WO2021025085A1 - SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法 - Google Patents

SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法 Download PDF

Info

Publication number
WO2021025085A1
WO2021025085A1 PCT/JP2020/030079 JP2020030079W WO2021025085A1 WO 2021025085 A1 WO2021025085 A1 WO 2021025085A1 JP 2020030079 W JP2020030079 W JP 2020030079W WO 2021025085 A1 WO2021025085 A1 WO 2021025085A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
substrate
original substrate
bunching
manufacturing
Prior art date
Application number
PCT/JP2020/030079
Other languages
English (en)
French (fr)
Inventor
忠昭 金子
Original Assignee
学校法人関西学院
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 豊田通商株式会社 filed Critical 学校法人関西学院
Priority to CN202080055201.5A priority Critical patent/CN114375351B/zh
Priority to JP2021537362A priority patent/JPWO2021025085A1/ja
Priority to US17/632,498 priority patent/US20220282395A1/en
Priority to EP20850289.8A priority patent/EP4012079A4/en
Publication of WO2021025085A1 publication Critical patent/WO2021025085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Definitions

  • the present invention relates to a high quality SiC substrate, a SiC epitaxial substrate, a SiC ingot, and a method for manufacturing these.
  • SiC silicon carbide
  • GaAs gallium arsenide
  • basal plane dislocation (BPD) in the epi layer expands to stacking defects when the SiC semiconductor device is bipolar operated. Since this stacking defect raises the on-voltage of the SiC semiconductor device and leads to the occurrence of bipolar deterioration, there is a strong demand for a technique for reducing BPD in the SiC substrate or the epi layer.
  • BPD basal plane dislocation
  • Patent Document 1 and Patent Document 2 pits corresponding to dislocations contained in the SiC substrate are formed, and epitaxial growth is performed on the surface on which the pits are formed to increase the density of BPD in the epi layer. Techniques for reduction are described.
  • step bunching is known to adversely affect the characteristics of SiC semiconductor devices.
  • step bunching when epitaxial growth is performed on the surface on which step bunching is formed, defects due to step bunching may occur on the surface of the epi layer. Further, in a MOSFET in which an oxide film is formed on the surface of the epi layer and the interface is energized, the presence of step bunching may have a fatal effect on the operating performance and reliability.
  • Patent Document 1 states that "the single crystal silicon carbide substrate is stored in a storage container made of tantalum metal and fitted up and down so as to expose the tantalum carbide layer to the internal space, and the internal pressure of the storage container.
  • a heat treatment step including a heat treatment step of uniformly heat-treating the storage container at a temperature of 1500 ° C. or higher and 2300 ° C. or lower while maintaining a vacuum higher than the external pressure and under the saturated vapor pressure of silicon, the SiC substrate is subjected to Techniques for etching the surface to obtain a flat surface at the molecular level are described.
  • An object of the present invention is to provide a new technique capable of realizing a high-quality SiC substrate, a SiC epitaxial substrate, and a SiC ingot.
  • the present invention that solves the above problems includes a heat treatment step of heat-treating a SiC raw substrate, and the heat treatment step includes two or more steps among the following steps (a), (b), and (c). It is a manufacturing method of a SiC substrate including. (A) Strain layer removing step of removing the strain layer of the SiC original substrate (b) Bunching removing step of removing macrostep bunching on the SiC original substrate (c) Reducing basal dislocations on the SiC original substrate Subsurface dislocation reduction step for forming a growth layer
  • a higher quality SiC substrate can be manufactured.
  • the heat treatment step is a step of heat-treating the SiC original substrate in a semi-closed space where the SiC material is exposed. As described above, by performing the heat treatment step in the semi-closed space where the SiC material is exposed, a higher quality SiC substrate can be manufactured.
  • the heat treatment step is a step of heat-treating the SiC original substrate in a main body container made of a SiC material.
  • each step strain layer removing step, bunching removing step, basal plane dislocation reduction step
  • each step can be performed in the same apparatus system. ..
  • the heat treatment step is a step of arranging the SiC original substrate and the SiC material so as to face each other and heating so that a temperature gradient is formed between the SiC original substrate and the SiC material. Is. In this way, by transporting the raw material between the SiC original substrate and the SiC material using the temperature gradient, a higher quality SiC substrate can be manufactured.
  • the strain layer removing step is a step of arranging the SiC original substrate and the SiC material so as to face each other and heating the SiC original substrate so as to be on the low temperature side and the SiC material on the high temperature side. Is. In this way, by etching the SiC original substrate using the temperature gradient as a driving force, it is possible to manufacture the SiC substrate with the strain layer removed or reduced.
  • the SiC raw substrate and the SiC material are arranged so as to face each other, and the SiC raw substrate and the SiC material are placed between the SiC raw substrate and the SiC material under a SiC-Si equilibrium vapor pressure environment.
  • the SiC original substrate and the SiC material are arranged relative to each other in a semi-closed space having an atomic number ratio Si / C of more than 1, and the SiC original substrate and the said. It includes a step of heating so that a temperature gradient is formed with the SiC material. As described above, by heat-treating the SiC original substrate in a semi-closed space having an atomic number ratio of Si / C of more than 1, a high-quality SiC seed crystal in which macrostep bunching is removed or reduced can be produced.
  • the SiC raw substrate and the SiC material are arranged so as to face each other, and the SiC raw substrate is on the high temperature side and the SiC material is placed in a SiC-Si equilibrium vapor pressure environment. Includes a step of heating so that is on the low temperature side.
  • the SiC original substrate and the SiC material are arranged so as to face each other in a semi-closed space having an atomic number ratio Si / C of more than 1, and the SiC original substrate is formed. The step of heating the SiC material to the high temperature side and the low temperature side is included.
  • the SiC raw substrate and the SiC material are arranged so as to face each other, and the SiC raw substrate is on the low temperature side and the SiC material is placed in a SiC-Si equilibrium vapor pressure environment. Includes a step of heating so that is on the high temperature side.
  • the SiC original substrate and the SiC material are arranged so as to face each other in a semi-closed space having an atomic number ratio Si / C of more than 1, and the SiC original substrate is formed. The step of heating the SiC material to the low temperature side and the high temperature side is included.
  • a SiC substrate can be manufactured (growth bunching removal step).
  • the SiC original substrate and the SiC material are arranged so as to face each other, and the SiC original substrate is placed on the high temperature side in a SiC-C equilibrium vapor pressure environment. It includes a step of heating the SiC material so that it is on the low temperature side. Further, in a preferred embodiment of the present invention, in the basal plane dislocation reduction step, the SiC raw substrate and the SiC material are arranged so as to face each other in a semi-closed space having an atomic number ratio of Si / C of 1 or less. The step of heating the SiC raw substrate to the high temperature side and the SiC material to the low temperature side is included.
  • the basal plane dislocations can be changed to other dislocations with high efficiency. Can be converted. This makes it possible to manufacture a SiC substrate in which basal plane dislocations exposed on the surface are removed or reduced.
  • the doping concentration of the SiC material is lower than the doping concentration of the SiC original substrate.
  • the SiC material having a doping concentration lower than that of the SiC original substrate it is possible to form a growth layer that functions as a pressure resistant layer. That is, an epi layer can be formed.
  • the doping concentration of the SiC material is 1 ⁇ 10 17 cm -3 or less.
  • a growth layer having a doping concentration suitable for the pressure resistant layer can be formed.
  • the strain layer removing step is followed by the bunching removing step.
  • the heat treatment step is performed after the bunching removal step and then the basal plane dislocation reduction step.
  • the heat treatment step is performed by performing the bunching removal step after the basal plane dislocation reduction step.
  • the present invention also relates to a SiC substrate manufactured by the above-mentioned manufacturing method.
  • a SiC substrate of the present invention one or more of the strain layer, macrostep bunching, and basal plane dislocation, which adversely affect the characteristics of the SiC semiconductor device, is removed or reduced. This can contribute to the improvement of the operating performance and reliability of the SiC semiconductor device.
  • the present invention also relates to a method for manufacturing a SiC epitaxial substrate, which comprises an epitaxial growth step of growing an epi layer on the above-mentioned SiC substrate.
  • a SiC epitaxial substrate which comprises an epitaxial growth step of growing an epi layer on the above-mentioned SiC substrate.
  • epitaxial growth is performed using a SiC substrate having a good surface in which one or more of the strain layer, the basal plane dislocation, and the macro step bunching are reduced. Therefore, the generation and propagation of defects and the like can be suppressed, and a higher quality SiC epitaxial substrate can be manufactured.
  • the present invention also relates to a SiC epitaxial substrate manufactured by the above-mentioned manufacturing method.
  • the present invention also relates to a method for producing a SiC ingot, which comprises an ingot growth step of growing a single crystal SiC crystal on the above-mentioned SiC substrate.
  • a method for producing a SiC ingot which comprises an ingot growth step of growing a single crystal SiC crystal on the above-mentioned SiC substrate.
  • ingot growth is performed using a SiC substrate having a good surface in which one or more of the strain layer, the basal plane dislocation, and the macro step bunching are reduced. Therefore, the generation and propagation of defects and the like can be suppressed, and a higher quality SiC ingot can be manufactured.
  • the present invention also relates to a SiC ingot manufactured by the above-mentioned manufacturing method.
  • the present invention it is possible to manufacture a SiC substrate having a good surface with reduced strain layers, basal plane dislocations, and macrostep bunching. Along with this, according to the present invention, it is possible to provide a high-quality SiC epitaxial substrate or SiC ingot.
  • a feature of the present invention is that a high-quality SiC substrate 11 is obtained by performing the heat treatment step S1 on the SiC original substrate 10.
  • the heat treatment step S1 By performing the heat treatment step S1 on the SiC raw substrate 10, at least one of strain (strain layer 101), basal dislocation (BPD), and macro step bunching (MSB) is performed. It is possible to obtain a high-quality SiC substrate 11 in which the amount of the above is removed or reduced.
  • the heat treatment step S1 includes a crystal growth step of forming the growth layer 105 as the pressure resistant layer, a high-quality SiC epitaxial substrate can be obtained.
  • the strain layer 101, BPD and MSB are removed or reduced in the SiC substrate 11 after the heat treatment step S1, it is suitable for growing a high-quality SiC epitaxial substrate 12 and a SiC ingot 13. That is, in the present invention, the high-quality SiC epitaxial substrate 12 and the SiC ingot 13 can be produced by performing the epitaxial growth step S2 and the ingot growth step S3 for crystal-grow single crystal SiC on the SiC substrate 11. it can.
  • each configuration of the present invention will be described in more detail.
  • SiC original substrate 10 As the SiC original substrate 10, a single crystal SiC processed into a thin plate can be exemplified. Specifically, a SiC wafer or the like sliced into a disk shape from a SiC ingot produced by a sublimation method or the like can be exemplified. As the crystal polymorphism of single crystal SiC, any polymorphism can be adopted.
  • the SiC original substrate 10 that has undergone mechanical processing (for example, slicing, grinding / polishing) or laser processing has a strain layer 101 into which processing damages such as scratches 1011 and latent scratches 1012 and strains 1013 have been introduced. It has a bulk layer 102 in which no processing damage is introduced (see FIG. 8).
  • the presence or absence and depth of the strain layer 101 can be confirmed by the SEM-EBSD method, TEM, ⁇ XRD, Raman spectroscopy, or the like.
  • step-terrace structure is confirmed on the surface of the SiC original substrate 10 flattened at the atomic level.
  • This step-terrace structure is a staircase structure in which step 103, which is a stepped portion having one or more molecular layers, and terrace 104, which is a flat portion where the ⁇ 0001 ⁇ surface is exposed, are alternately arranged (FIG. 10 and FIG. See FIG. 12).
  • step 103 one molecular layer (0.25 nm) is the minimum height (minimum unit), and various step heights are formed by overlapping a plurality of the single molecular layers.
  • MSB the one in which step 103 is bundled (bunched) to become huge and has a height exceeding one unit cell of each polytype.
  • the MSB refers to step 103 that bunched beyond the 4 molecular layer (5 or more molecular layers). Further, in the case of 6H-SiC, it refers to step 103 bunching beyond the 6-layer (7-layer or more).
  • this MSB is not formed on the surface of the SiC original substrate 10 because defects caused by the MSB occur when it is epitaxially grown and it is one of the factors that hinder the reliability of the oxide film of the MOSFET.
  • BPD exists in a commercially available SiC original substrate 10 at a density of several hundred to several thousand / cm 2 . Many of these BPDs are known to be converted to TED during epitaxial growth. However, part of the BPD is carried over to the epi layer (eg, at a density of 0.1-several pieces / cm 2 ). Since this BPD deteriorates the reliability of the SiC semiconductor device, it is desirable that the BPD is not exposed on the surface of the SiC substrate 11.
  • the dopant may be any element that is generally doped into the SiC original substrate 10. Specifically, nitrogen (N), phosphorus (P), aluminum (Al), boron (B) and the like are preferable.
  • the doping concentration of the SiC raw substrate 10 is preferably higher than 1 ⁇ 10 17 cm -3 , more preferably 1 ⁇ 10 18 cm -3 or more, and further preferably 1 ⁇ 10 19 cm -3 or more. is there.
  • the surface on which the semiconductor element is formed (specifically, the surface on which the epi layer is deposited) is referred to as the main surface.
  • the surface facing the main surface is called the back surface.
  • the main surface and the back surface are collectively referred to as the front surface.
  • a surface having an off angle of several degrees (for example, 0.4 to 8 °) from the (0001) surface or the (000-1) surface can be exemplified (note that the present specification). Then, in the notation of the Miller index, "-" means the bar attached to the index immediately after that).
  • the heat treatment step S1 includes a strain layer removing step S11 for removing the strain layer 101 of the SiC original substrate 10, a bunching removing step S12 for removing MSB on the SiC original substrate 10, and growth with reduced BPD on the SiC original substrate 10. It includes two or more steps of the basal plane shift reduction step S13 for forming the layer 105.
  • the SiC substrate 11 that has undergone this heat treatment step S1 has a surface in which at least one or more of strain (strain layer 101), BPD, and MSB is removed or reduced. Therefore, in the later steps, the epitaxial growth step S2 and the ingot growth step S3, it is possible to suppress the occurrence of defects due to the distortion / BPD and MSB of the SiC substrate 11 and the inheritance of the defects. That is, it is possible to manufacture a high-quality SiC epitaxial substrate 12 and a SiC ingot 13.
  • the heat treatment step S1 is an etching step of transporting the SiC element and the C element from the SiC original substrate 10 to the SiC material and etching the SiC original substrate 10, and conversely, the SiC element from the SiC material to the SiC original substrate 10.
  • a crystal growth step of transporting the C element to grow the SiC raw substrate 10 into a crystal may be included.
  • the specific embodiment of the heat treatment step S1 is not particularly limited as long as it is a step capable of removing or reducing the strain layer 101, BPD and MSB contained in the SiC original substrate 10.
  • the temperature gradient and the chemical potential difference provided between the SiC raw substrate 10 and the SiC material can be adopted.
  • the SiC material is composed of SiC that can receive or transfer Si element and C element to and from the SiC original substrate 10 by heating it relative to the SiC original substrate 10.
  • a container made of SiC main body container 20
  • a substrate made of SiC SiC member
  • the crystal polymorph of this SiC material any polymorphic type can be adopted, and polycrystalline SiC may be adopted.
  • the same elements as the SiC original substrate 10 can be adopted. Specifically, nitrogen (N), phosphorus (P), aluminum (Al), boron (B) and the like are preferable.
  • the doping concentration of the SiC material is preferably set lower than the doping concentration of the SiC original substrate 10.
  • the value of this doping concentration is preferably 1 ⁇ 10 17 cm -3 or less, more preferably 1 ⁇ 10 16 cm -3 or less, and further preferably 1 ⁇ 10 15 cm -3 or less.
  • the SiC raw substrate 10 and the SiC material are arranged in a semi-closed space and heated.
  • the surface of the SiC original substrate 10 is etched and grown, and at least one of the strain layer 101, BPD and MSB is removed or reduced.
  • the term "quasi-closed space” as used herein refers to a space in which the inside of the container can be evacuated, but at least a part of the vapor generated in the container can be confined.
  • a preferred embodiment of the heat treatment step S1 can be roughly divided into an etching step of etching the surface of the SiC original substrate 10 and a crystal growth step of crystal growing the surface of the SiC original substrate 10 (see FIG. 2).
  • FIG. 3 is an explanatory diagram showing an outline of the etching process.
  • the SiC original substrate 10 is placed in a semi-closed space where the SiC material is exposed and heated in a temperature range of 1400 ° C. or higher and 2300 ° C. or lower, so that the reactions 1) to 5) below can be sustained. It is believed that this is done and as a result the etching proceeds.
  • the Si atom sublimation step of thermally sublimating the Si atom from the surface of the SiC original substrate 10 and the C atom remaining on the surface of the SiC original substrate 10 react with the Si vapor in the semi-closed space.
  • the etching step heats the SiC raw substrate 10 so as to be located on the high temperature side of the temperature gradient and the SiC material on the low temperature side of the temperature gradient.
  • an etching space X is formed between the SiC original substrate 10 and the SiC material, and the surface of the SiC original substrate 10 can be etched by using the temperature gradient as a driving force.
  • the BPD on the surface of the SiC original substrate 10 can be converted into other dislocations, and the BPD exposed on the surface of the SiC substrate 11 can be removed or reduced. .. Further, the MSB formed on the surface of the SiC substrate 11 can be removed or reduced.
  • FIG. 4 is an explanatory diagram showing an outline of the crystal growth process.
  • the SiC raw substrate 10 is placed in a semi-closed space where the SiC material is exposed and heated in a temperature range of 1400 ° C. or higher and 2300 ° C. or lower, so that the reactions 1) to 5) below are sustained. It is considered that the crystal growth progresses as a result.
  • the SiC atom sublimation step of thermally sublimating the Si atom from the surface of the SiC material and the reaction of the C atom remaining on the surface of the SiC material with the Si vapor in the semi-closed space cause SiC.
  • a C atom sublimation step of sublimating from the surface of the material, a raw material transport step of transporting raw materials (Si atom and C atom) to the surface of the SiC raw substrate 10 using a temperature gradient or a chemical potential difference as a driving force, and a step of the SiC raw substrate 10. Includes a step-flow growth process in which the raw material reaches and grows.
  • the raw material referred to here includes a Si element, a C element, and a dopant. Therefore, since the dopant of the SiC material is transported together with the Si element and the C element, the growth layer 105 grows by attracting the doping concentration of the SiC material. Therefore, the SiC epitaxial substrate 12 can be manufactured in the heat treatment step S1 by adopting a SiC material having a doping concentration suitable for the pressure-resistant layer (epi layer).
  • the SiC material is heated on the high temperature side of the temperature gradient, and the SiC raw substrate 10 is heated on the low temperature side of the temperature gradient.
  • the raw material supply space Y is formed between the SiC original substrate 10 and the SiC material, and the SiC original substrate 10 can be crystal-grown by using the temperature gradient as a driving force.
  • the partial pressure difference (chemical potential difference) generated on the surfaces of the polycrystalline SiC and the single crystal SiC is used for transporting the raw material.
  • Crystals can be grown as a driving force. In this case, a temperature gradient may or may not be provided.
  • the heat treatment step S1 has been roughly divided into an etching step and a crystal growth step.
  • the heat treatment step S1 can be classified into two types from the viewpoint of the environment for heating the SiC original substrate 10.
  • the heat treatment step S1 heats the SiC original substrate 10 in a SiC-Si equilibrium vapor pressure environment and in a SiC-C equilibrium vapor pressure environment. It can be classified into morphology and.
  • the SiC-Si equilibrium vapor pressure environment refers to a vapor pressure environment when SiC (solid) and Si (liquid phase) are in a phase equilibrium state via a gas phase.
  • the SiC-C equilibrium vapor pressure environment refers to a vapor pressure environment when SiC (solid phase) and C (solid phase) are in a phase equilibrium state via a gas phase.
  • the SiC-Si equilibrium vapor pressure environment and the SiC-C equilibrium vapor pressure environment in the present specification include a near thermal equilibrium vapor pressure environment that satisfies the relationship between the growth rate and the growth temperature derived from the theoretical thermal equilibrium environment.
  • the atomic number ratio Si / C in the gas phase of the SiC-Si equilibrium vapor pressure environment is larger than the atomic number ratio Si / C in the gas phase of the SiC-C equilibrium vapor pressure environment.
  • the SiC-Si balanced vapor pressure environment can be formed by arranging the SiC original substrate 10 in a semi-closed space having an atomic number ratio of Si / C exceeding 1 and heating the substrate.
  • a SiC container main body container 20
  • SiC raw substrate 10 having a chemical ratio of 1: 1
  • a SiC material having a chemical ratio of 1: 1.
  • Si steam supply source Si pellets or the like
  • the SiC-C equilibrium vapor pressure environment can be formed by arranging the SiC original substrate in a semi-closed space having an atomic number ratio of Si / C of 1 or less and heating it.
  • a SiC container main body container 20
  • a SiC raw substrate 10 having a chemical ratio of 1: 1 and a SiC material having a chemical ratio of 1: 1.
  • the atomic number ratio Si / C in the main body container 20 is 1.
  • a C steam supply source (C pellet or the like) may be arranged to set the atomic number ratio Si / C to 1 or less.
  • the heat treatment step S1 is (1) an etching step or a crystal growth step, (2) heat treatment under a SiC-Si equilibrium vapor pressure environment, or a SiC-C equilibrium vapor pressure environment. It can be classified from the viewpoint of whether to perform heat treatment below. By associating this combination of classifications with effects, it can be classified into the following four types.
  • the strain layer 101 of the SiC original substrate 10 can be removed by etching, and MSB is formed on the surface after etching. Therefore, it is classified as the etching bunching step S111 (lower left of FIG. 2).
  • the strain layer 101 of the SiC original substrate 10 can be removed by etching, and MSB is not formed on the surface after etching. Therefore, it is classified as the etching bunching removing step S121 (upper left of FIG. 2).
  • the etching bunching step S111 and the etching bunching removing step S121 can remove or reduce the strain layer 101 of the SiC original substrate 10, they are collectively classified as the strain layer removing step S11 (FIG. 2, left side).
  • the growth layer 105 can be formed on the SiC original substrate 10, and MSB is not formed on the surface of the growth layer 105. Therefore, it is classified as the growth bunching removal step S122 (upper right of FIG. 2).
  • the crystal growth step is performed in a SiC-C equilibrium vapor pressure environment, it is possible to remove or reduce BPD in the growth layer 105. Therefore, it is classified as the basal plane dislocation reduction step S13 (lower right of FIG. 2).
  • the SiC epitaxial substrate 12 can be manufactured in the form of performing the crystal growth step (growth bunching removing step S122 and basal plane dislocation reduction step S13). That is, the heat treatment step S1 includes a crystal growth step using a SiC material having a doping concentration lower than that of the SiC original substrate 10, so that the growth layer 105 as a pressure resistant layer can be formed.
  • the main body container 20 preferably has a structure in which the SiC material is exposed in the internal space.
  • the entire main body container 20 is made of a SiC material (polycrystalline SiC). By heating the main body container 20 made of such a material, an atmosphere containing Si element and C element can be generated inside (semi-closed space).
  • the environment inside the heat-treated main body container 20 be a vapor pressure environment of a mixed system of a gas phase species containing a Si element and a gas phase species containing a C element.
  • the gas phase species containing the Si element include Si, Si 2 , Si 3 , Si 2 C, SiC 2 , and SiC.
  • the gas phase species containing the C element include Si 2 C, SiC 2 , SiC and C. That is, the SiC gas is present in the main container 20.
  • this configuration can be adopted as long as the vapor pressure of the vapor phase species containing the Si element and the vapor pressure species containing the C element is generated in the internal space during the heat treatment of the main container 20.
  • a configuration in which the SiC material is exposed on a part of the inner surface or a configuration in which the SiC material (such as a SiC substrate) is separately arranged in the main body container 20 can be shown.
  • the SiC original substrate 10 is housed inside the main body container 20 and the main body container 20 is heated so that a temperature gradient is formed inside.
  • the apparatus configuration main container 20, heating furnace 30, high melting point container 40
  • the main body container 20 is a fitting container including an upper container 21 and a lower container 22 that can be fitted to each other.
  • a minute gap 23 is formed in the fitting portion between the upper container 21 and the lower container 22, and the inside of the main container 20 can be exhausted (evacuated) from the gap 23. That is, the inside of the main body container 20 is a semi-closed space.
  • the heating furnace 30 has a configuration in which the main body container 20 can be heated by providing a temperature gradient in an atmosphere containing Si element.
  • the heating furnace 30 includes a main heating chamber 31 capable of heating an object to be processed (SiC original substrate 10 or the like) to a temperature of 1000 ° C. or higher and 2300 ° C. or lower, and a cover.
