WO2019111507A1 - 炭化珪素基板 - Google Patents

炭化珪素基板 Download PDF

Info

Publication number
WO2019111507A1
WO2019111507A1 PCT/JP2018/036315 JP2018036315W WO2019111507A1 WO 2019111507 A1 WO2019111507 A1 WO 2019111507A1 JP 2018036315 W JP2018036315 W JP 2018036315W WO 2019111507 A1 WO2019111507 A1 WO 2019111507A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
carbide substrate
main surface
raman spectrum
wave number
Prior art date
Application number
PCT/JP2018/036315
Other languages
English (en)
French (fr)
Inventor
恭子 沖田
翼 本家
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201880078475.9A priority Critical patent/CN111433394B/zh
Priority to US16/770,151 priority patent/US11342418B2/en
Priority to JP2019558026A priority patent/JP7088210B2/ja
Publication of WO2019111507A1 publication Critical patent/WO2019111507A1/ja
Priority to JP2022092990A priority patent/JP7400879B2/ja
Priority to JP2023206044A priority patent/JP2024028868A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means

Definitions

  • the present disclosure relates to a silicon carbide substrate.
  • This application claims priority based on Japanese Patent Application No. 2017-236405, filed Dec. 8, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 JP-A-2014-210690 (Patent Document 1) describes that chemical mechanical polishing is performed on a silicon carbide single crystal substrate.
  • a silicon carbide substrate according to the present disclosure includes a first main surface and a second main surface opposite to the first main surface, and is made of polytype 4H silicon carbide.
  • the maximum diameter of the first major surface is 140 mm or more.
  • the thickness of the silicon carbide substrate is 300 ⁇ m or more and 600 ⁇ m or less.
  • the first main surface is a surface inclined at an off angle of more than 0 ° and 8 ° or less with respect to the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • a wave number indicating a peak corresponding to a folding mode of a vertical optical branch of a Raman spectrum of polytype 4H silicon with a stress of 0 is ⁇ 0 and silicon carbide is in a region from the first main surface to the second main surface
  • the maximum value of the wave number showing a peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of the substrate is max max
  • the minimum value of the wave number indicating the peak corresponding to the folding mode of the optical branch is min min
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of the silicon carbide substrate on the first main surface is ⁇ 1 Equation 1 to Equation 3 are satisfied.
  • FIG. 1 is a schematic plan view showing the structure of the silicon carbide substrate according to the present embodiment.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic view showing the configuration of a Raman spectrum measuring apparatus.
  • FIG. 4 is a schematic cross-sectional view showing a method of measuring a Raman spectrum.
  • FIG. 5 is a diagram showing an example of a Raman spectrum.
  • FIG. 6 is a diagram showing an example of a Raman spectrum measured at the first position.
  • FIG. 7 is a diagram showing the relationship between the wave number indicating a peak and the measurement position.
  • FIG. 8 is a diagram showing the relationship between the half width of the peak and the measurement position.
  • FIG. 1 is a schematic plan view showing the structure of the silicon carbide substrate according to the present embodiment.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic view showing the configuration of a Raman spectrum
  • FIG. 9 is a schematic cross sectional view showing a first step of a method of manufacturing a silicon carbide substrate according to the present embodiment.
  • FIG. 10 is a schematic plan view showing a first step of the method for manufacturing the silicon carbide substrate according to the present embodiment.
  • FIG. 11 is a schematic cross sectional view showing a second step of the method for manufacturing a silicon carbide substrate according to the present embodiment.
  • FIG. 12 is a schematic cross sectional view showing a step of forming a silicon carbide epitaxial layer on the silicon carbide substrate according to the present embodiment.
  • FIG. 13 is a schematic plan view showing a method of determining a three-point reference plane.
  • FIG. 14 is a first schematic diagram for explaining a method of measuring warp and bow.
  • FIG. 14 is a first schematic diagram for explaining a method of measuring warp and bow.
  • FIG. 15 is a second schematic view for explaining the method of measuring warp and bow.
  • FIG. 16 is a diagram showing the relationship between ⁇ (Ne) of sample 1 and the measurement position.
  • FIG. 17 is a diagram showing the relationship between ⁇ (Ne) of sample 2 and the measurement position.
  • FIG. 18 is a diagram showing the relationship between ⁇ (Ne) of sample 3 and the measurement position.
  • FIG. 19 is a diagram showing the relationship between ⁇ (Ne) of sample 4 and the measurement position.
  • FIG. 20 is a diagram showing the relationship between the FWHM of sample 1 and the measurement position.
  • FIG. 21 is a diagram showing the relationship between the FWHM of sample 2 and the measurement position.
  • FIG. 22 is a diagram showing the relationship between the FWHM of sample 3 and the measurement position.
  • FIG. 23 is a view showing the relationship between the FWHM of the sample 4 and the measurement position.
  • An object of the present disclosure is to reduce a change in warpage of a silicon carbide substrate before and after formation of a silicon carbide epitaxial layer.
  • a silicon carbide substrate 10 according to the present disclosure includes a first major surface 1 and a second major surface 2 opposite to the first major surface 1, and is made of polytype 4H silicon carbide There is.
  • the maximum diameter 111 of the first major surface 1 is 140 mm or more.
  • the thickness of silicon carbide substrate 10 is 300 ⁇ m or more and 600 ⁇ m or less.
  • the first major surface 1 is a surface inclined at an off angle of more than 0 ° and 8 ° or less with respect to the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • ⁇ 0 is a wave number indicating a peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of polytype 4H silicon carbide with stress of 0.
  • v max silicon carbide substrate 10 in the region from first main surface 1 to second main surface 2.
  • the minimum value of the wave number indicating a peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of the first spectrum is min min, and corresponds to the folding mode of the vertical optical branch of the Raman spectrum of the silicon carbide substrate 10 on the first major surface 1
  • the wave number indicating a peak is ⁇ 1
  • the equations 1 to 3 are satisfied.
  • the first main surface 1 to the second main surface Formula 4 may be satisfied at any position in the region within 3 ⁇ m toward the major surface 2.
  • a folded mode of vertical optical branching of Raman spectrum of silicon carbide substrate 10 in a region from first main surface 1 to second main surface 2, a folded mode of vertical optical branching of Raman spectrum of silicon carbide substrate 10 the maximum value of the half value width of the corresponding peak and delta max, in the region of the first main surface 1 to the second main surface 2, peaks corresponding to the folded mode of the vertical optical branch Raman spectrum of the silicon carbide substrate 10 the minimum value of the half value width of when the delta min, may satisfy equation 5.
  • silicon carbide substrate 10 As shown in FIGS. 1 and 2, silicon carbide substrate 10 according to the present embodiment mainly has a first major surface 1, a second major surface 2, and an outer peripheral surface 5. The second major surface 2 is on the opposite side of the first major surface 1.
  • Silicon carbide substrate 10 is made of polytype 4H silicon carbide. Silicon carbide substrate 10 contains an n-type impurity such as nitrogen (N), for example.
  • the conductivity type of silicon carbide substrate 10 is, for example, n-type.
  • the concentration of the n-type impurity of silicon carbide substrate 10 is, for example, not less than 1 ⁇ 10 17 cm ⁇ 3 and not more than 1 ⁇ 10 20 cm ⁇ 3 .
  • the maximum diameter 111 of the first major surface 1 is 140 mm or more.
  • the maximum diameter 111 of the first major surface 1 is not particularly limited, but may be, for example, 160 mm or less, 200 mm or less, 250 mm or less, or 300 mm or less. Good.
  • thickness 112 of silicon carbide substrate 10 is not less than 300 ⁇ m and not more than 600 ⁇ m. Although thickness 112 of silicon carbide substrate 10 is not particularly limited, it may be, for example, 350 ⁇ m or more, or 400 ⁇ m or more.
  • the thickness 112 of the silicon carbide substrate 10 is not particularly limited, but may be, for example, 550 ⁇ m or less, or 500 ⁇ m or less.
  • the first major surface 1 is a surface inclined at an off angle of more than 0 ° and 8 ° or less with respect to the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • the off angle may be, for example, 1 ° or more, or 2 ° or more.
  • the off angle may be 7 ° or less or 6 ° or less.
  • the first major surface 1 may be a plane inclined at an off angle of more than 0 ° and 8 ° or less with respect to the (0001) plane or the (0001) plane.
  • the first major surface 1 may be a surface inclined at an off angle of more than 0 ° and 8 ° or less with respect to the (000-1) plane or the (000-1) plane.
  • the inclination direction of the first major surface 1 is, for example, the ⁇ 11-20> direction.
  • the outer circumferential surface 5 may have, for example, a first flat 3 and an arc-shaped portion 4.
  • the first flat 3 extends, for example, along the first direction 101.
  • the arc-shaped portion 4 continues to the first flat 3.
  • the outer circumferential surface 5 may have, for example, a second flat (not shown) extending along the second direction 102.
  • the second direction 102 is, for example, a ⁇ 1-100> direction.
  • the first direction 101 is a direction parallel to the first major surface 1 and perpendicular to the second direction 102.
  • the first direction 101 is, for example, the ⁇ 11-20> direction.
  • First main surface 1 is, for example, an epitaxial layer formation surface. From another viewpoint, silicon carbide epitaxial layer 20 (see FIG. 12) is provided on first main surface 1.
  • the second main surface 2 is, for example, a drain electrode formation surface. From another point of view, a drain electrode (not shown) of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is formed on the second major surface 2.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the Raman spectrometer 30 mainly includes, for example, a light source 32, an objective lens 31, a spectrometer 33, a stage 34, a beam splitter 35, and a detector 38.
  • the Raman spectrometer 30 for example, LabRAM HR-800 manufactured by HORIBA JOBIN YVON can be used.
  • the light source 32 is, for example, a YAG (Yttrium Aluminum Garnet) laser.
  • the excitation wavelength of the light source 32 is, for example, 532 nm.
  • the laser irradiation intensity is, for example, 10 mW.
  • the measuring method is, for example, backscattering measurement.
  • the magnification of the objective lens 31 is 100 times.
  • the diameter of the measurement area is, for example, 1 ⁇ m.
  • the irradiation time of the laser is, for example, 20 seconds.
  • the number of times of integration is five, for example.
  • the grating is 2400 gr / mm.
  • incident light 36 is emitted from the YAG laser of the light source 32. As shown by arrow 61 in FIG. 3, incident light 36 is reflected by beam splitter 35 and is incident toward first main surface 1 of silicon carbide substrate 10.
  • the Raman spectrometer 30 employs, for example, a confocal optical system. In the confocal optical system, a confocal aperture (not shown) having a circular aperture at a position conjugate to the focal point of the objective lens 31 is disposed. This makes it possible to detect light only at a focused position (height).
  • the Raman scattered light scattered by the silicon carbide substrate 10 is introduced into the spectroscope 33 through the beam splitter 35.
  • the Raman scattered light is decomposed for each wave number.
  • the Raman scattered light separated for each wave number is detected by the detector 38.
  • Stage 34 can move in the thickness direction of silicon carbide substrate 10 (the direction of arrow 63).
  • the incident light 36 is focused on the first major surface 1 of the silicon carbide substrate 10, and the Raman spectrum in the measurement region 37 is measured.
  • the vertical position of the focal point of the incident light 36 is a first position X 1.
  • the incident light 36 is focused on the center 6 (see FIG. 1) of the first major surface 1.
  • the measurement area 37 of the Raman scattered light is an area of about 1 ⁇ m in diameter including the center 6 of the first major surface 1.
  • the stage 34 is moved upward, the vertical position of the focal point of the incident light 36 is adjusted to a second position X 2. Thereby, the Raman spectrum at the second position X 2 are measured.
  • the Raman spectrum from the first position X 1 in each of the n positions X n is measured.
  • a Raman spectrum is measured in the thickness direction of silicon carbide substrate 10.
  • FIG. 5 shows an example of a Raman spectrum of silicon carbide substrate 10.
  • the horizontal axis of FIG. 5 is wave number (Raman shift).
  • the vertical axis in FIG. 5 is the intensity (Raman intensity) of the Raman scattered light.
