CN110616354B - 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用 - Google Patents

一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用 Download PDF

Info

Publication number
CN110616354B
CN110616354B CN201911098006.6A CN201911098006A CN110616354B CN 110616354 B CN110616354 B CN 110616354B CN 201911098006 A CN201911098006 A CN 201911098006A CN 110616354 B CN110616354 B CN 110616354B
Authority
CN
China
Prior art keywords
nickel
powder
laser near
temperature
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911098006.6A
Other languages
English (en)
Other versions
CN110616354A (zh
Inventor
陈志国
舒忠良
汪力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Hunan University of Humanities Science and Technology
Original Assignee
Central South University
Hunan University of Humanities Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University, Hunan University of Humanities Science and Technology filed Critical Central South University
Priority to CN201911098006.6A priority Critical patent/CN110616354B/zh
Publication of CN110616354A publication Critical patent/CN110616354A/zh
Application granted granted Critical
Publication of CN110616354B publication Critical patent/CN110616354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用,合金粉末按质量百分比包括:Co:17~20%,Cr:24~25%,Al:1~1.5%,Ti:1~1.5%,Fe:0.5~1.5%,Nb:0.38~0.75%,Mo:0.3~0.7%,余量为Ni,其中Ti:Al=0.98~1.02%。控制Ti/Al比接近于1,控制Fe:0.5~1.5%、Nb:0.38~0.75%、Mo:0.3~0.7%,都能降低粉末用于激光近净成形过程中的裂纹敏感性。采用气雾化制粉技术,Ti和Al单独加入,避免烧损以及便于原位生成γ′相。制备出镍基高温合金粉末,用于激光近净成形,其沉积件宏观和微观上都表现出无孔洞和裂纹等在激光近净成形镍基高温合金过程中的常见缺陷,力学性能良好。

