WO2017018533A1 - エピタキシャル炭化珪素単結晶ウェハの製造方法 - Google Patents

エピタキシャル炭化珪素単結晶ウェハの製造方法 Download PDF

Info

Publication number
WO2017018533A1
WO2017018533A1 PCT/JP2016/072421 JP2016072421W WO2017018533A1 WO 2017018533 A1 WO2017018533 A1 WO 2017018533A1 JP 2016072421 W JP2016072421 W JP 2016072421W WO 2017018533 A1 WO2017018533 A1 WO 2017018533A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
epitaxial
crystal substrate
growth
Prior art date
Application number
PCT/JP2016/072421
Other languages
English (en)
French (fr)
Inventor
崇 藍郷
伊藤 渉
藤本 辰雄
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/747,849 priority Critical patent/US10626520B2/en
Priority to JP2017530950A priority patent/JP6524233B2/ja
Priority to CN201680033576.5A priority patent/CN107709635B/zh
Priority to KR1020187000978A priority patent/KR102106722B1/ko
Priority to EP16830636.3A priority patent/EP3330415A4/en
Publication of WO2017018533A1 publication Critical patent/WO2017018533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys

Definitions

  • the present invention relates to a method of manufacturing an epitaxial silicon carbide single crystal wafer.
  • SiC Silicon carbide
  • a SiC thin film is usually epitaxially grown on the substrate using a method called thermal CVD (thermal chemical vapor deposition), or ion implantation is performed. It is common to implant the dopant directly by the method. However, in the latter case, thin film formation by epitaxial growth is often used because annealing at a high temperature is required after implantation.
  • thermal CVD thermal chemical vapor deposition
  • FIG. 1 is a schematic view of a basal plane dislocation present in a SiC single crystal substrate, and the numeral 1 indicates the basal plane dislocation.
  • the dislocation energy is smaller when the dislocation progresses in the epitaxial growth direction (a direction) than in the basal plane (b direction).
  • the dislocation length is shortened), so that Burgers vectors are easily converted to equal edge dislocations.
  • about 90 to 93% of the basal plane dislocation of the SiC single crystal substrate is converted into threading edge dislocation at the substrate / epitaxial film interface.
  • the basal plane dislocation density in a 4 ° off substrate having an off angle of 4 ° with respect to the (0001) plane is about 4000 / cm 2, about 7 to 10% without conversion.
  • the basal plane dislocation density remaining (take over) in the epitaxial film is about 280 to 400 / cm 2 .
  • the size of the device electrode is currently about 2 to 3 mm square or more, at least 10 basal plane dislocations are contained in one device, which causes the device characteristics and yield to be degraded.
  • An effective way to lower the basal plane dislocation density is to make the off-angle of the substrate smaller, but the number of steps present on the substrate is reduced, so the so-called step-flow growth is made during epitaxial growth. It becomes difficult to happen. As a result, the above-mentioned killer defects increase, which causes a problem of deterioration of device characteristics and yield.
  • the conversion efficiency from basal plane dislocations to penetrating edge dislocations is further increased to reduce basal plane dislocations inherited from the substrate to the epitaxial growth layer. , And need to suppress the increase of killer defects.
  • basal plane dislocations of the substrate are converted into threading edge dislocations by etching a SiC single crystal substrate with molten KOH and performing epitaxial growth thereon (see Non-Patent Document 3).
  • Patent Document 1 At least one suppression layer formed of a silicon carbide single crystal thin film and having an Ra value of surface roughness of 0.5 nm or more and 1.0 nm or less is formed on a silicon carbide single crystal substrate to suppress generation of defects. Disclose how to Patent Document 1 discloses that setting the Ra value of the surface roughness within the above range increases the number of atoms taken into the step and promotes the step flow. However, Patent Document 1 does not disclose or suggest the relationship between etching of a silicon carbide single crystal substrate and reduction of basal plane dislocation. In addition, Patent Document 1 does not quantitatively evaluate the conversion rate at which basal plane dislocations are converted into threading edge dislocations.
  • a buffer layer made of silicon carbide crystals is epitaxially grown on the surface of a hydrogen-etched silicon carbide single crystal substrate to form a buffer layer, and the surface of the buffer layer is subjected to hydrogen etching,
  • a process is disclosed for epitaxially growing silicon carbide crystals on the surface of a buffer layer to form a finishing layer.
  • the buffer layer forming step propagation of basal plane defects from the silicon carbide single crystal substrate is suppressed, and a finishing layer is formed on the surface of the hydrogen-etched buffer layer, thereby causing the silicon carbide single crystal substrate to be originated. It is disclosed that the propagation of basal plane dislocations can be further reduced, and a finish layer can be formed in which the defects caused by the buffer layer are also reduced.
  • the manufacturing method disclosed in Patent Document 2 when the hydrogen etching of the buffer layer is omitted, the production yield of the semiconductor substrate may be lowered.
  • the off angle in the off angle direction which is either the ⁇ 11-20> direction or the ⁇ 1-100> direction with respect to the (0001) plane, is 0.1 ° or more and 10 ° or less.
  • a method of manufacturing a silicon carbide ingot in which a silicon carbide layer is formed on a base substrate made of crystalline silicon carbide is disclosed.
  • Patent Document 3 does not disclose or suggest the relationship between the etching of the base substrate and the reduction of basal plane dislocation.
  • Patent Document 3 does not quantitatively evaluate the conversion rate at which basal plane dislocations are converted into threading edge dislocations.
  • the present invention provides an epitaxial SiC single crystal wafer having a high quality epitaxial film having a reduced basal plane dislocation remaining in an epitaxial growth layer even in epitaxial growth using a practical off angle SiC single crystal substrate.
  • the present invention provides a method of manufacturing a SiC single crystal wafer.
  • the present inventors epitaxially grow SiC on a SiC single crystal substrate by a thermal CVD method to manufacture an epitaxial SiC single crystal wafer, as described below. It has been found that the basal plane dislocation remaining in the inside can be reduced.
  • the etching gas is flowed into the growth furnace to etch the SiC single crystal substrate before the epitaxial growth, and short step bunching starting from the basal plane dislocation is formed on the surface, thereby performing arithmetic on the surface of the SiC single crystal substrate.
  • the average roughness Ra value is set to a predetermined value and then starting epitaxial growth
  • basal plane dislocations on the surface of the SiC single crystal substrate can be effectively converted into threading edge dislocations.
  • a predetermined buffer layer it is possible to further reduce the basal plane dislocation and to suppress the increase of the killer defect.
  • the present inventors found and completed the present invention.
  • the gist of the present invention is as follows. (1) A method of manufacturing an epitaxial silicon carbide single crystal wafer by epitaxially growing silicon carbide on a silicon carbide single crystal substrate by flowing a silicon-based material gas and a carbon-based material gas into an epitaxial growth furnace and using thermal CVD method Before starting the epitaxial growth, flow the etching gas into the epitaxial growth furnace to etch the surface of the silicon carbide single crystal substrate in advance so that the arithmetic average roughness Ra value becomes 0.5 nm or more and 3.0 nm or less. A method of manufacturing an epitaxial silicon carbide single crystal wafer characterized by the present invention.
  • a silicon-based material gas and a carbon-based material gas are supplied into the epitaxial growth furnace, and silicon carbide is epitaxially grown on the surface of the etched silicon carbide single crystal substrate to form a buffer layer.
  • the number of C atoms relative to the number of Si atoms of the silicon-based material gas and the carbon-based material gas when the buffer layer is formed.
  • the growth temperature of 1600 ° C. or more and 1700 ° C.
  • the silicon carbide single crystal substrate is characterized in that the off angle inclined in the ⁇ 11-20> direction with respect to the (0001) plane is 2 ° or more and 4 ° or less (1) to (5)
  • the present invention it is possible to provide a high quality epitaxial SiC single crystal wafer with reduced basal plane dislocation remaining in an epitaxial film on a SiC single crystal substrate having a practical off angle of about 4 °, for example. It is possible. Further, in the manufacturing method of the present invention, since the CVD method is used, it is possible to obtain an epitaxial film having a simple apparatus configuration, excellent controllability, high uniformity, and high reproducibility. Furthermore, the device using the epitaxial SiC single crystal wafer of the present invention is formed on a high quality epitaxial film with reduced basal plane dislocation density, so that the characteristics and the yield are improved.
  • FIG. 7A to 7C show that the method of the present invention promotes conversion of basal plane dislocations of a substrate to threading edge dislocations.
  • FIG. 5 is a diagram showing a growth sequence of a SiC epitaxial film according to an example of the present invention.
  • FIG. 7 is a view showing that the flatness of the buffer layer affects the conversion of basal plane dislocations of the SiC single crystal substrate into threading edge dislocations according to the present invention, and shows the case where the flatness of the buffer layer can not be maintained.
  • FIG. 7 is a view showing that the flatness of the buffer layer affects the conversion of basal plane dislocations of the SiC single crystal substrate into threading edge dislocations according to the present invention, and shows the case where the flatness of the buffer layer is maintained.
  • Optical micrograph showing the etch pits that appear when the surface of the epitaxial film is etched with molten KOH.
  • An apparatus that can be suitably used for epitaxial growth in the method of manufacturing an epitaxial SiC single crystal wafer according to the present invention is a horizontal thermal CVD apparatus.
  • the CVD method is a growth method excellent in controllability and reproducibility of an epitaxial film because the device configuration is simple and the growth can be controlled by on / off of gas.
  • FIG. 2 shows a typical growth sequence when performing conventional epitaxial film growth, together with the gas introduction timing.
  • hydrogen gas is introduced to adjust the pressure to 5 k to 20 kPa. Thereafter, while maintaining the pressure constant, the hydrogen gas flow rate and the temperature of the growth furnace are raised, and after reaching the growth temperature of 1550 to 1650 ° C., the time of t1 in 100 to 200 liters per minute of hydrogen gas for 1 h Perform the etching.
  • the purpose of this etching using hydrogen gas is to remove the oxide film formed on the surface of the SiC single crystal substrate, to remove the altered layer by processing, etc.
  • the etching time (t1) is usually about 10 minutes. It is.
  • the amount (thickness) of the SiC single crystal substrate etched at this time is about 10 to 50 nm, and the Ra value of the surface roughness of the SiC single crystal substrate after etching is about 0.1 to 0.2 nm .
