が得られ、このNi基超合金粉末は焼結させるための高エネルギー照射方式を問わず積層造形用母材として用いることができる。その特徴は、不純物成分であり、特にSを0.002%以下、Nを0.1%以下の低いレベルに制御することによって、割れを抑制し、内部クラックの生じない良好な造形体を作製することを可能とし、積層造形密度、強度を改善し、健全な焼結組織が得られる。

Claims (4)

  1.  質量%で、
       C :0~0.2%、
       Si:0.05~1.0%、
       Mn:0.05~1.0%、
       Cr:10.0~25.0%、
       Fe:0.01~10%、
       Al:0.1~8.0%、
       Ti:0.1~8.0%、
       S :≦0.002%及び/又はN:≦0.10%、
    残部Niおよび不可避的不純物からなる、積層造形用Ni基超合金粉末。
  2.  質量%で、
       C :0.001~0.2%、
    である、請求項1に記載の積層造形用Ni基超合金粉末。
  3.  請求項1又は2のいずれか1項の成分に加え、更にMo、W、Cu、Co、Zr、Nb、Ta及びHfの何れか1種または2種以上を
       Mo:0.1~12%、
       W :0.1~10%、
       Cu:0.1~10%、
       Co:0.1~20%、
       Zr:0.01~0.2%、
       Nb:0.1~6.0%、
       Ta:0.1~6.0%、
       B :0.001~0.01%、
       Hf:0.1~2.0%、
    の量で含有させた、積層造形用Ni基超合金粉末。
  4.  平均粒径(D50)が10~100μmかつD90が150μm以下である、請求頂1~3のいずれか1項に記載の積層造形用Ni基超合金粉末。
PCT/JP2016/073614 2015-08-12 2016-08-10 積層造形用Ni基超合金粉末 WO2017026519A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177032227A KR20180040513A (ko) 2015-08-12 2016-08-10 적층조형용 Ni계 초합금분말
US15/746,905 US20190055627A1 (en) 2015-08-12 2016-08-10 Ni-Based Super Alloy Powder for Laminate Molding
EP16835216.9A EP3336210A4 (en) 2015-08-12 2016-08-10 NI-BASED SUPER ALLOY FOR LAMINATE FORMING
CN201680033677.2A CN107709586A (zh) 2015-08-12 2016-08-10 层叠造型用Ni基超合金粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015159329A JP6499546B2 (ja) 2015-08-12 2015-08-12 積層造形用Ni基超合金粉末
JP2015-159329 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017026519A1 true WO2017026519A1 (ja) 2017-02-16

Family

ID=57984429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073614 WO2017026519A1 (ja) 2015-08-12 2016-08-10 積層造形用Ni基超合金粉末

Country Status (7)

Country Link
US (1) US20190055627A1 (ja)
EP (1) EP3336210A4 (ja)
JP (1) JP6499546B2 (ja)
KR (1) KR20180040513A (ja)
CN (1) CN107709586A (ja)
TW (1) TW201718897A (ja)
WO (1) WO2017026519A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326221A (zh) * 2017-06-30 2017-11-07 西南交通大学 钴基合金及其所述钴基合金制备的熔覆层
WO2019049594A1 (ja) * 2017-09-07 2019-03-14 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
EP3489376A1 (en) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Alloy for gas turbine applications with high oxidation resistance
WO2019185082A1 (de) * 2018-03-27 2019-10-03 Vdm Metals International Gmbh Verwendung einer nickel-chrom-eisen-aluminium-legierung
WO2019207518A1 (en) * 2018-04-25 2019-10-31 Sharma Satyajeet Powder composition for additive manufacturing
CN111549259A (zh) * 2020-05-25 2020-08-18 中国科学院金属研究所 一种镍钴基高温合金涡轮盘及其制备方法
WO2020179154A1 (ja) * 2019-03-04 2020-09-10 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
JP2021181591A (ja) * 2020-05-18 2021-11-25 大同特殊鋼株式会社 金属粉末
CN114423540A (zh) * 2019-09-19 2022-04-29 大同特殊钢株式会社 粉末材料、层叠成形品、以及粉末材料的制造方法
JP2022532738A (ja) * 2019-07-05 2022-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
JP2022532894A (ja) * 2019-07-05 2022-07-20 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
JP7255963B1 (ja) 2022-03-25 2023-04-11 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Ni合金部材の製造方法
US20230173621A1 (en) * 2017-12-08 2023-06-08 Vdm Metals International Gmbh Welding filler material
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
US12000025B2 (en) 2019-03-28 2024-06-04 Satyajeet Sharma Powder composition for additive manufacturing