Description

一种用于激光近净成形的镍基高温合金粉末及其制备方法与 应用
技术领域
本发明属于增材制造专用材料技术领域,具体涉及一种用于激光近净成形的镍基高温合金粉末及其制备方法。
背景技术
镍基高温合金是一类发展最快、应用最广的高温合金,其在650~1000℃高温下有较高的强度、较好的蠕变性能以及一定的抗氧化腐蚀能力,广泛用于航空航天、石油化工、煤电产业等涉及较高温度的领域。但是,由于镍基高温合金一般含有多种元素,其合金化程度高,切削困难,成形自由度低,激光近净成形为解决镍基高温合金的成形与修复等应用难题提供了新的途径。激光近净成形是近20年发展起来的一种将“高性能材料制备”与复杂零件“近净成形”有机融为一体的先进制造技术,无需模具,可以直接获得良好冶金结合,性能与锻件相当的实体零件,应用前景广阔。
目前,可用于激光近净成形的镍基高温合金粉末只有GH4169(相当于国外inconel718)、GH4069(相当于国外Rene88DT)、Ni60等少数牌号,而且激光近净成形制备镍基高温合金沉积件易出现裂纹和孔洞,最终会导致零件报废,往往通过单纯工艺参数调整难以消除裂纹,是激光近净成形过程中最常见也最难以解决的问题。
本发明提供了一种用于激光近净成形的镍基高温合金粉末及其制备方法,并制备出无孔洞和裂纹的沉积件。
发明内容
本发明的目的是设计一种用于激光近净成形的镍基高温合金粉末,并提供了相应的制备方法及应用,通过气雾化制粉得到球形度高,流动性好的镍基高温合金粉末,再通过激光近净成形得到无孔洞和裂纹的沉积件。
本发明一种用于激光近净成形的镍基高温合金粉末,各元素成分及质量百分比含量为: Co:17~20%,Cr:24~25%,Al:1~1.5%,Ti:1~1.5%,Fe:0.5~1.5%,Nb:0.38~0.75%,Mo:0.3~0.7%,余量为Ni,其中Al:Ti=0.98~1.02%。
包括下述步骤:
步骤一:在真空条件下,先将要求配比的除Ti和Al的其他镍基高温合金原料熔化,再单独加入要求配比的Ti和Al,继续加热至可雾化温度,开始气雾化处理,得到镍基合金粉末;
步骤二:将步骤一得到的镍基高温合金粉末经过超声振动筛分,筛选出粒径为75~150
Figure 100002_DEST_PATH_IMAGE002
、用于激光近净成形的镍基高温合金粉末。
步骤一中所述镍基高温合金原料,以质量百分比计包括下述组分:
Co:17~20%;
Cr:24~25%;
Al:1~1.5%;
Fe:0.5~1.5%;
Nb:0.38~0.75%;
Mo:0.3~0.7%;
Ni:余量;
Ti和Al待溶体温度达到1560℃后单独加入,质量百分比为:1~1.5%;
其中Ti:Al=0.98~1.02%。
部分元素进一步优选,以质量百分比计包括下述组分:
Co:19~20%;
Fe:0.9~1.2%;
Mo:0.4~0.6%。
步骤一中,将镍基高温合金原料加入熔炼炉内,抽真空至颅腔真空度低于10-1MPa时,充氮气保护,Ti、Al单独放入加料仓,待溶体温度达到1560℃后再通过加料仓加入。
步骤一中所述气雾化处理中,雾化温度为1600~1610℃,漏嘴孔径为3.5mm,雾化炉内的炉压力为0.022~0.023MPa,雾化气压为3~4MPa。
将步骤二得到的粉末烘干,控制烘干温度为100℃,时间为1h;
预热基板至300℃,在激光近净成形设备上进行沉积,沉积过程的工艺参数为:激光功率为300~500w,扫描速度为10~14mm/s,道与道之间搭接率为40~60%,Z轴提升量为层厚。
本发明涉及一种以析出相γ′为强化相的镍基高温合金,合金组分设计原理:当Ti/Al比值高于1.05%,易生成η相,使合金脆化,降低强度和塑性,控制Ti/Al比值近似等于1;加入Fe元素,固溶在γ基体中,起到固溶强化作用,Fe含量高于3%会降低合金耐热腐蚀性,控制Fe在0.5~1.5%;添加Nb来增强γ′相的析出强化作用,Nb含量高于1.5%时会使合金焊接性能变坏,易在热影响区产生液化裂纹,将Nb含量控制在0.38~0.75%;添加Mo元素可以改善合金的热强性,当Mo高于1%会降低抗氧化腐蚀性,控制Mo在0.3~0.7%;
本发明粉末制备过程中,单独加入Ti、Al,一方面,Ti是高活性组分,避免Ti被烧损,Al易氧化,避免粉末中氧含量过高;另一方面,单独加入Al、Ti有利于直接与Ni基体原位生成γ′相。
本发明提供了一种用于可用于激光近净成形的镍基高温合金,采用本发明的粉末制备方法制得的镍基高温合金粉末,球形度高、含氧量低、流动性好,在进行激光近净成形时,具有较宽的工艺参数窗口,且无需额外的工艺措施即能得到无孔洞和裂纹的沉积件,且力学性能良好。
附图说明
图1为实施例1激光近净成形镍基高温合金沉积件宏观图;
图2为实施例1激光近净成形镍基高温合金沉积件截面图(放大倍数为500X)。
具体实施方式
实施例1
熔炼:将20kg的镍基高温合金原料加入真空感应熔炼炉,Ti和Al放入一旁的加料仓(Ti:0.27kg;Al:0.27kg)。关闭舱门,抽真空降低炉压到10-1Mpa,充氮气保护,进行合金熔炼,加热到1560℃后,通过加料仓加入Ti和Al。所述镍基高温合金原料以质量百分比计包括下述组分:Ni:10.06 kg,Co:4kg,Cr:5kg,Al:0.27kg,Ti:0.27kg,Fe:0.2kg,Nb:0.1kg,Mo:0.1kg。
