TWI824118B - 碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置 - Google Patents

碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置 Download PDF

Info

Publication number
TWI824118B
TWI824118B TW109107167A TW109107167A TWI824118B TW I824118 B TWI824118 B TW I824118B TW 109107167 A TW109107167 A TW 109107167A TW 109107167 A TW109107167 A TW 109107167A TW I824118 B TWI824118 B TW I824118B
Authority
TW
Taiwan
Prior art keywords
silicon carbide
substrate
silicon
manufacturing
carbide epitaxial
Prior art date
Application number
TW109107167A
Other languages
English (en)
Other versions
TW202044351A (zh
Inventor
金子忠昭
Original Assignee
學校法人關西學院
日商豊田通商股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 學校法人關西學院, 日商豊田通商股份有限公司 filed Critical 學校法人關西學院
Publication of TW202044351A publication Critical patent/TW202044351A/zh
Application granted granted Critical
Publication of TWI824118B publication Critical patent/TWI824118B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明之課題係在於提供一種新穎的碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置。使碳化矽基板10與摻雜濃度比該碳化矽基板10還低的碳化矽材料20相對而加熱,且將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。藉此,能夠提供一種控制的參數比起習知法(化學氣相沉積法)已削減之碳化矽磊晶基板的製造方法。

Description

碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置
本發明係關於一種碳化矽磊晶基板(SiC epitaxial substrate)、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置。
近年,碳化矽(SiC)半導體器件(semiconductor device)比起矽(Si)及砷化鎵(GaAs)半導體器件為高耐壓及高效率,進一步地能夠高溫動作,故作為高性能半導體器件受到矚目。
通常,碳化矽半導體器件係使用使成為器件的活性區域之碳化矽磊晶層在碳化矽單晶基板上成長的碳化矽磊晶基板來製作。通常該碳化矽磊晶層係藉由化學氣相沉積法(Chemical Vapor Deposition:CVD)所形成(例如參照專利文獻1)。
化學氣相沉積法是以下的手法:原料氣體在載體氣體(carrier gas)中熱分解,且連續地使矽原子及碳(C)原子在碳化矽單晶基板上堆積,藉此形成碳化矽磊晶層。一般來說,使用單矽烷(monosilane)(SiH4 )氣體及丙烷(dimethylmethane)(C3 H8 )氣體作為原料氣體,使用氫(H2 )氣作為載體氣體。
又,在化學氣相沉積法中,除了上述原料氣體及載體氣體以外,適當地添加摻雜物(dopant)氣體。藉由控制該摻雜物氣體的流量,形成摻雜濃度(doping concentration)適合半導體器件的耐壓層之碳化矽磊晶層。以作為所摻雜的摻雜物來說,能夠例示氮(N)、磷(P)、鋁(Al)、硼(B)等。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2014-47090號公報。
[發明所欲解決之課題]
然而,在化學氣相沉積法中,由於原料氣體、載體氣體及摻雜物氣體混合存在於碳化矽單晶基板的成長環境,因此有著成長環境難以控制之問題。特別是,有必要將各氣體的流量、碳化矽單晶基板的加熱溫度等複數個參數(parameter)予以最佳化。
本發明之課題係在於提供一種新穎的碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置。 [用以解決課題之手段]
用以解決上述課題的本發明是一種碳化矽磊晶基板的製造方法,係使碳化矽基板與摻雜濃度比前述碳化矽基板還低的碳化矽材料相對而加熱,且將原料從前述碳化矽材料對前述碳化矽基板輸送而形成碳化矽磊晶層。
如此,藉由使碳化矽基板與摻雜濃度比該碳化矽基板還低的碳化矽材料相對而成長,能夠比起習知法(化學氣相沉積法)削減用以控制的參數。又,藉由選擇所期望的摻雜濃度之碳化矽材料,能夠控制碳化矽磊晶層的摻雜濃度。
在本發明之一較佳形態中,前述碳化矽材料的摻雜濃度為1x1017 cm-3 以下。 藉由使用此種摻雜濃度的碳化矽材料,能夠形成適合耐壓層之摻雜濃度的碳化矽磊晶層。
在本發明之一較佳形態中,以在前述碳化矽基板與前述碳化矽材料之間形成具有溫度梯度(temperature gradient)之原料輸送空間的方式進行加熱,將前述碳化矽材料配置於高溫側且將前述碳化矽基板配置於低溫側,藉此將原料輸送。 如此,藉由在碳化矽基板與碳化矽材料之間設置溫度梯度,能夠容易地將原料輸送。
在本發明之一較佳形態中,在原子數比矽/碳(Si/C)為1以下的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排(Basal Plane Dislocation:BPD)密度。 如此地在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板而加熱,藉此能夠形成基底面差排密度已減低的碳化矽磊晶層。
在本發明之一較佳形態中,在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此將前述碳化矽磊晶層的表面予以平坦化。 如此地在原子數比矽/碳超過1的準密閉空間配置碳化矽基板而加熱,藉此能夠形成具有宏階摺(Macro Step Bunching:MSB)已被分解之表面的碳化矽磊晶層。
在本發明之一較佳形態中,在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱後,在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。 如此地在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板而加熱後,在原子數比矽/碳超過1的準密閉空間配置碳化矽基板而加熱,藉此能夠形成基底面差排密度已被減低的碳化矽磊晶層。
在本發明之一較佳形態中,以1600℃以上的溫度區域加熱前述碳化矽基板。 藉由以此種溫度區域進行加熱,能夠高速地形成碳化矽磊晶層。
在本發明之一較佳形態中,形成表面的基底面差排密度為1.0個cm-2 以下的碳化矽磊晶層。
又,本發明也關於一種碳化矽磊晶基板的製造裝置。亦即,用以解決上述課題的本發明是一種碳化矽磊晶基板的製造裝置,係具備:本體容器,係能夠將碳化矽基板予以收容;前述本體容器係具有:基板設置部,係設置前述碳化矽基板;以及碳化矽材料,係與前述基板設置部相對;前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低。
在本發明之一較佳形態中,前述本體容器係由前述碳化矽材料所構成。 如此,藉由以碳化矽材料構成本體容器自身,能夠藉著使用本體容器來一邊形成準密閉空間一邊成為原料的供給源。
