WO2017057742A1 - SiC単結晶インゴット - Google Patents

SiC単結晶インゴット Download PDF

Info

Publication number
WO2017057742A1
WO2017057742A1 PCT/JP2016/079148 JP2016079148W WO2017057742A1 WO 2017057742 A1 WO2017057742 A1 WO 2017057742A1 JP 2016079148 W JP2016079148 W JP 2016079148W WO 2017057742 A1 WO2017057742 A1 WO 2017057742A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot
single crystal
sic single
substrate
crystal
Prior art date
Application number
PCT/JP2016/079148
Other languages
English (en)
French (fr)
Inventor
正史 中林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2017543652A priority Critical patent/JPWO2017057742A1/ja
Priority to CN201680056842.6A priority patent/CN108138359A/zh
Priority to US15/765,070 priority patent/US20180282902A1/en
Publication of WO2017057742A1 publication Critical patent/WO2017057742A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating

Definitions

  • the present invention relates to a silicon carbide single crystal ingot provided with a silicon carbide single crystal on a seed crystal. Specifically, the dislocation density of basal plane dislocations and threading screw dislocations is low, the crystal quality is excellent, and elastic strain is small.
  • the present invention relates to a silicon carbide single crystal ingot.
  • SiC Silicon carbide
  • SiC is a wide band gap semiconductor having a wide forbidden band width of 2.2 to 3.3 eV. Since SiC has excellent physical and chemical properties, research and development of SiC devices such as semiconductor devices, high-frequency electronic devices, high-voltage / high-power electronic devices, short-wavelength optical devices from blue to ultraviolet, etc. It is actively done.
  • SiC sublimation raw material is housed in a crucible body for crystal growth, a seed crystal made of SiC single crystal is attached to the crucible lid, and a crucible covered with a heat insulating material is doubled. Installed inside the quartz tube.
  • the induction heating coil raises the sublimation raw material side to a high temperature, the seed crystal side to a low temperature, forms a temperature gradient in the growth direction, sublimates the raw material, and recrystallizes SiC on the seed crystal.
  • Grow crystals after obtaining a substantially cylindrical SiC bulk single crystal (SiC single crystal ingot), generally, a SiC single crystal substrate is manufactured by cutting it into a thickness of about 300 to 600 ⁇ m. Further, an epitaxial SiC single crystal wafer in which a SiC epitaxial film is grown on such a SiC single crystal substrate by a thermal CVD method or the like is used for manufacturing a SiC device.
  • a SiC single crystal substrate having a diameter of 51 mm (2 inches) to 100 mm is manufactured from an SiC single crystal ingot manufactured by an improved Rayleigh method (hereinafter sometimes referred to as an ingot).
  • 150 mm wafers have been successfully developed (see, for example, Non-Patent Document 1).
  • the quality of SiC single crystal substrates represented by indices such as dislocation density is It has become more important than ever because it has a big impact on device performance and yield in mass production.
  • the temperature inside the crucible reaches a temperature exceeding 2000 ° C. and the SiC single crystal is grown, so that an inevitable internal stress is generated in the obtained ingot, which is the result of the final single crystal substrate. It is considered that it remains as elastic strain or dislocation (plastic strain) inside.
  • SiC single crystal substrates have a basal plane dislocation (BPD) of 2 ⁇ 10 3 to 2 ⁇ 10 4 (pieces / cm 2 ) and a threading screw dislocation (TSD) of 8 ⁇ 10 2 to 10 3 (pieces / cm 2 ) and 5 ⁇ 10 3 to 2 ⁇ 10 4 (pieces / cm 2 ) of threading edge dislocations (TED) are reported (see Non-Patent Document 2).
  • BPD basal plane dislocation
  • TSD threading screw dislocation
  • TED threading edge dislocations
  • Patent Document 8 a method of reducing the density of micropipe defects and dislocation defects by matching the concentration of the additive element in the region near the seed crystal of the grown crystal with the concentration of the additive element in the seed crystal is disclosed.
  • Patent Document 9 a method of reducing defects by limiting the frequency of vibration applied to a processing vessel in which a seed crystal substrate and raw material powder are installed when silicon carbide is grown.
  • Patent Document 9 a method of reducing defects by limiting the frequency of vibration applied to a processing vessel in which a seed crystal substrate and raw material powder are installed when silicon carbide is grown.
  • none of the TSD reduction effects are sufficient, and further reduction is necessary for the production of high-performance SiC devices.
  • a temperature gradient control member disposed around the seed crystal or the SiC single crystal grown on the seed crystal, the seed crystal or the SiC single crystal, and the above temperature gradient.
  • a method using a single crystal manufacturing apparatus including a local temperature gradient relaxing member installed between the control member and the control member is disclosed (see Patent Document 3).
  • the purpose of the technology related to this single crystal manufacturing apparatus is to reduce the maximum value of the temperature gradient generated in the single crystal growing directly above the seed crystal and to suppress the generation and propagation of cracks in the grown crystal.
  • the growth conditions of the portion to be formed into a substrate in the growth ingot are essentially the same as the conventional method.
  • Patent Document 6 a SiC single crystal substrate having a low dislocation density and a small elastic strain.
  • Patent Document 7 a SiC single crystal substrate having a low dislocation density and a small elastic strain.
  • Patent Document 7 an elastic strain evaluation method that affects device yield has not been clarified.
  • Patent Document 6 clarifies an elastic strain evaluation method that affects device yield.
  • the SiC single crystal wafer disclosed in Patent Document 6 is a SiC single crystal substrate having a diameter of 100 mm or more (4 inches or more), the BPD density observed on the surface thereof is 500 pieces / cm 2 or less, and TSD The density is 300 pieces / cm 2 or less, and the difference (AB) between the Raman shift value (A) measured at the central portion of the substrate and the Raman shift value (B) measured at the peripheral portion.
  • the Raman index is 0.15 or less.
  • the SiC single crystal substrate described in Patent Document 6 can be said to be an extremely useful technique in that these problems can be solved.
  • the SiC single crystal ingot disclosed in Patent Document 6 has few bulk regions from which a substrate capable of forming a good-quality epitaxial thin film can be taken out, such an SiC single crystal substrate having a low dislocation density and a small elastic strain is The number that can be taken out from one SiC single crystal ingot is limited. In this regard, the SiC single crystal ingot disclosed in Patent Document 6 still has room for improvement.
  • the present inventors have conducted control of ingot temperature in the crystal growth process by the improved Rayleigh method (sublimation recrystallization method using a seed crystal) and ingot in the crystal growth direction. It was found that by optimizing the temperature gradient, a BPD density and a TSD density as a whole as a whole ingot are low and an elastic strain is small.
  • an object of the present invention is to provide a SiC single crystal ingot having a low basal plane dislocation or threading screw dislocation density, excellent crystal quality, low elastic strain, and practical height. It is in.
  • the gist of the present invention is as follows. (1) A SiC single crystal ingot comprising a silicon carbide (SiC) single crystal on a seed crystal, wherein the crystal growth end face at the tip of the ingot has a convex shape, and the seed crystal side bottom face of the ingot is zero, The relative height in the height direction of the ingot is within the range of at least 0.2 to 0.8, where the height of the crystal growth end face corresponding to a position 10% inside the diameter of the ingot from the side surface of the ingot is 1.
  • SiC silicon carbide
  • the basal plane dislocation density observed on the surface of the substrate is 1000 pieces / cm 2 or less and the threading screw dislocation density is 500 pieces / cm 2 or less.
  • the Raman index which is the difference (AB) between the Raman shift value (A) measured at the central portion of the substrate and the Raman shift value (B) measured at the peripheral portion, is 0.20 or less. It is characterized by being SiC single crystal ingot. (2) Relative height in the height direction of the ingot, assuming that the seed crystal side bottom surface of the ingot is zero and the height of the crystal growth end face corresponding to a position 10% inside the diameter of the ingot from the side surface of the ingot is 1.
  • the basal plane dislocation density observed on the surface of the substrate is 1000 pieces / cm 2 or less.
  • the difference between the Raman shift value (A) measured at the central portion of the substrate and the Raman shift value (B) measured at the peripheral portion is 500 pieces / cm 2 or less.
  • the threading screw dislocation density is 300 / cm 2 or less, and the difference between the Raman shift value (A) measured at the central portion of the substrate and the Raman shift value (B) measured at the peripheral portion (
  • the SiC single crystal ingot according to (1) which has a Raman index of AB) of 0.15 or less.
  • the basal plane dislocation density observed on the surface of the substrate is 500 pieces / cm 2 or less.
  • the threading screw dislocation density is 300 / cm 2 or less, and the difference between the Raman shift value (A) measured at the central portion of the substrate and the Raman shift value (B) measured at the peripheral portion ( The SiC single crystal ingot according to any one of (1) to (3), wherein the Raman index of AB) is 0.15 or less.
  • the total of the basal plane dislocation density and the threading screw dislocation density observed on the surface of the substrate is 1000 pieces / cm 2 or less, according to any one of (1) to (6) SiC single crystal ingot.
  • the silicon carbide (SiC) single crystal ingot of the present invention has a low dislocation density of basal plane dislocations and threading screw dislocations in almost the whole, has excellent crystal quality, has a small elastic strain, and has a practical height. Therefore, according to the SiC single crystal ingot of the present invention, a large number of SiC single crystal substrates having low dislocation density of basal plane dislocations and threading screw dislocations and low elastic strain can be cut out from substantially the entire ingot. With such a SiC single crystal substrate, the yield and performance of the SiC device can be improved.
  • the SiC single crystal substrate having the above-described characteristics is realized by a large-diameter substrate having a diameter of 100 mm or more, the cost of the SiC device can be suppressed, and the spread of the SiC device can be increased. It can be said that it contributes.
  • FIG. 1 is a schematic explanatory view of a crystal growth apparatus used for growing a SiC single crystal by an improved Rayleigh method.
  • FIG. 2 is a schematic explanatory view showing an example of a crystal growth apparatus for suppressing the temperature distribution change of the ingot during crystal growth.
  • FIG. 3 is a schematic explanatory view showing an example of a crystal growth apparatus for suppressing the temperature distribution change of the ingot during crystal growth.
  • FIG. 4 is a schematic explanatory view showing an example of a crystal growth apparatus for suppressing the temperature distribution change of the ingot during crystal growth.
  • 5A and 5B are explanatory views schematically showing a temperature gradient ⁇ t 2 in the crystal growth direction in the ingot, where FIG. 5A shows a conventional example, and FIG. 5B shows the case of the present invention.
  • FIG. 6 is a schematic diagram for explaining the shape of the ingot.
  • FIG. 7 is an explanatory diagram showing the positions where etch pits are measured on the surface of the SiC single crystal substrate.
  • the crystal growth end face at the tip of the ingot has a convex shape
  • the seed crystal side bottom face of the ingot is zero
  • the crystal growth at a position 10% inside the diameter from the side face of the ingot When the height of the end surface is 1, the relative height with respect to the height in the height direction of the ingot (hereinafter, this height is simply referred to as “relative height”.
  • a SiC single crystal having a low (BPD) density and a threading screw dislocation (TSD) density and low elastic strain is provided.
  • the above-described point having a relative height of 1 (hereinafter also referred to as “peripheral point”) is generally an effective height of the ingot (H ') Sometimes called.
  • the above height direction SiC single crystal substrate cut out in a cross-sectional direction of the ingot is Is 500 pieces / cm 2 or less, preferably 300 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less.
  • SiC single crystal ingot (hereinafter referred to as a “6 inch or more ingot for a substrate”) capable of obtaining a SiC single crystal substrate having a diameter of 6 inches or more, from a portion within the range of the relative height position.
  • the cut SiC single crystal substrates are all 1000 pieces / cm 2 or less, preferably 500 pieces / cm 2 or less, more preferably 300 pieces / cm 2 or less.
  • all of the SiC single crystal substrates cut out from the range of the relative height positions are 300 pieces / cm 2 or less, preferably 200 pieces / cm 2. Below, more preferably 100 pieces / cm 2 or less. In the case of an ingot for a substrate of 6 inches or more, all of the SiC single crystal substrates cut out from the range of the relative height positions are 500 pieces / cm 2 or less, preferably 300 pieces / cm 2 or less, more preferably 200 pieces / cm 2 or less.
  • the density of both BPD and TSD is reduced to a level below 100 / cm 2 , it is considered that there is substantially no adverse effect on the device.
  • a substrate having such an extremely low dislocation density can be obtained in a limited manner from a specific portion.
  • the minimum values of the BPD density and the TSD density that can be satisfied within the range of the relative height position in the height direction of the ingot as described above are currently less than 6 inches of the substrate ingot for the substrate.
  • the BPD density is 20 / cm 2 and the TSD density is 60 / cm 2 .
  • the minimum value of BPD density is 70 pieces / cm 2
  • the minimum value of TSD density is 90 pieces / cm 2
  • these values are the dislocation density. Is the practical lower limit.
  • the total density of BPD and TSD should be 1000 pieces / cm 2 or less. In that case, significant device performance and yield can be expected, preferably BPD
  • the total density of TSD is preferably 500 pieces / cm 2 or less, more preferably 300 pieces / cm 2 or less.
  • the elastic strain is measured using the method described in Patent Document 6. That is, the elastic strain is measured at the Raman shift value (A) measured at the center portion of the SiC single crystal substrate and the peripheral portion when the SiC single crystal substrate is arbitrarily cut out from the range of the relative height position. Further, the evaluation is performed by the Raman index representing the difference (AB) from the Raman shift value (B).
  • the elastic strains are expressed as vectors, so that In order to evaluate the degree of influence, advanced analysis techniques are required, and the measurement itself requires time and skill.
  • the Raman index is expressed by a difference value between values measured at the central part and the peripheral part of the substrate with respect to the reciprocal of the wavelength of the Raman scattered light peak of SiC, and is an elastic vector.
  • the distortion can be expressed as a scalar in a simplified manner, the measurement time is short, and the evaluation can be performed regardless of the size of the substrate.
  • the central portion and the peripheral portion of the substrate typically, the former is the center (center point) of the substrate, and the latter is 2 mm away from the edge (outer periphery) of the substrate in the center direction. Position.
  • the Raman index is 0.15 or less, preferably 0.10 or less. It is. Further, in the case of an ingot for a substrate of 6 inches or more, the Raman index is 0.20 or less, preferably 0.15 or less.
  • the Raman index in a SiC single crystal substrate is normally a positive value, but it may be negative if manufactured under special manufacturing conditions. It is generally difficult to think of taking a large absolute value on the minus side, but if it becomes smaller than ⁇ 0.20, there is still an influence on device fabrication, so the lower limit of the Raman index is ⁇ It can be 0.20.
  • the dislocation density and the elastic strain of the cut SiC single crystal substrate are regulated under different conditions for the ingot for substrates smaller than 6 inches and the ingot for substrates larger than 6 inches. This is because, for example, a SiC single crystal substrate having a diameter of 6 inches or more (150 mm or more) is often used for mass-production and low-cost device fabrication, while the diameter is less than 6 inches. A 5-inch (100 to 125 mm) SiC single crystal substrate is sometimes used for manufacturing a high-performance device, and a higher quality is required.
  • the specific size of the ingot for a substrate of less than 6 inches varies depending on the degree of shape processing such as outer periphery processing and end surface processing.
  • the diameter of the ingot is within a range of 4 mm to 12 mm from the size of the substrate to be manufactured. It is preferable that the circumference is large. 4 mm on the lower limit side, which is a plus part of the substrate size, means a minimum processing allowance when processing the substrate, and on the contrary, 12 mm on the upper limit side, which is a plus part of the substrate size, becomes larger than this. This is because the processing cost becomes excessive.
  • the diameter of the substrate is larger from the viewpoint of device productivity, and there is no upper limit in that sense.
  • the diameter of the ingot exceeds 300 mm, Growth itself is difficult, and at the same time the processing cost is enormous. For example, the substrate cost per chip increases. Therefore, in the case of an ingot for a substrate of 6 inches or more, it is desirable that the upper limit of the diameter of the ingot to be grown is 300 mm or less.
  • the relative height position in the height direction of the ingot is in the range of at least 0.2 to 0.8 or 0.2 to 0.9.
  • An SiC single crystal substrate was arbitrarily cut out from a certain portion, an ingot was processed by a known method, and evaluation was performed with a mirror finished surface.
  • the dislocation density of BPD and TSD was measured using an optical microscope after etching with molten KOH. In detail, all are as having described in the Example.
  • the reason why an SiC single crystal ingot having excellent crystal quality and low elastic strain can be obtained as described above is that, in the modified Rayleigh method, “1) heat input from the side surface of the ingot during crystal growth. To control as much as possible the temperature distribution change of the ingot during crystal growth, and "2) Si and C sublimated from the sublimation material while the temperature gradient in the crystal growth direction is relatively small. Crystal growth is performed while maintaining the degree of supersaturation on the growth surface of the vapor.
  • the temperature distribution of the ingot during crystal growth is suppressed, and the proliferation of BPD and TSD during growth is suppressed, and elastic strain is reduced.
  • Any one of these methods may be employed to perform SiC single crystal crystal growth, or two or more may be combined to perform crystal growth.
  • SiC single crystal growth it is impossible to actually measure the inside of the crucible at 2000 ° C. or higher.