  • a preheating chamber 32 capable of preheating the processed material to a temperature of 500 ° C. or higher
  • a high melting point container 40 capable of accommodating the main body container 20, and the refractory container 40 can be moved from the preheating chamber 32 to the main heating chamber 31. It is equipped with a moving means 33 (moving table).
  • the heating chamber 31 is formed in a regular hexagonal shape in a plan sectional view, and the melting point container 40 is arranged inside the heating chamber 31.
  • a heating heater 34 (mesh heater) is provided inside the heating chamber 31.
  • a multilayer heat-reflecting metal plate is fixed to the side wall or ceiling of the heating chamber 31 (not shown). The multilayer heat-reflecting metal plate is configured to reflect the heat of the heating heater 34 toward the substantially central portion of the main heating chamber 31.
  • the heating heater 34 is arranged so as to surround the melting point container 40 in which the object to be processed is housed, and further, the multilayer heat-reflecting metal plate is arranged outside the heating heater 34, whereby 1000 ° C.
  • the temperature can be raised to 2300 ° C. or lower.
  • a resistance heating type heater or a high frequency induction heating type heater can be used as the heating heater 34.
  • the heating heater 34 may adopt a configuration capable of forming a temperature gradient in the melting point container 40.
  • the heating heater 34 may be configured so that many heaters are arranged on the upper side (or lower side). Further, the heating heater 34 may be configured so that the width increases toward the upper side (or the lower side). Alternatively, the heating heater 34 may be configured so that the electric power supplied can be increased toward the upper side (or the lower side).
  • a vacuum forming valve 35 for exhausting the inside of the main heating chamber 31, an inert gas injection valve 36 for introducing an inert gas into the main heating chamber 31, and the main heating chamber 31
  • a vacuum gauge 37 for measuring the degree of vacuum inside is connected.
  • the vacuum forming valve 35 is connected to a vacuum drawing pump that exhausts the inside of the main heating chamber 31 to create a vacuum (not shown). With the vacuum forming valve 35 and the vacuum pulling pump, the degree of vacuum in the main heating chamber 31 can be adjusted to, for example, 10 Pa or less, more preferably 1 Pa or less, still more preferably 10 -3 Pa or less. As this evacuation pump, a turbo molecular pump can be exemplified.
  • the Inert gas injection valve 36 is connected to the Inactive gas supply source (not shown). With the inert gas injection valve 36 and the inert gas supply source, the inert gas can be introduced into the heating chamber 31 in the range of 10-5 to 10000 Pa. As the inert gas, Ar, He, N 2, or the like can be selected.
  • the preheating chamber 32 is connected to the main heating chamber 31, and is configured so that the melting point container 40 can be moved by the moving means 33.
  • the preheating chamber 32 of the present embodiment is configured so that the temperature can be raised by the residual heat of the heating heater 34 of the main heating chamber 31. For example, when the temperature of the main heating chamber 31 is raised to 2000 ° C., the temperature of the preheating chamber 32 is raised to about 1000 ° C., and the object to be treated (SiC original substrate 10, main body container 20, refractory container 40, etc.) is heated. Degassing treatment can be performed.
  • the moving means 33 is configured to be movable between the main heating chamber 31 and the preheating chamber 32 on which the melting point container 40 is placed. Since the transfer between the main heating chamber 31 and the preheating chamber 32 by the moving means 33 is completed in about 1 minute at the shortest, the temperature can be raised or lowered at 1 to 1000 ° C./min. In this way, since the manufacturing apparatus can rapidly raise the temperature and lower the temperature, it is possible to observe a surface shape that does not have a history of low-temperature growth during raising and lowering, which was difficult with the conventional apparatus. is there. Further, in FIG. 6, the preheating chamber 32 is arranged below the main heating chamber 31, but the present invention is not limited to this, and the preheating chamber 32 may be arranged in any direction.
  • the moving means 33 is a moving table on which the high melting point container 40 is placed. A small amount of heat is released from the contact portion between the moving table and the melting point container 40. As a result, a temperature gradient can be formed in the high melting point container 40.
  • a temperature gradient is provided so that the temperature decreases from the upper container 41 to the lower container 42 of the melting point container 40. ..
  • the direction of this temperature gradient can be set to any direction by changing the position of the contact portion between the moving table and the melting point container 40.
  • the temperature gradient is provided so that the temperature rises from the upper container 41 of the high melting point container 40 toward the lower container 42. It is desirable that this temperature gradient is formed along the front and back directions of the SiC original substrate 10. Further, as described above, a temperature gradient may be formed depending on the configuration of the heating heater 34.
  • the atmosphere containing the Si element in the heating furnace 30 is formed by using the high melting point container 40 and the Si steam supply source 44.
  • any method capable of forming an atmosphere containing a Si element around the main body container 20 can be adopted in the manufacturing apparatus of the SiC substrate 11.
  • the melting point container 40 is configured to include a melting point material.
  • a general purpose heat-resistant member C, W is a refractory metal, Re, Os, Ta, Mo , Ta 9 C 8 is a carbide, HfC, TaC, NbC, ZrC , Ta 2 C, TiC, WC, MoC, a nitride HfN, TaN, BN, Ta 2 N, ZrN, TiN, HfB 2, TaB 2, ZrB 2, NB 2, TiB 2 is a boride, it can be exemplified polycrystalline SiC.
  • the high melting point container 40 is a fitting container including an upper container 41 and a lower container 42 that can be fitted to each other, and is configured to be able to accommodate the main body container 20.
  • a minute gap 43 is formed in the fitting portion between the upper container 41 and the lower container 42, and the inside of the high melting point container 40 can be exhausted (evacuated) from the gap 43. That is, like the main container 20, the inside of the melting point container 40 is preferably a semi-closed space.
  • the high melting point container 40 has a Si steam supply source 44 capable of supplying Si steam in the high melting point container 40.
  • the Si steam supply source 44 may be configured to generate Si steam in the melting point container 40 during heat treatment.
  • Examples of the Si vapor supply source 44 include solid Si (Si pellets such as single crystal Si pieces and Si powder) and Si compounds.
  • TaC is used as the material of the melting point container 40
  • tantalum Silicide is used as the Si steam supply source 44. That is, as shown in FIG. 5, a tantalum silicide layer is formed inside the melting point container 40, and Si vapor is supplied from the tantalum silicide layer into the container during the heat treatment. As a result, a Si vapor pressure environment is formed in the high melting point container 40, and the main body container 20 can be heated in an atmosphere containing Si elements. In addition to this, any configuration can be adopted as long as an atmosphere containing Si element is formed in the melting point container 40 during the heat treatment.
  • the manufacturing apparatus of the SiC substrate 11 by heating the main body container 20 in an atmosphere containing Si elements (for example, a Si vapor pressure environment), the air containing Si elements from inside the main body container 20 It is possible to suppress the exhaust of the phase species. That is, the environment inside the main body container 20 is maintained by balancing the vapor pressure of the vapor phase species containing the Si element inside the main body container 20 and the vapor pressure of the gas phase species containing the Si element outside the main body container 20. be able to.
  • an atmosphere containing Si elements for example, a Si vapor pressure environment
  • the main body container 20 is made of polycrystalline SiC. With such a configuration, when the main body container 20 is heated by using the heating furnace 30, steam of a gas phase type containing Si element and a gas phase type containing C element is generated in the main body container 20. Can be done.
  • the main body container 20 has an etching space in which the SiC original substrate 10 is located on the high temperature side of the temperature gradient and the SiC material (a part of the main body container 20) is located on the low temperature side of the temperature gradient.
  • the etching space X is formed by arranging the SiC original substrate 10 at a position where the temperature is higher than that of the SiC material (for example, the bottom surface of the lower container 22) due to the temperature gradient formed by the heating furnace 30. ..
  • the etching space X is a space for transporting Si atoms and C atoms on the surface of the SiC original substrate 10 to the main container 20 by using a temperature difference provided between the SiC original substrate 10 and the main body container 20 as a driving force. For example, when comparing the temperature of one side of the SiC original substrate 10 with the temperature of the bottom surface of the lower container 22 facing the one side, the temperature on the SiC original substrate 10 side is high and the temperature on the lower container 22 side is low. The main body container 20 is heated (see the left side of FIG. 7).
  • etching space X a space having a temperature difference between the SiC original substrate 10 and the lower container 22
  • Si atoms and C atoms are transported using the temperature difference as a driving force, and the SiC raw material is transported.
  • One side of the substrate 10 can be etched (the white arrow on the right side of FIG. 7 is the direction of transportation).
  • the main body container 20 may have a substrate holder 24 provided between the SiC original substrate 10 and the main body container 20.
  • the heating furnace 30 has a structure capable of heating by forming a temperature gradient such that the temperature decreases from the upper container 21 to the lower container 22 of the main container 20. Therefore, a substrate holder 24 capable of holding the SiC original substrate 10 may be provided between the SiC original substrate 10 and the lower container 22 to form an etching space X between the SiC original substrate 10 and the lower container 22. ..
  • the substrate holder 24 may have a configuration in which at least a part of the SiC original substrate 10 can be held in the hollow of the main body container 20.
  • any conventional support means such as one-point support, three-point support, a configuration for supporting the outer peripheral edge, or a configuration for sandwiching a part thereof can be naturally adopted.
  • the substrate holder 24 may not be provided depending on the direction of the temperature gradient of the heating furnace 30.
  • the heating furnace 30 forms a temperature gradient so that the temperature decreases from the lower container 22 toward the upper container 21, the SiC original substrate 10 is formed on the bottom surface of the lower container 22 (without providing the substrate holder 24). May be placed.
  • the main body container 20 is a raw material in which the SiC original substrate 10 is located on the low temperature side of the temperature gradient and the SiC material (a part of the main body container 20) is located on the high temperature side of the temperature gradient. It has a supply space Y. That is, the raw material supply space Y is formed by arranging the SiC raw substrate 10 at a position lower than the SiC material (for example, the bottom surface of the lower container 22) due to the temperature gradient formed by the heating furnace 30. There is.
  • the raw material supply space Y in addition to the SiC original substrate 10, there are a Si atom supply source and a C atom supply source as raw materials. Then, by heating these, Si atoms and C atoms which are the raw materials of the SiC original substrate 10 are supplied into the raw material supply space Y. The Si atoms and C atoms are transported to the surface of the SiC original substrate 10 and recrystallized to form a growth layer 105 (black arrows on the right side of FIG. 7 indicate the direction of transport).
  • the main body container 20 is formed of polycrystalline SiC (Poly-SiC), so that the main body container 20 itself is used as a Si atom supply source and a C atom supply source.
  • a material capable of supplying Si atoms such as a Si substrate, a material capable of supplying C atoms such as graphite, and Si atoms and C atoms such as a SiC substrate can be supplied.
  • the material can be adopted.
  • the growth layer 105 to be a pressure resistant layer can be formed.
  • the arrangement of the Si atom supply source and the C atom supply source is not limited to this form, and any form may be used as long as the Si atom and the C atom can be supplied into the raw material supply space Y.
  • the vapor pressure difference (chemical potential difference) between the polycrystalline SiC (raw material) and the single crystal SiC (SiC original substrate 10) can be used as the growth driving force.
  • a temperature gradient is provided so that the temperature drops toward the SiC original substrate 10.
  • transport of Si atoms and C atoms to the SiC original substrate 10 occurs, so that the growth rate of the growth layer increases (the black arrow on the right side of FIG. 7 indicates the direction of transport).
  • the Si atom supply source and the C atom supply source may be brought close to the SiC original substrate 10.
  • the Si atom supply source and the polycrystalline SiC upper container 21 serving as the C atom supply source can be arranged in parallel with the SiC original substrate 10.
  • the distance between the surface of the SiC original substrate 10 and the top surface of the upper container 21 is preferably set to 100 mm or less, more preferably 10 mm or less, and further preferably 2.7 mm or less. Further, it is preferably set to 0.7 mm or more, more preferably 1.2 mm or more, and further preferably 1.7 mm or more.
  • the etching space X and the raw material supply space Y are exhausted (evacuated) through the Si vapor pressure space Z. That is, the main body container 20 having the etching space X and / or the raw material supply space Y is arranged in the melting point container 40 having the Si vapor pressure space Z, and the SiC original substrate 10 is further arranged in the main body container 20. Is desirable.
  • the SiC-Si balanced vapor pressure environment can be formed by arranging the SiC original substrate 10 in a semi-closed space having an atomic number ratio of Si / C exceeding 1 and heating the substrate.
  • the SiC raw substrate 10 satisfying the chemical quantity theory ratio 1: 1 and the chemical quantity theory are contained in the main body container 20 of the polycrystalline SiC satisfying the chemical quantity theory ratio 1: 1.
  • the SiC substrate holder 24 satisfying the ratio 1: 1 and the Si steam supply source 25 Si pellets or the like
  • the atomic number ratio Si / C in the main body container 20 exceeds 1. It will be.
  • the inside of the main body container 20 approaches a SiC-Si equilibrium vapor pressure environment.
  • the outline of the device configuration for realizing the SiC-C equilibrium vapor pressure environment is shown on the lower side of FIG. 7.
  • the SiC-C equilibrium vapor pressure environment can be formed by arranging the SiC original substrate 10 in a semi-closed space having an atomic number ratio of Si / C of 1 or less and heating the substrate.
  • a SiC raw substrate 10 satisfying a chemical quantity theory ratio of 1: 1 and a chemical quantity theory are contained in a main body container 20 of a polycrystalline SiC having a chemical quantity theory ratio of 1: 1.
  • the SiC substrate holder 24 satisfying the ratio 1: 1 is arranged, the atomic number ratio Si / C in the main body container 20 is 1 or 1 or less.
  • the inside of the main body container 20 approaches the SiC-C equilibrium vapor pressure environment.
  • the C steam supply source may be separately arranged, or the main body container 20 including the C steam supply source and the substrate holder 24 may be adopted. ..
  • the C steam supply source include solid C (C pellets such as C substrate and C powder) and C compounds.
  • the SiC substrate 11 from which the strain layer 101 has been removed can be obtained. Further, if the heat treatment step S1 for growing crystals in a SiC-C equilibrium vapor pressure environment is performed, a high-quality SiC substrate 11 having a growth layer 105 from which BPD has been removed or reduced can be obtained.
  • the epitaxial growth step S2 and the ingot growth step S3 defects due to the strain (distortion layer 101) of the SiC original substrate 10 are generated, and the BPD of the SiC original substrate 10 is inherited. Can be suppressed.
  • the heat treatment step S1 for etching or crystal growth is performed in a SiC-Si equilibrium vapor pressure environment, the SiC substrate 11 from which MSB has been removed or reduced can be obtained. As a result, it is possible to suppress the occurrence of defects caused by the MSB in the later steps, the epitaxial growth step S2 and the ingot growth step S3.
  • the strain layer removing step S11 is a step of removing the strain layer 101 introduced into the SiC original substrate 10.
  • the strain layer removing step S11 will be described, but the description will be omitted if it overlaps with the general description of the heat treatment step S1 described above.
  • the SiC raw substrate 10 and the SiC material are placed in a semi-closed space having an atomic number ratio of Si / C of 1 or less. This is a step of arranging them so as to face each other and heating the SiC raw substrate 10 so that it is on the high temperature side and the SiC material is on the low temperature side (etching bunching step S111).
  • the SiC original substrate 10 and the SiC material are arranged so as to face each other in a semi-closed space in which the atomic number ratio Si / C exceeds 1. This is a step of heating the SiC original substrate 10 so that it is on the high temperature side and the SiC material is on the low temperature side (etching bunching removing step S121).
  • the SiC original substrate 10 and the SiC material are arranged so as to face each other, and the SiC original substrate 10 is on the high temperature side and the SiC material is at a low temperature under the SiC-Si equilibrium vapor pressure environment or the SiC-C equilibrium vapor pressure environment. This is the process of heating to the side.
  • the SiC original substrate 10 by heat-treating the SiC original substrate 10 arranged on the high temperature side of the temperature gradient and a part of the main body container 20 arranged on the low temperature side of the temperature gradient relative to each other, the SiC original substrate 10 The atoms are transported to the main body container 20 to achieve etching of the SiC original substrate 10.
  • an etching space X is formed between them.
  • atoms are transported by using the temperature gradient formed by the heating furnace 30 as a driving force, and as a result, the SiC original substrate 10 can be etched.
  • the back surface of the SiC original substrate 10 and the top surface of the main body container 20 having a temperature higher than this back surface are arranged so as to face each other.
  • a raw material supply space Y may be formed between them.
  • the raw material is transported by using the temperature gradient formed by the heating furnace 30 as a driving force, and as a result, the growth layer 105 can be formed on the other side of the SiC original substrate 10.
  • the strain layer removing step S11 a configuration may be adopted in which the raw material supply space Y is not formed by bringing the other side of the SiC original substrate 10 into contact with the top surface of the main body container 20.
  • the main body container 20 is arranged in the Si vapor pressure space Z in which an atmosphere containing a Si element is formed.
  • the main body container 20 is arranged in the Si vapor pressure space Z, and the inside of the main body container 20 is exhausted (evacuated) through the space of the Si vapor pressure environment, so that Si atoms are discharged from the inside of the main body container 20. It can be suppressed from decreasing. As a result, the preferable atomic number ratio Si / C in the main body container 20 can be maintained for a long time.
  • the etching temperature in the strain layer removing step S11 is preferably set in the range of 1400 to 2300 ° C, and more preferably set in the range of 1600 to 2000 ° C.
  • the etching rate in the strain layer removing step S11 can be controlled by the above temperature range, and can be selected in the range of 0.001 to 2 ⁇ m / min.
  • the etching amount in the strain layer removing step S11 can be adopted as long as it is an etching amount capable of removing the strain layer 101 of the SiC original substrate 10. As the etching amount, 0.1 ⁇ m or more and 20 ⁇ m or less can be exemplified, but it can be applied as needed.
  • the etching time in the strain layer removing step S11 can be set to an arbitrary time so as to obtain a desired etching amount. For example, when the etching rate is 1 ⁇ m / min and the etching amount is desired to be 1 ⁇ m, the etching time is 1 minute.
  • the temperature gradient in the strain layer removing step S11 is set in the range of 0.1 to 5 ° C./mm in the etching space X.
  • the SiC substrate 11 in which the strain layer 101 is reduced or removed can be manufactured.
  • the bunching removal step S12 is a step of disassembling and removing the MSB formed on the surface of the SiC substrate 11 as shown in FIGS. 10 and 12.
  • the etching bunching removing step S121 and the growth bunching removing step S122 are preferably exemplified in the bunching removing step S12.
  • the bunching removing step S12 will be described, but the description will be omitted if it overlaps with the general description of the heat treatment step S1 described above.
  • the etching bunching removing step S121 is a step of removing or reducing the MSB by etching the surface of the SiC original substrate 10 on which the MSB is formed, as shown in FIG.
  • the SiC raw substrate 10 and the SiC material are relative to each other in a semi-closed space having an atomic number ratio of Si / C exceeding 1.
  • This is a step of heating the SiC raw substrate 10 so that it is on the high temperature side and the SiC material is on the low temperature side.
  • it is a step of arranging the SiC original substrate 10 and the SiC material so as to face each other and heating the SiC original substrate 10 on the high temperature side and the SiC material on the low temperature side in a SiC-Si equilibrium vapor pressure environment.
  • the apparatus configuration for realizing the etching bunching removing step S121 is such that the Si vapor supply source 25 is further arranged in the main body container 20 of the strain layer removing step S11.
  • the Si steam supply source 25 By arranging the Si steam supply source 25, the SiC raw substrate 10 can be heated in a SiC-Si equilibrium vapor pressure environment.
  • the description of the portion overlapping with the general description of the strain layer removing step S11 will be omitted as appropriate.
  • the etching temperature in the etching bunching removing step S121 is preferably set in the range of 1400 to 2300 ° C, more preferably in the range of 1600 to 2000 ° C.
  • the etching rate in the etching bunching removing step S121 can be controlled by the above temperature range, and can be selected in the range of 0.001 to 2 ⁇ m / min.
  • the etching amount in the etching bunching removing step S121 can be adopted as long as it is an etching amount capable of decomposing the MSB of the SiC original substrate 10. As the etching amount, 0.1 ⁇ m or more and 20 ⁇ m or less can be exemplified.
  • the etching time in the etching bunching removing step S121 can be set to an arbitrary time so as to obtain a desired etching amount. For example, when the etching rate is 1 ⁇ m / min and the etching amount is desired to be 1 ⁇ m, the etching time is 1 minute.
  • the temperature gradient in the etching bunching removing step S121 is set in the range of 0.1 to 5 ° C./mm in the etching space X.
  • the SiC substrate 11 in which the MSB is removed or reduced can be manufactured by etching the surface of the SiC original substrate 10.
  • the growth bunching removing step S122 is a step of forming a growth layer 105 in which the MSB is removed or reduced by growing crystals on the surface of the SiC original substrate 10 on which the MSB is formed.
  • the SiC raw substrate 10 and the SiC material are relative to each other in a semi-closed space having an atomic number ratio of Si / C exceeding 1.
  • This is a step of heating the SiC raw substrate 10 so that it is on the low temperature side and the SiC material is on the high temperature side.
  • it is a step of arranging the SiC original substrate 10 and the SiC material so as to face each other and heating the SiC original substrate 10 on the low temperature side and the SiC material on the high temperature side in a SiC-Si equilibrium vapor pressure environment.
  • the surface of the SiC original substrate 10 and the top surface of the main body container 20 having a temperature higher than this surface are arranged so as to face each other, so that the raw material supply space Y is formed between them.
  • the raw material is transported by using the temperature gradient formed by the heating furnace 30 and the chemical potential difference between the SiC raw substrate 10 and the SiC material as a driving force, and as a result, the growth layer 105 is formed on the surface of the SiC raw substrate 10. Can be formed.
  • the apparatus configuration for realizing the growth bunching removing step S122 is such that the Si steam supply source 25 is further arranged in the main body container 20 as in the etching bunching removing step S121.
  • the description of the parts that overlap with the general description of the etching bunching removing step S121 described above will be omitted.
  • the heating temperature in the growth bunching removing step S122 is preferably set in the range of 1400 to 2200 ° C, more preferably in the range of 1600 to 2000 ° C.
  • the growth rate in the growth bunching removing step S122 can be controlled by the above temperature range and can be selected in the range of 0.001 to 1 ⁇ m / min.
  • the amount of growth in the growth bunching removing step S122 is preferably 5 ⁇ m or more, and more preferably 8 ⁇ m or more.
  • the growth time in the growth bunching removing step S122 can be set to an arbitrary time so as to achieve a desired growth amount. For example, when the growth rate is 10 nm / min and the amount of growth is desired to be 10 ⁇ m, the growth time is 100 minutes.
  • Vacuum in the growth bunching removal step S122 is 10 -5 ⁇ 10 Pa, more preferably from 10 -3 ⁇ 1 Pa.
  • an inert gas during growth.
  • Ar or the like can be selected as the inert gas, and the degree of vacuum of the heating furnace 30 (main heating chamber 31) can be adjusted by introducing the inert gas in the range of 10-5 to 10000 Pa. it can.
  • the SiC substrate 11 in which the MSB is removed or reduced is manufactured by growing the growth layer 105 having no MSB on the surface of the SiC original substrate 10. Can be done.
  • the basal dislocation reduction step S13 is a step of forming a growth layer 105 in which BPD is removed or reduced by growing crystals under the condition that the terrace width W of the SiC original substrate 10 is increased. ..
  • the description of the parts that overlap with the general description of the heat treatment step S1 described above will be omitted.
  • the SiC raw substrate 10 and the SiC material are placed in a semi-closed space having an atomic number ratio of Si / C of 1 or less.
  • This is a step of arranging them so as to face each other and heating the SiC raw substrate 10 so that it is on the low temperature side and the SiC material is on the high temperature side.
  • it is a step of arranging the SiC raw substrate 10 and the SiC material so as to face each other and heating the SiC raw substrate 10 on the low temperature side and the SiC material on the high temperature side in a SiC-C equilibrium vapor pressure environment.
  • the apparatus configuration for realizing the basal dislocation reduction step S13 is the SiC original substrate 10 arranged on the low temperature side of the temperature gradient and the main body arranged on the high temperature side of the temperature gradient. By heat-treating a part of the container 20 relative to each other, the raw material is transported from the main body container 20 to the SiC original substrate 10 to form the growth layer 105.