  • the surface roughness Ra represents the arithmetic mean roughness defined in JIS B0601-1994.
  • the material gases SiH 4 and C 3 H 8 are introduced into the epitaxial growth furnace to start growth.
  • the SiH 4 flow rate is 100 to 150 cm 3 / min
  • the C 3 H 8 flow rate is 50 to 70 cm 3 / min (the ratio of the number of C atoms to the number of Si atoms in the material gas (C / Si ratio) is about 1 to 2)
  • the growth rate is ⁇ 10 ⁇ m per hour. This growth rate is determined in consideration of productivity because the film thickness of the epitaxial layer that is usually used is about 10 ⁇ m.
  • the film is grown for a predetermined time, and when the desired film thickness is obtained, the introduction of SiH 4 and C 3 H 8 is stopped, and the temperature is lowered in a state where only hydrogen gas flows. After the temperature drops to normal temperature, the introduction of hydrogen gas is stopped, the growth chamber is evacuated, the inert gas is introduced into the growth chamber, the growth chamber is returned to atmospheric pressure, and then the SiC single crystal substrate is taken out.
  • Embodiment 1 (Etching process)
  • the conditions for setting the SiC single crystal substrate in the epitaxial growth furnace and starting the etching of the surface of the SiC single crystal substrate are the same as the contents shown in FIG. Therefore, the etching gas used, the pressure conditions of the etching gas, the temperature at the time of etching, and the gas flow rate are the same as the conditions of the etching process in the prior art.
  • the etching time t2 is set to about 0.5 to 1.5 hours so that short step bunching starting from basal plane dislocation is formed on the surface of the SiC single crystal substrate.
  • the etching amount is about 500 nm to 1000 nm.
  • This etching amount is an amount necessary to generate short step bunching shown below, and when too small, the step bunching density is insufficient and sufficient conversion efficiency of basal plane dislocation can not be obtained, and when too large, the surface is roughened. In this case, the conversion efficiency of the basal plane dislocation also decreases.
  • FIG. 4 A photograph showing the appearance of the surface of the SiC single crystal substrate after etching is shown in FIG.
  • a vertical line (line in the vertical direction of the drawing) of about 0.5 to 1 mm in length observed in FIG. 4 represents a short step bunching, and the portion of this line is convex. It has been confirmed that the basal plane dislocation of the SiC single crystal substrate exists at the center of this short step bunching, and the crystal state around the basal plane dislocation is changed, so that the progress of etching is delayed, and the basal plane It is considered that the portion around the plane dislocation has a convex shape. This situation is described in FIG.
  • FIG. 5 (a) shows the same state as FIG. 1, and is a schematic cross-sectional view of the surface of the SiC single crystal substrate before etching or when etching is hardly performed as in the prior art.
  • Reference numeral 1 is a basal plane dislocation of the SiC single crystal substrate
  • reference numeral 2 is a step in which the crystalline state changes around the basal plane dislocation.
  • step 2 The state in which the etching is in progress is schematically shown in FIG. Step 2 'in the vicinity of the surface exit of basal plane dislocation has a different crystalline state, so the amount of recession due to etching is small, and step 3 is a normal crystalline state in which no basal plane dislocation is present. The amount of retreat is also large.
  • step 2 ′ FIG. 5B
  • step 3 FIG. 5 (b) is etched and retreats to the position of step 2 ′ ′ after the etching of the step 2 ′ (symbol 3 ′ in FIG.
  • the relationship between the etching time t2 in FIG. 3 and the surface roughness Ra value of the SiC single crystal substrate after etching in which short step bunching occurs can be determined in advance. Even if the etching time t2 is about 0.5 to 1.5 hours (hour) so that the Ra value is 0.5 nm or more and 3.0 nm or less based on the relationship between the etching time t2 and the surface roughness Ra value. good. By setting t2 to about 0.5 to 1.5 hours, the etching amount becomes 500 nm to 1000 nm, and the Ra at that time is 0.5 nm to 3.0 nm.
  • the conversion efficiency of basal plane dislocation is the same as the case where the etching amount is not 500 nm or more and 1000 nm or less. It does not improve.
  • epitaxial growth of SiC can be performed in the same procedure as in the case of FIG. 2.
  • etching and performing epitaxial growth such that the surface roughness Ra value of the SiC single crystal substrate is 0.5 nm or more and 3.0 nm or less, a SiC single crystal having an off angle of about 4 °
  • a good epitaxial film can be obtained in which the basal plane dislocation remaining in the film is reduced to 5% or less of the value in the SiC single crystal substrate.
  • the basal plane dislocation easily proceeds in the direction a shown in FIG.
  • the collective portion 10 of the steps formed in the vicinity of the basal plane dislocation by etching the SiC single crystal substrate more efficiently converts the basal plane dislocation of the SiC single crystal substrate into the threading edge dislocation,
  • the fact that the Ra value of the surface is associated with the conversion efficiency is connected to the present invention, since it entails a short step bunching inevitably.
  • the conversion rate at which basal plane dislocations are converted into threading edge dislocations can be 95% or more, as opposed to 90 to 93% in the prior art.
  • the Ra value if the value is too small, such improvement in the conversion effect of dislocations is not observed, and if it is too large on the contrary, the terrace portion is also etched, so the dislocations are not converted. It is considered that the probability of progressing in the direction of the basal plane (direction b in FIG. 1) is increased, and there is an optimum value of Ra.
  • the etching of the SiC single crystal substrate may be performed by flowing an etching gas into the epitaxial growth furnace, typically hydrogen gas can be used as the etching gas, and the etching is performed at a flow rate of about 100 to 200 L / min. You should do it.
  • hydrogen gas for example, helium or argon may be used as the etching gas.
  • the conditions in the growth furnace as shown in FIGS. 2 and 3 can be adopted for the temperature and pressure at the time of etching, and specifically, the temperature is 1500 ° C. or more and 1700 ° C. or less.
  • the pressure is preferably 1 kPa to 20 kPa.
  • Second Embodiment (Step of forming buffer layer)
  • silicon-based and carbon-based material gases are flowed into the epitaxial growth furnace to epitaxially grow SiC, thereby forming a buffer layer and a device operation layer.
  • the procedure for forming the V.sub.x will be described using the growth sequence of FIG. The process is the same as in FIG. 3 until the SiC single crystal substrate is set and the etching of the surface of the SiC single crystal substrate is completed.
  • material gases SiH 4 and C 3 H 8 are introduced to start growth, but first, a buffer layer is formed and then a device operation layer is formed.
  • This buffer layer mainly plays a role of promoting basal plane dislocation reduction by promoting conversion to threading edge dislocation, and a device operation layer is used for forming a device.
  • the buffer layer By forming the buffer layer at the start of epitaxial growth as described above, in the epitaxial film after the device operation layer is grown, a favorable film in which basal plane dislocations remaining in the film are effectively reduced can be obtained. . This is because the epitaxial film is grown with a low C / Si ratio as a buffer layer, and an epitaxial film with high flatness is formed on the SiC single crystal substrate, as described in detail below. These basal plane dislocations are stably converted to threading edge dislocations. This will be described with reference to FIGS. 7A and 7B.
  • FIG. 7A shows the case where the epitaxial layer 4 is grown at the same C / Si ratio as in the case where the device operation layer is formed on the SiC single crystal substrate after the etching is completed.
  • the portion 2 ′ ′ where short step bunching occurs in the vicinity of the basal plane dislocation 1 of the above step flow growth is difficult to progress because the crystal state is disordered.
  • the film thickness increases particularly at the initial stage of growth, and the edge portion swells as shown by the reference numeral 5, and conversely, the film thickness decreases at the lower portion 6 like a foot.
  • the basal plane dislocation 1 of the SiC single crystal substrate becomes shorter in the b direction, so the basal plane dislocation remains as it is in the epitaxial film and etching before growth The effect of optimizing is reduced.
  • the surface Ra value is over 3 nm.
  • the C / Si ratio is low. It is important to form the epitaxial film 4 with high flatness as a buffer layer.
  • the surface Ra value of the buffer layer in this case is 1 to 3 nm.
  • the thickness of the buffer layer grown on the SiC single crystal substrate after completion of etching is 0.5 ⁇ m or more so that conversion of basal plane dislocation of the SiC single crystal substrate on which short step bunching is formed by etching can be completed. It is 1 ⁇ m or less. Since this buffer layer grows at a low C / Si ratio, the growth time becomes longer as it becomes thicker, and the upper limit of the film thickness is taken into consideration that the stability of the grown film becomes a problem due to the fluctuation of the C / Si ratio. It is decided.
  • the ratio of the number of C atoms to the number of Si atoms in the material gas (C / Si ratio) at the time of growing the buffer layer is 0.3 or more and 0.6 or less. As described above, this is necessary to promote step flow growth, and if it is larger than 0.6, the effect becomes small, and if smaller than 0.3, generation of Si droplets becomes a problem.
  • the SiH 4 is used as a material gas of silicon series, when using the C 3 H 8 as a material gas of carbon-based, SiH 4 flow rate for growing the buffer layer is min 50 ⁇ 60cm 3, C 3 H Eight flow rates are 6 to 10 cm 3 per minute.
  • the quality of the film is lowered if it is less than 1600 ° C., and the reevaporation of atoms from the surface becomes large if it exceeds 1700 ° C.
  • the temperature is higher than or equal to 1600 ° C. and lower than or equal to 1700 ° C.
  • the pressure at the time of growth also affects the quality of the film, and if it is too low, the surface roughness increases, and if it is too high, the generation of Si droplets becomes a problem, so the pressure when forming the buffer layer is 2 kPa or more and 10 kPa or less I assume.
  • the device operation layer is grown under growth conditions according to the application of the device used.
  • C is higher than C / Si of the silicon-based material gas and the carbon-based material gas when the buffer layer is formed without the step of etching the buffer layer between the buffer layer forming step and the device operation layer.
  • silicon-based material gas and carbon-based material gas are flowed to epitaxially grow silicon carbide directly on the buffer layer to form a device operation layer.
  • the ratio of the number of C atoms to the number of Si atoms in the material gas is preferably 1.0 or more and 2.0 or less, and the growth temperature is 1600 ° C. or more and 1700 ° C. or less
  • the growth pressure is preferably 2 kPa to 10 kPa.