  • the wavelength of the excitation light of the light source 32 is 514.5 nm.
  • the Raman shift is the difference between the wave number of the excitation light and the wave number of the Raman scattered light of the object to be measured.
  • the object to be measured is polytype 4H silicon carbide, four peaks are mainly observed in the Raman spectrum.
  • the first peak 41 is Raman scattered light due to the folded mode of the longitudinal wave optical (LO) branch.
  • the first peak 41 appears, for example, in the vicinity of 964 cm ⁇ 1 .
  • the second peak 42 is Raman scattered light due to the folded mode of the transverse wave optical (TO) branch.
  • the second peak 42 appears, for example, near 776 cm -1 .
  • the third peak 43 is Raman scattered light due to the folded mode of the longitudinal acoustic (LA) branch.
  • the third peak 43 appears, for example, in the vicinity of 610 cm ⁇ 1 .
  • the fourth peak 44 is Raman scattered light resulting from the folded mode of the shear wave acoustic (TA) branch.
  • the fourth peak 44 appears, for example, near 196 cm -1 .
  • the Raman profile shown by the solid line in FIG. 6 shows the Raman spectrum measured at the first position X 1 (see FIG. 4) of the silicon carbide substrate 10.
  • the wave number ⁇ of the peak 41 corresponding to the folding mode of the vertical optical branch is determined using the Raman spectrum. Similarly, the half width ⁇ of the peak 41 is determined.
  • the peak 41 corresponding to the folding mode of the vertical optical branch is a peak of a Raman profile generated due to the folding mode of the vertical optical branch.
  • the Raman profile 50 indicated by the one-dot chain line in FIG. 6 is a peak corresponding to the folded mode of the vertical optical branch of the Raman spectrum of silicon carbide of polytype 4H in which the stress is zero.
  • the wave number 0 0 of the peak can be determined, for example, as follows.
  • a peak of a Raman spectrum obtained by Raman measurement of a Lely crystal is defined as a wave number ⁇ 0 of stress 0.
  • the Lely crystal grows by spontaneous nucleation and can be regarded as stress 0 because there are few impurities.
  • a tensile stress or a compressive stress is generated in the vicinity of the first main surface 1 of the silicon carbide substrate 10 after the slicing process. Therefore, a vertical optical wavenumber showing a peak attributed to wrapping mode branch of the Raman profile measured at a first position X 1 of the silicon carbide substrate 10, stress is polytypes 4H silicon carbide Raman spectra 0 It shifts from the wavenumber 0 0 showing a peak corresponding to the folding mode of the vertical optical branch.
  • the wave number indicating a peak corresponding to the folding mode of the vertical optical branch of the Raman profile in the measurement area is shifted to the negative side.
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman profile in the measurement area is shifted to the positive side.
  • FIG. 7 is a diagram in which the horizontal axis represents the measurement position of silicon carbide substrate 10, and the vertical axis represents the wave number of the peak corresponding to the folding mode of the vertical optical branch of silicon carbide.
  • the measurement position of silicon carbide substrate 10 is changed at constant intervals t from first main surface 1 to second main surface 2.
  • the interval t is, for example, 2.75 ⁇ m.
  • stage 34 is moved in the direction of arrow 63, and the Raman spectrum of silicon carbide substrate 10 at the second position X 2 is measured, and then the wave number of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum is Desired.
  • Raman spectrum at the third position X 3 to the n position X n is measured, the wave number of the peak corresponding to the folded mode of the vertical optical branch Raman spectrum at each measurement position is determined. As described above, the relationship between the wave number and the measurement position shown in FIG. 7 is obtained.
  • the maximum value of the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 is determined as max max .
  • the wave number at the first position X 1 is max max .
  • the minimum value of the wave number showing a peak corresponding to the folded mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 is determined as min min .
  • the wave number at the m-th position X m is min min .
  • a wave number indicating a peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 on first main surface 1 is determined as 1 1 .
  • ⁇ max may be equal to or less than ( ⁇ 0 + 0.045 cm -1 ), or may be equal to or less than ( max 0 + 0.04 cm -1 ).
  • min min satisfies Equation 2 above. ⁇ min may be ( ⁇ 0 -0.045 cm -1 ) or more, or may be (( 0 -0.04 cm -1 ) or more. ⁇ 1 satisfies Equation 3 described above.
  • [nu 1 is may be the ( ⁇ 0 -0.015cm -1) or more, may be ( ⁇ 0 -0.01cm -1) or more. [nu 1 is may be less ( ⁇ 0 + 0.03cm -1), may be less than or equal to ( ⁇ 0 + 0.025cm -1).
  • the wave number of a peak corresponding to the folded mode of the vertical optical branch Raman profile measured at a first position X 1 may be greater than the wave number [nu 0.
  • Silicon carbide substrate 10 has a region (for example, the first position where the wave number monotonically decreases in the direction from first main surface 1 to second main surface 2 and showing a peak corresponding to the folding mode of the vertical optical branch of the Raman profile. It may have X 1 to m-th position X m ).
  • Silicon carbide substrate 10 has a region (for example, the m-th position) in which the wave number showing a peak corresponding to the folding mode of the vertical optical branch in the Raman profile in the direction from first main surface 1 to second main surface 2 It may have X m to the (n-1) th position X n-1 ).
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman profile may be asymptotically closer to the wave number 0 0 toward the second major surface 2.
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum in the second major surface 2 is not considered.
  • the wave number of the measurement position (nth position X n ) on the second major surface 2 is indicated by a white circle. This means that the wave number at the nth position X n may be measured but is not taken into account in calculating the maximum value of the wave number and the minimum value of the wave number.
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 is ⁇ , 3 ⁇ m from first main surface 1 to second main surface 2 At any position within the region within the range, ⁇ ⁇ ⁇ ⁇ satisfies Equation 4 above.
  • the wave number of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 at first position X 1 and the vertical type of Raman spectrum of silicon carbide substrate 10 at second position X 2 The wave number of the peak corresponding to the folding mode of the optical branch satisfies Equation 4 described above.
  • [nu is may also be ( ⁇ 0 -0.015cm -1) or more, may be ( ⁇ 0 -0.01cm -1) or more. [nu is may be less ( ⁇ 0 + 0.03cm -1), may be less than or equal to ( ⁇ 0 + 0.025cm -1).
  • FIG. 8 is a diagram in which the horizontal axis represents the measurement position of the silicon carbide substrate 10, and the vertical axis represents the half width of the peak corresponding to the folding mode of the vertical optical branch of silicon carbide.
  • the measurement position of silicon carbide substrate 10 is changed at a constant interval t from first main surface 1 to second main surface 2, and the Raman spectrum of silicon carbide substrate 10 is measured at each measurement position. Be done.
  • the half-width [Delta] of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum at each measurement position is determined.
  • the half width ⁇ is the full width at half maximum (FWHM). As described above, the relationship between the half width and the measurement position shown in FIG. 8 is obtained.
  • the half width of the peak is an index of stress distribution in the measurement region parallel to the first major surface 1.
  • the stress distribution in the measurement range is small.
  • the half width of the peak is large, the stress distribution in the measurement range is large.
  • the maximum value of the half-width of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 is determined as ⁇ max . 8
  • the half width at the first position X 1 is delta max.
  • the minimum value of the half-width of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 is determined as ⁇ min . 8
  • the half value width in the n-1 position X n-1 is a delta min.
  • the wave number of the measurement position (nth position X n ) on the second major surface 2 is indicated by a white circle. This means that the half width at the nth position X n may be measured but is not taken into account in calculating the maximum half width and the minimum half width.
  • the half value width ⁇ of the peak corresponding to the folded mode of the vertical optical branch of the Raman spectrum may monotonously decrease from the first major surface 1 to the second major surface 2 .
  • Half width delta of the peak toward the second main surface 2 may be asymptotic to delta min.
  • silicon carbide substrate 10 in the region from first main surface 1 to second main surface 2, the half of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10
  • the maximum value of the value width is ⁇ max, and in the region from the first main surface 1 to the second main surface 2, the minimum value of the half width of the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of silicon carbide substrate 10 Where ⁇ min holds , the above equation 5 is satisfied.
  • ( ⁇ max - ⁇ min) it is may also be 0.13 cm -1 or less, or may be 0.11 cm -1 or less.
  • Formula 1 to Formula 5 may be satisfied in any region of silicon carbide substrate 10 except the region from outer circumferential surface 5 to a predetermined distance (for example, 3 mm) inward.
  • a method of manufacturing silicon carbide substrate 10 according to the present embodiment will be described.
  • a slicing process is performed. Specifically, for example, an ingot composed of silicon carbide single crystal of polytype 4H is formed by a sublimation method. After the ingot is shaped, the ingot is sliced by a wire saw device. Thereby, silicon carbide substrate 10 is cut out from the ingot. Diamond abrasive grains are fixed to the surface of the saw wire. The diameter of the diamond abrasive is, for example, 15 ⁇ m or more and 25 ⁇ m or less. The diameter of the saw wire is, for example, 120 ⁇ m.
  • the linear velocity of the saw wire is, for example, 800 m / min or more and 1500 m / min or less.
  • the tension of the saw wire is, for example, 18N.
  • Silicon carbide substrate 10 is made of polytype 4H hexagonal silicon carbide. Silicon carbide substrate 10 has a first main surface 1 and a second main surface 2 opposite to first main surface 1.
  • the first major surface 1 is, for example, a plane which is turned 4 ° or less in the ⁇ 11-20> direction with respect to the ⁇ 0001 ⁇ plane.
  • first main surface 1 is a surface which is turned off, for example, by an angle of about 4 ° or less with respect to the (0001) plane.
  • the second major surface 2 is a surface which is turned off by, for example, an angle of about 4 ° or less in the ⁇ 11-20> direction with respect to the (000-1) plane.
  • silicon carbide substrate 10 has a first region 7, an intermediate region 8 and a second region 9.
  • the first region 7 is a region including the first major surface 1.
  • the second region 9 is a region including the second major surface 2.
  • the middle area 8 is an area between the first area 7 and the second area 9. Processing damage is applied to each of the first area 7 and the second area 9 in the above-mentioned slicing process. Therefore, each of the first region 7 and the second region 9 is more distorted than the middle region 8.
  • the first main surface 1 is curved so that the center thereof approaches the second main surface 2 and the outer periphery thereof is away from the second main surface 2.
  • substantially circular strained region 51 may be dotted on first main surface 1 of silicon carbide substrate 10 as viewed from the direction perpendicular to first main surface 1. .
  • the strained area is an area where processing damage remains.
  • the strained region 51 is different in stress from the region around the strained region 51.
  • KOH potassium hydroxide
  • KMnO 4 potassium permanganate
  • HNO 3 nitric acid
  • the temperature of the etching solution is, for example, 70 ° C. or more and 95 ° C. or less.
  • the surface of silicon carbide substrate 10 is etched by about 1 ⁇ m to 5 ⁇ m.
  • the first major surface 1 is substantially parallel to the second major surface 2.
  • silicon carbide substrate 10 is arranged such that first main surface 1 faces a first base plate (not shown) and second main surface 2 corresponds to a second base plate (not shown). It is arrange
  • a slurry is introduced between the first major surface 1 and the first plate and between the second major surface 2 and the second plate.
  • the slurry contains, for example, a diamond abrasive.
  • the diameter of the diamond abrasive is, for example, not less than 1 ⁇ m and not more than 3 ⁇ m.
  • a load is applied to first main surface 1 by the first platen and a load is applied to second main surface 2 by the second platen, whereby mechanical polishing is performed on both sides of silicon carbide substrate 10.
  • KOH potassium hydroxide
  • KMnO 4 potassium permanganate
  • HNO 3 nitric acid