  • the Si vapor supply source 25 is not arranged. It should be noted that the description of the parts that overlap with the general description of the growth bunching removing step S122 described above will be omitted.
  • the heating temperature in the basal dislocation reduction step S13 is preferably set in the range of 1400 to 2200 ° C, more preferably in the range of 1600 to 2000 ° C.
  • the growth rate in the basal dislocation reduction step S13 can be controlled by the above temperature region and the growth environment, and can be selected in the range of 0.001 to 1 ⁇ m / min.
  • the amount of growth in the basal dislocation reduction step S13 is preferably 5 ⁇ m or more, and more preferably 8 ⁇ m or more.
  • the growth time in the basal dislocation reduction step S13 can be set to an arbitrary time so as to achieve a desired growth amount. For example, when the growth rate is 10 nm / min and the amount of growth is desired to be 10 ⁇ m, the growth time is 100 minutes.
  • the degree of vacuum (main heating chamber 31) in the basal dislocation reduction step S13 is 10-5 to 10 Pa, more preferably 10 -3 to 1 Pa.
  • an inert gas during growth. Ar or the like can be selected as the inert gas, and the degree of vacuum of the heating furnace 30 (main heating chamber 31) can be adjusted by introducing the inert gas in the range of 10-5 to 10000 Pa. it can.
  • the conversion rate (BPD conversion rate) at which BPD is converted into other defects / dislocations is improved by growing the terrace 104 under the condition of increasing the width (terrace width W).
  • BPD in the growth layer 105 can be removed or reduced.
  • the condition for increasing the terrace width W is a condition for increasing the terrace width W2 after growth as compared with the terrace width W1 before growth.
  • the terrace width W is grown in a SiC-C equilibrium vapor pressure environment or a C-rich environment. It can be realized by.
  • the basal dislocation reduction step S13 is performed after the bunching removal step S12. That is, when comparing the width of the terrace 104 on the surface on which the MSB is not formed and the width of the terrace 104 on the surface on which the MSB is formed, the terrace 104 on the surface on which the MSB is not formed is wider than the terrace 104. Is narrow. Therefore, the BPD conversion rate can be improved by growing the growth layer 105 under the condition that the MSB is formed after the decomposition of the MSB.
  • FIG. 16 shows a preferred embodiment of a step of treating the SiC original substrate 10 by the heat treatment step S1 to produce the SiC substrate 11 or the SiC epitaxial substrate 12.
  • FIG. 16A is a preferred embodiment for manufacturing the SiC substrate 11
  • FIG. 16B is a preferred embodiment for manufacturing the SiC epitaxial substrate 12.
  • any of the etching bunching step S111 and the etching bunching removing step S121 can be adopted.
  • the strain layer 101 can be removed and the MSB can be removed or reduced at the same time.
  • FIG. 16 shows a form in which the bunching removing step S12 is performed after the strain layer removing step S11. According to such a form, it is possible to manufacture the SiC substrate 11 or the SiC epitaxial substrate 12 which does not contain the strain layer 101 and the MSB on the surface.
  • FIG. 16 shows a mode in which the strain layer removing step S11 and the bunching removing step S12 are followed by the basal plane dislocation reduction step S13.
  • FIG. 16 shows a form in which the bunching removal step S12 is further performed after the basal plane dislocation reduction step S13.
  • any of the etching bunching removing step S121 and the growth bunching removing step S122 can be adopted.
  • FIG. 16B shows a mode in which a SiC material having a doping concentration lower than that of the SiC original substrate 10 is used in the crystal growth step (basal dislocation reduction step S13 and / or growth bunching removal step S122). ..
  • the heat treatment step S1 is selected from a strain layer removing step S11 (etching bunching step S111 or etching bunching removing step S121), a bunching removing step S12 (etching bunching removing step S121 or growing bunching removing step S122), and a basal plane displacement reducing step S13.
  • a strain layer removing step S11 etching bunching step S111 or etching bunching removing step S121
  • a bunching removing step S12 etching bunching removing step S121 or growing bunching removing step S122
  • a basal plane displacement reducing step S13 When the form includes two or more types, the two or more types of steps can be heat-treated with the same apparatus configuration.
  • Examples of the container in which the plurality of heat treatment steps S1 are performed include a container that generates an atmosphere containing Si element and C element in the internal space, specifically, a main body container 20. As described above, by using the main body container 20 and the like, even if the heat treatment step S1 includes a plurality of steps, all of them can be completed in the same container, so that the work can be expected to be simplified. Further, since etching and crystal growth can be performed in the same device system, it is not necessary to introduce a plurality of devices, which is very advantageous in industry.
  • the present invention also relates to a SiC substrate 11 manufactured through the heat treatment step S1.
  • the surface of the SiC substrate 11 of the present invention does not contain factors such as strain (strain layer 101), BPD, MSB, etc. that adversely affect epitaxial growth and ingot growth in the heat treatment step S1. Therefore, according to the SiC substrate 11 of the present invention, it is possible to grow a higher quality SiC epitaxial substrate 12 or a SiC ingot 13.
  • the SiC substrate 11 is preferably characterized by having a growth layer 105 having no BPD on its surface.
  • the thickness of the growth layer 105 containing no BPD is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.1 ⁇ m or more.
  • the thickness of the layer containing no BPD is within the above range, it is possible to suppress the propagation of BPD existing in the SiC substrate 11 in the epitaxial growth step S2 and the ingot growth step S3 in which the SiC is grown on the SiC substrate 11. Can be done.
  • the heat treatment step S1 includes a crystal growth step using a SiC material having a doping concentration lower than that of the SiC original substrate 10, the SiC epitaxial substrate 12 can be obtained.
  • the SiC epitaxial substrate 12 can be manufactured without going through the epitaxial growth step S2 described later.
  • the diameter of the SiC substrate 11 of the present invention is not particularly limited, and is preferably 6 inches or more, more preferably 8 inches or more, and further preferably 12 inches or more. By growing the SiC substrate 11 having such a size, it is possible to obtain a SiC epitaxial substrate 12 and a SiC ingot 13 having a large diameter and high quality.
  • Epitaxy growth step S2 is a step of forming an epi layer by epitaxial growth on the main surface of the SiC substrate 11 to form the SiC epitaxial substrate 12 used for applications such as power devices.
  • a known method can be used without limitation.
  • CVD chemical vapor deposition method
  • PVT physical vapor transport method
  • MSE metastable solvent epitaxy method
  • the present invention also relates to the SiC epitaxial substrate 12 manufactured by the above-mentioned steps. Since the SiC epitaxial substrate 12 of the present invention is derived from the SiC substrate 11 in which distortion, BPD, and MSB are suppressed as described above, propagation of defects to the epi layer is suppressed. Therefore, according to the SiC epitaxial substrate 12 of the present invention, it is possible to provide a high-performance SiC semiconductor device.
  • the ingot growth step S3 is a step of growing a single crystal SiC on the SiC substrate 11 to manufacture the SiC ingot 13.
  • any known growth method may be adopted, and a sublimation method or a CVD method can be exemplified.
  • the present invention also relates to the SiC ingot 13 manufactured by the ingot growth step S3 described above.
  • the SiC ingot 13 of the present invention contains almost no BPD and is of high quality.
  • Example 1 is an embodiment that specifically describes the etching bunching step S111.
  • the second embodiment is an embodiment specifically explaining the etching bunching removing step S121.
  • the third embodiment is an embodiment specifically explaining the growth bunching removing step S122.
  • Example 4 is an example in which the basal plane dislocation reduction step S13 is specifically described.
  • Example 5 is an example that specifically describes the crystal growth step of forming the pressure-resistant layer.
  • Example 1 Etching bunching process> The strain layer 101 of the SiC original substrate 10 was removed by accommodating the SiC original substrate 10 in the main body container 20 and the melting point container 40 (see FIG. 9) and heat-treating under the following heat treatment conditions.
  • the lattice strain of the SiC original substrate 10 can be obtained by comparing with a reference crystal lattice as a reference.
  • the SEM-EBSD method can be used as a means for measuring this lattice strain.
  • the SEM-EBSD method is a method (Electron Backscattering Diffraction) that enables strain measurement of a minute region based on the Kikuchi line diffraction pattern obtained by electron backscattering in a scanning electron microscope (SEM). : EBSD).
  • SEM-EBSD method is a method (Electron Backscattering Diffraction) that enables strain measurement of a minute region based on the Kikuchi line diffraction pattern obtained by electron backscattering in a scanning electron microscope (SEM). : EBSD).
  • the amount of lattice strain can be obtained by comparing the diffraction pattern of the reference crystal lattice as a reference with the diffraction pattern of the measured crystal lattice.
  • a reference point is set in a region where lattice distortion is not considered to occur. That is, it is desirable to arrange the reference point in the region of the bulk layer 102 in FIG. It is a well-established theory that the depth of the strain layer 101 is usually about 10 ⁇ m. Therefore, the reference point may be set at a position having a depth of about 20 to 35 ⁇ m, which is considered to be sufficiently deeper than the strain layer 101.
  • the diffraction pattern of the crystal lattice at this reference point is compared with the diffraction pattern of the crystal lattice in each measurement region measured at a pitch on the order of nanometers. As a result, the amount of lattice strain in each measurement region with respect to the reference point can be calculated.
  • the presence or absence of the strain layer 101 can be determined by measuring whether or not the lattice strain is present by this SEM-EBSD method. That is, when processing damage such as scratch 1011, latent scratch 1012, and strain 1013 is introduced, lattice strain is generated in the SiC original substrate 10, so that stress is observed by the SEM-EBSD method.
  • the strain layer 101 existing on the SiC original substrate 10 before the heat treatment step S1 and the strain layer 101 existing on the SiC original substrate 10 after the heat treatment step S1 were observed by the SEM-EBSD method. The results are shown in FIGS. 17 (a) and 17 (b).
  • the cross section of the SiC raw substrate 10 before and after the heat treatment step S1 was measured using a scanning electron microscope under the following conditions.
  • SEM device Zeiss Merline EBSD analysis: OIM crystal orientation analyzer manufactured by TSL Solutions Acceleration voltage: 15 kV Probe current: 15nA Step size: 200nm Reference point R depth: 20 ⁇ m
  • FIG. 17A is a cross-sectional SEM-EBSD imaging image of the SiC original substrate 10 before the heat treatment step S1. As shown in FIG. 17A, before the heat treatment step S1, a lattice strain having a depth of 5 ⁇ m was observed in the SiC original substrate 10. This is a lattice strain introduced during machining, and it can be seen that it has a strain layer 101. In FIG. 17A, compressive stress is observed.
  • FIG. 17B is a cross-sectional SEM-EBSD imaging image of the SiC original substrate 10 after the heat treatment step S1. As shown in FIG. 17B, no lattice strain was observed in the SiC original substrate 10 after the heat treatment step S1. That is, it can be seen that the strain layer 101 has been removed by the heat treatment step S1. The MSB was formed on the surface of the SiC original substrate 10 after the heat treatment step S1.
  • the strain layer 101 can be removed or reduced by etching the SiC original substrate 10 in the semi-closed space where the atomic number ratio Si / C is 1 or less. .. As a result, the SiC substrate 11 in which the strain layer 101 is reduced or removed can be manufactured.
  • Example 2 Etching bunching removal step>
  • the SiC original substrate 10 was housed in the main body container 20 and the melting point container 40 (see FIG. 11), and the MSB on the surface of the SiC original substrate 10 was removed by heat treatment under the following heat treatment conditions.
  • the step height, terrace width, and presence / absence of MSB can be confirmed by an atomic force microscope (AFM) or a scanning electron microscope (SEM) image contrast evaluation method described in JP-A-2015-179802. ..
  • the atomic number ratio Si / C in the container exceeds 1.
  • Heating treatment conditions The SiC original substrate 10 arranged under the above conditions was heat-treated under the following conditions. Heating temperature: 1900 ° C Heating time: 60 min Temperature gradient: 1 ° C / mm Etching rate: 300 nm / min This heating chamber vacuum degree: 10-5 Pa
  • Step 103 of the SiC original substrate 10 before the heat treatment step S1 and step 103 of the SiC original substrate 10 after the heat treatment step S1 were observed by SEM.
  • the results are shown in FIGS. 18 (a) and 18 (b).
  • the height of step 103 was measured by an atomic force microscope (AFM).
  • the width of the terrace 104 was measured by SEM.
  • FIG. 18A is an SEM image of the SiC original substrate 10 before the heat treatment step S1.
  • An MSB having a height of 3 nm or more is formed on the surface of the SiC original substrate 10 before the heat treatment step S1.
  • the step height was measured by AFM.
  • FIG. 18B is an SEM image of the SiC original substrate 10 after the heat treatment step S1. It can be seen that no MSB is formed on the surface of the SiC original substrate 10 after the heat treatment step S1, and the steps of 1.0 nm (full unit cell) are regularly arranged.
  • the MSB can be removed or reduced by etching the SiC original substrate 10 in the semi-closed space where the atomic number ratio Si / C exceeds 1. As a result, the SiC substrate 11 in which the MSB is reduced / removed can be manufactured.
  • the strain layer 101 was not observed as in Example 1. That is, the strain layer 101 can also be removed in the etching bunching removing step S121.
  • Example 3 Growth bunching removal step>
  • the SiC original substrate 10 was housed in the main body container 20 and the melting point container 40 (see FIG. 13), and the MSB on the surface of the SiC original substrate 10 was removed by heat treatment under the following heat treatment conditions.
  • the atomic number ratio Si / C in the container exceeds 1.
  • Step 103 on the surface of the SiC original substrate 10 after the heat treatment step S1 was observed by SEM.
  • the result is shown in FIG.
  • the height of step 103 was measured by an atomic force microscope (AFM), and the width of terrace 104 was measured by SEM.
  • FIG. 19 is an SEM image of the surface of the SiC original substrate 10 after the heat treatment step S1. Similar to FIG. 18A, an MSB having a height of 3 nm or more was formed on the surface of the SiC original substrate 10 before the heat treatment step S1. As shown in FIG. 19, it can be seen that no MSB is formed on the surface of the SiC original substrate 10 after the heat treatment step S1 and the steps of 1.0 nm (full unit cell) are regularly arranged.
  • the growth layer 105 on which the MSB is not formed is formed by crystal-growth of the SiC original substrate 10 in the semi-closed space where the atomic number ratio Si / C exceeds 1. Can be formed. As a result, the SiC substrate 11 in which the MSB is reduced / removed can be manufactured.
  • Basis back dislocation reduction step> BPD can be removed or reduced by accommodating the SiC original substrate 10 in the main body container 20 and the melting point container 40 (see FIG. 15) and heat-treating under the following heat treatment conditions.
  • Heating treatment conditions The SiC original substrate 10 arranged under the above conditions was heat-treated under the following conditions. Heating temperature: 1700 ° C Heating time: 300 min Temperature gradient: 1 ° C / mm Growth rate: 5 nm / min Main heating chamber 31 Vacuum degree: 10-5 Pa
  • FIG. 20 is an explanatory diagram of a method for obtaining a conversion rate obtained by converting BPD into other defects / dislocations (TED or the like) in the growth layer 105.
  • FIG. 20A shows how the growth layer 105 was grown by the heat treatment step S1. In this heating step, the BPD existing in the SiC original substrate 10 is converted into TED with a certain probability. Therefore, TED and BPD are mixed on the surface of the growth layer 105 unless 100% conversion is performed.
  • FIG. 20B shows a state in which defects in the growth layer 105 are confirmed by using the KOH dissolution etching method.
  • a SiC substrate is immersed in a molten salt (KOH, etc.) heated to about 500 ° C. to form etch pits in dislocations and defective parts, and the type of dislocation is determined by the size and shape of the etch pits. It is a method to do. By this method, the number of BPDs existing on the surface of the growth layer 105 is obtained.
  • FIG. 20C shows how the growth layer 105 is removed after KOH dissolution etching. In this method, after flattening to the depth of the etch pit by mechanical polishing, CMP, or the like, the growth layer 105 is removed by thermal etching to expose the surface of the SiC original substrate 10.
  • 20D shows a state in which defects in the SiC original substrate 10 were confirmed by using the KOH dissolution etching method on the SiC original substrate 10 from which the growth layer 105 was removed. By this method, the number of BPDs existing on the surface of the SiC original substrate 10 is obtained.
  • the number of BPDs present on the surface of the growth layer 105 (see FIG. 20B), the number of BPDs present on the surface of the SiC original substrate 10 (FIG. 20D), and By comparing the above, the BPD conversion rate converted from BPD to other defects / dislocations during the heat treatment step S1 can be obtained.
  • the number of BPDs present on the surface of the growth layer 105 of Example 4 was 0 cm- 2
  • the number of BPDs present on the surface of the SiC original substrate 10 was about 1000 cm- 2 . That is, it can be understood that BPD is reduced / removed by arranging the SiC original substrate 10 having no MSB on the surface in a semi-closed space having an atomic number ratio of Si / C of 1 or less and growing crystals.
  • BPD is reduced / removed by crystal growth of the SiC original substrate 10 in a semi-closed space having an atomic number ratio of Si / C of 1 or less.
  • the growth layer 105 can be formed. Thereby, the SiC substrate 11 having the growth layer 105 in which the BPD is reduced / removed can be manufactured.
  • a pressure resistant layer can be formed on the SiC original substrate 10 by accommodating the SiC original substrate 10 in the main body container 20 and the melting point container 40 (see FIG. 15) and heat-treating under the following heat treatment conditions.
  • the dopant and doping concentration of the SiC original substrate 10 were confirmed by Raman spectroscopy.
  • Heating treatment conditions The SiC original substrate 10 arranged under the above conditions was heat-treated under the following conditions. Heating temperature: 1700 ° C Heating time: 300 min Temperature gradient: 1 ° C / mm Growth rate: 5 nm / min Main heating chamber 31 Vacuum degree: 10-5 Pa
  • FIG. 21 is an SEM image of the SiC original substrate 10 grown under the above conditions observed from a cross section at a magnification of 10000.
  • the thickness of the growth layer 105 was 1.5 ⁇ m.
  • the doping concentration of the growth layer 105 was 1 ⁇ 10 17 cm -3 or less, and the doping concentration of the SiC raw substrate 10 was 3 ⁇ 10 18 cm -3 . Since the doping concentration of the growth layer 105 is the same value as the doping concentration of the SiC material, it can be seen that the doping concentration of the SiC material is inherited. Further, as shown in FIG. 21, since the growth layer 105 has a brighter SEM image contrast than the SiC original substrate 10, it can be understood that the doping concentration of the growth layer 105 is lower than that of the SiC original substrate 10.
  • the SiC raw substrate 10 and the SiC material having a doping concentration lower than that of the SiC raw substrate 10 are heated relative to each other, and the raw material is transported from the SiC material to the SiC raw substrate 10.
  • the growth layer 105 having a doping concentration capable of functioning as a pressure-resistant layer of the SiC semiconductor device can be grown, and a SiC substrate having the pressure-resistant layer can be manufactured.
  • Example 5 the case where the SiC original substrate 10 is grown in a semi-closed space having an atomic number ratio of Si / C of 1 or less has been described. Similarly, when grown in a semi-closed space having an atomic number ratio of Si / C of more than 1, it is possible to take over the doping density of the SiC material and form the growth layer 105.
  • FIG. 22A is a graph showing the relationship between the heating temperature and the etching rate in the etching process of the present invention.
  • the horizontal axis of this graph is the reciprocal of temperature, and the vertical axis of this graph shows the etching rate logarithmically.
  • FIG. 22B is a graph showing the relationship between the heating temperature and the growth rate in the crystal growth step of the present invention.
  • the horizontal axis of this graph is the reciprocal of temperature
  • the vertical axis of this graph is the logarithmic growth rate.
  • step 103 was the height of one unit cell.
  • MSBs were formed on the surfaces of the SiC original substrates 10 marked with x.
  • thermodynamic calculation in the SiC-Si equilibrium vapor pressure environment is shown by a broken line (Arrhenius plot), and the result of the thermodynamic calculation in the SiC-C equilibrium vapor pressure environment is shown by the alternate long and short dash line (Arrhenius plot). It is shown in.
  • the thermodynamic calculation of the etching process and the thermodynamic calculation of the crystal growth process will be described in detail separately.
  • thermodynamic calculation of etching process the amount of vapor (gas phase species containing Si element and vapor phase species containing C element) generated from the SiC original substrate 10 when the main body container 20 is heated can be converted into the etching amount. .. In that case, the etching rate of the SiC original substrate 10 is obtained by the following equation 1.
  • T is the temperature of the SiC raw substrate 10
  • k is Boltzmann's constant.
  • P i is that value obtained by adding the vapor pressure generated in the container body 20 by SiC raw substrate 10 is heated.
  • vapor-phase species of P i SiC-Si 2 C , SiC 2 and the like is contemplated.
  • the broken line in FIG. 22A shows the heat generated when single crystal SiC is etched in a vapor pressure environment when SiC (solid) and Si (liquid phase) are in phase equilibrium via a gas phase. It is the result of mechanical calculation. Specifically, the thermodynamic calculation was performed under the following conditions (i) to (iv) using Equation 1. (I) it is a constant volume of SiC-Si equilibrium vapor pressure environment, (ii) that the etching driving force is the temperature gradient in the main container 20, (iii) a raw material gas, SiC, Si 2 C, SiC 2 (Iv) The desorption coefficient at which the raw material sublimates from step 103 is 0.001.
  • the two-point chain line in FIG. 22A is a single crystal SiC etched in a vapor pressure environment when SiC (solid phase) and C (solid phase) are in a phase equilibrium state via a gas phase.
  • This is the result of the thermodynamic calculation.
  • the thermodynamic calculation was performed under the following conditions (i) to (iv) using Equation 1.
  • (I) it is a constant volume of SiC-C equilibrium vapor pressure environment, (ii) etching the driving force, it is the temperature gradient in the main container 20, (iii) a raw material gas, SiC, Si 2 C, SiC 2.
  • the desorption coefficient at which the raw material sublimates from step 103 is 0.001.
  • the values in the JANAF thermochemical table were used for the data of each chemical species used in the thermodynamic calculation.
  • the SiC original substrate 10 is arranged in a space (inside the main body container 20) in which the atomic number ratio Si / C exceeds 1, and the SiC original substrate 10 is etched (marked with ⁇ ). ) Shows that the tendency is in agreement with the result of thermodynamic calculation of single crystal SiC etching in the SiC-Si equilibrium vapor pressure environment. Further, the result of etching the SiC original substrate 10 by arranging the SiC original substrate 10 in a space (inside the main body container 20) having an atomic number ratio of 1 or less (x mark) is the SiC-C equilibrium vapor pressure. It can be seen that the tendency is in agreement with the result of thermodynamic calculation of single crystal SiC etching in the environment.
  • thermodynamic calculation of crystal growth process the partial pressure difference between the SiC raw material and the steam generated from the SiC substrate when the inside of the main body container 20 is heated can be converted into the growth amount.
  • the chemical potential difference and the temperature gradient can be assumed as the growth driving force.
  • this chemical potential difference can be assumed to be the partial pressure difference of gas phase species generated on the surface of polycrystalline SiC (SiC material) and single crystal SiC (SiC original substrate 10).
  • the growth rate of SiC is obtained by the following equation 2.
  • T is the temperature of the SiC raw material side
  • k is Boltzmann's constant.
  • P feedstock -P substrate, source gas becomes supersaturated state, a growth amount deposited as SiC, as a raw material gas SiC, Si 2 C, SiC 2 is assumed.
  • the broken line in FIG. 22B shows a single crystal using polycrystalline SiC as a raw material in a vapor pressure environment when SiC (solid) and Si (liquid phase) are in a phase equilibrium state via a gas phase.
  • This is the result of thermodynamic calculation when SiC is grown.
  • the thermodynamic calculation was performed under the following conditions (i) to (iv) using Equation 2.
  • (I) It is a SiC-Si equilibrium vapor pressure environment with a constant volume, and (ii) the growth driving force is the temperature gradient in the main body container 20 and the vapor pressure difference (chemical potential difference) between the polycrystalline SiC and the single crystal SiC. That is, (iii) the raw material gas is SiC, SiC 2 C, SiC 2 , and (iv) the adsorption coefficient that the raw material adsorbs to the step of the SiC raw substrate 10 is 0.001.
  • the two-point chain line in FIG. 22B is made of polycrystalline SiC as a raw material in a vapor pressure environment when SiC (solid phase) and C (solid phase) are in a phase equilibrium state via a gas phase.
  • This is the result of thermodynamic calculation when the single crystal SiC is grown. Specifically, the thermodynamic calculation was performed under the following conditions (i) to (iv) using Equation 2.
  • the raw material gas is SiC, SiC 2 C, SiC 2
  • the adsorption coefficient that the raw material adsorbs to the step of the SiC raw substrate 10 is 0.001.
  • the values in the JANAF thermochemical table were used for the data of each chemical species used in the thermodynamic calculation.
  • the SiC original substrate 10 is arranged in a space (inside the main body container 20) in which the atomic number ratio Si / C exceeds 1, and the growth layer 105 is grown on the SiC original substrate 10. It can be seen that the results (marked with ⁇ ) are in agreement with the results of the thermodynamic calculation of SiC growth in the SiC-Si equilibrium vapor pressure environment. Further, the result (x mark) of arranging the SiC original substrate 10 in a space (inside the main body container 20) in which the atomic number ratio Si / C is 1 or less and growing the growth layer 105 on the SiC original substrate 10 is SiC. It can be seen that the tendency is consistent with the result of thermodynamic calculation of SiC growth in the -C equilibrium vapor pressure environment.