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3445881A4 (en) * 2016-04-20 2019-09-04 Arconic Inc. ALUMINUM, COBALT IRON AND NICKEL MATERIALS WITH FCC STRUCTURE AND PRODUCTS MANUFACTURED THEREFROM
WO2018182250A1 (ko) * 2017-03-27 2018-10-04 연세대학교 산학협력단 자가치유 초내열 니켈합금
WO2018225831A1 (ja) * 2017-06-08 2018-12-13 新日鐵住金株式会社 原子力用Ni基合金管
GB2565063B (en) 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
US20190241995A1 (en) * 2018-02-07 2019-08-08 General Electric Company Nickel Based Alloy with High Fatigue Resistance and Methods of Forming the Same
CN108342619A (zh) * 2018-03-30 2018-07-31 四川六合锻造股份有限公司 一种高韧性高抗疲劳含钇系镍基高温合金及其制备方法
CN108315598A (zh) * 2018-04-20 2018-07-24 长沙聚众冶金科技有限公司 一种in713c镍基高温合金的制备方法
JP7132751B2 (ja) * 2018-06-01 2022-09-07 山陽特殊製鋼株式会社 Cu基合金粉末
JP2020056106A (ja) * 2018-09-27 2020-04-09 株式会社アテクト ニッケル基合金製または鉄基合金製の耐熱部材の製造方法
JP6526307B1 (ja) * 2018-12-14 2019-06-05 日本冶金工業株式会社 内部品質および熱間加工性に優れるNi−Cr−Nb−Fe系合金とその製造方法
JP6539794B1 (ja) * 2019-01-04 2019-07-03 日本冶金工業株式会社 Ni基合金及びNi基合金板
SG11202109413UA (en) * 2019-03-04 2021-09-29 Hitachi Metals Ltd Ni-based corrosion resistant alloy powder for additive manufacturing and manufacturing method of additive manufacturing product using said powder
JP7218225B2 (ja) * 2019-03-22 2023-02-06 三菱重工業株式会社 積層造形用合金粉末、積層造形物及び積層造形方法
CN110157953A (zh) * 2019-06-04 2019-08-23 沈阳中科煜宸科技有限公司 一种激光增材制造用高温合金粉末及其制备方法
FR3097876B1 (fr) * 2019-06-28 2022-02-04 Safran Poudre de superalliage, piece et procede de fabrication de la piece a partir de la poudre
CN114364472A (zh) * 2019-08-30 2022-04-15 西门子(中国)有限公司 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法
DE102019213990A1 (de) * 2019-09-13 2021-03-18 Siemens Aktiengesellschaft Nickelbasislegierung für additive Fertigung, Verfahren und Produkt
CN110512119B (zh) * 2019-09-29 2021-06-01 湖南英捷高科技有限责任公司 一种注射成形镍基合金粉、注射成形方法及镍基合金制品
CN110918987B (zh) * 2019-10-30 2022-05-03 株洲航发动科南方燃气轮机有限公司 3d打印涡轮叶片的制备方法和涡轮导向叶片
CN110616354B (zh) * 2019-11-12 2022-03-04 湖南人文科技学院 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用
CN112981182B (zh) * 2019-12-13 2022-06-14 宝武特种冶金有限公司 一种镍铬合金材料及其制备方法
EP4212638A1 (en) * 2020-09-08 2023-07-19 Proterial, Ltd. Ni-based alloy powder and method for manufacturing lamination molded article using said ni-based alloy powder
US20230340644A1 (en) * 2020-09-09 2023-10-26 Nv Bekaert Sa Ni-based alloy material
EP4001445A1 (en) * 2020-11-18 2022-05-25 Siemens Energy Global GmbH & Co. KG Nickel based superalloy with high corrosion resistance and good processability
CN112695228B (zh) * 2020-12-10 2021-12-03 蜂巢蔚领动力科技(江苏)有限公司 一种耐1050℃的增压器喷嘴环叶片镍基合金材料及其制造方法
JP7128916B2 (ja) * 2021-01-15 2022-08-31 山陽特殊製鋼株式会社 積層造形体
WO2022168914A1 (ja) * 2021-02-05 2022-08-11 日立金属株式会社 積層造形用Ni基合金粉末、積層造形物および積層造形物の製造方法