  • the thickness of the device operation layer can also be appropriately set depending on the application etc., but is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the material gas is not limited to these, and, for example, a silicon-based material SiHCl 3 , SiH 2 Cl 2 , SiCl 4 or the like can be used as the gas, or C 2 H 4 , CH 4 or the like can be used as the carbon-based material gas.
  • a doping gas such as N 2 may be flowed together.
  • the off-angle inclined in the ⁇ 11-20> direction with respect to the (0001) plane is 2 ° or more and 4 ° or less.
  • the off angle is larger than 4 °, the angle at which the basal plane dislocation in the substrate intersects the off angled surface becomes large, and it is perpendicular to that in the direction of the basal plane (direction b in FIG. 1) during epitaxial growth.
  • the effect of the present invention is difficult to appear because the length of dislocations does not change much even if it proceeds to the a direction in 1).
  • it is smaller than 2 ° the number of basal plane dislocations in the initial state is small, and adverse effects such as inhibition of step flow growth due to the terrace being too wide become large.
  • the device suitably formed on the epitaxial SiC single crystal wafer grown in this manner is not particularly limited, and examples thereof include a Schottky barrier diode, a PIN diode, a MOS diode, and a MOS transistor. However, it is suitable to obtain a device used for power control.
  • This SiC single crystal substrate has an off angle of 4 ° in the ⁇ 11-20> direction with respect to the (0001) plane.
  • the growth sequence is as shown in the growth sequence of FIG. 6. Specifically, after setting the SiC single crystal substrate in the epitaxial growth furnace and evacuating the growth furnace, the pressure is set to 10 kPa while introducing hydrogen gas. It was adjusted. Thereafter, while maintaining the pressure constant, the flow rate of hydrogen gas and the temperature of the growth reactor were increased, and finally the hydrogen gas was 150 L / min and the temperature of the growth reactor was 1635 ° C. Thereafter, the pressure was adjusted to 2 kPa and etching of the SiC single crystal substrate was performed for 40 minutes in hydrogen gas.
  • the surface roughness Ra of the SiC single crystal substrate after this etching is 0.5 nm.
  • the growth furnace temperature is increased to 1650 ° C.
  • SiH 4 flow rate is 150 cm 3 / min
  • C 3 H 8 flow rate is 65 cm 3 / min
  • growth is started, and the epitaxial layer is grown to a thickness of 10 ⁇ m. (C / Si ratio is 1.3).
  • the grown epitaxial layer is a device operation layer for device operation, and a buffer layer for further increasing the conversion efficiency of basal plane dislocations is not grown.
  • the film epitaxially grown in this manner is etched with molten KOH, and an optical micrograph of the surface of the device operation layer where an etch pit appears is shown in FIG. Arrows in the photograph of FIG. 8 are etch pits due to basal plane dislocation, and the other pits are due to threading screw dislocations or threading edge dislocations.
  • the basal plane dislocation density in the obtained epitaxial film was evaluated by such a method, and compared with the basal plane dislocation density of the SiC single crystal substrate.
  • the basal plane of the surface of the SiC single crystal substrate Dislocations inherited to the epitaxial film accounted for 3.5% of the total. That is, 96.5% of basal plane dislocations on the surface of the SiC single crystal substrate were converted, and it is considered that these were converted to threading edge dislocations.
  • Tables 1 and 2 summarize the growth conditions and conversion efficiency of the epitaxial film.
  • Reference Example 2 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1.
  • the off angle of the SiC single crystal substrate is 4 ° (the off direction is the same as in the first embodiment).
  • the process up to the start of etching in hydrogen gas is the same as in Example 1.
  • the etching time is 60 minutes, and the surface roughness Ra value of the SiC single crystal substrate after etching is 1.3 nm. I made it.
  • epitaxial growth was performed in the same manner as in Reference Example 1 (no formation of a buffer layer).
  • the epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit.
  • the conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 97%.
  • Reference Example 4 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1. Except that the off angle of the SiC single crystal substrate is 2 °, the etching with hydrogen gas, the Ra value of the SiC single crystal substrate after etching, and the conditions for epitaxial growth are the same as those of Reference Example 1 (formation of buffer layer is None). The epitaxial film after growth was etched with molten KOH, and the dislocation density was evaluated by the etch pit. The conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 96%.
  • Example 1 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1.
  • the off angle of the SiC single crystal substrate is 4 ° (the off direction is the same as in the first embodiment).
  • the etching with hydrogen gas and the Ra value of the SiC single crystal substrate after etching are the same as in the first reference example.
  • the temperature of the growth furnace was raised to 1650 ° C. to grow a buffer layer.
  • the growth conditions are: SiH 4 flow rate 50 cm 3 / min, C 3 H 8 flow rate 6.7 cm 3 / min (C / Si ratio 0.4), growth pressure 6 kPa, 0.5 ⁇ m thick SiC epitaxial film I got
  • epitaxial layer for device operation with SiH 4 flow rate 150 cm 3 / min, C 3 H 8 flow rate 65 cm 3 / min (C / Si ratio 1.3) and pressure 2 kPa (Device operation layer) was grown to 10 ⁇ m. Then, the epitaxial film after growth was etched with molten KOH, and the dislocation density was evaluated by the etch pit. As a result, the conversion ratio of basal plane dislocation on the surface of the SiC single crystal substrate was 98.5%.
  • Example 2 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1.
  • the off angle of the SiC single crystal substrate is 4 ° (the off direction is the same as in the first embodiment).
  • the etching with hydrogen gas and the Ra value of the SiC single crystal substrate after the etching are the same as in the reference example 2. After etching, the temperature of the growth furnace was raised to 1650 ° C. to grow a buffer layer.
  • the growth conditions are SiH 4 flow rate 50 cm 3 / min, C 3 H 8 flow rate 5 cm 3 / min (C / Si ratio 0.3), growth pressure 6 kPa, and a 0.8 ⁇ m thick SiC epitaxial film is obtained.
  • epitaxial layer for device operation with SiH 4 flow rate 150 cm 3 / min, C 3 H 8 flow rate 65 cm 3 / min (C / Si ratio 1.3) and pressure 2 kPa (Device operation layer) was grown to 10 ⁇ m. Then, the epitaxial film after growth was etched with molten KOH, and the dislocation density was evaluated by the etch pit. As a result, the conversion ratio of basal plane dislocation on the surface of the SiC single crystal substrate was 98%.
  • Example 3 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1.
  • the off angle of the SiC single crystal substrate is 4 ° (the off direction is the same as in the first embodiment).
  • the etching with hydrogen gas and the Ra value of the SiC single crystal substrate after etching are the same as in the third embodiment. After etching, the temperature of the growth furnace was raised to 1650 ° C. to grow a buffer layer.
  • the growth conditions were a SiH 4 flow rate of 50 cm 3 / min, a C 3 H 8 flow rate of 10 cm 3 / min (C / Si ratio of 0.6), and a growth pressure of 6 kPa to obtain a 1 ⁇ m thick SiC epitaxial film.
  • epitaxial layer for device operation with SiH 4 flow rate 150 cm 3 / min, C 3 H 8 flow rate 65 cm 3 / min (C / Si ratio 1.3) and pressure 2 kPa (Device operation layer) was grown to 10 ⁇ m.
  • the epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit. The conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 97.8%.
  • Example 4 The epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1. Etching and epitaxial film growth were performed in the same manner as in Example 1 except that the off angle of the SiC single crystal substrate was 2 °. The epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit. The conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 97.5%.
  • the epitaxial growth was performed on the Si surface of a 4-inch (100 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly cut, and polished in the same manner as in Reference Example 1.
  • the off angle of the SiC single crystal substrate is 4 ° (the off direction is the same as in the first embodiment).
  • the etching time is 10 minutes, and the surface roughness Ra of the SiC single crystal substrate after etching is 0.2 nm.
  • epitaxial growth was performed in the same manner as in Reference Example 1 (no formation of a buffer layer).
  • the epitaxial film after growth was etched with molten KOH, and the dislocation density was evaluated by the etch pit.
  • the conversion ratio of basal plane dislocation on the surface of the SiC single crystal substrate is 91%, and the conversion efficiency is compared to the reference example. It was falling.
  • the growth conditions are as follows: SiH 4 flow rate is 50 cm 3 / min, C 3 H 8 flow rate is 6.7 cm 3 / min (C / Si ratio is 0.4), growth pressure is 6 kPa, and a 2 ⁇ m-thick SiC epitaxial film is obtained.
  • the epitaxial layer for device operation (Si / Si flow rate 150 cm 3 / min, C 3 H 8 flow rate 65 cm 3 / min (C / Si ratio 1.3) and pressure 2 kPa
  • the device operation layer was grown to 10 ⁇ m.
  • the epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit.
  • the conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 93%. This is considered to be because the film thickness of the buffer layer is large and the growth time is long, so that the flatness of the film is deteriorated due to the fluctuation of the C / Si ratio, and the conversion efficiency is lowered.
  • the temperature of the growth furnace is lowered to 1650 ° C.
  • the SiH 4 flow rate is 150 cm 3 / min
  • the C 3 H 8 flow rate is 65 cm 3 / min (C / Si ratio is 1.3)
  • the pressure is At 2 kPa
  • an epitaxial layer (device operation layer) for device operation was grown to 10 ⁇ m.
  • the epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit.
  • the conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 90.5%. It is considered that this is because the buffer layer is grown at a high temperature, so re-evaporation of atoms from the surface is large, the flatness of the film is deteriorated, and the conversion efficiency is lowered.
  • the growth conditions are: SiH 4 flow rate is 50 cm 3 / min, C 3 H 8 flow rate is 6.7 cm 3 / min (C / Si ratio is 0.4), growth pressure is 1.5 kPa, and 0.5 ⁇ m thick SiC An epitaxial film was obtained.
  • the epitaxial layer for device operation (Si / Si flow rate 150 cm 3 / min, C 3 H 8 flow rate 65 cm 3 / min (C / Si ratio 1.3) and pressure 2 kPa
  • the device operation layer was grown to 10 ⁇ m.
  • the epitaxial film after growth was etched with molten KOH and the dislocation density was evaluated by the etch pit.
  • the conversion of basal plane dislocation on the surface of the SiC single crystal substrate was 91%. It is considered that this is because the surface of the buffer layer is roughened by growing the buffer layer under a low pressure, the flatness of the film is deteriorated, and the conversion efficiency is lowered.
  • Tables 1 and 2 show the conditions and evaluation results of Reference Examples 1 to 4 and Examples 1 to 4 and Comparative Examples 1 to 8.
  • the present invention in epitaxial growth on a SiC single crystal substrate, it is possible to produce an epitaxial SiC single crystal wafer having a high quality epitaxial film with few basal plane dislocations. Therefore, if an electronic device is formed on such an epitaxial SiC single crystal wafer, it can be expected that the characteristics and yield of the device will be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