Abstract

高品質なSiC基板、SiCエピタキシャル基板、SiCインゴットを実現可能な新規の技術を提供することを課題とする。 本発明は、SiC原基板10を熱処理する熱処理工程S1を有し、熱処理工程S1は、下記の(a)、(b)、(c)の工程のうち、2つ以上の工程を含む、SiC基板11の製造方法である。(a)SiC原基板10の歪層101を除去する歪層除去工程S11。(b)SiC原基板10上のマクロステップバンチングMSBを除去するバンチング除去工程S12。(c)SiC原基板10上に基底面転位BPDを低減した成長層105を形成する基底面転位低減工程S13。

Description

SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法
 本発明は、高品質なSiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法に関する。
 SiC(炭化珪素)半導体デバイスは、Si(シリコン)やGaAs(ガリウムヒ素)半導体デバイスに比べて高耐圧及び高効率、そして高温動作が可能であるため、産業化に向けて開発が進められている。
 しかしながら、SiC基板やSiCエピタキシャル層(以下エピ層という。)を成長させたSiCエピタキシャル基板には、未だ多くの結晶欠陥・転位が存在しており、これらがSiC半導体デバイスの特性に悪影響を与えている。
 例えば、エピ層中の基底面転位(Basal Plane Dislocation:BPD)は、SiC半導体デバイスをバイポーラ動作させた際に積層欠陥に拡張する。この積層欠陥は、SiC半導体デバイスのオン電圧を上昇させ、バイポーラ劣化の発生につながるため、SiC基板中やエピ層中のBPDを低減する技術が強く求められている。
 このような問題に対し、BPDを貫通刃状転位(Threading Edge Dislocation:TED)へ変換する技術が種々提案されている。例えば、特許文献1や特許文献2には、SiC基板に含まれる転位に対応するピットを形成し、そのピットが形成された表面に対してエピタキシャル成長を施すことで、エピ層内のBPDの密度を低減する技術が記載されている。
 また、デバイス製造プロセス中に、SiC基板表面のステップが束化(バンチング)して、ステップバンチングが形成されてしまうことが問題視されている。このステップバンチングは、SiC半導体デバイスの特性に悪影響を与えることが知られている。
 具体的には、ステップバンチングが形成された表面にエピタキシャル成長を行うと、エピ層の表面にステップバンチング起因の欠陥が発生する場合がある。また、エピ層表面に酸化膜を形成し、その界面に通電させるMOSFETにおいて、ステップバンチングの存在は動作性能及び信頼性に致命的な影響を与える場合がある。
 このような問題に対し、ステップバンチングの発生を抑制する技術が種々提案されている。例えば、特許文献1には、「タンタル金属からなると共に炭化タンタル層を内部空間に露出させるように上下が嵌合した収納容器に前記単結晶炭化ケイ素基板を収納すると共に、前記収納容器の内部圧力を外部圧力よりも高く且つシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で前記収納容器を均一に加熱処理する加熱処理工程を含む熱処理工程」により、SiC基板の表面をエッチングし、分子レベルに平坦な表面を得る技術が記載されている。
特表2007-506289号公報 特開2017-71525号公報 特開2008-16691号公報
 本発明は、高品質なSiC基板、SiCエピタキシャル基板、SiCインゴットを実現可能な新規の技術を提供することを課題とする。
 上記課題を解決する本発明は、SiC原基板を熱処理する熱処理工程を有し、前記熱処理工程は、下記の(a)、(b)、(c)の工程のうち、2つ以上の工程を含む、SiC基板の製造方法である。
(a)前記SiC原基板の歪層を除去する歪層除去工程
(b)前記SiC原基板上のマクロステップバンチングを除去するバンチング除去工程
(c)前記SiC原基板上に基底面転位を低減した成長層を形成する基底面転位低減工程
 このように、歪層除去工程、バンチング除去工程及び基底面転位低減工程のうち、2つ以上の工程を含むことにより、より高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記熱処理工程は、SiC材料が露出した準閉鎖空間内で前記SiC原基板を熱処理する工程である。
 このように、熱処理工程をSiC材料が露出した準閉鎖空間内で行うことにより、より高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記熱処理工程は、SiC材料で構成された本体容器内で前記SiC原基板を熱処理する工程である。
 このように、熱処理工程をSiC材料で構成された本体容器内で行うことにより、各工程(歪層除去工程、バンチング除去工程、基底面転位低減工程)を、同様の装置系で行うことができる。
 本発明の好ましい形態では、前記熱処理工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程である。
 このように、SiC原基板とSiC材料との間で、温度勾配を利用して原料の輸送を行うことにより、より高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記歪層除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程である。
 このように、温度勾配を駆動力としてSiC原基板をエッチングすることにより、歪層が除去ないし低減されたSiC基板を製造することができる。
 本発明の好ましい形態では、前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程を含む。
 このように、SiC-Si平衡蒸気圧環境下で、温度勾配を駆動力としてSiC原基板を熱処理することにより、マクロステップバンチングが除去ないし低減された高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程を含む。
 このように、原子数比Si/Cが1を超える準閉鎖空間でSiC原基板を熱処理することにより、マクロステップバンチングが除去ないし低減された高品質なSiC種結晶を製造することができる。
 本発明の好ましい形態では、前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む。
 また、本発明の好ましい形態では、バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む。
 このように、SiC-Si平衡蒸気圧環境下、若しくは原子数比Si/Cが1を超える空間内において、SiC原基板をエッチングすることにより、マクロステップバンチングが除去ないし低減された高品質なSiC基板を製造することができる(エッチングバンチング除去工程)。
 本発明の好ましい形態では、前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む。
 また、本発明の好ましい形態では、バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む。
 このように、SiC-Si平衡蒸気圧環境下、若しくは原子数比Si/Cが1を超える空間内において、SiC原基板を結晶成長させることにより、マクロステップバンチングが除去ないし低減された高品質なSiC基板を製造することができる(成長バンチング除去工程)。
 本発明の好ましい形態では、前記基底面転位低減工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-C平衡蒸気圧環境下で、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む。
 また、本発明の好ましい形態では、前記基底面転位低減工程は、原子数比Si/Cが1以下である準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む。
 このように、SiC-C平衡蒸気圧環境下、若しくは原子数比Si/Cが1以下である空間内において、SiC原基板を結晶成長させることにより、高効率で基底面転位を他の転位に変換することができる。これにより、表面に露出する基底面転位が除去ないし低減されたSiC基板を製造することができる。
 本発明の好ましい形態では、前記SiC材料のドーピング濃度は、前記SiC原基板のドーピング濃度よりも低い。
 このように、SiC原基板よりも低いドーピング濃度のSiC材料を採用することで、耐圧層として機能する成長層を形成することができる。すなわち、エピ層を形成することができる。
 本発明の好ましい形態では、前記SiC材料のドーピング濃度は、1×1017cm-3以下である。
 このようなドーピング濃度のSiC材料を用いることにより、耐圧層に適したドーピング濃度の成長層を形成することができる。
 本発明の好ましい形態では、前記熱処理工程は、前記歪層除去工程に次いで、前記バンチング除去工程を行う。
 このように、歪層が除去されたSiC原基板の表面に対し、バンチング除去工程を施すことで、歪層及びマクロステップバンチングが除去ないし低減された高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記熱処理工程は、前記バンチング除去工程に次いで、前記基底面転位低減工程を行う。
 このように、マクロステップバンチングが除去されたSiC原基板の表面に対し、基底面転位低減工程を施すことで、基底面転位が除去された成長層を有する高品質なSiC基板を製造することができる。
 本発明の好ましい形態では、前記熱処理工程は、前記基底面転位低減工程に次いで、前記バンチング除去工程を行う。
 このように、基底面転位が除去ないし低減された成長層に対し、バンチング除去工程を施すことで、基底面転位及びマクロステップバンチングが除去ないし低減された成長層を有する高品質なSiC基板を製造することができる。
 本発明は、上述の製造方法により製造された、SiC基板にも関する。
 本発明のSiC基板は、SiC半導体デバイスの特性に悪影響を与える、歪層、マクロステップバンチング、基底面転位のうち、1つ以上が除去ないし低減されている。これにより、SiC半導体デバイスの動作性能や信頼性の向上に寄与することができる。
 本発明は、上述のSiC基板上にエピ層を成長させるエピタキシャル成長工程を含む、SiCエピタキシャル基板の製造方法にも関する。
 このように、歪層、基底面転位、マクロステップバンチングのうち、1つ以上が低減された良好な表面を有したSiC基板を用いてエピタキシャル成長を行う。そのため、欠陥等の発生や伝搬を抑制でき、より高品質なSiCエピタキシャル基板の製造することができる。
 また、本発明は、上述の製造方法により製造されたSiCエピタキシャル基板にも関する。
 本発明は、上述したSiC基板上に単結晶SiCを結晶成長させるインゴット成長工程を含む、SiCインゴットの製造方法にも関する。
 このように、歪層、基底面転位、マクロステップバンチングのうち、1つ以上が低減された良好な表面を有したSiC基板を用いてインゴット成長を行う。そのため、欠陥等の発生や伝搬を抑制でき、より高品質なSiCインゴットを製造することができる。
 また、本発明は、上述の製造方法により製造された、SiCインゴットにも関する。
 本発明によれば、歪層や基底面転位、マクロステップバンチングが低減された良好な表面を有するSiC基板を製造することができる。これに伴い、本発明によれば、高品質なSiCエピタキシャル基板やSiCインゴットを提供することができる。
 他の課題、特徴及び利点は、図面及び特許請求の範囲と共に取り上げられる際に、以下に記載される発明を実施するための形態を読むことにより明らかになるであろう。
一実施の形態のSiC基板、SiCエピタキシャル基板、SiCインゴットの製造工程の概略図である。 本発明の熱処理工程の好ましい形態を表す概念図である。 本発明の熱処理工程のエッチング機構の概要を示す説明図である。 本発明の熱処理工程の成長機構の概要を示す説明図である。 一実施の形態の本体容器と高融点容器の概略図である。 一実施の形態のSiC種結晶の製造装置の説明図である。 本発明の熱処理工程の好ましい形態における容器構成を示す概略図である。 歪層除去工程の概要を示す図である。 歪層除去工程を実現するための装置構成を示す図である。 エッチングバンチング除去工程の概要を示す図である。 エッチングバンチング除去工程を実現するための装置構成を示す図である。 成長バンチング除去工程の概要を示す説明図である。 成長バンチング除去工程を実現するための装置構成と概要を示す図である。 基底面転位低減工程の概要を示す説明図である。 基底面転位低減工程を実現するための装置構成と概要を示す図である。 本発明のSiC基板、SiCエピタキシャル基板、及びSiCインゴットを製造する工程についての好ましい実施の形態を示す。 本発明の歪層除去工程にて得られるSiC基板の説明図である。 本発明のエッチングバンチング除去工程にて得られるSiC基板の説明図である。 本発明の成長バンチング除去工程にて得られるSiC基板の説明図である。 本発明の基底面転位低減工程のBPD変換率を求める手法の説明図である。 本発明の結晶成長工程で形成した成長層の説明図である。 本発明のエッチング工程及び結晶成長工程のアレニウスプロットである。
<1>発明の概要
 以下、本発明の好ましい実施形態について、図を用いて詳細に説明する。本発明の技術的範囲は、添付図面に示した実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。
 まず、図1を参照しながら、本発明の方法によってSiC基板11、SiCエピタキシャル基板12、SiCインゴット13を製造する場合の概要を説明する。
 本発明の特徴は、SiC原基板10に対して熱処理工程S1を行うことにより、高品質なSiC基板11を得ることにある。SiC原基板10に対して熱処理工程S1を行うことにより、歪み(歪層101)、基底面転位(Basal Plane Dislocation:BPD)、マクロステップバンチング(Macro Step Bunching:MSB)のうち、少なくとも1つ以上を除去ないし低減した高品質なSiC基板11を得ることができる。
 なお、熱処理工程S1において、耐圧層となる成長層105を形成する結晶成長工程を含む場合には、高品質なSiCエピタキシャル基板を得ることができる。
 また、熱処理工程S1を経た後のSiC基板11は、歪層101、BPD及びMSBが除去ないし低減されているため、高品質なSiCエピタキシャル基板12やSiCインゴット13を成長させるのに適している。すなわち、本発明においては、SiC基板11の上に、単結晶SiCを結晶成長させるエピタキシャル成長工程S2やインゴット成長工程S3を行うことで、高品質なSiCエピタキシャル基板12やSiCインゴット13を製造することができる。
 以下、本発明の各構成についてさらに詳述する。
<2>SiC原基板10
 SiC原基板10としては、単結晶SiCを薄板状に加工したものを例示することができる。具体的には、昇華法等で作製したSiCインゴットから円盤状にスライスしたSiCウェハ等を例示できる。なお、単結晶SiCの結晶多型としては、何れのポリタイプのものも採用することができる。
 通常、機械的な加工(例えば、スライスや研削・研磨)やレーザー加工を経たSiC原基板10は、傷1011や潜傷1012、歪み1013等の加工ダメージが導入された歪層101と、このような加工ダメージが導入されていないバルク層102と、を有している(図8参照)。
 この歪層101の有無や深さは、SEM-EBSD法やTEM、μXRD、ラマン分光法等で確認することができる。なお、高品質なSiCエピタキシャル基板12やSiCインゴット13を製造するためには、歪層101を除去し、加工ダメージが導入されていないバルク層102を表出させることが好ましい。
 また、原子レベルで平坦化されたSiC原基板10の表面には、ステップ-テラス構造が確認される。このステップ-テラス構造は、1分子層以上の段差部位であるステップ103と、{0001}面が露出した平坦部位であるテラス104と、が交互に並んだ階段構造となっている(図10及び図12参照)。
 ステップ103は、1分子層(0.25nm)が最小高さ(最小単位)であり、この1分子層が複数層重なることで、様々なステップ高さを形成している。本明細書中の説明においては、ステップ103が束化(バンチング)して巨大化し、各ポリタイプの1ユニットセルを超えた高さを有するものをMSBという。
 すなわち、MSBとは、4H-SiCの場合には4分子層を超えて(5分子層以上)バンチングしたステップ103のことを言う。また、6H-SiCの場合には6分子層を超えて(7分子層以上)バンチングしたステップ103のことを言う。
 このMSBは、エピタキシャル成長させた際にMSB起因の欠陥が発生することや、MOSFETの酸化膜信頼性の阻害要因の一つであるため、SiC原基板10の表面に形成されていないことが望ましい。
 またBPDは、市販のSiC原基板10中に数百~数千個/cmの密度で存在している。これらBPDの多くは、エピタキシャル成長中にTEDに変換されることが知られている。しかしながら、BPDの一部は、(例えば、0.1~数個/cmの密度で)エピ層へ引き継がれてしまう。このBPDは、SiC半導体デバイスの信頼性を悪化させるため、SiC基板11の表面に露出していないことが望ましい。
 ドーパントは、一般的にSiC原基板10にドープされる元素であればよい。具体的には、窒素(N)やリン(P)、アルミニウム(Al)やボロン(B)などが好ましい。
 SiC原基板10のドーピング濃度は、好ましくは1×1017cm-3より高濃度であり、より好ましくは1×1018cm-3以上であり、更に好ましくは1×1019cm-3以上である。
 ドーパント及びドーピング濃度は、ラマン分光法や二次イオン質量分析法(SIMS)により確認することができる。
 なお、SiC原基板10及びSiC基板11において、半導体素子を作る面(具体的にはエピ層を堆積する面)を主面という。この主面に相対する面を裏面という。また、主面及び裏面を合わせて表面という。
 なお、主面としては、(0001)面や(000-1)面から数度(例えば、0.4~8°)のオフ角を設けた表面を例示することができる(なお、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味する)。
<3>熱処理工程S1
 熱処理工程S1は、SiC原基板10の歪層101を除去する歪層除去工程S11と、SiC原基板10上のMSBを除去するバンチング除去工程S12と、SiC原基板10上にBPDを低減した成長層105を形成する基底面転位低減工程S13と、の工程のうち、2つ以上の工程を含む。
 この熱処理工程S1を経たSiC基板11は、歪み(歪層101)、BPD及びMSBのうち少なくとも1つ以上が除去ないし低減された表面を有する。そのため、後の工程であるエピタキシャル成長工程S2やインゴット成長工程S3において、SiC基板11の歪み・BPD及びMSBに起因した欠陥が発生することや、欠陥が継承されることを抑制することができ得る。すなわち、高品質なSiCエピタキシャル基板12及びSiCインゴット13を製造することができ得る。
 具体的には、熱処理工程S1は、SiC原基板10とSiC材料とを相対させて加熱する形態が例示できる。すなわち、熱処理工程S1は、SiC原基板10からSiC材料にSi元素及びC元素を輸送してSiC原基板10をエッチングするエッチング工程と、これとは逆にSiC材料からSiC原基板10にSi元素及びC元素を輸送してSiC原基板10を結晶成長させる結晶成長工程と、を含み得る。
 なお、熱処理工程S1の具体的な態様は、SiC原基板10に含まれる歪層101や、BPD及びMSBを除去ないし低減できる工程であれば特に限定されない。
 このエッチング工程及び結晶成長工程におけるSi元素及びC元素を輸送する駆動力としては、SiC原基板10とSiC材料間に設けられる温度勾配や化学ポテンシャル差を採用することができる。
 SiC材料は、SiC原基板10と相対させて加熱することで、SiC原基板10との間で、Si元素とC元素の受け取り又は受け渡しが可能なSiCで構成される。例えば、SiC製の容器(本体容器20)やSiC製の基板(SiC部材)を採用することができる。なお、このSiC材料の結晶多形としては、何れのポリタイプのものも採用することができ、多結晶SiCを採用しても良い。
 ドーパントは、SiC原基板10と同様の元素を採用することができる。具体的には、窒素(N)やリン(P)、アルミニウム(Al)やボロン(B)などが好ましい。
 SiC材料のドーピング濃度は、SiC原基板10のドーピング濃度よりも低く設定されていることが好ましい。このドーピング濃度の値としては、好ましくは1×1017cm-3以下であり、より好ましくは1×1016cm-3以下であり、更に好ましくは1×1015cm-3以下である。
 ドーパント及びドーピング濃度は、ラマン分光法や二次イオン質量分析法(SIMS)により確認することができる。
 SiC原基板10とSiC材料は、準閉鎖空間に配置されて加熱されることが好ましい。準閉鎖空間内でSi元素及びC元素の受け取り又は受け渡しを行うことにより、SiC原基板10の表面をエッチング及び成長させて、歪層101、BPD及びMSBのうち少なくとも1つが除去ないし低減された表面を形成することができる。
 なお、本明細書における「準閉鎖空間」とは、容器内の真空引きは可能であるが、容器内に発生した蒸気の少なくとも一部を閉じ込め可能な空間のことをいう。
 以下、図2~図4を参照しながら熱処理工程S1の好ましい形態について詳述する。
 熱処理工程S1の好ましい態様は、SiC原基板10の表面をエッチングするエッチング工程と、SiC原基板10の表面を結晶成長する結晶成長工程と、に大別することができる(図2参照)。
(エッチング工程)
 エッチング工程(図2の左側に位置する工程)によれば、SiC原基板10の表面に存在する歪層101やMSBを除去ないし低減することができる。
 図3は、エッチング工程の概要を示す説明図である。このエッチング工程においては、SiC材料が露出した準閉鎖空間にSiC原基板10を配置し、1400℃以上2300℃以下の温度範囲で加熱することで、以下1)~5)の反応が持続的に行われ、結果としてエッチングが進行すると考えられる。
 1) SiC(s)→Si(v)+C(s)
 2) 2C(s)+Si(v)→SiC(v)
 3) C(s)+2Si(v)→SiC(v)
 4) Si(v)+SiC(v)→2SiC(s)
 5) SiC(v)→Si(v)+SiC(s)
 1)の説明:SiC原基板10(SiC(s))が加熱されることで、熱分解によってSiC原基板10表面からSi原子(Si(v))が脱離する(Si原子昇華工程)。
 2)及び3)の説明:Si原子(Si(v))が脱離することでSiC原基板10表面に残存したC(C(s))は、準閉鎖空間内のSi蒸気(Si(v))と反応する。その結果、C(C(s))は、SiC又はSiC等となってSiC原基板10表面から昇華する(C原子昇華工程)。
 4)及び5)の説明:昇華したSiC又はSiC等が、温度勾配によって準閉鎖空間内のSiC材料に到達し成長する。
 このように、エッチング工程は、SiC原基板10の表面からSi原子を熱昇華させるSi原子昇華工程と、SiC原基板10の表面に残存したC原子と準閉鎖空間内のSi蒸気とを反応させることでSiC原基板10の表面から昇華させるC原子昇華工程と、を含む。
 好ましくは、エッチング工程は、SiC原基板10を温度勾配の高温側に、SiC材料を温度勾配の低温側に、それぞれが位置するよう加熱する。これにより、SiC原基板10とSiC材料との間にエッチング空間Xが形成され、温度勾配を駆動力としてSiC原基板10の表面をエッチングすることができる。
(結晶成長工程)
 結晶成長工程(図2の右側に位置する工程)によれば、SiC原基板10の表面のBPDを他の転位に変換し、SiC基板11の表面に露出するBPDを除去ないし低減することができる。