  • the temperature of the etching solution is, for example, 70 ° C. or more and 95 ° C. or less. Thereby, the surface of silicon carbide substrate 10 is etched by about 1 ⁇ m to 5 ⁇ m. The second etching reduces the distribution of stress in the thickness direction of silicon carbide substrate 10. As a result, the warpage of silicon carbide substrate 10 is reduced.
  • first CMP Chemical Mechanical Polishing
  • silicon carbide substrate 10 is held by the polishing head such that first main surface 1 faces the surface plate.
  • Aluminum oxide is used as the abrasive.
  • the average particle size of the abrasive grains is 180 nm.
  • a nitrate-based oxidizing agent is used as the oxidizing agent.
  • the load (surface pressure) on silicon carbide substrate 10 is, for example, 250 g / cm 2 or more and 500 g / cm 2 or less.
  • the rotation speed of the platen is, for example, 60 rpm or more and 90 rpm or less.
  • the rotation speed of the polishing head is 80 rpm or more and 120 rpm or less.
  • second CMP is performed on first main surface 1 of silicon carbide substrate 10.
  • colloidal silica is used as the abrasive.
  • a hydrogen peroxide solution to which vanadate is added is used as the oxidizing agent.
  • the load (surface pressure) on silicon carbide substrate 10 is, for example, 300 g / cm 2 . Thereby, distortion of first main surface 1 of silicon carbide substrate 10 is reduced.
  • the silicon carbide substrate 10 according to the present embodiment is manufactured (see FIG. 1).
  • silicon carbide substrate 10 is disposed in a reaction chamber of a hot wall type horizontal CVD (Chemical Vapor Deposition) apparatus.
  • silicon carbide substrate 10 is heated, for example, to about 1630.degree.
  • a mixed gas containing, for example, silane (SiH 4 ), propane (C 3 H 8 ), ammonia (NH 3 ) and hydrogen (H 2 ) is introduced into the reaction chamber.
  • silicon carbide epitaxial layer 20 is formed on first main surface 1 of silicon carbide substrate 10 (see FIG. 12).
  • silicon carbide epitaxial layer 20 is in contact with first main surface 1.
  • the silicon carbide epitaxial layer has a surface 21 facing the first major surface 1.
  • the thickness of silicon carbide epitaxial layer 20 is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • silicon carbide substrate 10 When processing such as slicing or mechanical polishing is performed on silicon carbide substrate 10 using diamond abrasive grains, processing damage is applied to silicon carbide substrate 10. Thereby, a region (specifically, strain (stress) changes in a region from several tens of ⁇ m to several hundreds of ⁇ m from each of first main surface 1 and second main surface 2 of silicon carbide substrate 10 toward the inside) , And the first region 7 and the second region 9) are formed. It is considered that the region where the strain changes is formed by rolling of the diamond abrasive in mechanical polishing. Even in the final state after CMP, strain exists in the strained region 51 shown in FIG. 10 and the region around the strained region 51. The strained region 51 has a deeper (stronger) strain than the region at the periphery of the strained region 51.
  • the wave number indicating the peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of polytype 4H silicon carbide having a stress of 0 is set to 0 0, and the first main surface 1 to the second main surface 2 in the region of up to, in a vertical maximum value of the wave number of a peak corresponding to the folded mode of the optical branch and [nu max, area from the first main surface 1 to the second main surface 2 of the Raman spectrum of the silicon carbide substrate 10
  • the minimum value of the wave number showing a peak corresponding to the folding mode of the vertical optical branch of the Raman spectrum of the silicon carbide substrate 10 is min min, and the vertical optical branch of the Raman spectrum of the silicon carbide substrate 10 on the first major surface 1 Formula 1 to Formula 3 are satisfied, where ⁇ 1 is a wave number indicating a peak corresponding to the folding mode.
  • strain region 51 is used as a starting point in the ⁇ 1-100> direction.
  • An extending linear streak may be formed.
  • silicon carbide epitaxial layer 20 is formed on silicon carbide substrate 10
  • the linear stripes formed on first main surface 1 of silicon carbide substrate 10 are silicon carbide epitaxial layers formed on first main surface 1. Take over to 20.
  • linear streaks are formed on surface 21 of silicon carbide epitaxial layer 20.
  • the distribution of stress is reduced in the thickness direction of silicon carbide substrate 10. Thereby, in surface 21 of silicon carbide epitaxial layer 20 formed on silicon carbide substrate 10, it may be possible to suppress that a linear stripe is formed.
  • Silicon carbide substrates 10 according to Samples 1 to 4 were prepared using the manufacturing process described in Table 2.
  • the silicon carbide substrate 10 according to sample 1 was taken as an example.
  • the silicon carbide substrates 10 according to samples 2 to 4 were used as comparative examples.
  • silicon carbide substrate 10 was cut out from the ingot by slicing silicon carbide ingot of polytype 4H with a wire saw device first.
  • Sample 1 was sliced using condition A.
  • Condition A of the slicing step is as follows.
  • the diameter of the diamond abrasive grains was 15 ⁇ m or more and 25 ⁇ m or less.
  • the diameter of the saw wire was 120 ⁇ m.
  • the linear velocity of the saw wire was set to 800 m / min or more and 1500 m / min or less.
  • the tension of the saw wire was 18N.
  • Samples 2 to 4 were sliced using condition B.
  • Condition B of the slicing step is as follows.
  • the diameter of the diamond abrasive grains was 30 ⁇ m to 40 ⁇ m.
  • the diameter of the saw wire was 180 ⁇ m.
  • the linear velocity of the saw wire was 800 m / min or more and 1200 m / min or less.
  • the tension of the saw wire was 45N.
  • the first etching step was performed on silicon carbide substrate 10 according to sample 1.
  • the conditions of the first etching step are as described above.
  • the first etching step was not performed on silicon carbide substrate 10 according to samples 2 to 4.
  • the second etching step was performed on silicon carbide substrate 10 according to sample 1.
  • the conditions of the second etching step are as described above.
  • the second etching step was not performed on the silicon carbide substrate 10 according to Samples 2 to 4.
  • a first CMP step was performed on silicon carbide substrates 10 according to samples 1 to 4.
  • Conditions C, D, E, and F were used for the silicon carbide substrates 10 according to Samples 1 to 4 (see Table 1).
  • Condition C of the first CMP step is as follows. Specifically, aluminum oxide was used as the abrasive. The average particle size of the abrasive grains was 180 nm. A nitrate-based oxidizing agent was used as the oxidizing agent. The load (surface pressure) on the silicon carbide substrate 10 was 250 g / cm 2 or more and 500 g / cm 2 or less. The rotation speed of the platen was set to 60 rpm or more and 90 rpm or less. The rotation speed of the polishing head was 80 rpm or more and 120 rpm or less.
  • Condition D of the first CMP step is as follows. Specifically, aluminum oxide was used as the abrasive. The average particle size of the abrasive grains was 250 nm. A nitrate-based oxidizing agent was used as the oxidizing agent. The load (surface pressure) on the silicon carbide substrate 10 was 250 g / cm 2 or more and 500 g / cm 2 . The rotation speed of the platen was set to 60 rpm or more and 90 rpm or less. The rotation speed of the polishing head was 80 rpm or more and 120 rpm or less.
  • Condition E of the first CMP step is as follows. Specifically, aluminum oxide was used as the abrasive. The average particle size of the abrasive grains was 180 nm. A nitrate-based oxidizing agent was used as the oxidizing agent. The load (surface pressure) on the silicon carbide substrate 10 was set to 600 g / cm 2 or more and 700 g / cm 2 . The rotation speed of the platen was set to 60 rpm or more and 90 rpm or less. The rotation speed of the polishing head was 80 rpm or more and 120 rpm or less.
  • Condition F of the first CMP step is as follows. Specifically, aluminum oxide was used as the abrasive. The average particle size of the abrasive grains was 250 nm. A nitrate-based oxidizing agent was used as the oxidizing agent. The load (surface pressure) on the silicon carbide substrate 10 was 500 g / cm 2 or more and 600 g / cm 2 . The rotation speed of the platen was set to 60 rpm or more and 90 rpm or less. The rotation speed of the polishing head was 80 rpm or more and 120 rpm or less.
  • a second CMP step was performed on silicon carbide substrate 10 according to samples 1 to 4.
  • the conditions of the second CMP step are as described above.
  • silicon carbide substrates 10 according to Samples 1 to 4 were prepared.
  • the warp and the bow of the first main surface 1 of the silicon carbide substrate 10 according to Samples 1 to 4 were measured.
  • the warp and bow of the first major surface 1 were measured by Flatmaster manufactured by Tropel.
  • the three-point reference surface 94 of the first major surface 1 was determined.
  • the three-point reference plane 94 is a virtual plane including three points (fifth position 95, sixth position 96 and seventh position 97) on the first major surface 1.
  • a triangle formed by connecting the fifth position 95, the sixth position 96 and the seventh position 97 is an equilateral triangle including the center 6 of the first major surface 1 inside.
  • the wave number of the peak corresponding to the folding mode of the vertical optical branch of silicon carbide was determined on the basis of the wave number indicating the peak of the Raman spectrum of neon.
  • the peak corresponding to the folding mode of the vertical optical branch and the measurement direction of the half width of the peak are as described above.
  • the measurement position is the distance from the first major surface 1.
  • the measurement position of first main surface 1 of silicon carbide substrate 10 is a position of 0 ⁇ m.
  • the absolute value of the difference between ⁇ (Ne) max and ⁇ (Ne) 0 was 0.140 cm ⁇ 1 .
  • the absolute value of the difference between ⁇ (Ne) min and ⁇ (Ne) 0 was 0.069 cm ⁇ 1 .
  • ⁇ (Ne) at a measurement position of 0 ⁇ m was ⁇ 44.110 cm ⁇ 1 .
  • a value obtained by subtracting ⁇ (Ne) 0 from ⁇ (Ne) of the first major surface 1 was 0.140 cm ⁇ 1 .
  • the absolute value of the difference between ⁇ (Ne) max and ⁇ (Ne) 0 was 0.003 cm ⁇ 1 .
  • the absolute value of the difference between ⁇ (Ne) min and ⁇ (Ne) 0 was 0.061 cm ⁇ 1 .
  • ⁇ (Ne) at a measurement position of 0 ⁇ m was ⁇ 44.247 cm ⁇ 1 .
  • the value obtained by subtracting ⁇ (Ne) 0 from ⁇ (Ne) of the first major surface 1 was 0.003 cm ⁇ 1 .
  • the absolute value of the difference between ⁇ (Ne) max and ⁇ (Ne) 0 was 0.071 cm ⁇ 1 .
  • the absolute value of the difference between ⁇ (Ne) min and ⁇ (Ne) 0 was 0.028 cm ⁇ 1 .
  • ⁇ (Ne) at a measurement position of 0 ⁇ m was ⁇ 44.179 cm ⁇ 1 .
  • the value obtained by subtracting ⁇ (Ne) 0 from ⁇ (Ne) on the first major surface 1 was 0.071 cm ⁇ 1 .
  • a silicon carbide epitaxial layer 20 is formed on the first main surface 1 of the silicon carbide substrate 10 according to Samples 1 to 4 by epitaxial growth, whereby a silicon carbide epitaxial substrate is manufactured.
  • the manufacturing conditions of the silicon carbide epitaxial substrate are as described above.
  • the measurement area was a 250 ⁇ m ⁇ 250 ⁇ m square area.
  • Straight projections having a height of 0.5 ⁇ m or more were identified as streaks.
  • the amounts of change in warp before and after forming the silicon carbide epitaxial layer on the silicon carbide substrate 10 were +4.1 ⁇ m, -112.9 ⁇ m, +28.2 ⁇ m and +22.6 ⁇ m.
  • the amount of change in warp before and after forming a silicon carbide epitaxial layer on silicon carbide substrate 10 applies the sign of the bow to warp, and subtracts the warp of first main surface 1 before epitaxial growth from the warp of surface 21 after epitaxial growth. It was determined by
  • the number of linear streaks formed on the surface 21 of the silicon carbide epitaxial layer formed on the silicon carbide substrate 10 according to Samples 1 to 4 is 0, 11, 2 respectively. It was a book and many (12 or more).
  • the silicon carbide substrate 10 according to sample 1 can reduce the amount of change in warp as compared to the silicon carbide substrate 10 according to samples 2 to 4. Further, it was confirmed that silicon carbide substrate 10 according to sample 1 can suppress the generation of linear streaks as compared with silicon carbide substrate 10 according to samples 2 to 4.
  • SYMBOLS 1 1st main surface, 2 2nd main surface, 3 1st flat, 4 circular-arc-shaped part, 5 outer peripheral surface, 6 center, 7 1st area
  • region 10 silicon carbide substrate, 20 carbonized Silicon epitaxial layer, 21 surface, 30 Raman spectrometer, 31 objective lens, 32 light source, 33 spectrometer, 34 stage, 35 beam splitter, 36 incident light, 37 measurement area, 38 detector, 41 first peak (peak), 42 second peak, 43 third peak, 44 fourth peak, 50 Raman profile, 51 strain area, 91 position, 92 maximum position, 93 lowest position, 94 3 point reference plane, 95 fifth position, 96 sixth position, 97 seventh position, 101 first direction, 102 second direction, 111 maximum diameter, 112 thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をν0とし、第1主面から第2主面までの領域において、炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値をνmaxとし、第1主面から第2主面までの領域において、炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値をνminとし、第1主面における炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をν1とするとき、所定の数式を満たす。