オフ角度の小さな炭化珪素単結晶基板上に、高品質で基底面転位の少ない炭化珪素単結晶薄膜を有したエピタキシャル炭化珪素単結晶ウェハを製造する方法を提供する。 熱CVD法により炭化珪素単結晶基板上に炭化珪素をエピタキシャル成長させてエピタキシャル炭化珪素単結晶ウェハを製造する方法であって、前記製造方法は、エピタキシャル成長炉内にエッチングガスを流して炭化珪素単結晶基板の表面を算術平均粗さRa値が0.5nm以上3.0nm以下となるようにエッチングした後、エピタキシャル成長を開始して、炭化珪素単結晶基板の表面における基底面転位の95%以上を貫通刃状転位に変換することを特徴とする。

Description

エピタキシャル炭化珪素単結晶ウェハの製造方法
 本発明は、エピタキシャル炭化珪素単結晶ウェハの製造方法に関するものである。
 炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。
 SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的である。しかし、後者の場合には、注入後に高温でのアニールが必要となるため、エピタキシャル成長による薄膜形成が多用されている。
 ここで、SiCエピタキシャル膜上に存在する欠陥としては、三角形欠陥、キャロット欠陥、コメット欠陥等があり、これらはいわゆるキラー欠陥としてデバイスの特性を劣化させるものとして知られている。更に近年、エピタキシャル膜中の基底面転位がデバイス特性に影響を及ぼすものとして問題になっている。この基底面転位は、SiC単結晶基板中に存在しているものの一部がエピタキシャル成長層へ引き継がれたものであるが、通常2つの部分転位に分解し、その間に積層欠陥を伴っていることが知られている(非特許文献1参照)。また、デバイス内部にこの積層欠陥が存在すると信頼性に悪影響を与えるため(非特許文献2参照)、エピタキシャル成長層内の基底面転位の低減が重要な課題となっている。
 図1は、SiC単結晶基板中に存在する基底面転位の模式図であり、符号1が基底面転位を示している。このようなSiC単結晶基板上にSiCのエピタキシャル成長が開始される時、転位は基底面上(b方向)を進むよりもエピタキシャル成長方向(a方向)に進んだ方が、自己の持つ弾性エネルギーが小さくなる(転位の長さが短くなる)ため、バーガーズベクトルが等しい刃状転位に変換され易くなる。その結果、一般に、SiC単結晶基板の基底面転位の90~93%程度は、基板/エピタキシャル膜界面で貫通刃状転位に変換される。しかし、例えば、(0001)面に対して4°のオフ角度を有した4°オフ基板中の基底面転位密度は4000ヶ/cm2程度であることから、変換されずに7~10%程度エピタキシャル膜中に残る(引き継がれる)基底面転位密度は280~400ヶ/cm2程度となる。
 一方、デバイスの電極の大きさは現在2~3mm角程度以上になっているため、1つのデバイスに少なくとも10個の基底面転位が含まれていることになり、デバイス特性及び歩留まりを落とす要因となる。基底面転位密度を下げる効果的な方法は、基板のオフ角度をより小さくすることであるが、基板上に存在するステップの数が減少するため、エピタキシャル成長時に所謂ステップフロー(step-flow)成長が起こり難くなる。その結果、上述のキラー欠陥が増加し、これによるデバイス特性や歩留まりの劣化が問題となる。
 従って、今後デバイスへの応用が期待されるエピタキシャルSiC単結晶ウェハであるが、基底面転位から貫通刃状転位への変換効率を更に上げて、基板からエピタキシャル成長層へ引き継がれる基底面転位を低減し、かつキラー欠陥の増加を抑える必要がある。上述したように、基板のオフ角度をより小さくして基底面転位密度を下げる方法もあるが、現状の技術では、キラー欠陥をデバイス実用レベルまで抑制するためには4°オフ程度の基板を用いるのが限界であり、その結果エピタキシャル膜中に残存する基底面転位の低減が不十分となり、デバイス特性の劣化や歩留まりの低下が生じてしまう。
 なお、SiC単結晶基板を溶融KOHでエッチングし、その上にエピタキシャル成長を行うことで、該基板の基底面転位が貫通刃状転位に変換することが知られている(非特許文献3参照)。しかしながら、このような方法では、SiC単結晶基板のエッチングとSiCのエピタキシャル成長とを個別に行う必要があって処理が煩雑になるほか、溶融KOHにより深いエッチング痕が形成されるためその後のエピタキシャル成長でもこの痕が残り、平滑な表面が得られない。また、エピタキシャル成長層とSiC単結晶基板との界面での基底面転位から貫通刃状転位への変換効率を十分に高めるのが難しい。
 特許文献1には、炭化珪素単結晶基板上に、炭化珪素単結晶薄膜からなり表面粗さのRa値が0.5nm以上1.0nm以下である少なくとも1つの抑止層を形成し、欠陥の発生を抑止する方法を開示している。特許文献1は、表面粗さのRa値を上記範囲内にすることによって、ステップに取り込まれる原子の数を増やし、ステップフローが促進されることを開示する。しかし、特許文献1には、炭化珪素単結晶基板のエッチングと、基底面転位の減少との関係について開示も示唆も無い。また、特許文献1には、基底面転位が貫通刃状転位に変換される変換率の定量的な評価が行われていない。
 特許文献2には、水素エッチング処理された炭化珪素単結晶基板の表面上に、炭化珪素結晶からなるバッファー層をエピタキシャル成長させてバッファー層を形成し、前記バッファー層の表面を水素エッチング処理し、前記バッファー層の表面上に炭化珪素結晶をエピタキシャル成長させて仕上層を形成する工程が開示されている。前記バッファー層形成工程により、炭化珪素単結晶基板からの基底面欠陥の伝播が抑制され、水素エッチング処理されたバッファー層の表面上に仕上層を形成することにより、上記炭化珪素単結晶基板に起因する基底面転位の伝播がさらに低減され、かつ、上記バッファー層に起因する欠陥も低減された仕上層を形成できることが開示されている。しかし、特許文献2に開示された製造方法では、バッファー層の水素エッチングを省略した場合、半導体基板の生産の歩留まりが低くなるおそれがある。
 特許文献3には、(0001)面に対して<11-20>方向又は<1-100>方向のいずれかであるオフ角方向におけるオフ角が0.1°以上10°以下であり、単結晶炭化珪素からなるベース基板に炭化珪素層を形成させる炭化珪素インゴットの製造方法が開示されている。しかし、特許文献3には、前記ベース基板のエッチングと、基底面転位の減少との関係について開示も示唆も無い。また、特許文献3には、基底面転位が貫通刃状転位に変換される変換率の定量的な評価が行われていない。
特開2008-74664号公報 特開2009-218575号公報 特開2012-240892号公報
X.J.Ning et al.: Journal of American Ceramics Soc.Vol.80(1997) p.1645. H. Fujiwara et al.: Applied Physics Letters Vol.87(2005) 051912 Z.Zhang et al.: Applied Physics Letters. Vol.87 151913 (2005)
 本発明は、実用的なオフ角度のSiC単結晶基板を用いたエピタキシャル成長においても、エピタキシャル成長層中に残存する基底面転位を低減した高品質エピタキシャル膜を有するエピタキシャルSiC単結晶ウェハを得ることができるエピタキシャルSiC単結晶ウェハの製造方法を提供するものである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、熱CVD法によりSiC単結晶基板上にSiCをエピタキシャル成長させてエピタキシャルSiC単結晶ウェハを製造する際、以下のようにしてエピタキシャル成長層中に残存する基底面転位を低減できることを見出した。
 すなわち、エピタキシャル成長前に成長炉内にエッチングガスを流してSiC単結晶基板をエッチングして、その表面に基底面転位を起点とした短いステップバンチングを形成することによって、SiC単結晶基板の表面の算術平均粗さRa値を所定の値にしてから、エピタキシャル成長を開始することにより、SiC単結晶基板の表面の基底面転位を効果的に貫通刃状転位に変換することができる。更に、前述した基底面転位から貫通刃状転位への変換を安定して行うために、所定のバッファー層を形成することで、基底面転位をより低減して、なおかつキラー欠陥の増加を抑制できることを、本発明者らは見出し、本発明を完成した。
 本発明の要旨は、下記の通りである。
(1)エピタキシャル成長炉内に珪素系材料ガス及び炭素系材料ガスを流して、熱CVD法により炭化珪素単結晶基板上に炭化珪素をエピタキシャル成長させてエピタキシャル炭化珪素単結晶ウェハを製造する方法であって、エピタキシャル成長を開始する前に、エピタキシャル成長炉内にエッチングガスを流して、炭化珪素単結晶基板の表面を算術平均粗さRa値が0.5nm以上3.0nm以下となるように予めエッチングすることを特徴とするエピタキシャル炭化珪素単結晶ウェハの製造方法。
(2)前記エッチングの後、珪素系材料ガス及び炭素系材料ガスを前記エピタキシャル成長炉内に供給して、前記エッチングされた前記炭化珪素単結晶基板の表面上に炭化珪素をエピタキシャル成長させてバッファー層を形成し、引き続き前記バッファー層上に炭化珪素をエピタキシャル成長させてデバイス動作層を形成するに際し、前記バッファー層を形成した時の前記珪素系材料ガス及び前記炭素系材料ガスのSi原子数に対するC原子数の比C/Siよりも高いC/Siにすることを特徴とする(1)に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
(3)前記C/Siを0.3以上0.6以下にして、前記珪素系材料ガス及び前記炭素系材料ガスを前記エピタキシャル成長炉内に供給して、1600℃以上1700℃以下の成長温度、及び、2kPa以上10kPa以下の成長圧力にて、炭化珪素を前記炭化珪素単結晶基板上にエピタキシャル成長させて厚さ0.5μm以上1μm以下のバッファー層を形成することを特徴とする(2)に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
(4)前記C/Siを1.0以上2.0以下のC/Si比にして、前記珪素系材料ガス及び前記炭素系材料ガスを前記エピタキシャル成長炉内に供給して、1600℃以上1700℃以下の成長温度、及び、2kPa以上10kPa以下の成長圧力にて、前記デバイス動作層を形成することを特徴とする(2)又は(3)に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
(5)前記エッチングガスが水素ガスを含むことを特徴とする(1)~(4)のうちいずれかに記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
(6)前記炭化珪素単結晶基板は、(0001)面に対して<11-20>方向へ傾けたオフ角度が2°以上4°以下であることを特徴とする(1)~(5)のうちいずれかに記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
(7)前記炭化珪素単結晶基板の表面における基底面転位の95%以上が、前記バッファー層と前記炭化珪素単結晶基板の界面で貫通刃状転位に変換されることを特徴とする(1)~(6)のうちいずれかに記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
 本発明によれば、例えば4°程度の実用的なオフ角度を有するSiC単結晶基板上でのエピタキシャル膜において、その中に残存する基底面転位を低減した高品質なエピタキシャルSiC単結晶ウェハを提供することが可能である。また、本発明の製造方法では、CVD法を用いるため、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜を得ることができる。さらに、本発明のエピタキシャルSiC単結晶ウェハを用いたデバイスは、基底面転位密度が低減された高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。
従来技術によってSiCエピタキシャル成長を開始した時のSiC単結晶基板の基底面転位のふるまいを示す図である。 従来技術によるSiCエピタキシャル膜の成長シーケンスを示す図である。 本発明のエッチングを行った上でSiCエピタキシャル成長を行う成長シーケンスを示す図である。 本発明の一例によって成長前処理エッチングを行った直後のSiC単結晶基板の表面状態を光学顕微鏡により観察した写真である。 (a)~(c)は、本発明の方法により基板の基底面転位の貫通刃状転位への変換が促進されることを示す図。 本発明の例によるSiCエピタキシャル膜の成長シーケンスを示す図である。 本発明によりSiC単結晶基板の基底面転位が貫通刃状転位に変換されるにあたってバッファー層の平坦性が影響することを示す図であって、バッファー層の平坦性が保てない場合を示す。 本発明によりSiC単結晶基板の基底面転位が貫通刃状転位に変換されるにあたってバッファー層の平坦性が影響することを示す図であって、バッファー層の平坦性が保たれる場合を示す。 エピタキシャル膜の表面を溶融KOHでエッチングした時に現れるエッチピットを示す光学顕微鏡写真。
 以下、本発明の具体的な内容について述べるが、以下の実施形態に限定されない。
 本発明のエピタキシャルSiC単結晶ウェハの製造方法におけるエピタキシャル成長で好適に用いることができる装置は、横型の熱CVD装置である。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。