 また、SiC基板11の表面に形成されるMSBを除去ないし低減することができる。
 図4は、結晶成長工程の概要を示す説明図である。この結晶成長工程においては、SiC材料が露出した準閉鎖空間にSiC原基板10を配置し、1400℃以上2300℃以下の温度範囲で加熱することで、以下1)~5)の反応が持続的に行われ、結果として結晶成長が進行すると考えられる。
 1) Poly-SiC(s)→Si(v)+C(s)
 2) 2C(s)+Si(v)→SiC(v)
 3) C(s)+2Si(v)→SiC(v)
 4) Si(v)+SiC(v)→2SiC(s)
 5) SiC(v)→Si(v)+SiC(s)
 1)の説明:SiC材料(Poly-SiC(s))が加熱されることで、熱分解によってSiCからSi原子(Si(v))が脱離する。
 2)及び3)の説明:Si原子(Si(v))が脱離することで残存したC(C(s))は、準閉鎖空間内のSi蒸気(Si(v))と反応する。その結果、C(C(s))は、SiC又はSiC等となって準閉鎖空間内に昇華する。
 4)及び5)の説明:昇華したSiC又はSiC等が、温度勾配(又は化学ポテンシャル差)によってSiC原基板10のテラスに到達・拡散し、ステップに到達することで下地のSiC原基板10の多型を引き継いで成長する(ステップフロー成長)。
 このように、結晶成長工程は、SiC材料の表面からSi原子を熱昇華させるSi原子昇華工程と、SiC材料の表面に残存したC原子と準閉鎖空間内のSi蒸気とを反応させることでSiC材料の表面から昇華させるC原子昇華工程と、温度勾配や化学ポテンシャル差を駆動力として原料(Si原子及びC原子)をSiC原基板10表面まで輸送する原料輸送工程と、SiC原基板10のステップに原料が到達して成長するステップフロー成長工程と、を含む。
 なお、ここでいう原料とは、Si元素、C元素及びドーパントを含む。そのため、SiC材料のドーパントがSi元素及びC元素と共に輸送されるため、SiC材料のドーピング濃度を引きついで成長層105が成長する。そのため、耐圧層(エピ層)に適したドーピング濃度のSiC材料を採用することにより、熱処理工程S1でSiCエピタキシャル基板12を製造することができる。
 好ましくは、結晶成長工程は、SiC材料を温度勾配の高温側に、SiC原基板10を温度勾配の低温側に、それぞれが位置するよう加熱する。これにより、SiC原基板10とSiC材料との間に原料供給空間Yが形成され、温度勾配を駆動力としてSiC原基板10を結晶成長させることができる。
 なお、SiC原基板10に単結晶SiCを、SiC材料に多結晶SiCを、それぞれ採用する場合には、多結晶SiCと単結晶SiCの表面で発生する分圧差(化学ポテンシャル差)を原料輸送の駆動力として、結晶成長させることができる。この場合には、温度勾配を設けても良いし、設けなくても良い。
 以上までは、熱処理工程S1をエッチング工程と結晶成長工程とに大別して説明を加えた。しかしながら、熱処理工程S1は、SiC原基板10を加熱する環境という観点からも2種類に分類することができる。
 すなわち、図2の上下方向に区分して示すように、熱処理工程S1は、SiC原基板10をSiC-Si平衡蒸気圧環境下で加熱する形態と、SiC-C平衡蒸気圧環境下で加熱する形態と、に分類できる。
 ここで、SiC-Si平衡蒸気圧環境とは、SiC(固体)とSi(液相)とが気相を介して相平衡状態となっているときの蒸気圧環境のことを言う。
 また、SiC-C平衡蒸気圧環境とは、SiC(固相)とC(固相)とが気相を介して相平衡状態となっているときの蒸気圧環境のことを言う。
 なお、本明細書におけるSiC-Si平衡蒸気圧環境及びSiC-C平衡蒸気圧環境とは、理論的な熱平衡環境から導かれた成長速度と成長温度の関係を満たす近熱平衡蒸気圧環境を含む。
 SiC-Si平衡蒸気圧環境の気相中の原子数比Si/Cは、SiC-C平衡蒸気圧環境の気相中の原子数比Si/Cよりも大きい。
 SiC-Si平衡蒸気圧環境は、原子数比Si/Cが1を超える準閉鎖空間に前記SiC原基板10を配置し加熱することで形成することができる。例えば、化学量論比1:1を満たすSiC製の容器(本体容器20)内に、化学量論比1:1を満たすSiC原基板10と、化学量論比1:1を満たすSiC材料と、Si蒸気供給源(Siペレット等)と、を配置した場合には、準閉鎖空間内の原子数比Si/Cは1を超える。
 SiC-C平衡蒸気圧環境は、原子数比Si/Cが1以下である準閉鎖空間に前記SiC原基板を配置し加熱することで形成することができる。例えば、化学量論比1:1を満たすSiC製の容器(本体容器20)内に、化学量論比1:1を満たすSiC原基板10と、化学量論比1:1を満たすSiC材料と、を配置した場合には、本体容器20内の原子数比Si/Cは1となる。また、C蒸気供給源(Cペレット等)を配置して原子数比Si/Cを1以下としても良い。
 上述したように、熱処理工程S1は、(1)エッチング工程であるか、結晶成長工程であるか、(2)SiC-Si平衡蒸気圧環境下で熱処理を行うか、SiC-C平衡蒸気圧環境下で熱処理を行うか、という観点で分類をすることができる。この分類の組み合わせを効果と紐づけると、以下の4種類に分類することができる。
 SiC-C平衡蒸気圧環境下でエッチング工程を行う形態では、SiC原基板10の歪層101をエッチングによって除去することが可能であり、エッチング後の表面にはMSBが形成される。そのため、エッチングバンチング工程S111と分類する(図2左下)。
 SiC-Si平衡蒸気圧環境下でエッチング工程を行う態様では、SiC原基板10の歪層101をエッチングによって除去することが可能であり、エッチング後の表面にはMSBが形成されない。そのため、エッチングバンチング除去工程S121と分類する(図2左上)。
 なお、エッチングバンチング工程S111とエッチングバンチング除去工程S121では、SiC原基板10の歪層101を除去ないし低減することが可能であるため、まとめて歪層除去工程S11と分類する(図2左側)。
 SiC-Si平衡蒸気圧環境下で結晶成長工程を行う形態では、SiC原基板10上に成長層105を形成することが可能であり、成長層105の表面にはMSBが形成されない。そのため、成長バンチング除去工程S122と分類する(図2右上)。
 なお、エッチングバンチング除去工程S121と成長バンチング除去工程S122では、MSBを除去ないし低減することが可能であるため、まとめてバンチング除去工程S12と分類する(図2上側)。
 SiC-C平衡蒸気圧環境下で結晶成長工程を行う形態では、成長層105中のBPDを除去ないし低減することが可能である。そのため、基底面転位低減工程S13と分類する(図2右下)。
 なお、結晶成長工程(成長バンチング除去工程S122及び基底面転位低減工程S13)を行う形態では、SiCエピタキシャル基板12を製造することができる。すなわち、熱処理工程S1が、SiC原基板10よりも低いドーピング濃度よりも低いSiC材料を用いた結晶成長工程を含むことにより、耐圧層となる成長層105を形成することができる。
(製造装置)
 次に、上述した4種類の分類を実現可能な製造装置の形態について説明する。
 以下、好ましい実施の形態として、Si元素及びC元素を含む雰囲気下で、SiC原基板10を熱処理可能な本体容器20を用いる形態について説明する。また、本体容器20と同様の環境を形成する装置構成であれば、当然に採用することができる。具体的には、準閉鎖空間内にSi元素及びC元素の雰囲気を形成可能な装置構成であれば採用することができる。
 本体容器20は、内部空間にSiC材料が露出した構成であることが好ましい。本実施形態では、本体容器20の全体がSiC材料(多結晶SiC)で構成されている。このような材料で構成された本体容器20を加熱することで、内部(準閉鎖空間)にSi元素及びC元素を含む雰囲気を発生させることができる。
 加熱処理された本体容器20内の環境は、Si元素を含む気相種及びC元素を含む気相種の混合系の蒸気圧環境となることが望ましい。このSi元素を含む気相種としては、Si,Si,Si,SiC,SiC,SiCが例示できる。また、C元素を含む気相種としては、SiC,SiC,SiC,Cが例示できる。すなわち、SiC系ガスが本体容器20内に存在している状態となる。
 なお、本体容器20の加熱処理時に、Si元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる構成であれば、その構成を採用することができる。例えば、内面の一部にSiC材料が露出した構成や、本体容器20内に別途SiC材料(SiC製の基板等)を配置する構成を示すことができる。
 熱処理工程S1は、本体容器20の内部にSiC原基板10を収容し、内部に温度勾配が形成されるように本体容器20を加熱する形態とすることが好ましい。以下、内部に温度勾配が形成されるように本体容器20を加熱する場合の装置構成(本体容器20、加熱炉30、高融点容器40)について図5及び図6を参照しながら説明を加える。
 本体容器20は、図5に示すように、互いに嵌合可能な上容器21と下容器22とを備える嵌合容器である。上容器21と下容器22の嵌合部には、微小な間隙23が形成されており、この間隙23から本体容器20内の排気(真空引き)が可能なよう構成されている。すなわち、本体容器20の内部は、準閉鎖空間となっている。
 加熱炉30は、本体容器20を、Si元素を含む雰囲気下で温度勾配を設けて加熱可能な構成を有している。具体的には、図6に示すように、加熱炉30は、被処理物(SiC原基板10等)を1000℃以上2300℃以下の温度に加熱することが可能な本加熱室31と、被処理物を500℃以上の温度に予備加熱可能な予備加熱室32と、本体容器20を収容可能な高融点容器40と、この高融点容器40を予備加熱室32から本加熱室31へ移動可能な移動手段33(移動台)と、を備えている。
 本加熱室31は、平面断面視で正六角形に形成されており、その内側に高融点容器40が配置される。
 本加熱室31の内部には、加熱ヒータ34(メッシュヒーター)が備えられている。また、本加熱室31の側壁や天井には多層熱反射金属板が固定されている(図示せず。)。この多層熱反射金属板は、加熱ヒータ34の熱を本加熱室31の略中央部に向けて反射させるように構成されている。
 これにより、本加熱室31内において、被処理物が収容される高融点容器40を取り囲むように加熱ヒータ34が配置され、更にその外側に多層熱反射金属板が配置されることで、1000℃以上2300℃以下の温度まで昇温させることができる。
 なお、加熱ヒータ34としては、例えば、抵抗加熱式のヒータや高周波誘導加熱式のヒータを用いることができる。
 また、加熱ヒータ34は、高融点容器40内に温度勾配を形成可能な構成を採用しても良い。例えば、加熱ヒータ34は、上側(若しくは下側)に多くのヒータが配置されるよう構成しても良い。また、加熱ヒータ34は、上側(若しくは下側)に向かうにつれて幅が大きくなるように構成しても良い。あるいは、加熱ヒータ34は、上側(若しくは下側)に向かうにつれて供給される電力を大きくすることが可能なよう構成しても良い。
 また、本加熱室31には、本加熱室31内の排気を行う真空形成用バルブ35と、本加熱室31内に不活性ガスを導入する不活性ガス注入用バルブ36と、本加熱室31内の真空度を測定する真空計37と、が接続されている。
 真空形成用バルブ35は、本加熱室31内を排気して真空引きする真空引ポンプと接続されている(図示せず。)。この真空形成用バルブ35及び真空引きポンプにより、本加熱室31内の真空度は、例えば、10Pa以下、より好ましくは1Pa以下、さらに好ましくは10-3Pa以下に調整することができる。この真空引きポンプとしては、ターボ分子ポンプを例示することができる。
 不活性ガス注入用バルブ36は、不活性ガス供給源と接続されている(図示せず。)。この不活性ガス注入用バルブ36及び不活性ガス供給源により、本加熱室31内に不活性ガスを10-5~10000Paの範囲で導入することができる。この不活性ガスとしては、Ar,He,N等を選択することができる。
 予備加熱室32は、本加熱室31と接続されており、移動手段33により高融点容器40を移動可能に構成されている。なお、本実施形態の予備加熱室32には、本加熱室31の加熱ヒータ34の余熱により昇温可能なよう構成されている。例えば、本加熱室31を2000℃まで昇温した場合には、予備加熱室32は1000℃程度まで昇温され、被処理物(SiC原基板10、本体容器20、高融点容器40等)の脱ガス処理を行うことができる。
 移動手段33は、高融点容器40を載置して、本加熱室31と予備加熱室32を移動可能に構成されている。この移動手段33による本加熱室31と予備加熱室32間の搬送は、最短1分程で完了するため、1~1000℃/minでの昇温・降温を実現することができる。
 このように、本製造装置においては急速昇温及び急速降温が行えるため、従来の装置では困難であった、昇温中及び降温中の低温成長履歴を持たない表面形状を観察することが可能である。
 また、図6においては、本加熱室31の下方に予備加熱室32を配置しているが、これに限られず、何れの方向に配置しても良い。
 また、本実施形態に係る移動手段33は、高融点容器40を載置する移動台である。この移動台と高融点容器40の接触部から、微小な熱を逃がしている。これにより、高融点容器40内に温度勾配を形成することができる。
 本実施形態の加熱炉30では、高融点容器40の底部が移動台と接触しているため、高融点容器40の上容器41から下容器42に向かって温度が下がるように温度勾配が設けられる。
 なお、この温度勾配の方向は、移動台と高融点容器40の接触部の位置を変更することで、任意の方向に設定することができる。例えば、移動台に吊り下げ式等を採用して、接触部を高融点容器40の天井に設ける場合には、熱が上方向に逃げる。そのため温度勾配は、高融点容器40の上容器41から下容器42に向かって温度が上がるように温度勾配が設けられることとなる。なお、この温度勾配は、SiC原基板10の表裏方向に沿って形成されていることが望ましい。
 また、上述したように、加熱ヒータ34の構成により、温度勾配を形成してもよい。
 加熱炉30内のSi元素を含む雰囲気は、高融点容器40及びSi蒸気供給源44を用いて形成している。例えば、本体容器20の周囲にSi元素を含む雰囲気を形成可能な方法であれば、SiC基板11の製造装置に採用することができる。
 高融点容器40は、高融点材料を含んで構成されている。例えば、汎用耐熱部材であるC、高融点金属であるW,Re,Os,Ta,Mo、炭化物であるTa,HfC,TaC,NbC,ZrC,TaC,TiC,WC,MoC、窒化物であるHfN,TaN,BN,TaN,ZrN,TiN、ホウ化物であるHfB,TaB,ZrB,NB,TiB,多結晶SiC等を例示することができる。
 この高融点容器40は、本体容器20と同様に、互いに嵌合可能な上容器41と下容器42と、を備える嵌合容器であり、本体容器20を収容可能に構成されている。上容器41と下容器42の嵌合部には、微小な間隙43が形成されており、この間隙43から高融点容器40内の排気(真空引き)が可能なよう構成されている。すなわち、本体容器20と同様に、高融点容器40の内部は、準閉鎖空間となっていることが好ましい。
 高融点容器40は、高融点容器40内にSi蒸気を供給可能なSi蒸気供給源44を有している。Si蒸気供給源44は、加熱処理時にSi蒸気を高融点容器40内に発生させる構成であれば良い。このSi蒸気供給源44としては、固体のSi(単結晶Si片やSi粉末等のSiペレット)やSi化合物を例示することができる。
 本実施形態に係るSiC基板11の製造装置では、高融点容器40の材料としてTaCを採用し、Si蒸気供給源44としてタンタルシリサイドを採用している。すなわち、図5に示すように、高融点容器40の内側にタンタルシリサイド層が形成されており、加熱処理時にタンタルシリサイド層からSi蒸気が容器内に供給されるよう構成されている。これにより、高融点容器40内にSi蒸気圧環境が形成され、Si元素を含む雰囲気下で本体容器20を加熱することができる。
 この他にも、加熱処理時に高融点容器40内にSi元素を含む雰囲気が形成される構成であれば採用することができる。
 本実施形態に係るSiC基板11の製造装置によれば、本体容器20を、Si元素を含む雰囲気(例えば、Si蒸気圧環境)下で加熱することにより、本体容器20内からSi元素を含む気相種が排気されることを抑制することができる。すなわち、本体容器20内のSi元素を含む気相種の蒸気圧と、本体容器20外のSi元素を含む気相種の蒸気圧とをバランスさせることにより、本体容器20内の環境を維持することができる。
 また、本実施形態に係るSiC基板11の製造装置によれば、本体容器20は多結晶SiCで構成されている。このような構成とすることにより、加熱炉30を用いて本体容器20を加熱した際に、本体容器20内にSi元素を含む気相種及びC元素を含む気相種の蒸気を発生させることができる。
(熱処理工程S1を実現する装置構成)
 上述した4種類の分類(SiC-C平衡蒸気圧環境下でのエッチング(図2左下)、SiC-Si平衡蒸気圧環境下でのエッチング(図2左上)、SiC-C平衡蒸気圧環境下での結晶成長(図2右下)、SiC-Si平衡蒸気圧環境下での結晶成長(図2右上))を実現する装置構成の概要について図7を参照して詳細に説明する。
 エッチング工程を実現するための装置構成の概要を図7の左側に図示する。図7左側に示すように、本体容器20は、SiC原基板10が温度勾配の高温側に位置し、かつ、SiC材料(本体容器20の一部)が温度勾配の低温側に位置したエッチング空間Xを有する。すなわち、加熱炉30よって形成される温度勾配により、SiC原基板10がSiC材料(例えば、下容器22の底面)よりも高温となる位置に配置されることで、エッチング空間Xが形成されている。
 エッチング空間Xは、SiC原基板10と本体容器20の間に設けられた温度差を駆動力として、SiC原基板10表面のSi原子及びC原子を本体容器20に輸送する空間である。
 例えば、SiC原基板10の片面の温度と、この片面に相対する下容器22の底面の温度を比較した際に、SiC原基板10側の温度が高く、下容器22側の温度が低くなるよう本体容器20を加熱する(図7左参照)。このように、SiC原基板10と下容器22との間に温度差を設けた空間(エッチング空間X)を形成することで、温度差を駆動力としてSi原子及びC原子を輸送し、SiC原基板10の片面をエッチングすることができる(図7右側の白抜き矢印が輸送の方向である)。
 本体容器20は、SiC原基板10と本体容器20との間に設けられる基板保持具24を有していても良い。
 本実施形態に係る加熱炉30は、本体容器20の上容器21から下容器22に向かって温度が下がるような温度勾配を形成して、加熱可能な構成となっている。そのため、SiC原基板10を保持可能な基板保持具24を、SiC原基板10と下容器22の間に設けて、SiC原基板10と下容器22の間にエッチング空間Xを形成してもよい。
 基板保持具24は、SiC原基板10の少なくとも一部を、本体容器20の中空に保持可能な構成であればよい。例えば、1点支持や3点支持、外周縁を支持する構成や一部を挟持する構成等、慣用の支持手段であれば当然に採用することができる。この基板保持具24の材料としては、SiC材料や高融点金属材料を採用することができる。
 なお、基板保持具24は、加熱炉30の温度勾配の方向によっては設けなくても良い。例えば、加熱炉30が、下容器22から上容器21に向かって温度が下がるよう温度勾配を形成する場合には、(基板保持具24を設けずに)下容器22の底面にSiC原基板10を配置しても良い。
 次に、結晶成長工程を実現するための装置構成の概要を図7の右側に図示する。図7右側に示すように、本体容器20は、SiC原基板10が温度勾配の低温側に位置し、かつ、SiC材料(本体容器20の一部)が温度勾配の高温側に位置した、原料供給空間Yを有する。すなわち、加熱炉30によって形成される温度勾配により、SiC原基板10がSiC材料(例えば、下容器22の底面)よりも低温となる位置に配置されることで、原料供給空間Yが形成されている。
 すなわち、原料供給空間Y内には、SiC原基板10に加えて、原料となるSi原子供給源及びC原子供給源が存在している。そして、これらを加熱することで、原料供給空間Y内にSiC原基板10の原料となるSi原子及びC原子を供給する。このSi原子及びC原子がSiC原基板10表面に輸送され再結晶化することにより、成長層105が形成される(図7右側の黒矢印が輸送の方向を示す)。
 本実施例においては、本体容器20の少なくとも一部を多結晶SiC(Poly-SiC)で形成することにより、本体容器20自体をSi原子供給源及びC原子供給源としている。
 なお、Si原子供給源及びC原子供給源としては、Si基板等のSi原子を供給可能な材料や黒鉛等のC原子を供給可能な材料、SiC基板等のSi原子及びC原子を供給可能な材料を採用することができる。
 また、SiC原基板10よりも低いドーピング濃度のSiC材料を採用することにより、耐圧層となる成長層105を形成することができる。
 このSi原子供給源及びC原子供給源の配置はこの形態に限られず、原料供給空間Y内にSi原子及びC原子を供給可能な形態であればよい。
 なお、原料に多結晶SiCを用いる場合には、多結晶SiC(原料)と単結晶SiC(SiC原基板10)の蒸気圧差(化学ポテンシャル差)を成長駆動力とすることができる。
 また、原料供給空間Y内には、SiC原基板10に向かって温度が下がるような温度勾配が設けられている。この温度勾配を成長駆動力として、SiC原基板10へのSi原子及びC原子の輸送が起こるため、成長層の成長速度が上昇する(図7右側の黒矢印が輸送の方向を示す)。
 さらに、SiC原基板10に効率よくSi原子とC原子を到達させるため、Si原子供給源及びC原子供給源をSiC原基板10に近接させても良い。図7右側の構成においては、Si原子供給源及びC原子供給源となる多結晶SiC製の上容器21をSiC原基板10と平行に近接配置した形態とすることができる。
 このSiC原基板10表面と上容器21天面との距離は、好ましくは100mm以下、より好ましくは10mm以下、さらに好ましくは2.7mm以下に設定されている。また、好ましくは0.7mm以上、より好ましくは1.2mm以上、さらに好ましくは1.7mm以上に設定されている。
 なお、エッチング空間X及び原料供給空間Yは、Si蒸気圧空間Zを介して排気(真空引き)されることが望ましい。すなわち、Si蒸気圧空間Zを有する高融点容器40内に、エッチング空間X及び/又は原料供給空間Yを有する本体容器20を配置され、さらにこの本体容器20内にSiC原基板10が配置されることが望ましい。
 次に、SiC-Si平衡蒸気圧環境を実現するための装置構成の概要を、図7の上側に図示する。SiC-Si平衡蒸気圧環境は、図7上側に示すように、原子数比Si/Cが1を超える準閉鎖空間にSiC原基板10を配置し加熱することで形成することができる。
 例えば、図7左上の形態を用いて説明すると、化学量論比1:1を満たす多結晶SiCの本体容器20内に、化学量論比1:1を満たすSiC原基板10と、化学量論比1:1を満たすSiC製の基板保持具24と、Si蒸気供給源25(Siペレット等)と、を配置した場合には、本体容器20内の原子数比Si/Cは、1を超えることとなる。この本体容器20を加熱することで、本体容器20内はSiC-Si平衡蒸気圧環境に近づくこととなる。
 SiC-C平衡蒸気圧環境を実現するための装置構成の概要を、図7の下側に図示する。SiC-C平衡蒸気圧環境は、図7下側に示すように、原子数比Si/Cが1以下の準閉鎖空間にSiC原基板10を配置し加熱することで形成することができる。
 例えば、図7左下の形態を用いて説明すると、化学量論比1:1を満たす多結晶SiCの本体容器20内に、化学量論比1:1を満たすSiC原基板10と、化学量論比1:1を満たすSiC製の基板保持具24と、を配置した場合には、本体容器20内の原子数比Si/Cは、1若しくは1以下となる。この本体容器20を加熱することで、本体容器20内はSiC-C平衡蒸気圧環境に近づくこととなる。