又,用以解決上述課題的本發明是一種碳化矽磊晶基板的製造裝置,係具備:本體容器,係能夠將碳化矽基板予以收容;前述本體容器係具有:基板設置部,係設置前述碳化矽基板;以及碳化矽材料設置部,係將碳化矽材料設置在與前述基板設置部相對的位置;前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低。 如此,藉由設置將碳化矽材料予以設置的碳化矽材料設置部,能夠以任意的材料來構成本體容器。
在本發明之一較佳形態中,前述碳化矽材料的摻雜濃度為1x1017 cm-3 以下。
在本發明之一較佳形態中,前述本體容器係具有:支持具,係被設置於前述碳化矽基板與前述碳化矽材料之間。
在本發明之一較佳形態中,進一步具備:加熱爐,係以在前述碳化矽基板與前述碳化矽材料之間形成有溫度梯度的方式進行加熱。
在本發明之一較佳形態中,前述加熱爐係具備:高熔點容器,係能夠收容前述本體容器;以及第一矽蒸氣供給源,係能夠對前述高熔點容器內供給矽蒸氣。
在本發明之一較佳形態中,前述本體容器係具備:第二矽蒸氣供給源,係能夠將矽蒸氣對容器內供給;前述第二矽蒸氣供給源係以前述本體容器內的原子數比矽/碳超過1的方式所配置。
又,本發明也關於一種碳化矽半導體基板的製造方法。亦即,本發明的一態樣之碳化矽半導體基板的製造方法係使碳化矽基板與碳化矽材料相對而加熱,藉此將原料從前述碳化矽材料對前述碳化矽基板輸送且以1.0 μm/min以上的成長速度形成碳化矽磊晶層。
如此,藉由使碳化矽基板與摻雜濃度比該碳化矽基板還低的碳化矽材料相對而成長,能夠比起習知法(化學氣相沉積法)削減用以控制的參數。又,能夠將碳化矽磊晶層的成長速度設定成1.0 μm/min以上。
在本發明之一較佳形態中,前述成長速度是2.0 μm/min以上。
在本發明之一較佳形態中,前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低。 又,在本發明之一較佳形態中,前述碳化矽材料的摻雜濃度為1x1017 cm-3 以下。 藉由使用此種摻雜濃度的碳化矽材料,能夠形成適合耐壓層之摻雜濃度的碳化矽磊晶層。
在本發明之一較佳形態中,以1900℃以上的溫度區域加熱前述碳化矽基板。 藉由以此種溫度區域進行加熱,能夠高速地形成碳化矽磊晶層。
在本發明之一較佳形態中,使前述碳化矽磊晶層成長30 μm以上。 如此,藉由使碳化矽磊晶層成長30 μm以上,能夠形成適合高耐壓半導體器件之耐壓層。
在本發明之一較佳形態中,使前述碳化矽磊晶層成長100 μm以上。
在本發明之一較佳形態中,以在前述碳化矽基板與前述碳化矽材料之間形成具有溫度梯度之原料輸送空間的方式進行加熱,將前述碳化矽材料配置於高溫側且將前述碳化矽基板配置於低溫側,藉此將原料輸送。 如此,藉由在碳化矽基板與碳化矽材料之間設置溫度梯度,能夠容易地將原料輸送。
在本發明之一較佳形態中,在準密閉空間配置前述碳化矽基板與前述碳化矽材料且加熱。
在本發明之一較佳形態中,在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱,藉此降低前述碳化矽磊晶層中的基底面差排密度。 如此地在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板而加熱,藉此能夠形成基底面差排密度已減低的碳化矽磊晶層。
在本發明之一較佳形態中,在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此將前述碳化矽磊晶層的表面予以平坦化。 如此地在原子數比矽/碳超過1的準密閉空間配置碳化矽基板而加熱,藉此能夠形成具有宏階摺已被分解之表面的碳化矽磊晶層。
在本發明之一較佳形態中,在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱後,在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。 如此地在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板而加熱後,在原子數比矽/碳超過1的準密閉空間配置碳化矽基板而加熱,藉此能夠形成基底面差排密度已被減低的碳化矽磊晶層。 [發明功效]
根據已揭示的技術,能夠提供一種新穎的碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置。
在一併結合圖式及申請專利範圍時,藉由參酌以下所記載的用以實施發明的形態,能夠明瞭其他的課題、特徵及優點。
以下,使用圖1至圖12,詳細地說明將本發明示於圖式之一較佳實施形態。本發明之技術的範圍並非限定於隨附的圖式所示的實施形態,在申請專利範圍所記載的範圍內能夠適當變更。
[碳化矽磊晶基板的製造方法] 本發明係能夠作為以下之碳化矽磊晶基板的製造方法來掌握:使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而加熱,且將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。
具體來說,如圖1所示,本發明之碳化矽磊晶基板的製造方法係包含:配置步驟,係使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而配置;以及加熱步驟,係藉由加熱將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。
又,本發明係能夠作為以下之碳化矽磊晶基板的製造方法來掌握:使碳化矽基板10與碳化矽材料20相對而加熱,藉此將原料從碳化矽材料20對碳化矽基板10輸送,且以1.0 μm/min以上的成長速度形成碳化矽磊晶層11。
具體來說,如圖1所示,本發明之碳化矽磊晶基板的製造方法係包含:配置步驟,係使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而配置;以及加熱步驟,係藉由加熱將原料從碳化矽材料20對碳化矽基板10輸送,而以1.0μm/min以上的成長速度形成碳化矽磊晶層11。
[配置步驟] 本發明之配置步驟是使碳化矽基板10與碳化矽材料20相對(對峙)而配置的步驟,該碳化矽材料20係成為該碳化矽基板10之碳化矽磊晶層11的原料。於該碳化矽基板10與碳化矽材料20之間係形成有:原料輸送空間S1,係將原料從碳化矽材料20向碳化矽基板10的表面輸送。
另外,為使碳化矽磊晶層11均勻地成長,碳化矽基板10與碳化矽材料20較佳為以碳化矽基板10的表面與碳化矽材料20的表面成為大致平行的方式配置。
又,碳化矽基板10與碳化矽材料20較佳為被配置於準密閉空間。以該準密閉空間來說,能夠藉由收容在例如本體容器30內來形成。 另外,本說明書中的「準密閉空間」係指以下的空間:容器內能夠抽真空,也能夠將在容器內產生的蒸氣之至少一部分予以封入。
(碳化矽基板) 碳化矽基板10係包含:從以昇華法等製作之鑄錠切片(slice)成圓盤狀而得的碳化矽晶圓(SiC wafer)、將單晶碳化矽加工成薄板狀的碳化矽基板。另外,以作為單晶碳化矽的結晶多型來說,也能夠採用任意的多型體(polytype)。
摻雜物只要是一般會在碳化矽基板10摻雜的元素即可。具體來說,較佳為氮(N)、磷(P)、鋁(Al)、硼(B)等。
碳化矽基板10的摻雜濃度較佳為比1x1017 cm-3 更高濃度,又更佳為1x1018 cm-3 以上,再更佳為1x1019 cm-3 以上。
摻雜物及摻雜濃度係能夠藉由拉曼(Raman)分光法或二次離子質量分析法(SIMS:Secondary Ion Mass Spectrometry)確認。
在本說明書中的說明裡,將碳化矽基板10之製作半導體元件那面(具體來說是堆積碳化矽磊晶層11之面)稱作主面101,將與該主面101相對的面稱作背面102。又,將主面101及背面102合起來稱作表面,將貫通主面101與背面102的方向稱作表背方向。
另外,以作為主面101來說,能夠例示從(0001)面或(000-1)面設置了數度(例如0.4°至8°)的偏離角(off angle)的表面(另外,在本說明書中,於密勒指數(Miller index)的標記中,「-」係意味著附在緊接在-後面之指數的桿(bar)。)。
於已以原子層級被平坦化之碳化矽基板10的表面係確認到階-台階(step-terrace)構造。該階-台階構造係成為階與台階交互地並排的階梯構造,該階是1分子層以上的階差部位,該台階是露出{0001}面的平坦部位。