Description

炭化珪素基板
 本開示は、炭化珪素基板に関する。本出願は、2017年12月8日に出願した日本特許出願である特願2017-236405号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開2014-210690号公報(特許文献1)には、炭化珪素単結晶基板に対して化学機械研磨が行われることが記載されている。
特開2014-210690号公報
 本開示に係る炭化珪素基板は、第1主面と、第1主面の反対側にある第2主面とを備え、かつポリタイプ4Hの炭化珪素により構成されている。第1主面の最大径は、140mm以上である。炭化珪素基板の厚みは、300μm以上600μm以下である。第1主面は、{0001}面または{0001}面に対して0°より大きく8°以下のオフ角で傾斜した面である。応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとし、第1主面から第2主面までの領域において、炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値をνmaxとし、第1主面から第2主面までの領域において、炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値をνminとし、第1主面における炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとするとき、数式1~数式3を満たす。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
図1は、本実施形態に係る炭化珪素基板の構造を示す平面模式図である。 図2は、図1のII-II線に沿った矢視断面模式図である。 図3は、ラマンスペクトルの測定装置の構成を示す模式図である。 図4は、ラマンスペクトルの測定方法を示す断面模式図である。 図5は、ラマンスペクトルの一例を示す図である。 図6は、第1位置で測定されたラマンスペクトルの一例を示す図である。 図7は、ピークを示す波数と測定位置との関係を示す図である。 図8は、ピークの半値幅と測定位置との関係を示す図である。 図9は、本実施形態に係る炭化珪素基板の製造方法の第1工程を示す断面模式図である。 図10は、本実施形態に係る炭化珪素基板の製造方法の第1工程を示す平面模式図である。 図11は、本実施形態に係る炭化珪素基板の製造方法の第2工程を示す断面模式図である。 図12は、本実施形態に係る炭化珪素基板上に炭化珪素エピタキシャル層を形成する工程を示す断面模式図である。 図13は、3点基準面の決定方法を示す平面模式図である。 図14は、warpおよびbowの測定方法を説明するための第1模式図である。 図15は、warpおよびbowの測定方法を説明するための第2模式図である。 図16は、サンプル1のΔν(Ne)と測定位置との関係を示す図である。 図17は、サンプル2のΔν(Ne)と測定位置との関係を示す図である。 図18は、サンプル3のΔν(Ne)と測定位置との関係を示す図である。 図19は、サンプル4のΔν(Ne)と測定位置との関係を示す図である。 図20は、サンプル1のFWHMと測定位置との関係を示す図である。 図21は、サンプル2のFWHMと測定位置との関係を示す図である。 図22は、サンプル3のFWHMと測定位置との関係を示す図である。 図23は、サンプル4のFWHMと測定位置との関係を示す図である。
 [本開示が解決しようとする課題]
 本開示の目的は、炭化珪素エピタキシャル層の形成前後において炭化珪素基板の反りの変化を低減することである。
 [本開示の効果]
 本開示によれば、炭化珪素エピタキシャル層の形成前後において炭化珪素基板の反りの変化を低減することができる。
 [本開示の実施形態の説明]
 (1)本開示に係る炭化珪素基板10は、第1主面1と、第1主面1の反対側にある第2主面2とを備え、かつポリタイプ4Hの炭化珪素により構成されている。第1主面1の最大径111は、140mm以上である。炭化珪素基板10の厚みは、300μm以上600μm以下である。第1主面1は、{0001}面または{0001}面に対して0°より大きく8°以下のオフ角で傾斜した面である。応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値をνmaxとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値をνminとし、第1主面1における炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとするとき、数式1~数式3を満たす。
 (2)上記(1)に係る炭化珪素基板10において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとすると、第1主面1から第2主面2に向かって3μm以内の領域の任意の位置において、数式4を満たしてもよい。
Figure JPOXMLDOC01-appb-M000009
 (3)上記(1)または(2)に係る炭化珪素基板10において、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最大値をΔmaxとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最小値をΔminとしたとき、数式5を満たしてもよい。
Figure JPOXMLDOC01-appb-M000010
 [本開示の実施形態の詳細]
 以下、図面に基づいて本開示の実施形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 まず、本実施形態に係る炭化珪素基板10の構成について説明する。
 図1および図2に示されるように、本実施形態に係る炭化珪素基板10は、第1主面1と、第2主面2と、外周面5とを主に有している。第2主面2は、第1主面1の反対側にある。炭化珪素基板10は、ポリタイプ4Hの炭化珪素により構成されている。炭化珪素基板10は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素基板10の導電型は、たとえばn型である。炭化珪素基板10のn型不純物の濃度は、たとえば1×1017cm-3以上1×1020cm-3以下である。
 図1に示されるように、第1主面1の最大径111は、140mm以上である。第1主面1の最大径111は、特に限定されないが、たとえば160mm以下であってもよいし、200mm以下であってもよいし、250mm以下であってもよいし、300mm以下であってもよい。図2に示されるように、炭化珪素基板10の厚み112は、300μm以上600μm以下である。炭化珪素基板10の厚み112は、特に限定されないが、たとえば350μm以上であってもよいし、400μm以上であってもよい。炭化珪素基板10の厚み112は、特に限定されないが、たとえば550μm以下であってもよいし、500μm以下であってもよい。
 第1主面1は、{0001}面または{0001}面に対して0°より大きく8°以下のオフ角で傾斜した面である。オフ角は、たとえば1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよい。具体的には、第1主面1は、(0001)面または(0001)面に対して0°より大きく8°以下のオフ角で傾斜した面であってもよい。第1主面1は、(000-1)面または(000-1)面に対して0°より大きく8°以下のオフ角で傾斜した面であってもよい。第1主面1の傾斜方向は、たとえば<11-20>方向である。
 図1に示されるように、外周面5は、たとえば第1フラット3と、円弧状部4とを有していてもよい。第1フラット3は、たとえば第1方向101に沿って延在する。円弧状部4は、第1フラット3に連なる。外周面5は、たとえば第2方向102に沿って延在する第2フラット(図示せず)を有していてもよい。第2方向102は、たとえば<1-100>方向である。第1方向101は、第1主面1に対して平行であり、かつ第2方向102に対して垂直な方向である。第1方向101は、たとえば<11-20>方向である。
 第1主面1は、たとえばエピタキシャル層形成面である。別の観点から言えば、第1主面1上に炭化珪素エピタキシャル層20(図12参照)が設けられる。第2主面2は、たとえばドレイン電極形成面である。別の観点から言えば、第2主面2上にMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のドレイン電極(図示せず)が形成される。
 次に、炭化珪素基板10のラマンスペクトルを測定するためのラマン分光装置の構成について説明する。
 図3に示されるように、ラマン分光装置30は、たとえば光源32と、対物レンズ31と、分光器33と、ステージ34と、ビームスプリッター35と、検出器38とを主に有している。ラマン分光装置30としては、たとえばHORIBA JOBIN YVON社製のLabRAM HR-800を使用することができる。光源32は、たとえばYAG(Yttrium Aluminum Garnet)レーザーである。光源32の励起波長は、たとえば532nmである。レーザー照射強度は、たとえば10mWである。測定方法は、たとえば後方散乱測定である。対物レンズ31の倍率は100倍である。測定領域の直径は、たとえば1μmである。レーザーの照射時間は、たとえば20秒である。積算回数は、たとえば5回である。グレーティングは、2400gr/mmである。
 次に、炭化珪素基板10のラマンスペクトルを測定する方法について説明する。
 まず、光源32のYAGレーザーから入射光36が放射される。図3の矢印61に示されるように、入射光36は、ビームスプリッター35により反射され、炭化珪素基板10の第1主面1に向かって入射される。ラマン分光装置30は、たとえば共焦点光学系を採用している。共焦点光学系においては、対物レンズ31の焦点と共役な位置に円形の開口を有する共焦点アパーチャ(図示せず)が配置されている。これにより、焦点の合った位置(高さ)のみの光を検出することができる。
 図3の矢印62に示されるように、炭化珪素基板10によって散乱されたラマン散乱光は、ビームスプリッター35を通り、分光器33に導入される。分光器33において、ラマン散乱光が波数毎に分解される。波数毎に分解されたラマン散乱光が検出器38によって検出される。これにより、横軸を波数とし、かつ縦軸をラマン散乱光の強度としたラマンスペクトルが得られる。ステージ34は、炭化珪素基板10の厚み方向(矢印63の方向)に移動することができる。
 図4に示されるように、炭化珪素基板10の第1主面1に入射光36の焦点を合わせ、測定領域37におけるラマンスペクトルを測定する。この場合、入射光36の焦点の高さ方向の位置は、第1位置Xである。入射光36の焦点は、第1主面1の中心6(図1参照)に合わせられる。ラマン散乱光の測定領域37は、第1主面1の中心6を含む直径約1μmの領域である。次に、ステージ34が上側に移動させられ、入射光36の焦点の高さ方向の位置が第2位置Xに調整される。これにより、第2位置Xにおけるラマンスペクトルが測定される。以上のように、ステージ34を矢印63の方向に沿って移動させることで、第1位置Xから第n位置Xの各々におけるラマンスペクトルが測定される。言い換えれば、炭化珪素基板10の厚み方向において、ラマンスペクトルが測定される。