 また、本体容器20内の原子数比Si/Cを下げるため、C蒸気供給源を別途配置してもよいし、C蒸気供給源を含む本体容器20や基板保持具24を採用してもよい。このC蒸気供給源としては、固体のC(C基板やC粉末等のCペレット)やC化合物を例示することができる。
 SiC-C平衡蒸気圧環境下でエッチングする熱処理工程S1を行う形態とすれば、歪層101が除去されたSiC基板11を得ることができる。
 また、SiC-C平衡蒸気圧環境下で結晶成長させる熱処理工程S1を行う形態とすれば、BPDが除去ないし低減された成長層105を有する高品質なSiC基板11を得ることができる。
 これにより、後の工程であるエピタキシャル成長工程S2やインゴット成長工程S3において、SiC原基板10の歪み(歪層101)に起因する欠陥が発生することや、SiC原基板10のBPDが継承されることを抑制することができ得る。
 一方、SiC-Si平衡蒸気圧環境下でエッチング若しくは結晶成長させる熱処理工程S1を行う形態とすれば、MSBを除去ないし低減したSiC基板11を得ることができる。これにより、後の工程であるエピタキシャル成長工程S2やインゴット成長工程S3によって、MSBに起因する欠陥が発生することを抑制することができる。
 次に、図8~図15を参照して、本実施形態に係る製造装置を用いた、歪層除去工程S11、バンチング除去工程S12、基底面転位低減工程S13、についてそれぞれ詳述する。
<3-1>歪層除去工程S11
 歪層除去工程S11は、図8に示すように、SiC原基板10に導入されている歪層101を除去する工程である。以下、歪層除去工程S11について説明を加えるが、上で述べた熱処理工程S1に関する概括的な説明と重複する箇所は説明を省略する。
 歪層除去工程S11は、図9に示すように、原子数比Si/Cが1以下である準閉鎖空間内に、SiC原基板10とSiC材料(多結晶SiC製の上容器21)とを相対させて配置し、SiC原基板10が高温側、SiC材料が低温側となるよう加熱する工程である(エッチングバンチング工程S111)。
 若しくは、歪層除去工程S11は、原子数比Si/Cが1を超える準閉鎖空間内に、SiC原基板10とSiC材料(多結晶SiC製の上容器21)とを相対させて配置し、SiC原基板10が高温側、SiC材料が低温側となるよう加熱する工程である(エッチングバンチング除去工程S121)。
 換言すれば、SiC原基板10とSiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下又はSiC-C平衡蒸気圧環境下で、SiC原基板10が高温側、SiC材料が低温側となるよう加熱する工程である。
 このように、温度勾配の高温側に配置されたSiC原基板10と、温度勾配の低温側に配置された本体容器20の一部と、を相対させて熱処理することにより、SiC原基板10から本体容器20へ原子を輸送し、SiC原基板10のエッチングを達成している。
 すなわち、SiC原基板10の片面と、この片面よりも温度が低い本体容器20底面とが相対して配置されることにより、これらの間にエッチング空間Xが形成される。このエッチング空間Xでは、加熱炉30が形成する温度勾配を駆動力として原子の輸送が起こり、結果として、SiC原基板10をエッチングすることができる。
 一方、SiC原基板10のエッチングされる他の片面(裏面)には、SiC原基板10の裏面と、この裏面よりも温度が高い本体容器20天面と、を相対して配置することにより、これらの間に原料供給空間Yを形成してもよい。この原料供給空間Yでは、加熱炉30が形成する温度勾配を駆動力として原料の輸送が起こり、結果としてSiC原基板10の他の片面に成長層105を形成することができる。なお、この歪層除去工程S11においては、SiC原基板10の他の片面と本体容器20天面を接触させる等して、原料供給空間Yを形成しない構成を採用しても良い。
 また、本体容器20は、Si元素を含む雰囲気が形成されたSi蒸気圧空間Z内に配置されている。このように、Si蒸気圧空間Z内に本体容器20が配置され、Si蒸気圧環境の空間を介して本体容器20内が排気(真空引き)されることで、本体容器20内からSi原子が減少することを抑制することができる。これにより、本体容器20内の好ましい原子数比Si/Cを、長時間維持することができる。
 すなわち、Si蒸気圧空間Zを介せずにエッチング空間Xや原料供給空間Yから直接排気する場合には、間隙23からSi原子が排気されてしまう。この場合には、エッチング空間Xや原料供給空間Y内の原子数比Si/Cが著しく減少してしまう。
 一方、Si蒸気圧環境のSi蒸気圧空間Zを介して本体容器内を排気する場合には、エッチング空間Xや原料供給空間YからSi原子が排気されることを抑制して、本体容器20内の原子数比Si/Cを保つことができる。
 歪層除去工程S11におけるエッチング温度は、好ましくは1400~2300℃の範囲で設定され、より好ましくは1600~2000℃の範囲で設定される。
 歪層除去工程S11におけるエッチング速度は、上記温度領域によって制御することができ、0.001~2μm/minの範囲で選択することが可能である。
 歪層除去工程S11におけるエッチング量は、SiC原基板10の歪層101を除去できるエッチング量であれば採用することができる。このエッチング量としては、0.1μm以上20μm以下を例示することができるが、必要に応じて適用可能である。
 歪層除去工程S11におけるエッチング時間は、所望のエッチング量となるよう任意の時間に設定することができる。例えば、エッチング速度が1μm/minの時に、エッチング量を1μmとしたい場合には、エッチング時間は1分間となる。
 歪層除去工程S11における温度勾配は、エッチング空間Xにおいて、0.1~5℃/mmの範囲で設定される。
 以上、図9を用いて、原子数比Si/Cが1以下である準閉鎖空間内にSiC原基板10とSiC材料とを相対させてエッチングする場合(エッチングバンチング工程S111)について説明した。
 なお、原子数比Si/Cが1を超える準閉鎖空間内にSiC原基板10とSiC材料とを相対させてエッチングする場合(エッチングバンチング除去工程S121)であっても、同様に歪層101を除去することが可能である。
 以上説明した歪層除去工程S11を行うことにより、図8に示すように、歪層101が低減・除去されたSiC基板11を製造することができる。
<3-2>バンチング除去工程S12
 バンチング除去工程S12は、図10及び図12に示すように、SiC基板11表面に形成されたMSBを分解・除去する工程である。上述した通り、バンチング除去工程S12には、エッチングバンチング除去工程S121と、成長バンチング除去工程S122が好ましく例示される。以下、バンチング除去工程S12について説明を加えるが、上で述べた熱処理工程S1に関する概括的な説明と重複する箇所は説明を省略する。
<3-2-1>エッチングバンチング除去工程S121
 エッチングバンチング除去工程S121は、図10に示すように、MSBが形成されたSiC原基板10表面をエッチングすることにより、MSBを除去ないし低減する工程である。
 エッチングバンチング除去工程S121は、図11に示すように、原子数比Si/Cが1を超える準閉鎖空間内に、SiC原基板10とSiC材料(多結晶SiC製の下容器22)とを相対させて配置し、SiC原基板10が高温側、SiC材料が低温側となるよう加熱する工程である。
 換言すれば、SiC原基板10とSiC材料とを相対させて配置し、SiC原基板10が高温側、SiC材料が低温側となるようSiC-Si平衡蒸気圧環境下で加熱する工程である。
 このエッチングバンチング除去工程S121を実現するための装置構成は、歪層除去工程S11の本体容器20内にSi蒸気供給源25を更に配置した構成となっている。このSi蒸気供給源25を配置することにより、SiC-Si平衡蒸気圧環境下でSiC原基板10を加熱することができる。
歪層除去工程S11に関する概括的な説明と重複する部分は適宜説明を省略する。
 エッチングバンチング除去工程S121におけるエッチング温度は、好ましくは1400~2300℃の範囲で設定され、より好ましくは1600~2000℃の範囲で設定される。
 エッチングバンチング除去工程S121におけるエッチング速度は、上記温度領域によって制御することができ、0.001~2μm/minの範囲で選択することが可能である。
 エッチングバンチング除去工程S121におけるエッチング量は、SiC原基板10のMSBを分解できるエッチング量であれば採用することができる。このエッチング量としては、0.1μm以上20μm以下を例示することができる。
 エッチングバンチング除去工程S121におけるエッチング時間は、所望のエッチング量となるよう任意の時間に設定することができる。例えば、エッチング速度が1μm/minの時に、エッチング量を1μmとしたい場合には、エッチング時間は1分間となる。
 エッチングバンチング除去工程S121における温度勾配は、エッチング空間Xにおいて、0.1~5℃/mmの範囲で設定される。
 エッチングバンチング除去工程S121によれば、図10に示すように、SiC原基板10の表面をエッチングすることで、MSBが除去ないし低減されたSiC基板11を製造することができる。
<3-2-2>成長バンチング除去工程S122
 成長バンチング除去工程S122は、図12に示すように、MSBが形成されたSiC原基板10表面に結晶成長させることにより、MSBが除去ないし低減された成長層105を形成する工程である。
 成長バンチング除去工程S122は、図13に示すように、原子数比Si/Cが1を超える準閉鎖空間内に、SiC原基板10とSiC材料(多結晶SiC製の上容器21)とを相対させて配置し、SiC原基板10が低温側、SiC材料が高温側となるよう加熱する工程である。
 換言すれば、SiC原基板10とSiC材料とを相対させて配置し、SiC原基板10が低温側、SiC材料が高温側となるようSiC-Si平衡蒸気圧環境下で加熱する工程である。
 このように、温度勾配の低温側に配置されたSiC原基板10と、温度勾配の高温側に配置された本体容器20の一部と、を相対させて熱処理することにより、本体容器20からSiC原基板10へ原料を輸送して成長層105を形成している。
 すなわち、SiC原基板10の表面と、この表面よりも温度が高い本体容器20天面と、が相対して配置されることにより、これらの間に原料供給空間Yが形成される。この原料供給空間Yでは、加熱炉30が形成する温度勾配や、SiC原基板10とSiC材料の化学ポテンシャル差を駆動力として原料の輸送が起こり、結果としてSiC原基板10の表面に成長層105を形成することができる。
 また、この成長バンチング除去工程S122を実現するための装置構成は、エッチングバンチング除去工程S121と同様に、本体容器20内にSi蒸気供給源25を更に配置した構成となっている。なお、上で述べたエッチングバンチング除去工程S121の概括的な説明と重複する箇所については説明を省略する。
 成長バンチング除去工程S122における加熱温度は、好ましくは1400~2200℃の範囲で設定され、より好ましくは1600~2000℃の範囲で設定される。
 成長バンチング除去工程S122における成長速度は、上記温度領域によって制御することができ、0.001~1μm/minの範囲で選択することが可能である。
 成長バンチング除去工程S122における成長量は、好ましくは5μm以上であり、より好ましくは8μm以上である。
 成長バンチング除去工程S122における成長時間は、所望の成長量となるよう任意の時間に設定することができる。例えば、成長速度が10nm/minの時に、成長量を10μmとしたい場合には、成長時間は100分間となる。
 成長バンチング除去工程S122における真空度(本加熱室31)は、10-5~10Paであり、より好ましくは10-3~1Paである。
 成長バンチング除去工程S122においては、成長中に不活性ガスを導入することも可能である。この不活性ガスは、Ar等を選択することができ、この不活性ガスを10-5~10000Paの範囲で導入することによって、加熱炉30(本加熱室31)の真空度を調整することができる。
 成長バンチング除去工程S122によれば、図12に示すように、SiC原基板10表面にMSBを有さない成長層105を成長させることで、MSBが除去ないし低減されたSiC基板11を製造することができる。
<3-3>基底面転位低減工程S13
 基底面転位低減工程S13は、図14に示すように、SiC原基板10のテラス幅Wが増大する条件で結晶成長させることで、BPDが除去ないし低減された成長層105を形成する工程である。上で述べた熱処理工程S1に関する概括的な説明と重複する箇所は説明を省略する。
 基底面転位低減工程S13は、図15に示すように、原子数比Si/Cが1以下である準閉鎖空間内にSiC原基板10とSiC材料(多結晶SiC製の上容器21)とを相対させて配置し、SiC原基板10が低温側、SiC材料が高温側となるよう加熱する工程である。
 換言すれば、SiC原基板10とSiC材料とを相対させて配置し、SiC原基板10が低温側、SiC材料が高温側となるようSiC-C平衡蒸気圧環境下で加熱する工程である。
 この基底面転位低減工程S13を実現するための装置構成は、成長バンチング除去工程S122と同様に、温度勾配の低温側に配置されたSiC原基板10と、温度勾配の高温側に配置された本体容器20の一部と、を相対させて熱処理することにより、本体容器20からSiC原基板10へ原料を輸送して成長層105を形成している。
 一方で、この基底面転位低減工程S13では、成長バンチング除去工程S122と異なり、Si蒸気供給源25は配置しない構成となっている。なお、上で述べた成長バンチング除去工程S122の概括的な説明と重複する箇所については説明を省略する。
 基底面転位低減工程S13における加熱温度は、好ましくは1400~2200℃の範囲で設定され、より好ましくは1600~2000℃の範囲で設定される。
 基底面転位低減工程S13における成長速度は、上記温度領域や成長環境によって制御することができ、0.001~1μm/minの範囲で選択することが可能である。
 基底面転位低減工程S13における成長量は、好ましくは5μm以上であり、より好ましくは8μm以上である。
 基底面転位低減工程S13における成長時間は、所望の成長量となるよう任意の時間に設定することができる。例えば、成長速度が10nm/minの時に、成長量を10μmとしたい場合には、成長時間は100分間となる。
 基底面転位低減工程S13における真空度(本加熱室31)は、10-5~10Paであり、より好ましくは10-3~1Paである。
 基底面転位低減工程S13においては、成長中に不活性ガスを導入することも可能である。この不活性ガスは、Ar等を選択することができ、この不活性ガスを10-5~10000Paの範囲で導入することによって、加熱炉30(本加熱室31)の真空度を調整することができる。
 基底面転位低減工程S13によれば、テラス104の幅(テラス幅W)を増大する条件で成長させることにより、BPDが他の欠陥・転位に変換される変換率(BPD変換率)を向上させ、成長層105中のBPDを除去ないし低減することができる。このテラス幅Wが増大する条件とは、成長前のテラス幅W1と比較して成長後のテラス幅W2が増大する条件であり、例えば、SiC-C平衡蒸気圧環境やCリッチ環境で成長させることで実現することができる。
 なお、テラス幅W(テラス幅W1及びテラス幅W2含む)の値としては、例えば、撮影したSEM像のステップ103に対して垂直なラインを引き、このライン上に存在するステップ103数をカウントすることで、テラス幅の平均値を採用しても良い(テラス幅W=ライン長さ/ライン上のステップ数)。
 好ましくは、バンチング除去工程S12の後に、基底面転位低減工程S13を行う。すなわち、MSBが形成されていない表面のテラス104幅と、MSBが形成されている表面のテラス104幅と、を比較すると、MSBが形成されていない表面のテラス104の方が、よりテラス104幅が狭い。そのため、MSBの分解後に、MSBが形成される条件で成長層105を成長させることで、BPD変換率を向上させることができる。
<3-4>好ましい熱処理工程S1の形態
 図16に、SiC原基板10を熱処理工程S1により処理し、SiC基板11又はSiCエピタキシャル基板12を製造する工程についての好ましい実施の形態を示す。
 図16(a)はSiC基板11を製造する好ましい実施の形態であり、図16(b)はSiCエピタキシャル基板12を製造する好ましい実施の形態である。
 図16に示す形態における歪層除去工程S11としては、エッチングバンチング工程S111とエッチングバンチング除去工程S121のうち、何れをも採用することができる。
 なお、エッチングバンチング除去工程S121を採用する場合には、歪層101の除去と共に、MSBの除去ないし低減を同時に行うことができる。
 図16は、歪層除去工程S11の後にバンチング除去工程S12を行う形態である。かかる形態によれば、歪層101及びMSBを表面に含まないSiC基板11又はSiCエピタキシャル基板12を製造することができる。
 また、図16は、歪層除去工程S11、バンチング除去工程S12に次いで基底面転位低減工程S13を行う形態である。この形態のように歪層除去工程S11及びバンチング除去工程S12を先んじて行うことにより、後の基底面転位低減工程S13において、BPDが他の欠陥・転位に変換される変換率(BPD変換率)を向上させ、BPD密度がより低減された成長層105を形成することができる。
 また、図16は、基底面転位低減工程S13の後、さらにバンチング除去工程S12を行う形態である。このように基底面転位低減工程S13の後にバンチング除去工程S12を行うことにより、歪層101やBPDだけでなく、MSBを表面に含まないSiC基板11又はSiCエピタキシャル基板12を製造することができる。
 また、図16に示す形態におけるバンチング除去工程S12としては、エッチングバンチング除去工程S121と成長バンチング除去工程S122のうち、何れをも採用することができる。
 なお、図16(b)は、結晶成長工程(基底面転位低減工程S13及び/又は成長バンチング除去工程S122)において、SiC原基板10よりも低いドーピング濃度のSiC材料を採用した場合の形態である。
 熱処理工程S1として、歪層除去工程S11(エッチングバンチング工程S111若しくはエッチングバンチング除去工程S121)、バンチング除去工程S12(エッチングバンチング除去工程S121若しくは成長バンチング除去工程S122)、基底面転位低減工程S13から選ばれる2種以上を含む形態とする場合、当該2種以上の工程は、同様の装置構成で熱処理することができる。
 複数の熱処理工程S1を行う容器としては、Si元素及びC元素を含む雰囲気を内部空間に発生させる容器、具体的には本体容器20を挙げることができる。
 このように、本体容器20等を用いることで、熱処理工程S1が複数の工程を含んでいる場合であっても、同様の容器内で全て完結することができるため作業の簡素化が見込める。また、同様の装置系でエッチング及び結晶成長を行うことができるため、複数の装置を導入する必要がなく産業上非常に有利である。
<4>SiC基板11
 本発明は、熱処理工程S1を経て製造されたSiC基板11にも関する。本発明のSiC基板11は、熱処理工程S1によって歪み(歪層101)、BPD、MSB等のエピタキシャル成長やインゴット成長に悪影響を及ぼす因子を表面に含まない。そのため、本発明のSiC基板11によれば、より高品質なSiCエピタキシャル基板12やSiCインゴット13を成長させることができる。
 SiC基板11は、好ましくは表面にBPDを含まない成長層105を有することを特徴とする。BPDを含まない成長層105の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、さらに好ましくは0.1μm以上である。BPDを含まない層の厚みが上記範囲にあれば、SiC基板11上にSiCを成長させるエピタキシャル成長工程S2やインゴット成長工程S3において、SiC基板11中に存在するBPDが伝搬することを抑制することができ得る。
 また、熱処理工程S1において、SiC原基板10よりも低いドーピング濃度のSiC材料を用いた結晶成長工程を含む場合には、SiCエピタキシャル基板12を得ることができる。この場合には、後述するエピタキシャル成長工程S2を経ることなく、SiCエピタキシャル基板12を製造することができる。
 本発明のSiC基板11の直径は特に限定されず、好ましくは6インチ以上、より好ましくは8インチ以上、さらに好ましくは12インチ以上である。このようなサイズのSiC基板11を成長させることで、大口径でありながら高品質なSiCエピタキシャル基板12やSiCインゴット13を得ることができる。
<5>エピタキシャル成長工程S2
 エピタキシャル成長工程S2は、SiC基板11の主面にエピタキシャル成長によりエピ層を形成し、パワーデバイス等の用途に用いられるSiCエピタキシャル基板12を形成する工程である。
 エピタキシャル成長工程S2におけるエピタキシャル成長の手段としては、公知の方法を制限なく用いることができる。例えば、化学気相堆積法(Chemical Vapor Deposition:CVD)や物理的気相輸送法(Physical Vapor Transport:PVT)、準安定溶媒エピタキシー法(Metastable Solvent Epitaxy:MSE)等が挙げられる。
<6>SiCエピタキシャル基板12
 本発明は、上述の工程により製造されたSiCエピタキシャル基板12にも関する。
 本発明のSiCエピタキシャル基板12は、上述の通り歪み・BPD・MSBが抑制されたSiC基板11に由来するものであるため、エピ層への欠陥の伝搬が抑制されている。そのため、本発明のSiCエピタキシャル基板12によれば、高性能なSiC半導体デバイスを提供することができる。
<7>インゴット成長工程S3
 インゴット成長工程S3は、SiC基板11の上に単結晶SiCを成長させてSiCインゴット13を製造する工程である。インゴット成長工程S3としては、公知の何れの成長方法を採用してもよく、昇華法やCVD法が例示できる。
<8>SiCインゴット13
 本発明は上述のインゴット成長工程S3により製造されたSiCインゴット13にも関する。
 本発明のSiCインゴット13は、BPDをほとんど含まず高品質である。
 以下、実施例1、実施例2、実施例3、実施例4、実施例5を挙げて、本発明をより具体的に説明する。
 実施例1は、エッチングバンチング工程S111を具体的に説明する実施例である。実施例2は、エッチングバンチング除去工程S121を具体的に説明する実施例である。実施例3は、成長バンチング除去工程S122を具体的に説明する実施例である。実施例4は、基底面転位低減工程S13を具体的に説明する実施例である。実施例5は、耐圧層を形成する結晶成長工程を具体的に説明する実施例である。
 <実施例1:エッチングバンチング工程>
 SiC原基板10を本体容器20及び高融点容器40に収容し(図9参照)、以下の熱処理条件で熱処理することで、SiC原基板10の歪層101を除去した。
[SiC原基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.45mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 エッチング面:(0001)面
 歪層101の深さ:5μm
 なお、歪層101の深さはSEM-EBSD法にて確認した。また、この歪層101は、TEMやμXRD、ラマン分光法で確認することもできる。
[本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 基板保持具24の材料:単結晶SiC
 SiC原基板10と本体容器20の底面の距離:2mm
 容器内の原子数比Si/C:1以下
[高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
[熱処理条件]
 上記条件で配置したSiC原基板10を、以下の条件で加熱処理した。
 加熱温度:1800℃