階係1分子層(0.25 nm)為最小高度(最小單位),且藉由該1分子層重疊複數層而形成各種的階高度。在本說明書中的說明裡,將階束化(聚束)而巨大化且具有超過各多型體之1晶胞(unit cell)之高度的部分稱為宏階摺(MSB)。
亦即,所謂的MSB在4H-SiC之情形下是超過4分子層(5分子層以上)而聚束的階,在6H-SiC之情形下是超過6分子層(7分子層以上)而聚束的階。
另外,在碳化矽基板10上成長的碳化矽磊晶層11較佳為於表面不存在基底面差排(BPD)。因此,較佳為在表面不存在BPD的碳化矽基板10上形成碳化矽磊晶層11。又,在碳化矽磊晶層11的形成中,較佳為從BPD轉換成其他缺陷/差排。
另外,以作為碳化矽基板10之大小來說,從幾公分見方的晶片尺寸的觀點,能夠例示6吋晶圓或8吋晶圓,或者是6吋晶圓或8吋晶圓以上的大小。
(碳化矽材料) 碳化矽材料20係由以下的碳化矽所構成:藉由與碳化矽基板10相對而加熱,能夠對碳化矽基板10供給矽元素、碳元素及摻雜物。例如包含碳化矽製的容器(本體容器30)、碳化矽製的基板(碳化矽構件36)。另外,以碳化矽材料的結晶多型來說,能夠採用任意多型體的材料,也可以採用多晶碳化矽。
摻雜物係能夠採用與碳化矽基板10同樣的元素。具體來說,較佳為氮(N)、磷(P)、鋁(Al)、硼(B)等。
碳化矽材料20的摻雜濃度較佳為1x1017 cm-3 以下,又更佳為1x1016 cm-3 以下,再更佳為1x1015 cm-3 以下。
摻雜物及摻雜濃度係能夠藉由拉曼分光法或二次離子質量分析法確認。
(準密閉空間) 準密閉空間亦可以原子數比矽/碳成為1以下的方式構成。例如在滿足化學計量比1:1之碳化矽製的本體容器30內配置了滿足化學計量比1:1之碳化矽基板10、及滿足化學計量比1:1之碳化矽材料20的情形下,本體容器30內的原子數比矽/碳成為1(參照圖4)。又,也可以配置碳蒸氣供給源(碳丸(C pellet)等)來將原子數比矽/碳設成1以下。
又,準密閉空間亦可以原子數比矽/碳超過1的方式構成。例如在滿足化學計量比1:1之碳化矽製的本體容器30內配置了滿足化學計量比1:1之碳化矽基板10、滿足化學計量比1:1之碳化矽材料20、及矽蒸氣供給源35(矽丸等)之情形下,本體容器30內的原子數比矽/碳超過1(參照圖5)。
[加熱步驟] 本發明之加熱步驟是以下的步驟:將碳化矽基板10與碳化矽材料20加熱,藉此經由原料輸送空間S1將碳化矽材料20的原料(矽元素、碳元素及摻雜物)向碳化矽基板10的表面輸送。
以作為輸送原料的驅動力來說,能夠採用溫度梯度、或碳化矽基板10與碳化矽材料20間的化學位能(chemical potential)差。
具體來說,在準密閉空間內,由已從碳化矽材料20昇華的矽元素與碳元素與摻雜物所構成的蒸氣係藉由在原料輸送空間S1中擴散而輸送,在溫度被設定成比碳化矽材料20還低的碳化矽基板10上成為過飽和而凝結。
又,在碳化矽基板10採用單晶碳化矽且碳化矽材料20採用多晶碳化矽之情形下,能夠將在多晶碳化矽與單晶碳化矽之表面產生的分壓差(化學位能差)當成輸送的驅動力。
圖2是將成長機構的概要予以表示的說明圖。使碳化矽基板10與碳化矽材料20相對而配置,以1400℃以上至2300℃以下的溫度範圍加熱,藉此在原料輸送空間S1內持續的進行以下1)至5)的反應,結果認定碳化矽磊晶層11的成長有進行。
1) SiC(s)→Si(v)+C(s) 2) 2C(s)+Si(v)→SiC2 (v) 3) C(s)+2Si(v)→Si2 C(v) 4) Si(v)+SiC2 (v)→2SiC(s) 5) Si2 C(v)→Si(v)+SiC(s)
1)的說明:碳化矽材料20(SiC(s))被加熱,藉此矽原子(Si(v))因熱分解而從碳化矽脫離。 2)及3)的說明:藉著矽原子(Si(v))脫離而殘留在碳化矽基板10的表面的碳(C(s))係與原料輸送空間S1的矽蒸氣(Si(v))反應,藉此成為Si2 C或者是SiC2 等而在原料輸送空間S1昇華。 4)及5)的說明:已昇華的Si2 C或者是SiC2 等係藉由溫度梯度或化學位能差而到達/擴散至碳化矽基板10的台階且到達階,藉此碳化矽磊晶層11繼承碳化矽基板10的結晶多型而成長(階流動成長(step-flow growth))。
此時,由於碳化矽材料20的摻雜物也跟著原料一起被輸送,故碳化矽磊晶層11繼承碳化矽材料20的摻雜濃度而成長。
加熱步驟中的加熱溫度較佳是以1400℃至2300℃的範圍所設定,又更佳是設定為1600℃以上。 又,加熱步驟中的加熱溫度較佳是1400℃至2300℃的範圍,又更佳是1900℃以上,又更佳是1950℃以上,又更佳是2000℃以上,再更佳是2050℃以上。 加熱步驟中的碳化矽磊晶層11之成長速度係能夠藉由上述溫度區域來控制,能夠在0.001 μm/min至2 μm/min的範圍做選擇。 又,加熱步驟中的碳化矽磊晶層11之成長速度係能夠藉由上述溫度區域來控制,較佳為1.0 μm/min以上,又更佳為1.5 μm/min以上,又更佳為1.8 μm/min以上,再更佳為2.0 μm/min以上。 加熱步驟中的加熱時間係能夠以成為所期望的成長量之方式設定為任意的時間。例如在成長速度為1 μm/min時欲把成長量設為1 μm之情形下,加熱時間為1分鐘。 加熱步驟中的碳化矽磊晶層11之成長量係能夠以成為所期望的成長量之方式,用成長溫度與成長時間來設定。例如較佳為使碳化矽磊晶層11成長30 μm以上。又,較佳為使碳化矽磊晶層11成長100 μm以上。 加熱步驟中的原料輸送空間S1之溫度梯度係以0.1 ℃/mm至5 ℃/mm的範圍所設定。 又,也可以因應所期望的摻雜濃度來供給摻雜物氣體。
較佳為加熱步驟包含以下的步驟(基底面差排減低步驟):在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板10且加熱,藉此將碳化矽磊晶層11中的BPD密度減低。在該基底面差排減低步驟中,例如將表面的BPD密度為1000個cm-2 之碳化矽基板10配置在原子數比矽/碳為1以下的準密閉空間且加熱。藉此,會形成表面的BPD密度為1.0個cm-2 以下的碳化矽磊晶層11。
又,較佳為加熱步驟包含以下的步驟(平坦化步驟):在原子數比矽/碳超過1的準密閉空間配置碳化矽基板10且加熱,藉此將碳化矽磊晶層11的表面予以平坦化。在該平坦化步驟中,例如將表面有MSB存在的碳化矽基板10配置在原子數比矽/碳超過1的準密閉空間且加熱。藉此,會形成MSB已被分解之表面的碳化矽磊晶層11。
又,較佳為加熱步驟包含以下的步驟:在原子數比矽/碳為1以下的準密閉空間配置碳化矽基板10且加熱,藉此將碳化矽磊晶層11中的BPD密度減低(基底面差排減低步驟)後,在原子數比矽/碳超過1的準密閉空間配置碳化矽基板10且加熱,藉此將碳化矽磊晶層11的表面予以平坦化(平坦化步驟)。 如此,於原子數比矽/碳超過1的準密閉空間,將已在基底面差排減低步驟經過處理的碳化矽基板10配置且加熱,藉此會形成BPD已被減低/去除之表面的碳化矽磊晶層11。
本發明之碳化矽磊晶基板的製造方法係使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而加熱,且將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。藉此,能夠將加熱溫度作為參數,使成為碳化矽半導體器件之耐壓層的碳化矽磊晶層11成長。
亦即,本發明之碳化矽磊晶基板的製造方法係不同於習知法(化學氣相沉積法),能夠不控制複數氣體(原料氣體或摻雜氣體)之流量地形成摻雜濃度已獲控制的碳化矽磊晶層11。
作為本發明之碳化矽磊晶基板的製造方法之一形態,能夠列舉出以下的形態:針對摻雜濃度為3x1018 cm-3 之碳化矽基板10的單面,一邊使摻雜濃度為1x1017 cm-3 以下之碳化矽磊晶層11成長一邊將碳化矽基板10的其他單面予以蝕刻(etching)。 又,作為本發明之碳化矽磊晶基板的製造方法之一形態,能夠列舉出不包含以下形態的形態:針對摻雜濃度為3x1018 cm-3 之碳化矽基板10的單面,一邊使摻雜濃度為1x1017 cm-3 以下之碳化矽磊晶層11成長一邊將碳化矽基板10的其他單面予以蝕刻。
[碳化矽磊晶基板的製造裝置] [實施形態1] 以下,對本發明的實施形態1之碳化矽磊晶基板的製造裝置詳細地進行說明。另外,在該實施形態中,對於與前面的製造方法所表示的構成基本上相同的構成要素附加相同的符號而將說明簡略化。
如圖3所示,實施形態1之碳化矽磊晶基板的製造裝置係具備:本體容器30,係能夠將碳化矽基板10予以收容,且由碳化矽材料20所構成;以及加熱爐40,係能夠以在碳化矽基板10與碳化矽材料20之間形成有溫度梯度的方式進行加熱。