 先ず、参考のため、従来のエピタキシャル膜成長の製造方法を利用したSiC単結晶基板上へのエピタキシャル成長について述べる。図2において、従来のエピタキシャル膜成長を行う際の典型的な成長シーケンスを、ガスの導入タイミングと併せて示す。
 エピタキシャル成長炉にSiC単結晶基板をセットし、成長炉内を真空排気した後、水素ガスを導入して圧力を5k~20kPaに調整する。その後、圧力を一定に保ちながら水素ガス流量と成長炉の温度を上げ、成長温度である1550~1650℃に達した後、毎分100~200Lの水素ガス中でt1の時間SiC単結晶基板表面のエッチングを行う。水素ガスを用いたこのエッチングは、SiC単結晶基板の表面に形成された酸化膜の除去や加工等による変質層の除去などを目的とするものであり、エッチング時間(t1)は通常10分程度である。また、この時にエッチングされるSiC単結晶基板の量(厚さ)は10~50nm程度であり、エッチング後のSiC単結晶基板の表面粗さのRa値は0.1~0.2nm程度である。なお、表面粗さRaは、JIS B0601-1994に規定の算術平均粗さを表す。
 エッチング終了後、材料ガスであるSiH4とC38とをエピタキシャル成長炉に導入して成長を開始する。SiH4流量は毎分100~150cm3、C38流量は毎分50~70cm3であり(材料ガス中のSi原子数に対するC原子数の比(C/Si比)は1~2程度)、成長速度は毎時~10μmである。この成長速度は、通常利用されるエピタキシャル層の膜厚が10μm程度であるため、生産性を考慮して決定されたものである。そして、一定時間成長し、所望の膜厚が得られた時点でSiH4とC38の導入を止め、水素ガスのみ流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止め、成長室内を真空排気し、不活性ガスを成長室に導入して、成長室を大気圧に戻してから、SiC単結晶基板を取り出す。
(本発明におけるエピタキシャルSiC単結晶ウェハの製造方法)
 次に、本発明におけるエピタキシャルSiC単結晶ウェハの製造方法について、図3の成長シーケンスを用いて説明する。
[実施形態1]
(エッチング工程)
 SiC単結晶基板をエピタキシャル成長炉にセットし、SiC単結晶基板の表面のエッチングを開始するまでの条件は、図2に示した内容と同様である。従って、使用するエッチングガス、エッチングガスの圧力条件、エッチング時の温度、ガス流量は、従来技術におけるエッチング工程の条件と同じである。但し、エッチング時間t2は0.5~1.5時間程度として、SiC単結晶基板の表面に基底面転位を起点とした短いステップバンチングが形成されるようにする。エッチング量は500nm~1000nm程度である。このエッチング量は、以下で示す短いステップバンチングを発生させるために必要な量であり、少なすぎるとステップバンチング密度が不足して十分な基底面転位の変換効率が得られず、多すぎると表面荒れが発生し、この場合も基底面転位の変換効率が下がる。
 エッチング後のSiC単結晶基板の表面の様子を示す写真を図4に示す。図4において観察される長さ0.5~1mm程度の縦線(紙面の上下方向の線)が短いステップバンチングを表し、この線の部分が凸形状になっている。この短いステップバンチングの中央にはSiC単結晶基板の基底面転位が存在していることが確認されており、基底面転位周辺の結晶状態が変化しているため、エッチングの進行が遅くなり、基底面転位周辺の部分が凸形状になったと考えられる。この状況を図5で説明する。
 図5(a)は図1と同じ状態を表し、エッチング前、あるいは従来技術のように殆どエッチングが行われていない場合のSiC単結晶基板表面の断面模式図である。符号1がSiC単結晶基板の基底面転位であり、符号2が基底面転位周辺で結晶状態が変化しているステップである。
 エッチング進行中の状態を図5(b)に模式的に示す。基底面転位の表面出口近傍のステップ2'は結晶状態が変化しているため、エッチングによる後退量が小さく、ステップ3は基底面転位が存在しない通常の結晶状態であることから、ステップ2'よりも後退量は大きくなる。そして、エッチング終了時には、図5(c)に示されるように、基底面転位の表面出口近傍のステップ2'(図5(b))は殆どエッチングされないが、通常の結晶状態のステップ3(図5(b))はエッチングされて、前記ステップ2'のエッチング後のステップ2'’の位置まで後退する(図5(c)の符号3’)このように、エッチング終了後、基底面転位が表面に出る部分で、複数のステップが合体して段差が大きくなっている。この結果、図4に示すような短いステップバンチングが形成されたものと考えられる。
 図3におけるエッチング時間t2と短いステップバンチングが生じたエッチング後のSiC単結晶基板の表面粗さRa値との関係を事前に求めることができる。エッチング時間t2と表面粗さRa値との関係に基づいて、Ra値が0.5nm以上3.0nm以下になるようなエッチング時間t2を0.5~1.5時間(hour)程度にしても良い。t2を0.5~1.5時間程度とすることにより、エッチング量が500nm~1000nmとなり、そのときのRaが0.5nm~3.0nmである。従ってRaがこの範囲を外れた場合、或いはエッチング時間が0.5~1.5時間を満たさない場合、上述したエッチング量が500nm以上1000nm以下では無い場合と同様に、基底面転位の変換効率が改善されない。
 図3に示すように、エッチング後は、図2の場合と同様の手順でSiCのエピタキシャル成長を行うことができる。このように、SiC単結晶基板の表面粗さRa値が0.5nm以上3.0nm以下になるようにエッチングを実施してエピタキシャル成長を行うことで、4°程度のオフ角を持ったSiC単結晶基板上のエピタキシャル膜において、膜中に残存する基底面転位をSiC単結晶基板中の値の5%以下まで低減した良好なエピタキシャル膜が得られるようになる。
 これを再び図5(c)を用いて説明する。図1で説明したように、Ra値が0.5nm以上3.0nm以下になるようなエッチングを行っていない状態でも、通常、SiC単結晶基板の基底面転位の大部分は貫通刃状転位に変換される。しかし、図5(c)の符号1'で示した基底面転位に注目すると、上記Ra値となるようにエッチングした後では、この転位の出口におけるテラス(すなわち、ステップ2'’上のテラス2'’a)が広がっているため、基底面転位は、基底面方向(図1のb方向)には一層進行し難く、より貫通刃状転位に変換され易くなる。すなわち、基底面転位は図1に示したa方向に進み易くなる。このようにSiC単結晶基板のエッチングによって基底面転位近傍に形成されたステップの集合部10が、SiC単結晶基板の基底面転位をより効率よく貫通刃状転位に変換することを見出し、それが必然的に短いステップバンチングを伴うため、表面のRa値と変換効率が関連付けられたことが本発明に繋がっている。
 本発明によれば、基底面転位が貫通刃状転位に変換する変換率は従来90~93%程度であったのに対して、95%以上とすることができる。また、Ra値に関して、その値が小さすぎる場合、このような転位の変換効果の改善が見られず、反対に大き過ぎるとテラス部分もエッチングされていることになるため、転位が変換されずに基底面方向(図1のb方向)に進行する確率が上がると考えられ、Ra値には最適値が存在する。
 このSiC単結晶基板のエッチングは、エピタキシャル成長炉内にエッチングガスを流して行うようにすればよく、代表的には水素ガスをエッチングガスとして用いることができ、毎分100~200L程度の流量でエッチングを行うようにすればよい。水素ガス以外にも、例えば、ヘリウムやアルゴン等をエッチングガスとして用いるようにしてもよい。また、エッチングの際の温度や圧力については図2や図3で示したような成長炉内の条件を採用することができ、具体的には、温度は1500℃以上1700℃以下であるのがよく、圧力は1kPa以上20kPa以下であるのがよい。
[実施形態2]
(バッファー層の形成工程)
 本発明の第2実施形態では、第1実施形態におけるSiC単結晶基板のエッチング後に、エピタキシャル成長炉内に珪素系及び炭素系の材料ガスを流してSiCをエピタキシャル成長させて、バッファー層とデバイス動作層とを形成する手順について、図6の成長シーケンスを用いて説明する。SiC単結晶基板をセットし、SiC単結晶基板表面のエッチングが終了するまでは図3と同様である。エッチング終了後、材料ガスであるSiH4とC38とを導入して成長を開始するが、先ず、バッファー層を形成し、次いで、デバイス動作層を形成する。このバッファー層は、貫通刃状転位への変換を促進させて、基底面転位を低減させる役割を主に担い、デバイス動作層はデバイスの形成に用いられるものである。
 このようにエピタキシャル成長開始時にバッファー層を形成することで、デバイス動作層を成長させた後のエピタキシャル膜において、膜中に残存する基底面転位が効果的に低減した良好な膜が得られるようになる。これは、詳しくは下記で説明するように、バッファー層としてエピタキシャル膜を低いC/Si比で成長させ、SiC単結晶基板上に平坦性の高いエピタキシャル膜を形成することで、SiC単結晶基板表面の基底面転位が安定して貫通刃状転位に変換するためである。これを図7A、Bで説明する。
 図7Aは、エッチング終了後のSiC単結晶基板上に、デバイス動作層を形成するような場合と同様のC/Si比でエピタキシャル層4を成長させた場合を示しているが、SiC単結晶基板の基底面転位1の近傍で短いステップバンチングが発生している部分2''では、結晶状態が乱れているためステップフロー成長が進行し難くなる。その結果、特に成長初期において膜厚が増加し、符号5に示すようにエッジ部分が盛り上がり、逆にその下部6では裾野のようにして膜厚が減少する。このようになると、SiC単結晶基板の基底面転位1は、b方向に進んだ方が短くなるという状況が発生するため、基底面転位のままでエピタキシャル膜に残存することになり、成長前エッチングを最適化した効果が低減される。このような状態のバッファー層では表面のRa値は3nmを超えている。
 一方、図7Bのように、エッチング終了後のSiC単結晶基板に対してエピタキシャル層を低いC/Si比で成長させることで、平坦性や均一性の高いエピタキシャル膜4を形成させることができる。これにより、ステップの集合部10が発生している部分2''においても符号4のような平坦な状態になっていると考えられ、前記エピタキシャル膜4はエッチング等を行わなくても基底面転位1'が貫通刃状転位に変換しやすい状態に維持される。すなわち、エッチングで短いステップバンチングを伴うステップの集合部10を形成し、基底面転位の変換効率を上げたSiC単結晶基板に対し、その効果をより確実にするためには、低いC/Si比で成長し、平坦性の高いエピタキシャル膜4をバッファー層として形成することが重要になる。この場合のバッファー層の表面Ra値は、1~3nmである。
 本発明により、4°程度といった実用的なオフ角度を持ったSiC単結晶基板上のエピタキシャル膜において、膜中に残存する基底面転位を低減した良好なエピタキシャル膜が得られるようになる。エッチング終了後のSiC単結晶基板に対して成長させるバッファー層の厚さは、エッチングにより短いステップバンチングを形成したSiC単結晶基板の基底面転位の変換が完了できる厚さとするために0.5μm以上1μm以下である。このバッファー層は低いC/Si比で成長するため厚くなると成長時間が長くなり、また、C/Si比の揺らぎによる成長膜の安定性が問題となること等を考慮して、膜厚の上限を決めている。
 また、バッファー層を成長する際の材料ガス中のSi原子数に対するC原子数の比(C/Si比)は0.3以上0.6以下である。これは前述の通り、ステップフロー成長を促進するために必要であり、0.6より大きいとその効果が小さくなり、0.3より小さいとSiドロップレットの発生が問題となるからである。例えば、珪素系の材料ガスとしてSiH4を用い、炭素系の材料ガスとしてC38を用いる場合、バッファー層を成長させる際のSiH4流量は毎分50~60cm3であり、C38流量は毎分6~10cm3である。
 また、バッファー層のエピタキシャル膜の成長温度に関しては、1600℃未満であると膜の品質を低下させ、1700℃を超えると表面からの原子の再蒸発が大きくなることから、エピタキシャル膜の成長温度は1600℃以上1700℃以下とする。成長時の圧力も膜の品質に影響を与え、低すぎると表面粗さが増加し、高すぎるとSiドロップレットの発生が問題となるため、バッファー層を形成する際の圧力は2kPa以上10kPa以下とする。
[実施形態3]
(デバイス動作層の形成工程)
 第3実施形態では、第2実施形態によるバッファー層形成後、デバイス動作層が、使用されるデバイスの用途に応じた成長条件で成長させる。尚、バッファー層形成工程とデバイス動作層との間に前記バッファー層をエッチングする工程を入れず、前記バッファー層を形成した時の珪素系材料ガス及び炭素系材料ガスのC/Siよりも高いC/Si値にて、珪素系材料ガス及び炭素系材料ガスを流して、前記バッファー層上に直接的に炭化珪素をエピタキシャル成長させてデバイス動作層を形成する。