雾化制粉:随后采用孔径为3.5的漏嘴通过高压高纯氩气(纯度为99.99wt%)雾化制粉,控制雾化温度为1600℃,雾化炉内的炉压力为0.022Mpa,雾化气压为3Mpa。
粉末筛分:将制得的粉末经过超声振动筛分,过100目网筛初步筛选去除≥150
Figure 709042DEST_PATH_IMAGE002
的粉末;然后,使用超声振动筛分装置200目网筛筛选出所需的镍基高温合金粉末,粒径为75~150
Figure 219658DEST_PATH_IMAGE002
所得的镍基高温合金粉末以质量百分比计包括下述组分:
Ni:余量,Co:19.7%,Cr:24.3%,Al:1.34%,Ti:1.37%,Fe:1%,Nb:0.41%,Mo:0.5%。
激光近净成形:将粉末置于100℃炉内烘干1h,基板置于300℃炉内预热,再进行激光近净成形,设置成形工艺参数,其激光功率为300w,扫描速度为10mm/s,道与道搭接率为50%,Z轴提升量为0.28mm。沉积件尺寸设计为14mm*15mm,层数为30层,实际沉积高度达到6.7mm。所得沉积件如图1所示
缺陷检测:目视和荧光渗透检查该块体材料未发现孔洞和裂纹,截面微观形貌如图2所示。
取实施例1所得粉末进行激光近净成形,将粉末置于100℃炉内烘干1h,基板置于300℃炉内预热,再进行激光近净成形,设置成形工艺参数,其激光功率为500w,扫描速度为12mm/s,道与道搭接率为50%,Z轴提升量为0.42mm。沉积件尺寸设计为14mm*15mm,层数为30层,所得沉积件高度达到15.7mm
缺陷检测:目视和荧光渗透检查该块体材料未发现孔洞和裂纹。
实施例2
熔炼:将20kg的镍基高温合金原料加入真空感应熔炼炉,Ti和Al放入一旁的加料仓(Ti:0.28kg;Al:0.28kg)。关闭舱门,抽真空降低炉压到10-1Mpa,充氮气保护,进行合金熔炼,加热到1560℃后,通过加料仓加入Ti和Al。所述镍基高温合金原料以质量百分比计包括下述组分:Ni:10 kg,Co:4kg,Cr:5kg,Al:0.28kg,Ti:0.28kg,Fe:0.21kg,Nb:0.11kg,Mo:0.12kg。
雾化制粉:随后采用孔径为3.5的漏嘴通过高压高纯氩气(纯度为99.99wt%)雾化制粉,控制雾化温度为1608℃,雾化炉内的炉压力为0.023Mpa,雾化气压为3.5Mpa。
粉末筛分:将制得的粉末经过超声振动筛分,过100目网筛初步筛选去除≥150
Figure 733815DEST_PATH_IMAGE002
的粉末;然后,使用超声振动筛分装置200目网筛筛选出所需的镍基高温合金粉末,粒径为75~150
Figure 863446DEST_PATH_IMAGE002
所得的镍基高温合金粉末以质量百分比计包括下述组分:
Ni:余量,Co:19.8%,Cr:24.1%,Al:1.34%,Ti:1.35%,Fe:0.98%,Nb:0.42%,Mo:0.7%。
激光近净成形:将粉末置于100℃炉内烘干1h,基板置于300℃炉内预热,再进行激光近净成形,设置成形工艺参数,其激光功率为300w,扫描速度为10mm/s,道与道搭接率为50%,Z轴提升量为0.28mm。沉积件尺寸设计为14mm*15mm,层数为30层,实际沉积高度达到6.9mm。
缺陷检测:目视和荧光渗透检查该块体材料未发现孔洞和裂纹。
实施例3
熔炼:将50kg的镍基高温合金原料加入真空感应熔炼炉,Ti和Al放入一旁的加料仓(Ti:0.55kg;Al:0.56kg)。关闭舱门,抽真空降低炉压到10-1Mpa,充氮气保护,进行合金熔炼,加热到1560℃后,通过加料仓加入Ti和Al。所述镍基高温合金原料以质量百分比计包括下述组分:Ni:26.5 kg,Co:9kg,Cr:12.25kg,Al:0.56kg,Ti:0.55kg,Fe:0.6kg,Nb:0.34kg,Mo:0.2kg。
雾化制粉:随后采用孔径为3.5的漏嘴通过高压高纯氩气(纯度为99.99wt%)雾化制粉,控制雾化温度为1610℃,雾化炉内的炉压力为0.023Mpa,雾化气压为4Mpa。
粉末筛分:将制得的粉末经过超声振动筛分,过100目网筛初步筛选去除≥150
Figure 412239DEST_PATH_IMAGE002
的粉末;然后,使用超声振动筛分装置200目网筛筛选出所需的镍基高温合金粉末,粒径为75~150
Figure 844488DEST_PATH_IMAGE002
所得的镍基高温合金粉末以质量百分比计包括下述组分:
Ni:余量,Co:18%,Cr:24.5%,Al:1.12%,Ti:1.1%,Fe:1.2%,Nb:0.67%,Mo:0.4%。
激光近净成形:将粉末置于100℃炉内烘干1h,基板置于300℃炉内预热,再进行激光近净成形,设置成形工艺参数,其激光功率为300w,扫描速度为10mm/s,道与道搭接率为50%,Z轴提升量为0.28mm。沉积件尺寸设计为50mm*70mm,层数为15层,实际沉积高度达到3.2mm。
缺陷检测:目视和荧光渗透检查该块体材料未发现孔洞和裂纹。
性能测试:室温下,屈服强度达到722.5MPa,抗拉强度
达到829.7Mpa,延伸率为37.5%。