(本體容器) 本體容器30是具備以下構件的嵌合容器:基板設置部31,係設置碳化矽基板10;以及上容器32及下容器33,係能夠互相嵌合。於上容器32與下容器33之嵌合部係形成有微小的間隙34,且構成為能夠從該間隙34進行本體容器30內的排氣(抽真空)。
基板設置部31係被設置於下容器33的底面側,且設置有碳化矽基板10。另外雖未圖示,不過也可設置將碳化矽基板10予以支持的台座等。 上容器32係由多晶碳化矽所構成。因此成為對碳化矽基板10供給原料的碳化矽材料20。另外,該上容器32係被設定成摻雜濃度比碳化矽基板10還低。 下容器33係與上容器32同樣地由多晶碳化矽所構成。又,由能耐高熱的高熔點材料所構成即可,能夠採用與後述的高熔點容器50同樣的材料。
亦即,本體容器30係具有:基板設置部31,係設置碳化矽基板10;碳化矽材料20,係與該基板設置部31相對;以及原料輸送空間S1,係用以將原料從碳化矽材料20向碳化矽基板10輸送。而且,碳化矽材料20的摻雜濃度係被設定得比碳化矽基板10的摻雜濃度還低。
本體容器30是如下的構成:在收容了碳化矽基板10之狀態下進行熱處理時,使包含矽元素及碳元素的氛圍在內部空間產生。以實施形態1之本體容器30來說,本體容器30的整體係由多晶碳化矽所構成。藉由加熱該本體容器30,能夠在內部空間內形成包含矽元素及碳元素的氛圍。
又,以被加熱處理過的本體容器30內之空間來說,較期望成為包含矽元素之氣相種及包含碳元素之氣相種的混合系之蒸氣壓環境。以作為該包含矽元素之氣相種來說,能夠例示Si、Si2 、Si3 、Si2 C、SiC2 、SiC。又,以作為包含碳元素之氣相種來說,能夠例示Si2 C、SiC2 、SiC、C。亦即,較佳為成為碳化矽系氣體存在於準密閉空間之狀態。
原料輸送空間S1是如下的空間:將被設於碳化矽基板10與碳化矽材料20之間的溫度梯度或化學位能差作為驅動力,將原料對碳化矽基板10的表面輸送。
例如,在將碳化矽基板10之表面(主面101或者是背面102)的溫度與跟該主面101相對之碳化矽材料20(上容器32)的溫度予以比較時,以碳化矽基板10側的溫度變低且上容器32的溫度變高的方式將碳化矽基板10配置(參照圖4)。如此,藉由將設置了溫度差的空間(原料輸送空間S1)形成在主面101與上容器32之間,能夠將溫度差作為驅動力來將碳化矽材料20的原料(矽元素、碳元素及摻雜物)對碳化矽基板10的表面輸送。
又,以本體容器30來說,也可以設置能夠對容器內供給矽蒸氣的矽蒸氣供給源35。以作為該矽蒸氣供給源35來說,能夠例示固體的矽(單晶矽片或矽粉末等的矽丸)或矽化合物。
例如,在如本實施形態般本體容器30之整體由多晶碳化矽所構成之情形下,藉著配置矽蒸氣供給源,本體容器30內的原子數比矽/碳會超過1。 具體來說,於在滿足化學計量比1:1之多晶碳化矽的本體容器30內配置了滿足化學計量比1:1之碳化矽基板10與矽蒸氣供給源35(矽丸等)之情形下,本體容器30內的原子數比矽/碳係超過1(參照圖5)。
如此,藉由將原子數比矽/碳超過1的空間予以加熱,能夠接近碳化矽(固體)與矽(液相)經由氣相而成為相平衡狀態時的蒸氣壓環境(SiC-Si平衡蒸氣壓環境)。
另一方面,在本體容器30內未設置矽蒸氣供給源之情形下,本體容器30內的原子數比矽/碳係成為1或者是1以下。 具體來說,在滿足化學計量比1:1之多晶碳化矽的本體容器30內配置了滿足化學計量比1:1之碳化矽基板10的情形下,本體容器30內的原子數比矽/碳係成為1(參照圖4)。
如此,藉由將原子數比矽/碳為1或者是1以下的空間予以加熱,能夠接近碳化矽(固相)與碳(固相)經由氣相而成為相平衡狀態時的蒸氣壓環境(SiC-C平衡蒸氣壓環境)。
另外,本說明書中的SiC-Si平衡蒸氣壓環境及SiC-C平衡蒸氣壓環境係指包含:近熱平衡蒸氣壓環境,係滿足由理論上的熱平衡環境所導出的成長速度與成長溫度之關係。
SiC-Si蒸氣壓環境係指:碳化矽(固體)與矽(液相)經由氣相而成為相平衡狀態時的蒸氣壓環境。 SiC-Si平衡蒸氣壓環境係例如藉由對原子數比矽/碳超過1的準密閉空間進行熱處理所形成。
SiC-C平衡蒸氣壓環境係指:碳化矽(固相)與碳(固相)經由氣相而成為相平衡狀態時的蒸氣壓環境。 SiC-C平衡蒸氣壓環境係例如藉由對原子數比矽/碳為1以下的準密閉空間進行熱處理所形成。
(加熱爐) 如圖3所示,加熱爐40係具備:主加熱室41,係能夠將被處理物(碳化矽基板10等)加熱到1000℃以上至2300℃以下的溫度;預備加熱室42,係能夠將被處理物預備加熱到500℃以上的溫度;高熔點容器50,係能夠將本體容器30予以收容;以及移動手段43(移動台),係能夠將該高熔點容器50從預備加熱室42向主加熱室41移動。
主加熱室41係在俯視剖視觀看時形成為正六角形,且於主加熱室41的內側配置有高熔點容器50。 於主加熱室41的內部係具備有加熱器(heater)44(網目加熱器(mesh heater))。又,於主加熱室41的側壁及/或天花板係固定有多層熱反射金屬板(未圖示。)。該多層熱反射金屬板係以使加熱器44的熱朝向主加熱室41的大致中央部反射的方式所構成。
藉此,在主加熱室41內,以將收容有被處理物之高熔點容器50予以包圍的方式配置加熱器44,進一步地在高熔點容器50的外側配置多層熱反射金屬板,藉此能夠升溫到1000℃以上至2300℃以下的溫度。 另外,以作為加熱器44來說,能夠使用例如電阻加熱式的加熱器或高頻率感應加熱式的加熱器。
又,加熱器44也可以採用能夠在高熔點容器50內形成溫度梯度之構成。例如,加熱器44也可以在上側配置多個加熱器地構成。又,加熱器44也可以用寬度隨著朝向上側而變大的方式構成。或者是,加熱器44也可以用能夠隨著朝向上側而將所供給的電力放大的方式構成。
又,於主加熱室41係連接有:真空形成用閥(valve)45,係進行主加熱室41內的排氣;惰性氣體注入用閥46,係對主加熱室41內導入惰性氣體;以及真空計47,係測定主加熱室41內的真空度。
真空形成用閥45係與將主加熱室41內予以排氣並抽真空的抽真空泵連接(未圖示)。藉由該真空形成用閥45及抽真空泵,主加熱室41內的真空度係能夠調整至例如10 Pa以下,更佳為1 Pa以下,再更佳為10-3 Pa以下。以作為該抽真空泵來說,能夠例示渦輪分子泵(turbomolecular pump)。
惰性氣體注入用閥46係與惰性氣體供給源連接(未圖示)。藉由該惰性氣體注入用閥46及惰性氣體供給源,能夠以10-5 Pa至10000 Pa的範圍對主加熱室41內導入惰性氣體。以作為該惰性氣體來說,能夠選擇Ar、He、N2 等。
又,惰性氣體注入用閥46是能夠對本體容器30內供給摻雜物氣體的摻雜物氣體供給手段。亦即,藉由對惰性氣體選擇摻雜物氣體(例如N2 等),能夠調整碳化矽磊晶層11的摻雜濃度。
預備加熱室42係與主加熱室41連接,且藉由移動手段43構成為能夠移動高熔點容器50。另外,以本實施形態之預備加熱室42而言,以能夠藉由主加熱室41之加熱器44的餘熱而升溫的方式所構成。例如,在將主加熱室41升溫到2000℃之情形下,預備加熱室42係被升溫到1000℃左右,能夠進行被處理物(碳化矽基板10、本體容器30、高熔點容器50等)的脫氣處理。
移動手段43係構成為能夠將高熔點容器50載置而在主加熱室41與預備加熱室42之間移動。由該移動手段43所進行的主加熱室41與預備加熱室42之間的搬運以最短1分鐘左右完成,因此能夠實現1 ℃至1000 ℃/min的升溫/降溫。 由於如此地進行急速升溫及急速降溫,因此能夠觀察升溫中及降溫中的不具有低溫成長歷程之表面形狀,而這在習知的裝置上是困難的。 又,在圖3中,雖將預備加熱室42配置在主加熱室41的下方,但也可不限於此地配置於任意方向。
又,本實施形態之移動手段43是將高熔點容器50予以載置的移動台。讓微小的熱從該移動台與高熔點容器50的接觸部散逸。藉此,能夠在高熔點容器50內(及本體容器30內)形成溫度梯度。 亦即,以本實施形態之加熱爐40來說,由於高熔點容器50的底部與移動台接觸,故以溫度從高熔點容器50之上容器51朝向下容器52而下降之方式設有溫度梯度。該溫度梯度較期望為沿著碳化矽基板10的表背方向所形成。 又,也可以如上述般,藉由加熱器44的構成來形成溫度梯度。
(高熔點容器) 加熱爐40較佳為能夠形成包含矽元素的氛圍,且能夠在該氛圍內將本體容器30加熱。本實施形態之加熱爐40內的包含矽元素之氛圍係使用高熔點容器50及矽蒸氣供給源54來形成。 另外,只要是能夠在本體容器30的周圍形成包含矽元素之氛圍的方法,則當然能夠採用。