 加熱時間:20min
 エッチング量:5μm
 温度勾配:1℃/mm
 エッチング速度:0.25μm/min
 本加熱室真空度:10-5Pa
[SEM-EBSD法による歪層の測定]
 SiC原基板10の格子歪みは、基準となる基準結晶格子と比較することにより求めることができる。この格子歪みを測定する手段としては、例えば、SEM-EBSD法を用いることができる。SEM-EBSD法は、走査電子顕微鏡(Scanning Electron Microscope:SEM)の中で、電子線後方散乱により得られる菊池線回折図形をもとに、微小領域の歪み測定が可能な手法(Electron Back Scattering Diffraction:EBSD)である。この手法では、基準となる基準結晶格子の回折図形と測定した結晶格子の回折図形を比較することで、格子歪み量を求めることができる。
 基準結晶格子としては、例えば、格子歪みが生じていないと考えられる領域に基準点を設定する。すなわち、図8におけるバルク層102の領域に基準点を配置することが望ましい。通常、歪層101の深さは、10μm程度となるのが定説である。そのため、歪層101よりも十分に深いと考えられる深さ20~35μm程度の位置に、基準点を設定すればよい。
 次に、この基準点における結晶格子の回折図形と、ナノメートルオーダーのピッチで測定した各測定領域の結晶格子の回折図形とを比較する。これにより、基準点に対する各測定領域の格子歪み量を算出することができる。
 また、基準結晶格子として格子歪みが生じていないと考えられる基準点を設定する場合を示したが、単結晶SiCの理想的な結晶格子を基準とすることや、測定領域面内の大多数(例えば、過半数以上)を占める結晶格子を基準とすることも当然に可能である。
 このSEM-EBSD法により格子歪みが存在するか否かを測定することにより、歪層101の有無を判断することができる。すなわち、傷1011や潜傷1012、歪み1013等の加工ダメージが導入されている場合には、SiC原基板10に格子歪みが生じるため、SEM-EBSD法により応力が観察される。
 熱処理工程S1前のSiC原基板10に存在する歪層101と、熱処理工程S1後のSiC原基板10に存在する歪層101と、をSEM-EBSD法により観察した。その結果を図17(a)及び図17(b)に示す。
 なお、この測定においては、熱処理工程S1前後のSiC原基板10を劈開した断面について、走査型電子顕微鏡を用いて、以下の条件で測定を行った。
 SEM装置:Zeiss製Merline
 EBSD解析:TSLソリューションズ製OIM結晶方位解析装置
 加速電圧:15kV
 プローブ電流:15nA
 ステップサイズ:200nm
 基準点R深さ:20μm
 図17(a)は、熱処理工程S1前のSiC原基板10の断面SEM-EBSDイメージング画像である。
 この図17(a)に示すように、熱処理工程S1の前においては、SiC原基板10内に深さ5μmの格子歪みが観察された。これは、機械加工時により導入された格子歪みであり、歪層101を有していることがわかる。なお、この図17(a)では、圧縮応力が観測されている。
 図17(b)は、熱処理工程S1後のSiC原基板10の断面SEM-EBSDイメージング画像である。
 この図17(b)に示すように、熱処理工程S1の後においては、SiC原基板10内に格子歪みは観察されなかった。すなわち、熱処理工程S1により、歪層101が除去されたことがわかる。
 なお、熱処理工程S1後のSiC原基板10の表面には、MSBが形成されていた。
 このように、エッチングバンチング工程S111によれば、原子数比Si/Cが1以下である準閉鎖空間内で、SiC原基板10をエッチングすることにより、歪層101を除去ないし低減することができる。これにより、歪層101が低減・除去されたSiC基板11を製造することができる。
<実施例2:エッチングバンチング除去工程>
 SiC原基板10を本体容器20及び高融点容器40に収容し(図11参照)、以下の熱処理条件で熱処理することで、SiC原基板10表面のMSBを除去した。
[SiC原基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.3mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 エッチング面:(0001)面
 MSBの有無:有
 なお、ステップ高さやテラス幅、MSBの有無は、原子間力顕微鏡(AFM)や特開2015-179082号公報に記載の走査型電子顕微鏡(SEM)像コントラストを評価する手法により確認することができる。
[本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 基板保持具24の材料:単結晶SiC
 SiC原基板10と本体容器20の底面との距離:2mm
 Si蒸気供給源25:単結晶Si片
 容器内の原子数比Si/C:1を超える
 このように、本体容器20内に、SiC原基板10と共にSi片を収容することで、容器内の原子数比Si/Cが1を超える。
 [高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
 [熱処理条件]
 上記条件で配置したSiC原基板10を、以下の条件で加熱処理した。
 加熱温度:1900℃
 加熱時間:60min
 温度勾配:1℃/mm
 エッチング速度:300nm/min
 本加熱室真空度:10-5Pa
 熱処理工程S1前のSiC原基板10のステップ103と、熱処理工程S1後のSiC原基板10のステップ103と、をSEMにより観察した。その結果を図18(a)及び図18(b)に示す。なお、ステップ103高さは、原子間力顕微鏡(AFM)により測定した。また、テラス104幅は、SEMにより測定した。
 図18(a)は、熱処理工程S1前のSiC原基板10のSEM像である。この熱処理工程S1前のSiC原基板10表面には、高さ3nm以上のMSBが形成されている。なお、ステップ高さはAFMにより測定した。
 図18(b)は、熱処理工程S1後のSiC原基板10のSEM像である。この熱処理工程S1後のSiC原基板10表面には、MSBは形成されておらず、1.0nm(フルユニットセル)のステップが規則正しく配列していることがわかる。
 このように、エッチングバンチング除去工程S121によれば、原子数比Si/Cが1を超える準閉鎖空間内でSiC原基板10をエッチングすることにより、MSBを除去ないし低減することができる。これにより、MSBが低減・除去されたSiC基板11を製造することができる。
 また、熱処理工程S1後のSiC原基板10をSEM-EBSD法により観察したところ、実施例1と同様に、歪層101は観察されなかった。すなわち、エッチングバンチング除去工程S121においても、歪層101を除去することができる。
<実施例3:成長バンチング除去工程>
 SiC原基板10を本体容器20及び高融点容器40に収容し(図13参照)、以下の熱処理条件で熱処理することで、SiC原基板10表面のMSBを除去した。
[SiC原基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.3mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 エッチング面:(0001)面
 MSBの有無:有
[本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 SiC原基板10と本体容器20の底面との距離:2mm
 Si蒸気供給源25:単結晶Si片
 容器内の原子数比Si/C:1を超える
 このように、本体容器20内にSiC原基板10と共にSi片を収容することで、容器内の原子数比Si/Cが1を超える。
[高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
[熱処理条件]
 上記条件で配置したSiC原基板10を、以下の条件で加熱処理した。
 加熱温度:1800℃
 加熱時間:60min
 温度勾配:1℃/mm
 成長速度:68nm/min
 本加熱室31真空度:10-5Pa
 熱処理工程S1後のSiC原基板10表面のステップ103を、SEMにより観察した。その結果を図19に示す。なお、ステップ103高さは原子間力顕微鏡(AFM)により、テラス104幅はSEMにより測定した。
 図19は、熱処理工程S1後のSiC原基板10表面のSEM像である。熱処理工程S1前のSiC原基板10表面には、図18(a)と同様に、高さ3nm以上のMSBが形成されていた。図19に示すように、熱処理工程S1後のSiC原基板10表面には、MSBは形成されておらず、1.0nm(フルユニットセル)のステップが規則正しく配列していることがわかる。
 このように、成長バンチング除去工程S122によれば、原子数比Si/Cが1を超える準閉鎖空間内で、SiC原基板10を結晶成長させることにより、MSBが形成されていない成長層105を形成することができる。これにより、MSBが低減・除去されたSiC基板11を製造することができる。
<実施例4:基底面転位低減工程>
 SiC原基板10を本体容器20及び高融点容器40に収容し(図15参照)、以下の熱処理条件で熱処理することで、BPDを除去ないし低減することができる。
[SiC原基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.3mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 成長面:(0001)面
 MSBの有無:無し
 歪層101の有無:無し
[本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 SiC原基板10とSiC材料との距離:2mm
 容器内の原子数比Si/C:1以下
[高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
[熱処理条件]
 上記条件で配置したSiC原基板10を、以下の条件で加熱処理した。
 加熱温度:1700℃
 加熱時間:300min
 温度勾配:1℃/mm
 成長速度:5nm/min
 本加熱室31真空度:10-5Pa
[成長層中のBPD変換率]
 図20は、成長層105中において、BPDから他の欠陥・転位(TED等)に変換した変換率を求める手法の説明図である。
 図20(a)は、熱処理工程S1により成長層105を成長させた様子を示している。この加熱工程では、SiC原基板10に存在していたBPDが、ある確率でTEDに変換される。そのため、成長層105の表面には、100%変換されない限り、TEDとBPDが混在していることとなる。
 図20(b)は、KOH溶解エッチング法を用いて成長層105中の欠陥を確認した様子を示している。このKOH溶解エッチング法は、約500℃に加熱した溶解塩(KOH等)にSiC基板を浸し、転位や欠陥部分にエッチピットを形成し、そのエッチピットの大きさ・形状により転位の種類を判別する手法である。この手法により、成長層105表面に存在しているBPD数を得る。
 図20(c)は、KOH溶解エッチング後に成長層105を除去する様子を示している。本手法では、エッチピット深さまで機械研磨やCMP等により平坦化した後、熱エッチングにより成長層105を除去して、SiC原基板10の表面を表出させている。
 図20(d)は、成長層105を除去したSiC原基板10に対し、KOH溶解エッチング法を用いてSiC原基板10中の欠陥を確認した様子を示している。この手法により、SiC原基板10表面に存在しているBPD数を得る。
 図20に示した一連の順序により、成長層105表面に存在するBPDの数(図20(b)参照)と、SiC原基板10表面に存在するBPDの数(図20(d))と、を比較することで、熱処理工程S1中にBPDから他の欠陥・転位に変換したBPD変換率を得ることができる。
 実施例4の成長層105表面に存在するBPDの数は0個cm-2であり、SiC原基板10表面に存在するBPDの数は約1000個cm-2であった。
 すなわち、表面にMSBが存在しないSiC原基板10を、原子数比Si/Cが1以下である準閉鎖空間に配置して結晶成長させることにより、BPDが低減・除去されることが把握できる。
 このように、基底面転位低減工程S13によれば、原子数比Si/Cが1以下の準閉鎖空間内で、SiC原基板10を結晶成長させることにより、BPDが低減・除去された表面の成長層105を形成することができる。これにより、BPDが低減・除去された成長層105を有するSiC基板11を製造することができる。
<実施例5:耐圧層の形成>
 SiC原基板10を本体容器20及び高融点容器40に収容し(図15参照)、以下の熱処理条件で熱処理することで、SiC原基板10上に耐圧層を形成することができる。
[SiC原基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.3mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 成長面:(0001)面
 ドーパント:N
 ドーピング濃度:3×1018cm-3
 MSBの有無:無し
 歪層101の有無:無し
 なお、SiC原基板10のドーパント及びドーピング濃度は、ラマン分光法により確認した。
[本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 SiC原基板10とSiC材料との距離:2mm
 ドーパント:N
 ドーピング濃度:1×1017cm-3以下(ラマン分光法検出限界以下)
 容器内の原子数比Si/C:1以下
[高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
[熱処理条件]
 上記条件で配置したSiC原基板10を、以下の条件で加熱処理した。
 加熱温度:1700℃
 加熱時間:300min
 温度勾配:1℃/mm
 成長速度:5nm/min
 本加熱室31真空度:10-5Pa
 図21は、上記条件で成長させたSiC原基板10を断面から倍率×10000で観察したSEM像である。この成長層105の厚みは1.5μmであった。
 この成長層105のドーピング濃度は1×1017cm-3以下であり、SiC原基板10のドーピング濃度は3×1018cm-3であった。この成長層105のドーピング濃度は、SiC材料のドーピング濃度と同様の値であるため、SiC材料のドーピング濃度を引き継いでいることがわかる。また、図21に表れているように、成長層105がSiC原基板10よりもSEM像コントラストが明るいことからも、成長層105のドーピング濃度はSiC原基板10よりも低いことが把握できる。
 このように、本発明の結晶成長工程によれば、SiC原基板10とSiC原基板10よりもドーピング濃度が低いSiC材料とを相対させて加熱し、SiC材料からSiC原基板10に原料を輸送して成長層105を形成する。これにより、SiC半導体デバイスの耐圧層として機能し得るドーピング濃度の成長層105を成長させることができ、耐圧層を有するSiC基板を製造することができる。
 なお、実施例5においては、原子数比Si/Cが1以下である準閉鎖空間内でSiC原基板10を成長させる場合について説明した。同様に、原子数比Si/Cが1を超える準閉鎖空間内で成長させた場合も、SiC材料のドーピング密度を引き継いで成長層105を形成することが可能である。
[熱力学計算]
 図22(a)は、本発明のエッチング工程における、加熱温度とエッチング速度の関係を示すグラフである。このグラフの横軸は温度の逆数であり、このグラフの縦軸はエッチング速度を対数で表示している。
 図22(b)は、本発明の結晶成長工程における、加熱温度と成長速度の関係を示すグラフである。このグラフの横軸は温度の逆数であり、このグラフの縦軸は成長速度を対数で表示している。
 これら図22のグラフにおいては、SiC原基板10を原子数比Si/Cが1を超える空間(本体容器20内)に配置して、SiC原基板10を熱処理した結果を〇印で示す。また、SiC原基板10を原子数比Si/Cが1以下である空間(本体容器20内)に配置して、SiC原基板10を熱処理した結果を×印で示す。
 なお、○印箇所のSiC原基板10表面は何れもMSBが形成されておらず、ステップ103は1ユニットセルの高さであった。一方、×印箇所のSiC原基板10表面は何れもMSBが形成されていた。
 また、図22のグラフでは、SiC-Si平衡蒸気圧環境における熱力学計算の結果を破線(アレニウスプロット)で、SiC-C平衡蒸気圧環境における熱力学計算の結果を二点鎖線(アレニウスプロット)にて示している。
 以下、エッチング工程の熱力学計算と、結晶成長工程の熱力学計算に分けて詳細に説明する。
(エッチング工程の熱力学計算)
 エッチング工程の熱力学計算においては、本体容器20を加熱した際に、SiC原基板10から発生する蒸気量(Si元素を含む気相種及びC元素を含む気相種)をエッチング量に換算できる。その場合、SiC原基板10のエッチング速度は以下の数1で求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、TはSiC原基板10の温度、mは気相種(Six)の1分子の質量、kはボルツマン定数である。
 また、Pは、SiC原基板10が加熱されることで本体容器20内に発生する蒸気圧を足し合わせた値のことである。なお、Pの気相種としては、SiC-SiC,SiC等が想定される。
 図22(a)の破線は、SiC(固体)とSi(液相)とが気相を介して相平衡状態となっているときの蒸気圧の環境において、単結晶SiCをエッチングした際の熱力学計算の結果である。具体的には、数1を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-Si平衡蒸気圧環境であること、(ii)エッチング駆動力は本体容器20内の温度勾配であること、(iii)原料ガスは、SiC,SiC,SiCであること、(iv)原料がステップ103から昇華する脱離係数は0.001であること。
 図22(a)の二点鎖線は、SiC(固相)とC(固相)とが気相を介して相平衡状態となっているときの蒸気圧の環境において、単結晶SiCをエッチングした際の熱力学計算の結果である。具体的には、数1を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-C平衡蒸気圧環境であること、(ii)エッチング駆動力は、本体容器20内の温度勾配であること、(iii)原料ガスは、SiC,SiC,SiCであること、(iv)原料がステップ103から昇華する脱離係数は0.001であること。
 なお、熱力学計算に用いた各化学種のデータはJANAF熱化学表の値を採用した。
 この図22(a)のグラフによれば、SiC原基板10を原子数比Si/Cが1を超える空間(本体容器20内)に配置して、SiC原基板10をエッチングした結果(〇印)は、SiC-Si平衡蒸気圧環境における単結晶SiCエッチングの熱力学計算の結果と傾向が一致していることがわかる。
 また、SiC原基板10を原子数比Si/Cが1以下である空間(本体容器20内)に配置して、SiC原基板10をエッチングした結果(×印)は、SiC-C平衡蒸気圧環境における単結晶SiCエッチングの熱力学計算の結果と傾向が一致していることがわかる。
 なお、SiC-Si平衡蒸気圧環境下でエッチングされた○印箇所の条件においては、MSBの形成が分解・抑制されており、SiC原基板10表面に1nm(1ユニットセル)高さのステップ103が整列していることがわかる。
 一方で、SiC-C平衡蒸気圧環境下でエッチングされた×印箇所の条件においては、MSBが形成されていることがわかる。
(結晶成長工程の熱力学計算)
 次に、結晶成長工程の熱力学計算においては、本体容器20内の加熱した際に、SiC原料とSiC基板から発生する蒸気の分圧差を成長量に換算できる。この時の、成長駆動力としては、化学ポテンシャル差や温度勾配を想定できる。なお、この化学ポテンシャル差は、多結晶SiC(SiC材料)と単結晶SiC(SiC原基板10)の表面で発生する気相種の分圧差を想定できる。その場合、SiCの成長速度は、以下の数2で求められる。
Figure JPOXMLDOC01-appb-M000002
 ここで、TはSiC原料側の温度、mは気相種(Six)の1分子の質量、kはボルツマン定数である。
 また、P原料-P基板は、原料ガスが過飽和な状態となって、SiCとして析出した成長量であり、原料ガスとしてはSiC,SiC,SiCが想定される。
 すなわち、図22(b)の破線は、SiC(固体)とSi(液相)とが気相を介して相平衡状態となっているときの蒸気圧環境において、多結晶SiCを原料として単結晶SiCを成長させた際の熱力学計算の結果である。
 具体的には、数2を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-Si平衡蒸気圧環境であること、(ii)成長駆動力は、本体容器20内の温度勾配と、多結晶SiCと単結晶SiCの蒸気圧差(化学ポテンシャル差)であること、(iii)原料ガスは、SiC,SiC,SiCであること、(iv)原料がSiC原基板10のステップに吸着する吸着係数は0.001であること。
 また、図22(b)の二点鎖線は、SiC(固相)とC(固相)とが気相を介して相平衡状態となっているときの蒸気圧環境において、多結晶SiCを原料として単結晶SiCを成長させた際の熱力学計算の結果である。
 具体的には、数2を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-C平衡蒸気圧環境であること、(ii)成長駆動力は、本体容器20内の温度勾配と、多結晶SiCと単結晶SiCの蒸気圧差(化学ポテンシャル差)であること、(iii)原料ガスはSiC,SiC,SiCであること、(iv)原料がSiC原基板10のステップに吸着する吸着係数は0.001であること。
 なお、熱力学計算に用いた各化学種のデータはJANAF熱化学表の値を採用した。
 この図22(b)のグラフによれば、SiC原基板10を原子数比Si/Cが1を超える空間(本体容器20内)に配置して、SiC原基板10に成長層105を成長させた結果(〇印)は、SiC-Si平衡蒸気圧環境におけるSiC成長の熱力学計算の結果と傾向が一致していることがわかる。
 また、SiC原基板10を原子数比Si/Cが1以下である空間(本体容器20内)に配置して、SiC原基板10に成長層105を成長させた結果(×印)は、SiC-C平衡蒸気圧環境におけるSiC成長の熱力学計算の結果と傾向が一致していることがわかる。
 SiC-Si平衡蒸気圧環境下においては、1960℃の加熱温度で1.0μm/min以上の成長速度を達成することが推定される。また、2000℃以上の加熱温度で2.0μm/min以上の成長速度を達成することが推定される。
 一方、SiC-C平衡蒸気圧環境下においては、2000℃の加熱温度で1.0μm/min以上の成長速度を達成することが推定される。また、2030℃以上の加熱温度で2.0μm/min以上の成長速度を達成することが推定される。
 10 SiC原基板
 101 歪層
 1011 傷
 1012 潜傷
 1013 歪み
 102 バルク層
 103 ステップ
 104 テラス
 105 成長層
 11 SiC基板
 12 SiCエピタキシャル基板
 13 SiCインゴット
 20 本体容器
 21 上容器
 22 下容器
 23 間隙
 24 基板保持具
 25 Si蒸気供給源
 30 加熱炉
 31 本加熱室
 32 予備加熱室
 33 移動手段
 34 加熱ヒータ
 35 真空形成用バルブ
 36 不活性ガス注入用バルブ
 37 真空計
 40 高融点容器
 41 上容器
 42 下容器
 43 間隙
 44 Si蒸気供給源
 X エッチング空間
 Y 原料供給空間
 Z Si蒸気圧空間
 S1 熱処理工程
 S11 歪層除去工程
 S111 エッチングバンチング工程
 S12 バンチング除去工程
 S121 エッチングバンチング除去工程
 S122 成長バンチング除去工程
 S13 基底面転位低減工程
 S2 エピタキシャル成長工程
 S3 インゴット成長工程