 図5は、炭化珪素基板10のラマンスペクトルの一例を示している。図5の横軸は、波数(ラマンシフト)である。図5の縦軸は、ラマン散乱光の強度(ラマン強度)である。光源32の励起光の波長は、514.5nmである。ラマンシフトとは、励起光の波数と被測定物のラマン散乱光の波数との差である。被測定物がポリタイプ4Hの炭化珪素の場合、ラマンスペクトルにおいて主に4つのピークが観測される。第1ピーク41は、縦波光学(LO)分岐の折り返しモードに起因するラマン散乱光である。第1ピーク41は、たとえば964cm-1付近に出現する。第2ピーク42は、横波光学(TO)分岐の折り返しモードに起因するラマン散乱光である。第2ピーク42は、たとえば776cm-1付近に出現する。第3ピーク43は、縦波音響(LA)分岐の折り返しモードに起因するラマン散乱光である。第3ピーク43は、たとえば610cm-1付近に出現する。第4ピーク44は、横波音響(TA)分岐の折り返しモードに起因するラマン散乱光である。第4ピーク44は、たとえば196cm-1付近に出現する。
 図6の実線で示すラマンプロファイルは、炭化珪素基板10の第1位置X(図4参照)で測定されたラマンスペクトルを示している。当該ラマンスペクトルを用いて、縦型光学分岐の折り返しモードに対応するピーク41の波数νが求められる。同様に、当該ピーク41の半値幅Δが求められる。なお縦型光学分岐の折り返しモードに対応するピーク41とは、縦型光学分岐の折り返しモードに起因して発生するラマンプロファイルのピークである。図6の一点鎖線で示すラマンプロファイル50は、応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークである。当該ピークの波数νは、たとえば以下のようにして求めることができる。Lely結晶(Lely法で成長した結晶)をラマン測定して求められるラマンスペクトルのピークを応力0の波数νとする。Lely結晶は自然核発生により成長し、不純物が少ないため応力0とみなすことができる。
 スライス加工後の炭化珪素基板10の第1主面1付近は、引張応力または圧縮応力が発生している。そのため、炭化珪素基板10の第1位置Xで測定されたラマンプロファイルの縦型光学分岐の折り返しモードに起因するピークを示す波数は、応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数νからシフトする。測定領域に引張応力が発生していると、測定領域のラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数は、マイナス側にシフトする。反対に、測定領域に圧縮応力が発生していると、測定領域のラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数は、プラス側にシフトする。このようにシフト量Sを求めることにより、測定領域の応力を定量的に評価することができる。
 図7は、横軸を炭化珪素基板10の測定位置とし、かつ縦軸を炭化珪素の縦型光学分岐の折り返しモードに対応するピークの波数としてプロットした図である。図4に示されるように、炭化珪素基板10の測定位置は、第1主面1から第2主面2まで、一定の間隔tで変化させる。間隔tは、たとえば2.75μmである。具体的には、第1位置Xにおける炭化珪素基板10のラマンスペクトルを測定した後、当該ラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの波数が求められる。次に、ステージ34を矢印63の方向に移動させ、第2位置Xにおける炭化珪素基板10のラマンスペクトルを測定した後、当該ラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの波数が求められる。同様に、第3位置Xから第n位置Xまでにおけるラマンスペクトルが測定され、各測定位置におけるラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの波数が求められる。以上のようにして、図7に示す波数と測定位置との関係が求められる。
 第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値がνmaxとして求められる。図7において、第1位置Xにおける波数がνmaxである。同様に、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値がνminとして求められる。図7において、第m位置Xにおける波数がνminである。第1主面1における炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数がνとして求められる。
 応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピーク波数をνとすると、νmaxは上述の数式1を満たす。νmaxは(ν+0.045cm-1)以下であってもよいし、(ν+0.04cm-1)以下であってもよい。νminは上述の数式2を満たす。νminは(ν-0.045cm-1)以上であってもよいし、(ν-0.04cm-1)以上であってもよい。νは上述の数式3を満たす。νは(ν-0.015cm-1)以上であってもよいし、(ν-0.01cm-1)以上であってもよい。νは(ν+0.03cm-1)以下であってもよいし、(ν+0.025cm-1)以下であってもよい。
 図7に示されるように、第1位置Xで測定されたラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数は、波数νよりも大きくてもよい。炭化珪素基板10は、第1主面1から第2主面2に向かう方向において、ラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数が単調に小さくなる領域(たとえば第1位置Xから第m位置Xまで)を有していてもよい。炭化珪素基板10は、第1主面1から第2主面2に向かう方向において、ラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数が単調に大きくなる領域(たとえば第m位置Xから第n-1位置Xn-1まで)を有していてもよい。ラマンプロファイルの縦型光学分岐の折り返しモードに対応するピークを示す波数は、第2主面2に向かうにつれて波数νに漸近していてもよい。
 なお第2主面2の面粗さが大きい場合、第2主面2におけるラマンスペクトルには多くのノイズが入り、縦型光学分岐の折り返しモードに対応するピークを示す波数を正確に算出することができない。そのため、波数の最大値および波数の最小値の算出に際して、第2主面2におけるラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数は考慮しない。図7においては、第2主面2における測定位置(第n位置X)の波数を白丸により示している。このことは、第n位置Xにおける波数は、測定されてもよいけれども、波数の最大値および波数の最小値の算出に際して考慮されないことを意味している。
 図7に示されるように、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとすると、第1主面1から第2主面2に向かって3μm以内の領域の任意の位置において、νは上述の数式4を満たす。具体的には、第1位置Xにおける炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの波数と、第2位置Xにおける炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの波数とは、上述の数式4を満たす。νは(ν-0.015cm-1)以上であってもよいし、(ν-0.01cm-1)以上であってもよい。νは(ν+0.03cm-1)以下であってもよいし、(ν+0.025cm-1)以下であってもよい。
 図8は、横軸を炭化珪素基板10の測定位置とし、かつ縦軸を炭化珪素の縦型光学分岐の折り返しモードに対応するピークの半値幅としてプロットした図である。図7の場合と同様に、炭化珪素基板10の測定位置は、第1主面1から第2主面2まで一定の間隔tで変化させ、各測定位置において炭化珪素基板10のラマンスペクトルを測定される。各測定位置におけるラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅Δが求められる。半値幅Δは、具体的には、半値全幅(FWHM:Full Width at Half Maximum)である。以上のようにして、図8に示す半値幅と測定位置との関係が求められる。なお当該ピークの半値幅は、第1主面1に平行な測定領域内における応力分布の指標である。当該ピークの半値幅が小さいと測定範囲内における応力分布は小さい。反対に、当該ピークの半値幅が大きいと測定範囲内における応力分布は大きい。
 第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最大値がΔmaxとして求められる。図8において、第1位置Xにおける半値幅がΔmaxである。同様に、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最小値がΔminとして求められる。図8において、第n-1位置Xn-1における半値幅がΔminである。図8においては、第2主面2における測定位置(第n位置X)の波数を白丸により示している。このことは、第n位置Xにおける半値幅は、測定されてもよいけれども、半値幅の最大値および半値幅の最小値の算出に際して考慮されないことを意味している。
 図8に示されるように、ラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅Δは、第1主面1から第2主面2に向かって単調に減少していてもよい。当該ピークの半値幅Δは、第2主面2に向かうにつれて、Δminに漸近していてもよい。本実施形態に係る炭化珪素基板10によれば、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最大値をΔmaxとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最小値をΔminとしたとき、上述の数式5を満たす。(Δmax-Δmin)は0.13cm-1以下であってもよいし、0.11cm-1以下であってもよい。
 上記においては、第1主面1の中心6を通り、第1主面1に対してほぼ垂直な直線に沿ってラマンプロファイルが測定される場合について説明したが、ラマンプロファイルの測定箇所は上記直線に限定されない。たとえば外周面5から内側に所定の距離(たとえば3mm)までの領域を除いた炭化珪素基板10の任意の領域において、数式1~数式5が満たされてもよい。
 次に、本実施形態に係る炭化珪素基板10の製造方法について説明する。