DE102021201196A1 (de) * 2021-02-09 2022-08-11 Siemens Energy Global GmbH & Co. KG Legierung, Pulver, Verfahren und Bauteil
CN113005333B (zh) * 2021-02-23 2022-04-01 江苏兄弟合金有限公司 一种超高温镍基合金及其制备方法
CN113073234B (zh) * 2021-03-23 2022-05-24 成都先进金属材料产业技术研究院股份有限公司 镍铬系高电阻电热合金及其制备方法
JP2023032514A (ja) * 2021-08-27 2023-03-09 国立研究開発法人物質・材料研究機構 ニッケル基超合金及びその粉末、並びにニッケル基超合金造形体の製造方法
WO2023167231A1 (ja) * 2022-03-04 2023-09-07 株式会社プロテリアル 積層造形用Ni基合金粉末、積層造形品、及び積層造形品の製造方法
CN116287871B (zh) * 2023-05-18 2023-08-11 北京煜鼎增材制造研究院股份有限公司 一种650℃用镍基高温合金及其增材制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762477A (ja) * 1993-08-26 1995-03-07 Mitsubishi Heavy Ind Ltd 高温ボルト材
JP2002302726A (ja) * 2001-04-05 2002-10-18 Daido Steel Co Ltd 高硬度高耐食性Ni基合金
JP2003027164A (ja) * 2001-07-16 2003-01-29 Sanyo Special Steel Co Ltd 温度変動の激しい高温腐食環境に優れた耐食性粉末合金およびその製造方法
JP2005350710A (ja) * 2004-06-09 2005-12-22 Daido Steel Co Ltd 金属粉末射出成形用耐熱合金
JP2014058702A (ja) * 2012-09-14 2014-04-03 Toshiba Corp 鋳造用Ni基合金およびタービン鋳造部品
JP2015072007A (ja) * 2013-09-09 2015-04-16 ゼネラル・エレクトリック・カンパニイ 3次元印刷プロセス、スワール装置、及び熱管理プロセス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793462B2 (ja) * 1993-02-23 1998-09-03 山陽特殊製鋼株式会社 超耐食Ni基合金
US20060051234A1 (en) * 2004-09-03 2006-03-09 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
KR101076353B1 (ko) * 2006-08-28 2011-10-25 파나소닉 전공 주식회사 금속 광조형용 금속분말 및 그것을 이용한 금속 광조형법
CN102615284B (zh) * 2012-04-26 2013-11-27 西北工业大学 双组织涡轮盘的制造方法
CN102615248A (zh) * 2012-04-26 2012-08-01 苏州科羽电子技术服务有限公司 一种铸件的生产工艺
CN103498075B (zh) * 2013-09-03 2015-07-22 攀钢集团江油长城特殊钢有限公司 难变形高温合金和难变形高温合金件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762477A (ja) * 1993-08-26 1995-03-07 Mitsubishi Heavy Ind Ltd 高温ボルト材
JP2002302726A (ja) * 2001-04-05 2002-10-18 Daido Steel Co Ltd 高硬度高耐食性Ni基合金
JP2003027164A (ja) * 2001-07-16 2003-01-29 Sanyo Special Steel Co Ltd 温度変動の激しい高温腐食環境に優れた耐食性粉末合金およびその製造方法
JP2005350710A (ja) * 2004-06-09 2005-12-22 Daido Steel Co Ltd 金属粉末射出成形用耐熱合金
JP2014058702A (ja) * 2012-09-14 2014-04-03 Toshiba Corp 鋳造用Ni基合金およびタービン鋳造部品
JP2015072007A (ja) * 2013-09-09 2015-04-16 ゼネラル・エレクトリック・カンパニイ 3次元印刷プロセス、スワール装置、及び熱管理プロセス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336210A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
CN107326221A (zh) * 2017-06-30 2017-11-07 西南交通大学 钴基合金及其所述钴基合金制备的熔覆层
WO2019049594A1 (ja) * 2017-09-07 2019-03-14 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
JP2019049015A (ja) * 2017-09-07 2019-03-28 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
CN111050957A (zh) * 2017-09-07 2020-04-21 日立金属株式会社 层叠造型用Ni基耐腐蚀合金粉末、使用该粉末的层叠造型品和半导体制造装置用构件的制造方法
JP2021504564A (ja) * 2017-11-24 2021-02-15 シーメンス アクティエンゲゼルシャフト ガスタービン用途のための酸化耐性の高い合金