 具体的には、材料ガス中のSi原子数に対するC原子数の比(C/Si比)は1.0以上2.0以下であるのがよく、成長温度は1600℃以上1700℃以下であるのがよく、成長圧力は2kPa以上10kPa以下であるのがよい。このデバイス動作層の厚さについても用途等に応じて適宜設定することができるが、好適には5μm以上50μm以下であるのがよい。なお、バッファー層やデバイス動作層の形成に用いる材料ガスとして、上記の成長シーケンスではSiH4とC38の場合を例示したが、材料ガスはこれらに制限されず、例えば、珪素系の材料ガスとしてSiHCl3、SiH2Cl2、SiCl4等を用いたり、炭素系の材料ガスとしてC24、CH4等を用いることができる。また、これらのエピタキシャル膜を成長する際に、N2等のドーピングガスを併せて流すようにしても勿論構わない。
 本発明で用いるSiC単結晶基板のオフ角度については、好ましくは、(0001)面に対して<11-20>方向へ傾けたオフ角度が2°以上4°以下であるのがよい。オフ角度が4°より大きいと基板内の基底面転位がオフ角度を付けられた表面と交わる角度が大きくなり、エピタキシャル成長時に基底面方向(図1中のb方向)に進んでもそれと垂直方向(図1中のa方向)へ進んでも転位の長さがあまり変わらなくなるため本発明の効果が現れ難くい。反対に、2°より小さいと初期状態での基底面転位の数が少ない上、テラスが広すぎることによるステップフロー成長の阻害等の悪影響が大きくなる。
 このようにして成長させたエピタキシャルSiC単結晶ウェハ上に好適に形成されるデバイスとしては特に制限はないが、例えばショットキーバリアダイオード、PINダイオード、MOSダイオード、MOSトランジスタ等を挙げることができ、なかでも電力制御用に用いられるデバイスを得るのに好適である。
 以下、実施例等に基づいて本発明を具体的に説明するが、本発明はこれらの内容に制限されるものではない。
(参考例1)
 先ず、SiC単結晶基板の表面を算術平均粗さRa値が0.5nm以上3.0nm以下となるようにエッチングした後、バッファー層を設けずに、直接デバイス動作層を形成した例を参考例1~4として示す。
 4インチ(100mm)ウェハ用SiC単結晶インゴットから、約400μmの厚さでスライスした、粗削りとダイヤモンド砥粒による通常研磨及び化学機械研磨(CMP)を実施した、4H型のポリタイプを有するSiC単結晶基板のSi面に、以下のようなエピタキシャル成長を実施した。このSiC単結晶基板は(0001)面に対して<11-20>方向へ傾けたオフ角度が4°である。
 成長の手順としては図6の成長シーケンスのようにし、具体的には、エピタキシャル成長炉に上記SiC単結晶基板をセットし、成長炉内を真空排気した後、水素ガスを導入しながら圧力を10kPaに調整した。その後、圧力を一定に保ちながら水素ガスの流量と成長炉の温度を上げ、最終的に水素ガスは毎分150L、成長炉の温度は1635℃にした。その後圧力を2kPaに調整して水素ガス中でSiC単結晶基板のエッチングを40分行った。このとき、予め同じ条件でエッチングしたSiC単結晶基板の表面を原子間力顕微鏡(AFM)で観察した結果に基づけば、このエッチング後のSiC単結晶基板の表面粗さRa値は0.5nmになる。エッチング後、成長炉の温度を1650℃に上げ、SiH4流量を毎分150cm3、C38流量を毎分65cm3にして成長を開始し、エピタキシャル層の厚さが10μmになるまで成長させた(C/Si比は1.3)。成長したエピタキシャル層はデバイス動作のためのデバイス動作層であり、基底面転位の変換効率を更に上げるためのバッファー層は成長させていない。
 このようにしてエピタキシャル成長を行った膜を溶融KOHでエッチングし、エッチピットが現れたデバイス動作層の表面の光学顕微鏡写真を図8に示す。図8の写真の矢印が基底面転位によるエッチピットであり、他のピットは貫通らせん転位あるいは貫通刃状転位によるものである。このような方法により、得られたエピタキシャル膜内の基底面転位密度を評価して、SiC単結晶基板の基底面転位密度と比較したところ、この参考例1では、SiC単結晶基板表面の基底面転位でエピタキシャル膜に引き継がれたものは全体の3.5%であった。つまり、SiC単結晶基板表面の基底面転位の96.5%が変換されたことになり、これらは貫通刃状転位に変換したと考えられる。なお、エピタキシャル膜の成長条件や変換効率についてまとめたものを表1、2に示す。
(参考例2)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガス中でのエッチング開始までは参考例1と同様であるが、この参考例2ではエッチング時間を60分とし、エッチング後のSiC単結晶基板の表面粗さRa値が1.3nmになるようにした。エッチング後は参考例1と同様にエピタキシャル成長を行った(バッファー層の形成は無し)。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は97%であった。
(参考例3)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガス中でのエッチング開始までは参考例1と同様であるが、この参考例3ではエッチング時間を80分とし、エッチング後のSiC単結晶基板の表面粗さRa値が3.0nmになるようにした。エッチング後は参考例1と同様にエピタキシャル成長を行った(バッファー層の形成は無し)。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は97%であった。
(参考例4)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角が2°であること以外は、水素ガスによるエッチング、エッチング後のSiC単結晶基板のRa値、及びエピタキシャル成長の条件は参考例1と同様である(バッファー層の形成は無し)。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は96%であった。
(実施例1)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は6kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。そして、成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は98.5%であった。
(実施例2)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例2と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分5cm3(C/Si比は0.3)であり、成長圧力は6kPaとして、膜厚0.8μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。そして、成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は98%であった。
(実施例3)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例3と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分10cm3(C/Si比は0.6)であり、成長圧力は6kPaとして、膜厚1μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は97.8%であった。
(実施例4)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角が2°である以外は実施例1と同様にしてエッチング、エピタキシャル膜の成長を行った。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は97.5%であった。
(比較例1)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガス中でのエッチングまでは参考例1と同様であるが、エッチング時間を10分とし、エッチング後のSiC単結晶基板の表面粗さRa値が0.2nmになるようにした。エッチング後は参考例1と同様にエピタキシャル成長を行った(バッファー層の形成は無し)。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は91%であり、参考例に比べて変換効率は落ちていた。
(比較例2)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガス中でのエッチングまでは参考例1と同様であるが、エッチング時間を100分とし、エッチング後のSiC単結晶基板の表面粗さRa値が4nmになるようにした。エッチング後は参考例1と同様にエピタキシャル成長を行った(バッファー層の形成は無し)。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は90.5%であり、参考例に比べて変換効率は落ちていた。
(比較例3)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分16.7cm3(C/Si比は1.0)であり、成長圧力は6kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッ チングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は93.5%であった。これは、バッファー層成長時のC/Si比が高く、膜の平坦性が悪化したため、変換効率が低下したと考えられる。
(比較例4)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は6kPaとして、膜厚2μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は93%であった。これは、バッファー層の膜厚が大きく成長時間が長くなったため、C/Si比の揺らぎにより膜の平坦性が悪化して、変換効率が低下したと考えられる。
(比較例5)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1580℃に下げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は6kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、成長炉の温度を1650℃に上げて、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は91%であった。これは、バッファー層を低い温度で成長させたため、ステップフロー成長が均一に進行せずに膜の平坦性が悪化して、変換効率が低下したと考えられる。
(比較例6)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1720℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は6kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、成長炉の温度を1650℃に下げて、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は90.5%であった。これは、バッファー層を高い温度で成長させたため、表面からの原子の再蒸発が大きく膜の平坦性が悪化して、変換効率が低下したと考えられる。
(比較例7)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は1.5kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長させた。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は91%であった。これは、バッファー層を低い圧力で成長したことによる表面荒れにより膜の平坦性が悪化し、変換効率が低下したと考えられる。
(比較例8)
 参考例1と同様にスライス、粗削り、研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。SiC単結晶基板のオフ角は4°である(オフ方向は参考例1と同じ)。水素ガスによるエッチングや、エッチング後のSiC単結晶基板のRa値は参考例1と同様である。エッチング後、成長炉の温度を1650℃に上げて、バッファー層を成長させた。成長条件はSiH4流量が毎分50cm3、C38流量が毎分6.7cm3(C/Si比は0.4)であり、成長圧力は12kPaとして、膜厚0.5μmのSiCエピタキシャル膜を得た。
 バッファー層を成長させた後、SiH4流量を毎分150cm3、C38流量を毎分65cm3にし(C/Si比は1.3)、圧力を2kPaにして、デバイス動作のためのエピタキシャル層(デバイス動作層)を10μm成長した。成長後のエピタキシャル膜を溶融KOHでエッチングし、エッチピットによる転位密度の評価を行ったところ、SiC単結晶基板表面の基底面転位の変換率は91.2%であった。これは、バッファー層を高い圧力で成長したことによるSiドロップレットの発生により膜の平坦性が悪化し、変換効率が低下したと考えられる。
 上記参考例1~4、実施例1~4及び比較例1~8の条件と評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この発明によれば、SiC単結晶基板上へのエピタキシャル成長において、基底面転位の少ない高品質エピタキシャル膜を有するエピタキシャルSiC単結晶ウェハを作成することが可能である。そのため、このようなエピタキシャルSiC単結晶ウェハ上に電子デバイスを形成すれば、デバイスの特性及び歩留まりが向上することが期待できる。