 まず、スライス加工工程が実施される。具体的には、たとえば昇華法によりポリタイプ4Hの炭化珪素単結晶から構成されたインゴットが形成される。インゴットが整形された後、インゴットがワイヤーソー装置によりスライスされる。これにより、炭化珪素基板10がインゴットから切り出される。ソーワイヤーの表面にはダイヤモンド砥粒が固着されている。ダイヤモンド砥粒の径は、たとえば15μm以上25μm以下である。ソーワイヤーの径は、たとえば120μmである。ソーワイヤーの線速は、たとえば800m/分以上1500m/分以下である。ソーワイヤーの張力は、たとえば18Nである。
 炭化珪素基板10は、ポリタイプ4Hの六方晶炭化珪素から構成されている。炭化珪素基板10は、第1主面1と、第1主面1の反対側にある第2主面2とを有する。第1主面1は、たとえば{0001}面に対して<11-20>方向に4°以下オフした面である。具体的には、第1主面1は、たとえば(0001)面に対して4°以下程度の角度だけオフした面である。第2主面2は、たとえば(000-1)面に対して<11-20>方向に4°以下程度の角度だけオフした面である。
 図9に示されるように、炭化珪素基板10は、第1領域7と、中間領域8と、第2領域9とを有している。第1領域7は、第1主面1を含む領域である。第2領域9は、第2主面2を含む領域である。中間領域8は、第1領域7と第2領域9との間の領域である。上記スライス加工工程において、第1領域7および第2領域9の各々に対しては加工ダメージが加えられる。そのため、第1領域7および第2領域9の各々は、中間領域8よりも歪んでいる。第1主面1は、たとえば中心が第2主面2に近づき、かつ外周が第2主面2から遠ざかるように湾曲している。第2主面2は、たとえば中心が第1主面1から遠ざかり、かつ外周が第1主面1に近づくように湾曲している。図10に示されるように、炭化珪素基板10の第1主面1には、第1主面1に対して垂直な方向から見て略円状の歪領域51が点在していてもよい。歪領域は、加工ダメージが残留した領域である。歪領域51は、歪領域51の周りの領域と応力が異なっている。
 次に、第1エッチング工程が行われる。具体的には、水酸化カリウム(KOH)と、過マンガン酸カリウム(KMnO)と、純水とが混合されて調製されたエッチング液に、炭化珪素基板10全体が浸漬されることにより、炭化珪素基板10がエッチングされる。エッチング液の体積比率は、KOH:KMnO:純水=5~15:1~3:20~30である。エッチング液の温度は、たとえば70℃以上95℃以下である。次に、フッ酸(HF)と、硝酸(HNO)とが混合されて調製されたエッチング液に、炭化珪素基板10全体が浸漬されることにより、炭化珪素基板10がエッチングされる。エッチング液の体積比率は、HF:HNO=3~5:2~4(ここで、HFの体積は、HNOの体積よりも多い)である。エッチング液の温度は、たとえば70℃以上95℃以下である。これにより、炭化珪素基板10の表面が1μm以上5μm以下程度エッチングされる。第1エッチングにより、炭化珪素基板10の厚み方向における応力の分布が低減される。結果として、炭化珪素基板10の反りが低減される(図11参照)。第1主面1は、第2主面2とほぼ平行になる。
 次に、両面機械研磨工程が実施される。具体的には、第1主面1が第1定盤(図示せず)に対向し、かつ第2主面2が第2定盤(図示せず)に対応するように炭化珪素基板10が第1定盤と第2定盤との間に配置される。次に、第1主面1と第1定盤の間および第2主面2と第2定盤との間にスラリーが導入される。スラリーは、たとえばダイヤモンド砥粒を含む。ダイヤモンド砥粒の径は、たとえば1μm以上3μm以下である。第1定盤によって第1主面1に荷重が加えられ、かつ第2定盤によって第2主面2に荷重が加えられることにより、炭化珪素基板10の両面に対して機械研磨が行われる。
 次に、第2エッチング工程が行われる。具体的には、水酸化カリウム(KOH)と、過マンガン酸カリウム(KMnO)と、純水とが混合されて調製されたエッチング液に、炭化珪素基板10全体が浸漬されることにより、炭化珪素基板10がエッチングされる。エッチング液の体積比率は、KOH:KMnO:純水=5~15:1~3:20~30である。エッチング液の温度は、たとえば70℃以上95℃以下である。次に、フッ酸(HF)と、硝酸(HNO)とが混合されて調製されたエッチング液に、炭化珪素基板10全体が浸漬されることにより、炭化珪素基板10がエッチングされる。エッチング液の体積比率は、HF:HNO=3~5:2~4(ここで、HFの体積は、HNOの体積よりも多い)である。エッチング液の温度は、たとえば70℃以上95℃以下である。これにより、炭化珪素基板10の表面が1μm以上5μm以下程度エッチングされる。第2エッチングにより、炭化珪素基板10の厚み方向における応力の分布が低減される。結果として、炭化珪素基板10の反りが低減される。
 次に、炭化珪素基板10の第1主面1において第1CMP(Chemical Mechanical Polishing)が行われる。具体的には、第1主面1が定盤に対向するように、炭化珪素基板10が研磨ヘッドに保持される。砥粒として酸化アルミニウムが用いられる。砥粒の平均粒径は、180nmである。酸化剤として、硝酸塩系酸化剤が用いられる。炭化珪素基板10に対する荷重(面圧)は、たとえば250g/cm以上500g/cm以下である。定盤の回転数は、たとえば60rpm以上90rpm以下である。研磨ヘッドの回転数は、80rpm以上120rpm以下である。
 次に、炭化珪素基板10の第1主面1において第2CMPが行われる。具体的には、砥粒としてコロイダルシリカが用いられる。酸化剤として、バナジン酸塩が添加された過酸化水素水が用いられる。炭化珪素基板10に対する荷重(面圧)は、たとえば300g/cmである。これにより、炭化珪素基板10の第1主面1の歪が低減される。以上により、本実施形態に係る炭化珪素基板10が製造される(図1参照)。
 次に、本実施形態に係る炭化珪素基板10に炭化珪素エピタキシャル層を形成する方法について説明する。
 たとえばホットウォール方式の横型CVD(Chemical Vapor Deposition)装置の反応室に炭化珪素基板10が配置される。次に、炭化珪素基板10が、たとえば1630℃程度に昇温される。次に、たとえばシラン(SiH)とプロパン(C)とアンモニア(NH)と水素(H)とを含む混合ガスが反応室に導入される。これにより、炭化珪素基板10の第1主面1に炭化珪素エピタキシャル層20が形成される(図12参照)。図12に示されるように、炭化珪素エピタキシャル層20は、第1主面1に接している。炭化珪素エピタキシャル層は、第1主面1に対向する表面21を有している。炭化珪素エピタキシャル層20の厚みは、たとえば5μm以上100μm以下である。
 次に、本実施形態に係る炭化珪素基板10の作用効果について説明する。
 ダイヤモンド砥粒を用いて炭化珪素基板10に対してスライスまたは機械研磨などの加工を行う場合、炭化珪素基板10に対して加工ダメージが加えられる。これにより、炭化珪素基板10の第1主面1および第2主面2の各々から内部に向かって数十μm~数百μmまでの領域において歪(応力)が変化する領域(具体的には、第1領域7および第2領域9)が形成される。歪が変化する領域は、機械研磨におけるダイヤモンド砥粒の転動によって形成されると考えられる。最終的にCMP後の状態においても、図10に示される歪領域51と、歪領域51の周辺部の領域には、歪が存在している。歪領域51の周辺部の領域と比較して、歪領域51は、より深い(強い)歪が存在している。
 炭化珪素基板10の第1主面1に対して水素エッチングを行うことにより、歪が変化する領域の一部が除去される。これにより、応力分布が変化し、炭化珪素基板10の反りの形状が変化する。応力分布が変化する領域の一部は炭化珪素基板10に残っている。この時点から反りが変化している。更に、炭化珪素エピタキシャル層20を炭化珪素基板10上に形成するために炭化珪素基板10を昇温すると、炭化珪素基板10に残った応力分布が変化する領域の応力分布が変化することで、炭化珪素基板10の反りが更に大きく変化する。つまり、炭化珪素エピタキシャル層の形成前後において炭化珪素基板10の反りが大きく変化する。
 本実施形態に係る炭化珪素基板10によれば、歪が変化する領域の大部分が除去されており、厚み方向において応力の分布が低減されている。具体的には、応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値をνmaxとし、第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値をνminとし、第1主面1における炭化珪素基板10のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとするとき、数式1~数式3を満たす。これにより、炭化珪素エピタキシャル層の形成前後における、炭化珪素基板10の反りの変化を低減することができる。
 炭化珪素基板10の厚み方向において応力の分布が大きいと、炭化珪素基板10を昇温した際に、炭化珪素基板10の第1主面1に歪領域51を起点として<1-100>方向に延在する直線状のスジ(突出部)が形成されることがある。炭化珪素基板10に炭化珪素エピタキシャル層20を形成する際、炭化珪素基板10の第1主面1に形成されていた直線状のスジは、第1主面1上に形成された炭化珪素エピタキシャル層20に引き継がれる。結果として、炭化珪素エピタキシャル層20の表面21に、直線状のスジが形成される。本実施形態に係る炭化珪素基板10においては、炭化珪素基板10の厚み方向において応力の分布が低減されている。これにより、炭化珪素基板10上に形成される炭化珪素エピタキシャル層20の表面21において、直線状のスジが形成されることを抑制することができてもよい。
 (サンプル準備)
 表2に記載の製造工程を用いてサンプル1~4に係る炭化珪素基板10が準備された。サンプル1に係る炭化珪素基板10を実施例とした。サンプル2~4に係る炭化珪素基板10を比較例とした。具体的には、まずポリタイプ4Hの炭化珪素インゴットをワイヤーソー装置によりスライスすることにより、炭化珪素基板10がインゴットから切り出された。サンプル1は、条件Aを用いてスライスされた。スライス工程の条件Aは以下の通りである。ダイヤモンド砥粒の径は、15μm以上25μm以下とした。ソーワイヤーの径は、120μmとした。ソーワイヤーの線速は、800m/分以上1500m/分以下とした。ソーワイヤーの張力は、18Nとした。サンプル2~4は、条件Bを用いてスライスされた。スライス工程の条件Bは以下の通りである。ダイヤモンド砥粒の径は、30μm以上40μm以下とした。ソーワイヤーの径は、180μmとした。ソーワイヤーの線速は、800m/分以上1200m/分以下とした。ソーワイヤーの張力は、45Nとした。
 次に、サンプル1に係る炭化珪素基板10に対して第1エッチング工程が実施された。第1エッチング工程の条件は上述の通りである。サンプル2~4に係る炭化珪素基板10に対しては、第1エッチング工程は実施されなかった。
 次に、サンプル1~4に係る炭化珪素基板10に対して両面機械研磨工程が実施された。両面機械研磨工程の条件は上述の通りである。