高熔點容器50係包含高熔點材料而構成。例如,能夠例示:屬於泛用耐熱構件的碳;屬於高熔點金屬的W、Re、Os、Ta、Mo;屬於碳化物的Ta9 C8 、HfC、TaC、NbC、ZrC、Ta2 C、TiC、WC、MoC;屬於氮化物的HfN、TaN、BN、Ta2 N、ZrN、TiN;屬於硼化物的HfB2 、TaB2 、ZrB2 、NB2 、TiB2 ,多晶碳化矽等。
該高熔點容器50與本體容器30同樣地是具備能夠互相地嵌合的上容器51與下容器52的嵌合容器,且構成為能夠將本體容器30予以收容。於上容器51與下容器52的嵌合部係形成有微小的間隙53,且構成為能夠從該間隙53進行高熔點容器50內的排氣(抽真空)。
高熔點容器50較佳為具有:矽蒸氣供給源54,係能夠對高熔點容器50內供給包含矽元素的氣相種之蒸氣壓。矽蒸氣供給源54只要是在加熱處理時使矽蒸氣在高熔點容器50內產生的構成即可,能夠例示例如固體的矽(單晶矽片或矽粉末等的矽丸)或矽化合物。
以本實施形態之碳化矽基板的製造裝置來說,採用碳化鉭作為高熔點容器50的材料,且採用矽化鉭(tantalum silicide)作為矽蒸氣供給源54。亦即,如圖4所示般構成為:於高熔點容器50的內側形成有矽化鉭層,於加熱處理時矽蒸氣從矽化鉭層對容器內供給,藉此形成矽蒸氣壓環境。 除此之外,只要是在加熱處理時於高熔點容器50內形成包含矽元素的氣相種之蒸氣壓的構成則能夠採用。
本發明之碳化矽磊晶基板的製造裝置係使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而加熱,且將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。藉此,能夠將加熱溫度作為參數,使具有作為碳化矽半導體器件之耐壓層的功能之碳化矽磊晶層11成長。
又,本發明之碳化矽磊晶基板的製造裝置係能夠形成:摻雜濃度繼承了碳化矽材料20之摻雜濃度的碳化矽磊晶層11。因此,藉由選擇所期望的摻雜濃度之碳化矽材料20,能夠控制碳化矽磊晶層11的摻雜濃度。
[實施形態2] 圖6是實施形態2之碳化矽磊晶基板的製造裝置之說明圖。該實施形態2之本體容器30係構成為能夠將原料從碳化矽構件36對碳化矽基板10供給。另外,在同實施形態中,對於與前面的實施形態基本上相同的構成要素附加相同的符號而將說明簡略化。
(本體容器) 實施形態2之本體容器30係具有:基板設置部31,係設置碳化矽基板10;碳化矽材料設置部37,係將碳化矽構件36(碳化矽材料20)設置在與該基板設置部31相對的位置;原料輸送空間S1,係用以將原料從碳化矽構件36向碳化矽基板10輸送;以及支持具38,係被設置於碳化矽基板10與碳化矽構件36之間。 而且,碳化矽構件36的摻雜濃度係被設定得比碳化矽基板10的摻雜濃度還低。
支持具38較期望為由與高熔點容器50同樣的高熔點材料所構成。
本實施形態之碳化矽基板的製造裝置是在本體容器30內設置碳化矽構件36且將原料從該碳化矽構件36對碳化矽基板10輸送的構成。因此,能夠以任意的材料構成本體容器30。具體來說,能夠採用與高熔點容器50同樣的高熔點材料。
[實施形態3] 圖7是實施形態3之碳化矽磊晶基板的製造裝置之說明圖。該實施形態3之本體容器30係構成為能夠以與前面的實施形態不同的溫度梯度進行成長。另外,在同實施形態中,對於與前面的實施形態基本上相同的構成要素附加相同的符號而將說明簡略化。
(本體容器) 實施形態3之本體容器30係具有:基板設置部31,係設置碳化矽基板10;支持具38,係被設置於碳化矽基板10與碳化矽材料20之間;以及原料輸送空間S1,係用以將原料從碳化矽材料20向碳化矽基板10輸送。
以碳化矽材料20來說,可以如圖6所示般採用由多晶碳化矽所構成的下容器33,也可以將碳化矽材料20配置在支持具38之下。
(加熱爐) 以本實施形態之加熱爐40來說,以溫度從高熔點容器50之下容器52朝向上容器51而下降的方式形成有溫度梯度。 該溫度梯度係例如藉由以如下方式構成來形成:在高熔點容器50的天花板設置與移動台接觸的接觸部,使熱往上方向散逸。 又例如,加熱器44也可以在上側配置多個加熱器地構成。又,加熱器44也可以用寬度隨著朝向上側而變大的方式構成。或者是,加熱器44也可以用能夠隨著朝向上側而將所供給的電力放大的方式構成。
本實施形態之碳化矽基板的製造裝置係能夠在碳化矽基板10的主面101朝下的狀態下使碳化矽磊晶層11成長。因此,能夠抑制於重力方向移動的陷落(down-fall)混入碳化矽基板10的表面的情形。 [實施例]
舉出實施例1、實施例2來更具體地說明本發明。 [實施例1] [配置步驟] 用以下的條件將碳化矽基板10收容於本體容器30,進一步地將本體容器30收容於高熔點容器50。
(碳化矽基板) 多型:4H-SiC。 基板尺寸:橫寬10mm × 縱寬10mm × 厚度0.3 mm。 偏離方向(off-direction)及偏離角:>11-20>方向偏離4°。 成長面:(0001)面。 摻雜物:N。 摻雜濃度:3x1018 cm-3 。 有無宏階摺:無。
另外,用拉曼分光法確認了碳化矽基板10的摻雜物及摻雜濃度。
(本體容器) 材料:多晶碳化矽。 容器尺寸:直徑60 mm × 高度4 mm。 碳化矽基板10與碳化矽材料20之距離:2 mm。 摻雜物:N。 摻雜濃度:1x1017 cm-3 以下(拉曼分光法檢測界限以下)。 容器內的原子數比矽/碳:1以下。
(高熔點容器) 材料:TaC。 容器尺寸:直徑160 mm × 高度60 mm。 矽蒸氣供給源54(矽化合物):TaSi2
[加熱步驟] 將用上述條件配置的碳化矽基板10用以下的條件加熱處理。 加熱溫度:1700℃。 加熱時間:300 min。 溫度梯度:1℃/mm。 成長速度:5 nm/min。 主加熱室41的真空度:10-5 Pa。
圖8是將已用上述條件成長及蝕刻後的實施例1之碳化矽基板以倍率x10000從剖面觀察的SEM像。該實施例1之碳化矽磊晶層11的厚度為1.5 μm。
又,該實施例1之碳化矽磊晶層11的摻雜濃度為1x1017 cm-3 以下,碳化矽基板10的摻雜濃度為3x1018 cm-3 。如圖8所示,根據碳化矽磊晶層11的SEM像對比度(contrast)比起碳化矽基板10還明亮這點,能夠掌握碳化矽磊晶層11的摻雜濃度比碳化矽基板10還低的情形。
[碳化矽磊晶成長層中的BPD轉換率] 圖9是求出在碳化矽磊晶層11中從BPD轉換為其他缺陷/差排(TED(Threading Edge Dislocation;貫穿刃差排)等)之轉換率的手法的說明圖。 圖9中的(a)係表示用加熱步驟使碳化矽磊晶層11成長的樣子。在該加熱步驟中,存在於碳化矽基板10的BPD會以一定的確率轉換為TED。因此,在碳化矽磊晶層11的表面,只要不是100%轉換,TED與BPD會混合存在。 圖9中的(b)係表示使用KOH溶解蝕刻法來確認碳化矽磊晶層11中之缺陷的樣子。該KOH溶解蝕刻法是以下的手法:將碳化矽基板浸於加熱到約500℃的溶解鹽(KOH等)中,於差排或缺陷部分形成蝕刻坑(etch pit),藉由該蝕刻坑的大小/形狀來判別差排的種類。藉由該手法得到存在於碳化矽磊晶層11的表面的BPD數。 圖9中的(c)係表示在KOH溶解蝕刻後將碳化矽磊晶層11去除的樣子。在本手法中,用機械研磨或CMP(Chemical-Mechanical Planarization;化學機械平坦化)等平坦化到蝕刻坑深度後,用熱蝕刻將碳化矽磊晶層11去除而使碳化矽基板10的表面表露。 圖9中的(d)係表示針對已去除碳化矽磊晶層11之碳化矽基板10使用KOH溶解蝕刻法來確認碳化矽基板10中之缺陷的樣子。藉由該手法,得到存在於碳化矽基板10的表面的BPD數。
依據圖9所示的一連串順序,將存在於碳化矽磊晶層11的表面的BPD數(參照圖9中的(b))與存在於碳化矽基板10的表面的BPD數(參照圖9中的(d))予以比較,藉此能夠得到在加熱步驟中從BPD轉換為其他缺陷/差排的BPD轉換率。
存在於實施例1之碳化矽磊晶層11的表面的BPD數為約0個cm-2 ,存在於碳化矽基板10的表面的BPD數為1000個cm-2 。 亦即,能夠掌握以下情形:將表面不存在MSB的碳化矽基板10配置於原子數比矽/碳為1以下的準密閉空間且加熱,藉此將BPD減低/去除。
根據本發明,使碳化矽基板10與摻雜濃度比碳化矽基板10還低的碳化矽材料20相對而加熱,且將原料從碳化矽材料20對碳化矽基板10輸送而形成碳化矽磊晶層11。藉此,能夠使具有以下之摻雜濃度的碳化矽磊晶層11成長:能夠作為半導體器件之耐壓層發揮功能的摻雜濃度。