 

Claims (25)

  1.  SiC原基板を熱処理する熱処理工程を有し、
     前記熱処理工程は、下記の(a)、(b)、(c)の工程のうち、2つ以上の工程を含む、SiC基板の製造方法。
    (a)前記SiC原基板の歪層を除去する歪層除去工程
    (b)前記SiC原基板上のマクロステップバンチングを除去するバンチング除去工程
    (c)前記SiC原基板上に基底面転位を低減した成長層を形成する基底面転位低減工程
  2.  前記熱処理工程は、SiC材料が露出した準閉鎖空間内で前記SiC原基板を熱処理する工程である、請求項1に記載のSiC基板の製造方法。
  3.  前記熱処理工程は、SiC材料で構成された本体容器内で前記SiC原基板を熱処理する工程である、請求項1又は請求項2に記載のSiC基板の製造方法。
  4.  前記熱処理工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程である、請求項2又は請求項3に記載のSiC基板の製造方法。
  5.  前記歪層除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程である、請求項2~4の何れか一項に記載のSiC基板の製造方法。
  6.  前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程である、請求項2~5の何れか一項に記載のSiC基板の製造方法。
  7.  前記バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板と前記SiC材料との間に温度勾配が形成されるよう加熱する工程を含む、請求項2~6の何れか一項に記載のSiC基板の製造方法。
  8.  前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む、請求項2~7の何れか一項に記載のSiC基板の製造方法。
  9.  前記バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が高温側、前記SiC材料が低温側となるよう加熱する工程を含む、請求項2~8の何れか一項に記載のSiC基板の製造方法。
  10.  前記バンチング除去工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-Si平衡蒸気圧環境下で、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む、請求項2~9の何れか一項に記載のSiC基板の製造方法。
  11.  前記バンチング除去工程は、原子数比Si/Cが1を超える準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む、請求項2~10の何れか一項に記載のSiC基板の製造方法。
  12.  前記基底面転位低減工程は、前記SiC原基板と前記SiC材料とを相対させて配置し、SiC-C平衡蒸気圧環境下で、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む、請求項2~11の何れか一項に記載のSiC基板の製造方法。
  13.  前記基底面転位低減工程は、原子数比Si/Cが1以下である準閉鎖空間内に前記SiC原基板と前記SiC材料とを相対させて配置し、前記SiC原基板が低温側、前記SiC材料が高温側となるよう加熱する工程を含む、請求項2~12の何れか一項に記載のSiC基板の製造方法。
  14.  前記SiC材料のドーピング濃度は、前記SiC原基板のドーピング濃度よりも低い、請求項2~13の何れか一項に記載のSiC基板の製造方法。
  15.  前記SiC材料のドーピング濃度は、1×1017cm-3以下である、請求項2~14の何れか一項に記載のSiC基板の製造方法。
  16.  前記熱処理工程は、前記歪層除去工程の後に、前記バンチング除去工程を含む、請求項1~15の何れか一項に記載のSiC基板の製造方法。
  17.  前記熱処理工程は、前記バンチング除去工程の後に、前記基底面転位低減工程を含む、請求項1~16の何れか一項に記載のSiC基板の製造方法。
  18.  前記熱処理工程は、前記基底面転位低減工程の後に、前記バンチング除去工程を含む、請求項1~17の何れか一項に記載のSiC基板の製造方法。
  19.  前記熱処理工程は、前記歪層除去工程の後に、前記基底面転位低減工程を含む、請求項1~18の何れか一項に記載のSiC基板の製造方法。
  20.  前記熱処理工程は、前記歪層除去工程、前記バンチング除去工程、前記基底面転位低減工程、及び前記バンチング除去工程をこの順で含む、請求項1~19の何れか一項に記載のSiC基板の製造方法。
  21.  請求項1~20の何れか一項に記載の製造方法により製造されたSiC基板。
  22.  請求項21に記載のSiC基板上にSiCエピタキシャル層を成長させるエピタキシャル成長工程を含む、SiCエピタキシャル基板の製造方法。
  23.  請求項22に記載の製造方法により製造されたSiCエピタキシャル基板。
  24.  請求項21に記載のSiC基板上にSiCインゴットを成長させるインゴット成長工程を含む、SiCインゴットの製造方法。
  25.  請求項24に記載の製造方法により製造されたSiCインゴット。
PCT/JP2020/030079 2019-08-06 2020-08-05 SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法 WO2021025085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080055201.5A CN114375351B (zh) 2019-08-06 2020-08-05 SiC衬底、SiC外延衬底、SiC晶锭及它们的制造方法
JP2021537362A JPWO2021025085A1 (ja) 2019-08-06 2020-08-05
US17/632,498 US20220282395A1 (en) 2019-08-06 2020-08-05 SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
EP20850289.8A EP4012079A4 (en) 2019-08-06 2020-08-05 SIC SUBSTRATE, SIC EPITALIAL SUBSTRATE, SIC BAR AND METHOD OF PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-144544 2019-08-06
JP2019144544 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021025085A1 true WO2021025085A1 (ja) 2021-02-11

Family

ID=74503010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030079 WO2021025085A1 (ja) 2019-08-06 2020-08-05 SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法

Country Status (6)

Country Link
US (1) US20220282395A1 (ja)
EP (1) EP4012079A4 (ja)
JP (1) JPWO2021025085A1 (ja)
CN (1) CN114375351B (ja)
TW (1) TW202113171A (ja)
WO (1) WO2021025085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220220633A1 (en) * 2019-04-26 2022-07-14 Kwansei Gakuin Educational Foundation Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344152A1 (en) * 2019-09-27 2022-10-27 Kwansei Gakuin Educational Foundation Method for manufacturing sic substrate
CN114318551B (zh) * 2022-03-14 2022-06-17 浙江大学杭州国际科创中心 一种碳化硅晶片位错腐蚀方法及装置
CN117637463A (zh) * 2024-01-26 2024-03-01 希科半导体科技(苏州)有限公司 碳化硅衬底的位错缺陷的处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131328A (ja) * 2002-10-10 2004-04-30 Nippon Steel Corp 炭化珪素単結晶ウェハの製造方法、および炭化珪素単結晶ウェハ
JP2007506289A (ja) 2003-09-22 2007-03-15 クリー インコーポレイテッド 積層欠陥核生成サイトを減らして、バイポーラデバイスのVfドリフトを低減する方法
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
WO2014076963A1 (ja) * 2012-11-16 2014-05-22 東洋炭素株式会社 単結晶SiC基板の表面処理方法及び単結晶SiC基板
US20150155166A1 (en) * 2013-09-27 2015-06-04 Nadeemullah A. Mahadik Elimination of basal plane dislocations in post growth silicon carbide epitaxial layers by high temperature annealing while preserving surface morphology
JP2015179082A (ja) 2014-02-28 2015-10-08 学校法人関西学院 走査型電子顕微鏡観察コントラスト校正用標準試料及び走査型電子顕微鏡を用いた結晶性基板の検査方法
JP2016050141A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 炭化珪素単結晶の焼鈍方法
JP2017071525A (ja) 2015-10-06 2017-04-13 住友電気工業株式会社 半導体積層体の製造方法
WO2019022054A1 (ja) * 2017-07-28 2019-01-31 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182240A (ja) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd 半導体装置の製造方法および半導体装置
JP5436046B2 (ja) * 2009-05-27 2014-03-05 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP6080075B2 (ja) * 2013-06-13 2017-02-15 学校法人関西学院 SiC基板の表面処理方法
JPWO2015064256A1 (ja) * 2013-10-28 2017-03-09 富士電機株式会社 炭化シリコン半導体装置及びその製造方法
JP6524233B2 (ja) * 2015-07-29 2019-06-05 昭和電工株式会社 エピタキシャル炭化珪素単結晶ウェハの製造方法
WO2017057742A1 (ja) * 2015-10-02 2017-04-06 新日鐵住金株式会社 SiC単結晶インゴット
CN105826186B (zh) * 2015-11-12 2018-07-10 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法
US11359307B2 (en) * 2016-04-28 2022-06-14 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
JP6762484B2 (ja) * 2017-01-10 2020-09-30 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
KR102604446B1 (ko) * 2017-03-22 2023-11-22 토요타 쯔우쇼우 가부시키가이샤 개질 SiC 웨이퍼의 제조 방법, 에피택셜층 부착 SiC 웨이퍼, 그의 제조 방법, 및 표면 처리 방법
JP2018158858A (ja) * 2017-03-22 2018-10-11 日本電信電話株式会社 結晶成長方法および装置
TW202103257A (zh) * 2019-04-26 2021-01-16 學校法人關西學院 半導體基板、半導體基板的製造方法、半導體基板的製造裝置以及磊晶成長方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131328A (ja) * 2002-10-10 2004-04-30 Nippon Steel Corp 炭化珪素単結晶ウェハの製造方法、および炭化珪素単結晶ウェハ
JP2007506289A (ja) 2003-09-22 2007-03-15 クリー インコーポレイテッド 積層欠陥核生成サイトを減らして、バイポーラデバイスのVfドリフトを低減する方法
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
WO2014076963A1 (ja) * 2012-11-16 2014-05-22 東洋炭素株式会社 単結晶SiC基板の表面処理方法及び単結晶SiC基板
US20150155166A1 (en) * 2013-09-27 2015-06-04 Nadeemullah A. Mahadik Elimination of basal plane dislocations in post growth silicon carbide epitaxial layers by high temperature annealing while preserving surface morphology
JP2015179082A (ja) 2014-02-28 2015-10-08 学校法人関西学院 走査型電子顕微鏡観察コントラスト校正用標準試料及び走査型電子顕微鏡を用いた結晶性基板の検査方法
JP2016050141A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 炭化珪素単結晶の焼鈍方法
JP2017071525A (ja) 2015-10-06 2017-04-13 住友電気工業株式会社 半導体積層体の製造方法
WO2019022054A1 (ja) * 2017-07-28 2019-01-31 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4012079A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220220633A1 (en) * 2019-04-26 2022-07-14 Kwansei Gakuin Educational Foundation Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method

Also Published As

Publication number Publication date
TW202113171A (zh) 2021-04-01
US20220282395A1 (en) 2022-09-08
CN114375351B (zh) 2024-04-26
JPWO2021025085A1 (ja) 2021-02-11
EP4012079A4 (en) 2023-06-21
CN114375351A (zh) 2022-04-19
EP4012079A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2021025085A1 (ja) SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法
US8940614B2 (en) SiC substrate with SiC epitaxial film
JP7278550B2 (ja) SiC半導体基板及びその製造方法及びその製造装置
WO2021025084A1 (ja) SiC種結晶及びその製造方法、当該SiC種結晶を成長させたSiCインゴット及びその製造方法、並びに、当該SiCインゴットより製造されるSiCウェハ、エピタキシャル膜付きSiCウェハ及びこれらの製造方法
WO2021025077A1 (ja) SiC基板の製造方法
TWI824118B (zh) 碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置
EP3960913A1 (en) Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method
WO2021060368A1 (ja) SiC単結晶の製造方法、SiC単結晶の製造装置及びSiC単結晶ウェハ
EP3936645A1 (en) Method and device for manufacturing sic substrate, and method for reducing macro-step bunching of sic substrate
US11952678B2 (en) Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation
WO2021025086A1 (ja) SiC基板の製造方法
WO2021060369A1 (ja) SiC基板、SiC基板の製造方法、SiC半導体装置およびSiC半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020850289

Country of ref document: EP

Effective date: 20220307