EP3489376A1 (en) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Alloy for gas turbine applications with high oxidation resistance
WO2019101456A1 (en) * 2017-11-24 2019-05-31 Siemens Aktiengesellschaft Alloy for gas turbine applications with high oxidation resistance
JP7233422B2 (ja) 2017-11-24 2023-03-06 シーメンス・エナジー・グローバル・ゲーエムベーハー・ウント・コ・カーゲー ガスタービン用途のための酸化耐性の高い合金
CN111373063A (zh) * 2017-11-24 2020-07-03 西门子股份公司 具有高抗氧化性的用于燃气涡轮应用的合金
US11427892B2 (en) 2017-11-24 2022-08-30 Siemens Energy Global GmbH & Co. KG Alloy for gas turbine applications with high oxidation resistance
US20230173621A1 (en) * 2017-12-08 2023-06-08 Vdm Metals International Gmbh Welding filler material
US11162160B2 (en) 2018-03-27 2021-11-02 Vdm Metals International Gmbh Use of a nickel-chromium-iron-aluminum alloy
KR20200119308A (ko) * 2018-03-27 2020-10-19 파우데엠 메탈스 인테르나티오날 게엠베하 니켈-크롬-철-알루미늄 합금의 용도
WO2019185082A1 (de) * 2018-03-27 2019-10-03 Vdm Metals International Gmbh Verwendung einer nickel-chrom-eisen-aluminium-legierung
KR102486432B1 (ko) * 2018-03-27 2023-01-09 파우데엠 메탈스 인테르나티오날 게엠베하 니켈-크롬-철-알루미늄 합금의 용도
WO2019207518A1 (en) * 2018-04-25 2019-10-31 Sharma Satyajeet Powder composition for additive manufacturing
JPWO2020179154A1 (ja) * 2019-03-04 2021-04-30 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
WO2020179154A1 (ja) * 2019-03-04 2020-09-10 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
US12000025B2 (en) 2019-03-28 2024-06-04 Satyajeet Sharma Powder composition for additive manufacturing
JP7230243B2 (ja) 2019-07-05 2023-02-28 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
JP2022532894A (ja) * 2019-07-05 2022-07-20 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
US11767579B2 (en) 2019-07-05 2023-09-26 Vdm Metals International Gmbh Nickel based alloy for powder and method for producing a powder
JP2022532738A (ja) * 2019-07-05 2022-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
JP7311633B2 (ja) 2019-07-05 2023-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
CN114423540A (zh) * 2019-09-19 2022-04-29 大同特殊钢株式会社 粉末材料、层叠成形品、以及粉末材料的制造方法
JP2021181591A (ja) * 2020-05-18 2021-11-25 大同特殊鋼株式会社 金属粉末
CN113751703A (zh) * 2020-05-18 2021-12-07 大同特殊钢株式会社 金属粉末
JP7144757B2 (ja) 2020-05-18 2022-09-30 大同特殊鋼株式会社 金属粉末
US11807921B2 (en) 2020-05-18 2023-11-07 Daido Steel Co., Ltd. Metal powder
CN113751703B (zh) * 2020-05-18 2023-11-10 大同特殊钢株式会社 金属粉末
CN111549259B (zh) * 2020-05-25 2021-06-04 中国科学院金属研究所 一种镍钴基高温合金涡轮盘及其制备方法
CN111549259A (zh) * 2020-05-25 2020-08-18 中国科学院金属研究所 一种镍钴基高温合金涡轮盘及其制备方法
JP7255963B1 (ja) 2022-03-25 2023-04-11 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Ni合金部材の製造方法
JP2023143401A (ja) * 2022-03-25 2023-10-06 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Ni合金部材の製造方法