又,根據本發明,將碳化矽基板10配置於原子數比矽/碳為1以下的準密閉空間且加熱,藉此能夠形成具有耐壓層的功能且表面的BPD被減低/去除之碳化矽磊晶層11。
[實施例2] [配置步驟] 用以下的條件將碳化矽基板10收容於本體容器30,進一步地將本體容器30收容於高熔點容器50。
(碳化矽基板) 多型:4H-SiC。 基板尺寸:橫寬10mm × 縱寬10mm × 厚度0.3 mm。 偏離方向及偏離角:>11-20>方向偏離4°。 成長面:(0001)面。 摻雜物:N。 摻雜濃度:3x1018 cm-3 。 有無宏階摺:有。
另外,用拉曼分光法確認了碳化矽基板10的摻雜物及摻雜濃度。
(本體容器) 材料:多晶碳化矽。 容器尺寸:直徑60 mm × 高度4 mm。 碳化矽基板10與碳化矽材料20之距離:2 mm。 摻雜物:N。 摻雜濃度:1x1017 cm-3 以下(拉曼分光法檢測界限以下)。 矽蒸氣供給源35:矽片。 容器內的原子數比矽/碳:超過1。
在本體容器30內將矽片與碳化矽基板10一併收容,藉此容器內的原子數比矽/碳超過1。
(高熔點容器) 材料:TaC。 容器尺寸:直徑160 mm × 高度60 mm。 矽蒸氣供給源54(矽化合物):TaSi2
[加熱步驟] 將用上述條件配置的碳化矽基板10用以下的條件加熱處理。 加熱溫度:1800℃。 加熱時間:60 min。 溫度梯度:1℃/mm。 成長速度:68 nm/min。 主加熱室41的真空度:10-5 Pa。
圖10是碳化矽磊晶層11成長前之碳化矽基板10的表面的SEM像。圖10中的(a)是以倍率x1000觀察的SEM像,圖10中的(b)是以倍率x100000觀察的SEM像。 能夠掌握以下情形:於該碳化矽磊晶層11成長前的碳化矽基板10的表面係形成有MSB,且高度3 nm以上的階以平均42 nm的台階寬進行排列。另外,用AFM(Atomic Force Microscope;原子力顯微鏡)測定了階高度。
圖11是碳化矽磊晶層11成長後之碳化矽基板10的表面的SEM像。圖11中的(a)是以倍率x1000觀察的SEM像,圖11中的(b)是以倍率x100000觀察的SEM像。 能夠掌握以下情形:於該實施例2的碳化矽磊晶層11的表面未形成有MSB,且1.0 nm(全晶胞(full unit cell))的階以14 nm的台階寬有規則地進行排列。另外,用AFM測定了階高度。
因此,能夠掌握以下情形:將表面存在有MSB的碳化矽基板10配置於原子數比矽/碳超過1的準密閉空間且加熱,藉此形成表面的MSB被分解之碳化矽磊晶層11。
根據本發明,將碳化矽基板10配置於原子數比矽/碳超過1的準密閉空間且加熱,藉此能夠形成具有作為耐壓層的功能且表面的MSB被分解之碳化矽磊晶層11。
[碳化矽磊晶成長層的成長速度] 圖12是將以本發明之碳化矽磊晶基板的製造方法進行成長後的加熱溫度與成長速度之關係予以表示的圖表(graph)。該圖表的橫軸是溫度的倒數,該圖表的縱軸係將成長速度予以對數顯示。將配置碳化矽基板10於原子數比矽/碳超過1的空間(本體容器30內)而在碳化矽基板10使碳化矽磊晶層11成長之結果以〇印表示。又,將配置碳化矽基板10於原子數比矽/碳為1以下的空間(本體容器30內)而在碳化矽基板10使碳化矽磊晶層11成長之結果以×印表示。
又,在圖12的圖表中,將在SiC-Si平衡蒸氣壓環境下的碳化矽基板成長之熱力學計算的結果以虛線(阿瑞尼氏圖)表示,將在SiC-C平衡蒸氣壓環境下的碳化矽基板成長之熱力學計算的結果以二點鏈線(阿瑞尼氏圖)表示。
在本手法中,碳化矽原料與碳化矽基板間的蒸氣壓環境係於成為SiC-C平衡蒸氣壓環境或者是SiC-C平衡蒸氣壓環境之條件下,將化學位能差或溫度梯度作為成長驅動力來使碳化矽基板10成長。以該化學位能差來說,能夠例示在多晶碳化矽(碳化矽材料20)與單晶碳化矽(碳化矽基板10)的表面產生之氣相種的分壓差。
在此,在將從碳化矽原料與碳化矽基板產生之蒸氣的分壓差作為成長量之情形下,用以下的數學式1求得碳化矽的成長速度。
[數學式1]
在此,T是碳化矽原料側的溫度、mi 是氣相種(Six Cy )之分子量、k是波茲曼常數(Boltzmann constant)。 又,P原料 i -P基板 i 是原料氣體成為過飽和的狀態而作為碳化矽析出之成長量,且原料氣體係設想為SiC、Si2 C、SiC2
亦即,虛線是在碳化矽(固體)與矽(液相)經由氣相而成為相平衡狀態時的蒸氣壓環境下,將多晶碳化矽作為原料使單晶碳化矽成長時的熱力學計算之結果。 具體來說,使用數學式1,用以下的條件(i)至條件(iv)進行了熱力學計算。(i)是體積固定的SiC-Si平衡蒸氣壓環境;(ii)成長驅動力是本體容器30內的溫度梯度、以及多晶碳化矽與單晶碳化矽的蒸氣壓差(化學位能差);(iii)原料氣體是SiC、Si2 C、SiC2 ;(iv)原料於碳化矽基板10之階吸附的吸附係數為0.001。
又,二點鏈線是在碳化矽(固相)與碳(固相)經由氣相而成為相平衡狀態時的蒸氣壓環境中,將多晶碳化矽作為原料而使單晶碳化矽成長時的熱力學計算之結果。 具體來說,使用數學式1,用以下的條件(i)至條件(iv)進行了熱力學計算。(i)是體積固定的SiC-C平衡蒸氣壓環境;(ii)成長驅動力是本體容器30內的溫度梯度、以及多晶碳化矽與單晶碳化矽的蒸氣壓差(化學位能差);(iii)原料氣體是SiC、Si2 C、SiC2 ;(iv)原料於碳化矽基板10之階吸附的吸附係數為0.001。 另外,用於熱力學計算之各化學種的資料係採用了JANAF熱化學表(JANAF thermochemical table)的值。
根據該圖12的圖表可以了解到以下情形:將碳化矽基板10配置於原子數比矽/碳超過1的空間(本體容器30內)而在碳化矽基板10使碳化矽磊晶層11成長後的結果(〇印),與SiC-Si平衡蒸氣壓環境中的碳化矽基板成長之熱力學計算的結果有一致傾向。 又,可以了解到以下情形:將碳化矽基板10配置於原子數比矽/碳為1以下的空間(本體容器30內)而在碳化矽基板10使碳化矽磊晶層11成長後的結果(×印),與SiC-C平衡蒸氣壓環境中的碳化矽基板成長之熱力學計算的結果有一致傾向。
在SiC-Si平衡蒸氣壓環境下,推定以1960℃的加熱溫度達成1.0 μm/min以上的成長速度。又,推定以2000℃以上的加熱溫度達成2.0 μm/min以上的成長速度。 另一方面,在SiC-C平衡蒸氣壓環境下,推定以2000℃的加熱溫度達成1.0 μm/min以上的成長速度。又,推定以2030℃以上的加熱溫度達成2.0 μm/min以上的成長速度。
又,根據本發明,能夠將碳化矽磊晶層的成長速度設定為1.0 μm/min以上,且能夠高速地使耐壓層成長。
10:碳化矽基板 11:碳化矽磊晶層 20:碳化矽材料 30:本體容器 31:基板設置部 32,51:上容器 33,52:下容器 34,53:間隙 35,54:矽蒸氣供給源 36:碳化矽構件 37:碳化矽材料設置部 38:支持具 40:加熱爐 41:主加熱室 42:預備加熱室 43:移動手段 44:加熱器 45:真空形成用閥 46:惰性氣體注入用閥 47:真空計 50:高熔點容器 101:主面 102:背面 S1:原料輸送空間
[圖1]是一實施形態之碳化矽磊晶基板的製造方法之說明圖。 [圖2]是一實施形態之碳化矽磊晶基板的製造方法之說明圖。 [圖3]是實施形態1之碳化矽磊晶基板的製造裝置之說明圖。 [圖4]是實施形態1之碳化矽磊晶基板的製造裝置之說明圖。 [圖5]是實施形態1之碳化矽磊晶基板的製造裝置之說明圖。 [圖6]是實施形態2之碳化矽磊晶基板的製造裝置之說明圖。 [圖7]是實施形態3之碳化矽磊晶基板的製造裝置之說明圖。 [圖8]是以一實施形態之碳化矽磊晶基板的製造方法形成了碳化矽磊晶層之碳化矽基板的剖視SEM(Scanning Electron Microscopy;掃描式電子顯微鏡)像。 [圖9]是將一實施形態之碳化矽磊晶基板的製造方法之BPD轉換率予以求出的手法之說明圖。 [圖10]是一實施形態之碳化矽磊晶基板的製造方法之在碳化矽磊晶層成長前所觀察的碳化矽基板表面之SEM像。 [圖11]是一實施形態之碳化矽磊晶基板的製造方法之在碳化矽磊晶層成長後所觀察的碳化矽基板表面之SEM像。 [圖12]是將一實施形態之碳化矽磊晶基板的製造方法之成長速度予以表示的阿瑞尼氏圖(Arrhenius’ plot)。
10:碳化矽基板
11:碳化矽磊晶層
20:碳化矽材料
30:本體容器
S1:原料輸送空間