 次に、サンプル1に係る炭化珪素基板10に対して第2エッチング工程が実施された。第2エッチング工程の条件は上述の通りである。サンプル2~4に係る炭化珪素基板10に対しては、第2エッチング工程は実施されなかった。
 次に、サンプル1~4に係る炭化珪素基板10に対して第1CMP工程が実施された。サンプル1~4に係る炭化珪素基板10に対しては、それぞれ条件C、条件D、条件Eおよび条件Fが用いられた(表1参照)。
Figure JPOXMLDOC01-appb-T000011
 第1CMP工程の条件Cは以下の通りである。具体的には、砥粒として酸化アルミニウムが用いられた。砥粒の平均粒径は、180nmとした。酸化剤として、硝酸塩系酸化剤が用いられた。炭化珪素基板10に対する荷重(面圧)は、250g/cm以上500g/cm以下とした。定盤の回転数は、60rpm以上90rpm以下とした。研磨ヘッドの回転数は、80rpm以上120rpm以下とした。
 第1CMP工程の条件Dは以下の通りである。具体的には、砥粒として酸化アルミニウムが用いられた。砥粒の平均粒径は、250nmとした。酸化剤として、硝酸塩系酸化剤が用いられた。炭化珪素基板10に対する荷重(面圧)は、250g/cm以上500g/cmとした。定盤の回転数は、60rpm以上90rpm以下とした。研磨ヘッドの回転数は、80rpm以上120rpm以下とした。
 第1CMP工程の条件Eは以下の通りである。具体的には、砥粒として酸化アルミニウムが用いられた。砥粒の平均粒径は、180nmとした。酸化剤として、硝酸塩系酸化剤が用いられた。炭化珪素基板10に対する荷重(面圧)は、600g/cm以上700g/cmとした。定盤の回転数は、60rpm以上90rpm以下とした。研磨ヘッドの回転数は、80rpm以上120rpm以下とした。
 第1CMP工程の条件Fは以下の通りである。具体的には、砥粒として酸化アルミニウムが用いられた。砥粒の平均粒径は、250nmとした。酸化剤として、硝酸塩系酸化剤が用いられた。炭化珪素基板10に対する荷重(面圧)は、500g/cm以上600g/cmとした。定盤の回転数は、60rpm以上90rpm以下とした。研磨ヘッドの回転数は、80rpm以上120rpm以下とした。
 次に、サンプル1~4に係る炭化珪素基板10に対して第2CMP工程が実施された。第2CMP工程の条件は上述の通りである。以上により、サンプル1~4に係る炭化珪素基板10が準備された。
Figure JPOXMLDOC01-appb-T000012
 (評価方法1)
 次に、サンプル1~4に係る炭化珪素基板10の第1主面1のwarpおよびbowが測定された。第1主面1のwarpおよびbowは、Tropel社製のFlatmasterにより測定された。図13に示されるように、第1主面1の3点基準面94が決定された。3点基準面94とは、第1主面1上の3点(第5位置95、第6位置96および第7位置97)を含む仮想平面である。第5位置95、第6位置96および第7位置97を繋ぐことにより構成される三角形は、内部に第1主面1の中心6を含む正三角形である。
 図14および図15に示されるように、3点基準面94と垂直な方向において、3点基準面94から見た第1主面1の最高位置92と3点基準面94との間の距離154と、3点基準面94から見た第1主面1の最低位置93と3点基準面94との間の距離155との合計がwarpである。図14および図15に示されるように、3点基準面94と垂直な方向において、第1主面1の中心6の位置91と3点基準面94との間の距離がbowである。図14に示されるように、第1主面1の中心6の位置91が3点基準面94よりも低い場合、bowは負の値を示す。図15に示されるように、第1主面1の中心6の位置91が3点基準面94よりも高い場合、bowは正の値を示す。
 (評価結果1)
 表3に示されるように、エピタキシャル成長前において、サンプル1~4に係る炭化珪素基板10の第1主面1のwarpは、それぞれ16.4μm、23.3μm、36.1μmおよび57.5μmであった。またサンプル1~4に係る炭化珪素基板10の第1主面1のbowは、それぞれ-10.9μm、8.0μm、21.8μmおよび-31.2μmであった。
Figure JPOXMLDOC01-appb-T000013
 (評価方法2)
 またラマン分光法を用いて、サンプル1~4に係る炭化珪素基板10の第1主面1から第2主面2までの領域において、炭化珪素基板10のラマンスペクトルが測定された。当該ラマンスペクトルを用いて、Δν(Ne)と測定位置の関係を求めた。同様に、ピークの半値幅(FWHM)と測定位置との関係を求めた。ここで、Δν(Ne)は、ポリタイプ4Hの炭化珪素の縦型光学分岐の折り返しモードに対応するピークの波数から、ネオンのラマンスペクトルのピークの波数を差し引いた値である。ネオンのラマンスペクトルのピークを示す波数を基準として、炭化珪素の縦型光学分岐の折り返しモードに対応するピークの波数を求めた。縦型光学分岐の折り返しモードに対応するピークおよび当該ピークの半値幅の測定方向は上述の通りである。応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数からネオンのラマンスペクトルのピークを示す波数を差し引いた値(Δν(Ne))は、たとえば-44.25cm-1である。測定位置は、第1主面1からの距離である。炭化珪素基板10の第1主面1の測定位置は、0μmの位置である。
Figure JPOXMLDOC01-appb-T000014
 (評価結果2)
 図16および表4に示されるように、サンプル1に係る炭化珪素基板10においては、Δν(Ne)maxとΔν(Ne)との差の絶対値は、0.032cm-1であった。Δν(Ne)minとΔν(Ne)との差の絶対値は、0.046cm-1であった。測定位置が0μmにおけるΔν(Ne)は、-44.218cm-1であった。第1主面1のΔν(Ne)からΔν(Ne)を引いた値は、0.032cm-1であった。
 図17および表4に示されるように、サンプル2に係る炭化珪素基板10においては、Δν(Ne)maxとΔν(Ne)との差の絶対値は、0.140cm-1であった。Δν(Ne)minとΔν(Ne)との差の絶対値は、0.069cm-1であった。測定位置が0μmにおけるΔν(Ne)は、-44.110cm-1であった。第1主面1のΔν(Ne)からΔν(Ne)を引いた値は、0.140cm-1であった。
 図18および表4に示されるように、サンプル3に係る炭化珪素基板10においては、Δν(Ne)maxとΔν(Ne)との差の絶対値は、0.003cm-1であった。Δν(Ne)minとΔν(Ne)との差の絶対値は、0.061cm-1であった。測定位置が0μmにおけるΔν(Ne)は、-44.247cm-1であった。第1主面1のΔν(Ne)からΔν(Ne)を引いた値は、0.003cm-1であった。
 図19および表4に示されるように、サンプル4に係る炭化珪素基板10においては、Δν(Ne)maxとΔν(Ne)との差の絶対値は、0.071cm-1であった。Δν(Ne)minとΔν(Ne)との差の絶対値は、0.028cm-1であった。測定位置が0μmにおけるΔν(Ne)は、-44.179cm-1であった。第1主面1のΔν(Ne)からΔν(Ne)を引いた値は、0.071cm-1であった。
 図20および表4に示されるように、サンプル1に係る炭化珪素基板10においては、ΔmaxからΔminを差し引いた値は、0.1cm-1であった。図21および表4に示されるように、サンプル2に係る炭化珪素基板10においては、ΔmaxからΔminを差し引いた値は、0.15cm-1であった。
 図22および表4に示されるように、サンプル3に係る炭化珪素基板10においては、ΔmaxからΔminを差し引いた値は、0.18cm-1であった。図23および表4に示されるように、サンプル4に係る炭化珪素基板10においては、ΔmaxからΔminを差し引いた値は、0.22cm-1であった。
 次に、サンプル1~4に係る炭化珪素基板10の第1主面1上にエピタキシャル成長により炭化珪素エピタキシャル層20が形成されることにより、炭化珪素エピタキシャル基板が製造された。炭化珪素エピタキシャル基板の製造条件は上述の通りである。
 (評価方法3)
 次に、サンプル1~4に係る炭化珪素基板10上に形成された炭化珪素エピタキシャル層20の表面21のwarpおよびbowが測定された。表面21のwarpおよびbowは、Tropel社製のFlatmasterを使用して上述した方法と同様に測定された。
 またサンプル1~4に係る炭化珪素基板10上に形成された炭化珪素エピタキシャル層20の表面21における直線状のスジの本数が測定された。測定領域は、250μm×250μmの正方領域とした。高さが0.5μm以上である直線状の突起をスジとして特定した。
 (評価結果3)
 表3に示されるように、エピタキシャル成長後において、サンプル1~4に係る炭化珪素基板10上に形成された炭化珪素エピタキシャル層20の表面21のwarpは、それぞれ12.3μm、89.6μm、64.3μmおよび34.9μmであった。またサンプル1~4に係る炭化珪素基板10上に形成された炭化珪素エピタキシャル層の表面21のbowは、それぞれ-7.8μm、-65.6μm、48.9μmおよび-0.03μmであった。炭化珪素基板10に炭化珪素エピタキシャル層を形成する前後におけるwarpの変化量は、+4.1μm、-112.9μm、+28.2μmおよび+22.6μmであった。なお炭化珪素基板10に炭化珪素エピタキシャル層を形成する前後におけるwarpの変化量は、bowの符号をwarpに適用し、エピタキシャル成長後の表面21のwarpからエピタキシャル成長前の第1主面1のwarpを差し引くことにより求められた。
 表3に示されるように、サンプル1~4に係る炭化珪素基板10上に形成された炭化珪素エピタキシャル層の表面21に形成された直線状のスジの数は、それぞれ0本、11本、2本および多数(12本以上)であった。
 以上の結果より、サンプル1に係る炭化珪素基板10は、サンプル2~4に係る炭化珪素基板10と比較して、warpの変化量が低減可能であることが確かめられた。またサンプル1に係る炭化珪素基板10は、サンプル2~4に係る炭化珪素基板10と比較して、直線状のスジの発生を抑制可能であることが確かめられた。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 第1主面、2 第2主面、3 第1フラット、4 円弧状部、5 外周面、6 中心、7 第1領域、8 中間領域、9 第2領域、10 炭化珪素基板、20 炭化珪素エピタキシャル層、21 表面、30 ラマン分光装置、31 対物レンズ、32 光源、33 分光器、34 ステージ、35 ビームスプリッター、36 入射光、37 測定領域、38 検出器、41 第1ピーク(ピーク)、42 第2ピーク、43 第3ピーク、44 第4ピーク、50 ラマンプロファイル、51 歪領域、91 位置、92 最高位置、93 最低位置、94 3点基準面、95 第5位置、96 第6位置、97 第7位置、101 第1方向、102 第2方向、111 最大径、112 厚み。

Claims (3)

  1.  第1主面と、前記第1主面の反対側にある第2主面とを備え、かつポリタイプ4Hの炭化珪素により構成された炭化珪素基板であって、
     前記第1主面の最大径は、140mm以上であり、
     前記炭化珪素基板の厚みは、300μm以上600μm以下であり、
     前記第1主面は、{0001}面または{0001}面に対して0°より大きく8°以下のオフ角で傾斜した面であり、
     応力が0であるポリタイプ4Hの炭化珪素のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとし、
     前記第1主面から前記第2主面までの領域において、前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最大値をνmaxとし、
     前記第1主面から前記第2主面までの領域において、前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数の最小値をνminとし、
     前記第1主面における前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとするとき、
     数式1~数式3を満たす、炭化珪素基板。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  2.  前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークを示す波数をνとすると、
     前記第1主面から前記第2主面に向かって3μm以内の領域の任意の位置において、数式4を満たす、請求項1に記載の炭化珪素基板。
    Figure JPOXMLDOC01-appb-M000004
  3.  前記第1主面から前記第2主面までの領域において、前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最大値をΔmaxとし、
     前記第1主面から前記第2主面までの領域において、前記炭化珪素基板のラマンスペクトルの縦型光学分岐の折り返しモードに対応するピークの半値幅の最小値をΔminとしたとき、数式5を満たす、請求項1または請求項2に記載の炭化珪素基板。
    Figure JPOXMLDOC01-appb-M000005
PCT/JP2018/036315 2017-12-08 2018-09-28 炭化珪素基板 WO2019111507A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880078475.9A CN111433394B (zh) 2017-12-08 2018-09-28 碳化硅衬底
US16/770,151 US11342418B2 (en) 2017-12-08 2018-09-28 Silicon carbide substrate
JP2019558026A JP7088210B2 (ja) 2017-12-08 2018-09-28 炭化珪素基板
JP2022092990A JP7400879B2 (ja) 2017-12-08 2022-06-08 炭化珪素基板および炭化珪素エピタキシャル基板
JP2023206044A JP2024028868A (ja) 2017-12-08 2023-12-06 炭化珪素基板および炭化珪素エピタキシャル基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017236405 2017-12-08
JP2017-236405 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111507A1 true WO2019111507A1 (ja) 2019-06-13

Family

ID=66750141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036315 WO2019111507A1 (ja) 2017-12-08 2018-09-28 炭化珪素基板

Country Status (4)

Country Link
US (1) US11342418B2 (ja)
JP (3) JP7088210B2 (ja)
CN (1) CN111433394B (ja)
WO (1) WO2019111507A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023001103A (ja) * 2021-06-17 2023-01-04 セニック・インコーポレイテッド 炭化珪素ウエハ及び半導体素子
KR102606186B1 (ko) 2022-05-31 2023-11-29 가부시끼가이샤 레조낙 SiC 기판 및 SiC 에피택셜 웨이퍼
KR102610099B1 (ko) 2022-05-31 2023-12-05 가부시끼가이샤 레조낙 SiC 기판 및 SiC 에피택셜 웨이퍼
KR20230169018A (ko) 2022-05-31 2023-12-15 가부시끼가이샤 레조낙 SiC 에피택셜 웨이퍼
US11913135B2 (en) 2019-12-02 2024-02-27 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing silicon carbide substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597381B2 (ja) * 2016-02-22 2019-10-30 住友電気工業株式会社 炭化珪素基板の製造方法、炭化珪素エピタキシャル基板の製造方法および炭化珪素半導体装置の製造方法
JP2023508691A (ja) * 2019-12-27 2023-03-03 ウルフスピード インコーポレイテッド 大口径炭化ケイ素ウェハ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112575A (ja) * 2011-11-30 2013-06-10 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2015059073A (ja) * 2013-09-20 2015-03-30 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハの内部応力評価方法、及び炭化珪素単結晶ウェハの反りの予測方法
JP2016199462A (ja) * 2015-04-10 2016-12-01 パナソニック株式会社 炭化珪素半導体基板およびその製造方法
WO2017057742A1 (ja) * 2015-10-02 2017-04-06 新日鐵住金株式会社 SiC単結晶インゴット
JP2017075074A (ja) * 2015-10-15 2017-04-20 住友電気工業株式会社 炭化珪素基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080170289A1 (en) * 2007-01-16 2008-07-17 Northrop Grumman Space & Mission Systems Corporation Multimode raman waveguide amplifier
CN102569055B (zh) * 2010-12-14 2014-05-21 北京天科合达蓝光半导体有限公司 一种碳化硅单晶晶片表面及平整度的调整方法
DE112012004193T5 (de) * 2011-10-07 2014-07-03 Asahi Glass Co., Ltd. Siliziumcarbid-Einkristallsubstrat und Polierlösung
JP2014210690A (ja) 2013-04-22 2014-11-13 住友電気工業株式会社 炭化珪素基板の製造方法
KR20170012272A (ko) * 2014-05-30 2017-02-02 신닛테츠스미킹 마테리알즈 가부시키가이샤 벌크상 탄화 규소 단결정의 평가 방법, 및 그 방법에 사용되는 참조용 탄화 규소 단결정
WO2016067918A1 (ja) 2014-10-31 2016-05-06 富士電機株式会社 炭化珪素エピタキシャル膜の成長方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112575A (ja) * 2011-11-30 2013-06-10 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2015059073A (ja) * 2013-09-20 2015-03-30 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハの内部応力評価方法、及び炭化珪素単結晶ウェハの反りの予測方法
JP2016199462A (ja) * 2015-04-10 2016-12-01 パナソニック株式会社 炭化珪素半導体基板およびその製造方法
WO2017057742A1 (ja) * 2015-10-02 2017-04-06 新日鐵住金株式会社 SiC単結晶インゴット
JP2017075074A (ja) * 2015-10-15 2017-04-20 住友電気工業株式会社 炭化珪素基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913135B2 (en) 2019-12-02 2024-02-27 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing silicon carbide substrate
JP2023001103A (ja) * 2021-06-17 2023-01-04 セニック・インコーポレイテッド 炭化珪素ウエハ及び半導体素子
JP7398829B2 (ja) 2021-06-17 2023-12-15 セニック・インコーポレイテッド 炭化珪素ウエハ及び半導体素子
KR102606186B1 (ko) 2022-05-31 2023-11-29 가부시끼가이샤 레조낙 SiC 기판 및 SiC 에피택셜 웨이퍼
KR102610099B1 (ko) 2022-05-31 2023-12-05 가부시끼가이샤 레조낙 SiC 기판 및 SiC 에피택셜 웨이퍼
EP4286568A1 (en) 2022-05-31 2023-12-06 Resonac Corporation Sic substrate and sic epitaxial wafer
EP4286567A1 (en) 2022-05-31 2023-12-06 Resonac Corporation Sic substrate and sic epitaxial wafer
KR20230169018A (ko) 2022-05-31 2023-12-15 가부시끼가이샤 레조낙 SiC 에피택셜 웨이퍼
US11866846B2 (en) 2022-05-31 2024-01-09 Resonac Corporation SiC substrate and SiC epitaxial wafer

Also Published As

Publication number Publication date
JP7088210B2 (ja) 2022-06-21
CN111433394B (zh) 2022-06-21
US11342418B2 (en) 2022-05-24
JP7400879B2 (ja) 2023-12-19
JP2024028868A (ja) 2024-03-05
CN111433394A (zh) 2020-07-17
JP2022120059A (ja) 2022-08-17
JPWO2019111507A1 (ja) 2020-11-26
US20200388683A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2019111507A1 (ja) 炭化珪素基板
Bertness et al. Nucleation conditions for catalyst-free GaN nanowires
JP2023052574A (ja) 炭化珪素基板、炭化珪素基板の製造方法および炭化珪素エピタキシャル基板
US10048142B2 (en) Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method
WO2015040895A1 (ja) 炭化珪素単結晶ウェハの内部応力評価方法、及び炭化珪素単結晶ウェハの反りの予測方法
WO2017064908A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP4757234B2 (ja) ダイヤモンド被覆非ダイヤモンド炭素部材
EP3406768B1 (en) Single-crystal diamond, method for manufacturing single-crystal diamond, and chemical vapor deposition device used in same
US20220403550A1 (en) Silicon carbide substrate and method for manufacturing silicon carbide substrate
KR101655898B1 (ko) 이종평면 전이금속 칼코게나이드 박막의 두께 조절방법
WO2022244421A1 (ja) シリコンウェーハの製造方法
Nagarajan et al. Stress distribution in GaN nanopillars using confocal Raman mapping technique
El Kurdi et al. Strain engineering for optical gain in germanium
Utamuradova et al. Research of the Impact of Silicon Doping with Holmium on its Structure and Properties Using Raman Scattering Spectroscopy Methods
Lebedev et al. Investigation of the hydrogen etching effect of the SiC surface on the formation of graphene films
Andrews et al. Brillouin light scattering study of surface acoustic phonons in p+ porous silicon layers
CN114423891A (zh) 氮化物半导体衬底、层叠结构体和氮化物半导体衬底的制造方法
Kim et al. Optical Characterization Of Monocrystalline Silicon Carbide Thin Films
Dhawan et al. Development of plasmonics-active SERS substrates on a wafer scale for chemical and biological sensing applications
JP2019060681A (ja) 化合物半導体基板の評価方法、およびこれを用いた化合物半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885875

Country of ref document: EP

Kind code of ref document: A1