Claims (7)

  1.  エピタキシャル成長炉内に珪素系材料ガス及び炭素系材料ガスを流して、熱CVD法により炭化珪素単結晶基板上に炭化珪素をエピタキシャル成長させてエピタキシャル炭化珪素単結晶ウェハを製造する方法であって、
     エピタキシャル成長を開始する前に、エピタキシャル成長炉内にエッチングガスを流して、炭化珪素単結晶基板の表面を算術平均粗さRa値が0.5nm以上3.0nm以下となるように予めエッチングすることを特徴とするエピタキシャル炭化珪素単結晶ウェハの製造方法。
  2.  前記エッチングの後、珪素系材料ガス及び炭素系材料ガスを前記エピタキシャル成長炉内に供給して、前記エッチングされた前記炭化珪素単結晶基板の表面上に炭化珪素をエピタキシャル成長させてバッファー層を形成し、
     引き続き前記バッファー層上に炭化珪素をエピタキシャル成長させてデバイス動作層を形成するに際し、前記バッファー層を形成した時の前記珪素系材料ガス及び前記炭素系材料ガスのSi原子数に対するC原子数の比C/Siよりも高いC/Siにすることを特徴とする請求項1に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
  3.  前記C/Siを0.3以上0.6以下にして、前記珪素系材料ガス及び前記炭素系材料ガスを前記エピタキシャル成長炉内に供給して、1600℃以上1700℃以下の成長温度、及び、2kPa以上10kPa以下の成長圧力にて、炭化珪素を前記炭化珪素単結晶基板上にエピタキシャル成長させて厚さ0.5μm以上1μm以下のバッファー層を形成することを特徴とする請求項2に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
  4.  前記C/Siを1.0以上2.0以下にして、前記珪素系材料ガス及び前記炭素系材料ガスを前記エピタキシャル成長炉内に供給して、1600℃以上1700℃以下の成長温度、及び、2kPa以上10kPa以下の成長圧力にて、前記デバイス動作層を形成することを特徴とする請求項2又は3に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
  5.  前記エッチングガスが水素ガスを含むことを特徴とする請求項1~4のうちいずれか1項に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
  6.  前記炭化珪素単結晶基板は、(0001)面に対して<11-20>方向へ傾けたオフ角度が2°以上4°以下であることを特徴とする請求項1~5のうちいずれか1項に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
  7.  前記炭化珪素単結晶基板の表面における基底面転位の95%以上が、前記バッファー層と前記炭化珪素単結晶基板の界面で貫通刃状転位に変換されることを特徴とする請求項1~6のうちいずれか1項に記載のエピタキシャル炭化珪素単結晶ウェハの製造方法。
PCT/JP2016/072421 2015-07-29 2016-07-29 エピタキシャル炭化珪素単結晶ウェハの製造方法 WO2017018533A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/747,849 US10626520B2 (en) 2015-07-29 2016-07-29 Method for producing epitaxial silicon carbide single crystal wafer
JP2017530950A JP6524233B2 (ja) 2015-07-29 2016-07-29 エピタキシャル炭化珪素単結晶ウェハの製造方法
CN201680033576.5A CN107709635B (zh) 2015-07-29 2016-07-29 外延碳化硅单晶晶片的制造方法
KR1020187000978A KR102106722B1 (ko) 2015-07-29 2016-07-29 에피택셜 탄화규소 단결정 웨이퍼의 제조 방법
EP16830636.3A EP3330415A4 (en) 2015-07-29 2016-07-29 PROCESS FOR PREPARING AN EPITACTIC SILICON CARBIDE CRYSTAL WAFERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149742 2015-07-29
JP2015-149742 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017018533A1 true WO2017018533A1 (ja) 2017-02-02

Family

ID=57884506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072421 WO2017018533A1 (ja) 2015-07-29 2016-07-29 エピタキシャル炭化珪素単結晶ウェハの製造方法

Country Status (6)