Claims (29)

  1. 一種碳化矽磊晶基板的製造方法,係使碳化矽基板與摻雜濃度比前述碳化矽基板還低的碳化矽材料相對而加熱,且將原料從前述碳化矽材料對前述碳化矽基板輸送而形成碳化矽磊晶層;前述原料包含前述碳化矽材料所包含的摻雜物。
  2. 如請求項1所記載之碳化矽磊晶基板的製造方法,其中前述碳化矽材料的摻雜濃度為1x1017cm-3以下。
  3. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中以在前述碳化矽基板與前述碳化矽材料之間形成具有溫度梯度之原料輸送空間的方式進行加熱,將前述碳化矽材料配置於高溫側且將前述碳化矽基板配置於低溫側,藉此將原料輸送。
  4. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。
  5. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此將前述碳化矽磊晶層的表面予以平坦化。
  6. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱後,在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。
  7. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中以1600℃以上的溫度區域加熱前述碳化矽基板。
  8. 如請求項1或2所記載之碳化矽磊晶基板的製造方法,其中形成表面的基底面差排密度為1.0個cm-2以下的碳化矽磊晶層。
  9. 一種碳化矽磊晶基板的製造裝置,係具備:本體容器,係能夠將碳化矽基板予以收容;前述本體容器係具有:基板設置部,係設置前述碳化矽基板;以及碳化矽材料,係與前述基板設置部相對;前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低的碳化矽構件。
  10. 如請求項9所記載之碳化矽磊晶基板的製造裝置,其中前述本體容器係由前述碳化矽材料所構成。
  11. 一種碳化矽磊晶基板的製造裝置,係具備:本體容器,係能夠將碳化矽基板予以收容;前述本體容器係具有:基板設置部,係設置前述碳化矽基板;以及碳化矽材料設置部,係將碳化矽材料設置在與前述基板設置部相對的位置;前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低的碳化矽構件。
  12. 如請求項9至11中任一項所記載之碳化矽磊晶基板的製造裝置,其中前述碳化矽材料的摻雜濃度為1x1017cm-3以下。
  13. 如請求項9至11中任一項所記載之碳化矽磊晶基板的製造裝置,其中前述本體容器係具有:支持具,係被設置於前述碳化矽基板與前述碳化矽材料之間。
  14. 如請求項9至11中任一項所記載之碳化矽磊晶基板的製造裝置,其中進一步具備:加熱爐,係以在前述碳化矽基板與前述碳化矽材料之間形成有溫度梯度的方式進行加熱。
  15. 如請求項14所記載之碳化矽磊晶基板的製造裝置,其中前述加熱爐係具備:高熔點容器,係能夠收容前述本體容器;以及第一矽蒸氣供給源,係能夠對前述高熔點容器內供給矽蒸氣。
  16. 如請求項9至11中任一項所記載之碳化矽磊晶基板的製造裝置,其中前述本體容器係具備:第二矽蒸氣供給源,係能夠將矽蒸氣對容器內供給;前述第二矽蒸氣供給源係以前述本體容器內的原子數比矽/碳超過1的方式所配置。
  17. 一種碳化矽磊晶基板的製造方法,係使碳化矽基板與碳化矽材料相對而加熱,藉此將原料從前述碳化矽材料對前述碳化矽基板輸送且以1.0μm/min以上的成長速度形成碳化矽磊晶層。
  18. 如請求項17所記載之碳化矽磊晶基板的製造方法,其中前述成長速度是2.0μm/min以上。
  19. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中前述碳化矽材料係比起前述碳化矽基板摻雜濃度更低。
  20. 如請求項19所記載之碳化矽磊晶基板的製造方法,其中前述碳化矽材料的摻雜濃度為1x1017cm-3以下。
  21. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中以1900℃以上的溫度區域加熱前述碳化矽基板。
  22. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中使前述碳化矽磊晶層成長30μm以上。
  23. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中使前述碳化矽磊晶層成長100μm以上。
  24. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中以在前述碳化矽基板與前述碳化矽材料之間形成具有溫度梯度之原料輸送空間的方式進行加熱,將前述碳化矽材料配置於高溫側且將前述碳化矽基板配置於低溫側,藉此將原料輸送。
  25. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中在準密閉空間配置前述碳化矽基板與前述碳化矽材料且加熱。
  26. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。
  27. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此將前述碳化矽磊晶層的表面予以平坦化。
  28. 如請求項17或18所記載之碳化矽磊晶基板的製造方法,其中在原子數比矽/碳為1以下的準密閉空間配置前述碳化矽基板且加熱後,在原子數 比矽/碳超過1的準密閉空間配置前述碳化矽基板且加熱,藉此減低前述碳化矽磊晶層中的基底面差排密度。
  29. 一種碳化矽磊晶基板,係由請求項1至8、17至28中任一項所記載之碳化矽磊晶基板的製造方法所製造。
TW109107167A 2019-03-05 2020-03-05 碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置 TWI824118B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019040072 2019-03-05
JP2019-040072 2019-03-05
JP2019069281 2019-03-29
JP2019-069281 2019-03-29
JP2019069280 2019-03-29
JP2019-069280 2019-03-29

Publications (2)

Publication Number Publication Date
TW202044351A TW202044351A (zh) 2020-12-01
TWI824118B true TWI824118B (zh) 2023-12-01

Family

ID=72337464

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109107169A TW202039944A (zh) 2019-03-05 2020-03-05 碳化矽基板、碳化矽基板的製造方法以及碳化矽基板的製造裝置
TW109107167A TWI824118B (zh) 2019-03-05 2020-03-05 碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109107169A TW202039944A (zh) 2019-03-05 2020-03-05 碳化矽基板、碳化矽基板的製造方法以及碳化矽基板的製造裝置

Country Status (6)

Country Link
US (2) US20220181156A1 (zh)
EP (3) EP4209626A1 (zh)
JP (2) JPWO2020179796A1 (zh)
CN (2) CN114174565A (zh)
TW (2) TW202039944A (zh)
WO (2) WO2020179796A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116745471A (zh) 2021-01-14 2023-09-12 学校法人关西学院 蚀刻量的测量方法及其测量系统
WO2023058493A1 (ja) * 2021-10-05 2023-04-13 学校法人関西学院 エピタキシャル層のキャリア濃度を均一化する方法及びそれらの方法により作製された構造
WO2023058492A1 (ja) * 2021-10-05 2023-04-13 学校法人関西学院 ドーパントの活性化率を向上させる方法及びそれらの方法により作製された構造
CN117637463A (zh) * 2024-01-26 2024-03-01 希科半导体科技(苏州)有限公司 碳化硅衬底的位错缺陷的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074664A (ja) * 2006-09-21 2008-04-03 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
CN105189835A (zh) * 2013-02-05 2015-12-23 道康宁公司 减少通过升华(pvt)生长的SiC晶体中的位错的方法
TW201630061A (zh) * 2014-11-18 2016-08-16 Toyo Tanso Co 碳化矽基板之蝕刻方法及收容容器
WO2017188381A1 (ja) * 2016-04-28 2017-11-02 学校法人関西学院 気相エピタキシャル成長方法及びエピタキシャル層付き基板の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967304B1 (en) * 1998-05-29 2004-04-07 Denso Corporation Method for manufacturing single crystal of silicon carbide
US6897138B2 (en) * 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
JP3758528B2 (ja) * 2001-06-25 2006-03-22 豊田合成株式会社 Iii族窒化物系化合物半導体の製造装置及びそれを用いたiii族窒化物系化合物半導体の製造方法
JP4673528B2 (ja) * 2001-09-28 2011-04-20 新日本製鐵株式会社 炭化珪素単結晶インゴットおよびその製造方法
JP4505202B2 (ja) * 2002-09-19 2010-07-21 昭和電工株式会社 炭化珪素単結晶の製造方法および製造装置
US7052546B1 (en) * 2003-08-28 2006-05-30 Cape Simulations, Inc. High-purity crystal growth
JP4513446B2 (ja) * 2004-07-23 2010-07-28 豊田合成株式会社 半導体結晶の結晶成長方法
JP5588671B2 (ja) * 2008-12-25 2014-09-10 ローム株式会社 半導体装置の製造方法
JP6019938B2 (ja) 2012-08-30 2016-11-02 富士電機株式会社 炭化珪素半導体装置の製造方法
JP6097681B2 (ja) * 2013-12-24 2017-03-15 昭和電工株式会社 SiCエピタキシャルウェハの製造装置およびSiCエピタキシャルウェハの製造方法
KR101640313B1 (ko) * 2014-11-14 2016-07-18 오씨아이 주식회사 잉곳 제조 장치
JP6594148B2 (ja) * 2015-09-30 2019-10-23 昭和電工株式会社 炭化珪素単結晶インゴット
JP2017105697A (ja) 2015-11-26 2017-06-15 東洋炭素株式会社 薄型のSiCウエハの製造方法及び薄型のSiCウエハ
US9805935B2 (en) * 2015-12-31 2017-10-31 International Business Machines Corporation Bottom source/drain silicidation for vertical field-effect transistor (FET)
US20170321345A1 (en) * 2016-05-06 2017-11-09 Ii-Vi Incorporated Large Diameter Silicon Carbide Single Crystals and Apparatus and Method of Manufacture Thereof
JP6762484B2 (ja) * 2017-01-10 2020-09-30 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
CN106894091B (zh) * 2017-03-28 2020-03-20 山东大学 用于物理气相传输法生长碳化硅晶体的坩埚
EP3382067B1 (en) * 2017-03-29 2021-08-18 SiCrystal GmbH Silicon carbide substrate and method of growing sic single crystal boules
JP6869077B2 (ja) * 2017-03-30 2021-05-12 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
JP7278550B2 (ja) * 2018-11-05 2023-05-22 学校法人関西学院 SiC半導体基板及びその製造方法及びその製造装置
EP4012078A4 (en) * 2019-08-06 2023-11-15 Kwansei Gakuin Educational Foundation SEED CRYSTAL SEED OF SIC AND PRODUCTION METHOD THEREFOR, SIC INGOT PRODUCED BY GROWING SAID SEED CRYSTAL SEED OF SIC AND PRODUCTION METHOD THEREFOR, AND SIC WAFER PRODUCED FROM SAID SIC INGOT AND EPITAXIAL FILM SIC WAFER AND METHODS RESPECTIVE PRODUCTION RESPECTS OF SAID SIC WAFER AND SAID EPITAXIAL FILM SIC WAFER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074664A (ja) * 2006-09-21 2008-04-03 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
CN105189835A (zh) * 2013-02-05 2015-12-23 道康宁公司 减少通过升华(pvt)生长的SiC晶体中的位错的方法
TW201630061A (zh) * 2014-11-18 2016-08-16 Toyo Tanso Co 碳化矽基板之蝕刻方法及收容容器
WO2017188381A1 (ja) * 2016-04-28 2017-11-02 学校法人関西学院 気相エピタキシャル成長方法及びエピタキシャル層付き基板の製造方法

Also Published As

Publication number Publication date
EP4209626A1 (en) 2023-07-12
EP3936643A4 (en) 2022-11-09
US20220178048A1 (en) 2022-06-09
US20220181156A1 (en) 2022-06-09
WO2020179795A1 (ja) 2020-09-10
JPWO2020179795A1 (zh) 2020-09-10
TW202039944A (zh) 2020-11-01
CN114174567B (zh) 2023-12-15
EP3936643A1 (en) 2022-01-12
WO2020179796A1 (ja) 2020-09-10
EP3936644A4 (en) 2023-03-22
JPWO2020179796A1 (zh) 2020-09-10
TW202044351A (zh) 2020-12-01
CN114174567A (zh) 2022-03-11
CN114174565A (zh) 2022-03-11
EP3936644A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
TWI824118B (zh) 碳化矽磊晶基板、碳化矽磊晶基板的製造方法以及碳化矽磊晶基板的製造裝置
JP7278550B2 (ja) SiC半導体基板及びその製造方法及びその製造装置
US20220282395A1 (en) SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
WO2020095873A1 (ja) SiC半導体基板及びその製造方法及びその製造装置
US20220333270A1 (en) SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
WO2020218483A1 (ja) 半導体基板の製造方法、その製造装置、及び、エピタキシャル成長方法
TWI811529B (zh) 碳化矽基板、碳化矽基板的製造方法、碳化矽基板的製造裝置以及降低碳化矽基板的宏階褶的方法
US11932967B2 (en) SiC single crystal manufacturing method, SiC single crystal manufacturing device, and SiC single crystal wafer
US11952678B2 (en) Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation
US20220359667A1 (en) Sic substrate, sic substrate production method, sic semiconductor device, and sic semiconductor device production method
US20220290324A1 (en) SiC SUBSTRATE PRODUCTION METHOD