Also Published As

Publication number Publication date
TW201718897A (zh) 2017-06-01
JP2017036485A (ja) 2017-02-16
EP3336210A1 (en) 2018-06-20
US20190055627A1 (en) 2019-02-21
EP3336210A4 (en) 2019-03-13
KR20180040513A (ko) 2018-04-20
JP6499546B2 (ja) 2019-04-10
CN107709586A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6499546B2 (ja) 積層造形用Ni基超合金粉末
Schneider et al. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens
JP6931545B2 (ja) Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
US20170120393A1 (en) Aluminum alloy products, and methods of making the same
JP5652730B1 (ja) Ni基超耐熱合金及びその製造方法
CN113862543A (zh) 合金部件的制造方法
KR20150137013A (ko) 분말계 첨가물 제조 프로세서에서 사용하기 위한 감마 프라임 석출 강화 니켈계 수퍼합금
CN107429332A (zh) 含有铁、硅、钒和铜的铝合金
JP2017043838A (ja) 粉末ベースの製造プロセスにおいて用いるための高温ニッケル基超合金
KR20200002965A (ko) 석출 경화성의 코발트-니켈 베이스 초합금 및 이로부터 제조된 물품
JP6850223B2 (ja) 積層造形用Ni基超合金粉末
WO2020179084A1 (ja) コバルト基合金製造物、およびコバルト基合金物品
KR102274865B1 (ko) 티타늄이 없는 초합금, 분말, 방법 및 구성요소
JP2020143379A (ja) コバルト基合金材料
JP2016069703A (ja) ニッケル基鋳造合金及び熱間鍛造金型
JP2020152978A (ja) 積層造形用合金粉末、積層造形物及び積層造形方法
WO2016152985A1 (ja) Ni基超耐熱合金およびそれを用いたタービンディスク
JP7176661B2 (ja) 合金、合金粉末、合金部材および複合部材
JP7103548B2 (ja) Ni-Cr-Mo系合金部材、Ni-Cr-Mo系合金粉末、および、複合部材
JP7339412B2 (ja) 積層造形用Ni系合金粉末および積層造形体
JP7128916B2 (ja) 積層造形体
WO2023074613A1 (ja) 積層造形に適したNi系合金粉末及び該粉末を用いて得られた積層造形体
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product
WO2020110498A1 (ja) 積層造形用粉末、積層造形体および積層造形体の製造方法
CN118119722A (zh) 适于增材制造的Ni系合金粉末以及使用该粉末得到的增材制造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032227

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016835216

Country of ref document: EP