Claims (7)

1.一种用于激光近净成形的镍基高温合金粉末的制备方法,其特征在于:镍基高温合金粉末的元素成分及质量百分比含量为: Co:17~20%,Cr:24~25%,Al:1~1.5%,Ti:1~1.5%,Fe:0.5~1.5%,Nb:0.38~0.75%,Mo:0.3~0.7%,余量为Ni,其中Ti:Al=0.98~1.02;制备过程如下:
步骤一:在真空条件下,先将要求配比的除Ti和Al的其他镍基高温合金原料熔化,再单独加入要求配比的Ti和Al,继续加热至可雾化温度,开始气雾化处理,得到镍基合金粉末;
步骤二:将步骤一得到的镍基高温合金粉末经过超声振动筛分,筛选出粒径为75~150
Figure DEST_PATH_IMAGE002
,得到用于激光近净成形的镍基高温合金粉末。
2.根据权利要求1所述的用于激光近净成形的镍基高温合金粉末的制备方法,其特征在于:步骤一中,将镍基高温合金原料加入熔炼炉内,抽真空至颅腔真空度低于10-1MPa时,充氮气保护,待溶体温度达到1560℃后,再通过加料仓加入Ti和Al。
3.根据权利要求1所述的一种用于激光近净成形的镍基高温合金的制备方法,其特征在于:步骤一中所述雾化处理中,雾化温度为1600~1610℃,漏嘴孔径为3.5mm,雾化炉内的炉压力为0.022~0.023MPa,雾化气压为3~4MPa。
4.根据权利要求1所述的一种用于激光近净成形的镍基高温合金粉末的制备方法,其特征在于:所述的Co元素的质量百分比含量为:19~20%。
5.根据权利要求1所述的一种用于激光近净成形的镍基高温合金粉末的制备方法,其特征在于:所述Fe元素的质量百分比含量为:0.9~1.2%。
6.根据权利要求1所述的一种用于激光近净成形的镍基高温合金粉末的制备方法,其特征在于:所述的Mo元素质量百分比含量为:0.4~0.6%。
7.根据权利要求1~6任意一项制备的用于激光近净成形的镍基高温合金粉末的应用,其特征在于:将步骤二得到的粉末烘干,控制温度为100℃,时间为1h;预热基板至300℃,在激光近净成形设备上进行沉积,沉积过程的工艺参数为:激光功率为300~500w,扫描速度为10~14mm/s,道与道之间搭接率为40~60%,Z轴提升量为层厚,得到无孔洞和裂纹的沉积件。
CN201911098006.6A 2019-11-12 2019-11-12 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用 Active CN110616354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911098006.6A CN110616354B (zh) 2019-11-12 2019-11-12 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911098006.6A CN110616354B (zh) 2019-11-12 2019-11-12 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110616354A CN110616354A (zh) 2019-12-27
CN110616354B true CN110616354B (zh) 2022-03-04