Country Link
US (1) US10626520B2 (ja)
EP (1) EP3330415A4 (ja)
JP (1) JP6524233B2 (ja)
KR (1) KR102106722B1 (ja)
CN (1) CN107709635B (ja)
WO (1) WO2017018533A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123148A1 (ja) * 2016-12-27 2018-07-05 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
WO2018174105A1 (ja) * 2017-03-22 2018-09-27 東洋炭素株式会社 改質SiCウエハの製造方法、エピタキシャル層付きSiCウエハ、その製造方法、及び表面処理方法
WO2020095872A1 (ja) * 2018-11-05 2020-05-14 学校法人関西学院 SiC半導体基板及びその製造方法及びその製造装置
WO2021025086A1 (ja) * 2019-08-06 2021-02-11 学校法人関西学院 SiC基板の製造方法
WO2021060369A1 (ja) * 2019-09-27 2021-04-01 学校法人関西学院 SiC基板、SiC基板の製造方法、SiC半導体装置およびSiC半導体装置の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017005034T5 (de) * 2016-10-04 2019-06-27 Sumitomo Electric Industries, Ltd. Siliziumkarbid-epitaxiesubstrat und verfahren zur herstellung einer siliziumkarbid-halbleitervorrichtung
JP2020170816A (ja) * 2019-04-05 2020-10-15 三菱電機株式会社 炭化珪素エピタキシャルウエハ、炭化珪素エピタキシャルウエハの製造方法、電力変換装置
JPWO2020230602A1 (ja) * 2019-05-10 2020-11-19
WO2021025085A1 (ja) * 2019-08-06 2021-02-11 学校法人関西学院 SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法
US20220333270A1 (en) * 2019-08-06 2022-10-20 Kwansei Gakuin Educational Foundation SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
CN112420803A (zh) * 2019-08-23 2021-02-26 比亚迪股份有限公司 碳化硅衬底及其制备方法和半导体器件
CN111029278B (zh) * 2019-12-10 2021-06-29 长江存储科技有限责任公司 一种晶圆片的加工方法和系统
JP7319502B2 (ja) * 2020-01-09 2023-08-02 株式会社東芝 炭化珪素基体の製造方法、半導体装置の製造方法、炭化珪素基体、及び、半導体装置
EP4130349A4 (en) * 2020-05-06 2023-10-18 Meishan Boya Advanced Materials Co., Ltd. CRYSTAL PRODUCTION APPARATUS AND GROWTH METHOD
JP2022020995A (ja) * 2020-07-21 2022-02-02 三菱電機株式会社 炭化珪素エピタキシャルウエハの製造方法
KR102434780B1 (ko) 2021-06-17 2022-08-22 주식회사 쎄닉 탄화규소 웨이퍼 및 반도체 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
US20140117380A1 (en) * 2012-10-26 2014-05-01 Dow Corning Corporation Flat sic semiconductor substrate
WO2014125550A1 (ja) * 2013-02-13 2014-08-21 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
JP2015000824A (ja) * 2013-06-13 2015-01-05 東洋炭素株式会社 単結晶SiC基板の表面処理方法及び単結晶SiC基板

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954654B2 (ja) 2006-09-21 2012-06-20 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
US8293623B2 (en) * 2007-09-12 2012-10-23 Showa Denko K.K. Epitaxial SiC single crystal substrate and method of manufacture of epitaxial SiC single crystal substrate
JP5504597B2 (ja) * 2007-12-11 2014-05-28 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法
JP2009218575A (ja) 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
EP2394787B1 (en) * 2009-02-04 2019-05-29 Hitachi Metals, Ltd. Manufacturing method for a silicon carbide monocrystal substrate
US9464366B2 (en) * 2009-08-20 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Reduction of basal plane dislocations in epitaxial SiC
JP4959763B2 (ja) * 2009-08-28 2012-06-27 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP4887418B2 (ja) * 2009-12-14 2012-02-29 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
EP2642001B1 (en) * 2010-11-17 2020-10-21 Showa Denko K.K. Production process of epitaxial silicon carbide single crystal substrate
JP5534038B2 (ja) * 2011-01-06 2014-06-25 日立金属株式会社 炭化珪素単結晶基板への識別マークの形成方法、及び炭化珪素単結晶基板
JP5803265B2 (ja) 2011-05-20 2015-11-04 住友電気工業株式会社 炭化珪素基板および炭化珪素インゴットの製造方法
JP5961357B2 (ja) * 2011-09-09 2016-08-02 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
WO2013036376A2 (en) * 2011-09-10 2013-03-14 Semisouth Laboratories, Inc. Methods for the epitaxial growth of silicon carbide
US9885124B2 (en) * 2011-11-23 2018-02-06 University Of South Carolina Method of growing high quality, thick SiC epitaxial films by eliminating silicon gas phase nucleation and suppressing parasitic deposition
JP5865777B2 (ja) * 2012-05-16 2016-02-17 三菱電機株式会社 炭化珪素エピタキシャルウェハの製造方法
TWI600081B (zh) 2012-11-16 2017-09-21 Toyo Tanso Co Ltd Surface treatment method of single crystal silicon carbide substrate and single crystal silicon carbide substrate
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
WO2014150400A1 (en) * 2013-03-15 2014-09-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reduction of basal plane dislocations in epitaxial sic using an in-situ etch process
CN105658847B (zh) * 2014-02-28 2018-08-10 昭和电工株式会社 外延碳化硅晶片的制造方法
JP6311384B2 (ja) * 2014-03-24 2018-04-18 三菱電機株式会社 炭化珪素半導体装置の製造方法
US10450672B2 (en) * 2014-07-16 2019-10-22 Showa Denko K.K. Method for producing epitaxial silicon carbide wafers
KR102136000B1 (ko) * 2015-02-18 2020-07-20 쇼와 덴코 가부시키가이샤 에피택셜 탄화 규소 단결정 웨이퍼의 제조 방법 및 에피택셜 탄화 규소 단결정 웨이퍼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
US20140117380A1 (en) * 2012-10-26 2014-05-01 Dow Corning Corporation Flat sic semiconductor substrate
WO2014125550A1 (ja) * 2013-02-13 2014-08-21 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
JP2015000824A (ja) * 2013-06-13 2015-01-05 東洋炭素株式会社 単結晶SiC基板の表面処理方法及び単結晶SiC基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330415A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123148A1 (ja) * 2016-12-27 2018-07-05 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
WO2018174105A1 (ja) * 2017-03-22 2018-09-27 東洋炭素株式会社 改質SiCウエハの製造方法、エピタキシャル層付きSiCウエハ、その製造方法、及び表面処理方法
CN110431654A (zh) * 2017-03-22 2019-11-08 东洋炭素株式会社 改性SiC晶片的制造方法、附有外延层的SiC晶片、其制造方法、及表面处理方法
KR20190129104A (ko) * 2017-03-22 2019-11-19 토요 탄소 가부시키가이샤 개질 SiC 웨이퍼의 제조 방법, 에피택셜층 부착 SiC 웨이퍼, 그의 제조 방법, 및 표면 처리 방법
JPWO2018174105A1 (ja) * 2017-03-22 2020-01-30 東洋炭素株式会社 改質SiCウエハの製造方法、エピタキシャル層付きSiCウエハ、その製造方法、及び表面処理方法
KR102604446B1 (ko) 2017-03-22 2023-11-22 토요타 쯔우쇼우 가부시키가이샤 개질 SiC 웨이퍼의 제조 방법, 에피택셜층 부착 SiC 웨이퍼, 그의 제조 방법, 및 표면 처리 방법
US11261539B2 (en) 2017-03-22 2022-03-01 Toyo Tanso Co., Ltd. Method for manufacturing reformed sic wafer, epitaxial layer-attached sic wafer, method for manufacturing same, and surface treatment method
JP7008063B2 (ja) 2017-03-22 2022-01-25 東洋炭素株式会社 改質SiCウエハの製造方法及びエピタキシャル層付きSiCウエハの製造方法
CN113227465A (zh) * 2018-11-05 2021-08-06 学校法人关西学院 SiC半导体衬底及其制造方法和制造装置
JPWO2020095872A1 (ja) * 2018-11-05 2021-09-24 学校法人関西学院 SiC半導体基板及びその製造方法及びその製造装置
JP7278550B2 (ja) 2018-11-05 2023-05-22 学校法人関西学院 SiC半導体基板及びその製造方法及びその製造装置
WO2020095872A1 (ja) * 2018-11-05 2020-05-14 学校法人関西学院 SiC半導体基板及びその製造方法及びその製造装置
CN113227465B (zh) * 2018-11-05 2024-03-29 学校法人关西学院 SiC半导体衬底及其制造方法和制造装置
US12020928B2 (en) 2018-11-05 2024-06-25 Kwansei Gakuin Educational Foundation SiC semiconductor substrate, method for manufacturing same, and device for manufacturing same
WO2021025086A1 (ja) * 2019-08-06 2021-02-11 学校法人関西学院 SiC基板の製造方法
US20220290324A1 (en) * 2019-08-06 2022-09-15 Kwansei Gakuin Educational Foundation SiC SUBSTRATE PRODUCTION METHOD
US12098476B2 (en) * 2019-08-06 2024-09-24 Kwansei Gakuin Educational Foundation Method for producing a SiC substrate via an etching step, growth step, and peeling step
WO2021060369A1 (ja) * 2019-09-27 2021-04-01 学校法人関西学院 SiC基板、SiC基板の製造方法、SiC半導体装置およびSiC半導体装置の製造方法

Also Published As

Publication number Publication date
EP3330415A1 (en) 2018-06-06
KR102106722B1 (ko) 2020-05-04
EP3330415A4 (en) 2019-03-20
US10626520B2 (en) 2020-04-21
JP6524233B2 (ja) 2019-06-05
US20180216251A1 (en) 2018-08-02
JPWO2017018533A1 (ja) 2018-05-10
CN107709635B (zh) 2021-02-26
KR20180016585A (ko) 2018-02-14
CN107709635A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6524233B2 (ja) エピタキシャル炭化珪素単結晶ウェハの製造方法
JP4850960B2 (ja) エピタキシャル炭化珪素単結晶基板の製造方法
JP4987792B2 (ja) エピタキシャル炭化珪素単結晶基板の製造方法
JP4954654B2 (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
JP4842094B2 (ja) エピタキシャル炭化珪素単結晶基板の製造方法
JP6742477B2 (ja) エピタキシャル炭化珪素単結晶ウエハの製造方法及びエピタキシャル炭化珪素単結晶ウエハ
JP2017031050A (ja) エピタキシャル炭化珪素ウエハ用炭化珪素単結晶基板の製造方法及びエピタキシャル炭化珪素ウエハ用炭化珪素単結晶基板
JP6304699B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
JP5786759B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
JP5664534B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
US9957639B2 (en) Method for producing epitaxial silicon carbide wafer
JP6628673B2 (ja) エピタキシャル炭化珪素単結晶ウェハの製造方法
JP2017100911A (ja) エピタキシャル炭化珪素単結晶ウェハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187000978

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017530950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15747849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830636

Country of ref document: EP