  • the finite element method is used to analyze the temperature and internal stress of the ingot. There is no means at present except for accumulating the quality evaluation of the obtained SiC single crystal, and it is difficult to quantitatively express the state of heat input on the side of the ingot during crystal growth.
  • a heat insulating material surrounding the crucible is subjected to heat treatment at a temperature of 2250 ° C. or higher, preferably 2450 ° C. or higher.
  • the crystal growth of the SiC single crystal is performed. This corresponds to the fact that the heat input from the side of the ingot fluctuates as one of the causes of the temperature distribution change in the ingot, due to the characteristic deterioration of the heat insulating material arranged outside the crucible for crystal growth. .
  • heat insulating material used for manufacturing a SiC single crystal by a sublimation recrystallization method graphite felt or graphite formed heat insulating material is often used. Is usually 1000 ° C. or lower, and is at most 2000 ° C. even if it is a high-temperature treated product. However, when the SiC single crystal is grown, the maximum temperature of the crucible becomes 2400 ° C. or higher, and it is considered that a reaction such as graphitization of the heat insulating material occurs during the crystal growth, and the heat insulating properties are lowered.
  • a sublimation gas component leaks from the inside of the crucible, and the component causes a thermochemical reaction with the heat insulating material to deteriorate the graphite, so that the heat insulating property is also lowered.
  • the temperature of the crucible decreases due to the deterioration of the heat insulating characteristics. It is judged that As a result, a temperature difference occurs between the portion where the progress of light deterioration is light and the portion where the deterioration progresses, which affects the temperature distribution in the ingot and leads to generation of new internal stress.
  • the heat-treating the heat insulating material in advance to increase the degree of graphitization of the graphite fibers and the like, the occurrence of such a change in temperature distribution of the ingot during crystal growth is suppressed.
  • the heat treatment of the heat insulating material for example, only the heat insulating material may be separately heat-treated in an inert atmosphere, and after being attached to the crucible in the same manner as crystal growth, heat treatment is performed by induction heating before crystal growth. You may make it do.
  • the upper limit of the heat treatment temperature to be performed in advance can be set to an upper limit of about 3000 ° C. from the viewpoint of sublimation of graphite itself in an ultra-high temperature environment and saturation of the effect.
  • a member having high thermal conductivity (hereinafter referred to as a heat flux control member) around the seed crystal attachment region of the crucible lid to which the seed crystal is attached. )
  • a heat flux control member a member having high thermal conductivity (hereinafter referred to as a heat flux control member) around the seed crystal attachment region of the crucible lid to which the seed crystal is attached.
  • the crucible lid 4 is composed of two members: a member that forms the seed crystal attachment region 4a and a heat flux control member 15 that surrounds the member. Furthermore, even if the heat flux control member 15 is formed using a member having a higher thermal conductivity than the member forming the seed crystal attachment region 4a, the heat input from the side surface of the ingot 16 during crystal growth is controlled. good. Further, as shown in FIG. 3, a part of the heat insulating material 6 covering the outside of the crucible lid 4 is used as a heat flux control member 15 so as to surround the seed crystal attachment region 4 a of the crucible lid 4, As shown in FIG. 4, the heat flux control member 15 is arranged on a part of the side wall portion of the crucible body 3 so that the heat flux control member 15 surrounds the seed crystal attachment region 4 a of the crucible lid 4. May be.
  • a heat flux control member made of pitch-impregnated graphite or CVD graphite can be used.
  • the thermal conductivity of the atmosphere gas in the space around the crystal growth crucible installed inside the double quartz tube is improved so that the atmosphere from the crucible Is to increase the amount of heat dissipated in
  • a gas component having high thermal conductivity hydrogen is generally well known.
  • hydrogen has an effect of etching graphite or SiC forming a crucible, a rare gas such as helium is used. Is good.
  • the intended effect is produced when helium is contained in an atmosphere of the peripheral space formed between the crucible covered with the heat insulating material and the double quartz tube, and helium is contained in an amount of 20 vol% or more. In this case, a greater effect can be obtained.
  • the upper limit of the helium concentration can be determined from the relationship between the cost and the electrical conductivity required for the SiC single crystal (that is, the dopant concentration in the atmosphere). If the concentration of helium gas exceeds 50 vol%, however, there is a possibility that the temperature distribution on the growth surface may change greatly and stable growth may be difficult, and this value is substantially the upper limit.
  • the difference ( ⁇ t 1 t P ⁇ t C) between the temperature t P at an arbitrary point on the growth surface in the periphery of the grown crystal and the temperature t C at the center of the ingot where the distance from this point is equal to the seed crystal. ) Is formed in the growth space so that a moderately convex isotherm is formed in the growth direction. This is because crystal growth is performed from the central part to the peripheral part on the crystal growth surface, thereby controlling the generation of polycrystals and at the same time allowing stable growth of the desired polytype with few defects. This is for producing a high-quality single polytype SiC single crystal ingot.
  • the internal stress formed in the single crystal increases. That is, the strength of the convexity and the strength of the internal stress are in phase, and in particular, if the internal stress (circumferential component) in the periphery of the ingot increases and the crystal becomes large in diameter, the absolute value of the internal stress increases accordingly. It gets bigger. In other words, obtaining a good quality SiC single crystal with few defects and reducing the generation of internal stress are extremely difficult issues.
  • FIG. 5 (b) shows a state where the temperature gradient ⁇ t2 in the crystal growth direction is smaller than that in FIG. 5 (a).
  • the convex shape of the isotherm i is the same, when a SiC single crystal substrate having a certain thickness is cut out perpendicular to the growth direction (thick arrow direction in the figure), the isotherm in the crystal growth direction 5B and the interval of the isotherm from the center portion to the peripheral portion of the substrate are both sparse in FIG. 5B. That is, the ingot 16 in FIG. 5B is reduced in internal stress compared to the ingot 16 in FIG.
  • crystal growth is performed while maintaining the degree of supersaturation on the growth surface of the vapor composed of Si and C sublimated from the sublimation raw material.
  • a method for maintaining the degree of supersaturation for example, i) The induction heating current frequency is reduced, and the thickness of the side wall of the crucible body filled with the sublimation raw material is reduced, so that the sublimation raw material itself is directly induction heated.
  • the temperature t E on the sublimation raw material side heated by the induction heating coil and the temperature t S on the seed crystal side are directly adjusted.
  • the temperature difference ⁇ t 2 can be made smaller than before.
  • the size of the heat removal hole 17 of the heat insulating material 6 arranged on the crucible lid 4 to which the seed crystal is attached is adjusted to make the temperature t S on the seed crystal side relatively high, It is possible to use a method of enlarging the temperature measuring hole at the bottom and relatively lowering the temperature of the sublimation material side.
  • the specific value of the temperature gradient ⁇ t 2 varies depending on the size of the crucible for crystal growth, the thickness of the side wall of the crucible body, the type of the heat insulating material, the thickness thereof, etc. Is difficult.
  • the temperature difference ⁇ t 2 is set to be 250 ° C. in the conventional method. 2 is set to 90 to 210 ° C., the BPD density observed on the surface of the SiC single crystal substrate cut out from the portion where the relative height position is at least in the range of 0.2 to 0.8. 500 pieces / cm 2 or less, and the TSD density can be 300 pieces / cm 2 or less.
  • the temperature difference ⁇ t 2 is set to be 140 to 210 ° C.
  • the BPD density observed on the surface of the SiC single crystal substrate cut out from the portion whose height is in the range of at least 0.2 to 0.9 is 500 pieces / cm 2 or less, and the TSD density is 300 pieces / cm 2. It can be as follows.
  • the substantial crystal growth is made comparable to the conventional method.
  • the degree of supersaturation is maintained so that the growth rate is 0.10 mm / h or more and 0.60 mm / h or less. More preferably, the degree of supersaturation is maintained so that the growth rate is 0.15 mm / h or more and 0.60 mm / h or less.
  • the obtained SiC single crystal ingot has a convex shape similar to that of the conventional method.
  • the height H of the ingot is preferably 25 mm or more in the case of an ingot for a substrate of less than 6 inches in an as-grown state before being subjected to shape processing, and for a substrate of 6 inches or more in diameter. In the case of an ingot, it is 35 mm or more.
  • the upper limit of these ingot heights is not particularly limited, it is necessary to increase the size of the crucible in order to increase the amount of sublimation raw material that can be input in one crystal growth, which is disadvantageous in terms of cost.
  • the upper limit is substantially 100 mm.
  • the height H of the ingot mentioned here includes the seed crystal.
  • a SiC single crystal ingot having a low dislocation density of basal plane dislocations and threading screw dislocations, excellent crystal quality, and small elastic strain can be obtained with high productivity. Moreover, it can have a substantially single polytype. For example, a high-quality 4H type SiC single crystal ingot suitable for an electronic device can be obtained. Therefore, a high-performance SiC device can be produced from the SiC single crystal ingot of the present invention, and a high yield can be ensured even when the device is produced on an industrial scale.
  • FIG. 1 schematically shows a single crystal growth apparatus used for production of an SiC single crystal ingot according to the present invention.
  • sublimation raw materials are respectively used under the following conditions. 1 was sublimated by induction heating, recrystallized on the seed crystal 2, and crystal growth was performed by the modified Rayleigh method.
  • the seed crystal 2 is attached to the inside of a graphite crucible lid 4 that forms a crucible 5 for crystal growth, and the sublimation raw material 1 is filled inside a graphite crucible body 3,
  • the crucible 5 was covered with a heat insulating material 6 for heat shielding, placed inside a double quartz tube 7 and placed on a graphite support base 8.
  • the inside of the double quartz tube 7 is evacuated to less than 1.0 ⁇ 10 ⁇ 4 Pa using the vacuum exhaust device 12 and the pressure control device 13, and then controlled by the mass flow controller 11 through the pipe 10. Then, high purity Ar gas having a purity of 99.9999% or more is caused to flow into the double quartz tube 7, and induction heating is performed while the inside of the double quartz tube is maintained at a predetermined pressure using the vacuum exhaust device 12 and the pressure control device 13. A high-frequency current was passed through the work coil 9 and the lower part of the crucible body was heated to the target temperature.
  • the temperature of the crucible is measured by providing an optical path having a diameter of 2 to 15 mm in the heat insulating material 6 at the upper part of the crucible lid body 4 and the heat insulating material 6 at the lower part of the crucible body 3, and measuring the temperature with the radiation thermometer 14.
  • the upper temperature of the crucible lid 4 (temperature by the radiation thermometer 14-1) was used as the seed crystal temperature, and the lower temperature of the crucible body 3 (temperature by the radiation thermometer 14-2) was used as the raw material temperature.
  • the pressure in the double quartz tube 7 was reduced to the growth pressure, and this state was maintained for a predetermined time to carry out crystal growth.
  • Example 1 Invention example of an ingot for a substrate having a diameter of 4 inches or more and less than 6 inches
  • Example 1 is an invention example of an ingot for a substrate having a diameter of 4 inches or more and less than 6 inches.
  • the first means and the second means described above were employed.
  • Example 1 In order to perform crystal growth while maintaining a supersaturation degree on the growth surface while maintaining a relatively small temperature gradient in the crystal growth direction (that is, in order to obtain the above-mentioned “operation (2)”), the crystal growth direction While reducing the temperature gradient ⁇ t 2 of the conventional method, the control pressure in the growth space is lowered, the diffusion of the sublimation gas is promoted, and the amount of the sublimation raw material reaching the growth surface is increased (ie, Crystal growth was performed using method ii).
  • Specific production conditions of Example 1 are as follows.
  • the crucible lid 4 was formed integrally with the heat flux control member 15 so as to surround the seed crystal attachment region 4a to which the seed crystal 2 is attached.
  • the seed crystal attachment region 4a is formed from an isotropic graphite material (room temperature thermal conductivity 125 w / m ⁇ K) having a diameter of 101 mm, and the heat flux controlling member 15 has a concentric circle diameter of 130 mm. It is made of pitch-impregnated graphite material (room temperature thermal conductivity 140w / m ⁇ K).
  • the seed crystal 2 is an SiC single crystal composed of a single polytype of 4H type with a diameter of 101 mm, with the (0001) plane as the principal plane and the ⁇ 0001> axis inclined by 4 ° in the ⁇ 11-20> direction.
  • a seed crystal substrate (thickness 1200 ⁇ m) was used. This is attached to the seed crystal attachment region 4a of the crucible lid 4, and the crucible body 3 is filled with about 1600 g of SiC powder as a sublimation raw material, and the crucible 5 is covered with the above-mentioned heat treated graphite felt.
  • the single crystal growth apparatus shown in FIG. 1 was assembled.
  • a high purity Ar gas is introduced into the double quartz tube 7 so that the pressure in the quartz tube is lower than the normal growth.
  • the partial pressure of nitrogen gas was changed in the range of 180 Pa to 90 Pa so that optimum conductivity was maintained throughout the ingot during crystal growth.
  • a high-frequency current was passed through the work coil 9 so that the upper temperature of the crucible lid 4 was 2100 ° C. and the lower temperature of the crucible body 3 was 2200 ° C.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is 150 ° C. This is also a condition that the temperature difference is smaller than that in the normal growth.
  • the SiC single crystal ingot according to Example 1 was manufactured by maintaining this state for 80 hours.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is a value obtained from a simulation simulating actual production, and is the same in the following examples and comparative examples.
  • the crystal growth end face at the tip of the ingot has a convex shape, the diameter D is 107.1 mm, and the outer peripheral point E (as shown in FIG. 6). Further, the height (effective height H ′) of the point E) on the crystal growth end face corresponding to the position 10% inside the diameter (diameter D) from the side surface of the ingot toward the center was 32.2 mm. In addition, the height H of the ingot of Example 1 (the height of the center point O at the crystal growth end face) is 36.4 mm, and the height difference h between the center point O and the outer peripheral point E is 4.3 mm. It was.
  • Example 1 Furthermore, about the SiC single crystal ingot of Example 1, the polytype of the surface was identified by the spectrum of Raman spectroscopy. Furthermore, it was confirmed by appearance observation that macro defects such as subgrain boundaries were not present in this invention example, and thus it was found that Example 1 had a 4H type single polytype.
  • the height direction of the ingot Eight SiC single crystal substrates having a diameter of 4 inches were manufactured in the following manner from a range where the relative height relative to the range of 0.2 to 0.9.
  • a plate-shaped substrate was cut out from each of the SiC single crystal ingots of Example 1 using a multi-wire saw.
  • the plate-like substrate is polished using diamond abrasive grains, and finally buffed using diamond abrasive grains having an average grain diameter of 0.25 ⁇ m, and the off-angle of 4 ° ( A specular substrate having a (0001) surface, a diameter of 100 mm, and a thickness of 0.4 mm was produced.
  • the center of one measurement location is the center of the substrate (substrate center A), and the center of the other measurement location is a position 2 mm away from the edge (outer periphery) of the substrate in the center direction ( The position of the 2 mm inside diameter from the edge) (peripheral portion B of the substrate), and the wavelength of the Raman scattered light was measured at these two locations.
  • Each difference in wave number (reciprocal of wavelength) [that is, difference (A ⁇ B) between Raman shift value (A) measured at the central portion of the substrate and Raman shift value (B) measured at the peripheral portion] was the Raman index.
  • Table 1 The results are shown in Table 1.
  • the 11th to 18th SiC single crystal substrates produced from the SiC single crystal ingot of Example 1 were subjected to molten KOH etching, and the BPD density and TSD density were measured with an optical microscope.
  • each substrate is immersed in molten KOH at 530 ° C. for 10 minutes to form shell-shaped etch pits in BPD.
  • the middle and large hexagonal etch pits were classified as TSD, and the dislocation defects were classified from the etch pit shapes.
  • the TSD is set so that the point becomes the center of the measurement area.
  • dislocations other than TSD such as BPD were counted in a measurement area of 663 ⁇ m ⁇ 525 ⁇ m, and the average value was taken as the dislocation density of the substrate. Since the size of the etch pit by TSD is larger than the size of the etch pit by BPD, the measurement area to be counted by TSD is made wider than the measurement area to be counted by BPD. Further, the value of d shown in FIG.
  • Example 7 is 3.25 mm for a 100 mm (4 inch diameter) substrate as in Example 1, but is 4.8 mm for a 150 mm (6 inch) or larger substrate described later. It was. In addition to these, by selecting an appropriate d, the dislocation density can be accurately evaluated without being affected by the aperture.
  • Table 1 shows the measurement results of each dislocation density of Nos. 11 to 18 SiC single crystal substrates produced from the SiC single crystal ingot of Example 1.
  • the growth conditions of the SiC single crystal in Example 1 are such that the temperature difference between the seed crystal side and the sublimation raw material side is relatively small, but the growth rate equivalent to the conventional one is secured by lowering the growth pressure.
  • the same ingot height could be obtained.
  • the convex shape of the ingot is the same as that of the conventional product, and the stability of the polytype can be secured.
  • the temperature difference between the longitudinal direction (crystal growth direction) of the obtained ingot and the lateral plane perpendicular thereto is reduced. It is considered that an SiC single crystal ingot can be manufactured with reduced internal stress, low dislocation density, and low Raman index (elastic strain).
  • Example 2 Invention example of substrate ingot having a diameter of 6 inches or more
  • Example 2 Invention example of substrate ingot having a diameter of 6 inches or more
  • Example 2 in order to perform crystal growth while maintaining a supersaturation degree on the growth surface while maintaining a relatively small temperature gradient in the crystal growth direction (that is, in order to obtain the above-mentioned “operation (2)”), the crystal growth direction While reducing the temperature gradient ⁇ t 2 of the conventional method, the control pressure in the growth space is lowered, the diffusion of the sublimation gas is promoted, and the amount of the sublimation raw material reaching the growth surface is increased (ie, Crystal growth was carried out using method ii).
  • Example 2 of a single crystal ingot having a diameter of more than 150 mm was manufactured.
  • the specific production conditions of Example 2 are as follows.
  • the crucible lid 4 was formed integrally with the heat flux control member 15 so as to surround the seed crystal attachment region 4a to which the seed crystal 2 is attached.
  • the seed crystal attachment region 4a is formed from an isotropic graphite material (room temperature thermal conductivity 125 w / m ⁇ K) having a diameter of 155 mm, and the heat flux controlling member 15 has a concentric diameter of 130 mm. It is formed from a pitch-impregnated graphite material (a material having a higher bulk density than the pitch-impregnated graphite material of Example 1 and having a room temperature thermal conductivity of 150 w / m ⁇ K).
  • the seed crystal 2 is an SiC single crystal composed of a single polytype of 4H type with a diameter of 154 mm, with the (0001) plane as the principal plane and the ⁇ 0001> axis inclined by 4 ° in the ⁇ 11-20> direction.
  • a seed crystal substrate (thickness 1400 ⁇ m) was used. This is attached to the seed crystal attachment region 4a of the crucible lid 4, and the crucible body 3 is filled with about 3300 g of SiC powder as a sublimation raw material, and the crucible 5 is covered with the above-mentioned heat treated graphite felt.
  • the single crystal growth apparatus shown in FIG. 1 was assembled.
  • a single crystal ingot was manufactured under substantially the same conditions as in Example 1.
  • the quartz tube during growth is maintained at 0.67 kPa, which is a lower pressure than normal growth, while the partial pressure of nitrogen gas is changed in the range of 180 Pa to 90 Pa, and optimal conductivity is achieved throughout the ingot during crystal growth.
  • the sex was maintained.
  • a high-frequency current was passed through the work coil 9 so that the upper temperature of the crucible lid 4 was 2100 ° C. and the lower temperature of the crucible body 3 was 2150 ° C.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is 145 ° C., which is also a condition that the temperature difference is smaller than that in the normal growth.
  • the SiC single crystal ingot according to Example 2 was manufactured by maintaining this state for 100 hours.
  • the crystal growth end face at the tip of the ingot has a convex shape
  • the diameter D is 157.7 mm
  • the height H ′ of the outer peripheral point E is 38. 3 mm.
  • the height H of the ingot of Example 2 was 41.2 mm
  • the height difference h between the center point O and the outer peripheral point E was 2.9 mm.
  • the polytype of the surface was identified by the spectrum of Raman spectroscopy.
  • Each of the SiC single crystal ingots of Example 2 was processed into eight mirror-surface substrates having a diameter of 150 mm and a thickness of 0.4 mm having a relative height position in the ingot as in Example 1 (seed crystal side The substrates were numbered 21 to 28 and the relative height positions were in the range of 0.2 to 0.9), and the quality was evaluated.
  • Table 2 shows the evaluation results of the quality of the substrate obtained from the SiC single crystal ingot of Example 2. As can be seen from Table 2, also in Example 2, a SiC single crystal ingot having a low dislocation density and a small Raman index (elastic strain) was obtained.
  • Example 3 Invention example of an ingot for a substrate having a diameter of 6 inches or more
  • Example 3 As an invention example of a substrate ingot having a diameter of 6 inches or more
  • the technical idea of the crystal growth of the third embodiment is the same as that of the first embodiment, and the heat input from the side surface of the ingot is controlled during the crystal growth to suppress the temperature distribution change of the ingot during the crystal growth as much as possible. Therefore, the first means and the second means described above are employed in order to obtain the function (1).
  • Example 3 in order to perform crystal growth while maintaining a supersaturation degree on the growth surface while maintaining a relatively small temperature gradient in the crystal growth direction (that is, in order to obtain the above-mentioned “operation (2)”), the crystal growth direction While reducing the temperature gradient ⁇ t 2 of the conventional method, the control pressure in the growth space is lowered, the diffusion of the sublimation gas is promoted, and the amount of the sublimation raw material reaching the growth surface is increased (ie, Crystal growth was performed using method ii).
  • Example 3 a single crystal ingot for obtaining a substrate having a diameter of 100 mm was manufactured.
  • the crucible lid 4 was formed integrally with the heat flux control member 15 so as to surround the seed crystal attachment region 4a to which the seed crystal 2 is attached.
  • the seed crystal attachment region 4a is formed from an isotropic graphite material (room temperature thermal conductivity 125 w / m ⁇ K) having a diameter of 106 mm, and the heat flux control member 15 has a concentric diameter of 94 mm.
  • a doughnut-shaped dough shape formed from a pitch-impregnated graphite material (the same material as in Example 2 and room temperature thermal conductivity 150 w / m ⁇ K).
  • Example 3 in order to prevent deterioration of the heat insulating material due to leakage of sublimation gas from the inside of the crucible, the fastening portion between the members constituting the crucible (the crucible body and the lid) is made of a commercially available graphite adhesive ( Aremco's GRAPHYBOND etc.) were used to eliminate the cause of gas leakage as much as possible.
  • the structural parts that are intended to allow gas to pass through are not bonded.
  • the temperature gradient change due to the deterioration of the heat insulating material is suppressed, and the change in the temperature field of the crystal is further reduced.
  • the seed crystal 2 is a 4H type single polytype having a diameter of 102 mm, the (0001) plane being the main surface, and the ⁇ 0001> axis inclined by 4 ° in the ⁇ 11-20> direction.
  • a SiC single crystal seed crystal substrate (thickness: 1200 ⁇ m) composed of This is attached to the seed crystal attachment region 4a of the crucible lid 4, and the crucible body 3 is filled with approximately 2300 g of SiC powder as a sublimation raw material, and the crucible 5 is covered with the graphite felt heat-treated as described above.
  • the single crystal growth apparatus shown in FIG. 1 was assembled.
  • a single crystal ingot was manufactured.
  • the quartz tube during growth is maintained at 0.40 kPa, which is a lower pressure than normal growth, while the partial pressure of nitrogen gas is changed in the range of 180 Pa to 90 Pa, so that the optimum inductivity can be obtained for the entire ingot during crystal growth.
  • the sex was maintained.
  • a high-frequency current was passed through the work coil 9 so that the upper temperature of the crucible lid 4 was 2100 ° C. and the lower temperature of the crucible body 3 was 2125 ° C.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is 125 ° C., which is also a condition that the temperature difference is smaller than that in the normal growth.
  • This state was maintained for 150 hours to produce a SiC single crystal ingot according to Example 3.
  • the crystal growth end face at the tip of the ingot has a convex shape
  • the diameter D is 108.5 mm
  • the height H ′ of the outer peripheral point E is 55.6 mm. It was.
  • the height H of the ingot was 57.4 mm
  • the height difference h between the center point O and the outer peripheral point E was 1.8 mm.
  • the obtained SiC single crystal ingot identifies the polytype of the surface by the spectrum of Raman spectroscopy, and further, macroscopic defects such as subgrain boundaries do not exist by appearance observation. It was found to have a type.
  • the obtained SiC single crystal ingot was processed into eight mirror-surface substrates having a diameter of 100 mm and a thickness of 0.4 mm having the relative height in the ingot as in Example 1 (counted from the seed crystal side in order). The relative position was in the range of 0.2 to 0.9), and the quality was evaluated. The evaluation results are shown in Table 3. As can be seen from Table 3, also in Example 3, a SiC single crystal ingot having a low dislocation density and a small Raman index (elastic strain) was obtained.
  • Example 4 Invention example of an ingot for a substrate having a diameter of 6 inches or more
  • Example 4 Invention example of an ingot for a substrate having a diameter of 6 inches or more
  • the technical idea of the crystal growth of Example 4 is the same as that of Example 1, and the heat input from the side surface of the ingot is controlled during crystal growth to suppress as much as possible the temperature distribution change of the ingot during crystal growth. Therefore, the first means and the second means described above are employed in order to obtain the function (1).
  • Example 4 in order to perform crystal growth while maintaining a supersaturation degree on the growth surface while maintaining a relatively small temperature gradient in the crystal growth direction (that is, in order to obtain the above-mentioned “operation (2)”), the crystal growth direction While reducing the temperature gradient ⁇ t 2 of the conventional method, the control pressure in the growth space is lowered, the diffusion of the sublimation gas is promoted, and the amount of the sublimation raw material reaching the growth surface is increased (ie, Crystal growth was performed using method ii).
  • Example 4 a single crystal ingot for obtaining a 150 mm diameter substrate (6 inch diameter substrate) was manufactured.
  • the crucible lid 4 was formed integrally with the heat flux control member 15 so as to surround the seed crystal attachment region 4a to which the seed crystal 2 is attached.
  • the seed crystal attachment region 4a is formed from an isotropic graphite material (room temperature thermal conductivity 125 w / m ⁇ K) having a diameter of 155 mm, and the heat flux control member 15 has a concentric diameter of 140 mm.
  • a doughnut-shaped dough shape formed from a pitch-impregnated graphite material (the same material as in Example 2 and room temperature thermal conductivity 150 w / m ⁇ K).
  • Example 4 in order to prevent deterioration of the heat insulating material due to leakage of sublimation gas from the inside of the crucible, the members constituting the crucible were brought into close contact with a commercially available graphite adhesive as in Example 3. However, the structural parts that are intended to allow gas to pass through are not bonded. Thus, by suppressing the unintended gas leakage, the temperature gradient change due to the deterioration of the heat insulating material is suppressed, and the temperature field change of the crystal is further reduced.
  • the seed crystal 2 is a 4H type single polytype having a diameter of 154 mm, the (0001) plane being the principal plane, and the ⁇ 0001> axis inclined by 4 ° in the ⁇ 11-20> direction.
  • a SiC single crystal seed crystal substrate (thickness: 1400 ⁇ m) composed of This is attached to the seed crystal attachment region 4a of the crucible lid 4, and the crucible body 3 is filled with approximately 5800 g of SiC powder as a sublimation raw material, and the crucible 5 is covered with the above-mentioned heat treated graphite felt.
  • the single crystal growth apparatus shown in FIG. 1 was assembled.
  • the high-purity Ar gas flowing into the double quartz tube 7 contained 25 vol% helium gas, and aimed for a smaller temperature gradient than in Examples 1 to 3 due to heat conduction of the gas.
  • the quartz tube during growth is maintained at 0.27 kPa, which is a lower pressure than normal growth, while the partial pressure of nitrogen gas is changed in the range of 180 Pa to 90 Pa, so that the optimal conductivity is achieved throughout the ingot during crystal growth.
  • the sex was maintained.
  • a high-frequency current was passed through the work coil 9 so that the upper temperature of the crucible lid 4 was 2120 ° C. and the lower temperature of the crucible body 3 was 2130 ° C.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is 105 ° C., which is also a condition that the temperature difference is smaller than that in the normal growth. This state was maintained for 200 hours to produce a SiC single crystal ingot according to Example 4.
  • the crystal growth end face at the tip of the ingot has a convex shape
  • the diameter D is 159.1 mm
  • the height H ′ of the outer peripheral point E is 79.4 mm. It was.
  • the height H of the ingot was 80.9 mm
  • the height difference h between the center point O and the outer peripheral point E was 1.5 mm.
  • the surface of the ingot was interspersed with dimple-like carbonized surfaces. This is due to the fact that the raw material was almost used up before the growth process was completed due to the long-time growth. Although dimples exist, except for this, there were no macro defects such as subgrain boundaries on the surface, and the appearance was good.
  • the obtained SiC single crystal ingot was ground to expose normal crystals, and then the surface polytype was identified by the spectrum of Raman spectroscopy. It was found to have a single polytype.
  • the obtained SiC single crystal ingot was subjected to substrate processing similar to that in Example 1. However, it was necessary to surface-grind the crystal growth end face at the tip of the ingot to about 8 mm until the surface carbonization marks were completely eliminated. Therefore, a substrate having a height position of 0.9 relative to the height direction of the ingot could not be produced. For this reason, it is processed into seven mirror substrates with a relative height of 0.2 to 0.8 and a diameter of 150 mm and a thickness of 0.4 mm (No. 41 to 47 counted in order from the seed crystal side). Was evaluated. The evaluation results are shown in Table 4. As can be seen from Table 4, also in Example 4, a SiC single crystal ingot having a low dislocation density and a small Raman index (elastic strain) in the range of the relative height position of 0.2 to 0.8. Is obtained.
  • Example 4 although the substrate at the relative height position 0.9 could not be processed, the number of substrates that can be taken is large because the absolute height of the ingot is high, and the productivity is higher than that of the ingot with a low height. It is advantageous. Furthermore, by adjusting the growth conditions appropriately, it is considered possible to increase the growth height and maximize the production efficiency within the range where the material depletion can be prevented.
  • Comparative Example 1 a SiC single crystal ingot was manufactured in the same manner as in Example 1 except that the pressure inside the quartz tube was 1.33 kPa. That is, the temperature difference in the crystal growth direction was set to 150 ° C., the temperature difference was smaller than that in the normal growth, and the growth pressure was set to the same level as in the normal growth. In addition to the seed crystal and the sublimation material used, the crucible 5 and the heat insulating material 6 were all grown under the same conditions as in Example 1.
  • the obtained SiC single crystal ingot had a convex shape at the crystal growth end face at the tip of the ingot, the diameter D was 103.7 mm, and the height H ′ of the outer peripheral point E was 16.7 mm.
  • the height H of the ingot was 20.6 mm, and the height difference h between the center point O and the outer peripheral point E was 3.9 mm.
  • eight mirror surface substrates having a diameter of 100 mm and a thickness of 0.4 mm having a relative height position in the ingot as in Example 1 were processed (in order from the seed crystal side).
  • the substrate was No. 51 to No. 58, and the relative height position was in the range of 0.2 to 0.9), and the quality was evaluated.
  • the evaluation results are shown in Table 5.
  • the convex shape of the crystal growth surface is the same as the conventional one, the stability of the polytype could be secured up to the 54th substrate which is the middle stage of growth.
  • the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature is small, the degree of supersaturation on the growth surface decreases near the position of the 55th substrate, and the growth surface is sublimated or carbonized, starting from carbonization. It is thought that dislocations and different polytypes were generated. These factors are considered to be affected by the increase in dislocation density as described above.
  • Comparative Example 2 a SiC single crystal ingot was manufactured in the same manner as in Example 1 except that the temperature difference ⁇ t 2 between the seed crystal temperature and the raw material temperature was 250 ° C. and the pressure in the quartz tube was 1.33 kPa. That is, the temperature difference in the crystal growth direction and the growth pressure were set to the same level as in normal growth.
  • the crucible 5 and the heat insulating material 6 were all grown under the same conditions as in Example 1.
  • the crystal growth end face at the tip of the ingot had a convex shape
  • the diameter D was 107.5 mm
  • the height H ′ of the outer peripheral point E was 33.1 mm.
  • the height H of the ingot was 37.7 mm
  • the height difference h between the center point O and the outer peripheral point E was 4.6 mm.
  • eight mirror surface substrates having a diameter of 100 mm and a thickness of 0.4 mm having a relative height position in the ingot as in Example 1 were processed (in order from the seed crystal side).
  • the substrate was No. 61 to 68 and the relative height position was in the range of 0.2 to 0.9), and the quality was evaluated.
  • the evaluation results are shown in Table 6.
  • Comparative Example 3 Comparative Example 3
  • the size of the heat removal hole 17 provided in the heat insulating material 6 disposed on the crucible lid 4 was reduced in order to reduce the temperature gradient ( ⁇ t 1 ) on the growth surface.
  • the temperature gradient ( ⁇ t 2) in the crystal growth direction was also reduced to about 230 ° C. Otherwise, crystal growth was performed in the same manner as in Comparative Example 2.
  • the obtained SiC single crystal ingot had a diameter D of 108.9 mm and a height H ′ of the outer peripheral point E of 34.9 mm, but the ingot height H was 29.8 mm (ie, the center point).
  • the difference in height h between O and the outer peripheral point E was -5.1 mm), and the outer peripheral portion was polycrystallized into a concave shape. Therefore, in the same manner as in Example 1, in terms of the relative height position in the ingot, the fourth substrate from the seed crystal side (the 71st to 74th substrates in order from the seed crystal side is the relative height). The position could be produced only in the range of 0.2 to 0.5). Table 7 shows the quality evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、基底面転位や貫通螺旋転位の転位密度が低くて結晶品質に優れて、しかも、弾性歪の小さいSiC単結晶インゴットを提供する。 本発明のSiC単結晶インゴットは、少なくともインゴットの高さ方向に対する相対位置が0.2~0.8の範囲内から任意にSiC単結晶基板を切り出したときに、該基板の表面で観察される基底面転位密度と貫通螺旋転位密度とがそれぞれ所定の値以下であり、また、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が所定の値以下であることを特徴とする。

Description

SiC単結晶インゴット
 この発明は、種結晶上に炭化珪素単結晶を備えた炭化珪素単結晶インゴットに関し、詳しくは、基底面転位や貫通螺旋転位の転位密度が低くて結晶品質に優れて、しかも、弾性歪の小さい炭化珪素単結晶インゴットに関する。
 炭化珪素(SiC)は、2.2~3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体である。SiCは優れた物理的、化学的特性を有するので、例えば、半導体素子、高周波電子デバイス、高耐圧・高出力電子デバイス、青色から紫外にかけての短波長光デバイス等のSiCデバイスの作製の研究開発が盛んに行われている。
 SiCデバイスの実用化を進めるため、大口径のSiC単結晶を製造することが不可欠であり、現在、大口径のSiC単結晶の多くは、種結晶を用いた昇華再結晶法(改良レーリー法、改良型レーリー法等と呼ばれる)によって成長させたバルクのSiC単結晶から得られている。昇華再結晶法では、結晶育成用の坩堝本体内にSiCの昇華原料が収容され、坩堝の蓋体にはSiC単結晶からなる種結晶が取り付けられ、断熱材で覆われた坩堝が、二重石英管の内部に設置される。そして、雰囲気制御をしながら、誘導加熱コイルにより昇華原料側を高温にし、種結晶側を低温にして、成長方向に温度勾配を形成して原料を昇華させて、種結晶上に再結晶SiC単結晶を成長させる。そして、略円柱状をしたSiCのバルク単結晶(SiC単結晶インゴット)を得た後、一般には、300~600μm程度の厚さに切り出してSiC単結晶基板を製造する。更に、このようなSiC単結晶基板上に熱CVD法等によりSiCエピタキシャル膜を成長させたエピタキシャルSiC単結晶ウェハが、SiCデバイスの作製用に用いられている。
 現在では、改良レーリー法で製造したSiC単結晶インゴット(以下、単にインゴットと言う場合がある)から、口径51mm(2インチ)から100mmのSiC単結晶基板(同様に、単に単結晶基板や基板と言う場合がある)が得られるようになり、150mmウェハの開発に成功した例も報告されている(例えば非特許文献1参照)。このように、100mm~150mm基板(4インチ~6インチ基板)を用いたデバイスの本格的な実用化が進められているなかで、転位密度等の指標で表されるSiC単結晶基板の品質は、デバイスの性能や量産時の歩留まりに大きな影響を与えるため、以前にも増して重要視されるようになっている。
 この改良レーリー法では、坩堝内が2000℃を超える温度に達してSiC単結晶の成長が行われるため、得られたインゴットには不可避的な内部応力が発生し、それは最終的な単結晶基板の内部に弾性歪又は転位(塑性歪)として残留すると考えられる。
 ここで、現在市販されているSiC単結晶基板には、基底面転位(BPD)が2×10~2×10(個/cm2)、貫通螺旋転位(TSD)が8×10~10(個/cm2)、貫通刃状転位(TED)が5×10~2×10(個/cm2)存在するとの報告がある(非特許文献2 参照)。このうち、例えば、BPDはデバイスの酸化膜不良を引き起こして絶縁破壊の原因となり、また、TSDはデバイスのリーク電流の原因となることが知られており、高性能SiCデバイスの作製のためには、これらBPDやTSDの少ないSiC単結晶が求められる。
 そこで、転位密度を低減させる技術として、例えば、所定の成長圧力及び基板温度で初期成長層としてのSiC単結晶を成長させた後、基板温度及び圧力を徐々に減じながら結晶成長を行うことで、マイクロパイプと共にTSDの少ないSiC単結晶を得る方法が開示されている(特許文献1参照)。また、所定の成長圧力、及び基板温度によってSiC単結晶を初期成長層として成長させた後、基板温度はそのまま維持し、減圧して成長速度を高めて結晶成長させることで、マイクロパイプの発生を抑え、かつ、TSD等の転位密度を少なくさせる方法がある(特許文献2参照)。また、成長結晶の種結晶近傍領域における添加元素の濃度を種結晶中の添加元素濃度に合わせることにより、マイクロパイプ欠陥や転位欠陥の密度を低減する方法が開示されている(特許文献8参照)。また、炭化珪素を成長させるときに、種結晶基板及び原料粉末が内部に設置された処理容器に加えられる振動の周波数を制限することによって、欠陥を低減する方法が開示されている(特許文献9参照)。しかしながら、いずれもTSDの低減効果は十分でなく、高性能SiCデバイスの作製のためには更なる低減が必要である。また、BPDの低減については、これらの方法では何も触れられていない。
 また、基板の弾性歪が大きく、基板面内の結晶方位にずれが生じていると、エピタキシャルSiC単結晶ウェハを得る際のエピタキシャル成長プロセスにおいてステップフロー異常等の問題を引き起こし、デバイス特性に影響を与えてしまう。大きな弾性歪はSiC単結晶基板の反りを引き起こすことにもなる。このような基板の反りは、リソグラフプロセスでの焦点ずれや、エピタキシャル成長プロセス中の裏面への原料ガス回り込み等の問題を生じるほか、ウェハ搬送等でのハンドリング障害や、チャックによる吸着時に破損してしまうことにもなり兼ねない。
 そこで、単結晶インゴットの内部応力を緩和する成長技術のひとつとして、種結晶又はその上に成長させるSiC単結晶の周辺に配置された温度勾配制御部材と、種結晶又はSiC単結晶と上記温度勾配制御部材との間に設置された局所的温度勾配緩和部材とを備えた単結晶製造装置を用いる方法が開示されている(特許文献3参照)。しかしながら、この単結晶製造装置に係る技術の目的は、種結晶の直上に成長する単結晶中に発生する温度勾配の極大値を小さくし、成長結晶内のクラック発生と伝播を抑制するためのものであり、成長インゴット中で基板化される部位の成長条件は、それまでの従来法と本質的に変わらない。
 また、SiC単結晶インゴットやSiC単結晶基板を2000℃程度の高温で焼鈍することで、インゴットや基板の内部応力を緩和する方法が知られている(例えば特許文献4及び5参照)。しかしながら、これらの方法によれば、弾性歪を軽減させる効果はあると考えられるが、SiC単結晶に対して外部から高温の熱負荷を掛けて原子の再配置を行わせることは、昇温や冷却での過程を含めて、新たな温度分布を形成することになる。そのため、温度不均衡によって結晶内部に強い応力場が生み出されて、新たに転位を発生させてしまう。ちなみに、特許文献5の実施例における焼鈍後の結晶の転位密度増加は、その現象を示すものと言える。
 一方で、本発明者らは、転位密度が低く、かつ弾性歪みが小さいSiC単結晶基板を得ることに成功している(特許文献6参照)。従来からラマン分光法により応力の大きさを定量的に測定することが知られていたが(特許文献7参照)、デバイス歩留まりに影響する弾性歪みの評価方法は明らかにされていなかった。特許文献6は、デバイス歩留まりに影響する弾性歪みの評価方法を明確にした。特許文献6に開示されたSiC単結晶ウェハは、詳しくは、口径が100mm以上(4インチ以上)のSiC単結晶基板において、その表面で観察されるBPD密度が500個/cm2以下、及びTSD密度が300個/cm2以下であり、しかも、基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)で表されるラマン指数が0.15以下のものである。このようなSiC単結晶基板の製造において、結晶成長過程におけるインゴットの温度変化を抑えて、内部応力の発生を小さくすることで、弾性歪と転位(塑性歪)の低減が実現されていると考えられる。
特開2002-284599号公報 特開2007-119273号公報 特開2013-139347号公報 特開2006-290705号公報 特開2005-93519号公報 特開2015-59072号公報 特表2015-514673号公報 WO2010/044484号公報 特開2013-67523号公報
A.A.Burk et al.,Mater.Sci.Forum,717-720,(2012) pp75-80 大谷昇、SiC及び関連ワイドギャップ半導体研究会第17回講演会予稿集、2008、p8
 上述したように、SiCデバイスの歩留まりや性能を向上させる上で、SiC単結晶基板のBPD密度やTSD密度の低下は特に重要であるが、単にこれらの転位密度が低いだけでは十分でない。すなわち、SiC単結晶基板の弾性歪が大きいと、良好なエピタキシャル薄膜を形成することができず、また、基板の反りを発現して様々な問題を引き起こしてしまう。
 特許文献6に記載されたSiC単結晶基板であれば、これらの課題を解決できる点で極めて有用な技術であると言える。ところが、特許文献6に開示されたSiC単結晶インゴットは、良質なエピタキシャル薄膜を形成できる基板を取り出せるバルク領域が少ないので、このような転位密度が低く、かつ弾性歪みが小さいSiC単結晶基板は、ひとつのSiC単結晶インゴットから取り出せる数が限られている。この点で、特許文献6に開示されたSiC単結晶インゴットは、まだ改良の余地がある。
 そこで、本発明者らは、更なる研究開発を進めた結果、改良レーリー法(種結晶を用いた昇華再結晶法)による結晶成長過程でのインゴットの温度変化の制御と共に、結晶成長方向におけるインゴットの温度勾配の最適化を図ることで、インゴット略全体としてBPD密度及びTSD密度が低く、かつ、弾性歪みが小さいものが得られることを見出した。
 したがって、本発明の目的は、基底面転位や貫通螺旋転位の転位密度が低くて結晶品質に優れて、しかも、弾性歪も小さく、実用的な高さを備えたSiC単結晶インゴットを提供することにある。
 すなわち、本発明の要旨は次のとおりである。
(1)種結晶上に炭化珪素(SiC)単結晶を備えるSiC単結晶インゴットであって、インゴット先端の結晶成長端面が凸面形状を有しており、該インゴットの種結晶側底面をゼロとし、該インゴットの側面から該インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.8の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が1000個/cm2以下であると共に、貫通螺旋転位密度が500個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.20以下であることを特徴とするSiC単結晶インゴット。
(2)前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.9の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が1000個/cm2以下であると共に、貫通螺旋転位密度が500個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.20以下であることを特徴とする(1)に記載のSiC単結晶インゴット。
(3)前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.8の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が500個/cm2以下であると共に、貫通螺旋転位密度が300個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.15以下であることを特徴とする(1)に記載のSiC単結晶インゴット。
(4)前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.9の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が500個/cm2以下であると共に、貫通螺旋転位密度が300個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.15以下であることを特徴とする(1)~(3)のうちいずれかに記載のSiC単結晶インゴット。
(5)口径4インチ以上6インチ未満のSiC単結晶基板を得る大きさを有することを特徴とする(1)~(4)のうちいずれかに記載のSiC単結晶インゴット。
(6)口径6インチ以上のSiC単結晶基板を得る大きさを有することを特徴とする(1)~(4)のうちいずれかに記載のSiC単結晶インゴット。
(7)前記基板の表面で観察される基底面転位密度と貫通螺旋転位密度との合計が1000個/cm2以下であることを特徴とする(1)~(6)のうちいずれかに記載のSiC単結晶インゴット。
(8)実質的に単一ポリタイプを有することを特徴とする(1)~(7)のうちいずれかに記載のSiC単結晶インゴット。
(9)インゴット高さの位置にあたる結晶成長端面の中心点Oと、インゴットの側面から直径の10%内側の位置にあたる結晶成長端面上の外周点Eとの高さの差(O-E)が、1mm以上7mm以下であることを特徴とする(1)~(8)のうちいずれかに記載のSiC単結晶インゴット。
(10)インゴット高さが25mm以上であることを特徴とする(1)~(9)のうちいずれかに記載のSiC単結晶インゴット。
 本発明の炭化珪素(SiC)単結晶インゴットは、略全体において基底面転位や貫通螺旋転位の転位密度が低くて結晶品質に優れて、しかも、弾性歪も小さく、実用的な高さを備える。そのため、本発明のSiC単結晶インゴットによれば、インゴット略全体から基底面転位と貫通螺旋転位の転位密度が低く、しかも、弾性歪の小さいSiC単結晶基板を数多く切り出すことができ、また、このようなSiC単結晶基板であれば、SiCデバイスの歩留まりや性能を向上させることができる。特に、本発明では、上記のような特性を有するSiC単結晶基板を口径が100mm以上の大口径基板で実現しているため、SiCデバイスのコストを抑えることができて、SiCデバイスの普及拡大に貢献するものであると言える。
図1は、改良レーリー法によりSiC単結晶を成長させるのに用いた結晶成長装置の模式説明図である。 図2は、結晶成長中のインゴットの温度分布変化を抑制するための結晶成長装置の一例を示す模式説明図である。 図3は、結晶成長中のインゴットの温度分布変化を抑制するための結晶成長装置の一例を示す模式説明図である。 図4は、結晶成長中のインゴットの温度分布変化を抑制するための結晶成長装置の一例を示す模式説明図である。 図5は、インゴットにおける結晶成長方向の温度勾配Δt2を模式的に示した説明図であり、(a)は従来例を表し、(b)は本発明の場合を表す。 図6は、インゴットの形状を説明するための模式図である。 図7は、SiC単結晶基板の表面におけるエッチピットを計測した位置を示す説明図である。
 以下、本発明について詳しく説明する。
 本発明におけるSiC単結晶インゴットは、インゴット先端の結晶成長端面が凸面形状を有しており、該インゴットの種結晶側底面をゼロとし、該インゴットの側面から直径の10%内側の位置における結晶成長端面の高さを1としたときに、インゴットの高さ方向において前記高さに対する相対的な高さ(以下、この高さを単に「相対的な高さ」といい、この「相対的な高さ」を有する位置を単に「相対的な高さ位置」という。)が少なくとも0.2~0.8の範囲内、好ましくは0.2~0.9の範囲内の部分で、基底面転位(BPD)密度と貫通螺旋転位(TSD)密度が低く、しかも弾性歪の小さいSiC単結晶を備えている。なお、前述した相対的な高さが1である点(以下、「外周点」ともいう。)は、一般に、インゴットの結晶成長方向先端の加工代を考慮して、インゴットの有効高さ(H’)と呼ばれることもある。
 このうち、BPD密度については、口径4インチ以上6インチ未満のSiC単結晶基板を得ることができるSiC単結晶インゴット(以下、「6インチ未満基板用インゴット」と呼ぶ)の場合、上記高さ方向における前記相対的な高さ位置が少なくとも0.2~0.8の範囲内にある部分からインゴットの横断面方向(すなわち、種結晶表面に平行な方向)に切り出したSiC単結晶基板は、いずれも500個/cm2以下、好ましくは300個/cm2以下、より好ましくは100個/cm2以下である。また、口径6インチ以上のSiC単結晶基板を得ることができるSiC単結晶インゴット(以下、「6インチ以上基板用インゴット」と呼ぶ)の場合、前記相対的な高さ位置の範囲内の部分から切り出したSiC単結晶基板は、いずれも1000個/cm2以下、好ましくは500個/cm2以下、より好ましくは300個/cm2以下である。
 また、TSD密度については、6インチ未満基板用インゴットの場合、前記相対的な高さ位置の範囲から切り出したSiC単結晶基板は、いずれも300個/cm2以下、好ましくは200個/cm2以下、より好ましくは100個/cm2以下である。また、6インチ以上基板用インゴットの場合、前記相対的な高さ位置の範囲から切り出したSiC単結晶基板は、いずれも500個/cm2以下、好ましくは300個/cm2以下、より好ましくは200個/cm2以下である。
 ここで、BPD、TSDともに、その密度が100個/cm2を下回るレベルにまで低下すれば、デバイスへの悪影響は実質的に皆無になるになると考えられる。本発明に係るいずれの基板用のインゴットにおいても、それぞれある特定の部分から限定的にこのような極低転位密度の基板を得ることはできる。本発明によれば、前述したようなインゴットの高さ方向における相対的な高さ位置の範囲内で満たすことができるBPD密度とTSD密度の最小値は、現時点において、6インチ未満基板用インゴットの場合、BPD密度が20個/cm2であり、TSD密度が60個/cm2である。また、本発明によれば、6インチ以上基板用インゴットでは、BPD密度の最小値が70個/cm2であり、TSD密度の最小値が90個/cm2であり、これらの値が転位密度の実質的な下限値になる。
 また、上述したように、BPDとTSDはどちらもデバイス実用上の障害となる。そのため、いずれの基板用のインゴットの場合でも、BPDとTSDの合計密度で1000個/cm2以下であるのがよく、その場合に顕著なデバイス性能と歩留りの向上が期待でき、好ましくはBPDとTSDの合計密度が500個/cm2以下であるのがよく、より好ましくは300個/cm2以下であるのがよい。
 一方、弾性歪については、特許文献6に記載された方法を用いて測定される。すなわち、弾性歪は、上記相対的な高さ位置の範囲内からSiC単結晶基板を任意に切り出したときに、その基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)を表すラマン指数により評価する。一般に、弾性歪の評価方法としては、例えば、X線による格子常数の精密測定のほか、いくつかの方法が存在するが、これらの測定方法では、弾性歪はベクトルで表現されるため、デバイスへの影響度を評価するには高度な解析技術が必要であり、また、測定自体も時間や技能を要してしまう。これに対して、上記ラマン指数は、SiCのラマン散乱光ピークの波長の逆数について、基板の中心部と周辺部とでそれぞれ測定した値の差分値で表されるものであり、ベクトルである弾性歪をスカラーに単純化して表現でき、測定時間が短く、しかも、基板のサイズによらずに評価することができる。なお、基板の中心部と周辺部については、後述する実施例のとおり、代表的には、前者は基板の中心(中心点)であり、後者は基板のエッジ(外周)から中心方向に2mm離れた位置とすることができる。
 ここで、ラマン指数の符号が正であってその値が大きいほど、SiC単結晶基板の弾性歪は大きいことを表す。基板の弾性歪は、基板表面のステップ方向や高さを乱す原因となり、その表面に形成されるエピタキシャル薄膜の品質を低下させてしまう。本発明においては、上記相対的な高さ位置の範囲内から切り出したSiC単結晶基板について、6インチ未満基板用インゴットの場合、ラマン指数は、いずれも0.15以下、好ましくは0.10以下である。また、6インチ以上基板用インゴットの場合、ラマン指数は、いずれも0.20以下、好ましくは0.15以下である。なお、SiC単結晶基板におけるラマン指数は、通常、正の値であるが、特殊な製造条件で製造されたものでは負になる場合もあり得る。マイナス側で大きな絶対値を取ることは一般に考え難いが、仮に-0.20よりも小さくなると、やはりデバイス作製上の影響があるため、いずれの基板用のインゴットにおいてもラマン指数の下限値は-0.20とすることができる。
 本発明においては、前述の通り、6インチ未満基板用インゴットと6インチ以上基板用インゴットでは、切り出されたSiC単結晶基板の転位密度や弾性歪を異なる条件で規定している。この理由は、例えば、口径が6インチ以上(150mm以上)のSiC単結晶基板は、量産、安価型のデバイス作製に使用されることが多く、その一方で、口径が6インチ未満である4~5インチ(100~125mm)のSiC単結晶基板は、高性能デバイスの作製用として使用されることもあり、より高品質が求められることである。
 ここで、6インチ未満基板用インゴットの具体的な大きさは、外周加工や端面加工等の形状処理の程度等によっても変わる。但し、一般には、改良レーリー法による結晶成長後であって、形状処理が施される前の状態(as-grown)において、インゴットの直径は、作製する基板サイズより4mm以上12mm以下の範囲でひとまわり大きいものであるのが好ましい。この基板サイズのプラス分である下限側の4mmは、基板に加工する際に最低限必要な加工代の意味であり、反対に基板サイズのプラス分である上限側の12mmは、これ以上大きくなると加工コストが過大になってしまうためである。したがって、6インチ以上基板用インゴットの場合でも同様に、作製する基板サイズに対して4mm以上12mm以下の範囲でひとまわり大きくなるようにすればよい。但し、6インチ以上基板用インゴットについて、デバイスの生産性の観点では基板の口径が大きいほど望ましく、その意味では上限は存在しないが、現在の製造技術では、インゴットの口径が300mmを超えると、結晶成長自体が困難であり、同時に加工コストが甚大となり、例えばチップ当たりの基板費用は却って上昇してしまう。そのため、6インチ以上基板用インゴットの場合、成長させる前記インゴットの口径の上限は300mm以下であるのが望ましい。
 なお、本発明において転位密度及びラマン指数を評価する際には、インゴットの高さ方向における相対的な高さ位置が少なくとも0.2~0.8或いは0.2~0.9の範囲内にある部分から任意にSiC単結晶基板を切り出して、公知の方法によりインゴットを加工し、鏡面に仕上げた状態で評価した。また、BPD及びTSDの転位密度は、溶融KOHによるエッチングを行い、光学顕微鏡を用いて計測した。詳しくは、いずれも実施例で記載したとおりである。
 本発明において、上記のように結晶品質に優れて、しかも弾性歪の小さいSiC単結晶インゴットが得られる理由としては、改良レーリー法において、“1)結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制すること”、及び、“2)結晶成長方向の温度勾配を比較的小さくしながら、昇華原料から昇華したSiとCとからなる蒸気の成長表面における過飽和度を保つようにして結晶成長を行うこと”が挙げられる。これらについて、以下でそれぞれ説明する。
 先ず、“1)結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制すること”〔以下“1)の作用”と言う〕は、先の特許文献6において検討されており、最終的に転位や弾性歪となるSiC単結晶インゴットの内部応力は、SiC単結晶の成長時の成長表面で発生するのみならず、成長後の結晶の温度分布の変化によって増大すると考えられる。すなわち、成長中のある時点におけるSiC単結晶インゴットは、その時点の温度分布によって内部応力が発生している状態にあり、その内部応力の一部は既に転位に変換されている。もしも、この時の温度分布が維持されたまま、成長が完了すれば、この温度分布を反映した転位密度と弾性歪を有するSiC単結晶基板を製造することができる。
 しかしながら、実際の製造条件下では、結晶成長に伴って幾つかの理由により温度分布が変化し、SiC単結晶インゴットに新たな応力が発生する。この新たに発生した応力によりBPDは増殖し、また、成長表面における原子配列の変化によりTSDを発生させる原因となり、更には弾性歪も増加してしまう。
 そこで、結晶成長中にインゴット側面からの入熱を制御することにより、結晶成長中のインゴットの温度分布変化を抑制し、成長中のBPDやTSDの増殖を抑えると共に、弾性歪の低減を図るようにする。具体的には、以下のような3つの手段が挙げられる。これらはいずれか1つの手段を採用してSiC単結晶の結晶成長を行うようにしてもよく、2つ以上を組み合わせて結晶成長を行うようにしてもよい。なお、実際のSiC単結晶成長において、2000℃以上になる坩堝内の様子を実測することは不可能であり、有限要素手法を用いてインゴットの温度や内部応力を解析し、また、実際に得られたSiC単結晶の品質評価を積み重ねる以外には現時点で手段がなく、結晶成長中のインゴット側面の入熱の状態を定量的に表現することは難しい。
 “1)の作用”に係る第1の手段として、結晶成長に先駆けて、坩堝のまわりを取り囲む断熱材を2250℃以上、好ましくは2450℃以上の温度で熱処理を施した上で、坩堝内でSiC単結晶の結晶成長を行うようにする。これは、インゴットに温度分布変化を発生させる原因のひとつとして、結晶成長を行う坩堝の外側に配置された断熱材の特性劣化により、インゴット側面からの入熱が変動することに対応するものである。
 一般に、昇華再結晶法によるSiC単結晶の製造に用いられる断熱材としては、黒鉛製のフェルト、又は黒鉛製の成形断熱材が使われることが多く、これらの製造の際に、熱処理される温度は通常1000℃以下であり、高温処理品であったとしても高々2000℃である。ところが、SiC単結晶の成長時に坩堝は最高で2400℃以上になり、結晶成長中に断熱材の黒鉛化等の反応が起こり、断熱特性が低下すると考えられる。また、坩堝内部からは昇華ガス成分が漏洩し、その成分は断熱材と熱化学的な反応を起こして黒鉛を劣化させて、やはり断熱特性が低下する。加えて、この断熱材の劣化に伴い、実際にSiC単結晶インゴットを製造する際の装置制御における温度フィードバックにより、誘導加熱コイルに投入される電流が上昇すると、断熱特性の低下によって坩堝温度が下がったと判断される。その結果、劣化の進行が軽度な部分と劣化が進んだ部分とで温度差が生じて、インゴット内の温度分布に影響を与えて、新たな内部応力の発生につながってしまう。
 そこで、予め断熱材を熱処理して黒鉛繊維等の黒鉛化度を高めておくことで、このような結晶成長中のインゴットの温度分布変化の発生を抑えるようにする。この断熱材の熱処理としては、例えば、断熱材だけを別途不活性雰囲気中で熱処理するようにしてもよく、結晶成長時と同様にして坩堝に取り付けた上で、結晶成長前に誘導加熱により熱処理するようにしてもよい。なお、この事前に行う熱処理温度の上限は、超高温環境では黒鉛自体の昇華が生じてしまうことや効果が飽和するなどの観点から、3000℃程度を上限値とすることができる。
 また、“1)の作用”に係る第2の手段としては、例えば、種結晶が取り付けられる坩堝蓋体の種結晶取付け領域のまわりに熱伝導率の高い部材(以下、熱流束制御部材と言う)を配設して、坩堝から熱流束制御部材に流れる熱を増加させることにより、坩堝からインゴット側壁、そしてインゴットから種結晶取付け領域という熱流束を減少させて、結晶成長中のインゴットの温度分布変化を抑制するようにする。結晶成長中のインゴットの温度分布変化を発生させる、もう一つの大きな原因は、高温の原料側から低温の種結晶側に向かう熱の流れが坩堝を形成する黒鉛部材を通じて、インゴット側面に入射することによるインゴットの熱量変化である。SiC単結晶の成長に伴い、インゴット側面の面積が増加することから、このような熱の流れを無視することはできない。前記第2の手段は、このような熱の流れに起因するインゴットの温度分布変化を抑制する。
 ここで、熱流束制御部材の取付け方法については特に制限はない。例えば、図2に示したように、坩堝蓋体4を、種結晶取付け領域4aを形成する部材と、これを取り囲む熱流束制御部材15との2つから構成する。更に、種結晶取付け領域4aを形成する部材に比べて熱伝導率の高い部材を用いて熱流束制御部材15を形成して、結晶成長中のインゴット16の側面からの入熱を制御しても良い。また、図3に示したように、坩堝蓋体4の外側を覆う断熱材6の一部を熱流束制御部材15として、坩堝蓋体4の種結晶取付け領域4aのまわりを取り囲むようにしたり、図4に示したように、坩堝本体3の側壁部分の一部に熱流束制御部材15を配置して、坩堝蓋体4の種結晶取付け領域4aのまわりを熱流束制御部材15で取り囲むようにしてもよい。
 熱流束制御部材の熱伝導率は、種結晶取付け領域を形成する部材の室温熱伝導率=λ1とし、熱流束制御部材の室温熱伝導率=λ2としたときに、1.1×λ1≦λ2の関係を満たすことが好ましい。より好ましくは1.2×λ1≦λ2である。具体的には、坩堝蓋体における種結晶取付け領域を形成する部材が等方性黒鉛からなる場合、例えば、ピッチ含浸黒鉛やCVD黒鉛等からなる熱流束制御部材を用いることができる。なお、熱流束制御部材の室温熱伝導率λ2が種結晶取付け領域を形成する部材の室温熱伝導率λ1の1.8倍を超えるようになると、成長表面の温度分布に大きな変化が生じてしまい、安定成長が難しくなると考えられることから、この値をこれらの比の上限とすることができる。
 更に、“1)の作用”に係る第3の手段としては、二重石英管の内部に設置した結晶育成用の坩堝の周辺空間における雰囲気ガスの熱伝導率を向上させて、坩堝から雰囲気中へ放散される熱量を増加させることである。ここで、高熱伝導のガス成分として、一般には、水素がよく知られているが、水素は坩堝を形成する黒鉛やSiCをエッチングするなどの影響を及ぼすことから、ヘリウム等の希ガスを用いるのがよい。具体的には、断熱材で覆われた坩堝と二重石英管との間に形成される周辺空間の雰囲気中にヘリウムが10vol%以上含まれる場合に意図した効果が生じ、ヘリウムが20vol%以上の場合により大きな効果が得られる。ヘリウム濃度の上限については、コストのほか、SiC単結晶に求められる電気伝導度(すなわち雰囲気中のドーパント濃度)の関係から決めることができるが、ヘリウムガスの濃度が50vol%以上となると、この場合も成長表面の温度分布にも大きな変化が生じ、安定成長が難しくなるおそれがあり、この値が実質的に上限値となる。
 次に、“2)結晶成長方向の温度勾配を比較的小さくしながら、昇華原料から昇華したSiとCとからなる蒸気の成長表面における過飽和度を保つようにして結晶成長を行うこと”〔以下“2)の作用”と言う〕については、以下のような考え方に基づく。一般に、改良レーリー法では、成長するSiC単結晶の成長面の形状は、成長面近傍の温度分布を制御することで決めることができ、通常、インゴット先端の結晶成長端面が凸面形状を有するように温度分布を制御する。詳しくは、成長結晶の周辺部における成長表面の任意の地点の温度tと、この点と種結晶からの距離が等しいインゴット中心部の温度tとの差(Δt1=t-t)が正となるように、成長空間内において、成長方向に向かって適度な凸形状の等温線を形成する。これは、結晶成長面においてその中心部から周辺部に向けて結晶成長がなされるようにすることで、多結晶の発生を制御すると同時に、目的とするポリタイプを安定成長させて、欠陥の少ない良質な単一ポリタイプのSiC単結晶インゴットを製造するためである。
 ところが、このような成長方向と垂直な平面内の温度差Δt1がより大きくなると、単結晶内部に形成される内部応力が増すことになる。すなわち、凸性の強さと内部応力の強さは相間し、特に、インゴットの周辺部における内部応力(円周方向成分)が増して、結晶が大口径化すれば内部応力の絶対値はそれにつれて大きくなってしまう。つまり、欠陥の少ない良質なSiC単結晶を得ることと内部応力の発生を小さくすることは、両立が極めて難しい課題である。
 そこで、本発明者らは、結晶成長面の凸形状を維持しつつ、結晶成長方向の温度勾配Δt2を比較的小さくすることで、内部応力の発生を抑えることについて検討した。この点について模式図で示すと図5のようになり、図5(b)は、図5(a)に比べて結晶成長方向の温度勾配Δt2が小さい状態を表している。これらは等温線iの凸形状は同じであるが、ある厚みを有したSiC単結晶基板を成長方向(図中の太矢印方向)に対して垂直に切り出したときに、結晶成長方向の等温線の間隔と基板の中心部から周辺部に向けての等温線の間隔は、いずれも図5(b)の方が疎になる。つまり、図5(b)のインゴット16は、図5(a)のインゴット16に比べて内部応力が軽減されることになる。
 ただし、結晶成長方向の温度勾配が小さくなると、一般に、結晶成長速度が低下してしまうと共に、成長表面における過飽和度が過小化して、単一ポリタイプ成長が阻害される等の成長異常を引き起こす危険がある。そこで、昇華原料から昇華したSiとCとからなる蒸気の成長表面における過飽和度を保つようにして、結晶成長を行うようにする。この過飽和度を保つ方法としては、例えば、i)誘導加熱電流の周波数を小さくし、かつ、昇華原料が充填される坩堝本体の側壁の厚みを薄くして、昇華原料自体を直接的に誘導加熱して高温にし、昇華を促進させる方法や、ii)成長空間の制御圧力を低くし、昇華ガスの拡散を促進して、成長面に到達する昇華原料の到達量を増やす方法や、iii)昇華原料の充填量を多くして坩堝本体における原料の総表面積を増やすことで、同じ温度条件下での昇華量を増加させる方法等を挙げることができる。
 また、結晶成長方向の温度勾配Δt2を比較的小さくする方法として、直接的には、誘導加熱コイルにより加熱される昇華原料側の温度tと種結晶側の温度tを調整することで温度差Δt2を従来より小さくすることができる。それ以外にも、例えば、種結晶が取り付けられる坩堝蓋体4に配される断熱材6の抜熱孔17のサイズを調整して種結晶側の温度tを比較的高温にしたり、坩堝本体底部の測温孔を大きくして、昇華原料側を相対的に低温にする等の方法を用いることができる。また、この温度勾配Δt2の具体的な値については、結晶育成用の坩堝の大きさや坩堝本体の側壁の厚みをはじめ、断熱材の種類やその厚み等によっても変動するため、一概に規定するのは難しい。しかし、例えば、口径4インチのSiC単結晶基板が得られるインゴットを製造する際に、従来法では温度差Δt2が250℃となるように設定していたものを、本発明では、温度差Δt2を90~210℃に設定することによって、前記相対的な高さ位置が少なくとも0.2~0.8の範囲内にある部分から切り出したSiC単結晶基板の表面で観察されるBPD密度を500個/cm2以下とし、且つTSD密度を300個/cm2以下とすることができる。
 また、本発明によれば、口径4インチのSiC単結晶基板が得られるインゴットを製造する際に、前記温度差Δt2が140~210℃となるように設定することによって、前記相対的な高さ位置が少なくとも0.2~0.9の範囲内にある部分から切り出したSiC単結晶基板の表面で観察されるBPD密度を500個/cm2以下とし、且つTSD密度を300個/cm2以下とすることができる。
 本発明では、結晶成長方向の温度勾配を小さくしながら、成長表面における過飽和度を保つようにすることで、実質的な結晶成長を従来法と同程度となるようにする。好ましくは、成長速度が0.10mm/h以上0.60mm/h以下となるように過飽和度を維持する。より好ましくは、成長速度が0.15mm/h以上0.60mm/h以下となるように過飽和度を維持する。
 また、得られたSiC単結晶インゴットは、従来法と同程度の凸形状を有するようにする。好ましくは、図6に示したように、インゴットの先端の位置に相当する結晶成長端面の中心点Oと、インゴットの側面から直径の10%内側の位置にあたる結晶成長端面上の外周点Eとの高さの差Δh(=O-E)が1mm以上7mm以下となるように、インゴット先端の結晶成長端面が凸面形状を有するようにする。更に、インゴットの高さHについては、好ましくは、形状処理が施される前の状態(as-grown)で、6インチ未満基板用インゴットの場合には25mm以上であり、口径6インチ以上基板用インゴットの場合には35mm以上である。これらインゴット高さの上限は特に限定されないが、1回の結晶成長に投入できる昇華原料を増やすためには坩堝を大きくする必要があり、それはコスト的には不利であることなどを考慮すると、現時点においては実質的には100mmが上限値である。なお、ここで言うインゴットの高さHは種結晶を含めたものである。
 本発明によれば、基底面転位や貫通螺旋転位の転位密度が低くて結晶品質に優れて、弾性歪の小さいSiC単結晶インゴットを生産性良く得ることができる。しかも、実質的に単一のポリタイプを有したものにすることができ、例えば、電子デバイス向けに好適とされる良質な4H型SiC単結晶インゴットを得ることができる。そのため、本発明のSiC単結晶インゴットから高性能のSiCデバイスを作製することが可能になり、工業的規模でデバイスを作製した場合でも高い歩留りを確保することができる。
 以下、本発明について実施例等に基づき具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。
 先ず、図1には、本発明に係るSiC単結晶インゴットの製造に用いた単結晶成長装置が模式的に示されており、実施例及び比較例では、それぞれ下記の条件のもと、昇華原料1を誘導加熱により昇華させ、種結晶2上に再結晶させて、改良レーリー法による結晶成長を行った。このうち、種結晶2は、結晶育成用の坩堝5を形成する黒鉛製の坩堝蓋体4の内側に取り付けられ、昇華原料1は黒鉛製の坩堝本体3の内部に充填され、この黒鉛製の坩堝5は、熱シールドのためにそのまわりを断熱材6で被覆されて、二重石英管7の内部に入れられて、黒鉛支持台座8の上に設置された。
 そして、真空排気装置12及び圧力制御装置13を用いて、二重石英管7の内部を1.0×10-4Pa未満まで真空排気した後、配管10を介してマスフローコントローラ11で制御しながら、二重石英管7の内部に純度99.9999%以上の高純度Arガスを流入させ、真空排気装置12及び圧力制御装置13を用いて二重石英管内を所定の圧力に保ちながら、誘導加熱用のワークコイル9に高周波電流を流して、坩堝本体の下部を目標温度まで昇温させた。窒素ガス(N)についても同様に、配管10を介してマスフローコントローラ11で制御しながら流入させ、雰囲気ガス中の窒素分圧を制御して、SiC結晶中に取り込まれる窒素元素の濃度を調整した。ここで、坩堝温度の計測は、坩堝蓋体4の上部の断熱材6と坩堝本体3の下部の断熱材6とにそれぞれ直径2~15mmの光路を設けて、放射温度計14により温度を測定し、坩堝蓋体4の上部温度(放射温度計14-1による温度)を種結晶温度とし、坩堝本体3の下部温度(放射温度計14-2による温度)を原料温度とした。その後、二重石英管7内の圧力を成長圧力まで減圧し、この状態を所定の時間維持して、それぞれ結晶成長を実施するようにした。
 (実施例1:口径4インチ以上6インチ未満基板用インゴットの発明例)
 実施例1は、口径4インチ以上6インチ未満基板用インゴットの発明例である。実施例1を製造するために、結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制するために(すなわち、前記“1)の作用”を得るために)、先に示した第1の手段及び第2の手段を採用した。また、結晶成長方向の温度勾配を比較的小さくしながら、成長表面における過飽和度を保つようにして結晶成長を行うために(すなわち、前記“2)の作用”を得るために)、結晶成長方向の温度勾配Δt2を従来法よりも小さくしながら、成長空間の制御圧力を低くし、昇華ガスの拡散を促進して、成長面に到達する昇華原料の到達量を増やすことによって(すなわち、前記方法ii)を用いて)結晶成長を行った。実施例1の具体的な製造条件は以下の通りである。
 先ず、市販の黒鉛製フェルト(予め2000℃で熱処理されたもの)を一式用意して、この黒鉛製フェルトを高純度アルゴン雰囲気中、2300℃で12時間の熱処理を行い、断熱材6として使用した。また、坩堝蓋体4については、図2に示されるように、種結晶2が取り付けられる種結晶取付け領域4aのまわりを熱流束制御部材15で取り囲むようにして一体に形成されたものを用いた。ここで、種結晶取付け領域4aは直径101mmを有した等方性黒鉛材(室温熱伝導率125w/m・K)から形成され、また、熱流束制御部材15はこれと同心円状をした直径130mmのドーナツ形状をして、ピッチ含浸黒鉛材(室温熱伝導率140w/m・K)から形成されたものである。
 種結晶2としては、(0001)面を主面とし、<0001>軸が<11-20>方向に4°傾いた、口径101mmの4H型の単一ポリタイプで構成されたSiC単結晶の種結晶基板(厚さ1200μm)を使用した。これを上記の坩堝蓋体4の種結晶取付け領域4aに取り付け、坩堝本体3には昇華原料とするSiC粉末をおよそ1600g充填して、これら坩堝5のまわりを上記で熱処理した黒鉛製フェルトで覆い、図1に示した単結晶成長装置を組み立てた。
 次いで、上述したように二重石英管7の内部の真空排気を行った後、二重石英管7の内部に高純度Arガスを流入させて、石英管内圧力を通常成長よりも低い圧力である0.67kPaで維持しながら、窒素ガスの分圧は180Paから90Paの範囲で変化させて、結晶成長の際にインゴット全体で最適な導電性が維持されるようにした。そして、ワークコイル9に高周波電流を流して、坩堝蓋体4の上部温度が2100℃、坩堝本体3の下部温度が2200℃になるようにした。このときの種結晶温度と原料温度との温度差Δt2は150℃であり、これは、やはり通常成長よりも温度差が小さい条件になる。
 実施例1に係るSiC単結晶インゴットは、この状態を80時間保持することによって製造した。なお、種結晶温度と原料温度との温度差Δt2は、実製造を模したシミュレーションから求めた値であり、以下の実施例、比較例においても同様である。
 上記のようにして得られた実施例1のSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが107.1mm、外周点E(図6に示したように、インゴットの側面から中心に向けて直径(口径D)の10%内側の位置にあたる結晶成長端面上の点E)の高さ(有効高さH’)が32.2mmであった。また、実施例1のインゴットの高さH(結晶成長端面における中心点Oの高さ)は36.4mmであり、中心点Oと外周点Eとの高さの差hは4.3mmであった。更に、実施例1のSiC単結晶インゴットについて、ラマン分光のスペクトルにより表面のポリタイプを同定した。更にまた、外観観察により、この発明例には亜粒界などのマクロ欠陥も存在しないことが確認されたので、実施例1は4H型の単一ポリタイプを有していることが分かった。
 実施例1のSiC単結晶インゴットのそれぞれについて、図6に示したように、種結晶側の底面をゼロ(0)とし、外周点Eの高さを1としたときに、インゴットの高さ方向に対する相対的な高さ位置が0.2~0.9の範囲から、次のようにして、口径4インチのSiC単結晶基板を8枚作製した。
 すなわち、実施例1のSiC単結晶インゴットの外形を研削した後に、マルチワイヤーソーを用いて実施例1のSiC単結晶インゴットのそれぞれから板状体の基板を切り出した。次いで、ダイヤモンド砥粒を用いて前記板状体の基板を研磨し、最終的には平均粒径0.25μmのダイヤモンド砥粒を用いたバフ研磨を行い、種結晶と同じくオフ角度4°の(0001)面を有し、口径100mm、厚さ0.4mmの鏡面基板を作製した。このとき、SiC単結晶インゴットの高さ方向に対する相対的な高さ位置が0.2にあたる位置から加工して仕上げたものを11番基板とし、相対的な高さ位置が0.3にあたるものを12番基板として、以降、0.1刻みで11~18番のSiC単結晶基板を得た(種結晶側が11番基板、インゴット先端側が18番基板)。
 実施例1のSiC単結晶インゴットから作製した前記11~18番のSiC単結晶基板について、先ず、ラマン分光測定器(日本分光社製NRS-7100、分解能±0.05cm-1)を用いて、ラマンシフトを測定した。このラマン測定の光源は532nmのグリーンレーザーであり、これをサンプルであるSiC単結晶基板の表面のφ2μmのスポットに照射した。1つの測定箇所につき、測定光をスポット間隔10μmにて横8列×縦9列の計72点照射し、その平均値をその測定箇所の散乱光データとした。1枚の基板につき、1つの測定箇所の中心が基板の中心であり(基板の中心部A)、もう1つの測定箇所の中心は、基板のエッジ(外周)から中心方向に2mm離れた位置(エッジから直径上2mm内側の位置)であり(基板の周辺部B)、この2箇所でラマン散乱光の波長を測定した。そして、それぞれ波数(波長の逆数)の差分〔つまり、基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)〕をラマン指数とした。結果を表1に示す。
 また、実施例1のSiC単結晶インゴットから作製した前記11~18番のSiC単結晶基板について、溶融KOHエッチングを行い、光学顕微鏡によってBPD密度およびTSD密度を計測した。ここでは、J.Takahashi et al., Journal of CrystalGrowth, 135(1994), 61-70に記載された方法に従い、530℃の溶融KOHに各基板を10分間浸漬し、貝殻型のエッチピットをBPD、中型・大型の六角形状のエッチピットをTSDとして、エッチピット形状から転位欠陥を分類した。
 ここで、転位密度の算出方法としては、図7に示したように、図の上下、左右で対称関係にある基板上の52点について、その点が測定エリアの中心となるように、TSDについては2073μm×1601μmの測定エリア内で計数し、BPD等のTSD以外の転位については663μm×525μmの測定エリア内で計数し、それぞれ平均値を基板の転位密度とした。尚、TSDによるエッチピットのサイズは、BPDによるエッチピットのサイズよりも大きいので、TSDの計数の対象となる測定エリアがBPDの計数の対象となる測定エリアよりも広くした。また、図7に示したdの値は、実施例1のような100mm(口径4インチ)基板については3.25mmとしているが、後述する150mm(口径6インチ)以上の基板については4.8mmとした。これら以外においても適当なdを選ぶことにより、口径の影響を受けずに転位密度を正確に評価することができる。
 実施例1のSiC単結晶インゴットから作製した11~18番のSiC単結晶基板の各転位密度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この実施例1におけるSiC単結晶の成長条件は、種結晶側と昇華原料側との温度差を比較的小さくしているが、成長圧力を低くしたことにより、従来と同等の成長速度が確保され、同程度のインゴット高さを得ることができた。また、インゴットの凸形状についても従来品と同等であり、ポリタイプの安定性も確保できている。加えて、表1に示した結果から分かるように、このような結晶成長によれば、得られたインゴットの縦方向(結晶成長方向)と、それと垂直な横方向面内における温度差が小さくなり、内部応力が低減されて、いずれの転位密度も低く、かつ、ラマン指数(弾性歪)が小さいSiC単結晶インゴットの製造が可能になると考えられる。
 (実施例2:口径6インチ以上基板用インゴットの発明例)
 次に、実施例2の単結晶成長について説明する。実施例2の結晶成長の技術思想も実施例1と同様であり、結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制するために(すなわち、前記“1)の作用”を得るために)、先に示した第1の手段及び第2の手段を採用した。また、結晶成長方向の温度勾配を比較的小さくしながら、成長表面における過飽和度を保つようにして結晶成長を行うために(すなわち、前記“2)の作用”を得るために)、結晶成長方向の温度勾配Δt2を従来法よりも小さくしながら、成長空間の制御圧力を低くし、昇華ガスの拡散を促進して、成長面に到達する昇華原料の到達量を増やすことによって(すなわち、前記方法ii)を用いて)して結晶成長を行った。但し、実施例2では口径150mm超の単結晶インゴットの実施例2の製造を行った。実施例2の具体的な製造条件は以下の通りである。
 先ず、市販の黒鉛製フェルト(予め2000℃で熱処理されたもの)を1式用意して、この黒鉛製フェルトを高純度アルゴン雰囲気中、2550℃で16時間の熱処理を行い、断熱材6として使用した。また、坩堝蓋体4については、図2に示されるように、種結晶2が取り付けられる種結晶取付け領域4aのまわりを熱流束制御部材15で取り囲むようにして一体に形成されたものを用いた。ここで、種結晶取付け領域4aは直径155mmを有した等方性黒鉛材(室温熱伝導率125w/m・K)から形成され、また、熱流束制御部材15はこれと同心円状をした直径130mmのドーナツ形状をして、ピッチ含浸黒鉛材(実施例1のピッチ含浸黒鉛材よりもさらに嵩密度を上昇させた材質であり室温熱伝導率150w/m・K)から形成されたものである。
 種結晶2としては、(0001)面を主面とし、<0001>軸が<11-20>方向に4°傾いた、口径154mmの4H型の単一ポリタイプで構成されたSiC単結晶の種結晶基板(厚さ1400μm)を使用した。これを上記の坩堝蓋体4の種結晶取付け領域4aに取り付け、坩堝本体3には昇華原料とするSiC粉末をおよそ3300g充填して、これら坩堝5のまわりを上記で熱処理した黒鉛製フェルトで覆い、図1に示した単結晶成長装置を組み立てた。
 次いで、実施例1とほぼ同様の条件にして、単結晶インゴットの製造を行った。成長中の石英管内は、通常成長よりも低い圧力である0.67kPaで維持しながら、窒素ガスの分圧は180Paから90Paの範囲で変化させて、結晶成長の際にインゴット全体で最適な導電性が維持されるようにした。そして、ワークコイル9に高周波電流を流して、坩堝蓋体4の上部温度が2100℃、坩堝本体3の下部温度が2150℃になるようにした。このときの種結晶温度と原料温度との温度差Δt2は145℃であり、これは、やはり通常成長よりも温度差が小さい条件になる。実施例2に係るSiC単結晶インゴットは、この状態を100時間保持することによって製造した。
 上記のようにして得られた実施例2のSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが157.7mm、外周点Eの高さH’が38.3mmであった。また、実施例2のインゴットの高さHは41.2mmであり、中心点Oと外周点Eとの高さの差hは2.9mmであった。更に、実施例2のSiC単結晶インゴットについて、ラマン分光のスペクトルにより表面のポリタイプを同定した。更にまた、外観観察により、この発明例には亜粒界などのマクロ欠陥も存在しないことが確認されたので、実施例2は4H型の単一ポリタイプを有していることが分かった。
 実施例2のSiC単結晶インゴットのそれぞれについて、実施例1と同様にインゴット内の相対的な高さ位置を有する、口径150mm、厚さ0.4mmの鏡面基板8枚に加工し(種結晶側から順に数えて21~28番の基板であり、相対的な高さ位置が0.2~0.9の範囲のもの)、品質の評価を行った。実施例2のSiC単結晶インゴットから得られた基板の品質の評価結果を表2に示す。表2から分かるように、この実施例2においても、転位密度が低く、かつ、ラマン指数(弾性歪)が小さいSiC単結晶インゴットが得られている。
Figure JPOXMLDOC01-appb-T000002
 (実施例3:口径6インチ以上基板用インゴットの発明例)
 次に、口径6インチ以上基板用インゴットの発明例としての実施例3の単結晶成長について説明する。実施例3の結晶成長の技術思想も実施例1と同様であり、結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制するために(すなわち、前記“1)の作用”を得るために)、先に示した第1の手段及び第2の手段を採用した。また、結晶成長方向の温度勾配を比較的小さくしながら、成長表面における過飽和度を保つようにして結晶成長を行うために(すなわち、前記“2)の作用”を得るために)、結晶成長方向の温度勾配Δt2を従来法よりも小さくしながら、成長空間の制御圧力を低くし、昇華ガスの拡散を促進して、成長面に到達する昇華原料の到達量を増やすことによって(すなわち、前記方法ii)を用いて)結晶成長を行った。実施例3では口径100mm基板を得るための単結晶インゴットの製造を行った。
 先ず、市販の黒鉛製フェルト(予め2000℃で熱処理されたもの)を1式用意して、この黒鉛製フェルトを高純度アルゴン雰囲気中、2550℃で48時間の熱処理を行い、断熱材6として使用した。また、坩堝蓋体4については、図2に示されるように、種結晶2が取り付けられる種結晶取付け領域4aのまわりを熱流束制御部材15で取り囲むようにして一体に形成されたものを用いた。ここで、種結晶取付け領域4aは直径106mmを有した等方性黒鉛材(室温熱伝導率125w/m・K)から形成され、また、熱流束制御部材15はこれと同心円状をした直径94mmのドーナツ形状をして、ピッチ含浸黒鉛材(実施例2と同じ材質であり室温熱伝導率150w/m・K)から形成されたものである。
 この実施例3においては、坩堝内部からの昇華ガスの漏洩による断熱材の劣化を防止するために、坩堝を構成する部材同士(坩堝本体と蓋体)の締結部分は市販の黒鉛用接着剤(アレムコ社製グラフィボンドなど)を用いて密着させ、ガス漏れの原因を極力排除した。但し、意図してガスが通るようにした構造部分は接着していない。このように、意図しないガス漏洩を抑制したことにより、断熱材劣化による温度勾配変化が抑制され、結晶の温度場の変化はさらに小さくなる。
 また、この実施例3において、種結晶2としては、(0001)面を主面とし、<0001>軸が<11-20>方向に4°傾いた、口径102mmの4H型の単一ポリタイプで構成されたSiC単結晶の種結晶基板(厚さ1200μm)を使用した。これを上記の坩堝蓋体4の種結晶取付け領域4aに取り付け、坩堝本体3には昇華原料とするSiC粉末をおよそ2300g充填して、これら坩堝5のまわりを上記で熱処理した黒鉛製フェルトで覆い、図1に示した単結晶成長装置を組み立てた。
 次いで、単結晶インゴットの製造を行った。成長中の石英管内は、通常成長よりも低い圧力である0.40kPaで維持しながら、窒素ガスの分圧は180Paから90Paの範囲で変化させて、結晶成長の際にインゴット全体で最適な導電性が維持されるようにした。そして、ワークコイル9に高周波電流を流して、坩堝蓋体4の上部温度が2100℃、坩堝本体3の下部温度が2125℃になるようにした。このときの種結晶温度と原料温度との温度差Δt2は125℃であり、これは、やはり通常成長よりも温度差が小さい条件になる。この状態を150時間保持して、実施例3に係るSiC単結晶インゴットを製造した。
 上記のようにして得られたSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが108.5mm、外周点Eの高さH’が55.6mmであった。また、インゴットの高さHは57.4mmであり、中心点Oと外周点Eとの高さの差hは1.8mmであった。更に、この得られたSiC単結晶インゴットは、ラマン分光のスペクトルにより表面のポリタイプを同定し、更にまた、外観観察により亜粒界などのマクロ欠陥も存在しないことから、4H型の単一ポリタイプを有していることが分かった。
 得られたSiC単結晶インゴットについて、実施例1と同様にインゴット内の相対的な高さ位置を有する、口径100mm、厚さ0.4mmの鏡面基板8枚に加工し(種結晶側から順に数えて31~38番の基板であり、相対的位置は0.2~0.9の範囲)、品質の評価を行った。評価結果を表3に示す。表3から分かるように、この実施例3においても、転位密度が低く、かつ、ラマン指数(弾性歪)が小さいSiC単結晶インゴットが得られている。
Figure JPOXMLDOC01-appb-T000003
 (実施例4:口径6インチ以上基板用インゴットの発明例)
 次に、口径6インチ以上基板用インゴットの発明例としての実施例4の単結晶成長について説明する。実施例4の結晶成長の技術思想も実施例1と同様であり、結晶成長中にインゴットの側面からの入熱を制御して、結晶成長中のインゴットの温度分布変化を可及的に抑制するために(すなわち、前記“1)の作用”を得るために)、先に示した第1の手段及び第2の手段を採用した。また、結晶成長方向の温度勾配を比較的小さくしながら、成長表面における過飽和度を保つようにして結晶成長を行うために(すなわち、前記“2)の作用”を得るために)、結晶成長方向の温度勾配Δt2を従来法よりも小さくしながら、成長空間の制御圧力を低くし、昇華ガスの拡散を促進して、成長面に到達する昇華原料の到達量を増やすことによって(すなわち、前記方法ii)を用いて)結晶成長を行った。実施例4では口径150mm基板(口径6インチ基板)を得るための単結晶インゴットの製造を行った。
 先ず、市販の黒鉛製フェルト(予め2000℃で熱処理されたもの)を1式用意して、この黒鉛製フェルトを高純度アルゴン雰囲気中、2550℃で48時間の熱処理を行い、断熱材6として使用した。また、坩堝蓋体4については、図2に示されるように、種結晶2が取り付けられる種結晶取付け領域4aのまわりを熱流束制御部材15で取り囲むようにして一体に形成されたものを用いた。ここで、種結晶取付け領域4aは直径155mmを有した等方性黒鉛材(室温熱伝導率125w/m・K)から形成され、また、熱流束制御部材15はこれと同心円状をした直径140mmのドーナツ形状をして、ピッチ含浸黒鉛材(実施例2と同じ材質であり室温熱伝導率150w/m・K)から形成されたものである。
 この実施例4においては、坩堝内部からの昇華ガスの漏洩による断熱材の劣化を防止するために、実施例3と同じく坩堝を構成する部材同士を市販の黒鉛用接着剤で密着させた。但し、意図してガスが通るようにした構造部分は接着していない。このように、意図しないガス漏洩を抑制したことにより、断熱材劣化による温度勾配変化が抑制され、結晶の温度場変化はさらに小さくなる。
 また、この実施例4において、種結晶2としては、(0001)面を主面とし、<0001>軸が<11-20>方向に4°傾いた、口径154mmの4H型の単一ポリタイプで構成されたSiC単結晶の種結晶基板(厚さ1400μm)を使用した。これを上記の坩堝蓋体4の種結晶取付け領域4aに取り付け、坩堝本体3には昇華原料とするSiC粉末をおよそ5800g充填して、これら坩堝5のまわりを上記で熱処理した黒鉛製フェルトで覆い、図1に示した単結晶成長装置を組み立てた。
 次いで、単結晶インゴットの製造を行った。二重石英管7の内部流入させる高純度Arガスにはヘリウムガスを25vol%含有させ、ガスの熱伝導により実施例1~3よりもさらに小さな温度勾配を狙った。成長中の石英管内は、通常成長よりも低い圧力である0.27kPaで維持しながら、窒素ガスの分圧は180Paから90Paの範囲で変化させて、結晶成長の際にインゴット全体で最適な導電性が維持されるようにした。そして、ワークコイル9に高周波電流を流して、坩堝蓋体4の上部温度が2120℃、坩堝本体3の下部温度が2130℃になるようにした。このときの種結晶温度と原料温度との温度差Δt2は105℃であり、これは、やはり通常成長よりも温度差が小さい条件になる。この状態を200時間保持して、実施例4に係るSiC単結晶インゴットを製造した。
 上記のようにして得られたSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが159.1mm、外周点Eの高さH’が79.4mmであった。また、インゴットの高さHは80.9mmであり、中心点Oと外周点Eとの高さの差hは1.5mmであった。このインゴットの表面はディンプル状の炭化面が散在していた。これは長時間成長によって、成長プロセスが完了する前に原料をほぼ使い果たしたことによるものである。ディンプルは存在するものの、その点を除けば、表面には亜粒界などのマクロ欠陥は存在せず、外観は良質であった。
 上記のとおり、表面が炭化していた為、得られたSiC単結晶インゴットは表面を研削して正常な結晶を露出させた後に、ラマン分光のスペクトルにより表面のポリタイプを同定し、4H型の単一ポリタイプを有していることが分かった。
 ここで、得られたSiC単結晶インゴットについて、実施例1と同様の基板化加工を行ったが、表面の炭化痕が完全に無くなるまでインゴット先端の結晶成長端面を8mm程度平面研削する必要があったため、インゴットの高さ方向に対する相対的な高さ位置0.9の基板は作製できなかった。そのため、0.2~0.8の相対的な高さ位置を有する、口径150mm、厚さ0.4mmの鏡面基板7枚に加工し(種結晶側から順に数えて41~47番)、品質の評価を行った。評価結果を表4に示す。表4から分かるように、この実施例4においても、上記相対的な高さ位置0.2~0.8の範囲で転位密度が低く、かつ、ラマン指数(弾性歪)が小さいSiC単結晶インゴットが得られている。
 なお、実施例4では相対的な高さ位置0.9の基板が加工できなかったものの、インゴットの絶対高さが高いために基板の取れ枚数は多く、高さの低いインゴットよりも生産性において有利である。さらに適切に成長条件を調整することにより、原料枯渇を防げる範囲で成長高さを増加させ、生産効率を最大化することも可能であると考えられる。
Figure JPOXMLDOC01-appb-T000004
 (比較例1)
 次に、比較例1について説明する。比較例1では、石英管内圧力を1.33kPaとした以外は実施例1と同様にしてSiC単結晶インゴットを製造した。すなわち、結晶成長方向の温度差を150℃として、通常成長よりも温度差が小さい条件にし、成長圧力は通常成長と同程度にした。また、使用した種結晶や昇華原料のほか、坩堝5、断熱材6についてはいずれも実施例1と同じ条件で結晶成長を行った。
 得られたSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが103.7mm、外周点Eの高さH’が16.7mmであった。また、インゴットの高さHは20.6mmであり、中心点Oと外周点Eとの高さの差hは3.9mmであった。そして、このSiC単結晶インゴットから、実施例1と同様にインゴット内の相対的な高さ位置を有する、口径100mm、厚さ0.4mmの鏡面基板を8枚加工して(種結晶側から順に数えて51~58番の基板であり、相対的な高さ位置は0.2~0.9の範囲)、品質の評価を行った。評価結果を表5に示す。
 表5から分かるように、この比較例1では、種結晶温度と原料温度との温度差Δt2に対して成長圧力が高いため、成長速度が極端に小さくなり、実施例1の場合の50%程度の高さのインゴットとなった。インゴット内部における結晶成長方向の温度勾配は、実施例1と同様に低いため、ラマン指数はいずれの基板においても比較的低い値を示したものの、BPD密度やTSD密度が高い基板が含まれており、なかでも基板番号が55~58番の成長後半部分では、転位密度が多い結晶となっていた。
 一方、結晶成長面の凸形状は従来と同等であるため、成長中盤である54番の基板まではポリタイプの安定性が確保できていた。しかし、種結晶温度と原料温度との温度差Δt2が小さいため、55番の基板の位置付近で成長表面における過飽和度が低下し、成長表面の昇華あるいは炭化が発生して、炭化を起点に転位や異種ポリタイプが生成したと考えられる。先で述べたような転位密度の増加は、これらのことが影響していると考えられる。
Figure JPOXMLDOC01-appb-T000005
 (比較例2)
 次に、比較例2について説明する。比較例2では、種結晶温度と原料温度との温度差Δt2は250℃とし、石英管内圧力を1.33kPaとした以外は実施例1と同様にしてSiC単結晶インゴットを製造した。すなわち、結晶成長方向の温度差、及び、成長圧力は通常成長と同程度にした。また、使用した種結晶や昇華原料のほか、坩堝5、断熱材6についてはいずれも実施例1と同じ条件で結晶成長を行った。
 得られたSiC単結晶インゴットは、インゴット先端の結晶成長端面は凸面形状を有しており、口径Dが107.5mm、外周点Eの高さH’が33.1mmであった。また、インゴットの高さHは37.7mmであり、中心点Oと外周点Eとの高さの差hは4.6mmであった。そして、このSiC単結晶インゴットから、実施例1と同様にインゴット内の相対的な高さ位置を有する、口径100mm、厚さ0.4mmの鏡面基板を8枚加工して(種結晶側から順に数えて61~68番の基板であり、相対的な高さ位置は0.2~0.9の範囲)、品質の評価を行った。評価結果を表6に示す。
 表6から分かるように、この比較例2では、種結晶温度と原料温度との温度差Δt2は比較的大きいが、成長圧力は実施例1に比べて高いため、実施例1とほぼ同程度の高さのインゴットが成長した。また、結晶成長面の凸形状が確保されており、4Hポリタイプが成長全般に亘って安定していた。しかしながら、上記のとおり実施例1に比べて結晶成長方向の温度勾配Δt2が大きく、しかも成長方向と垂直な平面内の温度差(面内温度勾配)Δt1も大きいことから、いずれの基板もラマン指数と転位密度が共に高い結果を示した。
Figure JPOXMLDOC01-appb-T000006
 (比較例3)
 次に、比較例3について説明する。比較例3では、成長面の温度勾配(Δt1)の縮小のため、坩堝蓋体4に配される断熱材6に設ける抜熱孔17のサイズを小さくした。この条件変更に伴い、結晶成長方向の温度勾配(Δt2)も小さくなり、およそ230℃となった。それ以外は比較例2と同様にして結晶成長を行った。
 得られたSiC単結晶インゴットは、口径Dが108.9mmであり、外周点Eの高さH’が34.9mmであったが、インゴットの高さHが29.8mmであり(すなわち中心点Oと外周点Eとの高さの差hは-5.1mm)、外周部が多結晶化して凹型にせり上がった形状をしていた。そのため、実施例1と同様にインゴット内の相対的な高さ位置でいうと種結晶側から4番目の基板(種結晶側から順に数えて71~74番の基板であり、相対的な高さ位置は0.2~0.5の範囲)までしか作製できなかった。品質の評価結果を表7に示す。
 この比較例3では、上記のとおり成長表面の凸形状が確保できず、72番の基板以降では異種ポリタイプが混在し、成長中盤以降ではインゴット外周部が多結晶していた。すなわち、面内温度勾配が小さいため、基板が切出せた範囲の結晶では比較的小さなラマン指数を示したが、異種ポリタイプの混在により、それ以降の基板における転位密度は極めて高い結果であった。
Figure JPOXMLDOC01-appb-T000007
 1  昇華原料
 2  種結晶
 3  坩堝本体
 4  坩堝蓋体
 4a  種結晶取付け領域
 5  結晶育成用坩堝
 6  断熱材
 7  二重石英管
 8  黒鉛支持台座
 9  ワークコイル
 10  配管
 11  マスフローコントローラ
 12  真空排気装置
 13  圧力制御装置
 14  放射温度計
 15  熱流束制御部材
 16  SiC単結晶インゴット
 17  抜熱孔

Claims (10)

  1.  種結晶上に炭化珪素SiC単結晶を備えるSiC単結晶インゴットであって、
     インゴット先端の結晶成長端面が凸面形状を有しており、
     該インゴットの種結晶側底面をゼロとし、該インゴットの側面から該インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.8の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度は1000個/cm2以下であると共に、貫通螺旋転位密度は500個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数は0.20以下であることを特徴とするSiC単結晶インゴット。
  2.  前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.9の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が1000個/cm2以下であると共に、貫通螺旋転位密度が500個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.20以下であることを特徴とする請求項1に記載のSiC単結晶インゴット。
  3.  前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.8の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が500個/cm2以下であると共に、貫通螺旋転位密度は300個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数は0.15以下であることを特徴とする請求項1に記載のSiC単結晶インゴット。
  4.  前記インゴットの種結晶側底面をゼロとし、前記インゴットの側面から前記インゴットの直径の10%内側の位置にあたる結晶成長端面の高さを1として、インゴットの高さ方向における相対的な高さが少なくとも0.2~0.9の範囲内にある部分からSiC単結晶基板を任意に切り出したときに、該基板の表面で観察される基底面転位密度が500個/cm2以下であると共に、貫通螺旋転位密度が300個/cm2以下であり、かつ、該基板の中心部で測定されたラマンシフト値(A)と周辺部で測定されたラマンシフト値(B)との差(A-B)であるラマン指数が0.15以下であることを特徴とする請求項1~3のうちいずれか1項に記載のSiC単結晶インゴット。
  5.  口径4インチ以上6インチ未満のSiC単結晶基板を得る大きさを有することを特徴とする請求項1~4のうちいずれか1項に記載のSiC単結晶インゴット。
  6.  口径6インチ以上のSiC単結晶基板を得る大きさを有することを特徴とする請求項1~4のうちいずれか1項に記載のSiC単結晶インゴット。
  7.  前記基板の表面で観察される基底面転位密度と貫通螺旋転位密度との合計は1000個/cm2以下であることを特徴とする請求項1~6のうちいずれか1項に記載のSiC単結晶インゴット。
  8.  実質的に単一ポリタイプを有することを特徴とする請求項1~7のうちいずれか1項に記載のSiC単結晶インゴット。
  9.  インゴット高さの位置にあたる結晶成長端面の中心点Oと、インゴットの側面から直径の10%内側の位置にあたる結晶成長端面上の外周点Eとの高さの差(O-E)が、1mm以上7mm以下であることを特徴とする請求項1~8のうちいずれか1項に記載のSiC単結晶インゴット。
  10.  インゴット高さが25mm以上であることを特徴とする請求項1~9のうちいずれか1項に記載のSiC単結晶インゴット。
PCT/JP2016/079148 2015-10-02 2016-09-30 SiC単結晶インゴット WO2017057742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017543652A JPWO2017057742A1 (ja) 2015-10-02 2016-09-30 SiC単結晶インゴット
CN201680056842.6A CN108138359A (zh) 2015-10-02 2016-09-30 SiC单晶锭
US15/765,070 US20180282902A1 (en) 2015-10-02 2016-09-30 Sic single crystal ingot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-196622 2015-10-02
JP2015196622 2015-10-02
JP2016041626 2016-03-03
JP2016-041626 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017057742A1 true WO2017057742A1 (ja) 2017-04-06

Family

ID=58427776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079148 WO2017057742A1 (ja) 2015-10-02 2016-09-30 SiC単結晶インゴット

Country Status (4)

Country Link
US (1) US20180282902A1 (ja)
JP (1) JPWO2017057742A1 (ja)
CN (1) CN108138359A (ja)
WO (1) WO2017057742A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022054A1 (ja) * 2017-07-28 2019-01-31 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC
JP2019060681A (ja) * 2017-09-26 2019-04-18 クアーズテック株式会社 化合物半導体基板の評価方法、およびこれを用いた化合物半導体基板の製造方法
WO2019111507A1 (ja) * 2017-12-08 2019-06-13 住友電気工業株式会社 炭化珪素基板
JP2019112257A (ja) * 2017-12-22 2019-07-11 昭和電工株式会社 SiCインゴットの製造方法
KR102195325B1 (ko) * 2020-06-16 2020-12-24 에스케이씨 주식회사 탄화규소 잉곳, 웨이퍼 및 이의 제조방법
JP2021502942A (ja) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 大型サイズ高純度炭化ケイ素単結晶、基板及びその製造方法並びに製造用装置
JP2021011423A (ja) * 2019-07-03 2021-02-04 サイクリスタル ゲーエムベーハー 高品質半導体単結晶の水平成長のためのシステム、およびそれを製造する方法
JP2021070620A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 炭化珪素インゴットの製造方法、炭化珪素ウエハの製造方法及びその成長システム
WO2021111817A1 (ja) * 2019-12-02 2021-06-10 住友電気工業株式会社 炭化珪素基板および炭化珪素基板の製造方法
US11474012B2 (en) 2019-10-29 2022-10-18 Senic Inc. Method for preparing silicon carbide wafer and silicon carbide wafer
JP7452276B2 (ja) 2019-08-30 2024-03-19 株式会社レゾナック 単結晶製造装置及びSiC単結晶の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6768491B2 (ja) * 2016-12-26 2020-10-14 昭和電工株式会社 SiCウェハ及びSiCウェハの製造方法
JP7170521B2 (ja) * 2018-12-05 2022-11-14 昭和電工株式会社 SiC単結晶の評価用サンプル取得方法
EP4012079A4 (en) * 2019-08-06 2023-06-21 Kwansei Gakuin Educational Foundation SIC SUBSTRATE, SIC EPITALIAL SUBSTRATE, SIC BAR AND METHOD OF PRODUCTION
KR102234002B1 (ko) 2019-10-22 2021-03-29 에스케이씨 주식회사 탄화규소 잉곳, 이의 제조방법 및 탄화규소 웨이퍼의 제조방법
JP7336961B2 (ja) * 2019-10-31 2023-09-01 信越化学工業株式会社 単結晶インゴットの製造方法及び単結晶ウエハの製造方法
CN110904501B (zh) * 2019-11-13 2022-03-29 安徽微芯长江半导体材料有限公司 晶体生长用籽晶下置式装置
US11519098B2 (en) * 2020-01-29 2022-12-06 Wolfspeed, Inc. Dislocation distribution for silicon carbide crystalline materials
KR102235858B1 (ko) * 2020-04-09 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
CN114381800A (zh) * 2022-02-14 2022-04-22 苏州燎塬半导体有限公司 单晶氧化镓的制备方法及用于制备单晶氧化镓的工艺设备
JP7268784B1 (ja) * 2022-05-31 2023-05-08 株式会社レゾナック SiC基板及びSiCエピタキシャルウェハ
CN115537926B (zh) * 2022-12-01 2023-03-17 浙江晶越半导体有限公司 一种提高生长效率的大尺寸物理气相法碳化硅生长坩埚

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2015059072A (ja) * 2013-09-20 2015-03-30 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ、及び炭化珪素単結晶インゴットの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264223A3 (en) * 2006-09-14 2011-10-26 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
JP6226959B2 (ja) * 2012-04-20 2017-11-08 トゥー‐シックス・インコーポレイテッド 大口径高品質SiC単結晶、方法、及び装置
US10724151B2 (en) * 2014-10-31 2020-07-28 Sumitomo Electric Industries, Ltd. Device of manufacturing silicon carbide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2015059072A (ja) * 2013-09-20 2015-03-30 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ、及び炭化珪素単結晶インゴットの製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022054A1 (ja) * 2017-07-28 2019-01-31 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC
JP2019026500A (ja) * 2017-07-28 2019-02-21 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC
JP2019060681A (ja) * 2017-09-26 2019-04-18 クアーズテック株式会社 化合物半導体基板の評価方法、およびこれを用いた化合物半導体基板の製造方法
JP2022120059A (ja) * 2017-12-08 2022-08-17 住友電気工業株式会社 炭化珪素基板および炭化珪素エピタキシャル基板
US11342418B2 (en) 2017-12-08 2022-05-24 Sumitomo Electric Industries, Ltd. Silicon carbide substrate
JPWO2019111507A1 (ja) * 2017-12-08 2020-11-26 住友電気工業株式会社 炭化珪素基板
JP7400879B2 (ja) 2017-12-08 2023-12-19 住友電気工業株式会社 炭化珪素基板および炭化珪素エピタキシャル基板
WO2019111507A1 (ja) * 2017-12-08 2019-06-13 住友電気工業株式会社 炭化珪素基板
JP7088210B2 (ja) 2017-12-08 2022-06-21 住友電気工業株式会社 炭化珪素基板
JP2019112257A (ja) * 2017-12-22 2019-07-11 昭和電工株式会社 SiCインゴットの製造方法
JP7002932B2 (ja) 2017-12-22 2022-01-20 昭和電工株式会社 SiCインゴットの製造方法
JP2021502942A (ja) * 2018-10-16 2021-02-04 山▲東▼天岳先▲進▼科技股▲フン▼有限公司 大型サイズ高純度炭化ケイ素単結晶、基板及びその製造方法並びに製造用装置
JP2021011423A (ja) * 2019-07-03 2021-02-04 サイクリスタル ゲーエムベーハー 高品質半導体単結晶の水平成長のためのシステム、およびそれを製造する方法
US11479875B2 (en) 2019-07-03 2022-10-25 Sicrystal Gmbh System for horizontal growth of high-quality semiconductor single crystals by physical vapor transport
JP7184836B2 (ja) 2019-07-03 2022-12-06 サイクリスタル ゲーエムベーハー 高品質半導体単結晶の水平成長のためのシステム、およびそれを製造する方法
JP7452276B2 (ja) 2019-08-30 2024-03-19 株式会社レゾナック 単結晶製造装置及びSiC単結晶の製造方法
US11359306B2 (en) 2019-10-29 2022-06-14 Senic Inc. Method for preparing a SiC ingot and device for preparing a SiC ingot wherein electrical resistance of crucible body is 2.9 ohms or more
JP2021070620A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 炭化珪素インゴットの製造方法、炭化珪素ウエハの製造方法及びその成長システム
US11474012B2 (en) 2019-10-29 2022-10-18 Senic Inc. Method for preparing silicon carbide wafer and silicon carbide wafer
JP7258355B2 (ja) 2019-10-29 2023-04-17 セニック・インコーポレイテッド 炭化珪素インゴットの製造方法、炭化珪素ウエハの製造方法及びその成長システム
WO2021111817A1 (ja) * 2019-12-02 2021-06-10 住友電気工業株式会社 炭化珪素基板および炭化珪素基板の製造方法
US11913135B2 (en) 2019-12-02 2024-02-27 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing silicon carbide substrate
KR102195325B1 (ko) * 2020-06-16 2020-12-24 에스케이씨 주식회사 탄화규소 잉곳, 웨이퍼 및 이의 제조방법

Also Published As

Publication number Publication date
JPWO2017057742A1 (ja) 2018-07-19
CN108138359A (zh) 2018-06-08
US20180282902A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017057742A1 (ja) SiC単結晶インゴット
KR102160863B1 (ko) 탄화규소 단결정 웨이퍼
JP5931825B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5304712B2 (ja) 炭化珪素単結晶ウェハ
KR101379941B1 (ko) 탄화규소 단결정 및 탄화규소 단결정 웨이퍼
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
JP6200018B2 (ja) 炭化珪素単結晶ウェハ
JP4388538B2 (ja) 炭化珪素単結晶製造装置
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
KR101960209B1 (ko) 탄화규소 단결정 잉곳의 제조 방법 및 탄화규소 단결정 잉곳
JP6594146B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP7085833B2 (ja) 炭化珪素単結晶の製造方法
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP6624868B2 (ja) p型低抵抗率炭化珪素単結晶基板
JP2017065986A (ja) 低抵抗率炭化珪素単結晶基板の製造方法
JP5614387B2 (ja) 炭化珪素単結晶の製造方法、及び炭化珪素単結晶インゴット
EP4286567A1 (en) Sic substrate and sic epitaxial wafer
JP5135545B2 (ja) 炭化珪素単結晶インゴット育成用種結晶及びその製造方法
JP6594148B2 (ja) 炭化珪素単結晶インゴット
JP6695182B2 (ja) 炭化珪素単結晶成長用種結晶の製造方法及び炭化珪素単結晶インゴットの製造方法
JP2003137694A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP2003300796A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP2015030659A (ja) 単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543652

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15765070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851911

Country of ref document: EP

Kind code of ref document: A1