Family

ID=68927563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911098006.6A Active CN110616354B (zh) 2019-11-12 2019-11-12 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110616354B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906311B (zh) * 2020-08-30 2021-05-28 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法
CN112605395B (zh) * 2020-11-24 2022-04-22 北京星航机电装备有限公司 一种gh4099镍基合金构件的激光沉积成形工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133161A (zh) * 2014-03-14 2016-11-16 奥贝特迪瓦尔公司 沉淀硬化的镍合金、所述合金制成的部件及其制造方法
CN107709586A (zh) * 2015-08-12 2018-02-16 山阳特殊制钢株式会社 层叠造型用Ni基超合金粉末
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133161A (zh) * 2014-03-14 2016-11-16 奥贝特迪瓦尔公司 沉淀硬化的镍合金、所述合金制成的部件及其制造方法
CN107709586A (zh) * 2015-08-12 2018-02-16 山阳特殊制钢株式会社 层叠造型用Ni基超合金粉末
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法

Also Published As

Publication number Publication date
CN110616354A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN109439962B (zh) 一种选区激光熔化成形镍基高温合金的方法
EP1586665B1 (en) Producing nickel-base cobalt-base iron-base iron-nickel-base or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
WO2020206724A1 (zh) 激光熔化沉积制造用FeCrCuTiV高熵合金粉末及其制备方法
CN108642392B (zh) 一种激光增材制造用低碳高铬合金钢粉末及制备方法
CN110616354B (zh) 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用
TW201718897A (zh) 層合造形用Ni基超合金粉末
EP3120953A1 (en) High temperature nickel-base superalloy for use in powder based manufacturing process
JP2019173175A (ja) コバルト基合金積層造形体の製造方法
JP7018603B2 (ja) クラッド層の製造方法
CN113817935A (zh) 一种高纯净镍基高温合金及其球形粉末的制备方法
US20230106938A1 (en) Powder made of a cobalt-chromium alloy
CN112981156B (zh) Ti2AlNb颗粒增塑的TiAl基复合材料及制备方法
Li et al. Microstructural evolution and mechanical properties of AlCoCrFeNi high-entropy alloy joints brazed using a novel Ni-based filler
CN110756795A (zh) 一种镍基高温合金粉末及其制备方法
JP2020143379A (ja) コバルト基合金材料
CN109351957A (zh) 激光熔覆用铁基合金粉末及其制备方法
CN1623720A (zh) 一种镍基喷熔合金粉及其制备方法
CN104249225A (zh) 镍基高温合金焊粉、其制备方法以及专用设备
Xue et al. Laser consolidation: a novel additive manufacturing process for making net-shape functional metallic components for gas turbine applications
CN109382510A (zh) 3d打印用高温合金金属粉末及其制备方法
CN106884109B (zh) 一种镍基多组元激光熔覆粉末及激光熔覆该粉末的方法
CN116949320A (zh) 一种3d打印用高温合金粉末、制备方法及打印方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
CN110625128A (zh) 一种钛铜镍铬合金钎料粉末的制备方法
CN106702208B (zh) 一种具有高抗拉强度的高温合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant