WO2016166080A1 - Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type - Google Patents

Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type Download PDF

Info

Publication number
WO2016166080A1
WO2016166080A1 PCT/EP2016/057966 EP2016057966W WO2016166080A1 WO 2016166080 A1 WO2016166080 A1 WO 2016166080A1 EP 2016057966 W EP2016057966 W EP 2016057966W WO 2016166080 A1 WO2016166080 A1 WO 2016166080A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirrors
imaging
plane
mirror
imaging light
Prior art date
Application number
PCT/EP2016/057966
Other languages
German (de)
French (fr)
Inventor
Markus Schwab
Alexander Wolf
Hans-Jürgen Rostalski
Original Assignee
Carl Zeiss Smt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Gmbh filed Critical Carl Zeiss Smt Gmbh
Priority to CN202110849038.6A priority Critical patent/CN113703286B/en
Priority to KR1020247007473A priority patent/KR20240036129A/en
Priority to JP2017554278A priority patent/JP6799544B2/en
Priority to KR1020177032795A priority patent/KR102648040B1/en
Priority to CN201680033406.7A priority patent/CN107810446B/en
Publication of WO2016166080A1 publication Critical patent/WO2016166080A1/en
Priority to US15/728,812 priority patent/US10656400B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0663Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective

Definitions

  • the invention relates to an imaging optics or projection optics for imaging an object field in an image field. Furthermore, the invention relates to an optical system having such a projection optical system, a projection exposure apparatus with such an optical system, a method for producing a microstructured or nanostructured component with such a projection exposure apparatus, and a microstructured or nanostructured component produced by this method. Furthermore, the invention relates to a mirror as part of such imaging optics.
  • Projection optics of the type mentioned in the introduction are known from JP 2002-048977 A, US Pat. No. 5,891,806, which describes a "proximity-type" projection exposure apparatus, and WO 2008/141 686 A1 and WO 2015/014 753 A1. It is an object of the present invention to develop an imaging optics of the type mentioned above such that their production costs are reduced.
  • the imaging optics are designed for use in projection lithography, in particular for use in EUV projection lithography.
  • the imaging optics is designed as a choratomonale optics with different numbers of intermediate images in the two imaging light levels. This number difference can be exactly 1, but can be larger, for example 2 or even larger.
  • the first imaging light plane (XZHR) is spanned by the respective imaging light main propagation direction (ZHR) and the first Cartesian object field coordinate (x).
  • the imaging light main propagation direction (ZHR) is obtained by tilting the normal coordinate z in the plane spanned by the second Cartesian object field coordinate (x) and the normal coordinate (z) until the instantaneous propagation coordinate ZHR in the direction z the imaging light main propagation direction. With each change in direction of the imaging light main propagation direction, therefore, a position of the first imaging light plane changes.
  • the different number of intermediate images in the two imaging light planes can be used as an additional degree of design freedom to narrow the entire imaging light beam where it is desired for beam guiding reasons, for example in the area of grazing incidence mirrors, so as not to increase their size let, and / or in the range of constrictions necessary for space reasons. It was thereby recognized that, in particular when an object field with clearly distinct aspect ratio is to be imaged, the requirements for the extent of the imaging light bundle in its two cross-sectional dimensions in the two imaging light planes are quite different, so that these requirements are met with the aid of a chorizingonal Design can be taken into account.
  • the larger number of intermediate images in one of the two illumination light levels may be 2, may be 3 or may be larger.
  • the smaller of the numbers of the intermediate images in the two imaging light planes may be 0, may be 1, may be 2 or even larger.
  • the number of mirrors can be 6, 7, 8, 9 or 10.
  • the number of mirrors can also be smaller or larger.
  • a location of the intermediate images may be basically along the imaging light main propagation direction at any location between the object field and the image field.
  • a respective first-level intermediate image or second-level intermediate image may lie between two mirrors or at the location of the reflection on a mirror. Between a field level and one of the intermediate images, at least one mirror can each lie.
  • All mirrors of the imaging optics can be designed as NI mirrors, that is to say as mirrors, to which the imaging light strikes at an angle of incidence which is less than 45 °. This leads to Possibility to make the imaging optics compact.
  • the small angles of incidence on all mirrors also allow a high total transmission of the imaging optics, ie a high useful light throughput.
  • An object-image offset measured in a plane parallel to the image plane of the imaging optics may be smaller than 1000 mm, may be smaller than 800 mm, may be smaller than 600 mm, may be smaller than 400 mm, may be smaller than 300 mm, may be smaller than 200 mm, may be smaller than 180 mm and in particular may be 177.89 mm.
  • the object plane can be tilted by a finite angle relative to the image plane.
  • the imaging optics may include an aperture stop disposed in the imaging light beam path between two of the mirrors of the imaging optics, the aperture stop defining an entire outer cross section of a beam of the imaging light.
  • an aperture diaphragm can be made accessible from all sides from the outside. By means of such an aperture diaphragm, a defined specification of a pupil shape of the imaging optics is possible.
  • the aperture diaphragm may lie in a partial beam path of the imaging light between two of the mirrors, the aperture diaphragm being spatially adjacent to one of the second planes.
  • Intermediate beam is located, which is arranged in a further partial beam path of the imaging light between two of the mirror.
  • Such an arrangement of the aperture diaphragm leads to the possibility of carrying out the imaging optics with small folding angles also in the area of the aperture stop.
  • a PupiUenobskuration of the imaging optics can amount to a maximum of 15%. Such a PupiUenobskuration, defined as the area of an obscured, so not usable for the image pupil surface to the entire pupil surface, has little effect on the figure.
  • the PupiUenobskuration may be less than 15%, may be less than 12%, may be less than 10%> and may be 9%, for example.
  • a maximum angle of incidence of the imaging light on all mirrors of the imaging optics may be less than 25 °. Such a maximum angle of incidence of the imaging light allows the design of the mirror with high reflectivity, even if EUV light is used as the useful light.
  • the maximum angle of incidence may be less than 22 °.
  • a maximum angle of incidence of the imaging light on the first four mirrors of the imaging optics in the imaging light beam path after the object field can be less than 20 °.
  • Such maximum incident angles of the imaging light on the first four mirrors have corresponding advantages.
  • the maximum angle of incidence may be less than 19 °, may be less than 18 °, may not exceed 17.5 ° and may not exceed 16.6 °.
  • the object plane of the imaging optics may be tilted relative to the image plane by an angle which is greater than 0 °.
  • Such a tilt of the object plane to the image plane has been found to be particularly suitable for achieving small maximum angle of incidence on all mirrors as appropriate.
  • the tilt angle may be greater than 1 °, may be greater than 2 °, may be greater than 4 °, may be greater than 5 °, may be greater than 7 °, may be greater than 8 ° and may, for example, be 10 °.
  • Both one of the first-level intermediate images and one of the second-level intermediate images of the imaging optics can lie in the region of a passage opening of one of the mirrors of the imaging optics for the passage of the imaging light.
  • Such an intermediate image arrangement leads to an advantageous narrowing of both cross-sectional dimensions of the entire imaging light bundle.
  • the imaging optical system according to claim 2 with at least one mirror for grazing incidence (GI mirrors, angles of incidence greater than 45 °), the advantages of the choke-rally-neutral design are particularly evident.
  • An aspect ratio condition for the GI-mirror according to claim 3 leads to a manageable large GI-mirror whose manufacturing costs are reasonably justifiable.
  • the greatest extent of the reflection surface of the GI mirror is first measured, and the associated dimension value is then determined by the extent of the reflectivity. ons Installation divided perpendicular to this largest extension direction.
  • the aspect ratio of the used reflection surface of the GI mirror can be 2.5, maximum 2, maximum 1.95, maximum 1.9, maximum 1.75, maximum 1.5, maximum 1.25 maximum 1.2, can not exceed 1.1 and can also be a maximum of 1.05.
  • a number distribution of the intermediate images according to claim 4 results in that the imaging light beam in the GI mirror folding plane, ie in the plane of incidence of a main beam of a central field point on the GI mirror, can be advantageously narrowed.
  • a distribution of intermediate images according to claims 5 and 6 has been found to be particularly advantageous for the compact design of GI mirrors. Also several GI mirror pairs with each intermediate intermediate image within the same imaging optics are possible.
  • An intermediate image arrangement according to claim 7 leads to an advantageous constriction of the imaging light beam in the region of the mirror passage opening.
  • the intermediate image may lie in the imaging light plane with Aufspannkoordinate along the larger object field dimension at an object field with aspect ratio greater than 1.
  • Such an intermediate image ensures that the entire imaging light bundle is more strongly constricted along the coordinate in which the bundle tends to have the larger diameter due to the larger field dimension.
  • the intermediate image is then in the region of the passage opening, as long as a distance between the passage opening and the image field is more than three times as large as a distance between the passage opening and the intermediate image.
  • the ratio between these distances may be greater than 3.5, may be greater than 4, may be greater than 5, may be greater than 7, may be greater than 10, or may be greater.
  • the passage opening can be one in whose area both one of the first-level intermediate images and one of the second-level intermediate images is located.
  • an embodiment according to claim 8 having at least one NI mirror (mirror with incidence angle close to the vertical incidence, angle of incidence less than 45 °), the choristic configuration of the imaging optics has proven to be advantageous.
  • a corresponding distribution of the intermediate images to the different imaging light levels can be way facilitate placement of field panels or field-side auxiliary equipment.
  • the position of an aperture diaphragm can then be facilitated.
  • a mixed embodiment of an imaging optics with at least one GI mirror and at least one NI mirror is possible.
  • the imaging optics may alternatively have only NI mirrors.
  • a number difference of the intermediate images in the two imaging light planes of exactly one may result in compensation for image flip caused by the odd number of mirrors.
  • At least one of the mirrors of the imaging optics may have a reflection surface which is designed as a free-form surface. Examples of such free-form surfaces will be described in detail below.
  • the auxiliary device can be a field stop or also an intensity presetting device in the manner of a UNICOM.
  • optical system according to claim 11 corresponds to those which have already been explained above with reference to the imaging optics and the optical system with the auxiliary device.
  • the optical system according to claim 11 may also comprise such an auxiliary device.
  • the light source may be an EUV light source.
  • a DUV light source for example a light source with a wavelength of 193 nm, can also be used as an alternative.
  • a further object of the invention is to provide a mirror which can be produced with reasonable effort as part of an imaging optical system for guiding imaging light from an object field in an object plane to an image field in an image plane along an imaging light beam path.
  • an edge contour of an entire imaging light bundle does not necessarily have to be convex.
  • the reflection surface edge contour of the mirror according to the invention with at least two contour bulges ensures that a corresponding bulged shaped edge contour of an entire imaging light bundle can be reflected.
  • the mirror is not designed unnecessarily large for such reflection tasks, which reduces its manufacturing cost.
  • the mirror can be used in particular in an imaging optical system with the aforementioned features.
  • the mirror can be designed as an EUV mirror and carry a corresponding highly reflective coating. This coating can be designed as a multilayer coating.
  • the mirror according to the invention can be combined with the features of the superordinate assemblies "imaging optics”, “optical system”, “projection exposure apparatus”.
  • the imaging optics can have a plurality of such mirrors with contour bulges.
  • the contour bulges having the mirror can in particular in the field of
  • the mirror having the contour bulges may be a NI (Normal Incidence) or a GI (Grazing Incidence) mirror.
  • the mirror may have a reflective surface with a curved basic shape or with a rectangular basic shape.
  • FIGS. 2 and 3 Supervision on edge contours of optically used surfaces of the mirror of the imaging optics according to FIGS. 2 and 3; in a similar to Fig. 2 representation of another embodiment of an imaging optics, used as a projection lens in the projection processing plant according to Fig. 1; a view of the imaging optics of Figure 5, seen from the viewing direction VI in Fig. 5.
  • FIG. 32 shows in a meridional section an embodiment of an imaging optical system which can be used as a projection objective in the projection exposure apparatus according to FIG. 1, an imaging beam path for main beams and for an upper and a lower coma beam of two selected field points being illustrated;
  • FIG. 33 shows, in a representation similar to FIG. 32, a further embodiment of an imaging optical system, usable as a projection objective in the projection exposure apparatus according to FIG. 1;
  • FIG. 34 shows a view from the viewing direction XXXIV in FIG. 32; FIG. and
  • a projection exposure apparatus 1 for microlithography has a light source 2 for illumination light or imaging light 3.
  • the light source 2 is an EUV light source, the light in a wavelength range, for example between 5 nm and 30 nm, in particular between 5 nm and 15 nm.
  • the light source 2 can be a plasma-based light source (laser-produced plasma (LPP), gas-discharge produced plasma (GDP)) or even a synchrotron-based light source, for example a free-electron laser (FEL) act.
  • LPP laser-produced plasma
  • GDP gas-discharge produced plasma
  • FEL free-electron laser
  • the light source 2 may in particular be a light source with a wavelength of 13.5 nm or a light source with a wavelength of 6.9 nm. Other EUV wavelengths are possible.
  • wavelengths for example visible wavelengths or also other wavelengths which can be used in microlithography (for example DUV, deep ultraviolet) and for the suitable laser light sources and / or LED light sources are available (for example 365 nm, 248 nm) nm, 193 nm, 157 nm, 129 nm, 109 nm) for the illumination light guided in the projection exposure apparatus 1
  • a beam path of the illumination light 3 is shown extremely schematically in FIG.
  • An illumination optical system 6 is used to guide the illumination light 3 from the light source 2 to an object field 4 in an object plane 5.
  • the object field 4 is imaged into an image field 8 in an image plane 9 with a predetermined reduction scale using projection optics or imaging optics 7.
  • a Cartesian xyz coordinate system is indicated in the drawing, from which the respective positional relationship of the components shown in the figures results.
  • the x direction runs perpendicular to the plane of the drawing into it.
  • the y-direction runs to the left and the z-direction to the top.
  • the object field 4 and the image field 8 are bent or curved in the projection optics 7 and, in particular, have a partial ring shape.
  • a radius of curvature of this field curvature can be 81 mm on the image side.
  • a basic shape of a border contour of the object field 4 or of the image field 8 is bent accordingly.
  • the object field 4 and the image field 8 have an xy aspect ratio greater than 1.
  • the object field 4 thus has a longer object field dimension in the x direction and a shorter object field dimension in the y direction. These object field dimensions run along the field coordinates x and y.
  • the object field 4 is accordingly spanned by the first Cartesian object field coordinate x and the second Cartesian object field coordinate y.
  • the third Cartesian coordinate z which is perpendicular to these two object field coordinates x and y, is also referred to below as the normal coordinate.
  • the projection optics 7 are reduced in a sagittal plane xz by a factor of 4 and in a meridional plane yz by a factor of 8.
  • the projection optics 7 are an anamorphic projection optics.
  • other reduction magnitudes in the two imaging light planes xz, yz are possible, for example 3x, 5x, 6x, 7x, or even reduction scales larger than 8x.
  • the projection optics 7 can also have the same reduction scale in the two imaging light planes xz, yz Also, for example, a reduction by a factor of 8.
  • Other reduction scales are possible, for example, 4x, 5x or even reduction scales that are greater than 8x.
  • the respective reduction scale may be accompanied by an image flip or not, which is also illustrated below by a corresponding indication of the sign of the reduction scale.
  • the image plane 9 is arranged in the projection optical system 7 in the embodiment of FIG. 2 parallel to the object plane 5. Shown here is a coincident with the object field 4 section of a reflection mask 10, which is also referred to as a reticle.
  • the reticle 10 is supported by a reticle holder 10a.
  • the reticle holder 10a is displaced by a reticle displacement drive 10b.
  • the imaging by the projection optics 7 takes place on the surface of a substrate 11 in the form of a wafer, which is supported by a substrate holder 12.
  • the substrate holder 12 is displaced by a wafer or substrate displacement drive 12a.
  • FIG. 1 schematically shows a bundle of rays 13 of the illumination light 3 entering into the reticle 10 and the projection optics 7 and between the projection optics 7 and the substrate 11 a bundle 14 of the illumination light 3 emerging from the projection optics 7.
  • An image field-side numerical aperture (NA) of the projection optics 7 is not reproduced to scale in FIG.
  • the projection exposure apparatus 1 is of the scanner type. Both the reticle 10 and the substrate 11 are scanned in the y direction during operation of the projection exposure apparatus 1. A stepper type of the projection exposure apparatus 1 in which a stepwise displacement of the reticle 10 and of the substrate 11 in the y direction takes place between individual exposures of the substrate 11 is also possible. These displacements are synchronized with each other by appropriate control of the displacement drives 10b and 12a.
  • 2 and 3 show the optical design of a first embodiment of the projection optics 7.
  • FIG. 2 shows the projection optics 7 in a meridional section, that is to say the beam path of the imaging light 3 in the yz plane.
  • the meridional plane yz is also used as the second imaging light Level.
  • a first imaging light plane XZHR is the plane which is spanned at the respective location of the beam path of the imaging light 3 from the first Cartesian object field coordinate x and a current imaging light main propagation direction ZHR.
  • the imaging light main propagation direction ZHR is the beam direction of a main beam 16 of a central field point. In the case of each specular reflection at the mirrors M1 to M8, this imaging light main propagation direction ZHR generally changes.
  • This change can be described as a tilting of the instantaneous imaging light main propagation direction ZHR about the first Cartesian object field coordinate x by a tilt angle which is equal to the deflection angle of this main beam 16 of the central field point at the respectively considered mirror Ml to M8.
  • the first imaging light plane XZHR is also referred to as the first imaging light plane xz for the sake of simplification.
  • the second imaging light plane yz also includes the imaging light main propagation direction ZHR and is perpendicular to the first imaging light plane XZHR.
  • the second imaging light plane yz coincides with the meridional plane.
  • Shown in FIG. 2 is the beam path in each case three individual beams 15 which emanate from three object field points which are spaced from one another in the y direction in FIG.
  • Shown are principal rays 16, ie individual rays 15, which run through the center of a pupil in a pupil plane of the projection optics 7, and in each case an upper and a lower coma ray of these two object field points.
  • the main rays 16 with a normal to the object plane 5 an angle CRA of 5.1 °.
  • the object plane 5 lies parallel to the image plane 9.
  • the projection optics 7 has a picture-side numerical aperture of 0.55.
  • the projection optics 7 according to FIG. 2 has a total of eight mirrors, which are numbered consecutively in the order of the beam path of the individual beams 15, starting from the object field 4, with Ml to M8. Shown in FIGS. 2 to 4 are sections of the calculated reflection surfaces of the mirrors M1 to M8. A subarea of these calculated reflection surfaces is used. Only this actually used area of the reflection surfaces is actually present, plus a projection in the real mirrors M1 to M8. These useful reflection surfaces are supported in known manner by mirror bodies.
  • the mirrors M1, M4, M7 and M8 are designed as mirrors for normal incidence, that is, as mirrors to which the imaging light 3 strikes with an angle of incidence which is smaller than 45 °. Overall, therefore, the projection optics 7 according to FIG. 2 have four mirrors M1, M4, M7 and M8 for normal incidence. These levels of normal incidence are also referred to as NI (Normal Incidence) levels.
  • NI Normal Incidence
  • the mirrors M2, M3, M5 and M6 are mirrors for grazing incidence of the illumination light 3, ie mirrors, on which the illumination light 3 occurs with angles of incidence which are greater than 45 ° and in particular greater than 60 °.
  • a typical angle of incidence of the individual beams 15 of the imaging light 3 on the grazing incidence mirrors M2, M3 and M5, M6 is in the region of 80 °.
  • the projection optics 7 of FIG. 2 exactly four mirrors M2, M3, M5 and M6 for grazing incidence. These grazing incidence mirrors are also referred to as GI (grazing incidence) levels.
  • the mirrors M2 and M3 form a pair of mirrors arranged directly behind one another in the beam path of the imaging light 3.
  • the mirrors M5 and M6 form a pair of mirrors arranged directly behind one another in the beam path of the imaging light 3.
  • the mirror pairs M2, M3 on the one hand and M5, M6 on the other hand reflect the imaging light 3 so that the angles of incidence of the individual beams 15 on the respective mirrors M2, M3 and M5, M6 of these two mirror pairs add.
  • the respective second mirror M3 and M6 of the respective mirror pair M2, M3 and M5, M6 thus amplifies a deflecting Effect that the respective first mirror M2, M5 exerts on the respective individual beam 15.
  • This arrangement of the mirrors of the mirror pairs M2, M3 and M5, M6 corresponds to that which is described in DE 10 2009 045 096 Al for an illumination optical system.
  • the grazing incidence mirrors M2, M3, M5 and M6 each have very large absolute radius values, ie deviate comparatively slightly from a flat surface.
  • These grazing incidence mirrors M2, M3, M5 and M6 have a comparatively low refractive power, that is, a lower beam-shaping effect, such as an overall concave or convex mirror.
  • the mirrors M2, M3, M5 and M6 contribute to the specific and especially to the local aberration correction.
  • a deflection direction is defined below on the basis of the respective meridional sections shown. 2
  • a deflecting effect of the respective mirror in the clockwise direction that is to say a deflection to the right, is identified by the abbreviation "R.”
  • the mirror M2 of the projection optics 7 has such a deflecting effect, for example “ R ".
  • a deflecting effect of a mirror in the counterclockwise direction, that is to say to the left, as seen from the respective beam direction incident on this mirror, is identified by the abbreviation "L.”
  • the mirrors M1 and M5 of the projection optics 7 are examples of the deflecting effect "L”.
  • a weakly or not at all deflecting effect of a mirror with a folding angle f is marked with the abbreviation "0."
  • the mirror M7 of the projection optics 7 is an example of the deflecting effect " 0 ".
  • the projection optics 7 for the mirrors M1 to M8 have the following sequence of redirecting effects: LRRRLLOR.
  • all described embodiments of the projection optics can be mirrored around a plane that runs parallel to the xz plane, without changing basic imaging properties.
  • the sequence of the deflecting effects which, for example, in the case of projection optics, which results from corresponding reflection from the projection optics 7, changes in the following order: RLLLRR0L.
  • a choice of the deflecting effect ie a choice of a direction of the respective incident beam, for example on the mirror M4 and a choice of a deflection of the mirror pairs M2, M3 and M5, M6 is selected in each case so that an available space for the projection optics 7 space used efficiently becomes.
  • the mirrors M1 to M8 carry a coating which optimizes the reflectivity of the mirrors M1 to M8 for the imaging light 3.
  • This may be a ruthenium coating, a multilayer, each with a top layer of ruthenium, for example.
  • a coating of, for example, a layer of molybdenum or ruthenium may be used.
  • These highly reflective layers, in particular the mirrors Ml, M4, M7 and M8 for normal incidence can be embodied as multilayer layers, wherein successive layers can be made of different materials. Alternate layers of material can also be used.
  • a typical multi-layer layer may comprise fifty bilayers each of one layer of molybdenum and one layer of silicon. These may include additional separation layers of, for example, C (carbon), B 4 C (boron carbide), and may be terminated by a protective layer or protective vacuum system.
  • a mirror reflectivity is determined as a function of the angle of incidence of a guide beam, ie a main beam of a central object field point, on each mirror surface and combined multiplicatively to the system transmission.
  • the mirror M8 is used in a reflective manner around the passage opening 17. All other mirrors M1 to M7 have no passage opening and are used in a coherently coherent area reflective.
  • the projection optics 7 has exactly one first-level intermediate image 18 in the imaging light beam path between the mirrors M6 and M7.
  • This first plane intermediate image 18 lies in the region of the passage opening 17.
  • a distance between the passage opening 17 and the image field 8 is more than four times as large as a distance between the passage opening 17 and the first plane intermediate image 18.
  • the imaging light 3 passes through exactly two second-plane intermediate images 19 and 20.
  • the first of these two second-plane intermediate images 19 lies in the imaging light beam path between the mirrors M2 and M3.
  • the other of the two second-level intermediate images 20 lies in the region of the reflection of the imaging light 3 on the mirror M6.
  • the number of first-level intermediate images, ie, exactly one first-level intermediate image in projection optics 7, and the number of second-level intermediate images, that is, exactly two second-level intermediate images in projection optics 7, are different from one another in projection optics 7. This number of intermediate images differs in the projection optics 7 by exactly one.
  • the second imaging light plane yz in which the larger number of intermediate images, namely the two second-level intermediate images 19 and 20, is present, coincides with the folding plane yz of the GI mirrors M2, M3 and M5, M6.
  • This folding plane is the plane of incidence of the main beam 16 of the central field point in the reflection at the respective GI mirror.
  • the second-level intermediate images are usually not perpendicular to the main beam 16 of the central field point, which defines the imaging light main propagation direction ZHR.
  • An intermediate Image tilt angle, ie a deviation from this vertical arrangement, is basically arbitrary and can be between 0 ° and +/- 89 °.
  • Auxiliaries 18a, 19a, 20a can be arranged in the area of intermediate images 18, 19, 20.
  • These auxiliary devices 18a to 20a can be field diaphragms for at least sectionally defining a boundary of the imaging light bundle.
  • a field intensity presetting device in the manner of a UNICOM, in particular with finger apertures staggered in the x direction, can also be arranged in one of the intermediate image planes of the intermediate images 18 to 20.
  • the mirrors M1 to M8 are designed as freeform surfaces which can not be described by a rotationally symmetrical function.
  • Other embodiments of the projection optics 7 are possible in which at least one of the mirrors M1 to M8 is designed as a rotationally symmetric asphere.
  • An aspherical equation for such a rotationally symmetric asphere is known from DE 10 2010 029 050 AI. All mirrors M1 to M8 can also be designed as such aspheres.
  • a free-form surface can be described by the following free-form surface equation (Equation 1):
  • r is the distance to the reference axis of the free-form surface equation
  • Ci, C 2 , C 3 Denote the coefficients of the free-form surface series expansion in the powers of x and y.
  • the equation (1) thus describes a biconical freeform surface.
  • freeform surfaces can also be described using two-dimensional spline surfaces.
  • examples include Bezier curves or non-uniform rational base splines (NURBS).
  • NURBS non-uniform rational base splines
  • two-dimensional spline surfaces may be described by a mesh of points in an xy plane and associated z-values or by these points and their associated slopes.
  • the complete surface is obtained by interpolating between the mesh points using, for example, polynomials or functions that have certain continuity and differentiability properties. Examples of this are analytical functions.
  • FIG. 4 shows edge contours of the reflection surfaces acted on by the mirrors M1 to M8 of the projection optics 7, in each case with the imaging light 3, that is to say the so-called footprints of the mirrors M1 to M8.
  • These edge contours are each shown in an x / y diagram which corresponds to the local x and y coordinates of the respective mirror M1 to M8.
  • the Dar- positions are to scale in millimeters.
  • the shape of the passage opening 17 is shown.
  • GI mirrors M2, M3, M5 and M6 Because of the second-plane intermediate images 19 and 20 in the region of the MIR mirrors M2, M3, M5 and M6, these GI mirrors also have no extreme extent in the y direction.
  • a y / x aspect ratio corresponding surface dimension of the reflection surfaces of these GI mirrors M2, M3, M6 and M7 is greater than 1 only for the mirror M2, where it is about 1.05. None of the GI mirrors has a y / x aspect ratio greater than 1.05. The most strongly deviates from the value 1 in the mirrors M1 to M8 of the projection optics 7, the y / x aspect ratio in the mirror M4, where it is about 1: 5.6. For all other mirrors, the y / x aspect ratio is in the range between 3: 1 and 1: 3.
  • a pupil-defining aperture diaphragm AS is arranged in the projection optical system 7 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the entire imaging light beam is accessible over its entire circumference.
  • the mirror M6 of the projection optics 7 (see FIG. 4) has a reflection surface which can be used for reflection and has an edge contour RK. This edge contour RK has a basic shape GF, which is indicated by dashed lines in Fig. 4 with respect to the mirror M6. This basic form GF corresponds to a curved basic shape of the object field 4.
  • the basic shape GF of the mirror M6 corresponds to that of the object field 4, ie it is also bent.
  • the edge contour RK of the mirror M6 follows an edge contour of an entire imaging light bundle during the reflection at the mirror M6.
  • This edge contour of the entire imaging light bundle has corresponding contour bulges, which is due to the intermediate image through the second plane intermediate image 20.
  • Two further contour bulges KA are arranged on the opposite side edge of the edge contour RK shown in FIG. 4 at the bottom.
  • the contour bulges KA are respectively arranged along the two long sides of the basic shape GF.
  • the optical design data of the reflection surfaces of the mirrors Ml to M8 of the projection optics 7 can be seen from the following tables. These optical design data respectively start from the image plane 9 and thus describe the respective projection optics in the opposite direction of the imaging light 3 between the image plane 9 and the object plane 5.
  • the first of these tables gives an overview of the design data of the projection optics 7 and summarizes the numerical aperture NA, the calculated design wavelength for the imaging light, the reduction factors ⁇ x and ⁇ y in the two imaging light planes xz and yz, the magnitudes of the image field in the x and y directions, a field curvature, an image error value rms and a diaphragm location.
  • This curvature is defined as the inverse radius of curvature of the field.
  • the image error value is given in ⁇ (ml), ie depending on the design wavelength. This is the rms value of the wavefront error.
  • Negative radii values mean, for the incident illuminating light 3, concave curves in the section of the respective surface with the considered plane (xz, yz) spanned by a surface normal at the vertex with the respective curvature direction (x, y).
  • the two radii Radius x, Radiux y can explicitly have different signs.
  • the powers Power x (P x ), Power y (P y ) at the vertices are defined as:
  • AOI here denotes an angle of incidence of the guide beam to the surface normal.
  • Coefficients C n which are not tabulated, each have the value 0.
  • the fourth table also indicates the amount along which the respective mirror decentred (DCY) from a reference surface in the y direction, was shifted in the z direction (DCZ) and tilted (TLA, TLC). This corresponds to a parallel shift and a Tilting in freeform surface design process. It is shifted in y- and in z- direction in mm and tilted about the x-axis and about the z-axis. The twist angle is given in degrees. It is decentered first, then tilted. The reference surface in the decentering is in each case the first surface of the specified optical design data. Also for the object field 4, a decentering in the y and in the z direction is indicated. In addition to the surfaces assigned to the individual mirrors, the fourth table also includes the image plane as the first surface, the object plane as the last surface and, if appropriate, an aperture surface (designated as "aperture").
  • the fifth table also indicates the transmission data of the mirrors M8 to Ml, namely their reflectivity for the angle of incidence of an illuminating light beam striking centrally on the respective mirror.
  • the total transmission is given as a proportion factor remaining from an incident intensity after reflection at all mirrors of the projection optics.
  • the sixth table indicates a boundary of the diaphragm AS as a polygon in local coordinates xyz.
  • the shutter AS is decentered and tilted as described above.
  • a total refiectivity of the projection optics 7 is 8.02%.
  • the reference axes of the mirrors are generally tilted with respect to a normal to the image plane 9, as the tabulated tilt values make clear.
  • the mirrors M1, M4 and M8 have negative radius values, ie are basically concave mirrors.
  • the mirror M7 has a positive radius value, so basically is a convex mirror.
  • the mirrors M2, M3, M5 and M6 have radius values with different signs, ie toric or saddle mirror mirrors.
  • the image field 8 has an x-extension of twice 13 mm and a y-extension of 1 mm.
  • the projection optics 7 is optimized for an operating wavelength of the illumination light 3 of 13.5 nm.
  • Bounding of a diaphragm surface of the diaphragm results from puncture points at the diaphragm surface of all beams of the illumination light 3, which propagate at the field center with a full image-side telecentric aperture in the direction of the diaphragm surface.
  • the boundary is an inner boundary.
  • the diaphragm AS can lie in one plane or can also be embodied in three dimensions.
  • the extent of the diaphragm AS can be smaller in the scanning direction (y) than in the cross-scanning direction (x).
  • An overall length of the projection optics 7 in the z-direction, ie a distance between the object plane 5 and the image plane 9, is approximately 2080 mm.
  • a pupil obscuration in the projection optics 7 is 15% of the total aperture of the entrance pupil. Less than 15% of the numerical aperture are therefore obscured due to the passage opening 17.
  • the construction of the obscurant boundary takes place analogously to the construction of the diaphragm boundary explained above in connection with the diaphragm 18. When executed as Obskurationsbrende it is at the boundary to an outer boundary of the aperture.
  • an area that can not be illuminated due to obscuration is less than 0.15 2 of the area of the entire system pupil.
  • the non-illuminated area within the system pupil may have a different extent in the x-direction than in the y-direction.
  • the unilluminated area in the system pupil may be round, elliptical, square or rectangular.
  • This non-illuminable area in the system pupil may also be decentered with respect to a center of the system pupil in the x-direction and / or in the y-direction.
  • a y-distance dois between a central object field point and a central field point is about 1350 mm.
  • a working distance between the mirror M7 and the image plane 9 is 77 mm.
  • the mirrors of the projection optics 7 can be accommodated in a cuboid with the xyz edge lengths 1004 mm ⁇ 2021 mm ⁇ 1534 mm.
  • the projection optics 7 is approximately telecentric on the image side.
  • the construction of the obscurant boundary takes place analogously to the construction of the diaphragm boundary explained above in connection with the diaphragm 18.
  • it is at the boundary to an outer boundary of the aperture.
  • an area that can not be illuminated due to obscuration is less than 0.15 2 of the area of the entire system pupil.
  • the non-illuminated area within the system pupil may have a different extent in the x-direction than in the y-direction.
  • the non-illuminated surface in the system pupil may be round, elliptical, square, rectangular or even in the form of a polygon. This non-illuminable surface in the system pupil may also be decentered with respect to a center of the system pupil in the x-direction and / or in the y-direction.
  • FIGS. 5 to 7 A further embodiment of a projection optical system 21 will now be explained with reference to FIGS. 5 to 7, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG.
  • the mirrors M1 to M8 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
  • None of the GI mirrors M2, M3, M5, and M6 has a y / x aspect ratio of its reflection area that is greater than 1.
  • the most extreme y / x aspect ratio has the NI mirror M4 at about 1: 6.4 ,
  • the largest maximum mirror diameter is also the mirror M8 with less than 950 mm.
  • the optical design data of the projection optics 21 can be found in the following tables, which correspond in their structure to the tables for the projection optics 7 according to FIG. 2.
  • a total reflectivity of the projection optics 21 is 9.11%.
  • the projection optical system 21 has a picture-side numerical aperture of 0.50.
  • the projection optics 21 In the first imaging light plane xz, the projection optics 21 has a reduction factor ⁇ x of 4.00.
  • the projection optics 21 In the second imaging light plane yz, the projection optics 21 has a reduction factor ⁇ y of 8.00.
  • An object-side main beam angle is 6.0 °.
  • a pupil obscuration is 17%.
  • An object image offset dois is about 1520 mm.
  • the mirrors of the projection optics 21 can in a cuboid with xyz-edge lengths of 930 mm x 2625 mm x 1570 mm.
  • the reticle 10 and thus the object plane 5 are tilted by an angle T of 1.4 ° about the x-axis. This tilt angle T is indicated in FIG. 5.
  • a working distance between the wafer-near mirror M7 and the image plane 9 is about 80 mm.
  • FIG. 7 again shows the edge contours of the reflection surfaces of the mirrors M1 to M8 of the projection optics 21.
  • FIGS. 8 to 10 A further embodiment of a projection optics 22 will be explained below with reference to FIGS. 8 to 10, which may be used instead of the projection optics 7 in the projection exposure apparatus 1 according to FIG. Components and functions, which have already been explained above in connection with FIGS. 1 to 7, optionally bear the same reference numbers and will not be discussed again in detail.
  • the projection optics 22 has a total of six mirrors M1 to M6 in the beam path of the imaging light 3 between the object field 4 and the image field 8. All six mirrors M1 to M6 are designed as NI mirrors. For the mirrors M1 to M6, the above-mentioned free-form equation (1) again applies.
  • the projection optics 22 has the following sequence of deflecting effects for the mirrors M1 to M6: RLRL0L.
  • Four of the six mirrors have a maximum mirror diameter that is less than 500 mm.
  • Three of the six mirrors have a maximum mirror diameter that is less than 400 mm.
  • the projection optics 22 also have exactly one first-intermediate image 18 and two two-intermediate images 19, 20.
  • the first-plane intermediate image 18 is located in the beam path of the imaging light 3 between the mirrors M4 and M5 in the region of the passage opening 17 in the mirror M6.
  • the first of the two second-level intermediate images 19 lies in the imaging light beam path between the mirrors M1 and M2. In the area of this first second plane intermediate image 19, the entire imaging light beam is accessible from the outside.
  • the second of the two second-level intermediate images 20 lies in the imaging light beam path between the mirrors M3 and M4 near the reflection at the mirror M4.
  • the optical design data of the projection optics 22 can be found in the following tables, which correspond in their structure to the tables for the projection optics 7 according to FIG. 2.
  • a total reflectivity of the projection optics 22 is 7.82%.
  • the projection optics 22 has a numerical aperture of 0.50.
  • a reduction factor is xz 4.0 ( ⁇ x ) in the first imaging light plane and yz 8.0 ( ⁇ y ) in the second imaging light plane.
  • a main beam angle CRA to a normal on the object field 4 is 5.0 °.
  • a maximum PupiUenobskuration is 15%.
  • An object image offset dois is about 415 mm.
  • the mirrors of the projection optics 22 can be accommodated in a cuboid with xyz edge lengths 889 mm ⁇ 860 mm ⁇ 1602 mm.
  • the object plane 5 and the image plane 9 are parallel to each other.
  • a working distance between the wafer-closest mirror M5 and the image plane 9 is 129 mm.
  • a mean wavefront error rms is 30.4 ⁇ .
  • An aperture stop AS is arranged in the projection optical system 22 in the imaging light beam path between the mirrors M1 and M2 in front of the first second plane intermediate image 19. At the location of the aperture diaphragm AS, the entire imaging light beam is fully accessible.
  • FIG. 11 A further embodiment of a projection optical system 23, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. 11 to 13.
  • the mirrors M1 to M8 are in turn designed as free-form surfaces for which the free-form surface equation (1) given above applies.
  • the following table once again shows the mirror parameters of the mirrors M1 to M8 of the projection optics 23.
  • All mirrors Ml to M8 and in particular the GI mirrors M2, M3, M5 and M6 have a y / x aspect ratio that is smaller than 1.
  • the mirror in the imaging light beam path has the largest mirror diameter last mirror M8 with almost 950 mm.
  • Six of the eight mirrors have a diameter that is less than 570 mm.
  • Five of the eight mirrors have a diameter that is less than 500 mm.
  • Three of the eight mirrors have a diameter that is less than 400 mm.
  • the projection optics 23 has exactly one first-level intermediate image 18, again in the region of the passage opening 17 in the last mirror M8 in the imaging light beam path. Furthermore, the projection optics 23 has a total of three second-plane intermediate images 19, 24 and 25.
  • the first second intermediate image 24 of the projection optics 23 in the imaging light beam path lies in the imaging light beam path between the mirrors M1 and M2 and is fully accessible.
  • the second second intermediate image 19 in the imaging light beam path lies in the imaging light beam path between the mirrors M2 and M3.
  • the third second intermediate image 25 in the image light beam path is located in the image light beam path between the mirrors M3 and M4.
  • one of the second level intermediate images lies in the beam path in front of this GI mirror M2 and the NI mirror Ml immediately upstream in the beam path and the next second intermediate image 19 in the beam path after the mirror M2 and before in the beam path directly downstream GI mirror M3.
  • the GI mirror M3 likewise lies between two second-level intermediate images 19 and 25.
  • the number of first-level intermediate images differs from the number of second-level intermediate images by two.
  • FIG. 13 again shows the edge contours of the reflection surfaces of the mirrors M1 to M8.
  • the optical design data of the projection optics 23 can be found in the following tables, which correspond in their structure to the tables for projection optics 7 according to FIG. 2.
  • the projection optics 23 has a total transmission of 8.32%.
  • the projection optical system 23 has a picture-side numerical aperture of 0.55.
  • the reduction factor ⁇ x is 4.50. In the second imaging light plane yz, the reduction factor ⁇ y is 8.00.
  • An object field side main beam angle is 5.0 °.
  • a maximum pupil obscuration is 12%.
  • An object image offset dois is about 1080 mm.
  • the mirrors of the projection optics 23 can be accommodated in a cuboid with xyz edge lengths 946 mm x 1860 mm x 1675 mm.
  • the object plane 5 and the image plane 9 run parallel to one another.
  • a working distance between the wafer-closest mirror M7 and the image plane 9 is 94 mm.
  • a mean wavefront error rms is about 24 ⁇ .
  • An aperture stop AS is arranged in the imaging light beam path between the mirrors M1 and M2 in front of the first second-level intermediate image 24. In the area of the aperture diaphragm AS, the entire imaging light beam is fully accessible.
  • FIGS. 14 to 16 A further embodiment of a projection optical system 26, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. 14 to 16. Components and functions which have already been explained above in connection with FIGS. 1 to 13 may carry the same reference numbers and will not be discussed again in detail.
  • the mirrors Ml, M6 and M7 are designed as Nl mirrors and the mirrors M2 to M5 as Gl mirrors.
  • the Gl mirrors M2 to M5 have a same direction distracting effect. Overall, the following applies to the sequence of the deflection effect in the mirrors M1 to M7 of the projection optics 26: RLLLOR.
  • the mirrors M1 to M7 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
  • the mirror M5 has a y / x aspect ratio that is greater than 1.
  • the y / x aspect ratio of the mirror M5 is less than 1.5.
  • the largest mirror diameter has the last mirror M7 of about 820 mm. None of the other mirrors M1 to M6 has a diameter larger than 525 mm. Five of the seven mirrors have a smaller maximum diameter than 450 mm.
  • the projection optics 26 in turn has exactly one first-level intermediate image 18 and two second-level intermediate images 19, 20.
  • the first-level intermediate image 18 is arranged at the level of the passage of the imaging light through the passage opening 17. This causes a very small x-extension of the passage opening 17.
  • the two second plane intermediate images 19, 20 are arranged on the one hand in the image light beam path between the GI mirrors M3 and M4 and on the other hand in the image light beam path between the GI mirrors M4 and M5.
  • the Gl mirror M4 is thus again a Gl mirror between two second plane intermediate images, as already explained above in connection with the embodiment according to FIGS. 11 to 13.
  • the projection optics 26 have an odd number of mirrors and, on the other hand, a difference in the numbers between the first-level intermediate image and the second-level intermediate image of exactly 1. This achieves a laterally correct image position compared to the object position, thus compensating for an "image flip".
  • the optical design data of the projection optics 26 can be found in the following tables, which correspond in their construction to the tables for the projection optics 7 according to FIG. 2.
  • the projection optics 26 has an image field size in the x-direction of twice 13.0 mm and in the y-direction of 1.2 mm.
  • the object field 4 and the image field 8 are each rectangular. Accordingly, the field curvature is 0.
  • An image-side numerical aperture in the projection optics 26 is 0.45.
  • a reduction factor in the first imaging light plane is xz 4.00 ( ⁇ x ) and in the second imaging light plane yz is 8.00 ( ⁇ y ).
  • An object-side main beam angle CRA is 4.2 °.
  • a pill obesity is a maximum of 13%.
  • the projection optics 26 has a total transmission of 9.29%.
  • An object image offset dois is approximately 2170 mm in the projection optics 26.
  • the mirrors of the projection optics 26 can be accommodated in a cuboid with the xyz edge lengths 822 mm x 2551 mm x 1449 mm.
  • the object plane 5 is tilted about the x-axis relative to the image plane 9 by 9.1 °.
  • a working distance between the wafer-near mirror M6 and the image plane is 80 mm.
  • a mean wavefront error rms is about 35 ⁇ .
  • FIGS. 17 to 19 A further embodiment of a projection optical system 27 will now be explained with reference to FIGS. 17 to 19, which may be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1.
  • Components and functions which have already been explained above in connection with FIGS. 1 to 16 may carry the same reference numbers and will not be discussed again in detail.
  • the projection optics 27 has a total of 9 mirrors Ml to M9.
  • the mirrors M1, M2, M3, M5, M6, M7 are designed as GI mirrors.
  • the remaining mirrors M4, M8 and M9 are designed as NI mirrors.
  • the last mirror M9 in the imaging light beam path is designed with a passage opening 17 for the imaging light 3.
  • the imaging light beam path has a crossing point in the projection optics 27.
  • the imaging light partial beams intersect on the one hand between the mirrors M2 and M3 and on the other hand between the mirrors M6 and M7 in an intersection region 28.
  • first plane intermediate image 18 close to the passage opening 17 in the mirror M9 and two second plane intermediate images 19, 20.
  • the first of the two second level intermediate images 19 is located in the projection optical system 27 in the imaging light beam path between the mirrors M4 and M5 near the reflection of the mirror M5.
  • the second of the two second-level intermediate images lies in the imaging light beam path between the mirrors M7 and M8 near the reflection at the mirror M7.
  • An aperture diaphragm AS lies in the imaging light beam path between the mirrors M2 and M3 after the crossing region 28. The imaging light beam is fully accessible in the region of the aperture diaphragm AS.
  • the mirrors M1 to M9 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
  • the mirrors M1 and M2 have a y / x aspect ratio that is greater than 1. None of the mirrors M1 to M9 has a y / x aspect ratio that is greater than 2.
  • the mirror M1 has the largest y / x aspect ratio in the range of 1.9.
  • the mirror M4 has the largest maximum diameter of 753.3 mm. This diameter is slightly larger than that of the last mirror M9, which is 751.8 mm. Five of the nine mirrors M1 to M9 have a diameter that is less than 450 mm. Four of the nine mirrors M1 to M9 have a diameter that is less than 400 mm. 19 shows the edge contours of the reflection surfaces of the mirrors M1 to M9.
  • the optical design data of the projection optics 27 can be found in the following tables, which correspond in their structure to the tables for projection optics 7 according to FIGS. 2 to 4.
  • the projection optics 27 has a total transmission of 7.2%.
  • the projection optics 27 has a picture-side numerical aperture of 0.50.
  • a reduction factor in the first imaging light plane xz is 4 ( ⁇ x ).
  • a reduction factor in the second imaging light plane yz is 8 ( ⁇ y ).
  • An object-side main beam angle CRA is 5.5 °.
  • a maximum pupil obscuration is 15%.
  • An object image offset dois of the projection optics 27 is about 530 mm.
  • the mirrors of the projection optics 27 can be accommodated in a cuboid with the xyz edge lengths 753 mm ⁇ 1869 mm ⁇ 1860 mm.
  • the object plane 5 is tilted by 15.5% relative to the image plane 9 about an axis parallel to the x axis.
  • a working distance between the wafer-closest mirror M8 and the image plane 9 is 83 mm.
  • a mean wavefront error rms is 10.4 ⁇ .
  • FIG. 20 A further embodiment of a projection optical system 29 which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1 is explained below with reference to FIGS. 20 to 22.
  • FIG. 21 shows a meridional section of the projection optics 29.
  • FIG. 21 shows a sagittal view of the projection optics 29.
  • FIG. 22 again shows the edge contours of the reflection surfaces of the mirrors M1 to M9 of the projection optics 29.
  • the projection optics 29 has 3 NI mirrors, namely the mirrors Ml, M8 and M9.
  • the projection optics 29 has six GI mirrors, namely the mirrors M2 to M7.
  • the mirrors M2 to M7 all have the same direction of the mirror deflection effect.
  • the projection optics 29 are similar to the projection optics 26 of FIGS. 14 to 16.
  • the mirrors M1 to M9 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
  • the following table once again shows the mirror parameters of the mirrors M1 to M9 of the projection optics 29.
  • no mirror of the projection optics 29 has a y / x aspect ratio larger than 1.
  • the y / x aspect ratio of the mirror M7 is about 1.6.
  • the largest maximum diameter has the last in the imaging beam path M9 mirror with 930.3 mm.
  • the maximum diameters of all other mirrors M1 to M8 are less than 800 mm.
  • Four of the nine mirrors Ml to M9 have a maximum diameter that is less than 600 mm.
  • the projection optics 29 again has exactly one first-level intermediate image 18 in the region of the through-opening 17 in the mirror M9 and two second-level intermediate images 19, 20.
  • the first of the two second-level intermediate images 19 lies in the image light beam path between the two GI mirrors M4 and M5.
  • the second of the two second-level intermediate images 20 lies in the imaging light beam path between the two Gl mirrors M6 and M7.
  • the optical design data of the projection optics 29 can be found in the following tables, which in their tables correspond to the projection optics 7 according to FIG. 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The invention relates to an imaging optic (7) for projection lithography, comprising a plurality of mirrors (M-8) for guiding imaging light (3) from an object field (4) into an image field (8). The object field (4) spans two object field coordinates (x, y), on which a normal coordinate (z) stands in a perpendicular manner. Imaging light (3) runs in a first imaging light plane (xzHR ) through at least one first-plane intermediate image (18) of the imaging optic (7). In a second imaging light plane (yz), the imaging light runs through at least one second-plane intermediate image (19, 20) of the imaging optic (7). The number of the first-plane intermediate images (18) and the number of the second-plane intermediate images (19, 20) are different from one another. The result is an imaging optic with reduced production costs.

Description

Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik  Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
Die vorliegende Patentanmeldung nimmt die Prioritäten der deutschen Patentanmeldungen DE 10 2015 206 635.5 und DE 10 2015 226 531.5 in Anspruch, deren Inhalte durch Bezugnahme hierin aufgenommen werden. The present patent application claims the benefit of the priorities of German patent applications DE 10 2015 206 635.5 and DE 10 2015 226 531.5, the contents of which are incorporated herein by reference.
Die Erfindung betrifft eine abbildende Optik beziehungsweise Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld. Ferner betrifft die Erfindung ein optisches System mit einer derartigen Projektionsoptik, eine Projektionsbelichtungsanlage mit einem derartigen optischen System, ein Verfahren zur Herstellung eines mikro- beziehungsweise nanostrukturierten Bauteils mit einer derartigen Projektionsbelichtungsanlage sowie ein mit diesem Verfahren hergestelltes mikro- beziehungsweise nanostrukturiertes Bauelement. Weiterhin betrifft die Erfindung einen Spiegel als Bestandteil einer derartigen abbildenden Optik. The invention relates to an imaging optics or projection optics for imaging an object field in an image field. Furthermore, the invention relates to an optical system having such a projection optical system, a projection exposure apparatus with such an optical system, a method for producing a microstructured or nanostructured component with such a projection exposure apparatus, and a microstructured or nanostructured component produced by this method. Furthermore, the invention relates to a mirror as part of such imaging optics.
Projektionsoptiken der eingangs genannten Art sind bekannt aus der JP 2002-048977 A, der US 5,891,806, die eine Projektionsbelichtungsanlage vom "Proximity-Type" beschreibt, und aus der WO 2008/141 686 AI sowie aus der WO 2015/014 753 AI . Es ist eine Aufgabe der vorliegenden Erfindung, eine abbildende Optik der eingangs genannten Art derart weiterzubilden, dass deren Herstellungskosten reduziert sind. Projection optics of the type mentioned in the introduction are known from JP 2002-048977 A, US Pat. No. 5,891,806, which describes a "proximity-type" projection exposure apparatus, and WO 2008/141 686 A1 and WO 2015/014 753 A1. It is an object of the present invention to develop an imaging optics of the type mentioned above such that their production costs are reduced.
Diese Aufgabe ist erfindungsgemäß gelöst durch eine abbildende Optik mit den im Anspruch 1 genannten Merkmalen. This object is achieved by an imaging optics with the features mentioned in claim 1.
Die abbildende Optik ist zum Einsatz in der Projektionslithographie, insbesondere zum Einsatz in der EUV-Projektionslithographie ausgelegt. The imaging optics are designed for use in projection lithography, in particular for use in EUV projection lithography.
Die abbildende Optik ist als choristikonale Optik mit unterschiedlicher Anzahl von Zwischenbildern in den beiden Abbildungslicht-Ebenen ausgebildet. Dieser Anzahl-Unterschied kann genau 1 betragen, kann aber auch größer sein, zum Beispiel 2 oder noch größer. Die erste Abbildungslicht-Ebene (XZHR) wird aufgespannt von der jeweiligen Abbildungslicht- Hauptpropagationsrichtung (ZHR) und der ersten kartesischen Objektfeldkoordinate (x). Die Ab- bildungslicht-Hauptpropagationsrichtung (ZHR) ergibt sich durch Verkippung der Normalkoordinate z in der durch die zweite kartesische Objektfeldkoordinate (x) und die Normalkoordinate (z) aufgespannte Ebene, bis die ursprünglich in z-Richtung verlaufende momentane Propagations- koordinate ZHR in Richtung der Abbildungslicht-Hauptpropagationsrichtung verläuft. Mit jeder Richtungsänderung der Abbildungslicht-Hauptpropagationsrichtung ändert sich also eine Lage der ersten Abbildungslicht-Ebene. Die unterschiedliche Anzahl der Zwischenbilder in den beiden Abbildungslicht-Ebenen kann als zusätzlicher Designfreiheitsgrad genutzt werden, um das gesamte Abbildungslichtbündel dort einzuengen, wo dies aus Strahlführungsgründen gewünscht ist, zum Beispiel im Bereich von Spiegeln für streifenden Einfall, um deren Ausdehnung nicht zu groß werden zu lassen, und/oder im Bereich von aus Bauraumgründen notwendigen Einschnürungen. Es wurde dabei erkannt, dass insbesondere dann, wenn ein Objektfeld mit deutlich von 1 verschiedenem Aspektverhältnis abgebildet werden soll, die Anforderungen an die Ausdehnung des Abbildungslichtbündels in dessen beiden Querschnittsdimensionen in den beiden Abbildungslicht-Ebenen durchaus unterschiedlich sind, sodass diesen Anforderungen mit Hilfe einer choristikonalen Gestaltung Rechnung getragen werden kann. Die größere Anzahl der Zwischenbilder in einer der beiden Abbil- dungslicht-Ebenen kann 2 betragen, kann 3 betragen oder kann größer sein. Die kleinere der Anzahlen der Zwischenbilder in den beiden Abbildungslicht-Ebenen kann 0 sein, kann 1 betragen, kann 2 betragen oder noch größer sein. Die Anzahl der Spiegel kann 6, 7, 8, 9 oder 10 betragen. Die Spiegelanzahl kann auch kleiner oder größer sein. Eine Lage der Zwischenbilder kann entlang der Abbildungslicht-Hauptpropagationsrichtung grundsätzlich an einem beliebigen Ort zwischen dem Objektfeld und dem Bildfeld sein. Ein jeweiliges Erstebenen-Zwischenbild oder Zweitebenen-Zwischenbild kann zwischen zwei Spiegeln oder am Ort der Reflexion an einem Spiegel liegen. Zwischen einer Feldebene und einem der Zwischenbilder kann jeweils mindestens ein Spiegel liegen. The imaging optics is designed as a choristikonale optics with different numbers of intermediate images in the two imaging light levels. This number difference can be exactly 1, but can be larger, for example 2 or even larger. The first imaging light plane (XZHR) is spanned by the respective imaging light main propagation direction (ZHR) and the first Cartesian object field coordinate (x). The imaging light main propagation direction (ZHR) is obtained by tilting the normal coordinate z in the plane spanned by the second Cartesian object field coordinate (x) and the normal coordinate (z) until the instantaneous propagation coordinate ZHR in the direction z the imaging light main propagation direction. With each change in direction of the imaging light main propagation direction, therefore, a position of the first imaging light plane changes. The different number of intermediate images in the two imaging light planes can be used as an additional degree of design freedom to narrow the entire imaging light beam where it is desired for beam guiding reasons, for example in the area of grazing incidence mirrors, so as not to increase their size let, and / or in the range of constrictions necessary for space reasons. It was thereby recognized that, in particular when an object field with clearly distinct aspect ratio is to be imaged, the requirements for the extent of the imaging light bundle in its two cross-sectional dimensions in the two imaging light planes are quite different, so that these requirements are met with the aid of a choristikonal Design can be taken into account. The larger number of intermediate images in one of the two illumination light levels may be 2, may be 3 or may be larger. The smaller of the numbers of the intermediate images in the two imaging light planes may be 0, may be 1, may be 2 or even larger. The number of mirrors can be 6, 7, 8, 9 or 10. The number of mirrors can also be smaller or larger. A location of the intermediate images may be basically along the imaging light main propagation direction at any location between the object field and the image field. A respective first-level intermediate image or second-level intermediate image may lie between two mirrors or at the location of the reflection on a mirror. Between a field level and one of the intermediate images, at least one mirror can each lie.
Alle Spiegel der abbildenden Optik können als Nl-Spiegel ausgebildet sein, also als Spiegel, auf die das Abbildungslicht mit einem Einfallswinkel trifft, der kleiner ist als 45°. Dies führt zur Möglichkeit, die abbildende Optik kompakt auszuführen. Die kleinen Einfallswinkel auf allen Spiegeln ermöglichen zudem eine hohe Gesamttransmission der abbildenden Optik, also einen hohen Nutzlicht-Durchsatz. Ein Objekt-Bild- Versatz, gemessen in einer Ebene parallel zur Bildebene der abbildenden Optik, kann kleiner sein als 1000 mm, kann kleiner sein als 800 mm, kann kleiner sein als 600 mm, kann kleiner sein als 400 mm, kann kleiner sein als 300 mm, kann kleiner sein als 200 mm, kann kleiner sein als 180 mm und kann insbesondere 177,89 mm betragen. Die Objektebene kann um einen endlichen Winkel relativ zur Bildebene verkippt sein. All mirrors of the imaging optics can be designed as NI mirrors, that is to say as mirrors, to which the imaging light strikes at an angle of incidence which is less than 45 °. This leads to Possibility to make the imaging optics compact. The small angles of incidence on all mirrors also allow a high total transmission of the imaging optics, ie a high useful light throughput. An object-image offset measured in a plane parallel to the image plane of the imaging optics may be smaller than 1000 mm, may be smaller than 800 mm, may be smaller than 600 mm, may be smaller than 400 mm, may be smaller than 300 mm, may be smaller than 200 mm, may be smaller than 180 mm and in particular may be 177.89 mm. The object plane can be tilted by a finite angle relative to the image plane.
Die abbildende Optik kann eine Aperturblende, angeordnet im Abbildungslicht- Strahlengang zwischen zweien der Spiegel der abbildenden Optik aufweisen, wobei die Aperturblende einen gesamten äußeren Querschnitt eines Bündels des Abbildungslichts begrenzt. Eine derartige Aperturblende kann von allen Seiten von außen her zugänglich gestaltet sein. Mithilfe einer solchen Aperturblende ist eine definierte Vorgabe einer Pupillenform der abbildenden Optik möglich. The imaging optics may include an aperture stop disposed in the imaging light beam path between two of the mirrors of the imaging optics, the aperture stop defining an entire outer cross section of a beam of the imaging light. Such an aperture diaphragm can be made accessible from all sides from the outside. By means of such an aperture diaphragm, a defined specification of a pupil shape of the imaging optics is possible.
Die Aperturblende kann in einem Teil-Strahlengang des Abbildungslichts zwischen zweien der Spiegel liegen, wobei die Aperturblende räumlich benachbart zu einem der Zweitebenen-The aperture diaphragm may lie in a partial beam path of the imaging light between two of the mirrors, the aperture diaphragm being spatially adjacent to one of the second planes.
Zwischenbündel liegt, das in einem weiteren Teil- Strahlengang des Abbildungslichts zwischen zweien der Spiegel angeordnet ist. Eine derartige Anordnung der Aperturblende führt zur Möglichkeit, die abbildende Optik mit kleinen Faltwinkeln auch im Bereich der Aperturblende auszuführen. Intermediate beam is located, which is arranged in a further partial beam path of the imaging light between two of the mirror. Such an arrangement of the aperture diaphragm leads to the possibility of carrying out the imaging optics with small folding angles also in the area of the aperture stop.
Eine PupiUenobskuration der abbildenden Optik kann höchstens 15 % betragen. Eine derartige PupiUenobskuration, definiert als Flächenanteil einer obskurierten, also nicht für die Abbildung nutzbaren Pupillenfläche zur gesamten Pupillenfläche, hat geringe Auswirkungen auf die Abbildung. Die PupiUenobskuration kann kleiner sein als 15%, kann kleiner sein als 12%, kann klei- ner sein als 10%> und kann beispielsweise 9% betragen. Ein maximaler Einfallswinkel des Abbildungslichts auf allen Spiegeln der abbildenden Optik kann kleiner sein als 25°. Ein derartiger maximaler Einfallswinkel des Abbildungslichts ermöglicht die Ausgestaltung der Spiegel mit hoher Reflektivität auch dann, wenn EUV-Licht als Nutzlicht zum Einsatz kommt. Der maximale Einfallswinkel kann kleiner sein als 22°. A PupiUenobskuration of the imaging optics can amount to a maximum of 15%. Such a PupiUenobskuration, defined as the area of an obscured, so not usable for the image pupil surface to the entire pupil surface, has little effect on the figure. The PupiUenobskuration may be less than 15%, may be less than 12%, may be less than 10%> and may be 9%, for example. A maximum angle of incidence of the imaging light on all mirrors of the imaging optics may be less than 25 °. Such a maximum angle of incidence of the imaging light allows the design of the mirror with high reflectivity, even if EUV light is used as the useful light. The maximum angle of incidence may be less than 22 °.
Ein maximaler Einfallswinkel des Abbildungslichts auf den ersten vier Spiegeln der abbildenden Optik im Abbildungslicht- Strahlengang nach dem Objektfeld kann kleiner sein als 20°. Derartige maximale Einfallswinkel des Abbildungslichts auf den ersten vier Spiegeln haben entsprechende Vorteile. Der maximale Einfallswinkel kann kleiner sein als 19°, kann kleiner sein als 18°, kann maximal 17,5° betragen und kann auch maximal 16,6° betragen. A maximum angle of incidence of the imaging light on the first four mirrors of the imaging optics in the imaging light beam path after the object field can be less than 20 °. Such maximum incident angles of the imaging light on the first four mirrors have corresponding advantages. The maximum angle of incidence may be less than 19 °, may be less than 18 °, may not exceed 17.5 ° and may not exceed 16.6 °.
Die Objektebene der abbildenden Optik kann relativ zur Bildebene um einen Winkel verkippt sein, der größer ist als 0°. Eine derartige Verkippung der Objektebene zur Bildebene hat sich insbesondere zum Erreichen kleiner maximaler Einfallswinkel auf allen Spiegeln als geeignet herausgestellt. Der Kippwinkel kann größer sein als 1°, kann größer sein als 2°, kann größer sein als 4°, kann größer sein als 5°, kann größer sein als 7°, kann größer sein als 8° und kann beispielsweise 10° betragen. The object plane of the imaging optics may be tilted relative to the image plane by an angle which is greater than 0 °. Such a tilt of the object plane to the image plane has been found to be particularly suitable for achieving small maximum angle of incidence on all mirrors as appropriate. The tilt angle may be greater than 1 °, may be greater than 2 °, may be greater than 4 °, may be greater than 5 °, may be greater than 7 °, may be greater than 8 ° and may, for example, be 10 °.
Sowohl eines der Erstebenen-Zwischenbilder als auch eines der Zweitebenen- Zwischenbilder der abbildenden Optik kann im Bereich einer Durchtrittsöffnung eines der Spiegel der abbildenden Optik zum Durchtritt des Abbildungslichts liegen. Eine solche Zwischenbild- Anordung führt zu einer vorteilhaften Einengung beider Querschnittsdimensionen des gesamten Abbildungslicht- Bündels. Bei einer Ausgestaltung der abbildenden Optik nach Anspruch 2 mit mindestens einem Spiegel für streifenden Einfall (Gl-Spiegel; Einfallwinkel größer als 45°) kommen die Vorteile der cho- ristikonalen Ausführung besonders gut zum Tragen. Both one of the first-level intermediate images and one of the second-level intermediate images of the imaging optics can lie in the region of a passage opening of one of the mirrors of the imaging optics for the passage of the imaging light. Such an intermediate image arrangement leads to an advantageous narrowing of both cross-sectional dimensions of the entire imaging light bundle. In one embodiment of the imaging optical system according to claim 2, with at least one mirror for grazing incidence (GI mirrors, angles of incidence greater than 45 °), the advantages of the choke-rally-neutral design are particularly evident.
Eine Aspektverhältnisbedingung für den Gl-Spiegel nach Anspruch 3 führt zu einem handhabbar großen Gl-Spiegel, dessen Herstellungskosten entsprechend vertretbar sind. Bei der Berechnung des Aspektverhältnisses wird zunächst die größte Erstreckung der Reflexionsfläche des GI- Spiegels gemessen und der zugehörige Dimensionswert dann durch die Erstreckung der Reflexi- onsfläche senkrecht zu dieser größten Erstreckungsrichtung geteilt. Das Aspektverhältnis der genutzten Reflexionsfläche des GI-Spiegels kann maximal 2,5, kann maximal 2, kann maximal 1,95, kann maximal 1,9, kann maximal 1,75, kann maximal 1,5, kann maximal 1,25, kann maximal 1,2, kann maximal 1,1 und kann auch maximal 1,05 betragen. An aspect ratio condition for the GI-mirror according to claim 3 leads to a manageable large GI-mirror whose manufacturing costs are reasonably justifiable. When calculating the aspect ratio, the greatest extent of the reflection surface of the GI mirror is first measured, and the associated dimension value is then determined by the extent of the reflectivity. onsfläche divided perpendicular to this largest extension direction. The aspect ratio of the used reflection surface of the GI mirror can be 2.5, maximum 2, maximum 1.95, maximum 1.9, maximum 1.75, maximum 1.5, maximum 1.25 maximum 1.2, can not exceed 1.1 and can also be a maximum of 1.05.
Eine Anzahlverteilung der Zwischenbilder nach Anspruch 4 führt dazu, dass das Abbildungslichtbündel in der GI-Spiegel-Faltebene, also in der Einfallsebene eines Hauptstrahls eines zentralen Feldpunktes auf dem GI-Spiegel, vorteilhaft eingeengt werden kann. Eine Verteilung von Zwischenbildern nach den Ansprüchen 5 und 6 hat sich zur kompakten Gestaltung von Gl-Spiegeln als besonders vorteilhaft herausgestellt. Auch mehrere Gl-Spiegelpaare mit jeweils zwischenliegendem Zwischenbild innerhalb der gleichen abbildenden Optik sind möglich. Eine Zwischenbild- Anordnung nach Anspruch 7 führt zu einer vorteilhaften Einengung des Abbildungslichtbündels im Bereich der Spiegel-Durchtrittsöffnung. Das Zwischenbild kann in der Abbildungslicht-Ebene mit Aufspannkoordinate längs der größeren Objektfeld-Dimension bei einem Objektfeld mit Aspektverhältnis größer 1 liegen. Ein derartiges Zwischenbild gewährleistet, dass das gesamte Abbildungslichtbündel längs der Koordinate stärker eingeschnürt wird, in der das Bündel aufgrund der größeren Felddimension tendenziell den größeren Durchmesser hat. Das Zwischenbild liegt dann im Bereich der Durchtrittsöffnung, solange ein Abstand zwischen der Durchtrittsöffnung und dem Bildfeld mehr als dreimal so groß ist als ein Abstand zwischen der Durchtrittsöffnung und dem Zwischenbild. Das Verhältnis zwischen diesen Abständen kann größer sein als 3,5, kann größer sein als 4, kann größer sein als 5, kann größer sein als 7, kann größer sein als 10 oder kann noch größer sein. Bei der Durchtrittsöffnung kann es sich um diejenige handeln, in deren Bereich sowohl eines der Erstebenen-Zwischenbilder als auch eines der Zweitebenen-Zwischenbilder liegt. A number distribution of the intermediate images according to claim 4 results in that the imaging light beam in the GI mirror folding plane, ie in the plane of incidence of a main beam of a central field point on the GI mirror, can be advantageously narrowed. A distribution of intermediate images according to claims 5 and 6 has been found to be particularly advantageous for the compact design of GI mirrors. Also several GI mirror pairs with each intermediate intermediate image within the same imaging optics are possible. An intermediate image arrangement according to claim 7 leads to an advantageous constriction of the imaging light beam in the region of the mirror passage opening. The intermediate image may lie in the imaging light plane with Aufspannkoordinate along the larger object field dimension at an object field with aspect ratio greater than 1. Such an intermediate image ensures that the entire imaging light bundle is more strongly constricted along the coordinate in which the bundle tends to have the larger diameter due to the larger field dimension. The intermediate image is then in the region of the passage opening, as long as a distance between the passage opening and the image field is more than three times as large as a distance between the passage opening and the intermediate image. The ratio between these distances may be greater than 3.5, may be greater than 4, may be greater than 5, may be greater than 7, may be greater than 10, or may be greater. The passage opening can be one in whose area both one of the first-level intermediate images and one of the second-level intermediate images is located.
Auch bei einer Ausführung nach Anspruch 8 mit mindestens einem Nl-Spiegel (Spiegel mit Ein- fallswinkel nahe der senkrechten Inzidenz; Einfallswinkel kleiner als 45°) hat sich die choris- tikonale Gestaltung der abbildenden Optik als vorteilhaft herausgestellt. Hier kann eine entsprechende Verteilung der Zwischenbilder auf die verschiedenen Abbildungslicht-Ebenen beispiels- weise eine Platzierung von Feldblenden oder von feldseitigen Hilfseinrichtungen erleichtern. Auch die Lagevorgabe einer Aperturblende kann dann erleichtert werden. Eine gemischte Ausführung einer abbildenden Optik mit mindestens einem GI-Spiegel und mindestens einem NI- Spiegel ist möglich. Die abbildende Optik kann alternativ ausschließlich NI-Spiegel aufweisen. Even with an embodiment according to claim 8 having at least one NI mirror (mirror with incidence angle close to the vertical incidence, angle of incidence less than 45 °), the choristic configuration of the imaging optics has proven to be advantageous. Here a corresponding distribution of the intermediate images to the different imaging light levels can be way facilitate placement of field panels or field-side auxiliary equipment. The position of an aperture diaphragm can then be facilitated. A mixed embodiment of an imaging optics with at least one GI mirror and at least one NI mirror is possible. The imaging optics may alternatively have only NI mirrors.
Bei einer abbildenden Optik nach Anspruch 9 kann ein Anzahlunterschied der Zwischenbilder in den beiden Abbildungslicht-Ebenen von genau 1 zu einem Ausgleich einer aufgrund der ungeradzahligen Spiegelanzahl hervorgerufenen Bildumkehr (Image Flip) führen. Mindestens einer der Spiegel der abbildenden Optik kann eine Reflexionsfläche haben, die als Freiformfläche ausgeführt ist. Beispiele für derartige Freiformflächen werden nachfolgend noch im Detail beschrieben. In an imaging optical system according to claim 9, a number difference of the intermediate images in the two imaging light planes of exactly one may result in compensation for image flip caused by the odd number of mirrors. At least one of the mirrors of the imaging optics may have a reflection surface which is designed as a free-form surface. Examples of such free-form surfaces will be described in detail below.
Ein optisches System nach Anspruch 10 nutzt die Möglichkeit des Designfreiheitsgrades über die unterschiedlichen Anzahlen der Zwischenbilder in den verschiedenen Abbildungslicht- Ebenen aus. Bei der Hilfseinrichtung kann es sich um eine Feldblende oder auch um eine Intensitätsvorgabeeinrichtung nach Art eines UNICOM handeln. An optical system according to claim 10 exploits the possibility of design freedom over the different numbers of intermediate images in the different imaging light planes. The auxiliary device can be a field stop or also an intensity presetting device in the manner of a UNICOM.
Die Vorteile eines optischen Systems nach Anspruch 11 entsprechen denen, die vorstehend unter Bezugnahme auf die abbildende Optik sowie das optische System mit der Hilfseinrichtung bereits erläutert wurden. Auch das optische System nach Anspruch 11 kann eine derartige Hilfseinrichtung aufweisen. The advantages of an optical system according to claim 11 correspond to those which have already been explained above with reference to the imaging optics and the optical system with the auxiliary device. The optical system according to claim 11 may also comprise such an auxiliary device.
Bei der Lichtquelle kann es sich um eine EUV-Lichtquelle handeln. Auch eine DUV- Lichtquelle, also beispielsweise eine Lichtquelle mit einer Wellenlänge von 193 nm, kann alternativ zum Einsatz kommen. The light source may be an EUV light source. A DUV light source, for example a light source with a wavelength of 193 nm, can also be used as an alternative.
Die Vorteile einer Projektionsbelichtungsanlage nach Anspruch 12, eines Herstellungsverfahrens nach Anspruch 13 und eines mikro- beziehungsweise nanostrukturierten Bauteils nach Anspruch 14 entsprechen denen, die vorstehend unter Bezugnahme auf die abbildende Optik und das optische System bereits erläutert wurden. Hergestellt kann mit der Projektionsbelichtungsanlage insbesondere ein Halbleiter-Bauteil, beispielsweise ein Speicherchip. Eine weitere Aufgabe der Erfindung ist es, einen mit vertretbarem Aufwand zu fertigenden Spiegel als Bestandteil einer abbildenden Optik zur Führung von Abbildungslicht von einem Objektfeld in einer Objektebene in ein Bildfeld in einer Bildebene längs eines Abbildungslicht- Strahlengangs zu schaffen. The advantages of a projection exposure apparatus according to claim 12, a production method according to claim 13 and a micro- or nanostructured component according to claim 14 correspond to those which have already been explained above with reference to the imaging optics and the optical system. In particular, a semiconductor component, for example a memory chip, can be produced using the projection exposure apparatus. A further object of the invention is to provide a mirror which can be produced with reasonable effort as part of an imaging optical system for guiding imaging light from an object field in an object plane to an image field in an image plane along an imaging light beam path.
Diese Aufgabe ist erfindungsgemäß gelöst durch einen Spiegel mit den im Anspruch 15 angegebenen Merkmalen. Erfindungsgemäß wurde erkannt, dass eine Randkontur eines gesamten Abbildungslichtbündels nicht zwingend konvex verlaufen muss. Die erfindungsgemäße Reflexionsflächen-Randkontur des Spiegels mit mindestens zwei Konturauswölbungen stellt sicher, dass eine entsprechend ausgewölbt geformte Randkontur eines gesamten Abbildungslichtbündels reflektiert werden kann. Zudem ist der Spiegel für solche Reflexionsaufgaben nicht unnötig groß gestaltet, was dessen Herstellungskosten verringert. This object is achieved by a mirror with the features specified in claim 15. According to the invention, it has been recognized that an edge contour of an entire imaging light bundle does not necessarily have to be convex. The reflection surface edge contour of the mirror according to the invention with at least two contour bulges ensures that a corresponding bulged shaped edge contour of an entire imaging light bundle can be reflected. In addition, the mirror is not designed unnecessarily large for such reflection tasks, which reduces its manufacturing cost.
Der Spiegel kann insbesondere in einer abbildenden Optik mit den vorstehend genannten Merkmalen zum Einsatz kommen. Der Spiegel kann als EUV-Spiegel ausgeführt sein und eine entsprechende hochreflektierende Beschichtung tragen. Diese Beschichtung kann als Mehrlagenbe- Schichtung ausgeführt sein. Der erfindungsgemäße Spiegel kann mit den Merkmalen zu den übergeordneten Baugruppen„abbildende Optik",„optisches System",„Projektionsbelichtungs- anlage" kombiniert werden. The mirror can be used in particular in an imaging optical system with the aforementioned features. The mirror can be designed as an EUV mirror and carry a corresponding highly reflective coating. This coating can be designed as a multilayer coating. The mirror according to the invention can be combined with the features of the superordinate assemblies "imaging optics", "optical system", "projection exposure apparatus".
Die abbildende Optik kann eine Mehrzahl derartiger Spiegel mit Konturauswölbungen aufwei- sen. Der die Konturauswölbungen aufweisende Spiegel kann insbesondere im Bereich einesThe imaging optics can have a plurality of such mirrors with contour bulges. The contour bulges having the mirror can in particular in the field of
Zwischenbildes der abbildenden Optik angeordnet sein. Bei dem die Konturauswölbungen aufweisenden Spiegel kann es sich um einen NI-(Normal Incidence) oder um einen GI-(Grazing Incidence) Spiegel handeln. Der Spiegel kann eine Reflexionsfläche mit einer gebogenen Grundform oder mit einer rechteckigen Grundform aufweisen. Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen: schematisch eine Projektionsbelichtungsanlage für die EUV- Mikrolithographie; in einem Meridionalschnitt eine Ausführung einer abbildenden Optik, die als Projektionsobjektiv in der Projektionsbelichtungsanlage nach Fig. 1 einsetzbar ist, wobei ein Abbildungsstrahlengang für Hauptstrahlen und für einen oberen und einen unteren Komastrahl zweier ausgewählter Feldpunkte dargestellt ist; eine Ansicht der abbildenden Optik nach Fig. 2, gesehen aus Blickrichtung III in Fig. 2; Intermediate image of the imaging optics can be arranged. The mirror having the contour bulges may be a NI (Normal Incidence) or a GI (Grazing Incidence) mirror. The mirror may have a reflective surface with a curved basic shape or with a rectangular basic shape. Embodiments of the invention will be explained in more detail with reference to the drawing. Shown schematically in FIG. 1 are a projection exposure apparatus for EUV microlithography; in a Meridionalschnitt an embodiment of an imaging optics, which is used as a projection lens in the projection exposure apparatus of Figure 1, wherein an imaging beam path for main beams and for an upper and a lower Komastrahl two selected field points is shown. a view of the imaging optics of Figure 2, seen from view III in Fig. 2.
Aufsichten auf Randkonturen optisch genutzter Flächen der Spiegel der abbildenden Optik nach den Fig. 2 und 3; in einer zu Fig. 2 ähnlichen Darstellung eine weitere Ausführung einer abbildenden Optik, einsetzbar als Projektionsobjektiv in der Projektionsbeiich tungsanlage nach Fig. 1; eine Ansicht der abbildenden Optik nach Fig. 5, gesehen aus Blickrichtung VI in Fig. 5; Supervision on edge contours of optically used surfaces of the mirror of the imaging optics according to FIGS. 2 and 3; in a similar to Fig. 2 representation of another embodiment of an imaging optics, used as a projection lens in the projection processing plant according to Fig. 1; a view of the imaging optics of Figure 5, seen from the viewing direction VI in Fig. 5.
Aufsichten auf Randkonturen optisch genutzter Flächen der Spiegel der abbildenden Optik nach den Fig. 5 und 6; Supervision on edge contours of optically used surfaces of the mirror of the imaging optics according to FIGS. 5 and 6;
Fig. 8 bis Fig. 31 in zu den Fig. 5 bis 7 jeweils ähnlichen Darstellungen weitere Ausführungen einer abbildenden Optik, einsetzbar als Projektionsobjektiv in der Projektionsbelichtungsanlage nach Fig. 1, Fig. 32 in einem Meridionalschnitt eine Ausführung einer abbildenden Optik, die als Projektionsobjektiv in der Projektionsbelichtungsanlage nach Fig. 1 einsetzbar ist, wobei ein Abbildungsstrahlengang für Hauptstrahlen und für einen oberen und einen unteren Komastrahl zweier ausgewählter Feldpunkte dargestellt ist; 8 to 31 in FIGS. 5 to 7 similar representations, further embodiments of an imaging optical system, usable as a projection objective in the projection exposure apparatus according to FIG. 1, FIG. 32 shows in a meridional section an embodiment of an imaging optical system which can be used as a projection objective in the projection exposure apparatus according to FIG. 1, an imaging beam path for main beams and for an upper and a lower coma beam of two selected field points being illustrated;
Fig. 33 in einer zu Fig. 32 ähnlichen Darstellung eine weitere Ausführung einer abbildenden Optik, einsetzbar als Projektionsobjektiv in der Projektionsbelichtungsanlage nach Fig. 1; 33 shows, in a representation similar to FIG. 32, a further embodiment of an imaging optical system, usable as a projection objective in the projection exposure apparatus according to FIG. 1;
Fig. 34 eine Ansicht aus Blickrichtung XXXIV in Fig. 32; und FIG. 34 shows a view from the viewing direction XXXIV in FIG. 32; FIG. and
Fig. 35 eine Ansicht gemäß Blickrichtung XXXV in Fig. 33. Eine Projektionsbelichtungsanlage 1 für die Mikrolithographie hat eine Lichtquelle 2 für Beleuchtungslicht beziehungsweise Abbildungslicht 3. Bei der Lichtquelle 2 handelt es sich um eine EUV-Lichtquelle, die Licht in einem Wellenlängenbereich beispielsweise zwischen 5 nm und 30 nm, insbesondere zwischen 5 nm und 15 nm, erzeugt. Bei der Lichtquelle 2 kann es sich um eine plasmabasierte Lichtquelle (lasererzeugtes Plasma (laser-produced plasma, LPP), gasentladungserzeugtes Plasma (gas-discharge produced plasma, GDP)) oder auch um eine synchrotronbasierte Lichtquelle, zum Beispiel einen Freie-Elektronen-Laser (FEL) handeln. Bei der Lichtquelle 2 kann es sich insbesondere um eine Lichtquelle mit einer Wellenlänge von 13,5 nm oder um eine Lichtquelle mit einer Wellenlänge von 6,9 nm handeln. Auch andere EUV- Wellenlängen sind möglich. Generell sind sogar beliebige Wellenlängen, zum Beispiel sichtbare Wellenlängen oder auch andere Wellenlängen, die in der Mikrolithographie Verwendung finden können (zum Beispiel DUV, tiefes Ultraviolett) und für die geeigneten Laserlichtquellen und/oder LED-Lichtquellen zur Verfügung stehen (beispielsweise 365 nm, 248 nm, 193 nm, 157 nm, 129 nm, 109 nm), für das in der Projektionsbelichtungsanlage 1 geführte BeleuchtungslichtA projection exposure apparatus 1 for microlithography has a light source 2 for illumination light or imaging light 3. The light source 2 is an EUV light source, the light in a wavelength range, for example between 5 nm and 30 nm, in particular between 5 nm and 15 nm. The light source 2 can be a plasma-based light source (laser-produced plasma (LPP), gas-discharge produced plasma (GDP)) or even a synchrotron-based light source, for example a free-electron laser (FEL) act. The light source 2 may in particular be a light source with a wavelength of 13.5 nm or a light source with a wavelength of 6.9 nm. Other EUV wavelengths are possible. In general, even arbitrary wavelengths, for example visible wavelengths or also other wavelengths which can be used in microlithography (for example DUV, deep ultraviolet) and for the suitable laser light sources and / or LED light sources are available (for example 365 nm, 248 nm) nm, 193 nm, 157 nm, 129 nm, 109 nm) for the illumination light guided in the projection exposure apparatus 1
3 möglich. Ein Strahlengang des Beleuchtungslichts 3 ist in der Fig. 1 äußerst schematisch dargestellt. Zur Führung des Beleuchtungslichts 3 von der Lichtquelle 2 hin zu einem Objektfeld 4 in einer Objektebene 5 dient eine Beleuchtungsoptik 6. Mit einer Projektionsoptik beziehungsweise abbildenden Optik 7 wird das Objektfeld 4 in ein Bildfeld 8 in einer Bildebene 9 mit einem vorgegebenen Verkleinerungsmaßstab abgebildet. 3 possible. A beam path of the illumination light 3 is shown extremely schematically in FIG. An illumination optical system 6 is used to guide the illumination light 3 from the light source 2 to an object field 4 in an object plane 5. The object field 4 is imaged into an image field 8 in an image plane 9 with a predetermined reduction scale using projection optics or imaging optics 7.
Zur Erleichterung der Beschreibung der Projektionsbehchtungsanlage 1 sowie der verschiedenen Ausführungen der Projektionsoptik 7 ist in der Zeichnung ein kartesisches xyz- Koordinatensystem angegeben, aus dem sich die jeweilige Lagebeziehung der in den Figuren dargestellten Komponenten ergibt. In der Fig. 1 verläuft die x-Richtung senkrecht zur Zeichen- ebene in diese hinein. Die y-Richtung verläuft nach links und die z-Richtung nach oben. To facilitate the description of the projection apparatus 1 and the various embodiments of the projection optics 7, a Cartesian xyz coordinate system is indicated in the drawing, from which the respective positional relationship of the components shown in the figures results. In FIG. 1, the x direction runs perpendicular to the plane of the drawing into it. The y-direction runs to the left and the z-direction to the top.
Das Objektfeld 4 und das Bildfeld 8 sind bei der Projektionsoptik 7 gebogen beziehungsweise gekrümmt und insbesondere teilringförmig ausgeführt. Ein Krümmungsradius dieser Feldkrümmung kann bildseitig 81 mm betragen. Eine Grundform einer Randkontur des Objektfeldes 4 beziehungsweise des Bildfeldes 8 ist entsprechend gebogen. Alternativ ist es möglich, das Objektfeld 4 und das Bildfeld 8 rechteckförmig auszuführen. Das Objektfeld 4 und das Bildfeld 8 haben ein xy- Aspektverhältnis größer als 1. Das Objektfeld 4 hat also eine längere Objektfelddimension in der x-Richtung und eine kürzere Objektfelddimension in der y-Richtung. Diese Objektfelddimensionen verlaufen längs der Feldkoordinaten x und y. The object field 4 and the image field 8 are bent or curved in the projection optics 7 and, in particular, have a partial ring shape. A radius of curvature of this field curvature can be 81 mm on the image side. A basic shape of a border contour of the object field 4 or of the image field 8 is bent accordingly. Alternatively, it is possible to execute the object field 4 and the image field 8 rectangular. The object field 4 and the image field 8 have an xy aspect ratio greater than 1. The object field 4 thus has a longer object field dimension in the x direction and a shorter object field dimension in the y direction. These object field dimensions run along the field coordinates x and y.
Das Objektfeld 4 ist dementsprechend aufgespannt von der ersten kartesischen Objektfeldkoordinate x und der zweiten kartesischen Objektfeldkoordinate y. Die dritte kartesische Koordinate z, die senkrecht auf diesen beiden Objektfeldkoordinaten x und y steht, wird nachfolgend auch als Normalkoordinate bezeichnet. The object field 4 is accordingly spanned by the first Cartesian object field coordinate x and the second Cartesian object field coordinate y. The third Cartesian coordinate z, which is perpendicular to these two object field coordinates x and y, is also referred to below as the normal coordinate.
Für die Projektionsoptik 7 kann eines der in den Fig. 2ff dargestellten Ausführungsbeispiele eingesetzt werden. Die Projektionsoptik 7 nach Fig. 2 verkleinert in einer Sagittalebene xz um einen Faktor 4 und in einer Meridionalebene yz um einen Faktor 8. Bei der Projektionsoptik 7 handelt es sich um eine anamorphotische Projektionsoptik. Auch andere Verkleinerungsmaß stä- be in den beiden Abbildungslicht-Ebene xz, yz sind möglich, zum Beispiel 3x, 5x, 6x, 7x oder auch Verkleinerungsmaßstäbe, die größer sind als 8x. Alternativ kann die Projektionsoptik 7 auch in den beiden Abbildungslicht-Ebenen xz, yz den jeweils gleichen Verkleinerungsmaßstab aufweisen, beispielsweise eine Verkleinerung um einen Faktor 8. Auch andere Verkleinerungsmaßstäbe sind dann möglich, zum Beispiel 4x, 5x oder auch Verkleinerungsmaßstäbe, die größer sind als 8x. Der jeweilige Verkleinerungsmaßstab kann mit einer Bildumkehr (image flip) einhergehen oder nicht, was nachfolgend auch durch eine entsprechende Vorzeichenangabe des Verkleinerungsmaßstabes verdeutlicht ist. For the projection optics 7, one of the embodiments shown in FIGS. 2ff can be used. The projection optics 7 according to FIG. 2 are reduced in a sagittal plane xz by a factor of 4 and in a meridional plane yz by a factor of 8. The projection optics 7 are an anamorphic projection optics. Also, other reduction magnitudes in the two imaging light planes xz, yz are possible, for example 3x, 5x, 6x, 7x, or even reduction scales larger than 8x. Alternatively, the projection optics 7 can also have the same reduction scale in the two imaging light planes xz, yz Also, for example, a reduction by a factor of 8. Other reduction scales are possible, for example, 4x, 5x or even reduction scales that are greater than 8x. The respective reduction scale may be accompanied by an image flip or not, which is also illustrated below by a corresponding indication of the sign of the reduction scale.
Die Bildebene 9 ist bei der Projektionsoptik 7 in der Ausführung nach Fig. 2 parallel zur Objektebene 5 angeordnet. Abgebildet wird hierbei ein mit dem Objektfeld 4 zusammenfallender Ausschnitt einer Reflexionsmaske 10, die auch als Retikel bezeichnet wird. Das Retikel 10 wird von einem Retikelhalter 10a getragen. Der Retikelhalter 10a wird von einem Retikelverlagerungsan- trieb 10b verlagert. The image plane 9 is arranged in the projection optical system 7 in the embodiment of FIG. 2 parallel to the object plane 5. Shown here is a coincident with the object field 4 section of a reflection mask 10, which is also referred to as a reticle. The reticle 10 is supported by a reticle holder 10a. The reticle holder 10a is displaced by a reticle displacement drive 10b.
Die Abbildung durch die Projektionsoptik 7 erfolgt auf die Oberfläche eines Substrats 11 in Form eines Wafers, der von einem Substrathalter 12 getragen wird. Der Substrathalter 12 wird von einem Wafer- beziehungsweise Substratverlagerungsantrieb 12a verlagert. The imaging by the projection optics 7 takes place on the surface of a substrate 11 in the form of a wafer, which is supported by a substrate holder 12. The substrate holder 12 is displaced by a wafer or substrate displacement drive 12a.
In der Fig. 1 ist schematisch zwischen dem Retikel 10 und der Projektionsoptik 7 ein in diese einlaufendes Strahlenbündel 13 des Beleuchtungslichts 3 und zwischen der Projektionsoptik 7 und dem Substrat 11 ein aus der Projektionsoptik 7 auslaufendes Strahlenbündel 14 des Beleuch- tungslichts 3 dargestellt. Eine bildfeldseitige numerische Apertur (NA) der Projektionsoptik 7 ist in der Fig. 1 nicht maßstäblich wiedergegeben. FIG. 1 schematically shows a bundle of rays 13 of the illumination light 3 entering into the reticle 10 and the projection optics 7 and between the projection optics 7 and the substrate 11 a bundle 14 of the illumination light 3 emerging from the projection optics 7. An image field-side numerical aperture (NA) of the projection optics 7 is not reproduced to scale in FIG.
Die Projektionsbelichtungsanlage 1 ist vom Scannertyp. Sowohl das Retikel 10 als auch das Substrat 11 werden beim Betrieb der Projektionsbelichtungsanlage 1 in der y-Richtung gescannt. Auch ein Steppertyp der Projektionsbelichtungsanlage 1, bei dem zwischen einzelnen Belichtungen des Substrats 11 eine schrittweise Verlagerung des Retikels 10 und des Substrats 11 in der y- Richtung erfolgt, ist möglich. Diese Verlagerungen erfolgen synchronisiert zueinander durch entsprechende Ansteuerung der Verlagerungsantriebe 10b und 12a. Fig. 2 und 3 zeigen das optische Design einer ersten Ausführung der Projektionsoptik 7. Die Fig. 2 zeigt die Projektionsoptik 7 in einem Meridionalschnitt, also den Strahlengang des Abbildungslichts 3 in der yz-Ebene. Die Meridional ebene yz wird auch als zweite Abbildungslicht- Ebene bezeichnet. Die Fig. 3 zeigt den Abbildungsstrahlengang der Projektionsoptik 7 in der Sagittalebene xz. Eine erste Abbildungslicht-Ebene XZHR ist diejenige Ebene, die am jeweiligen Ort des Strahlengangs des Abbildungslichts 3 aufgespannt ist von der ersten kartesischen Objektfeldkoordinate x und einer momentanen Abbildungslicht-Hauptpropagationsrichtung ZHR. Die Abbildungslicht-Hauptpropagationsrichtung ZHR ist die Strahlrichtung eines Hauptstrahls 16 eines zentralen Feldpunktes. Bei jeder Spiegelreflexion an den Spiegeln Ml bis M8 ändert sich diese Abbildungslicht-Hauptpropagationsrichtung ZHR in der Regel. Diese Änderung kann beschrieben werden als eine Verkippung der momentanen Abbildungslicht-Hauptpro - pagationsrichtung ZHR um die erste kartesische Objektfeldkoordinate x um einen Kippwinkel, der gleich dem Umlenkwinkel dieses Hauptstrahls 16 des zentralen Feldpunktes am jeweils betrachteten Spiegel Ml bis M8 ist. Nachfolgend wird die erste Abbildungslicht-Ebene XZHR vereinfachend auch als erste Abbildungslicht-Ebene xz bezeichnet. The projection exposure apparatus 1 is of the scanner type. Both the reticle 10 and the substrate 11 are scanned in the y direction during operation of the projection exposure apparatus 1. A stepper type of the projection exposure apparatus 1 in which a stepwise displacement of the reticle 10 and of the substrate 11 in the y direction takes place between individual exposures of the substrate 11 is also possible. These displacements are synchronized with each other by appropriate control of the displacement drives 10b and 12a. 2 and 3 show the optical design of a first embodiment of the projection optics 7. FIG. 2 shows the projection optics 7 in a meridional section, that is to say the beam path of the imaging light 3 in the yz plane. The meridional plane yz is also used as the second imaging light Level. FIG. 3 shows the imaging beam path of the projection optics 7 in the sagittal plane xz. A first imaging light plane XZHR is the plane which is spanned at the respective location of the beam path of the imaging light 3 from the first Cartesian object field coordinate x and a current imaging light main propagation direction ZHR. The imaging light main propagation direction ZHR is the beam direction of a main beam 16 of a central field point. In the case of each specular reflection at the mirrors M1 to M8, this imaging light main propagation direction ZHR generally changes. This change can be described as a tilting of the instantaneous imaging light main propagation direction ZHR about the first Cartesian object field coordinate x by a tilt angle which is equal to the deflection angle of this main beam 16 of the central field point at the respectively considered mirror Ml to M8. Hereinafter, the first imaging light plane XZHR is also referred to as the first imaging light plane xz for the sake of simplification.
Die zweite Abbildungslicht-Ebene yz enthält ebenfalls die Abbildungslicht- Hauptpropagationsrichtung ZHR und steht senkrecht auf der ersten Abbildungslicht-Ebene XZHR. The second imaging light plane yz also includes the imaging light main propagation direction ZHR and is perpendicular to the first imaging light plane XZHR.
Da die Projektionsoptik 7 ausschließlich in der Meridionalebene yz gefaltet ist, fällt die zweite Abbildungslicht-Ebene yz mit der Meridionalebene zusammen. Dargestellt ist in der Fig. 2 der Strahlengang jeweils dreier Einzelstrahlen 15, die von drei in der Fig. 2 zueinander in der y-Richtung beabstandeten Objektfeldpunkten ausgehen. Dargestellt sind Hauptstrahlen 16, also Einzelstrahlen 15, die durch das Zentrum einer Pupille in einer Pupillenebene der Projektionsoptik 7 verlaufen, sowie jeweils ein oberer und ein unterer Komastrahl dieser beiden Objektfeldpunkte. Ausgehend vom Objektfeld 4 schließen die Hauptstrahlen 16 mit einer Normalen auf die Objektebene 5 einen Winkel CRA von 5,1 ° ein. Since the projection optical system 7 is folded exclusively in the meridional plane yz, the second imaging light plane yz coincides with the meridional plane. Shown in FIG. 2 is the beam path in each case three individual beams 15 which emanate from three object field points which are spaced from one another in the y direction in FIG. Shown are principal rays 16, ie individual rays 15, which run through the center of a pupil in a pupil plane of the projection optics 7, and in each case an upper and a lower coma ray of these two object field points. Starting from the object field 4, the main rays 16 with a normal to the object plane 5 an angle CRA of 5.1 °.
Die Objektebene 5 liegt parallel zur Bildebene 9. The object plane 5 lies parallel to the image plane 9.
Die Projektionsoptik 7 hat eine bildseitige numerische Apertur von 0,55. Die Projektionsoptik 7 nach Fig. 2 hat insgesamt acht Spiegel, die in der Reihenfolge des Strahlengangs der Einzelstrahlen 15, ausgehend vom Objektfeld 4, mit Ml bis M8 durchnummeriert sind. Dargestellt sind in der Fig. 2 bis 4 Ausschnitte der berechneten Reflexionsflächen der Spiegel Ml bis M8. Genutzt wird ein Teilbereich dieser berechneten Reflexionsflächen. Lediglich dieser tatsächlich genutzte Bereich der Reflexionsflächen ist zuzüglich eines Überstandes bei den realen Spiegeln Ml bis M8 tatsächlich vorhanden. Diese Nutz-Reflexionsflächen werden in bekannter Weise von Spiegelkörpern getragen. The projection optics 7 has a picture-side numerical aperture of 0.55. The projection optics 7 according to FIG. 2 has a total of eight mirrors, which are numbered consecutively in the order of the beam path of the individual beams 15, starting from the object field 4, with Ml to M8. Shown in FIGS. 2 to 4 are sections of the calculated reflection surfaces of the mirrors M1 to M8. A subarea of these calculated reflection surfaces is used. Only this actually used area of the reflection surfaces is actually present, plus a projection in the real mirrors M1 to M8. These useful reflection surfaces are supported in known manner by mirror bodies.
Bei der Projektionsoptik 7 nach Fig. 2 sind die Spiegel Ml, M4, M7 und M8 als Spiegel für normalen Einfall ausgeführt, also als Spiegel, auf die das Abbildungslicht 3 mit einem Einfallswinkel trifft, der kleiner ist als 45 °. Insgesamt hat die Projektionsoptik 7 nach Fig. 2 also vier Spiegel Ml, M4, M7 und M8 für normalen Einfall. Diese Spiegel für normalen Einfall werden auch als NI(Normal Incidence)-Spiegel bezeichnet. In the projection optics 7 according to FIG. 2, the mirrors M1, M4, M7 and M8 are designed as mirrors for normal incidence, that is, as mirrors to which the imaging light 3 strikes with an angle of incidence which is smaller than 45 °. Overall, therefore, the projection optics 7 according to FIG. 2 have four mirrors M1, M4, M7 and M8 for normal incidence. These levels of normal incidence are also referred to as NI (Normal Incidence) levels.
Die Spiegel M2, M3, M5 und M6 sind Spiegel für streifenden Einfall des Beleuchtungslichts 3, also Spiegel, auf die das Beleuchtungslicht 3 mit Einfallswinkeln auftritt, die größer sind als 45° und insbesondere größer sind als 60 °. Ein typischer Einfallswinkel der Einzelstrahlen 15 des Abbildungslichts 3 auf den Spiegeln M2, M3 sowie M5, M6 für streifenden Einfall liegt im Bereich von 80 °. Insgesamt hat die Projektionsoptik 7 nach Fig. 2 genau vier Spiegel M2, M3, M5 und M6 für streifenden Einfall. Diese Spiegel für streifenden Einfall werden auch als GI(Grazing Incidence)-Spiegel bezeichnet. Die Spiegel M2 und M3 bilden ein direkt im Strahlengang des Abbildungslichts 3 hintereinander angeordnetes Spiegel-Paar. Auch die Spiegel M5 und M6 bilden ein im Strahlengang des Abbildungslichts 3 direkt hintereinander angeordnetes Spiegel-Paar. The mirrors M2, M3, M5 and M6 are mirrors for grazing incidence of the illumination light 3, ie mirrors, on which the illumination light 3 occurs with angles of incidence which are greater than 45 ° and in particular greater than 60 °. A typical angle of incidence of the individual beams 15 of the imaging light 3 on the grazing incidence mirrors M2, M3 and M5, M6 is in the region of 80 °. Overall, the projection optics 7 of FIG. 2 exactly four mirrors M2, M3, M5 and M6 for grazing incidence. These grazing incidence mirrors are also referred to as GI (grazing incidence) levels. The mirrors M2 and M3 form a pair of mirrors arranged directly behind one another in the beam path of the imaging light 3. The mirrors M5 and M6 form a pair of mirrors arranged directly behind one another in the beam path of the imaging light 3.
Die Spiegel-Paare M2, M3 einerseits und M5, M6 andererseits reflektieren das Abbildungslicht 3 so, dass sich die Ausfallswinkel der Einzelstrahlen 15 auf den jeweiligen Spiegeln M2, M3 beziehungsweise M5, M6 dieser beiden Spiegel-Paare addieren. Der jeweils zweite Spiegel M3 und M6 des jeweiligen Spiegel-Paares M2, M3 und M5, M6 verstärkt also eine umlenkende Wirkung, die der jeweils erste Spiegel M2, M5 auf den jeweiligen Einzelstrahl 15 ausübt. Diese Anordnung der Spiegel der Spiegel-Paare M2, M3 beziehungsweise M5, M6 entspricht derjenigen, die in der DE 10 2009 045 096 AI für eine Beleuchtungsoptik beschrieben ist. Die Spiegel M2, M3, M5 und M6 für streifenden Einfall haben jeweils sehr große absolute Radiuswerte, weichen von einer ebenen Fläche also vergleichsweise gering ab. Diese Spiegel M2, M3, M5 und M6 für streifenden Einfall haben eine vergleichsweise geringe Brechkraft, also eine geringere bündelformende Wirkung, wie ein insgesamt konkaver oder konvexer Spiegel. Die Spiegel M2, M3, M5 und M6 tragen zur spezifischen und insbesondere zur lokalen Abbildungs- fehlerkorrektur bei. The mirror pairs M2, M3 on the one hand and M5, M6 on the other hand reflect the imaging light 3 so that the angles of incidence of the individual beams 15 on the respective mirrors M2, M3 and M5, M6 of these two mirror pairs add. The respective second mirror M3 and M6 of the respective mirror pair M2, M3 and M5, M6 thus amplifies a deflecting Effect that the respective first mirror M2, M5 exerts on the respective individual beam 15. This arrangement of the mirrors of the mirror pairs M2, M3 and M5, M6 corresponds to that which is described in DE 10 2009 045 096 Al for an illumination optical system. The grazing incidence mirrors M2, M3, M5 and M6 each have very large absolute radius values, ie deviate comparatively slightly from a flat surface. These grazing incidence mirrors M2, M3, M5 and M6 have a comparatively low refractive power, that is, a lower beam-shaping effect, such as an overall concave or convex mirror. The mirrors M2, M3, M5 and M6 contribute to the specific and especially to the local aberration correction.
Zur Charakterisierung einer umlenkenden Wirkung der Spiegel der Projektionsoptik 7 wird nachfolgend anhand der jeweils dargestellten Meridionalschnitte eine Umlenkrichtung definiert. Gesehen in der jeweils einfallenden Strahlrichtung im Meridionalschnitt beispielsweise nach Fig. 2 wird eine umlenkende Wirkung des jeweiligen Spiegels im Uhrzeigersinn, also eine Ablenkung nach rechts, mit dem Kürzel„R" gekennzeichnet. Der Spiegel M2 der Projektionsoptik 7 hat beispielsweise eine solche umlenkende Wirkung„R". Eine umlenkende Wirkung eines Spiegels entgegen dem Uhrzeigersinn, also nach links, gesehen aus der jeweils auf diesen Spiegel einfallenden Strahlrichtung, wird mit dem Kürzel„L" gekennzeichnet. Die Spiegel Ml und M5 der Projektionsoptik 7 sind Beispiele für die umlenkende Wirkung„L". Eine schwach oder überhaupt nicht umlenkende Wirkung eines Spiegels mit einem Faltwinkel f, für den gilt: -1° <f < 1°, wird mit dem Kürzel„0" gekennzeichnet. Der Spiegel M7 der Projektionsoptik 7 ist ein Beispiel für die umlenkende Wirkung„0". Ingesamt hat die Projektionsoptik 7 für die Spiegel Ml bis M8 folgende Abfolge umlenkender Wirkungen: LRRRLLOR. To characterize a deflecting effect of the mirrors of the projection optics 7, a deflection direction is defined below on the basis of the respective meridional sections shown. 2, a deflecting effect of the respective mirror in the clockwise direction, that is to say a deflection to the right, is identified by the abbreviation "R." The mirror M2 of the projection optics 7 has such a deflecting effect, for example " R ". A deflecting effect of a mirror in the counterclockwise direction, that is to say to the left, as seen from the respective beam direction incident on this mirror, is identified by the abbreviation "L." The mirrors M1 and M5 of the projection optics 7 are examples of the deflecting effect "L". A weakly or not at all deflecting effect of a mirror with a folding angle f, for which the following applies: -1 ° <f <1 °, is marked with the abbreviation "0." The mirror M7 of the projection optics 7 is an example of the deflecting effect " 0 ". Overall, the projection optics 7 for the mirrors M1 to M8 have the following sequence of redirecting effects: LRRRLLOR.
Grundsätzlich können alle beschriebenen Ausführungsbeispiele der Projektionsoptiken um eine Ebene, die parallel zur xz-Ebene verläuft, gespiegelt werden, ohne dass sich hierbei grundlegende Abbildungseigenschaften ändern. Allerdings ändert sich dann natürlich die Abfolge der umlenkenden Wirkungen, die beispielsweise bei einer Projektionsoptik, die durch entsprechende Spiegelung aus der Projektionsoptik 7 hervorgeht, folgende Reihenfolge hat: RLLLRR0L. Eine Wahl der Umlenkwirkung, also eine Wahl einer Richtung des jeweils einfallenden Strahls beispielsweise auf den Spiegel M4 und eine Wahl einer Ablenkrichtung der Spiegelpaare M2, M3 sowie M5, M6 wird jeweils so gewählt, dass ein für die Projektionsoptik 7 zur Verfügung stehender Bauraum effizient genutzt wird. In principle, all described embodiments of the projection optics can be mirrored around a plane that runs parallel to the xz plane, without changing basic imaging properties. Of course, then, the sequence of the deflecting effects, which, for example, in the case of projection optics, which results from corresponding reflection from the projection optics 7, changes in the following order: RLLLRR0L. A choice of the deflecting effect, ie a choice of a direction of the respective incident beam, for example on the mirror M4 and a choice of a deflection of the mirror pairs M2, M3 and M5, M6 is selected in each case so that an available space for the projection optics 7 space used efficiently becomes.
Die Spiegel Ml bis M8 tragen eine die Reflektivität der Spiegel Ml bis M8 für das Abbildungslicht 3 optimierende Beschichtung. Hierbei kann es sich um eine Ruthenium-Beschichtung, um einen Multilayer mit jeweils einer obersten Schicht aus beispielsweise Ruthenium handeln. Bei den Spiegeln M2, M3, M5 und M6 für streifenden Einfall kann eine Beschichtung mit beispiels- weise einer Lage aus Molybdän oder Ruthenium zum Einsatz kommen. Diese hoch reflektierenden Schichten insbesondere der Spiegel Ml, M4, M7 und M8 für normalen Einfall können als Mehrlagen-Schichten ausgeführt sein, wobei aufeinanderfolgende Schichten aus unterschiedlichen Materialien gefertigt sein können. Auch alternierende Materialschichten können zum Einsatz kommen. Eine typische Mehrlagenschicht kann fünfzig Bilagen aus jeweils einer Schicht Molybdän und einer Schicht Silizium aufweisen. Diese können zusätzliche Trennschichten aus beispielsweise C (Kohlenstoff), B4C (Borcarbid) beinhalten und können durch eine Schutzschicht oder ein Schutzschichtsystem zum Vakuum abgeschlossen sein. The mirrors M1 to M8 carry a coating which optimizes the reflectivity of the mirrors M1 to M8 for the imaging light 3. This may be a ruthenium coating, a multilayer, each with a top layer of ruthenium, for example. For grazing incidence mirrors M2, M3, M5 and M6, a coating of, for example, a layer of molybdenum or ruthenium may be used. These highly reflective layers, in particular the mirrors Ml, M4, M7 and M8 for normal incidence, can be embodied as multilayer layers, wherein successive layers can be made of different materials. Alternate layers of material can also be used. A typical multi-layer layer may comprise fifty bilayers each of one layer of molybdenum and one layer of silicon. These may include additional separation layers of, for example, C (carbon), B 4 C (boron carbide), and may be terminated by a protective layer or protective vacuum system.
Zur Berechnung einer Gesamt-Reflektivität der Projektionsoptik 7 wird eine Systemtransmission wie folgt berechnet: Eine Spiegel-Reflektivität wird in Abhängigkeit vom Einfallswinkel eines Führungsstrahls, also eines Hauptstrahls eines zentralen Objektfeldpunktes, an jeder Spiegelfläche bestimmt und multiplikativ zur Systemtransmission zusammengefasst. To calculate a total reflectivity of the projection optics 7, a system transmission is calculated as follows: A mirror reflectivity is determined as a function of the angle of incidence of a guide beam, ie a main beam of a central object field point, on each mirror surface and combined multiplicatively to the system transmission.
Details zur Reflektivitätsberechnung sind erläutert in der WO 2015/014 753 AI . Details of the reflectivity calculation are explained in WO 2015/014 753 AI.
Weitere Informationen zur Reflexion an einem Gl-Spiegel (Spiegel für streifenden Einfall) finden sich in der WO 2012/126 867 A. Weitere Informationen zur Reflektivität von Nl-Spiegeln (Normal Incidence Spiegeln) finden sich in der DE 101 55 711 A. Eine Gesamt-Reflektivität beziehungsweise Systemtransmission der Projektionsoptik 7, die sich als Produkt der Reflektivitäten aller Spiegel Ml bis M8 der Projektionsoptik 7 ergibt, beträgt R = 8,02 %. Der Spiegel M8, also der im Abbildungsstrahlengang letzte Spiegel vor dem Bildfeld 8, hat eine Durchtrittsöffnung 17 zum Durchtritt des Abbildungslichts 3, das vom drittletzten Spiegel M6 hin zum vorletzten Spiegel M7 reflektiert wird. Der Spiegel M8 wird um die Durchtrittsöffnung 17 herum reflektiv genutzt. Alle anderen Spiegel Ml bis M7 haben keine Durchtrittsöffnung und werden in einem lückenlos zusammenhängenden Bereich reflektiv genutzt. Further information on the reflection at a Gl mirror (mirror for grazing incidence) can be found in WO 2012/126 867 A. Further information on the reflectivity of Nl mirrors (normal incidence mirrors) can be found in DE 101 55 711 A. A Total reflectivity or system transmission of the projection optics 7, which results as a product of the reflectivities of all mirrors Ml to M8 of the projection optics 7, is R = 8.02%. The mirror M8, that is, the last mirror in the imaging beam path in front of the image field 8, has a passage opening 17 for the passage of the imaging light 3, which is reflected by the third last mirror M6 toward the penultimate mirror M7. The mirror M8 is used in a reflective manner around the passage opening 17. All other mirrors M1 to M7 have no passage opening and are used in a coherently coherent area reflective.
In der ersten Abbildungslicht-Ebene xz hat die Projektionsoptik 7 genau ein Erstebenen- Zwischenbild 18 im Abbildungslichtstrahlengang zwischen den Spiegeln M6 und M7. Dieses Erstebenen-Zwischenbild 18 liegt im Bereich der Durchtrittsöffnung 17. Ein Abstand zwischen der Durchtrittsöffnung 17 und dem Bildfeld 8 ist mehr als viermal so groß als ein Abstand zwischen der Durchtrittsöffnung 17 und dem Erstebenen-Zwischenbild 18. In the first imaging light plane xz, the projection optics 7 has exactly one first-level intermediate image 18 in the imaging light beam path between the mirrors M6 and M7. This first plane intermediate image 18 lies in the region of the passage opening 17. A distance between the passage opening 17 and the image field 8 is more than four times as large as a distance between the passage opening 17 and the first plane intermediate image 18.
In der zur ersten Abbildungslicht-Ebene xz senkrechten zweiten Abbildungslicht-Ebene yz (ver- gleiche Fig. 2) verläuft das Abbildungslicht 3 durch genau zwei Zweitebenen- Zwischenbilder 19 und 20. Das erste dieser beiden Zweitebenen- Zwischenbilder 19 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln M2 und M3. Das andere der beiden Zweitebenen- Zwischenbilder 20 liegt im Bereich der Reflexion des Abbildungslichts 3 am Spiegel M6. Die Anzahl der Erstebenen-Zwischenbilder, bei der Projektionsoptik 7 also genau ein Erstebenen-Zwischenbild, und die Anzahl der Zweitebenen-Zwischenbilder, bei der Projektionsoptik 7 also genau zwei Zweitebenen-Zwischenbilder, sind bei der Projektionsoptik 7 voneinander verschieden. Diese Anzahl der Zwischenbilder unterscheidet sich bei der Projektionsoptik 7 um genau eins. 2, the imaging light 3 passes through exactly two second-plane intermediate images 19 and 20. The first of these two second-plane intermediate images 19 lies in the imaging light beam path between the mirrors M2 and M3. The other of the two second-level intermediate images 20 lies in the region of the reflection of the imaging light 3 on the mirror M6. The number of first-level intermediate images, ie, exactly one first-level intermediate image in projection optics 7, and the number of second-level intermediate images, that is, exactly two second-level intermediate images in projection optics 7, are different from one another in projection optics 7. This number of intermediate images differs in the projection optics 7 by exactly one.
Die zweite Abbildungslicht-Ebene yz, in der die größere Anzahl an Zwischenbildern, nämlich die beiden Zweitebenen-Zwischenbilder 19 und 20, vorliegt, fällt mit der Faltebene yz der GI- Spiegel M2, M3 sowie M5, M6 zusammen. Diese Faltebene ist die Einfallsebene des Hauptstrahls 16 des zentralen Feldpunktes bei der Reflexion am jeweiligen GI-Spiegel. Die Zweitebe- nen-Zwischenbilder stehen in der Regel nicht senkrecht auf dem Hauptstrahl 16 des zentralen Feldpunktes, der die Abbildungslicht-Hauptpropagationsrichtung ZHR definiert. Ein Zwischen- bild-Kippwinkel, also eine Abweichung von dieser senkrechten Anordnung, ist grundsätzlich beliebig und kann zwischen 0° und +/- 89° liegen. The second imaging light plane yz, in which the larger number of intermediate images, namely the two second-level intermediate images 19 and 20, is present, coincides with the folding plane yz of the GI mirrors M2, M3 and M5, M6. This folding plane is the plane of incidence of the main beam 16 of the central field point in the reflection at the respective GI mirror. The second-level intermediate images are usually not perpendicular to the main beam 16 of the central field point, which defines the imaging light main propagation direction ZHR. An intermediate Image tilt angle, ie a deviation from this vertical arrangement, is basically arbitrary and can be between 0 ° and +/- 89 °.
Im Bereich der Zwischenbilder 18, 19, 20 können Hilfseinrichtungen 18a, 19a, 20a angeordnet sein. Bei diesen Hilfseinrichtungen 18a bis 20a kann es sich um Feldblenden zur zumindest abschnittsweisen Definition einer Berandung des Abbildungslichtbündels handeln. Auch eine Fel- dintensitäts- Vorgabeeinrichtung nach Art eines UNICOM, insbesondere mit in x-Richtung gestaffelten Fingerblenden, kann in einer der Zwischenbildebenen der Zwischenbilder 18 bis 20 angeordnet sein. Auxiliaries 18a, 19a, 20a can be arranged in the area of intermediate images 18, 19, 20. These auxiliary devices 18a to 20a can be field diaphragms for at least sectionally defining a boundary of the imaging light bundle. A field intensity presetting device in the manner of a UNICOM, in particular with finger apertures staggered in the x direction, can also be arranged in one of the intermediate image planes of the intermediate images 18 to 20.
Die Spiegel Ml bis M8 sind als nicht durch eine rotationssymmetrische Funktion beschreibbare Freiformflächen ausgeführt. Es sind auch andere Ausführungen der Projektionsoptik 7 möglich, bei denen mindestens einer der Spiegel Ml bis M8 als rotationssymmetrische Asphäre ausgeführt ist. Eine Asphärengleichung für eine solche rotationssymmetrische Asphäre ist bekannt aus der DE 10 2010 029 050 AI . Auch alle Spiegel Ml bis M8 können als derartige Asphären ausgeführt sein. The mirrors M1 to M8 are designed as freeform surfaces which can not be described by a rotationally symmetrical function. Other embodiments of the projection optics 7 are possible in which at least one of the mirrors M1 to M8 is designed as a rotationally symmetric asphere. An aspherical equation for such a rotationally symmetric asphere is known from DE 10 2010 029 050 AI. All mirrors M1 to M8 can also be designed as such aspheres.
Eine Freiformfläche kann durch folgende Freiformflächengleichung (Gleichung 1) beschrieben werden: A free-form surface can be described by the following free-form surface equation (Equation 1):
\ + ^\ - (\ + kx )(cxx)2 - (\ + ky )(cyyf \ + ^ \ - (\ + k x ) (c x x) 2 - (\ + k y ) (c y yf
+ Cxx + C2y + C x x + C 2 y
+ C3x2 + C4xy + C5y2 + C 3 x 2 + C 4 xy + C 5 y 2
+ C6x3 + ... + C9y3 + C 6 x 3 + ... + C 9 y 3
+ C10x4 + ... + C12x2y2 + - + C14y4 + C 10 x 4 + ... + C 12 x 2 y 2 + - + C 14 y 4
+ C15x5 + ... + C20y5 + C 15 x 5 + ... + C 20 y 5
+ C21x6 + ... + C24x3y3 + ... + C27y6 + C 21 x 6 + ... + C 24 x 3 y 3 + ... + C 27 y 6
+ ...  + ...
(1)(1)
Für die Parameter dieser Gleichung (1) gilt: Z ist die Pfeilhöhe der Freiformfläche am Punkt x, y, wobei x2 + y2 = r2. r ist hierbei der Abstand zur Referenzachse der Freiformflächengleichung For the parameters of this equation (1): Z is the arrow height of the freeform surface at point x, y, where x 2 + y 2 = r 2 . Here r is the distance to the reference axis of the free-form surface equation
(x = 0; y = 0). (x = 0, y = 0).
In der Freiformflächengleichung (1) bezeichnen Ci, C2, C3... die Koeffizienten der Freiformflächen-Reihenentwicklung in den Potenzen von x und y. In the free-form surface equation (1), Ci, C 2 , C 3 ... Denote the coefficients of the free-form surface series expansion in the powers of x and y.
Im Falle einer konischen Grundfläche ist cx, cy eine Konstante, die der Scheitelpunktkrümmung einer entsprechenden Asphäre entspricht. Es gilt also cx = 1/RX und cy = 1/Ry. kx und ky entsprechen jeweils einer konischen Konstante einer entsprechenden Asphäre. Die Gleichung (1) beschreibt also eine bikonische Freiformfläche. In the case of a conical base, c x , c y is a constant that corresponds to the vertex curvature of a corresponding asphere. So c x = 1 / R X and c y = 1 / R y . k x and k y each correspond to a conical constant of a corresponding asphere. The equation (1) thus describes a biconical freeform surface.
Eine alternativ mögliche Freiformfläche kann aus einer rotationssymmetrischen Referenzfläche erzeugt werden. Derartige Freiformflächen für Reflexionsflächen der Spiegel von Projektionsoptiken von Projektionsbelichtungsanlagen für die Mikrolithographie sind bekannt aus der An alternatively possible free-form surface can be generated from a rotationally symmetrical reference surface. Such free-form surfaces for reflecting surfaces of the mirrors of projection optics of projection exposure apparatuses for microlithography are known from US Pat
US 2007-0058269 AI . US 2007-0058269 AI.
Alternativ können Freiformflächen auch mit Hilfe zweidimensionaler Spline-Oberflächen be- schrieben werden. Beispiele hierfür sind Bezier-Kurven oder nicht-uniforme rationale Basis- Splines (non-uniform rational basis splines, NURBS). Zweidimensionale Spline-Oberflächen können beispielsweise durch ein Netz von Punkten in einer xy-Ebene und zugehörige z- Werte oder durch diese Punkte und ihnen zugehörige Steigungen beschrieben werden. Abhängig vom jeweiligen Typ der Spline-Oberfläche wird die vollständige Oberfläche durch Interpolation zwi- sehen den Netzpunkten unter Verwendung zum Beispiel von Polynomen oder Funktionen, die bestimmte Eigenschaften hinsichtlich ihrer Kontinuität und Differenzierbarkeit haben, gewonnen. Beispiele hierfür sind analytische Funktionen. Alternatively, freeform surfaces can also be described using two-dimensional spline surfaces. Examples include Bezier curves or non-uniform rational base splines (NURBS). For example, two-dimensional spline surfaces may be described by a mesh of points in an xy plane and associated z-values or by these points and their associated slopes. Depending on the particular type of spline surface, the complete surface is obtained by interpolating between the mesh points using, for example, polynomials or functions that have certain continuity and differentiability properties. Examples of this are analytical functions.
Fig. 4 zeigt Randkonturen der auf den Spiegeln Ml bis M8 der Projektionsoptik 7 jeweils mit dem Abbildungslicht 3 beaufschlagten Reflexionsflächen, also die sogenannten Footprints der Spiegel Ml bis M8. Dargestellt sind diese Randkonturen jeweils in einem x/y-Diagramm, welches den lokalen x- und y- Koordinaten des jeweiligen Spiegels Ml bis M8 entspricht. Die Dar- stellungen sind maßstäblich in Millimetern. Bei der Darstellung zum Spiegel M8 ist zudem die Form der Durchtrittsöffhung 17 dargestellt. FIG. 4 shows edge contours of the reflection surfaces acted on by the mirrors M1 to M8 of the projection optics 7, in each case with the imaging light 3, that is to say the so-called footprints of the mirrors M1 to M8. These edge contours are each shown in an x / y diagram which corresponds to the local x and y coordinates of the respective mirror M1 to M8. The Dar- positions are to scale in millimeters. In the representation of the mirror M8 also the shape of the passage opening 17 is shown.
Die nachfolgende Tabelle fasst die Parameter "maximaler Einfallswinkel", "Reflexionsflächener- streckung in x-Richtung", "Reflexionsflächenerstreckung in y-Richtung" und "maximaler Spiegeldurchmesser" für die Spiegel Ml bis M8 zusammen: The following table summarizes the parameters "maximum angle of incidence", "reflection surface extension in x-direction", "reflection surface extent in y-direction" and "maximum mirror diameter" for mirrors M1 to M8:
Ml M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8
maximaler maximum
17.6 81.3 79.4 14.1 80.4 83.2 22.5 6.3  17.6 81.3 79.4 14.1 80.4 83.2 22.5 6.3
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächenerstreckung in 497.3 441 .9 524.9 731 .8 464.7 314.0 298.0 1003.7 Reflective surface extension in 497.3 441 .9 524.9 731 .8 464.7 314.0 298.0 1003.7
x-Richtung [mm] x-direction [mm]
Reflexionsflächenerstreckung in 252.4 462.4 250.5 130.0 231 .8 132.6 183.2 984.2 Reflective surface extension in 252.4 462.4 250.5 130.0 231 .8 132.6 183.2 984.2
y-Richtung [mm] y-direction [mm]
maximaler maximum
Spiegeldurchmesser 497.3 494.0 524.9 731 .8 464.7 314.0 298.0 1004.0  Mirror diameter 497.3 494.0 524.9 731 .8 464.7 314.0 298.0 1004.0
[mm]  [Mm]
Aufgrund der Zweitebenen- Zwischenbilder 19 und 20 im Bereich der Gl-Spiegel M2, M3, M5 und M6 haben auch diese Gl-Spiegel keine extreme Erstreckung in der y-Richtung. Ein y/x- Aspektverhältnis entsprechender Flächendimension der Reflexionsflächen dieser Gl-Spiegel M2, M3, M6 und M7 ist nur für den Spiegel M2 größer als 1 und beträgt dort etwa 1,05. Keiner der Gl-Spiegel hat ein y/x- Aspektverhältnis, das größer ist als 1,05. Am stärksten weicht bei den Spiegeln Ml bis M8 der Projektionsoptik 7 das y/x- Aspektverhältnis beim Spiegeln M4 vom Wert 1 ab und beträgt dort etwa 1 :5,6. Bei allen anderen Spiegeln liegt das y/x- Aspektverhältnis im Bereich zwischen 3 : 1 und 1 :3. Because of the second-plane intermediate images 19 and 20 in the region of the MIR mirrors M2, M3, M5 and M6, these GI mirrors also have no extreme extent in the y direction. A y / x aspect ratio corresponding surface dimension of the reflection surfaces of these GI mirrors M2, M3, M6 and M7 is greater than 1 only for the mirror M2, where it is about 1.05. None of the GI mirrors has a y / x aspect ratio greater than 1.05. The most strongly deviates from the value 1 in the mirrors M1 to M8 of the projection optics 7, the y / x aspect ratio in the mirror M4, where it is about 1: 5.6. For all other mirrors, the y / x aspect ratio is in the range between 3: 1 and 1: 3.
Den größten maximalen Spiegeldurchmesser hat der die bildseitige numerische Apertur vorgebende Spiegeln M8 mit einem Durchmesser von 1004 mm. Keiner der anderen Spiegeln Ml bis M7 hat einen maximalen Durchmesser, der größer ist als 80 % des maximalen Spiegeldurchmessers des Spiegels M8. Eine pupillendefinierende Aperturblende AS ist bei der Projektionsoptik 7 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 angeordnet. Im Bereich der Aperturblende AS ist das gesamte Abbildungslicht- Strahlenbündel über seinen gesamten Umfang zugänglich. Der Spiegel M6 der Projektionsoptik 7 (vergleiche Fig. 4) hat eine zur Reflexion nutzbare Refle- xionsfläche mit einer Randkontur RK. Diese Randkontur RK hat eine Grundform GF, die in der Fig. 4 in Bezug auf den Spiegel M6 gestrichelt angedeutet ist. Diese Grundform GF entspricht einer gebogenen Grundform des Objektfeldes 4. Die Grundform GF des Spiegels M6 entspricht derjenigen des Objektfeldes 4, ist also ebenfalls gebogen. The largest maximum mirror diameter of the image-side numerical aperture predetermining M8 mirrors with a diameter of 1004 mm. None of the other mirrors M1 to M7 has a maximum diameter greater than 80% of the maximum mirror diameter of the mirror M8. A pupil-defining aperture diaphragm AS is arranged in the projection optical system 7 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the entire imaging light beam is accessible over its entire circumference. The mirror M6 of the projection optics 7 (see FIG. 4) has a reflection surface which can be used for reflection and has an edge contour RK. This edge contour RK has a basic shape GF, which is indicated by dashed lines in Fig. 4 with respect to the mirror M6. This basic form GF corresponds to a curved basic shape of the object field 4. The basic shape GF of the mirror M6 corresponds to that of the object field 4, ie it is also bent.
Längs einer in der Fig. 4 oben liegenden Seitenkante der Randkontur RK des Spiegels M6 sind zwei Konturauswölbungen KA angeordnet. Along a side edge of the edge contour RK of the mirror M6 lying at the top in FIG. 4, two contour bulges KA are arranged.
Die Randkontur RK des Spiegels M6 folgt einer Randkontur eines gesamten Abbildungslicht- bündels bei der Reflexion am Spiegel M6. Diese Randkontur des gesamten Abbildungslichtbündels weist entsprechende Konturauswölbungen auf, was an der Zwischenabbildung durch das Zweitebenen-Zwischenbild 20 liegt. The edge contour RK of the mirror M6 follows an edge contour of an entire imaging light bundle during the reflection at the mirror M6. This edge contour of the entire imaging light bundle has corresponding contour bulges, which is due to the intermediate image through the second plane intermediate image 20.
Zwei weitere Konturauswölbungen KA sind auf der gegenüberliegenden, in der Fig. 4 unten dar- gestellten Seitenkante der Randkontur RK angeordnet. Two further contour bulges KA are arranged on the opposite side edge of the edge contour RK shown in FIG. 4 at the bottom.
Die Konturauswölbungen KA sind jeweils längs der beiden langen Seiten der Grundform GF angeordnet. Die optischen Designdaten der Reflexionsflächen der Spiegel Ml bis M8 der Projektionsoptik 7 können den nachfolgenden Tabellen entnommen werden. Diese optischen Designdaten gehen jeweils von der Bildebene 9 aus, beschreiben die jeweilige Projektionsoptik also in umgekehrter Laufrichtung des Abbildungslichts 3 zwischen der Bildebene 9 und der Objektebene 5. Die erste dieser Tabellen gibt einen Überblick über die Designdaten der Projektionsoptik 7 und fasst zusammen die numerische Apertur NA, die gerechnete Designwellenlänge für das Abbildungslicht, die Verkleinerungsfaktoren ßx und ßy in den beiden Abbildungslicht-Ebenen xz und yz, die Größen des Bildfeldes in x- und y-Richtung, eine Bildfeldkrümmung, einen Bildfehlerwert rms sowie einen Blendenort. Diese Krümmung ist definiert als der inverse Krümmungsradius des Feldes. Der Bildfehlerwert ist angegeben in ητλ (ml), also abhängig von der Designwellenlänge. Es handelt sich hierbei um den rms- Wert des Wellenfrontfehlers. The contour bulges KA are respectively arranged along the two long sides of the basic shape GF. The optical design data of the reflection surfaces of the mirrors Ml to M8 of the projection optics 7 can be seen from the following tables. These optical design data respectively start from the image plane 9 and thus describe the respective projection optics in the opposite direction of the imaging light 3 between the image plane 9 and the object plane 5. The first of these tables gives an overview of the design data of the projection optics 7 and summarizes the numerical aperture NA, the calculated design wavelength for the imaging light, the reduction factors βx and βy in the two imaging light planes xz and yz, the magnitudes of the image field in the x and y directions, a field curvature, an image error value rms and a diaphragm location. This curvature is defined as the inverse radius of curvature of the field. The image error value is given in ητλ (ml), ie depending on the design wavelength. This is the rms value of the wavefront error.
Die zweite dieser Tabellen gibt zu den optischen Oberflächen der optischen Komponenten Scheitelpunktsradien (Radius x = Rx, Radius y = Ry) und Brechkraftwerte (Power x, Power y) an. Negative Radienwerte bedeuten zum einfallenden Beleuchtungslicht 3 hin konkave Kurven im Schnitt der jeweiligen Oberfläche mit der betrachteten Ebene (xz, yz), die von einer Flächen- normalen im Scheitelpunkt mit der jeweiligen Krümmungsrichtung (x, y) aufgespannt wird. Die beiden Radien Radius x, Radiux y können explizit verschiedene Vorzeichen haben. The second of these tables gives the optical surfaces of the optical components vertex radii (radius x = R x , radius y = R y ) and power values (power x, power y). Negative radii values mean, for the incident illuminating light 3, concave curves in the section of the respective surface with the considered plane (xz, yz) spanned by a surface normal at the vertex with the respective curvature direction (x, y). The two radii Radius x, Radiux y can explicitly have different signs.
Die Scheitelpunkte an jeder optischen Fläche sind definiert als Auftreffpunkte eines Führungsstrahls, der von einer Objektfeldmitte entlang einer Symmetrieebene x=0, also der Zeichenebene der Fig. 2 (Meridionalebene) hin zum Bildfeld 8 geht. The vertices on each optical surface are defined as points of impingement of a guide beam which goes from an object field center along a plane of symmetry x = 0, ie the plane of the drawing of FIG. 2 (meridional plane) to the image field 8.
Die Brechkräfte Power x (Px), Power y (Py) an den Scheitelpunkten sind definiert als: The powers Power x (P x ), Power y (P y ) at the vertices are defined as:
2 cos ,40/ 2 cos, 40 /
P X  P X
2 2
y  y
R cos AOI  R cos AOI
AOI bezeichnet hierbei einen Einfallswinkel des Führungsstrahls zur Oberflächennormalen. AOI here denotes an angle of incidence of the guide beam to the surface normal.
Die dritte Tabelle gibt für die Spiegel Ml bis M8 in mm die konischen Konstanten kx und ky, den Scheitelpunktradius Rx (= Radius x) und die Freiformflächen-Ko effizienten Cn an. Koeffizienten Cn, die nicht tabelliert sind, haben jeweils den Wert 0. The third table specifies the conical constants k x and k y for the mirrors Ml to M8 in mm, the vertex radius R x (= radius x) and the free-form surface coefficients C n . Coefficients C n , which are not tabulated, each have the value 0.
In der vierten Tabelle ist noch der Betrag angegeben, längs dem der jeweilige Spiegel, ausgehend von einer Bezugsfläche in der y-Richtung dezentriert (DCY), in der z-Richtung verschoben (DCZ) und verkippt (TLA, TLC) wurde. Dies entspricht einer Parallelverschiebung und einer Verkippung beim Freiformflächen-Designverfahren. Verschoben wird dabei in y- und in z- Richtung in mm und verkippt um die x- Achse und um die z- Achse. Der Verdrehwinkel ist dabei in Grad angegeben. Es wird zunächst dezentriert, dann verkippt. Die Bezugsfläche bei der De- zentrierung ist jeweils die erste Fläche der angegebenen optischen Designdaten. Auch für das Objektfeld 4 ist eine Dezentrierung in y- und in z-Richtung angegeben. Neben den den einzelnen Spiegeln zugeordneten Flächen sind in der vierten Tabelle auch die Bildebene als erste Fläche, die Objektebene als letzte Fläche sowie ggf. eine Blendenfläche (mit der Bezeichnung„Blende") tabelliert. The fourth table also indicates the amount along which the respective mirror decentred (DCY) from a reference surface in the y direction, was shifted in the z direction (DCZ) and tilted (TLA, TLC). This corresponds to a parallel shift and a Tilting in freeform surface design process. It is shifted in y- and in z- direction in mm and tilted about the x-axis and about the z-axis. The twist angle is given in degrees. It is decentered first, then tilted. The reference surface in the decentering is in each case the first surface of the specified optical design data. Also for the object field 4, a decentering in the y and in the z direction is indicated. In addition to the surfaces assigned to the individual mirrors, the fourth table also includes the image plane as the first surface, the object plane as the last surface and, if appropriate, an aperture surface (designated as "aperture").
Die fünfte Tabelle gibt noch die Transmissionsdaten der Spiegel M8 bis Ml an, nämlich deren Reflektivität für den Einfallswinkel eines zentral auf den jeweiligen Spiegel treffenden Beleuchtungslichtstrahls. Die Gesamttransmission wird als Anteilsfaktor angegeben, der von einer einfallenden Intensität nach Reflexion an allen Spiegeln der Projektionsoptik verbleibt. Die sechste Tabelle gibt eine Berandung der Blende AS als Polygonzug in lokalen Koordinaten xyz an. Die Blende AS wird noch wie oben beschrieben dezentriert und verkippt. The fifth table also indicates the transmission data of the mirrors M8 to Ml, namely their reflectivity for the angle of incidence of an illuminating light beam striking centrally on the respective mirror. The total transmission is given as a proportion factor remaining from an incident intensity after reflection at all mirrors of the projection optics. The sixth table indicates a boundary of the diaphragm AS as a polygon in local coordinates xyz. The shutter AS is decentered and tilted as described above.
Ausführungsbeispiel Fig. 2 Embodiment FIG. 2
NA 0.55 NA 0.55
Wellenlänge 13.5 nm beta_x 4.0 beta_y -8.0Wavelength 13.5 nm beta_x 4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.0 mmField size_y 1.0 mm
Feldkrümmung 0.012345 1/mm rms 12.0 mlField curvature 0.012345 1 / mm rms 12.0 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 2 Table 1 to Fig. 2
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M8 -977.9363886 0.0020361 -929.6273166 0.0021610 REFLM8 -977.9363886 0.0020361 -929.6273166 0.0021610 REFL
M7 1294.8209643 -0.0015445 435.8531595 -0.0045890 REFLM7 1294.8209643 -0.0015445 435.8531595 -0.0045890 REFL
M6 18365.5486866 -0.0000231 -46554.4044838 0.0002030 REFLM6 18365.5486866 -0.0000231 -46554.4044838 0.0002030 REFL
M5 5259.3234531 -0.0000933 -9321.27391 17 0.0008744 REFLM5 5259.3234531 -0.0000933 -9321.27391 17 0.0008744 REFL
M4 -1765.3339870 0.001 1067 -1 142.0480083 0.0017928 REFLM4 -1765.3339870 0.001 1067 -1 142.0480083 0.0017928 REFL
M3 2922.7328266 -0.0001820 -2482.4542085 0.0030292 REFLM3 2922.7328266 -0.0001820 -2482.4542085 0.0030292 REFL
M2 1651.2946943 -0.0003085 -8489.641 1649 0.0009249 REFLM2 1651.2946943 -0.0003085 -8489.641 1649 0.0009249 REFL
M1 -2632.750521 1 0.0007257 -1790.4348754 0.001 1694 REFL Tabelle 2 zu Fig. 2 Koeffizient M8 M7 M6M1 -2632.750521 1 0.0007257 -1790.4348754 0.001 1694 REFL Table 2 to FIG. 2 Coefficient M8 M7 M6
KY 0.00000000 0.00000000 0.00000000 KX -0.1 1558328 -0.06317830 -0.67536006 RX -977.93638860 1294.82096400 18365.54869000KY 0.00000000 0.00000000 0.00000000 KX -0.1 1558328 -0.06317830 -0.67536006 RX -977.93638860 1294.82096400 18365.54869000
C7 -3.26431733e-09 -9.19931196e-07 6.01520941e-08 C9 1.58538114e-09 -1.1 1351361e-07 8.67911005e-10 C10 -2.62749675e-11 1.65294576e-09 2.46957387e-11 C12 -3.89038959e-11 5.8094008e-09 5.62790766e-11 C14 -1.02513051e-11 5.53161746e-09 2.39097835e-11 C16 -5.05646011e-15 -5.96237142e-12 -2.22416819e-14 C18 -4.92292703e-15 -1.27228894e-11 2.83846346e-13 C20 1.16365138e-15 5.18801779e-12 5.76795483e-15 C21 -3.04440558e-17 5.32997236e-15 -1.09361216e-16 C23 -7.98657435e-17 4.06529865e-14 7.9007479e-16 C25 -6.41119264e-17 7.80652921e-14 -4.56580147e-16 C27 -1.39235463e-17 8.10562525e-14 -2.24207356e-15 C29 -6.20803428e-21 -2.93716245e-17 9.54358468e-19 C31 -1.24534312e-20 -1.84555197e-16 -5.3458423e-18 C33 -4.42030372e-21 -1.84586928e-16 -1.86756383e-17 C35 1.07126508e-21 1.91912568e-16 1.00354655e-17 C36 -2.91575118e-23 9.09001497e-20 6.26271473e-21 C38 -1.08152276e-22 6.67834705e-19 -6.49920584e-20 C40 -1.4917793e-22 1.73448182e-18 1.1 1297067e-19 C42 -8.53194437e-23 2.43380836e-18 3.95874101e-19 C44 -1.41286848e-23 5.65275748e-19 5.41032235e-19 C46 -5.48565523e-27 -6.08367951 e-22 -2.03215013e-22 C48 -1.54244255e-26 -3.0535911e-21 -4.18114672e-22 C50 -8.36720446e-27 -1.37751887e-22 -5.5893905e-22 C52 -5.14729095e-28 1.06533988e-20 8.75292138e-21 C54 4.65607389e-28 1.19886682e-21 -4.41429933e-21 C55 -3.994753e-29 -1.37140533e-24 -2.55530798e-25 C57 -1.95743945e-28 -1.10267807e-23 3.51112917e-24 C59 -3.82935802e-28 -1.41353816e-23 -6.14784987e-24 C61 -3.52698144e-28 9.07886953e-24 -6.9704448e-23 C63 -1.4336365e-28 -7.49817063e-24 -7.39060153e-23 C65 -1.94273034e-29 3.91695015e-23 -5.92226689e-23 C67 -1.57733117e-32 -4.88361615e-27 9.64794763e-27 C69 -6.12153839e-32 -3.56715922e-26 5.2372298e-26 C71 -1.18717428e-31 -3.19191477e-25 2.13380099e-25 C73 -1.063393e-31 -7.51279757e-25 2.45159051 e-25 C75 -2.89486089e-32 -6.71222307e-25 -1.71851249e-24 C77 6.32013344e-33 7.38715108e-25 9.74025575e-25 C78 1.1 1262585e-35 3.03620946e-29 2.58218161 e-30 C80 4.67368442e-35 4.91226123e-28 -6.72675352e-29 C82 1.23352933e-34 1.67499613e-27 1.55650129e-29 C84 1.53536949e-34 2.38894849e-27 2.90832154e-27 C86 9.5650515e-35 -8.23315242e-29 6.09750745e-27 C88 1.71733925e-35 -8.61039219e-28 6.1 107714e-27 C90 -5.94121394e-36 -1.76523408e-27 7.99611209e-28 C92 1.4787702e-38 -2.58993199e-31 -1.58067878e-31 C94 8.90625365e-38 -1.71267929e-30 -1.06702074e-30 C96 2.89055314e-37 -2.40810729e-31 -7.02875699e-30 C98 4.29516754e-37 2.22333849e-29 -3.28419568e-29 C100 3.17681665e-37 5.50483336e-29 -2.1648152e-29 C102 8.36108049e-38 5.43169134e-29 1.1 1856162e-28 Koeffizient M8 M7 M6C7 -3.26431733e-09 -9.19931196e-07 6.01520941e-08 C9 1.58538114e-09 -1.1 1351361e-07 8.67911005e-10 C10 -2.62749675e-11 1.65294576e-09 2.46957387e-11 C12-3.89038959e-11 5.8094008 e-09 C-4,922,970-e-C--4.92292703e-15 -1.27228894e-11 2,838,44634e-11 C16-5.05646011e-15 -5.96237142e-12 -2.22416819e-14 C18-4.92292703e-15 -1.27228894e-11 -13 C20 1.16365138e-15 5.18801779e-12 5.76795483e-15 C21-3.04440558e-17 5.32997236e-15 -1.09361216e-16 C23 -7.98657435e-17 4.06529865e-14 7.9007479e-16 C25 -6.41119264e-17 C79-620803428e-21 -2.93716245e-17 9.54358468e-19 C31 -1.24534312e-20 -1.84555197e-16 -5.3458423e-18 C33 -4.42030372e-21 -1.84586928e-16 -1.86756383e-17 C35 1.07126508e-21 1.91912568e-16 1.00354655e-17 C36 -2.91575118e-23 9.09001497e-20 6.26271473e-21 C38 - C40 -8.53194437e-23 2.43380836e-18 3.958741 01e-19 C44 -1.41286848e-23 5.65275748e-19 5.41032235e-19 C46 -5.48565523e-27 -6.08367951 e-22 -2.03215013e-22 C48 -1.54244255e-26 -3.0535911e-21 -4.18114672e-22 C50 -8.36720446e-27 -1.37751887e-22 -5.5893905e-22 C52 -5.14729095e-28 1.06533988e-20 8.75292138e-21 C54 4.65607389e-28 1.19886682e-21 -4.41429933e-21 C55 -3.994753e-29 - C37-1.95743945e-28 -1.10267807e-23 3.51112917e-24 C59-3.82935802e-28 -1.41353816e-23 -6.14784987e-24 C61-3.52698144e-28 9.07886953e-24 -6.9704448e-23 C63 -1.4336365e-28 -7.49817063e-24 -7.39060153e-23 C65 -1.94273034e-29 3.91695015e-23 -5.92226689e-23 C67 -1.57733117e-32 -4.88361615e-27 9.64794763e 27 C69 -6.12153839e-32 -3.56715922e-26 5.2372298e-26 C71 -1.18717428e-31 -3.19191477e-25 2.13380099e-25 C73 -1.063393e-31 -7.51279757e-25 2.45159051 e-25 C75 -2.89486089e -32 -6.71222307e-25 -1.71851249e-24 C77 6.32013344e-33 7.38715108e-25 9.74025575e-25 C78 1.1 1262585e-35 3.03620946e-29 2.58218161 e-30 C80 4.67368442e-35 4.91226123 e-28 -6.72675352e-29 C82 1.23352933e-34 1.67499613e-27 1.55650129e-29 C84 1.53536949e-34 2.38894849e-27 2.90832154e-27 C86 9.5650515e-35 -8.23315242e-29 6.09750745e-27 C88 1.71733925 e-35 -8.61039219e-28 6.1 107714e-27 C90 -5.94121394e-36 -1.76523408e-27 7.99611209e-28 C92 1.4787702e-38 -2.58993199e-31 -1.58067878e-31 C94 8.90625365e-38 -1.71267929e -30 -1.06702074e-30 C96 2.89055314e-37 -2.40810729e-31 -7.02875699e-30 C98 4.29516754e-37 2.22333849e-29 -3.28419568e-29 C100 3.17681665e-37 5.50483336e-29 -2.1648152e-29 C102 8.36108049e-38 5.43169134e-29 1.1 1856162e-28 Coefficient M8 M7 M6
C104 -9.74872514e-39 -7.63910208e-30 -6.57499885e-29 C105 -1.04610049e-40 0 0 C107 -7.41863701e-40 0 0 C109 -2.255693e-39 0 0 C111 -3.77109587e-39 0 0 C113 -3.64577025e-39 0 0 C115 -2.02577223e-39 0 0 C117 -5.69128325e-40 0 0 C119 -4.83815892e-41 0 0 C121 -4.67494483e-44 0 0 C123 -3.13407576e-43 0 0 C125 -8.99958812e-43 0 0 C127 -1.4543934e-42 0 0 C129 -1.2834763e-42 0 0 C131 -6.10286793e-43 0 0 C133 -8.34784383e-44 0 0 C135 2.74349368e-44 0 0C104 -9.74872514e-39 -7.63910208e-30 -6.57499885e-29 C105 -1.04610049e-40 0 0 C107 -7.41863701e-40 0 0 C109 -2.255693e-39 0 0 C111 -3.77109587e-39 0 0 C113 - 3.64577025e-39 0 0 C115 -2.02577223e-39 0 0 C117 -5.69128325e-40 0 0 C119 -4.83815892e-41 0 0 C121 -4.67494483e-44 0 0 C123 -3.13407576e-43 0 0 C125 -8.99958812e -43 0 0 C127 -1.4543934e-42 0 0 C129 -1.2834763e-42 0 0 C131 -6.10286793e-43 0 0 C133 -8.34784383e-44 0 0 C135 2.74349368e-44 0 0
Tabelle 3a zu Fig. 2 Table 3a to Fig. 2
Koeffizient M5 M4 M3Coefficient M5 M4 M3
KY 0.00000000 0.00000000 0.77165478 KX 0.27864052 0.19204874 0.00000000 RX 5259.32345300 -1765.33398700 2922.73282700KY 0.00000000 0.00000000 0.77165478 KX 0.27864052 0.19204874 0.00000000 RX 5259.32345300 -1765.33398700 2922.73282700
C7 -1.8652865e-07 -4.24630231 e-08 1.94384684e-07 C9 -1.02802052e-07 -6.52977487e-07 -7.17829652e-08 C10 -5.35811112e-11 1.10296456e-11 -7.42346358e-11 C12 -1.99417399e-10 1.00977633e-10 3.76056759e-11 C14 1.01835137e-10 -2.41010461e-09 3.93568892e-11 C16 -2.80626289e-13 -5.69400376e-14 1.25218538e-13 C18 -1.17577236e-13 1.19732124e-12 -2.13740953e-13 C20 -2.50255951 e-13 -4.32169574e-12 -9.64163266e-14 C21 2.6907927e-16 2.39267428e-18 -1.53152765e-17 C23 -4.23262886e-16 -4.05603783e-16 4.40460986e-16 C25 2.15191279e-16 1.89419852e-15 2.63263458e-16 C27 -5.663038e-16 7.91269935e-14 -4.09740933e-16 C29 -1.5876173e-19 8.03015961e-21 1.86842113e-20 C31 -2.92538582e-18 -1.25575575e-18 -2.14335016e-19 C33 3.14262906e-18 -7.82872258e-17 3.26621777e-18 C35 -2.0088391 e-18 -1.00119594e-15 4.39403082e-19 C36 -5.08999445e-21 2.78323568e-23 -1.48137274e-21 C38 -7.30929047e-21 3.91351204e-22 -6.05704744e-22 C40 -2.98409959e-21 2.36229594e-20 -9.24943789e-21 C42 3.84399776e-20 7.46681843e-19 1.57963955e-21 C44 3.13179317e-20 2.73402949e-18 2.68227984e-21 C46 -5.10842468e-24 8.55981332e-26 1.99536481 e-24 C48 2.91936197e-23 3.82725655e-25 9.32028588e-24 C50 1.38453799e-22 -1.24908171 e-22 -1.36675154e-23 C52 5.51592482e-22 -1.4570635e-21 -1.17711866e-22 C54 3.41044893e-22 8.01441707e-20 -9.9016006e-23 C55 5.17252551 e-26 -1.34968706e-29 -1.52532943e-27 C57 2.00318594e-25 -1.44840346e-27 2.0470899e-26 C59 2.10437127e-25 1.6131965e-26 6.73921181 e-26 Koeffizient M5 M4 M3C7 -1.8652865e-07 -4.24630231 e-08 1.94384684e-07 C9 -1.02802052e-07 -6.52977487e-07 -7.17829652e-08 C10 -5.35811112e-11 1.10296456e-11 -7.42346358e-11 C12 -1.99417399e -10 1.00977633e-10 3.76056759e-11 C14 1.01835137e-10 -2.41010461e-09 3.93568892e-11 C16 -2.80626289e-13 -5.69400376e-14 1.25218538e-13 C18 -1.17577236e-13 1.19732124e-12 - 2.13740953e-13 C20 -2.50255951 e-13 -4.32169574e-12 -9.64163266e-14 C21 2.6907927e-16 2.39267428e-18 -1.53152765e-17 C23 -4.23262886e-16 -4.05603783e-16 4.40460986e-16 C25 C29-5.663038e-16 7.91269935e-14 -4.09740933e-16 C29 -1.5876173e-19 8.03015961e-21 1.86842113e-20 C31 -2.92538582e-18 -1.25575575e -18 -2.14335016e-19 C33 3.14262906e-18 -7.82872258e-17 3.26621777e-18 C35 -2.0088391 e-18 -1.00119594e-15 4.39403082e-19 C36 -5.08999445e-21 2.78323568e-23 -1.48137274e- 21 C38 -7.30929047e-21 3.913511204e-22 -6.05704744e-22 C40 -2.98409959e-21 2.36229594e-20 -9.24943789e-21 C42 3.84399776e-20 7.46681843e-19 1.5796 3955e-21 C44 3.13179317e-20 2.73402949e-18 2.68227984e-21 C46 -5.10842468e-24 8.55981332e-26 1.99536481 e-24 C48 2.91936197e-23 3.82725655e-25 9.32028588e-24 C50 1.38453799e-22 -1.24908171 e-22 -1.36675154e-23 C52 C55.517252551 e-26 -1.34968706e-29 -1.52532943e C52 5.51592482e-22 -1.4570635e-21 -1.17711866e-22 C54 3.41044893e-22 8.01441707e-20 -9.9016006e-23 -27 C57 2.00318594e-25 -1.44840346e-27 2.0470899e-26 C59 2.10437127e-25 1.6131965e-26 6.73921181 e-26 Coefficient M5 M4 M3
C61 3.69625695e-25 8.05459452e-25 3.84979616e-25 C63 3.90489396e-24 -9.87992209e-23 7.45595383e-26 C65 1.69415126e-25 -8.02607569e-22 3.07812088e-25 C67 3.23262405e-28 1.14795879e-32 -4.40966022e-29 C69 2.68979529e-29 -1.90474992e-29 -5.89666435e-29 C71 -3.36239328e-27 -8.67278176e-28 -7.78323397e-28 C73 -9.49129081e-27 2.06524492e-26 -4.01125727e-28 C75 9.56175133e-27 5.20174159e-25 3.52455817e-27 C77 -1.16580455e-26 -1.72107549e-24 6.57922701 e-28 C78 9.80464919e-32 -4.54180435e-34 7.49347454e-32 C80 -9.31289455e-31 6.32640281 e-33 -2.27529195e-31 C82 -7.94127312e-30 1.28727506e-31 1.93638319e-31 C84 -3.16841696e-29 5.32074606e-31 3.0973772e-30 C86 -7.96302059e-29 -1.02870035e-29 -3.39277553e-30 C88 -1.07641552e-29 7.15154387e-27 1.49638592e-29 C90 -5.80007699e-29 5.52471571 e-26 -1.81838477e-29 C92 -6.37618517e-35 -1.00673819e-36 4.35344188e-34 C94 -7.23981776e-33 1.93844772e-35 6.92879874e-34 C96 -2.27198696e-32 4.0369611e-34 -1.30815712e-33 C98 -8.07732983e-32 1.1395269e-32 -5.54290471 e-33 C100 -1.81611958e-31 -1.72883542e-30 -1.51072988e-32 C102 -5.61071528e-32 -4.78892158e-29 -9.32848301 e-32 C104 -8.84936177e-32 -2.47120721e-28 5.24911338e-32C61 3.69625695e-25 8.05459452e-25 3.84979616e-25 C63 3.90489396e-24 -9.87992209e-23 7.45595383e-26 C65 1.69415126e-25 -8.02607569e-22 3.07812088e-25 C67 3.23262405e-28 1.14795879e-32 -4.40966022e-29 C69 2.68979529e-29 -1.90474992e-29 -5.89666435e-29 C71-3.36239328e-27 -8.67278176e-28 -7.78323397e-28 C73 -9.49129081e-27 2.06524492e-26 -4.01125727e- 28 C75 9.56175133e-27 5.20174159e-25 3.52455817e-27 C77 -1.16580455e-26 -1.72107549e-24 6.57922701 e-28 C78 9.80464919e-32 -4.54180435e-34 7.49347454e-32 C80 -9.31289455e-31 6.32640281 e-33 -2.27529195e-31 C82 -7.94127312e-30 1.28727506e-31 1.93638319e-31 C84 -3.16841696e-29 5.32074606e-31 3.0973772e-30 C86 -7.96302059e-29 -1.02870035e-29 -3.39277553e -30 C88 -1.07641552e-29 7.15154387e-27 1.49638592e-29 C90 -5.80007699e-29 5,524,71571 e-26 -1.81838477e-29 C92 -6.37618517e-35 -1.00673819e-36 4.35344188e-34 C94 -7.23981776e -33 1.93844772e-35 6.92879874e-34 C96 -2.27198696e-32 4.0369611e-34 -1.30815712e-33 C98 -8.07732983e-32 1.1395269e-32 -5.542 90471 e-33 C100 -1.81611958e-31 -1.72883542e-30 -1.51072988e-32 C102 -5.61071528e-32 -4.78892158e-29 -9.32848301 e-32 C104 -8.84936177e-32 -2.47120721e-28 5.24911338e 32
Tabelle 3b zu Fig. 2 Table 3b to Fig. 2
Koeffizient M2 M1Coefficient M2 M1
KY -0.01234570 0.00000000 KX 0.00000000 0.00000000 RX 1651.29469400 -2632.75052100KY -0.01234570 0.00000000 KX 0.00000000 0.00000000 RX 1651.29469400 -2632.75052100
C7 -1.51550123e-07 -7.36996938e-09C7 -1.51550123e-07 -7.36996938e-09
C9 -1.21487821e-08 2.0569377e-08C9 -1.21487821e-08 2.0569377e-08
C10 2.09113187e-10 -1.80026904e-11C10 2.09113187e-10 -1.80026904e-11
C12 -7.96285921 e-11 -2.02425339e-10C12 -7.96285921 e-11 -2.02425339e-10
C14 1.20235152e-10 -1.58699294e-10C14 1.20235152e-10 -1.58699294e-10
C16 -2.42936866e-13 1.14876287e-13C16 -2.42936866e-13 1.14876287e-13
C18 3.56848304e-16 4.28329459e-13C18 3.56848304e-16 4.28329459e-13
C20 -2.73831533e-13 -3.62201583e-14C20 -2.73831533e-13 -3.62201583e-14
C21 4.93325127e-16 5.51321462e-17C21 4.93325127e-16 5.51321462e-17
C23 1.59461068e-16 -5.36481007e-17C23 1.59461068e-16 -5.36481007e-17
C25 6.66776901 e-16 -3.27342504e-16C25 6.66776901 e-16 -3.27342504e-16
C27 2.41302066e-16 1.34172814e-15C27 2.41302066e-16 1.34172814e-15
C29 7.485099e-20 -1.44207244e-19C29 7.485099e-20 -1.44207244e-19
C31 4.18658537e-19 1.32626192e-18C31 4.18658537e-19 1.32626192e-18
C33 -2.38338714e-18 4.93631418e-18C33 -2.38338714e-18 4.93631418e-18
C35 -1.15578785e-18 -6.59449991 e-18C35 -1.15578785e-18 -6.59449991 e-18
C36 4.45559292e-21 -7.91898678e-22C36 4.45559292e-21 -7.91898678e-22
C38 1.53820416e-21 -5.64637331 e-21C38 1.53820416e-21 -5.64637331 e-21
C40 3.30412695e-21 -1.46982681 e-20C40 3.30412695e-21 -1.46982681 e-20
C42 5.95781353e-21 -3.05459185e-20C42 5.95781353e-21 -3.05459185e-20
C44 4.72401785e-21 6.10830044e-20C44 4.72401785e-21 6.10830044e-20
C46 6.64520361 e-24 7.70691095e-25C46 6.64520361 e-24 7.70691095e-25
C48 3.47713297e-25 9.16676497e-25 Koeffizient M2 M1C48 3.47713297e-25 9.16676497e-25 Coefficient M2 M1
C50 -2.00485e-23 -1.06076605e-22 C52 -2.14721965e-23 -1.99224578e-22 C54 -9.43870644e-25 -9.42098864e-23 C55 -5.89271373e-27 8.8726833e-27 C57 -5.14053514e-26 1.32158184e-25 C59 -2.26598784e-26 4.00410895e-25 C61 3.67898874e-26 4.34484571 e-25 C63 6.45066115e-26 3.6616824e-25 C65 -1.70603744e-26 -2.44627583e-24 C67 9.80740962e-29 4.64135426e-29 C69 3.87068653e-29 2.42039766e-28 C71 2.12238797e-28 2.0088671 1 e-27 C73 -7.90980539e-29 8.12221417e-27 C75 -1.71846637e-28 9.6921 1396e-27 C77 -4.83228352e-29 -2.69100732e-27 C78 -3.28414165e-31 -4.34877232e-32 C80 6.2173288e-31 -1.23197166e-30 C82 5.25200248e-31 -5.95477298e-30 C84 4.09914682e-31 -1.20688548e-29 C86 6.87904365e-31 2.4844433e-30 C88 4.06358345e-31 1.08603958e-29 C90 2.87455932e-31 1.73556337e-28 C92 -1.43700292e-33 -6.95582298e-35 C94 6.74298218e-34 -2.81521715e-34 C96 -1.7534426e-33 -1.38405426e-32 C98 -3.15685068e-33 -8.4479462e-32 C100 -1.49584673e-33 -2.7006613e-31 C102 -4.70629963e-34 -2.3767521 e-31 C104 -3.32523652e-34 -5.76041521 e-31C50 -2.00485e-23 -1.06076605e-22 C52 -2.14721965e-23 -1.99224578e-22 C54 -9.43870644e-25 -9.42098864e-23 C55 -5.89271373e-27 8.8726833e-27 C57 -5.14053514e-26 1.32158184 e-25 C59 -2.26598784e-26 4.00410895e-25 C61 3.67898874e-26 4.34484571 e-25 C63 6.45066115e-26 3.6616824e-25 C65 -1.70603744e-26 -2.44627583e-24 C67 9.80740962e-29 4.64135426- 29 C69 3.87068653e-29 2.42039766e-28 C71 2.12238797e-28 2.0088671 1 e-27 C73 -7.90980539e-29 8.12221417e-27 C75 -1.71846637e-28 9.6921 1396e-27 C77 -4.83228352e-29 -2.69100732e- 27 C78 -3.28414165e-31 -4.34877232e-32 C80 6.2173288e-31 -1.23197166e-30 C82 5.25200248e-31 -5.95477298e-30 C84 4.09914682e-31 -1.20688548e-29 C86 6.87904365e-31 2.4844433e- 30 C88 4.06358345e-31 1.08603958e-29 C90 2.87455932e-31 1.73556337e-28 C92 -1.43700292e-33 -6.95582298e-35 C94 6.74298218e-34 -2.81521715e-34 C96 -1.7534426e-33 -1.38405426e- 32 C98-3.15685068e-33 -8.4479462e-32 C100-1.49584673e-33 -2.7006613e-31 C102 -4.70629963e-34 -2.3767521 e-31 C104-3.32523652e-34 -5.76041521 e-31
Tabelle 3c zu Fig. 2 Table 3c to Fig. 2
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M8 0.00000000 0.00000000 882 77565409 M7 0.00000000 147.74416815 103 43278922 M6 -0.00000000 -82.17184405 1 159 82035546 M5 -0.00000000 -195.88699161 1313 90521342 M4 -0.00000000 -689.91 126350 1545 33998989 M3 -0.00000000 161.29497309 1546 43843672 M2 0.00000000 732.36714651 1201 83267617 Blende 0.00000000 1015.58933861 693.77057038 M1 0.00000000 1 198.65681500 365.37240755Image plane 0.00000000 0.00000000 0.00000000 0.00000000 M8 0 00000000 882 77565409 103 43278922 M7 0.00000000 147.74416815 M6 -0.00000000 -82.17184405 1 159 82035546 M5 -0.00000000 -195.88699161 1313 90521342 M4 -0.00000000 -689.91 126350 1545 33998989 1546 43843672 M3 -0.00000000 161.29497309 732.36714651 M2 0.00000000 1201 83267617 aperture 0.00000000 1015.58933861 693.77057038 M1 0.00000000 1 198.65681500 365.37240755
Objektebene 0.00000000 1348.48550683 2077.92168912 Tabelle 4a zu Fig. 2 Object level 0.00000000 1348.48550683 2077.92168912 Table 4a to FIG. 2
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M8 5.36724017 0.00000000 -0.00000000M8 5.36724017 0.00000000 -0.00000000
M7 191.50652875 0.00000000 -0.00000000M7 191.50652875 0.00000000 -0.00000000
M6 -65.64698575 0.00000000 -0.00000000M6 -65.64698575 0.00000000 -0.00000000
M5 -39.33707785 0.00000000 -0.00000000M5 -39.33707785 0.00000000 -0.00000000
M4 77.48616539 -0.00000000 -0.00000000 Oberfläche TLA[deg] TLB[deg] TLC[deg]M4 77.48616539 -0.00000000 -0.00000000 Surface TLA [deg] TLB [deg] TLC [deg]
M3 -15.51718699 0.00000000 -0.00000000M3 -15.51718699 0.00000000 -0.00000000
M2 -45.98528751 0.00000000 -0.00000000M2 -45.98528751 0.00000000 -0.00000000
Blende 29.56527173 180.00000000 0.00000000Aperture 29.56527173 180.00000000 0.00000000
M1 192.06886766 -0.00000000 -0.00000000M1 192.06886766 -0.00000000 -0.00000000
Objektebene -0.00000146 0.00000000 -0.00000000 Tabelle 4b zu Fig. 2 Object level -0.00000146 0.00000000 -0.00000000 Table 4b to FIG. 2
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M8 5.39974096 0.66267078 M7 0.65775307 0.66564975 M6 77.78202576 0.84766857 M5 75.79531335 0.81712415 M4 12.35481935 0.64834731 M3 74.57586411 0.79655325 M2 75.24373779 0.80800760 M1 17.20845857 0.62924549M8 5.39974096 0.66267078 M7 0.65775307 0.66564975 M6 77.78202576 0.84766857 M5 75.79531335 0.81712415 M4 12.35481935 0.64834731 M3 74.57586411 0.79655325 M2 75.24373779 0.80800760 M1 17.20845857 0.62924549
Gesarnttransmission 0.0802Total transmission 0.0802
Tabelle 5 zu Fig. 2 Table 5 to Fig. 2
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
0.00000000 89.20801645 0.00000000 34.08528121 88.17188871 0.00000000 67.40598766 85.11507465 0.00000000 99.20831752 80.16474983 0.00000000 128.76104217 73.46969353 0.00000000 155.36725085 65.16806914 0.00000000 178.37639394 55.38904414 0.00000000 197.19924577 44.26886612 0.00000000 211.32549205 31.96726025 0.00000000 220.34120483 18.68302504 0.00000000 223.94717509 4.66585955 0.00000000 221.97922526 -9.77769625 0.00000000 214.42559512 -24.28603688 0.00000000 201.43485904 -38.45542703 0.00000000 183.31296701 -51.86145417 0.00000000 160.51193019 -64.08136185 0.00000000 133.61280933 -74.71394168 0.00000000 103.30527919 -83.39836098 0.00000000 70.36584216 -89.83225300 0.00000000 35.63590906 -93.78743681 0.00000000 0.00000000 -95.12190481 0.00000000 -35.63590906 -93.78743681 0.00000000 -70.36584216 -89.83225300 0.00000000 -103.30527919 -83.39836098 0.00000000 -133.61280933 -74.71394168 0.00000000 -160.51193019 -64.08136185 0.00000000 -183.31296701 -51.86145417 0.00000000 -201.43485904 -38.45542703 0.00000000 -214.42559512 -24.28603688 0.00000000 -221.97922526 -9.77769625 0.00000000 -223.94717509 4.66585955 0.00000000 -220.34120483 18.68302504 0.00000000 X[mm] Y[mm] Z[mm]0.00000000 0.00000000 89.20801645 34.08528121 88.17188871 67.40598766 85.11507465 0.00000000 0.00000000 0.00000000 99.20831752 80.16474983 73.46969353 0.00000000 128.76104217 155.36725085 178.37639394 0.00000000 65.16806914 55.38904414 44.26886612 0.00000000 0.00000000 197.19924577 211.32549205 220.34120483 18.68302504 31.96726025 0.00000000 0.00000000 4.66585955 0.00000000 223.94717509 221.97922526 -9.77769625 0.00000000 214.42559512 -24.28603688 0.00000000 201.43485904 -38.45542703 0.00000000 183.31296701 -51.86145417 0.00000000 160.51193019 -64.08136185 0.00000000 133.61280933 -74.71394168 0.00000000 103.30527919 -83.39836098 0.00000000 70.36584216 -89.83225300 0.00000000 35.63590906 -93.78743681 0.00000000 0.00000000 -95.12190481 0.00000000 -35.63590906 -93.78743681 0.00000000 -70.36584216 -89.83225300 0.00000000 -103.30527919 -83.39836098 0.00000000 -133.61280933 -74.71394168 0.00000000 -160.51193019 -64.08136185 0.00000000 -183.31296701 -00.86145417 0.00000000 -201.43485904 -38.4 0.00000000 -221.97922526 -9.77769625 0.00000000 -223.94717509 4.66585955 0.00000000 -220.34120483 18.68302504 0.00000000 X [mm] Y [mm] Z [mm]
-21 1.32549205 31.96726025 0.00000000 -197.19924577 44.26886612 0.00000000 -178.37639394 55.38904414 0.00000000 -155.36725085 65.16806914 0.00000000 -128.76104217 73.46969353 0.00000000 -99.20831752 80.16474983 0.00000000 -67.40598766 85.1 1507465 0.00000000 -34.08528121 88.17188871 0.00000000-21 1.32549205 31.96726025 0.00000000 -197.19924577 44.26886612 0.00000000 -178.37639394 55.38904414 0.00000000 -155.36725085 65.16806914 0.00000000 -128.76104217 73.46969353 0.00000000 -99.20831752 80.16474983 0.00000000 -67.40598766 85.1 1507465 0.00000000 -34.08528121 88.17188871 0.00000000
Tabelle 6 zu Fig. 2 Table 6 to FIG. 2
Eine Gesamt-Refiektivität der Projektionsoptik 7 beträgt 8,02 %. Die Referenzachsen der Spiegel sind in der Regel gegenüber einer Normalen auf die Bildebene 9 verkippt, wie die tabellierten Verkippungswerte deutlich machen. A total refiectivity of the projection optics 7 is 8.02%. The reference axes of the mirrors are generally tilted with respect to a normal to the image plane 9, as the tabulated tilt values make clear.
Die Spiegel Ml, M4 und M8 haben negative Radiuswerte, sind also grundsätzlich Konkavspiegel. Der Spiegel M7 hat einen positiven Radiuswert, ist grundsätzlich also ein Konvexspiegel. Die Spiegel M2, M3, M5 und M6 haben Radiuswerte mit unterschiedlichen Vorzeichen, also torische beziehungsweise Sattelfiächenspiegel. The mirrors M1, M4 and M8 have negative radius values, ie are basically concave mirrors. The mirror M7 has a positive radius value, so basically is a convex mirror. The mirrors M2, M3, M5 and M6 have radius values with different signs, ie toric or saddle mirror mirrors.
Das Bildfeld 8 hat eine x-Erstreckung von zweimal 13 mm und eine y-Erstreckung von 1 mm. Die Projektionsoptik 7 ist optimiert für eine Betriebswellenlänge des Beleuchtungslichts 3 von 13,5 nm. The image field 8 has an x-extension of twice 13 mm and a y-extension of 1 mm. The projection optics 7 is optimized for an operating wavelength of the illumination light 3 of 13.5 nm.
Eine Berandung einer Blendenfiäche der Blende (vgl. auch die Tabelle 6 zur Fig. 2) ergibt sich durch Durchstoßpunkte an der Blendenfiäche aller Strahlen des Beleuchtungslichts 3, die bildsei- tig am Feldmittelpunkt mit einer vollen bildseitigen telezentrischen Apertur in Richtung der Blendenfiäche propagieren. Bei der Ausführung der Blende als Aperturblende handelt es sich bei der Berandung um eine innere Berandung. Bounding of a diaphragm surface of the diaphragm (see also Table 6 for FIG. 2) results from puncture points at the diaphragm surface of all beams of the illumination light 3, which propagate at the field center with a full image-side telecentric aperture in the direction of the diaphragm surface. When the aperture is designed as an aperture diaphragm, the boundary is an inner boundary.
Die Blende AS kann in einer Ebene liegen oder auch dreidimensional ausgeführt sein. Die Ausdehnung der Blende AS kann in Scanrichtung (y) kleiner sein als in cross-Scanrichtung (x). The diaphragm AS can lie in one plane or can also be embodied in three dimensions. The extent of the diaphragm AS can be smaller in the scanning direction (y) than in the cross-scanning direction (x).
Eine Baulänge der Projektionsoptik 7 in der z-Richtung, also ein Abstand zwischen der Objektebene 5 und der Bildebene 9, beträgt etwa 2080 mm. Eine Pupillenobskuration beträgt bei der Projektionsoptik 7 15 % der gesamten Apertur der Eintrittspupille. Weniger als 15 % der numerischen Apertur sind aufgrund der Durchtrittsöffnung 17 also obskuriert. Die Konstruktion der Obskurationsberandung erfolgt analog der vorstehend im Zusammenhang mit der Blende 18 erläuterten Konstruktion der Blendenberandung. Bei der Ausführung als Obskurationsblende handelt es sich bei der Berandung um eine äußere Berandung der Blende. In einer Systempupille der Projektionsoptik 7 ist eine aufgrund der Obskuration nicht beleuchtbare Fläche kleiner als 0,152 der Fläche der gesamten Systempupille. Die nicht beleuchtete Fläche innerhalb der Systempupille kann in der x-Richtung eine andere Ausdehnung haben als in der y- Richtung. Die nicht beleuchtete Fläche in der Systempupille kann rund, elliptisch, quadratisch oder rechteckig sein. Diese nicht beleuchtbare Fläche in der Systempupille kann zudem in Bezug auf ein Zentrum der Systempupille in der x-Richtung und/oder in der y- Richtung dezentriert sein. Ein y- Abstand dois zwischen einem zentralen Objektfeldpunkt und einem zentralen Bildfeld- punkt beträgt etwa 1350 mm. Ein Arbeitsabstand zwischen dem Spiegel M7 und der Bildebene 9 beträgt 77 mm. An overall length of the projection optics 7 in the z-direction, ie a distance between the object plane 5 and the image plane 9, is approximately 2080 mm. A pupil obscuration in the projection optics 7 is 15% of the total aperture of the entrance pupil. Less than 15% of the numerical aperture are therefore obscured due to the passage opening 17. The construction of the obscurant boundary takes place analogously to the construction of the diaphragm boundary explained above in connection with the diaphragm 18. When executed as Obskurationsbrende it is at the boundary to an outer boundary of the aperture. In a system pupil of the projection optics 7, an area that can not be illuminated due to obscuration is less than 0.15 2 of the area of the entire system pupil. The non-illuminated area within the system pupil may have a different extent in the x-direction than in the y-direction. The unilluminated area in the system pupil may be round, elliptical, square or rectangular. This non-illuminable area in the system pupil may also be decentered with respect to a center of the system pupil in the x-direction and / or in the y-direction. A y-distance dois between a central object field point and a central field point is about 1350 mm. A working distance between the mirror M7 and the image plane 9 is 77 mm.
Die Spiegel der Projektionsoptik 7 können in einem Quader mit den xyz-Kantenlängen 1004 mm x 2021 mm x 1534 mm untergebracht werden. The mirrors of the projection optics 7 can be accommodated in a cuboid with the xyz edge lengths 1004 mm × 2021 mm × 1534 mm.
Die Projektionsoptik 7 ist bildseitig näherungsweise telezentrisch. The projection optics 7 is approximately telecentric on the image side.
Die Konstruktion der Obskurationsberandung erfolgt analog der vorstehend im Zusammenhang mit der Blende 18 erläuterten Konstruktion der Blendenberandung. Bei der Ausführung als Obskurationsblende handelt es sich bei der Berandung um eine äußere Berandung der Blende. In einer Systempupille der Projektionsoptik 7 ist eine aufgrund der Obskuration nicht beleuchtbare Fläche kleiner als 0,152 der Fläche der gesamten Systempupille. Die nicht beleuchtete Fläche innerhalb der Systempupille kann in der x-Richtung eine andere Ausdehnung haben als in der y- Richtung. Die nicht beleuchtete Fläche in der Systempupille kann rund, elliptisch, quadratisch, rechteckig sein oder auch die Form eines Polygonzuges haben. Diese nicht beleuchtbare Fläche in der Systempupille kann zudem in Bezug auf ein Zentrum der Systempupille in der x-Richtung und/oder in der y-Richtung dezentriert sein. The construction of the obscurant boundary takes place analogously to the construction of the diaphragm boundary explained above in connection with the diaphragm 18. When executed as Obskurationsbrende it is at the boundary to an outer boundary of the aperture. In a system pupil of the projection optics 7, an area that can not be illuminated due to obscuration is less than 0.15 2 of the area of the entire system pupil. The non-illuminated area within the system pupil may have a different extent in the x-direction than in the y-direction. The non-illuminated surface in the system pupil may be round, elliptical, square, rectangular or even in the form of a polygon. This non-illuminable surface in the system pupil may also be decentered with respect to a center of the system pupil in the x-direction and / or in the y-direction.
Anhand der Fig. 5 bis 7 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 21 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 4 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. Die Spiegel Ml bis M8 sind wiederum als Freiformflächen-Spiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. A further embodiment of a projection optical system 21 will now be explained with reference to FIGS. 5 to 7, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. Components and functions, which have already been explained above in connection with FIGS. 1 to 4, optionally bear the same reference numbers and will not be discussed again in detail. The mirrors M1 to M8 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M8 der Projektionsoptik 21. The following table once again shows the mirror parameters of the mirrors M1 to M8 of the projection optics 21.
Ml M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8
maximaler maximum
17.7 83.6 79.1 15.4 82.1 84.1 21.7 8.5  17.7 83.6 79.1 15.4 82.1 84.1 21.7 8.5
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächen- erstreckung in 480.9 612.0 734.0 786.4 550.3 348.7 352.8 930.1 Reflective surface extension in 480.9 612.0 734.0 786.4 550.3 348.7 352.8 930.1
x-Richtung [mm] x-direction [mm]
Reflexionsflächen- erstreckung in 240.7 495.6 227.5 123.4 359.4 121.4 211.1 921.6 Reflective surface extension in 240.7 495.6 227.5 123.4 359.4 121.4 211.1 921.6
y-Richtung [mm] y-direction [mm]
maximaler maximum
Spiegeldurchmesser 480.9 612.8 734.0 786.5 550.8 348.7 353.0 936.4  Mirror diameter 480.9 612.8 734.0 786.5 550.8 348.7 353.0 936.4
[mm] [Mm]
Keiner der GI-Spiegel M2, M3, M5 und M6 hat ein y/x- Aspektverhältnis seiner Reflexionsflä- che, das größer ist als 1. Das extremste y/x- Aspektverhältnis hat der NI-Spiegel M4 mit etwa 1 :6,4. None of the GI mirrors M2, M3, M5, and M6 has a y / x aspect ratio of its reflection area that is greater than 1. The most extreme y / x aspect ratio has the NI mirror M4 at about 1: 6.4 ,
Den größten maximalen Spiegeldurchmesser hat auch hier der Spiegel M8 mit weniger als 950 mm. Die optischen Designdaten der Projektionsoptik 21 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. The largest maximum mirror diameter is also the mirror M8 with less than 950 mm. The optical design data of the projection optics 21 can be found in the following tables, which correspond in their structure to the tables for the projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 5 Embodiment FIG. 5
NA 0.5 NA 0.5
Wellenlänge 13.5 nm beta_x 4.0 beta_y -8.0Wavelength 13.5 nm beta_x 4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.2 mmField size_y 1.2 mm
Feldkrümmung 0.0 1/mm rms 9.2 mlField curvature 0.0 1 / mm rms 9.2 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 5 Table 1 to Fig. 5
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M8 -1028.1890922 0.0019300 -959.8491743 0.0021000 REFLM8 -1028.1890922 0.0019300 -959.8491743 0.0021000 REFL
M7 3932.1050547 -0.0005085 641.6674836 -0.0031 174 REFLM7 3932.1050547 -0.0005085 641.6674836 -0.0031 174 REFL
M6 -5352.1 107774 0.0000757 -24854.2346696 0.0003974 REFLM6 -5352.1 107774 0.0000757 -24854.2346696 0.0003974 REFL
M5 -2870.1334684 0.0001444 -5932.2095215 0.0016270 REFLM5 -2870.1334684 0.0001444 -5932.2095215 0.0016270 REFL
M4 -2683.8914762 0.0007230 -1481.1480890 0.0013918 REFLM4 -2683.8914762 0.0007230 -1481.1480890 0.0013918 REFL
M3 -3205.8052729 0.0001568 -3694.8995054 0.0021542 REFLM3 -3205.8052729 0.0001568 -3694.8995054 0.0021542 REFL
M2 20005.7694322 -0.0000193 -14932.3149158 0.0006929 REFLM2 20005.7694322 -0.0000193 -14932.3149158 0.0006929 REFL
M1 -5312.3214757 0.000361 1 -2012.9727538 0.0010359 REFLM1 -5312.3214757 0.000361 1 -2012.9727538 0.0010359 REFL
Tabelle 2 zu Fig. 5 Table 2 to Fig. 5
Koeffizient M8 M7 M6Coefficient M8 M7 M6
KY 0.00000000 0.00000000 0.00000000 KX -0.1 1707187 -0.04806187 -0.41 102881 RX -1028.18909200 3932.10505500 -5352.1 1077700KY 0.00000000 0.00000000 0.00000000 KX -0.1 1707187 -0.04806187 -0.41 102881 RX -1028.18909200 3932.10505500 -5352.1 1077700
C7 -8.321 10151 e-09 -7.75192759e-07 -8.38431813e-08 C9 -2.65634274e-09 -5.91270104e-07 -3.8859897e-08 C10 -1.7055709e-1 1 3.50377124e-10 3.03629175e-10 C12 -3.4222558e-1 1 2.1099725e-09 6.89418154e-1 1 C14 -1.77106861 e-1 1 4.80002309e-09 -6.72089575e-1 1 C16 -1.14467378e-14 -8.02970149e-13 6.68672697e-13 C18 -1.24019197e-14 -7.25793342e-12 5.77645684e-13 C20 1.84961531 e-15 7.83383236e-13 -2.52644253e-14 C21 -2.15820281 e- 17 1.42170913e-15 6.13051461 e-16 C23 -6.10692437e-17 7.31997494e-15 -3.41664153e-16 C25 -7.16991235e-17 1.49144421 e-14 -4.4277313e-17 C27 -1.35420803e-17 -4.03527766e-15 -1.58210976e-14 C29 -8.62061614e-21 -4.29985657e-18 8.20744059e-18 C31 -2.63207728e-20 -3.69588953e-17 -4.68525896e-18 C33 -7.2137657e-21 1.19620901 e-18 3.06007835e-17 C35 -9.80087706e-21 -1.70594431 e-17 -1.6890856e-16 izient M8 M7 M6C9 -8.321 10151 e-09 -7.75192759e-07 -8.38431813e-08 C9 -2.65634274e-09 -5.91270104e-07 -3.8859897e-08 C10 -1.7055709e-1 1 3.50377124e-10 3.03629175e-10 C12 - No. 3,422,258e-1 1 2.1099725e-09 6.89418154e-1 1 C14 -1.77106861 e-1 1 4.80002309e-09 -6.72089575e-1 1 C16 -1.14467378e-14 -8.02970149e-13 6.68672697e-13 C18 -1.24019197e -14 -7.25793342e-12 5.77645684e-13 C20 1.84961531 e-15 7.83383236e-13 -2.52644253e-14 C21 -2.15820281 e- 17 1.42170913e-15 6.13051461 e-16 C23 -6.10692437e-17 7.31997494e-15 - C29 -8.62061614e-21 -4.29985657e-18 8.20744059e-18 C27 -1.35420803e-17 -4.03527766e-15 -1.58210976e-14 C29 -8.62061614e-21 -4.29985657e-18 C31-2.63207728e-20 -3.69588953e-17 -4.68525896e-18 C33 -7.2137657e-21 1.19620901 e-18 3.06007835e-17 C35 -9.80087706e-21 -1.70594431 e-17 -1.6890856e-16 efficient M8 M7 M6
C36 -2.13708366e-23 -4.21759943e-21 -5.74352644e-21C36 -2.13708366e-23 -4.21759943e-21 -5.74352644e-21
C38 -8.22434751 e-23 2.3951499e-20 5.33179782e-20C38 -8.22434751 e-23 2.3951499e-20 5.33179782e-20
C40 -1.43850238e-22 1.30926569e-19 1.67190312e-20C40 -1.43850238e-22 1.30926569e-19 1.67190312e-20
C42 -8.16684483e-23 4.14969602e-19 1.38769568e-18C42 -8.16684483e-23 4.14969602e-19 1.38769568e-18
C44 -2.80014827e-23 1.4099488e-18 1.0296977e-17C44 -2.80014827e-23 1.4099488e-18 1.0296977e-17
C46 -1.18829244e-27 -4.53220944e-24 -1.42509336e-22C46-1.18829244e-27 -4.53220944e-24 -1.42509336e-22
C48 -2.81954585e-26 -1.41737217e-22 4.69109246e-22C48 -2.81954585e-26 -1.41737217e-22 4.69109246e-22
C50 -1.85733281 e-26 -3.26256632e-22 5.80444096e-22C50 -1.85733281 e-26 -3.26256632e-22 5.80444096e-22
C52 -2.72041596e-26 -3.37691673e-21 -1.98920261 e-20C52-2.72041596e-26 -3.37691673e-21 -1.98920261 e-20
C54 2.37702476e-28 -7.74548198e-21 2.08508467e-19C54 2.37702476e-28 -7.74548198e-21 2.08508467e-19
C55 -2.53602461 e-29 1.08361867e-25 7.70794381 e-26C55 -2.53602461 e-29 1.08361867e-25 7.70794381 e-26
C57 -1.39992921 e-28 5.30294989e-25 -2.55960339e-24C57 -1.39992921 e-28 5.30294989e-25 -2.55960339e-24
C59 -2.72691538e-28 1.10149469e-24 -1.59315739e-23C59-2.72691538e-28 1.10149469e-24 -1.59315739e-23
C61 -2.38086239e-28 2.23222466e-25 -4.74854092e-23C61-2.38086239e-28 2.23222466e-25 -4.74854092e-23
C63 -1.24030935e-28 1.09712699e-23 -1.18627931e-21C63 -1.24030935e-28 1.09712699e-23 -1.18627931e-21
C65 -1.85427438e-29 1.0229509e-23 -1.02720137e-21C65 -1.85427438e-29 1.0229509e-23 -1.02720137e-21
C67 -2.74820055e-32 -7.25647164e-28 4.8045814e-27C67 -2.74820055e-32 -7.25647164e-28 4.8045814e-27
C69 -5.18070943e-32 -3.24196497e-27 1.25489123e-26C69 -5.18070943e-32 -3.24196497e-27 1.25489123e-26
C71 -7.2409432e-32 -6.87767424e-27 -7.19619324e-26C71 -7.2409432e-32 -6.87767424e-27 -7.19619324e-26
C73 -1.24626527e-31 -5.1366772e-26 2.03225531 e-24C73 -1.24626527e-31 -5.1366772e-26 2.03225531 e-24
C75 -5.2993749e-32 -1.47904291 e-25 -4.00593467e-24C75 -5.2993749e-32 -1.47904291 e-25 -4.00593467e-24
C77 -3.2164977e-32 -9.75767738e-27 -4.61398026e-23C77 -3.2164977e-32 -9.75767738e-27 -4.61398026e-23
C78 -1.96159183e-35 -5.95503793e-31 -1.02993847e-31C78 -1.96159183e-35 -5.95503793e-31 -1.02993847e-31
C80 2.07477209e-35 -3.50991441e-30 5.33686479e-29C80 2.07477209e-35 -3.50991441e-30 5.33686479e-29
C82 -6.79009521 e-35 9.70294329e-31 5.73736763e-28C82 -6.79009521 e-35 9.70294329e-31 5.73736763e-28
C84 -1.54323386e-34 1.54338338e-28 1.87312898e-27C84 -1.54323386e-34 1.54338338e-28 1.87312898e-27
C86 -1.96855426e-34 8.86955354e-28 2.39794826e-26C86 -1.96855426e-34 8.86955354e-28 2.39794826e-26
C88 -1.38189955e-34 1.47179885e-27 1.67777792e-25C88 -1.38189955e-34 1.47179885e-27 1.67777792e-25
C90 -4.9760176e-35 7.92160236e-28 -2.42405976e-25C90 -4.9760176e-35 7.92160236e-28 -2.42405976e-25
C92 -1.24122918e-38 8.64955586e-33 -6.17875305e-32C92 -1.24122918e-38 8.64955586e-33 -6.17875305e-32
C94 -2.2387216e-37 2.699854e-32 -7.1703801e-31C94 -2.2387216e-37 2.699854e-32 -7.1703801e-31
C96 -3.4409904e-37 -1.55238589e-32 -9.54082667e-31C96 -3.4409904e-37 -1.55238589e-32 -9.54082667e-31
C98 -2.84279628e-37 -9.78290545e-31 -5.27094915e-29C98 -2.84279628e-37 -9.78290545e-31 -5.27094915e-29
C100 1.21418438e-38 -3.4681581 e-30 -2.14210068e-28C100 1.21418438e-38 -3.4681581 e-30 -2.14210068e-28
C102 -1.88826532e-38 -4.2071042e-30 1.19333327e-27C102 -1.88826532e-38 -4.2071042e-30 1.19333327e-27
C104 1.67545048e-38 -3.90299739e-30 2.27692876e-28C104 1.67545048e-38 -3.90299739e-30 2.27692876e-28
C105 -3.31353145e-41 0 0C105 -3.31353145e-41 0 0
C107 -4.0002151 e-40 0 0C107 -4.0002151 e-40 0 0
C109 -1.25330728e-39 0 0 cm -2.07743415e-39 0 0C109 -1.25330728e-39 0 0 -2.07743415e-39 0 0
C113 -2.25065136e-39 0 0C113 -2.25065136e-39 0 0
C115 -1.47353035e-39 0 0C115 -1.47353035e-39 0 0
C117 -4.51645253e-40 0 0C117 -4.51645253e-40 0 0
C119 -2.28432172e-41 0 0C119 -2.28432172e-41 0 0
C121 8.2888995e-44 0 0C121 8.2888995e-44 0 0
C123 4.00545577e-43 0 0C123 4.00545577e-43 0 0
C125 7.56772316e-43 0 0C125 7.56772316e-43 0 0
C127 4.05636636e-43 0 0C127 4.05636636e-43 0 0
C129 -2.53940071 e-43 0 0C129 -2.53940071 e-43 0 0
C131 -6.85819455e-43 0 0C131 -6.85819455e-43 0 0
C133 -2.51739126e-43 0 0C133 -2.51739126e-43 0 0
C135 -3.47946269e-44 0 0C135 -3.47946269e-44 0 0
Tabelle 3a zu Fig. 5 Koeffizient M5 M4 M3Table 3a to Fig. 5 Coefficient M5 M4 M3
KY 0.00000000 0.00000000 0.64021352 KX 0.22282184 0.21746393 0.00000000 RX -2870.13346800 -2683.89147600 -3205.80527300KY 0.00000000 0.00000000 0.64021352 KX 0.22282184 0.21746393 0.00000000 RX -2870.13346800 -2683.89147600 -3205.80527300
C7 -1.47299147e-07 -2.64994677e-08 6.28701185e-08 C9 -6.23337864e-08 -1.57634285e-07 -4.65369704e-08 C10 1.48854604e-10 -1.192183e-11 -2.29686752e-11 C12 -1.02913792e-10 -1.86491276e-10 1.57020008e-11 C14 -2.53637748e-11 -2.79043703e-09 1.16183001e-11 C16 2.70788001 e-13 -9.12488689e-14 -2.86529362e-15 C18 -1.56818296e-13 -2.21807015e-12 -1.98396494e-14 C20 -1.1477383e-13 1.49107451e-11 1.38283753e-13 C21 1.67397123e-16 -2.28964432e-17 4.39106972e-17 C23 8.37104743e-16 -8.9801365e-16 4.1 1622891e-17 C25 -7.47250405e-17 7.10807871e-15 -1.21811131e-16 C27 -1.79902189e-16 2.2394936e-14 -5.03509402e-16 C29 8.27076091 e-19 -1.70454112e-19 4.82882592e-20 C31 1.84287894e-18 -1.34325393e-18 9.5068 04e-20 C33 1.21320541e-18 -3.6138162e-17 5.1685178e-19 C35 5.48084095e-19 -3.8395771 e-15 7.87749871 e-18 C36 1.85465234e-21 -3.7251701 e-23 1.26079958e-22 C38 3.46046896e-21 -1.05875826e-21 -2.79363614e-22 C40 9.44259685e-21 -4.07620659e-20 -2.48686978e-21 C42 1.93639312e-20 -3.72631463e-18 -9.54609358e-21 C44 1.81285681e-20 -3.33714823e-18 4.8548579e-20 C46 5.86611261 e-24 -3.27395572e-25 -7.44419579e-26 C48 1.21250192e-23 -2.48877687e-23 -1.45146899e-24 C50 4.70679809e-23 -1.629748e-21 1.70329245e-24 C52 1.35442554e-22 4.947345e-21 -5.74686981 e-23 C54 1.89474646e-22 2.46150233e-19 -9.92108773e-22 C55 -8.51982321 e-27 -2.55798506e-29 1.77784215e-28 C57 9.55965768e-27 -9.67336823e-27 4.80247741 e-27 C59 8.56706064e-27 -5.9830259e-25 4.94864751 e-26 C61 5.43620015e-26 2.99229925e-24 2.1 1534673e-25 C63 5.14940966e-25 2.11963201e-22 9.49895777e-25 C65 1.1325732e-24 -6.55165767e-23 2.64833059e-24 C67 -3.20050186e-29 1.08799851 e-31 -4.25371744e-32 C69 -8.93307827e-29 -5.9737815e-29 -2.87246881 e-30 C71 -4.40848262e-28 2.50559555e-27 6.01241562e-30 C73 -8.53288765e-28 4.77493797e-26 -1.42915015e-27 C75 1.04138051 e-27 -1.07454562e-24 -1.45023879e-27 C77 3.95557803e-27 -1.58374495e-23 3.7330166e-26 C78 7.67993746e-33 1.3603387e-34 -4.70533824e-34 C80 -1.82202453e-31 2.8502332e-32 -2.19064865e-32 C82 -7.59424732e-31 2.35506707e-30 -4.5067788e-31 C84 -2.61465311e-30 4.19888867e-29 -2.62808797e-30 C86 -4.10291005e-30 -2.35024421 e-28 3.12051609e-30 C88 9.79786373e-31 -1.33377231 e-26 -2.37410837e-29 C90 7.50555478e-30 -1.17432361 e-26 -2.93732287e-28 C92 -3.9655732e-35 1.72718937e-36 3.90363721 e-36 C94 -4.46917432e-34 4.18220567e-34 1.49283393e-34 C96 -1.56112844e-33 1.35239086e-32 1.97806516e-33 C98 -4.3774859e-33 1.80150492e-31 8.83974058e-33 Koeffizient M5 M4 M3C7 -1.47299147e-07 -2.64994677e-08 6.28701185e-08 C9 -6.23337864e-08 -1.57634285e-07 -4.65369704e-08 C10 1.48854604e-10 -1.192183e-11 -2.29686752e-11 C12 -1.02913792e -10 -1.86491276e-10 1.57020008e-11 C14 -2.53637748e-11 -2.79043703e-09 1.16183001e-11 C16 2.70788001 e-13 -9.12488689e-14 -2.86529362e-15 C18 -1.56818296e-13 -2.21807015e -12 -1.98396494e-14 C20 -1.1477383e-13 1.49107451e-11 1.38283753e-13 C21 1.67397123e-16 -2.28964432e-17 4.39106972e-17 C23 8.37104743e-16 -8.9801365e-16 4.1 1622891e-17 C25 -7.47250405e-17 7.10807871e-15 C27-1.79902189e-16 2.2394936e-14 -5.03509402e-16 C29 8.27076091 e-19 -1.70454112e-19 4.82882592e-20 C31 1.84287894e-18 -1.34325393 e-18 9.5068 04e-20 C33 1.21320541e-18 -3.6138162e-17 5.1685178e-19 C35 5.48084095e-19 -3.8395771 e-15 7.87749871 e-18 C36 1.85465234e-21 -3.7251701 e-23 1.26079958e-22 C38 No. 3,460,46896e-21 -1.05875826e-21 -2.79363614e-22 C40 9.44259685e-21 -4.07620659e-20 -2.48686978e-21 C42 1.93639312e-20 -3.72631463e-18 -9.54609 C5 4.70679809e C50 4.70489809e -23 -1.629748e-21 1.70329245e-24 C52 1.35442554e-22 4.947345e-21 -5.74686981 e-23 C54 1.89474646e-22 2.46150233e-19 -9.92108773e-22 C55 -8.51982321 e-27 -2.55798506e-29 1.77784215e-28 C57 9.55965768e-27 -9.67336823e-27 4.80247741 e-27 C59 8.56706064e-27 -5.9830259e-25 4.94864751 e-26 C61 5.43620015e-26 2.99229925e-24 2.1 1534673e-25 C63 5.14940966e-25 C69 -8.93307827e-29 -5.9737815e-29 -2.87246881 e-30 C71 -4.40848262e-28 2.50559555e-27 6.01241562e-30 C73 -8.53288765e-28 4.77493797e-26 -1.42915015e-27 C75 1.04138051 e-27 -1.07454562e-24 -1.45023879e-27 C77 3.95557803e -27 -1.58374495e-23 3.7330166e-26 C78 7.67993746e-33 1.3603387e-34 -4.70533824e-34 C80 -1.82202453e-31 2.8502332e-32 -2. 190864865e-32 C82 -7.59424732e-31 2.35506707e-30 -4.5067788e-31 C84 -2.61465311e-30 4.19888867e-29 -2.62808797e-30 C86 -4.10291005e-30 -2.35024421 e-28 3.12051609e-30 C88 9.79786373 c92 -3.9655732e-35 1.72718937e-36 3.90363721 e-36 C94 -4.46917432e-34 4.18220567e -34 1.49283393e-34 C96 -1.56112844e-33 1.35239086e-32 1.97806516e-33 C98 -4.3774859e-33 1.80150492e-31 8.83974058e-33 Coefficient M5 M4 M3
C100 -5.4549234e-33 -9.86612463e-31 -1.93388477e-33 C102 2.81497244e-34 2.95757417e-29 9.15264296e-32 C104 5.98693118e-33 4.50915131e-28 6.27379138e-31C100 -5.4549234e-33 -9.86612463e-31 -1.93388477e-33 C102 2.81497244e-34 2.95757417e-29 9.15264296e-32 C104 5.98693118e-33 4.50915131e-28 6.27379138e-31
Tabelle 3b zu Fig. 5 Table 3b to Fig. 5
Koeffizient M2 M1Coefficient M2 M1
KY 0.01610994 0.00000000 KX 0.00000000 0.00000000 RX 20005.76943000 -5312.32147600KY 0.01610994 0.00000000 KX 0.00000000 0.00000000 RX 20005.76943000 -5312.32147600
C7 9.97757392e-08 1.14515844e-09 C9 2.91949621e-10 4.55089269e-08 C10 2.70115051e-11 6.40348255e-11 C12 3.25994029e-11 6.56125263e-11 C14 6.37320775e-11 -1.21032297e-10 C16 -5.70345897e-14 -5.86255456e-14 C18 -2.34998283e-13 -6.57703817e-14 C20 -1.02164563e-13 -4.83818491e-14 C21 1.81446991e-16 -3.12737429e-17 C23 8.47472643e-17 1.02850187e-17 C25 5.297863e-16 5.14354465e-16 C27 -5.75737107e-16 -4.3062722e-16 C29 3.55617149e-20 1.49808819e-20 C31 -5.36437096e-19 5.5378949e-19 C33 2.34497633e-19 -4.15769813e-19 C35 1.69984307e-18 3.04906337e-18 C36 -1.9178023e-22 1.70283147e-22 C38 7.87813152e-23 7.1 1597023e-22 C40 1.83575044e-21 2.0097976e-21 C42 -2.14115511e-21 5.03016856e-21 C44 1.29072759e-22 -4.06117639e-20 C46 -4.36456706e-24 -4.25906296e-26 C48 -1.08223127e-23 4.71637846e-25 C50 -4.4109074e-24 -1.24191908e-23 C52 1.09242646e-23 -1.79368118e-22 C54 2.91487178e-24 -5.96112215e-24 C55 1.97519267e-27 -1.32162791 e-27 C57 7.06505036e-27 -8.3877702e-27 C59 2.358499e-27 -5.87441823e-26 C61 -4.8961744e-26 -2.56618026e-25 C63 -6.59136487e-26 9.06106721 e-26 C65 -2.64120864e-26 1.79467821e-25 C67 3.46228797e-29 7.84570376e-30 C69 1.1864846e-28 4.81900485e-31 C71 2.08001966e-28 -1.15249378e-28 C73 1.84703515e-28 1.36349585e-27 C75 3.16029006e-29 6.24230347e-27 C77 -2.54423051 e-29 5.21093708e-27 C78 -1.03407606e-33 3.54875723e-33 C80 -3.59466643e-32 4.1 1652826e-32 C82 -9.23602595e-32 2.71629404e-31 C84 -1.25103753e-31 2.30117719e-30 C86 2.6498546e-31 4.73398183e-30 Koeffizient M2 M1C7 9.97757392e-08 1.14515844e-09 C9 2.91949621e-10 4.55089269e-08 C10 2.70115051e-11 6.40348255e-11 C12 3.25994029e-11 6.56125263e-11 C14 6.37320775e-11 -1.21032297e-10 C16 -5.70345897e -14 -5.86255456e-14 C18 -2.34998283e-13 -6.57703817e-14 C20 -1.2164563e-13 -4.83818491e-14 C21 1.81446991e-16 -3.12737429e-17 C23 8.47472643e-17 1.02850187e-17 C25 5.297863 e-16 C37 -5.75737107e-16 -4.3062722e-16 C29 3.55617149e-20 1.49808819e-20 C31 -5.36437096e-19 5.5378949e-19 C33 2.34497633e-19 -4.15769813e-19 C35 1.69984307e -18 3.04906337e-18 C36 -1.9178023e-22 1.70283147e-22 C38 7.87813152e-23 7.1 1597023e-22 C40 1.83575044e-21 2.0097976e-21 C42 -2.14115511e-21 5.03016856e-21 C44 1.29072759e-22 - 4.06117639e-20 C46 -4.36456706e-24 -4.25906296e-26 C48 -1.08223127e-23 4.71637846e-25 C50 -4.4109074e-24 -1.24191908e-23 C52 1.09242646e-23 -1.79368118e-22 C54 2.91487178e C57 7.06505036e-27 -8.3877702e-27 C59 2.358499e-27 -5.87441823e-26 C61 -4.8961744e-26 -2.56618026e-25 C63 -6.59136487e-26 9.06106721 e-26 C65 -2.64120864e-26 1.79467821e-25 C67 3.46228797e-29 7.84570376e-30 C69 1.1864846e-28 4.81900485e-31 C71 2.08001966e-28 -1.15249378e-28 C73 1.84703515e-28 1.36349585e-27 C75 3.16029006e-29 6.24230347e-27 C77 -2.54423051 e-29 5.21093708e-27 C78 -1.03407606e-33 3.54875723e-33 C80 -3.59466643 e-32 4.1 1652826e-32 C82 -9.23602595e-32 2.71629404e-31 C84 -1.25103753e-31 2.30117719e-30 C86 2.6498546e-31 4.73398183e-30 Coefficient M2 M1
C88 6.38528862e-31 4.03545839e-30 C90 3.10355559e-31 -8.23151308e-30 C92 -1.05059842e-34 -6.41686536e-35 C94 -5.23779013e-34 -1.71973327e-34 C96 -8.7667225e-34 5.7757545e-34 C98 -8.99395043e-34 2.97547589e-34 C100 -1.13652161 e-33 -3.04986257e-32 C102 -1.1517371 e-33 -1.32076094e-31 C104 -4.20064583e-34 -5.22857669e-32C88 6.38528862e-31 4.03545839e-30 C90 3.10355559e-31 -8.23151308e-30 C92-1.05059842e-34 -6.41686536e-35 C94 -5.23779013e-34 -1.71973327e-34 C96 -8.7667225e-34 5.7757545e 34 C98 -8.99395043e-34 2.97547589e-34 C100 -1.13652161 e-33 -3.04986257e-32 C102 -1.1517371 e-33 -1.32076094e-31 C104 -4.20064583e-34 -5.22857669e-32
Tabelle 3c zu Fig. 5 Table 3c to Fig. 5
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M8 0.00000000 0.00000000 882 77533922 M7 0.00000000 195.71291787 1 16 12641402 M6 0.00000000 -1 12.881281 15 1 167 50030789 M5 0.00000000 -262.73607799 1347 86961998 M4 -0.00000000 -750.53634909 1589 60226228 M3 -0.00000000 235.35640877 1618 85948606 M2 -0.00000000 927.86499038 1259 80535144 Blende -0.00000000 1378.82735066 728.1 1966836 M1 -0.00000000 1754.86756418 284 76737249Image plane 0.00000000 0.00000000 0.00000000 0.00000000 M8 0 00000000 882 77533922 M7 0.00000000 195.71291787 1 16 12641402 M6 0.00000000 -1 12.881281 15 1 167 50030789 M5 0.00000000 -0.00000000 M4 -262.73607799 1347 86961998 1589 60226228 -750.53634909 M3 -0.00000000 -0.00000000 235.35640877 927.86499038 M2 1618 85948606 1259 80535144 Aperture -0.00000000 1378.82735066 728.1 1966836 M1 -0.00000000 1754.86756418 284 76737249
Objektebene -0.00000000 1522.31770430 2073 12928528 Tabelle 4a zu Fig. 5 Object level -0.00000000 1522.31770430 2073 12928528 Table 4a to FIG. 5
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000 M8 7.16040462 0.00000000 -0.00000000 M7 195.33928697 0.00000000 -0.00000000 M6 -61.96084316 0.00000000 0.00000000 M5 -38.32023492 -0.00000000 -0.00000000 M4 77.66939217 -0.00000000 0.00000000 M3 -12.85309098 -0.00000000 -0.00000000 M2 -38.551 10875 -0.00000000 0.00000000 Blende 26.91995318 180.00000000 -0.00000000 M1 203.85632932 0.00000000 -0.00000000Image plane -0.00000000 0.00000000 -0.00000000 M8 7.16040462 0.00000000 -0.00000000 M7 195.33928697 0.00000000 -0.00000000 0.00000000 0.00000000 M6 M5 -61.96084316 -38.32023492 -0.00000000 -0.00000000 -0.00000000 0.00000000 M4 M3 77.66939217 -12.85309098 -0.00000000 -0.00000000 -0.00000000 0.00000000 M2 -38,551 10875 aperture 26.91995318 180.00000000 -0.00000000 M1 203.85632932 0.00000000 -0.00000000
Objektebene 1.40889103 -0.00000000 0.00000000 Tabelle 4b zu Fig. 5 Object level 1.40889103 -0.00000000 0.00000000 Table 4b to FIG. 5
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M8 7.16040462 0.66024220 M7 1.01847774 0.66560265 M6 78.31860788 0.85537503 M5 78.04078388 0.85141092 M4 14.03041098 0.64275475 M3 75.44710587 0.81 140397 M2 78.85487636 0.86287678 M1 16.44743829 0.63285937M8 7.16040462 0.66024220 M7 1.01847774 0.66560265 M6 78.31860788 0.85537503 M5 78.04078388 0.85141092 M4 14.03041098 0.64275475 M3 75.44710587 0.81 140397 M2 78.85487636 0.86287678 M1 16.44743829 0.63285937
Gesamttransmission 0.091 1Total transmission 0.091 1
Tabelle 5 zu Fig. 5 X[mm] Y[mm] Z[mm] Table 5 to Fig. 5 X [mm] Y [mm] Z [mm]
0.00000000 80.61237695 0.00000000 0.00000000 80.61237695 0.00000000
38.90654191 79.83106129 0.0000000038.90654191 79.83106129 0.00000000
76.96347650 77.46957065 0.0000000076.96347650 77.46957065 0.00000000
1 13.32346519 73.48914023 0.000000001 13.32346519 73.48914023 0.00000000
147.14570305 67.86143904 0.00000000147.14570305 67.86143904 0.00000000
177.60579355 60.59847490 0.00000000177.60579355 60.59847490 0.00000000
203.91466853 51.76925797 0.00000000203.91466853 51.76925797 0.00000000
225.34730932 41.50446204 0.00000000225.34730932 41.50446204 0.00000000
241.27817834 29.99597516 0.00000000241.27817834 29.99597516 0.00000000
251.21769593 17.49549950 0.00000000251.21769593 17.49549950 0.00000000
254.84363465 4.31 151215 0.00000000254.84363465 4.31 151215 0.00000000
252.02218346 -9.19816293 0.00000000252.02218346 -9.19816293 0.00000000
242.81597223 -22.64006773 0.00000000242.81597223 -22.64006773 0.00000000
227.47918826 -35.60512570 0.00000000227.47918826 -35.60512570 0.00000000
206.44159792 -47.69252180 0.00000000206.44159792 -47.69252180 0.00000000
180.28421807 -58.53347376 0.00000000180.28421807 -58.53347376 0.00000000
149.71031735 -67.81061415 0.00000000149.71031735 -67.81061415 0.00000000
1 15.51564449 -75.26961 108 0.000000001 15.51564449 -75.26961 108 0.00000000
78.56077700 -80.72207728 0.0000000078.56077700 -80.72207728 0.00000000
39.74742241 -84.04138390 0.0000000039.74742241 -84.04138390 0.00000000
0.00000000 -85.15555607 0.000000000.00000000 -85.15555607 0.00000000
-39.74742241 -84.04138390 0.00000000-39.74742241 -84.04138390 0.00000000
-78.56077700 -80.72207728 0.00000000-78.56077700 -80.72207728 0.00000000
-1 15.51564449 -75.26961 108 0.00000000-1 15.51564449 -75.26961 108 0.00000000
-149.71031735 -67.81061415 0.00000000-149.71031735 -67.81061415 0.00000000
-180.28421807 -58.53347376 0.000000000.00000000
-206.44159792 -47.69252180 0.00000000-206.44159792 -47.69252180 0.00000000
-227.47918826 -35.60512570 0.00000000-227.47918826 -35.60512570 0.00000000
-242.81597223 -22.64006773 0.00000000-242.81597223 -22.64006773 0.00000000
-252.02218346 -9.19816293 0.000000000.00000000. -252.02218346 -9.19816293
-254.84363465 4.31 151215 0.00000000-254.84363465 4.31 151215 0.00000000
-251.21769593 17.49549950 0.00000000-251.21769593 17.49549950 0.00000000
-241.27817834 29.99597516 0.00000000-241.27817834 29.99597516 0.00000000
-225.34730932 41.50446204 0.00000000-225.34730932 41.50446204 0.00000000
-203.91466853 51.76925797 0.00000000-203.91466853 51.76925797 0.00000000
-177.60579355 60.59847490 0.00000000-177.60579355 60.59847490 0.00000000
-147.14570305 67.86143904 0.00000000-147.14570305 67.86143904 0.00000000
-1 13.32346519 73.48914023 0.00000000-1 13.32346519 73.48914023 0.00000000
-76.96347650 77.46957065 0.00000000-76.96347650 77.46957065 0.00000000
-38.90654191 79.83106129 0.00000000-38.90654191 79.83106129 0.00000000
Tabelle 6 zu Fig. 5 Table 6 to FIG. 5
Eine Gesamt-Reflektivität der Projektionsoptik 21 beträgt 9,11 %. A total reflectivity of the projection optics 21 is 9.11%.
Die Projektionsoptik 21 hat eine bildseitige numerische Apertur von 0,50. In der ersten Abbildungslicht-Ebene xz hat die Projektionsoptik 21 einen Verkleinerungsfaktor ßx von 4,00. In der zweiten Abbildungslicht-Ebene yz hat die Projektionsoptik 21 einen Verkleinerungsfaktor ßy von 8,00. Ein objektseitiger Hauptstrahlwinkel beträgt 6,0°. Eine Pupillenobskuration beträgt 17 %. Ein Objekt-Bild- Versatz dois beträgt etwa 1520 mm. Die Spiegel der Projektionsoptik 21 können in einem Quader mit xyz-Kantenlängen von 930 mm x 2625 mm x 1570 mm untergebracht werden. The projection optical system 21 has a picture-side numerical aperture of 0.50. In the first imaging light plane xz, the projection optics 21 has a reduction factor β x of 4.00. In the second imaging light plane yz, the projection optics 21 has a reduction factor β y of 8.00. An object-side main beam angle is 6.0 °. A pupil obscuration is 17%. An object image offset dois is about 1520 mm. The mirrors of the projection optics 21 can in a cuboid with xyz-edge lengths of 930 mm x 2625 mm x 1570 mm.
Das Retikel 10 und damit die Objektebene 5 sind um einen Winkel T von 1,4° um die x- Achse verkippt. Dieser Kippwinkel T ist in der Fig. 5 angedeutet. The reticle 10 and thus the object plane 5 are tilted by an angle T of 1.4 ° about the x-axis. This tilt angle T is indicated in FIG. 5.
Ein Arbeitsabstand zwischen dem wafemächsten Spiegel M7 und der Bildebene 9 beträgt etwa 80 mm. Fig. 7 zeigt wiederum die Randkonturen der Reflexionsfiächen der Spiegel Ml bis M8 der Projektionsoptik 21. A working distance between the wafer-near mirror M7 and the image plane 9 is about 80 mm. FIG. 7 again shows the edge contours of the reflection surfaces of the mirrors M1 to M8 of the projection optics 21.
Anhand der Fig. 8 bis 10 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 22 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 7 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optics 22 will be explained below with reference to FIGS. 8 to 10, which may be used instead of the projection optics 7 in the projection exposure apparatus 1 according to FIG. Components and functions, which have already been explained above in connection with FIGS. 1 to 7, optionally bear the same reference numbers and will not be discussed again in detail.
Die Projektionsoptik 22 hat insgesamt sechs Spiegel Ml bis M6 im Strahlengang des Abbil- dungslichts 3 zwischen dem Objektfeld 4 und dem Bildfeld 8. Alle sechs Spiegel Ml bis M6 sind als Nl-Spiegel ausgeführt. Für die Spiegel Ml bis M6 gilt wiederum die vorstehend angegebene Freiformfiächengleichung (1). The projection optics 22 has a total of six mirrors M1 to M6 in the beam path of the imaging light 3 between the object field 4 and the image field 8. All six mirrors M1 to M6 are designed as NI mirrors. For the mirrors M1 to M6, the above-mentioned free-form equation (1) again applies.
Die Projektionsoptik 22 hat für die Spiegel Ml bis M6 folgende Abfolge umlenkender Wirkun- gen: RLRL0L. The projection optics 22 has the following sequence of deflecting effects for the mirrors M1 to M6: RLRL0L.
Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M6 der Projektionsoptik 22. The following table once again shows the mirror parameters of the mirrors M1 to M6 of the projection optics 22.
Ml M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
maximaler maximum
21.7 15.0 14.9 10.5 20.5 9.9  21.7 15.0 14.9 10.5 20.5 9.9
Einfallswinkel [°] Ml M2 M3 M4 M5 M6 Angle of incidence [°] M1 M2 M3 M4 M5 M6
Reflexionsflächenerstre- ckung in 368.5 707.4 350.4 481.0 383.2 888.8  Reflection surface area in 368.5 707.4 350.4 481.0 383.2 888.8
x-Richtung [mm] x-direction [mm]
Reflexions flächenerstre- ckung in 195.0 115.4 75.8 87.3 188.8 866.8 Reflections in 195.0 115.4 75.8 87.3 188.8 866.8
y-Richtung [mm] y-direction [mm]
368.7 707.5 350.4 481.0 383.2 889.4 368.7 707.5 350.4 481.0 383.2 889.4
Spiegeldurchmesser [mm]  Mirror diameter [mm]
Den größten Spiegeldurchmesser hat hier wiederum der letzte Spiegel im Abbildungsstrahlengang M6 mit weniger als 900 mm. Vier der sechs Spiegel haben einen maximalen Spiegeldurchmesser, der kleiner ist als 500 mm. Drei der sechs Spiegel haben einen maximalen Spiegel- durchmesser, der kleiner ist als 400 mm. The largest mirror diameter here again has the last mirror in the imaging beam path M6 with less than 900 mm. Four of the six mirrors have a maximum mirror diameter that is less than 500 mm. Three of the six mirrors have a maximum mirror diameter that is less than 400 mm.
Auch die Projekt ionsoptik 22 hat genau ein Erstebenen- Zwischenbild 18 und zwei Zweiebenen- Zwischenbilder 19, 20. Das Erstebenen-Zwischenbild 18 liegt im Strahlengang des Abbildungslichts 3 zwischen den Spiegeln M4 und M5 im Bereich der Durchtrittsöffnung 17 im Spiegel M6. The projection optics 22 also have exactly one first-intermediate image 18 and two two-intermediate images 19, 20. The first-plane intermediate image 18 is located in the beam path of the imaging light 3 between the mirrors M4 and M5 in the region of the passage opening 17 in the mirror M6.
Das erste der beiden Zweitebenen- Zwischenbilder 19 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2. Im Bereich dieses ersten Zweitebenen-Zwischenbildes 19 ist das gesamte Abbildungslichtbündel von außen her zugänglich. The first of the two second-level intermediate images 19 lies in the imaging light beam path between the mirrors M1 and M2. In the area of this first second plane intermediate image 19, the entire imaging light beam is accessible from the outside.
Das zweite der beiden Zweitebenen- Zwischenbilder 20 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln M3 und M4 nahe der Reflexion am Spiegel M4. The second of the two second-level intermediate images 20 lies in the imaging light beam path between the mirrors M3 and M4 near the reflection at the mirror M4.
Fig. 10 zeigt wiederum die Randkonturen der Reflexionsflächen der Spiegel Ml bis M6 der Pro- jektionsoptik 22. Die optischen Designdaten der Projektionsoptik 22 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. 10 again shows the edge contours of the reflection surfaces of the mirrors M1 to M6 of the projection optics 22. The optical design data of the projection optics 22 can be found in the following tables, which correspond in their structure to the tables for the projection optics 7 according to FIG. 2.
Ausführungsbeispiel embodiment
NA  N / A
Wellenlänge  wavelength
beta_x  beta_x
beta_y  beta_y
Feldgröße_x  Feldgröße_x
Feldgröße_y  Feldgröße_y
Feldkrümmung  curvature of field
rms  rms
Blende  cover
Tabelle 1 zu Fig. 8 Table 1 to Fig. 8
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M6 -1014.9918248 0.0019477 -893.7079569 0.0022640 REFLM6 -1014.9918248 0.0019477 -893.7079569 0.0022640 REFL
M5 4610.1894926 -0.0004338 445.6719052 0.0044876 REFLM5 4610.1894926 -0.0004338 445.6719052 0.0044876 REFL
M4 -1 174.3233785 0.0016932 -1051.9540567 0.0019123 REFLM4 -1 174.3233785 0.0016932 -1051.9540567 0.0019123 REFL
M3 1010.0226976 -0.0019510 -1 197.8415209 0.0016946 REFLM3 1010.0226976 -0.0019510 -1 197.8415209 0.0016946 REFL
M2 -1312.0179701 0.0015026 -457.6913193 0.0044329 REFLM2 -1312.0179701 0.0015026 -457.6913193 0.0044329 REFL
M1 2662.6604435 -0.0007175 -689.9531731 0.0030345 REFLM1 2662.6604435 -0.0007175 -689.9531731 0.0030345 REFL
Tabelle 2 zu Fig. 8 Table 2 to Fig. 8
Koeffizient M6 M5 M4Coefficient M6 M5 M4
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1014.99182500 4610.18949300 -1 174.32337800KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1014.99182500 4610.18949300 -1 174.32337800
C7 -1.63639571 e-08 6.87483772e-07 5.05861922e-08 C9 -2.56462343e-09 -8.13225055e-08 -6.91885105e-08 C10 -3.47436391 e-1 1 5.1256056e-10 2.20583412e-1 1 C12 -4.44052628e-1 1 1.08128581 e-09 -1.23932264e-1 1 C14 -1.24765499e-1 1 1.98667881 e-09 1.3750797e-10 C16 -1.67475636e-14 8.26682729e-13 1.38362898e-14 C18 -9.76310679e-15 4.46159816e-12 2.16077936e-13 C20 -1.45702228e-15 -3.24741965e-12 -2.28312825e-13 C21 -3.24995571 e-17 1.05414267e-15 4.08171639e-17 C23 -9.0792086e-17 6.91730224e-15 4.24398459e-16 C25 -7.35193153e-17 8.25850133e-15 -1.75536482e-15 C27 -1.85937479e-17 3.10952802e-14 1.1585979e-14 C29 -3.5703491 e-21 3.79157699e-18 1.86810268e-19 C31 -1.62630367e-20 1.1754581 1 e-17 -4.98612502e-18 C33 -6.86959019e-21 5.76661234e-17 4.52757427e-17 C35 8.17002723e-22 1.66090704e-18 -1.08408627e-16 C36 -3.2700837e-23 2.65910919e-21 -2.31577232e-23 C38 -1.34204537e-22 1.5651 1463e-20 -7.09104552e-21 C40 -2.04464085e-22 1.10292873e-19 7.98817392e-20 Koeffizient M6 M5 M4C7 -1.63639571 e-08 6.87483772e-07 5.05861922e-08 C9 -2.56462343e-09 -8.13225055e-08 -6.91885105e-08 C10-3.47436391 e-1 1 5.1256056e-10 2.20583412e-1 1 C12 -4.44052628e -1 1 1.08128581 e-09 -1.23932264e-1 1 C14 -1.24765499e-1 1 1.98667881 e-09 1.3750797e-10 C16 -1.67475636e-14 8.26682729e-13 1.38362898e-14 C18 -9.76310679e-15 4.46159816e -12 2.16077936e-13 C20 -1.45702228e-15 -3.24741965e-12 -2.28312825e-13 C21 -3.24995571 e-17 1.05414267e-15 4.08171639e-17 C23 -9.0792086e-17 6.91730224e-15 4.24398459e-16 C25-7.35193153e-17 8.25850133e-15 -1.75536482e-15 C27-1.85937479e-17 3.10952802e-14 1.1585979e-14 C29-3.5703491 e-21 3.79157699e-18 1.86810268e-19 C31 -1.62630367e-20 1.1754581 1 e-17 -4.98612502e-18 C33 -6.86959019e-21 5.76661234e-17 4.52757427e-17 C35 8.17002723e-22 1.66090704e-18 -1.08408627e-16 C36-3.2700837e-23 2.65910919e-21 -2.31577232e -23 C38 -1.34204537e-22 1.5651 1463e-20 -7.09104552e-21 C40 -2.04464085e-22 1.10292873e-19 7.98817392e-20 Coefficient M6 M5 M4
C42 -1.28721975e-22 3.17002038e-19 -2.25764225e-19 C44 -2.96501352e-23 8.14163076e-19 -2.01105282e-18 C46 3.53309255e-27 1.82114149e-23 -6.19948554e-24 C48 -7.54713713e-27 1.58912096e-22 6.80341023e-23 C50 -1.78836502e-26 4.08001034e-22 3.63898676e-23 C52 -3.86147907e-27 1.28151939e-21 -7.13925671e-21 C54 7.91589003e-28 -2.63398048e-21 1.04122167e-20 C55 -1.43124789e-29 1.33926566e-26 -1.1354639e-27 C57 -9.15031711e-29 1.44374755e-25 3.20632475e-27 C59 -1.89538308e-28 1.17688068e-24 2.94313435e-25 C61 -1.69419016e-28 3.65160042e-24 -3.37682466e-24 C63 -7.08899858e-29 -5.45288447e-24 -2.87305808e-23 C65 -1.19238698e-29 -4.81365787e-24 1.92631285e-22 C67 8.84476216e-33 0 0 C69 -1.98727303e-32 0 0 C71 -4.96871795e-32 0 0 C73 -1.44538227e-32 0 0 C75 1.04191135e-32 0 0 C77 4.64811674e-33 0 0 C78 -7.8772164e-35 0 0 C80 -4.88956574e-34 0 0 C82 -1.35090835e-33 0 0 C84 -1.94584721 e-33 0 0 C86 -1.54538702e-33 0 0 C88 -6.249653e-34 0 0 C90 -9.73653236e-35 0 0C42 -1.28721975e-22 3.17002038e-19 -2.25764225e-19 C44 -2.96501352e-23 8.14163076e-19 -2.01105282e-18 C46 3.53309255e-27 1.82114149e-23 -6.19948554e-24 C48 -7.54713713e-27 1.58912096e-22 6.80341023e-23 C50 -1.78836502e-26 4.08001034e-22 3.63898676e-23 C52 -3.86147907e-27 1.28151939e-21 -7.13925671e-21 C54 7.91589003e-28 -2.63398048e-21 1.04122167e 20 C55 -1.43124789e-29 1.33926566e-26 -1.1354639e-27 C57-9.15031711e-29 1.44374755e-25 3.20632475e-27 C59 -1.89538308e-28 1.17688068e-24 2.94313435e-25 C61 -1.69419016e-28 3.65160042e-24 -3.37682466e-24 C63 -7.08899858e-29 -5.45288447e-24 -2.87305808e-23 C65 -1.19238698e-29 -4.81365787e-24 1.92631285e-22 C67 8.84476216e-33 0 0 C69 -1.98727303 e-32 0 0 C71 -4.96871795e-32 0 0 C73 -1.44538227e-32 0 0 C75 1.04191135e-32 0 0 C77 4.64811674e-33 0 0 C78 -7.8772164e-35 0 0 C80 -4.88956574e-34 0 0 C82 -1.35090835e-33 0 0 C84 -1.94584721 e-33 0 0 C86 -1.54538702e-33 0 0 C88 -6.249653e-34 0 0 C90 -9.73653236e-35 0 0
Tabelle 3a zu Fig. 8 Table 3a to Fig. 8
Koeffizient M3 M2 M1Coefficient M3 M2 M1
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 1010.02269800 -1312.01797000 2662.66044300KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 1010.02269800 -1312.01797000 2662.66044300
C7 1.22170857e-06 -6.37823316e-08 -1.04546816e-07 C9 3.4882529e-07 -4.66354991 e-08 4.33781443e-07 C10 1.79366666e-10 1.60437821 e-11 1.67219502e-10 C12 2.29403181 e-09 -2.76521017e-10 1.27323858e-10 C14 -2.35161032e-09 -5.10158035e-12 7.40803126e-11 C16 -1.96936012e-12 -5.01626897e-14 1.9388874e-13 C18 -3.06827899e-12 -4.35561341 e-13 -2.24745804e-13 C20 9.34367333e-13 1.3947707e-13 1.42809061 e-13 C21 -2.08970015e-15 2.70438568e-17 8.36581833e-17 C23 -1.44355508e-14 -4.62969015e-16 9.24640588e-17 C25 -1.03942716e-14 -1.77055219e-15 9.30437101e-16 C27 4.45724605e-14 1.3432402e-15 4.97813101e-16 C29 -1.13501065e-17 -2.08662747e-20 -1.06307014e-18 C31 -7.37625827e-17 -1.1 1182127e-18 -1.03467077e-19 C33 -5.22864623e-16 1.63709053e-18 -4.43520233e-18 C35 -3.18335684e-15 1.15476436e-16 -7.19972734e-18 C36 -1.48856757e-22 3.17157665e-23 -2.01947584e-22 C38 2.4509923e-20 -1.76326446e-22 -1.15195494e-21 C40 4.57082031 e-19 -1.18268185e-21 -1.7753503e-20 C42 5.32101962e-18 2.19596361e-19 -7.59631967e-20 Koeffizient M3 M2 M1C7 1.22170857e-06 -6.37823316e-08 -1.04546816e-07 C9 3.4882529e-07 -4.66354991 e-08 4.33781443e-07 C10 1.79366666e-10 1.60437821 e-11 1.67219502e-10 C12 2.29403181 e-09 -2.76521017e -10 1.27323858e-10 C14 -2.35161032e-09 -5.10158035e-12 7.40803126e-11 C16 -1.96936012e-12 -5.01626897e-14 1.9388874e-13 C18 -3.06827899e-12 -4.35561341 e-13 -2.24745804e -13 C20 9.34367333e-13 1.3947707e-13 1.42809061 e-13 C21 -2.08970015e-15 2.70438568e-17 8.36581833e-17 C23 -1.44355508e-14 -4.62969015e-16 9.24640588e-17 C25 -1.03942716e-14 -1.77055219e-15 9.30437101e-16 C27 4.45724605e-14 1.3432402e-15 4.97813101e-16 C29 -1.13501065e-17 -2.08662747e-20 -1.06307014e-18 C31 -7.37625827e-17 -1.1 1182127e-18 C36-1.48856757e-22 C36-1.48856757e-22 3.17157665e-23 -2.01947584e-22 C38 2.4509923e-20 -1.76326446e-22 -1.15195494e-21 C40 4.57082031 e-19 -1.18268185e-21 -1.7753503e-20 C42 5.32101962e-18 2.19596361e-19 -7.5 9631967e-20 Coefficient M3 M2 M1
C44 -1.5864064e-17 2.06176518e-18 -5.39549368e-20 C46 5.09328497e-23 4.19812761 e-28 -4.26631568e-25 C48 1.03961327e-22 -3.07261947e-24 8.61056344e-24 C50 1.74534839e-21 -8.0086339e-24 6.166391 19e-23 C52 7.74976733e-20 1.84308643e-21 7.81 194941 e-23 C54 1.25718836e-20 9.71541989e-21 1.67382093e-22 C55 2.02154535e-26 -1.81898014e-29 -3.72618487e-27 C57 1.9578895e-25 -7.72527746e-28 1.92836548e-26 C59 3.33959317e-24 7.31594235e-27 1.55354656e-27 C61 -4.88859554e-23 -4.2851618e-26 6.35151 15e-25 C63 -5.77450758e-22 2.46460998e-24 2.18154993e-24 C65 -3.46696439e-21 -1.16458004e-23 2.03857604e-24C44-1.5864064e-17 C20 1.74534839e-21 C8-5486486e-C46-5.3954936e-C46 5.09328497e-23 4.19812761 e-28 -4.26631568e-25 C48 1.03961327e-22 -3.07261947e-24 8.61056344e-C50 1.74534839e-21 -8.0086339 e-24 6.166391 19e-23 C52 7.74976733e-20 1.84308643e-21 7.81 194941 e-23 C54 1.25718836e-20 9.71541989e-21 1.67382093e-22 C55 2.02154535e-26 -1.81898014e-29 -3.72618487e-27 C57 1.9578895e-25 -7.72527746e-28 1.92836548e-26 C59 3.33959317e-24 7.31594235e-27 1.55354656e-27 C61 -4.88859554e-23 -4.2851618e-26 6.35151 15e-25 C63 -5.77450758e-22 2.46460998e 24 2.18154993e-24 C65 -3.46696439e-21 -1.16458004e-23 2.03857604e-24
Tabelle 3b zu Fig. 8 Table 3b to Fig. 8
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M6 0.00000000 0.00000000 851 91437338 M5 0.00000000 -215.33453017 163 05420307 M4 -0.00000000 202.86472499 1489 58314522 M3 -0.00000000 -88.22184657 985 10610976 M2 -0.00000000 34.90345715 1713 07366623 Blende -0.00000000 -135.82751472 1401 74952443 M1 -0.00000000 -293.49163988 1 1 14 25248790Image plane 0.00000000 0.00000000 0.00000000 0.00000000 M6 0 00000000 851 91437338 163 05420307 -215.33453017 M5 0.00000000 -0.00000000 202.86472499 1489 58314522 M4 M3 -88.22184657 -0.00000000 985 10610976 M2 -0.00000000 34.90345715 1713 07366623 aperture -0.00000000 -135.82751472 1401 74952443 1 1 14 M1 -0.00000000 -293.49163988 25248790
Objektebene -0.00000000 -414.92461745 2499 99892470 Tabelle 4a zu Fig. 8 Object level -0.00000000 -414.92461745 2499 99892470 Table 4a to FIG. 8
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M6 -8.67950248 0.00000000 -0.00000000M6 -8.67950248 0.00000000 -0.00000000
M5 162.57155265 0.00000000 -0.00000000M5 162.57155265 0.00000000 -0.00000000
M4 -23.74155941 -0.00000000 -0.00000000M4 -23.74155941 -0.00000000 -0.00000000
M3 160.20743108 0.00000000 -0.00000000M3 160.20743108 0.00000000 -0.00000000
M2 -19.17019370 -0.00000000 -0.00000000M2 -19.17019370 -0.00000000 -0.00000000
Blende -73.99216967 180.00000000 0.00000000Aperture -73.99216967 180.00000000 0.00000000
M1 168.13377923 0.00000000 -0.00000000M1 168.13377923 0.00000000 -0.00000000
Objektebene 0.00803708 -0.00000000 0.00000000 Tabelle 4b zu Fig. 8 Object level 0.00803708 -0.00000000 0.00000000 Table 4b to FIG. 8
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M6 8.71355191 0.65746407 M5 0.04144783 0.66566082 M4 6.17488689 0.66169307 M3 9.84785496 0.65503404 M2 9.68325312 0.65540855 M1 17.20204356 0.62927702M6 8.71355191 0.65746407 M5 0.04144783 0.66566082 M4 6.17488689 0.66169307 M3 9.84785496 0.65503404 M2 9.68325312 0.65540855 M1 17.20204356 0.62927702
Gesamttransmission 0.0782Total transmission 0.0782
Tabelle 5 zu Fig. 8 X[mm] Y[mm] Z[mm] Table 5 to Fig. 8 X [mm] Y [mm] Z [mm]
0.00000000 33.91943836 0.00000000 0.00000000 33.91943836 0.00000000
39.06721628 33.6507031 1 0.0000000039.06721628 33.6507031 1 0.00000000
77.39353501 32.85500161 0.0000000077.39353501 32.85500161 0.00000000
1 14.21865728 31.559541 13 0.000000001 14.21865728 31.559541 13 0.00000000
148.74973474 29.79710172 0.00000000148.74973474 29.79710172 0.00000000
180.16015462 27.59244760 0.00000000180.16015462 27.59244760 0.00000000
207.60469095 24.95188839 0.00000000207.60469095 24.95188839 0.00000000
230.25345814 21.86101434 0.00000000230.25345814 21.86101434 0.00000000
247.34324552 18.29294351 0.00000000247.34324552 18.29294351 0.00000000
258.23929132 14.22650701 0.00000000258.23929132 14.22650701 0.00000000
262.49585262 9.66923988 0.00000000262.49585262 9.66923988 0.00000000
259.90237404 4.67735378 0.00000000259.90237404 4.67735378 0.00000000
250.50536902 -0.63372866 0.00000000250.50536902 -0.63372866 0.00000000
234.60234893 -6.09139258 0.00000000234.60234893 -6.09139258 0.00000000
212.71071500 -1 1.47957768 0.00000000212.71071500 -1 1.47957768 0.00000000
185.51982813 -16.56006824 0.00000000185.51982813 -16.56006824 0.00000000
153.83698419 -21.09555441 0.00000000153.83698419 -21.09555441 0.00000000
1 18.53749665 -24.86968553 0.000000001 18.53749665 -24.86968553 0.00000000
80.52602701 -27.70183298 0.000000000.005000000
40.71219752 -29.45685009 0.0000000040.71219752 -29.45685009 0.00000000
0.00000000 -30.05126322 0.000000000.00000000 -30.05126322 0.00000000
-40.71219752 -29.45685009 0.00000000-40.71219752 -29.45685009 0.00000000
-80.52602701 -27.70183298 0.000000000.00000000. -80.52602701 -27.70183298
-1 18.53749665 -24.86968553 0.00000000-1 18.53749665 -24.86968553 0.00000000
-153.83698419 -21.09555441 0.00000000-153.83698419 -21.09555441 0.00000000
-185.51982813 -16.56006824 0.00000000-00001982813 -16.56006824 0.00000000
-212.71071500 -1 1.47957768 0.00000000-212.71071500 -1 1.47957768 0.00000000
-234.60234893 -6.09139258 0.00000000-20000.60234893 -6.09139258 0.00000000
-250.50536902 -0.63372866 0.00000000-250.50536902 -0.63372866 0.00000000
-259.90237404 4.67735378 0.00000000-259.90237404 4.67735378 0.00000000
-262.49585262 9.66923988 0.00000000-262.49585262 9.66923988 0.00000000
-258.23929132 14.22650701 0.00000000-258.23929132 14.22650701 0.00000000
-247.34324552 18.29294351 0.00000000-247.34324552 18.29294351 0.00000000
-230.25345814 21.86101434 0.00000000-230.25345814 21.86101434 0.00000000
-207.60469095 24.95188839 0.00000000-207.60469095 24.95188839 0.00000000
-180.16015462 27.59244760 0.00000000-180.16015462 27.59244760 0.00000000
-148.74973474 29.79710172 0.00000000-148.74973474 29.79710172 0.00000000
-1 14.21865728 31.559541 13 0.00000000-1 14.21865728 31.559541 13 0.00000000
-77.39353501 32.85500161 0.00000000-77.39353501 32.85500161 0.00000000
-39.06721628 33.6507031 1 0.00000000-39.06721628 33.6507031 1 0.00000000
Tabelle 6 zu Fig. 8 Table 6 to Fig. 8
Eine Gesamt-Reflektivität der Projektionsoptik 22 beträgt 7,82 %. Die Projektionsoptik 22 hat eine numerische Apertur von 0,50. Ein Verkleinerungsfaktor beträgt in der ersten Abbildungslicht-Ebene xz 4,0 (ßx) und in der zweiten Abbildungslicht-Ebene yz 8,0 (ßy). Ein Hauptstrahlwinkel CRA zu einer Normalen auf dem Objektfeld 4 beträgt 5,0°. Eine maximale PupiUenobskuration beträgt 15 %. Ein Objekt-Bildversatz dois beträgt etwa 415 mm. Die Spiegel der Projektionsoptik 22 können in einem Quader mit xyz-Kantenlängen 889 mm x 860 mm x 1602 mm untergebracht werden. A total reflectivity of the projection optics 22 is 7.82%. The projection optics 22 has a numerical aperture of 0.50. A reduction factor is xz 4.0 (β x ) in the first imaging light plane and yz 8.0 (β y ) in the second imaging light plane. A main beam angle CRA to a normal on the object field 4 is 5.0 °. A maximum PupiUenobskuration is 15%. An object image offset dois is about 415 mm. The mirrors of the projection optics 22 can be accommodated in a cuboid with xyz edge lengths 889 mm × 860 mm × 1602 mm.
Die Objektebene 5 und die Bildebene 9 verlaufen parallel zueinander. The object plane 5 and the image plane 9 are parallel to each other.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegel M5 und der Bildebene 9 beträgt 129 mm. Ein mittlerer Wellenfrontfehler rms beträgt 30,4 ητλ. A working distance between the wafer-closest mirror M5 and the image plane 9 is 129 mm. A mean wavefront error rms is 30.4 ητλ.
Eine Aperturblende AS ist bei der Projektionsoptik 22 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 vor dem ersten Zweitebenen-Zwischenbild 19 angeordnet. Am Ort der Aperturblende AS ist das gesamte Abbildungslichtbündel vollumfänglich zugänglich. An aperture stop AS is arranged in the projection optical system 22 in the imaging light beam path between the mirrors M1 and M2 in front of the first second plane intermediate image 19. At the location of the aperture diaphragm AS, the entire imaging light beam is fully accessible.
Anhand der Fig. 11 bis 13 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 23 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 10 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optical system 23, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. 11 to 13. Components and functions, which have already been explained above in connection with FIGS. 1 to 10, optionally bear the same reference numbers and will not be discussed again in detail.
Der Grundaufbau der Projektionsoptik 23, insbesondere die Abfolge von NI- und GI-Spiegeln, ähnelt wiederum dem Aufbau der Projektionsoptiken 7 und 21. The basic structure of the projection optics 23, in particular the sequence of NI and GI mirrors, again resembles the structure of the projection optics 7 and 21.
Die Spiegel Ml bis M8 sind wiederum als Freiformflächen ausgestaltet, für die die oben angegebene Freiformflächengleichung (1) gilt. Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M8 der Projektionsoptik 23. The mirrors M1 to M8 are in turn designed as free-form surfaces for which the free-form surface equation (1) given above applies. The following table once again shows the mirror parameters of the mirrors M1 to M8 of the projection optics 23.
Ml M2 M3 M4 M5 M6 M7 M8 maximaler M1 M2 M3 M4 M5 M6 M7 M8 maximum
20.0 76.2 77.4 14.8 78.7 81.0 22.0 7.6 20.0 76.2 77.4 14.8 78.7 81.0 22.0 7.6
Einfallswinkel [°] Angle of incidence [°]
Reflexionsflächen- erstreckung in 399.2 447.1 565.9 829.9 496.6 329.7 370.5 945.8 Reflection surface extension in 399.2 447.1 565.9 829.9 496.6 329.7 370.5 945.8
x-Richtung [mm] Ml M2 M3 M4 M5 M6 M7 M8 x-direction [mm] M1 M2 M3 M4 M5 M6 M7 M8
Reflexionsflächen- erstreckung in 229.5 251.5 251.8 169.3 249.6 235.8 185.3 919.8  Reflective surface extension in 229.5 251.5 251.8 169.3 249.6 235.8 185.3 919.8
y-Richtung [mm] y-direction [mm]
maximaler maximum
Spiegeldurchmesser 399.4 447.4 565.9 830.0 496.6 330.1 370.6 946.3  Mirror diameter 399.4 447.4 565.9 830.0 496.6 330.1 370.6 946.3
[mm] [Mm]
Alle Spiegel Ml bis M8 und insbesondere die GI-Spiegel M2, M3, M5 und M6 haben ein y/x- Aspektverhältnis, das kleiner ist als 1. Den größten Spiegeldurchmesser hat wiederum der Spiegel im Abbildungslichtstrahlengang letzte Spiegel M8 mit knapp 950 mm. Sechs der acht Spie- gel haben einen Durchmesser, der kleiner ist als 570 mm. Fünf der acht Spiegel haben einen Durchmesser, der kleiner ist als 500 mm. Drei der acht Spiegel haben einen Durchmesser, der kleiner ist als 400 mm. All mirrors Ml to M8 and in particular the GI mirrors M2, M3, M5 and M6 have a y / x aspect ratio that is smaller than 1. The mirror in the imaging light beam path has the largest mirror diameter last mirror M8 with almost 950 mm. Six of the eight mirrors have a diameter that is less than 570 mm. Five of the eight mirrors have a diameter that is less than 500 mm. Three of the eight mirrors have a diameter that is less than 400 mm.
Die Projektionsoptik 23 hat genau ein Erstebenen- Zwischenbild 18, wiederum im Bereich der Durchtrittsöffnung 17 im im Abbildungslichtstrahlengang letzten Spiegel M8. Weiterhin hat die Projektionsoptik 23 insgesamt drei Zweitebenen- Zwischenbilder 19, 24 und 25. Das im Abbildungslichtstrahlengang erste Zweitebenen-Zwischenbild 24 der Projektionsoptik 23 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 und ist vollumfänglich zugänglich. Das im Abbildungslichtstrahlengang zweite Zweitebenen-Zwischenbild 19 liegt im Abbildungs- lichtstrahlengang zwischen den Spiegeln M2 und M3. Das im Abbildungslichtstrahlengang dritte Zweitebenen-Zwischenbild 25 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln M3 und M4. The projection optics 23 has exactly one first-level intermediate image 18, again in the region of the passage opening 17 in the last mirror M8 in the imaging light beam path. Furthermore, the projection optics 23 has a total of three second-plane intermediate images 19, 24 and 25. The first second intermediate image 24 of the projection optics 23 in the imaging light beam path lies in the imaging light beam path between the mirrors M1 and M2 and is fully accessible. The second second intermediate image 19 in the imaging light beam path lies in the imaging light beam path between the mirrors M2 and M3. The third second intermediate image 25 in the image light beam path is located in the image light beam path between the mirrors M3 and M4.
In Bezug auf den Spiegel M2 liegt eines der Zweitebenen-Zwischenbilder, nämlich das Zwi- schenbild 24, im Strahlengang vor diesem GI-Spiegel M2 und dem im Strahlengang direkt vorgelagerten NI-Spiegel Ml und das nächste Zweitebenen-Zwischenbild 19 im Strahlengang nach dem Spiegel M2 und vor dem im Strahlengang direkt nachgelagerten GI-Spiegel M3. Auch der GI-Spiegel M3 liegt in dieser Weise zwischen zwei Zweitebenen-Zwischenbildern 19 und 25. Diese Anordnung der beiden GI-Spiegel M2 und M3 jeweils zwischen zwei Zweitebenen- Zwischenbildern 24 und 19 beziehungsweise 19 und 25 führt dazu, dass trotz großer Einfalls- winkel auf diesen beiden Gl-Spiegeln M2 und M3 eine Erstreckung dieser Spiegel M2 und M3 in der y-Richtung nicht zu groß wird. With respect to the mirror M2, one of the second level intermediate images, namely the intermediate image 24, lies in the beam path in front of this GI mirror M2 and the NI mirror Ml immediately upstream in the beam path and the next second intermediate image 19 in the beam path after the mirror M2 and before in the beam path directly downstream GI mirror M3. The GI mirror M3 likewise lies between two second-level intermediate images 19 and 25. This arrangement of the two GI mirrors M2 and M3 in each case between two second-level intermediate images 24 and 19 or 19 and 25 leads, in spite of large incidence Angle on these two GI mirrors M2 and M3 is not an extension of these mirrors M2 and M3 in the y-direction is too large.
Bei der Projektionsoptik 23 unterscheidet sich die Anzahl der Erstebenen-Zwischenbilder von der Anzahl der Zweitebenen-Zwischenbilder um zwei. In the projection optical system 23, the number of first-level intermediate images differs from the number of second-level intermediate images by two.
Fig. 13 zeigt wiederum die Randkonturen der Reflexionsflächen der Spiegel Ml bis M8. FIG. 13 again shows the edge contours of the reflection surfaces of the mirrors M1 to M8.
Die optischen Designdaten der Projektionsoptik 23 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Fig. 2 entspre chen. The optical design data of the projection optics 23 can be found in the following tables, which correspond in their structure to the tables for projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 11 Embodiment FIG. 11
NA 0.55 NA 0.55
Wellenlänge 13.5 nm beta_x 4.5 beta_y 8.0Wavelength 13.5 nm beta_x 4.5 beta_y 8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.0 mm Feldkrümmung 0.012345 1/mm rms 24.8 mlField size_y 1.0 mm field curvature 0.012345 1 / mm rms 24.8 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 11 Table 1 to Fig. 11
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M8 -953.6498674 0.0020852 -863.7070005 0.0023289 REFLM8 -953.6498674 0.0020852 -863.7070005 0.0023289 REFL
M7 2308.9882772 -0.0008662 391.2204972 -0.0051 122 REFLM7 2308.9882772 -0.0008662 391.2204972 -0.0051 122 REFL
M6 9658.7357159 -0.0000478 31 1 1.8571 1 18 -0.0027854 REFLM6 9658.7357159 -0.0000478 31 1 1.8571 1 18 -0.0027854 REFL
M5 3851.9659125 -0.0001 1 15 5994.4927929 -0.0015541 REFLM5 3851.9659125 -0.0001 1 15 5994.4927929 -0.0015541 REFL
M4 -1667.4841416 0.001 1730 -752.6104660 0.0027173 REFLM4 -1667.4841416 0.001 1730 -752.6104660 0.0027173 REFL
M3 1905.0727177 -0.0002547 -1075.1 194517 0.0076679 REFLM3 1905.0727177 -0.0002547 -1075.1 194517 0.0076679 REFL
M2 2138.0869388 -0.0002430 -864.5423534 0.0089053 REFLM2 2138.0869388 -0.0002430 -864.5423534 0.0089053 REFL
M1 -3536.1 125421 0.0005403 -988.4714077 0.0021 179 REFL Tabelle 2 zu Fig. 11 M1 -3536.1 125421 0.0005403 -988.4714077 0.0021 179 REFL Table 2 to Fig. 11
Koeffizient M8 M7 M6Coefficient M8 M7 M6
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -953.64986730 2308.98827700 9658.73571600KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -953.64986730 2308.98827700 9658.73571600
C7 -2.22708175e-09 -6.91396275e-07 -4.1 1083096e-07 C9 6.92896088e-09 6.95739894e-07 -1.35296426e-07 C10 -4.33919499e-12 7.10184469e-10 8.68487959e-1 1 C12 -2.89123145e-1 1 1.52069726e-09 8.4433536e-1 1 izient M8 M7 M6C7 -2.22708175e-09 -6.91396275e-07 -4.1 1083096e-07 C9 6.92896088e-09 6.95739894e-07 -1.35296426e-07 C10 -4.33919499e-12 7.10184469e-10 8.68487959e-1 1 C12 -2.89123145e- 1 1 1.52069726e-09 8.4433536e-1 1 efficient M8 M7 M6
C14 -8.71987959e-12 2.08177301e-09 5.45808309e-10C14 -8.71987959e-12 2.08177301e-09 5.45808309e-10
C16 -8.74336708e-15 -1.1921338e-12 -3.78983348e-13C16 -8.74336708e-15 -1.1921338e-12 -3.78983348e-13
C18 3.54027801 e-15 -1.48310938e-12 -1.9991786e-12C18 3.54027801 e-15 -1.48310938e-12 -1.9991786e-12
C20 7.7050072e-15 1.10792541e-11 -8.1961092e-13C20 7.7050072e-15 1.10792541e-11 -8.1961092e-13
C21 -1.337077e-17 1.13443702e-17 4.98626651 e-16C21 -1.337077e-17 1.13443702e-17 4.98626651 e-16
C23 -5.92031494e-17 1.2659377e-14 4.44580625e-16C23 -5.92031494e-17 1.2659377e-14 4.44580625e-16
C25 -5.74369237e-17 1.92128159e-14 2.20063337e-15C25 -5.74369237e-17 1.92128159e-14 2.20063337e-15
C27 -1.40128254e-17 5.55778233e-14 3.41024779e-15C27 -1.40128254e-17 5.55778233e-14 3.41024779e-15
C29 -8.8183677e-21 -1.02813716e-17 3.12210591e-19C29 -8.8183677e-21 -1.02813716e-17 3.12210591e-19
C31 -4.70913655e-21 -1.49218467e-17 -1.1994085e-17C31 -4.70913655e-21 -1.49218467e-17 -1.1994085e-17
C33 1.31878574e-20 1.7182799e-17 -3.37395149e-17C33 1.31878574e-20 1.7182799e-17 -3.37395149e-17
C35 8.8318716e-21 2.06086404e-16 -2.46938063e-17C35 8.8318716e-21 2.06086404e-16 -2.46938063e-17
C36 -2.52492021 e-23 2.67591142e-20 -4.5558175e-20C36 -2.52492021 e-23 2.67591142e-20 -4.5558175e-20
C38 -9.83537761 e-23 4.15456058e-20 -1.48484206e-20C38 -9.83537761 e-23 4.15456058e-20 -1.48484206e-20
C40 -1.57747152e-22 1.53357719e-19 3.50389768e-21C40-1.57747152e-22 1.53357719e-19 3.50389768e-21
C42 -9.70680981 e-23 4.17441636e-19 1.61335261 e-19C42 -9.70680981 e-23 4.17441636e-19 1.61335261 e-19
C44 -1.94775827e-23 1.05280588e-18 -1.2699496e-19C44 -1.94775827e-23 1.05280588e-18 -1.2699496e-19
C46 -8.68286173e-27 5.15251583e-23 -4.80088793e-22C46 -8.68286173e-27 5.15251583e-23 -4.80088793e-22
C48 -3.08227673e-26 -9.29040968e-23 5.06879666e-22C48 -3.08227673e-26 -9.29040968e-23 5.06879666e-22
C50 -1.43858909e-26 -4.10730564e-22 1.33502706e-21C50 -1.43858909e-26 -4.10730564e-22 1.33502706e-21
C52 8.30889224e-27 -2.05745722e-21 1.93623086e-21C52 8.30889224e-27 -2.05745722e-21 1.93623086e-21
C54 5.30486044e-27 -2.67755405e-21 -2.17618862e-22C54 5.30486044e-27 -2.67755405e-21 -2.17618862e-22
C55 -4.63046046e-30 -3.25292546e-25 1.98546568e-24C55 -4.63046046e-30 -3.25292546e-25 1.98546568e-24
C57 -9.39092565e-29 -1.69856578e-25 -1.68377598e-24C57 -9.39092565e-29 -1.69856578e-25 -1.68377598e-24
C59 -2.07380678e-28 -3.16582308e-24 2.04251254e-24C59 -2.07380678e-28 -3.16582308e-24 2.04251254e-24
C61 -2.5301093e-28 -1.04673475e-23 3.7329624e-25C61 -2.5301093e-28 -1.04673475e-23 3.7329624e-25
C63 -1.42078456e-28 -5.09423332e-24 2.05490534e-23C63 -1.42078456e-28 -5.09423332e-24 2.05490534e-23
C65 -2.90099345e-29 -7.85991524e-24 1.49401369e-23C65 -2.90099345e-29 -7.85991524e-24 1.49401369e-23
C67 -1.03726667e-32 -1.32354182e-27 2.65357044e-26C67 -1.03726667e-32 -1.32354182e-27 2.65357044e-26
C69 3.43484911e-32 -4.85145166e-28 -2.4662259e-26C69 3.43484911e-32 -4.85145166e-28 -2.4662259e-26
C71 1.47350771 e-31 1.32173476e-26 -7.52616524e-26C71 1.473.50.771 e-31 1.32173476e-26 -7.52616524e-26
C73 2.20731256e-31 1.18787482e-25 -1.55971922e-25C73 2.20731256e-31 1.18787482e-25 -1.55971922e-25
C75 1.27957619e-31 3.74259495e-25 -8.48519515e-26C75 1.27957619e-31 3.74259495e-25 -8.48519515e-26
C77 3.05045038e-32 6.69790007e-25 2.4106086e-26C77 3.05045038e-32 6.69790007e-25 2.4106086e-26
C78 -8.08438843e-35 3.10582806e-30 -3.15506345e-29C78 -8.08438843e-35 3.10582806e-30 -3.15506345e-29
C80 -5.33507979e-34 1.46918389e-29 1.34252881 e-28C80 -5.33507979e-34 1.46918389e-29 1.34252881 e-28
C82 -1.45494891 e-33 1.63440897e-28 -1.130906e-28C82 -1.45494891 e-33 1.63440897e-28 -1.130906e-28
C84 -1.77334302e-33 8.28609845e-28 -1.42102698e-28C84 -1.77334302e-33 8.28609845e-28 -1.42102698e-28
C86 -1.0728849e-33 2.0265052e-27 -7.92059242e-28C86 -1.0728849e-33 2.0265052e-27 -7.92059242e-28
C88 -3.14533478e-34 2.00292243e-27 -1.90061294e-27C88 -3.14533478e-34 2.00292243e-27 -1.90061294e-27
C90 -3.62310307e-35 4.60528862e-27 -8.19891657e-28C90 -3.62310307e-35 4.60528862e-27 -8.19891657e-28
C92 -2.10825946e-38 7.75920339e-33 -4.38295239e-31C92 -2.10825946e-38 7.75920339e-33 -4.38295239e-31
C94 -1.89410857e-37 -2.76161652e-32 5.5931353e-31C94-1.89410857e-37-2.76161652e-32 5.5931353e-31
C96 -6.1 1342862e-37 -2.56662189e-31 1.52276815e-30C96 -6.1 1342862e-37 -2.56662189e-31 1.52276815e-30
C98 -9.82533213e-37 -2.12912577e-30 2.76638929e-30C98 -9.82533213e-37 -2.12912577e-30 2.76638929e-30
C100 -7.57114364e-37 -7.1611517e-30 5.30427726e-30C100 -7.57114364e-37 -7.1611517e-30 5.30427726e-30
C102 -2.76706333e-37 -1.49858531 e-29 1.03346049e-30C102 -2.76706333e-37 -1.49858531 e-29 1.03346049e-30
C104 -3.91409133e-38 8.168915e-30 -4.71627921e-31C104 -3.91409133e-38 8.168915e-30 -4.71627921e-31
C105 1.30795789e-40 -1.31817471e-35 1.20977915e-34C105 1.30795789e-40 -1.31817471e-35 1.20977915e-34
C107 9.65901044e-40 -1.26931175e-34 -2.45248062e-33C107 9.65901044e-40 -1.26931175e-34 -2.45248062e-33
C109 3.13255514e-39 -1.82499426e-33 4.76819617e-33 cm 4.73813484e-39 -1.26748341 e-32 2.71472842e-33C109 3.13255514e-39 -1.82499426e-33 4.76819617e-33 cm 4.73813484e-39 -1.26748341 e-32 2.71472842e-33
C113 3.46842424e-39 -4.55926104e-32 1.42634982e-32C113 3.46842424e-39 -4.55926104e-32 1.42634982e-32
C115 1.05817389e-39 -9.65149938e-32 4.44412642e-32 Koeffizient M8 M7 M6C115 1.05817389e-39 -9.65149938e-32 4.44412642e-32 Coefficient M8 M7 M6
C117 3.46863288e-41 -1.10688586e-31 5.15740381 e-32 C119 -1.95806808e-41 -9.6895382e-33 1.78585218e-32 C121 -9.86388998e-45 0 0 C123 -1.15483765e-43 0 0 C125 2.80307739e-43 0 0 C127 1.48788179e-42 0 0 C129 2.20554522e-42 0 0 C131 1.73538345e-42 0 0 C133 7.32406904e-43 0 0 C135 1.30647414e-43 0 0 C136 -2.51510668e-46 0 0 C138 -2.18777209e-45 0 0 C140 -8.73933701 e-45 0 0 C142 -1.84588291 e-44 0 0 C144 -2.24093845e-44 0 0 C146 -1.62951234e-44 0 0 C148 -6.95575174e-45 0 0 C150 -1.60650247e-45 0 0 C152 -1.60339863e-46 0 0C117 3.46863288e-41 -1.10688586e-31 5.15740381 e-32 C119 -1.95806808e-41 -9.6895382e-33 1.78585218e-32 C121 -9.86388998e-45 0 0 C123 -1.15483765e-43 0 0 C125 2.80307739e-43 0 0 C127 1.48788179e-42 0 0 C129 2.20554522e-42 0 0 C131 1.73538345e-42 0 0 C133 7.32406904e-43 0 0 C135 1.30647414e-43 0 0 C136 -2.51510668e-46 0 0 C138 -2.18777209e- 45 0 0 C140 -8.73933701 e-45 0 0 C142 -1.84588291 e-44 0 0 C144 -2.24093845e-44 0 0 C146 -1.62951234e-44 0 0 C148 -6.95575174e-45 0 0 C150 -1.60650247e-45 0 0 C152 -1.60339863e-46 0 0
Tabelle 3a zu Fig. 11 Table 3a to Fig. 11
Koeffizient M5 M4 M3Coefficient M5 M4 M3
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 3851.96591300 -1667.48414200 1905.07271800KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 3851.96591300 -1667.48414200 1905.07271800
C7 1.22859438e-07 1.16740006e-07 3.95673757e-07 C9 9.36510041 e-08 4.85163876e-08 3.15401785e-07 C10 -1.19183083e-10 3.19830516e-12 -3.97230764e-10 C12 1.72203066e-10 -1.0052782e-11 -6.69392837e-10 C14 2.23394608e-10 -2.1 1360925e-10 -7.20620228e-10 C16 -2.31839315e-13 2.59109296e-14 -5.28212155e-13 C18 1.80332614e-13 -4.76153787e-14 1.06006303e-12 C20 7.27536115e-13 -1.1206662e-12 1.944371e-12 C21 -7.88583079e-18 8.07826975e-18 4.2907125e-16 C23 -6.29581241e-16 2.42631794e-17 -1.28611937e-15 C25 8.71627214e-16 -4.19446399e-16 -4.69085643e-15 C27 2.55176244e-15 -2.80158755e-15 -5.87158197e-15 C29 -8.64454797e-19 -8.43084834e-21 1.63376273e-18 C31 -6.0647703e-19 1.36024001 e-19 3.96140838e-18 C33 -2.34974902e-18 -2.7865049e-18 1.227677e-17 C35 8.87114798e-18 2.14184133e-17 1.31596761e-17 C36 3.3700367e-21 -1.3712054e-23 1.46270175e-21 C38 -1.85528518e-21 -7.61964911e-23 1.70938412e-21 C40 -1.37962106e-20 4.30922944e-22 -7.14839055e-21 C42 -4.62529356e-20 -4.74458048e-20 -2.3077492e-20 C44 -3.12819501e-20 -8.71004582e-20 3.05152745e-20 C46 3.23184954e-23 9.96979971 e-26 1.95058108e-24 C48 1.3694096e-23 1.01755658e-25 3.42145549e-24 C50 2.05573669e-22 1.33621582e-23 9.93301807e-23 C52 3.1 180598e-22 -7.13156626e-22 4.04026987e-22 C54 3.57860299e-23 -7.82210858e-21 8.44742313e-22 C55 -3.87334641 e-26 6.93046716e-30 -6.72095988e-27 Koeffizient M5 M4 M3C7 1.22859438e-07 1.16740006e-07 3.95673757e-07 C9 9.36510041 e-08 4.85163876e-08 3.15401785e-07 C10 -1.19183083e-10 3.19830516e-12 -3.97230764e-10 C12 1.72203066e-10 -1.0052782e- 11-6.69392837e-10 C14 2.23394608e-10 -2.1 1360925e-10 -7.20620228e-10 C16 -2.31839315e-13 C18 1.80332614e-13 -4.76153787e-14 1.06006303e-12 C20 7.27536115e-13 -1.1206662e-12 1.944371e-12 C21 -7.88583079e-18 8.07826975e-18 4.2907125e-16 C23 -6.29581241e-16 2.42631794e-17 -1.28611937e-15 C25 8.71627214e-16 -4.19446399 E-16 -4.69085643e-15 C27 2.55176244e-15 -2.80158755e-15 -5.87158197e-15 C29 -8.64454797e-19 -8.43084834e-21 1.63376273e-18 C31 -6.0647703e-19 1.36024001 e-19 3.96140838e -18 C33 -2.34974902e-18 -2.7865049e-18 1.227677e-17 C35 8.87114798e-18 2.14184133e-17 1.31596761e-17 C36 3.3700367e-21 -1.3712054e-23 1.46270175e-21 C38 -1.85528518e-21 C42-4.62529356e-20 -4.74458048e-20 -2.3077492e-20 C. -.7.6.29.29.26e-20 C It is also known from US patent application Ser. Nos. 3,328,195, No. 5, No. 3, No. 5, No. 5, No. 5, No. 5, No. 3, in terms of which it is intended to be incorporated by reference 9.93301807e-23 C52 3.1 180598e-22 -7.13156626e-22 4.04026987e-22 C54 3.57860299e-23 -7.82210858e-21 8.44742313e-22 C55-3.87334641 e-26 6.93046716e-30 -6.72095988e-27 Coefficient M5 M4 M3
C57 1.49329687e-25 8.08596814e-28 -5.74744789e-26 C59 4.19709817e-25 -1.65358077e-27 -1.59309952e-25 C61 3.94020888e-24 2.81149827e-25 -1.55028309e-24 C63 7.23174029e-24 -2.13334271e-24 -5.74854863e-24 C65 1.07149845e-23 -5.99274968e-23 -9.89232845e-24 C67 -4.64943492e-28 -3.25441971 e-31 -7.46767666e-30 C69 1.6981346e-29 -6.47924174e-30 7.63657816e-29 C71 -1.86598355e-27 1.21842872e-29 4.99956952e-28 C73 -7.36494557e-27 1.74514795e-27 1.48529228e-27 C75 -2.04730955e-27 9.98234615e-26 -3.46704751 e-27 C77 1.99371493e-26 2.58665375e-25 -4.34329914e-26 C78 1.45038539e-31 8.34095716e-35 2.05909149e-32 C80 -2.5293606e-30 -4.82206167e-33 4.8671983e-31 C82 -3.63634853e-30 -1.40771474e-32 5.1 1840897e-31 C84 -6.53186569e-29 -6.54331204e-31 1.25252e-29 C86 -2.6613913e-28 1.87631998e-30 8.55280419e-29 C88 -4.62635571 e-28 1.48298151 e-27 2.86137741 e-28 C90 -6.18523745e-28 5.36798943e-27 3.48446373e-28 C92 2.32207396e-33 1.42753873e-37 2.44920451 e-34 C94 -2.04745568e-33 2.27330575e-35 -1.27641527e-34 C96 -1.76045972e-33 -1.94737917e-34 -3.41179417e-33 C98 4.49216894e-33 -9.91240601e-33 -8.8221502e-33 C100 -8.24120927e-32 3.56554008e-33 -3.7003387e-32 C102 -5.98019017e-31 8.25368113e-30 9.21723637e-32 C104 -7.43854852e-31 2.44582791 e-29 1.21518455e-30 C105 9.61099067e-38 -2.13122119e-40 1.57023792e-38 C107 1.33574615e-35 1.00516673e-38 -6.64416881 e-37 C109 3.0413733e-36 8.77932337e-38 -4.68884249e-36 C111 2.63488695e-34 -1.86963182e-36 -6.3997021 e-35 C113 2.00767073e-33 -3.0673235e-35 -5.08585923e-34 C115 5.44782166e-33 6.82426904e-35 -2.42661715e-33 C117 9.50194881 e-33 1.66156597e-32 -5.80105722e-33 C119 1.41231787e-32 3.55214787e-32 -2.94550628e-33C57 7.29174029e-24 -2.13334271 C57 3.94020888e-24 2.81149827e-25 -1.55028309e-25 C59 4.9709817e-25 C59 4.19709817e-25 -1.65358077e-27 -1.59309952e-25 C61 3.94020888e-24 2.81149827e-25 -1.55028309e-24 c67 -4.64943492e-28 -3.25441971 e-31 -7.46767666e-30 C69 1.6981346e-29 -6.47924174e-30 7.63657816 e-29 C71 -1.86598355e-27 1.21842872e-29 4.99956952e-28 C73 -7.36494557e-27 1.74514795e-27 1.48529228e-27 C75 -2.04730955e-27 9.98234615e-26 -3.46704751 e-27 C77 1.99371493e 26 2.58665375e-25 -4.34329914e-26 C78 1.45038539e-31 8.34095716e-35 2.05909149e-32 C80 -2.5293606e-30 -4.82206167e-33 4.8671983e-31 C82 -3.63634853e-30 -1.40771474e-32 5.1 1840897e-31 C84 -6.53186569e-29 -6.54331204e-31 1.25252e-29 C86 -2.6613913e-28 1.87631998e-30 8.55280419e-29 C88 -4.62635571 e-28 1.48298151 e-27 2.86137741 e-28 C90 -6.18523745e -28 5.36798943e-27 3.48446373e-28 C92 2.32207396e-33 1.42753873e-37 2.44920451 e-34 C94 -2.04745568e-33 2.27330575e-35 -1.27641 527e-34 C96 -1.76045972e-33 -1.94737917e-34 -3.41179417e-33 C98 4.49216894e-33 -9.91240601e-33 -8.8221502e-33 C100 -8.24120927e-32 3.56554008e-33 -3.7003387e-32 C102 -5.98019017e-31 8.25368113e-30 9.21723637e-32 C104 -7.43854852e-31 2.44582791 e-29 1.21518455e-30 C105 9.61099067e-38 -2.13122119e-40 1.57023792e-38 C107 1.33574615e-35 1.00516673e-38 -6.64416881 e-37 C109 3.0413733e-36 8.77932337e-38 -4.68884249e-36 C111 2.63488695e-34 -1.86963182e-36 -6.3997021 e-35 C113 2.00767073e-33 -3.0673235e-35 -5.08585923e-34 C115 C117 9.50194881 e-33 1.66156597e-32 -5.80105722e-33 C119 1.41231787e-32 3.55214787e-32 -2.94550628e-33 5.44782166e-33 6.82426904e-35 -2.42661715e-33
Tabelle 3b zu Fig. 11 Table 3b to Fig. 11
Koeffizient M2 M1Coefficient M2 M1
KY 0.00000000 0.00000000 KX 0.00000000 0.00000000 RX 2138.08693900 -3536.11254200KY 0.00000000 0.00000000 KX 0.00000000 0.00000000 RX 2138.08693900 -3536.11254200
C7 -5.08202758e-07 2.51152933e-08 C9 -4.64808292e-07 -1.00801413e-07 C10 -5.2152857e-10 2.24633273e-11 C12 -1.2267042e-09 2.81663757e-10 C14 -1.10849009e-09 2.97053626e-10 C16 -2.52456679e-14 7.12707541e-14 C18 -2.43228507e-12 4.33393838e-13 C20 -3.36955187e-12 -1.75916282e-13 C21 -3.84258086e-16 2.33914375e-16 C23 1.24580259e-15 -5.24252881 e-16 C25 -7.13518758e-15 9.94837914e-17 C27 -1.09465829e-14 -1.8200099e-16 C29 -2.45456804e-18 -4.06697139e-19 Koeffizient M2 M1C7 -5.08202758e-07 2.51152933e-08 C9 -4.64808292e-07 -1.00801413e-07 C10 -5.2152857e-10 2.24633273e-11 C12 -1.2267042e-09 2.81663757e-10 C14 -1.10849009e-09 2.97053626e- 10 C16 -2.52456679e-14 7.12707541e-14 C18 -2.43228507e-12 4.33393838e-13 C20 -3.36955187e-12 -1.75916282e-13 C21 -3.84258086e-16 2.33914375e-16 C23 1.24580259e-15 -5.24252881 e C29 -2.45456804e-18 -4.06697139e-19. C27-1.09465829e-14 -1.8200099e-16 C29-2.45456804e-18 -4.06697139e-19 Coefficient M2 M1
C31 -1.05895518e-18 -9.64572917e-19C31 -1.05895518e-18 -9.64572917e-19
C33 -2.56862086e-17 -9.64610367e-20C33 -2.56862086e-17 -9.64610367e-20
C35 -3.1 1915404e-17 -3.47465193e-18C35 -3.1 1915404e-17 -3.47465193e-18
C36 5.42483468e-21 -2.62416646e-21C36 5.42483468e-21 -2.62416646e-21
C38 -1.28767465e-20 -1.44806927e-21C38 -1.28767465e-20 -1.44806927e-21
C40 -1.35252884e-20 -1.12861847e-20C40 -1.35252884e-20 -1.12861847e-20
C42 -9.46548492e-20 -1.66263444e-20C42 -9.46548492e-20 -1.66263444e-20
C44 -3.08566898e-20 -1.69962152e-20C44 -3.08566898e-20 -1.69962152e-20
C46 -8.72930921 e-24 7.78828244e-24C46 -8.72930921 e-24 7.78828244e-24
C48 4.85393634e-23 1.16957458e-24C48 4.85393634e-23 1.16957458e-24
C50 2.32310873e-23 1.39613061 e-23C50 2.32310873e-23 1.39613061 e-23
C52 -2.39006483e-22 -1.04152972e-22C52 -2.39006483e-22 -1.04152972e-22
C54 9.02421435e-22 -3.89969663e-22C54 9.02421435e-22 -3.89969663e-22
C55 -1.01540766e-25 1.57448755e-26C55 -1.01540766e-25 1.57448755e-26
C57 2.57150976e-25 1.58418149e-25C57 2.57150976e-25 1.58418149e-25
C59 4.56583035e-25 1.25865785e-24C59 4.56583035e-25 1.25865785e-24
C61 6.19287099e-25 3.3051 1747e-24C61 6.19287099e-25 3.3051 1747e-24
C63 1.87389977e-24 3.4541 1645e-24C63 1.87389977e-24 3.4541 1645e-24
C65 9.25959414e-24 2.02675319e-25C65 9.25959414e-24 2.02675319e-25
C67 1.04592096e-28 -1.69192397e-29C67 1.04592096e-28 -1.69192397e-29
C69 -1.23125975e-27 5.09626594e-28C69 -1.23125975e-27 5.09626594e-28
C71 -3.49347998e-27 1.52966585e-27C71 -3.49347998e-27 1.52966585e-27
C73 -1.24984375e-27 5.22009103e-27C73 -1.24984375e-27 5.22009103e-27
C75 2.53379392e-26 1.58063539e-26C75 2.53379392e-26 1.58063539e-26
C77 2.22668166e-26 2.90525317e-26C77 2.22668166e-26 2.90525317e-26
C78 4.36147293e-31 1.14436766e-31C78 4.36147293e-31 1.14436766e-31
C80 -3.50509868e-30 -4.10818926e-30C80 -3.50509868e-30 -4.10818926e-30
C82 -1.09441954e-29 -3.97798422e-29C82 -1.09441954e-29 -3.97798422e-29
C84 -2.64435076e-29 -1.48424979e-28C84 -2.64435076e-29 -1.48424979e-28
C86 -4.36593909e-30 -2.45523884e-28C86 -4.36593909e-30 -2.45523884e-28
C88 1.03536362e-28 -2.03667484e-28C88 1.03536362e-28 -2.03667484e-28
C90 -1.91004648e-28 5.93786093e-30C90 -1.91004648e-28 5.93786093e-30
C92 -3.91796018e-33 -3.34860549e-34C92 -3.91796018e-33 -3.34860549e-34
C94 1.20860185e-32 -8.83042357e-33C94 1.20860185e-32 -8.83042357e-33
C96 6.26423498e-32 -3.97981753e-32C96 6.26423498e-32 -3.97981753e-32
C98 1.38594908e-31 -1.28012778e-31C98 1.38594908e-31 -1.28012778e-31
C100 2.04699035e-31 -2.79159426e-31C100 2.04699035e-31 -2.79159426e-31
C102 -6.47529985e-33 -5.09078455e-31C102 -6.47529985e-33 -5.09078455e-31
C104 -1.42008486e-30 -5.24494913e-31C104 -1.42008486e-30 -5.24494913e-31
C105 -1.83450743e-36 -1.5810545e-36C105-1.83450743e-36 -1.5810545e-36
C107 4.66809471 e-36 3.91 193275e-35C107 4.66809471 e-36 3.91 193275e-35
C109 1.33330289e-34 4.3895162e-34 cm 4.18080915e-34 2.21004026e-33C109 1.33330289e-34 4.3895162e-34 cm 4.18080915e-34 2.21004026e-33
C1 13 9.08314357e-34 5.17653775e-33C1 13 9.08314357e-34 5.17653775e-33
C1 15 7.49682185e-34 6.37788931 e-33C1 15 7.49682185e-34 6.37788931 e-33
C1 17 -8.10366391 e-34 4.23046932e-33C1 17 -8.10366391 e-34 4.23046932e-33
C1 19 -2.83722223e-33 2.68970093e-35C1 19 -2.83722223e-33 2.68970093e-35
Tabelle 3c zu Fig. 11 Table 3c to Fig. 11th
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0.00000000 M8 0.00000000 0.00000000 825.93553536 M7 0.00000000 152.41225394 120.73685442 Oberfläche DCX DCY DCZImage plane 0.00000000 0.00000000 0.00000000 M8 0.00000000 0.00000000 825.93553536 M7 0.00000000 152.41225394 120.73685442 Surface DCX DCY DCZ
M6 -0.00000000 -86.70381571 1227 10679876 M5 -0.00000000 -288.90332638 1486 61328456 M4 -0.00000000 -788.791 12975 1720 0920691 1 M3 0.00000000 63.19842658 1714 10424934 M2 0.00000000 501.09999256 1469 79865760 Blende 0.00000000 709.45610187 1 107 00590480 M1 0.00000000 944.01022630 698 59677889M6 -0.00000000 -86.70381571 1227 10679876 M5 -0.00000000 -288.90332638 1486 61328456 M4 -0.00000000 -788.791 12975 1720 0920691 1 M3 0.00000000 63.19842658 1714 10424934 M2 0.00000000 501.09999256 1469 79865760 Cover 0.00000000 709.45610187 1 107 00590480 M1 0.00000000 944.01022630 698 59677889
Objektebene 0.00000000 1073.94708727 2183 78189551 Tabelle 4a zu Fig. 11 Object level 0.00000000 1073.94708727 2183 78189551 Table 4a to FIG. 11
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000 M8 6.09778402 0.00000000 -0.00000000 M7 192.19556804 0.00000000 -0.00000000 M6 -64.93990082 -0.00000000 -0.00000000 M5 -38.55543909 -0.00000000 -0.00000000 M4 77.28091044 -0.00000000 -0.00000000 M3 -14.77992460 0.00000000 -0.00000000 M2 -44.64396244 0.00000000 0.00000000 Blende 24.06892752 180.00000000 0.00000000 M1 192.43462686 -0.00000000 -0.00000000Image plane -0.00000000 0.00000000 -0.00000000 M8 6.09778402 0.00000000 -0.00000000 M7 192.19556804 0.00000000 -0.00000000 -0.00000000 -0.00000000 M6 M5 -64.93990082 -38.55543909 -0.00000000 -0.00000000 -0.00000000 -0.00000000 M4 M3 77.28091044 -14.77992460 0.00000000 -0.00000000 M2 -44.64396244 0.00000000 0.00000000 24.06892752 180.00000000 aperture 0.00000000 M1 192.43462686 -0.00000000 -0.00000000
Objektebene -0.00000000 0.00000000 0.00000000 Tabelle 4b zu Fig. 11 Object level -0.00000000 0.00000000 0.00000000 Table 4b to FIG. 11
Oberfläche Einfallswinkel[deg] Reflektivität Surface angle of incidence [deg] reflectivity
M8 6.13281062 0.66174979 M7 0.12234545 0.66566439 M6 76.65954883 0.83082833 M5 77.60306126 0.84505091 M4 12.04904974 0.64926632 M3 75.95982040 0.81978588 M2 74.94335346 0.80291383 M1 17.19094173 0.62933155M8 6.13281062 0.66174979 M7 0.12234545 0.66566439 M6 76.65954883 0.83082833 M5 77.60306126 0.84505091 M4 12.04904974 0.64926632 M3 75.95982040 0.81978588 M2 74.94335346 0.80291383 M1 17.19094173 0.62933155
Gesamttransmission 0.0832 Tabelle 5 zu Fig. 11 Total transmission 0.0832 Table 5 to Fig. 11
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
0.00000000 -33.70252519 0.00000000 30.86140168 -33.30508715 0.00000000 60.93202620 -32.1 1 151271 0.00000000 89.44636869 -30.12170033 0.00000000 1 15.68586451 -27.34710426 0.00000000 138.99559433 -23.82429945 0.00000000 158.79775798 -19.62526558 0.00000000 174.60427294 -14.85927900 0.00000000 186.02935604 -9.66597496 0.00000000 192.80157508 -4.20338061 0.00000000 194.77348028 1.36441882 0.00000000 191.92612369 6.87758580 0.00000000 184.36687248 12.18822531 0.00000000 172.32108075 17.16515588 0.00000000 156.1 1966244 21.69588021 0.00000000 X[mm] Y[mm] Z[mm]0.00000000 -33.70252519 0.00000000 30.86140168 -33.30508715 0.00000000 60.93202620 -32.1 1 151271 0.00000000 89.44636869 -30.12170033 0.00000000 1 15.68586451 -27.34710426 0.00000000 138.99559433 -23.82429945 0.00000000 158.79775798 -19.62526558 0.00000000 174.60427294 -14.85927900 0.00000000 186.02935604 -9.66597496 0.00000000 192.80157508 -4.20338061 0.00000000 194.77348028 1.36441882 0.00000000 191.92612369 6.87758580 0.00000000 184.36687248 12.18822531 0.00000000 172.32108075 17.16515588 0.00000000 156.1 1966244 21.69588021 0.00000000 X [mm] Y [mm] Z [mm]
136.18490669 25.68612451 0.00000000136.18490669 25.68612451 0.00000000
1 13.01636038 29.05791801 0.000000001 13.01636038 29.05791801 0.00000000
87.17765216 31.74769820 0.0000000087.17765216 31.74769820 0.00000000
59.284761 18 33.70545241 0.0000000059.284761 18 33.70545241 0.00000000
29.99574553 34.89486127 0.0000000029.99574553 34.89486127 0.00000000
0.00000000 35.29381045 0.000000000.00000000 35.29381045 0.00000000
-29.99574553 34.89486127 0.00000000-29.99574553 34.89486127 0.00000000
-59.284761 18 33.70545241 0.00000000-59.284761 18 33.70545241 0.00000000
-87.17765216 31.74769820 0.00000000-87.17765216 31.74769820 0.00000000
-1 13.01636038 29.05791801 0.00000000-1 13.01636038 29.05791801 0.00000000
-136.18490669 25.68612451 0.00000000-136.18490669 25.68612451 0.00000000
-156.1 1966244 21.69588021 0.00000000-156.1 1966244 21.69588021 0.00000000
-172.32108075 17.16515588 0.00000000-172.32108075 17.16515588 0.00000000
-184.36687248 12.18822531 0.00000000-0000000000. -184.36687248 12.18822531 0.00000000
-191.92612369 6.87758580 0.00000000-191.92612369 6.87758580 0.00000000
-194.77348028 1.36441882 0.00000000-194.77348028 1.36441882 0.00000000
-192.80157508 -4.20338061 0.000000000.00000000
-186.02935604 -9.66597496 0.00000000-006.02935604 -9.66597496 0.00000000
-174.60427294 -14.85927900 0.00000000-174.60427294 -14.85927900 0.00000000
-158.79775798 -19.62526558 0.000000000.00000000. -158.79775798 -19.62526558
-138.99559433 -23.82429945 0.00000000-138.99559433 -23.82429945 0.00000000
-1 15.68586451 -27.34710426 0.00000000-1 15.68586451 -27.34710426 0.00000000
-89.44636869 -30.12170033 0.00000000-0000000000 -89.44636869 -30.12170033
-60.93202620 -32.1 1 151271 0.00000000-60.93202620 -32.1 1 151271 0.00000000
-30.86140168 -33.30508715 0.00000000-30.86140168 -33.30508715 0.00000000
Tabelle 6 zu Fig. 11 Table 6 to Fig. 11
Die Projektionsoptik 23 hat eine Gesamttransmission von 8,32 %. Die Projektionsoptik 23 hat eine bildseitige numerische Apertur von 0,55. The projection optics 23 has a total transmission of 8.32%. The projection optical system 23 has a picture-side numerical aperture of 0.55.
In der ersten Abbildungslicht-Ebene xz ist der Verkleinerungsfaktor ßx 4,50. In der zweiten Abbildungslicht-Ebene yz ist der Verkleinerungsfaktor ßy 8,00. Ein objektfeldseitiger Hauptstrahlwinkel beträgt 5,0°. Eine maximale Pupillenobskuration beträgt 12 %. Ein Objekt-Bildversatz dois beträgt etwa 1080 mm. Die Spiegel der Projektionsoptik 23 können in einem Quader mit xyz-Kantenlängen 946 mm x 1860 mm x 1675 mm untergebracht werden. In the first imaging light plane xz, the reduction factor β x is 4.50. In the second imaging light plane yz, the reduction factor β y is 8.00. An object field side main beam angle is 5.0 °. A maximum pupil obscuration is 12%. An object image offset dois is about 1080 mm. The mirrors of the projection optics 23 can be accommodated in a cuboid with xyz edge lengths 946 mm x 1860 mm x 1675 mm.
Bei der Projektionsoptik 23 verlaufen die Objektebene 5 und die Bildebene 9 parallel zueinander. Ein Arbeitsabstand zwischen dem wafemächsten Spiegel M7 und der Bildebene 9 beträgt 94 mm. Ein mittlerer Wellenfrontfehler rms beträgt etwa 24 ηιλ. Eine Aperturblende AS ist im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 vor dem ersten Zweitebenen-Zwischenbild 24 angeordnet. Im Bereich der Aperturblende AS ist das gesamte Abbildungslichtbündel vollumfänglich zugänglich. In the projection optics 23, the object plane 5 and the image plane 9 run parallel to one another. A working distance between the wafer-closest mirror M7 and the image plane 9 is 94 mm. A mean wavefront error rms is about 24 ηιλ. An aperture stop AS is arranged in the imaging light beam path between the mirrors M1 and M2 in front of the first second-level intermediate image 24. In the area of the aperture diaphragm AS, the entire imaging light beam is fully accessible.
Anhand der Fig. 14 bis 16 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 26 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 13 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optical system 26, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. 14 to 16. Components and functions which have already been explained above in connection with FIGS. 1 to 13 may carry the same reference numbers and will not be discussed again in detail.
Die Spiegel Ml, M6 und M7 sind als Nl-Spiegel und die Spiegel M2 bis M5 als Gl-Spiegel ausgeführt. Die Gl-Spiegel M2 bis M5 haben eine gleichsinnige ablenkende Wirkung. Insgesamt gilt für die Abfolge der Ablenkungswirkung bei den Spiegeln Ml bis M7 der Projektionsoptik 26: RLLLLOR. The mirrors Ml, M6 and M7 are designed as Nl mirrors and the mirrors M2 to M5 as Gl mirrors. The Gl mirrors M2 to M5 have a same direction distracting effect. Overall, the following applies to the sequence of the deflection effect in the mirrors M1 to M7 of the projection optics 26: RLLLOR.
Die Spiegel Ml bis M7 sind wiederum als Freiformflächen-Spiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. The mirrors M1 to M7 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M7 der Projektionsoptik 26. The following table again shows the mirror parameters of the mirrors M1 to M7 of the projection optics 26.
Ml M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7
maximaler maximum
Einfallswinkel 16.9 78.6 75.1 72.2 76.5 16.3 10.0  Angle of incidence 16.9 78.6 75.1 72.2 76.5 16.3 10.0
[°]  [°]
Reflexionsflä- chenerstreckung  Reflective surface extension
in 366.4 442.6 520.2 464.1 182.3 409.8 821.9 in 366.4 442.6 520.2 464.1 182.3 409.8 821.9
x-Richtung x-direction
[mm]  [Mm]
Reflexionsflä- Reflexionsflä-
177.5 393.2 193.4 231.3 260.7 100.6 796.0 177.5 393.2 193.4 231.3 260.7 100.6 796.0
chenerstreckung Ml M2 M3 M4 M5 M6 M7 chenerstreckung M1 M2 M3 M4 M5 M6 M7
in in
y-Richtung y-direction
[mm] [Mm]
maximaler maximum
Spiegeldurch- 366.5 448.5 520.3 464.1 268.7 409.8 822.4  Mirror 366.5 448.5 520.3 464.1 268.7 409.8 822.4
messer [mm] knife [mm]
Nur der Spiegel M5 hat ein y/x- Aspektverhältnis, das größer ist als 1. Das y/x- Aspektverhältnis des Spiegels M5 ist kleiner als 1,5. Den größten Spiegeldurchmesser hat der letzte Spiegel M7 von etwa 820 mm. Keiner der anderen Spiegeln Ml bis M6 hat einen größeren Durchmesser als 525 mm. Fünf der sieben Spiegel haben einen kleineren maximalen Durchmesser als 450 mm. Only the mirror M5 has a y / x aspect ratio that is greater than 1. The y / x aspect ratio of the mirror M5 is less than 1.5. The largest mirror diameter has the last mirror M7 of about 820 mm. None of the other mirrors M1 to M6 has a diameter larger than 525 mm. Five of the seven mirrors have a smaller maximum diameter than 450 mm.
Die Projektionsoptik 26 hat wiederum genau ein Erstebenen-Zwischenbild 18 und zwei Zweit- ebenen-Zwischenbilder 19, 20. Das Erstebenen-Zwischenbild 18 ist genau auf Höhe des Durchgangs des Abbildungslichts durch die Durchtrittsöffnung 17 angeordnet. Dies bewirkt eine sehr kleine x-Erstreckung der Durchtrittsöffnung 17. Die beiden Zweitebenen-Zwischenbilder 19, 20 sind einerseits im Abbildungslichtstrahlengang zwischen den GI-Spiegeln M3 und M4 und andererseits im Abbildungslichtstrahlengang zwischen den GI-Spiegeln M4 und M5 angeordnet. Der Gl-Spiegel M4 ist damit wiederum ein Gl-Spiegel zwischen zwei Zweitebenen-Zwischenbildem, wie vorstehend im Zusammenhang mit der Ausführung nach den Fig. 11 bis 13 bereits erläutert. The projection optics 26 in turn has exactly one first-level intermediate image 18 and two second-level intermediate images 19, 20. The first-level intermediate image 18 is arranged at the level of the passage of the imaging light through the passage opening 17. This causes a very small x-extension of the passage opening 17. The two second plane intermediate images 19, 20 are arranged on the one hand in the image light beam path between the GI mirrors M3 and M4 and on the other hand in the image light beam path between the GI mirrors M4 and M5. The Gl mirror M4 is thus again a Gl mirror between two second plane intermediate images, as already explained above in connection with the embodiment according to FIGS. 11 to 13.
Die Projektionsoptik 26 hat einerseits eine ungerade Spiegelanzahl und andererseits einen Unterschied in den Anzahlen zwischen Erstebenen-Zwischenbild und Zweitebenen-Zwischenbildem von genau 1. Hierdurch wird eine seitenrichtige Bildlage im Vergleich zur Objektlage erreicht, ein "Image Flip" wird also kompensiert. On the one hand, the projection optics 26 have an odd number of mirrors and, on the other hand, a difference in the numbers between the first-level intermediate image and the second-level intermediate image of exactly 1. This achieves a laterally correct image position compared to the object position, thus compensating for an "image flip".
Fig. 16 zeigt wiederum die Randkonturen der Reflexionsflächen der Spiegeln Ml bis M7. Die optischen Designdaten der Projektionsoptik 26 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. 16 again shows the edge contours of the reflection surfaces of the mirrors M1 to M7. The optical design data of the projection optics 26 can be found in the following tables, which correspond in their construction to the tables for the projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 14 Embodiment FIG. 14
NA 0.45 NA 0.45
Wellenlänge 13.5 nm beta_x -4.0 beta_y -8.0Wavelength 13.5 nm beta_x -4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.2 mmField size_y 1.2 mm
Feldkrümmung 0.0 1/mm rms 40.1 mlField curvature 0.0 1 / mm rms 40.1 ml
Blende AS Tabelle 1 zu Fig. 14 Panel AS Table 1 to FIG. 14
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M7 -1 1 18.1920556 0.0017717 -899.8350288 0.0022439 REFLM7 -1 1 18.1920556 0.0017717 -899.8350288 0.0022439 REFL
M6 -77660.0792965 0.0000257 221.9926726 -0.0090093 REFLM6 -77660.0792965 0.0000257 221.9926726 -0.0090093 REFL
M5 -1386.8269930 0.0004288 -2455.8257737 0.0027388 REFLM5 -1386.8269930 0.0004288 -2455.8257737 0.0027388 REFL
M4 -81 1.5247859 0.0008055 -1 1 12.5367564 0.0055003 REFLM4 -81 1.5247859 0.0008055 -1 1 12.5367564 0.0055003 REFL
M3 -1397.9253073 0.0004552 -2809.2148857 0.0022378 REFLM3 -1397.9253073 0.0004552 -2809.2148857 0.0022378 REFL
M2 -16748.6228787 0.0000291 86553.8665992 -0.0000949 REFLM2 -16748.6228787 0.0000291 86553.8665992 -0.0000949 REFL
M1 -5806.9159005 0.0003319 -1647.2565533 0.0012601 REFLM1 -5806.9159005 0.0003319 -1647.2565533 0.0012601 REFL
Tabelle 2 zu Fig. 14 Table 2 to Fig. 14
Koeffizient M7 M6 M5Coefficient M7 M6 M5
KY 0.00000000 0.00000000 0.00000000 KX -0.00137021 0.91505988 0.56499787 RX -1 1 18.19205600 -77660.07930000 -1386.82699300KY 0.00000000 0.00000000 0.00000000 KX -0.00137021 0.91505988 0.56499787 RX -1 1 18.19205600 -77660.07930000 -1386.82699300
C7 -1.35972277e-09 -1.31702537e-06 8.21566727e-08 C9 -1.1956291 1 e-09 -1.06795699e-06 6.71317569e-08 C10 -1.27946071 e-1 1 6.00960647e-10 -1.85048127e-10 C12 -3.62273134e-1 1 1.17179851 e-09 -7.91 150245e-1 1 C14 -3.22516678e-12 -2.45659314e-08 -3.48012619e-1 1 C16 -8.90234813e-15 -6.8386461 e-14 -8.39554879e-13 C18 -5.48904832e-15 1.19036933e-1 1 -7.17409427e-14 C20 -3.99556769e-16 8.45160514e-1 1 3.60144042e-14 C21 -2.1960617e-17 2.49887747e-16 7.12991585e-16 C23 -5.89249041 e-17 9.32259724e-15 -2.90210248e-15 C25 -4.55753256e-17 -6.68675048e-14 -3.70422222e-17 C27 -5.5757165e-18 1.19018192e-12 8.51977396e-17 C29 -2.4344109e-21 -8.62777329e-18 1.74126592e-17 C31 -5.55579318e-21 3.34187564e-17 -7.17207054e-18 C33 -3.31675441 e-21 -1.29777485e-15 2.10588262e-18 C35 1.75995157e-21 -8.94713659e-16 1.15186427e-18 C36 -1.41908532e-23 3.26000767e-21 -1.19195804e-20 C38 -7.80332525e-23 -6.53124238e-21 9.90671 134e-20 Koeffizient M7 M6 M5C7 -1.35972277e-09 -1.31702537e-06 8.21566727e-08 C9 -1.1956291 1 e-09 -1.06795699e-06 6.71317569e-08 C10 -1.27946071 e-1 1 6.00960647e-10 -1.85048127e-10 C12-3.62273134 C18 -5.48904832. *** "" C18 -5.48904832. *** "" e-1 "" -17.91 150245e-1 " e-15 1.19036933e-1 1 -7.17409427e-14 C20 -3.99556769e-16 8.45160514e-1 1 3.60144042e-14 C21 -2.1960617e-17 2.49887747e-16 7.12991585e-16 C23 -5.89249041 e-17 9.32259724e -15 -2.90210248e-15 C25 -4.55753256e-17 -6.68675048e-14 -3.70422222e-17 C27 -5.5757165e-18 1.19018192e-12 8.51977396e-17 C29 -2.4344109e-21 -8.62777329e-18 1.74126592e -17 C31 -5.55579318e-21 3.34187564e-17 -7.17207054e-18 C33-3.31675441 e-21 -1.29777485e-15 2.10588262e-18 C35 1.75995157e-21 -8.94713659e-16 1.15186427e-18 C36 -1.41908532e -23 3.26000767e-21 -1.19195804e-20 C38 -7.80332525e-23 -6.53124238e-21 9.90671 134e-20 Coefficient M7 M6 M5
C40 -1.13822672e-22 6.68112351e-19 -5.5105019e-20C40 -1.13822672e-22 6.68112351e-19 -5.5105019e-20
C42 -5.90298206e-23 -1.86124502e-18 -5.32734848e-22C42 -5.90298206e-23 -1.86124502e-18 -5.32734848e-22
C44 -6.65947093e-24 -1.01586039e-16 7.15851654e-21C44 -6.65947093e-24 -1.01586039e-16 7.15851654e-21
C46 -2.00312205e-27 8.88928654e-24 -9.36621032e-22C46 -2.00312205e-27 8.88928654e-24 -9.36621032e-22
C48 -3.84346115e-27 -5.50464203e-23 -3.68359583e-22C48 -3.84346115e-27 -5.50464203e-23 -3.68359583e-22
C50 -1.21351091e-26 -1.75186317e-21 -7.42676069e-22C50 -1.21351091e-26 -1.75186317e-21 -7.42676069e-22
C52 -5.94610051 e-27 1.06480223e-19 -2.26019232e-22C52 -5.94610051 e-27 1.06480223e-19 -2.26019232e-22
C54 -1.02529435e-27 6.80466177e-20 6.85884917e-24C54 -1.02529435e-27 6.80466177e-20 6.85884917e-24
C55 -1.87169414e-29 -3.03257207e-27 -3.53966472e-25C55 -1.87169414e-29 -3.03257207e-27 -3.53966472e-25
C57 -7.63481393e-29 -1.65155904e-26 -6.31531629e-24C57 -7.63481393e-29 -1.65155904e-26 -6.31531629e-24
C59 -1.618503e-28 3.24021454e-24 -2.08579182e-24C59 -1.618503e-28 3.24021454e-24 -2.08579182e-24
C61 -1.50863465e-28 -3.30781882e-23 -2.85752418e-24C61 -1.50863465e-28 -3.30781882e-23 -2.85752418e-24
C63 -7.4694491 e-29 -2.05676238e-22 -8.81519764e-25C63 -7.4694491 e-29 -2.05676238e-22 -8.81519764e-25
C65 -8.40416665e-30 1.06163773e-21 -2.93156768e-26C65 -8.40416665e-30 1.06163773e-21 -2.93156768e-26
C67 3.03979955e-33 0 0C67 3.03979955e-33 0 0
C69 1.86338693e-33 0 0C69 1.86338693e-33 0 0
C71 -6.61723971 e-32 0 0C71 -6.61723971 e-32 0 0
C73 -1.08032051 e-31 0 0C73 -1.08032051 e-31 0 0
C75 -2.27309233e-32 0 0C75 -2.27309233e-32 0 0
C77 6.99250984e-33 0 0C77 6.99250984e-33 0 0
C78 -1.01710204e-35 0 0C78 -1.01710204e-35 0 0
C80 -1.77734667e-34 0 0C80 -1.77734667e-34 0 0
C82 -4.92421677e-34 0 0C82 -4.92421677e-34 0 0
C84 -5.90814608e-34 0 0C84 -5.90814608e-34 0 0
C86 -3.58119042e-34 0 0C86 -3.58119042e-34 0 0
C88 -7.3533067e-35 0 0C88 -7.3533067e-35 0 0
C90 9.04662218e-36 0 0C90 9.04662218e-36 0 0
Tabelle 3a zu Fig. 14 Table 3a to FIG. 14
Koeffizient M4 M3 M2Coefficient M4 M3 M2
KY 0.00000000 0.14280139 0.01218901 KX -0.07494948 0.00000000 0.00000000 RX -811.52478590 -1397.92530700 -16748.62288000KY 0.00000000 0.14280139 0.01218901 KX -0.07494948 0.00000000 0.00000000 RX -811.52478590 -1397.92530700 -16748.62288000
C7 -3.86023657e-08 -1.7217439e-07 1.68453717e-07C7 -3.86023657e-08 -1.7217439e-07 1.68453717e-07
C9 3.81360594e-07 -2.22668277e-08 5.53150287e-08C9 3.81360594e-07 -2.22668277e-08 5.53150287e-08
C10 -9.50508955e-12 -1.34447743e-10 5.4023144e-11C10 -9.50508955e-12 -1.34447743e-10 5.4023144e-11
C12 -5.70678081 e-11 9.89796339e-11 1.09720673e-10C12 -5.70678081 e-11 9.89796339e-11 1.09720673e-10
C14 8.49743848e-12 -8.20556261 e-11 1.13182448e-10C14 8.49743848e-12 -8.20556261 e-11 1.13182448e-10
C16 1.61961347e-14 3.16757938e-13 8.17990626e-14C16 1.61961347e-14 3.16757938e-13 8.17990626e-14
C18 -1.81336141e-12 -1.46692844e-13 -7.87681986e-14C18-1.81336141e-12 -1.46692844e-13 -7.87681986e-14
C20 -2.45995083e-12 3.69363439e-13 2.2119085e-13C20 -2.45995083e-12 3.69363439e-13 2.2119085e-13
C21 -6.01959296e-17 2.32061711e-16 4.88073984e-16C21 -6.01959296e-17 2.32061711e-16 4.88073984e-16
C23 9.61849791e-16 -6.62327921 e-16 8.33140175e-16C23 9.61849791e-16 -6.62327921 e-16 8.33140175e-16
C25 3.76110948e-15 4.1293339e-16 5.1 1355813e-16C25 3.76110948e-15 4.1293339e-16 5.1 1355813e-16
C27 4.07712151e-16 -1.30372287e-15 5.07663031 e-16C27 4.07712151e-16 -1.30372287e-15 5.07663031 e-16
C29 -6.19189144e-19 -1.12258072e-18 -8.07168061 e-19C29 -6.19189144e-19 -1.12258072e-18 -8.07168061 e-19
C31 1.20524092e-18 3.06340009e-19 3.29075739e-18C31 1.20524092e-18 3.06340009e-19 3.29075739e-18
C33 1.72295617e-17 -8.88294932e-18 3.4168599e-18C33 1.72295617e-17 -8.88294932e-18 3.4168599e-18
C35 1.70676574e-17 -1.38680217e-17 1.83754623e-18C35 1.70676574e-17 -1.38680217e-17 1.83754623e-18
C36 1.43724929e-22 -7.1900244e-22 -3.39550843e-23C36 1.43724929e-22 -7.1900244e-22 -3.39550843e-23
C38 -3.38007799e-22 2.93538162e-21 2.70487171e-21C38 -3.38007799e-22 2.93538162e-21 2.70487171e-21
C40 -2.74909383e-20 -1.10840295e-20 1.63959268e-21 Koeffizient M4 M3 M2C40 -2.74909383e-20 -1.10840295e-20 1.63959268e-21 Coefficient M4 M3 M2
C42 -6.45193579e-20 -3.57255186e-20 6.86550247e-21C42 -6.45193579e-20 -3.57255186e-20 6.86550247e-21
C44 7.36421248e-20 -8.97646863e-20 4.94290723e-21C44 7.36421248e-20 -8.97646863e-20 4.94290723e-21
C46 2.3853282e-24 3.37918053e-24 3.13909373e-24C46 2.3853282e-24 3.37918053e-24 3.13909373e-24
C48 1.56518232e-23 -3.28081782e-24 -6.07559407e-24C48 1.56518232e-23 -3.28081782e-24 -6.07559407e-24
C50 3.29980178e-23 1.15298309e-23 -1.68311399e-23C50 3.29980178e-23 1.15298309e-23 -1.68311399e-23
C52 -1.06645652e-22 -1.67150633e-22 -1.09033213e-23C52 -1.06645652e-22 -1.67150633e-22 -1.09033213e-23
C54 -2.15354941e-22 -3.05800431 e-22 5.37428244e-24C54 -2.15354941e-22 -3.05800431 e-22 5.37428244e-24
C55 1.02369612e-28 7.38084675e-28 9.80514031e-27C55 1.02369612e-28 7.38084675e-28 9.80514031e-27
C57 -3.04109444e-27 -7.17188177e-27 1.00470224e-26C57 -3.04109444e-27 -7.17188177e-27 1.00470224e-26
C59 -3.1 1173505e-26 3.89129269e-26 -2.43587516e-26C59-3.1 1173505e-26 3.89129269e-26 -2.43587516e-26
C61 2.38777712e-25 -2.43305684e-26 -7.71285207e-26C61 2.38777712e-25 -2.43305684e-26 -7.71285207e-26
C63 -1.38932479e-26 -3.05746638e-25 -4.41126952e-26C63 -1.38932479e-26 -3.05746638e-25 -4.41126952e-26
C65 -4.39598759e-25 -5.10266314e-25 -3.4826267e-28C65 -4.39598759e-25 -5.10266314e-25 -3.4826267e-28
Tabelle 3b zu Fig. 14 Table 3b to Fig. 14
Tabelle 3c zu Fig. 14 Oberfläche DCX DCY DCZTable 3c to Fig. 14 Surface DCX DCY DCZ
Bildebene 0.00000000 0 00000000 0.00000000 M7 0.00000000 0 00000000 871.29627896 M6 0.00000000 218 32338321 98.52317410 M5 0.00000000 -58 06517479 1076.82261676 M4 -0.00000000 -561 60349183 1493.78229143 M3 -0.00000000 -1208 38154717 1510.41842453 M2 0.00000000 -1670 36640710 1 179.32899124 Blende 0.00000000 -1788 84239898 938.34283647 M1 0.00000000 -2045 77302675 415.73295536Image plane 0.00000000 0.00000000 M7 0 00000000 0 00000000 0.00000000 0.00000000 218 871.29627896 M6 M5 32338321 98.52317410 0.00000000 -0.00000000 -58 06517479 1076.82261676 M4 -561 60349183 1493.78229143 M3 -0.00000000 -1208 38154717 M2 1510.41842453 0.00000000 -1670 36640710 1 179.32899124 938.34283647 aperture 0.00000000 -1788 84239898 M1 0.00000000 -2045 77302675 415.73295536
Objektebene 0.00000000 -2170 48986012 1880.60987391 Tabelle 4a zu Fig. 14 Object level 0.00000000 -2170 48986012 1880.60987391 Table 4a to FIG. 14
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M7 7.88800730 0.00000000 -0.00000000M7 7.88800730 0.00000000 -0.00000000
M6 195.77601460 0.00000000 -0.00000000M6 195.77601460 0.00000000 -0.00000000
M5 -56.92538181 0.00000000 -0.00000000M5 -56.92538181 0.00000000 -0.00000000
M4 -20.55009475 -0.00000000 -0.00000000M4 -20.55009475 -0.00000000 -0.00000000
M3 17.07725962 0.00000000 0.00000000M3 17.07725962 0.00000000 0.00000000
M2 49.72391045 0.00000000 -0.00000000M2 49.72391045 0.00000000 -0.00000000
Blende 164.02654214 -0.00000000 -0.00000000Aperture 164.02654214 -0.00000000 -0.00000000
M1 169.34310441 -0.00000000 -0.00000000M1 169.34310441 -0.00000000 -0.00000000
Objektebene 9.09286877 0.00000000 180.00000000Object level 9.09286877 0.00000000 180.00000000
Tabelle 4b zu Fig. 14 Table 4b to FIG. 14
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M7 7.88800730 0.65901737 M6 0.00000000 0.66565840 M5 72.70139641 0.76171724 M4 70.92331654 0.72452174 M3 71.44932909 0.73598206 M2 75.90402008 0.81888591 M1 15.52321404 0.63691659M7 7.88800730 0.65901737 M6 0.00000000 0.66565840 M5 72.70139641 0.76171724 M4 70.92331654 0.72452174 M3 71.44932909 0.73598206 M2 75.90402008 0.81888591 M1 15.52321404 0.63691659
Gesamttransmission 0.0929 Tabelle 5 zu Fig. 14 Total transmission 0.0929 Table 5 to Fig. 14
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
-0.00000000 60.12634248 0.00000000 -31.00173429 59.39348922 0.00000000 -61.23683000 57.21904481 0.00000000 -89.95971748 53.67233536 0.00000000 -1 16.46546521 48.86006031 0.00000000 -140.10740705 42.9161 1 197 0.00000000 -160.31308861 35.9912571 1 0.00000000 -176.59845642 28.24503313 0.00000000 -188.57919514 19.84317315 0.00000000 -195.97740908 10.96270342 0.00000000 -198.62281719 1.80162097 0.00000000 -196.45010574 -7.41479310 0.00000000 -189.49577612 -16.43782216 0.00000000 X[mm] Y[mm] Z[mm]-0.00000000 60.12634248 0.00000000 -31.00173429 59.39348922 0.00000000 -61.23683000 57.21904481 0.00000000 -89.95971748 53.67233536 0.00000000 -1 16.46546521 48.86006031 0.00000000 -140.10740705 42.9161 1 197 0.00000000 -160.31308861 35.9912571 1 0.00000000 -176.59845642 28.24503313 0.00000000 -188.57919514 19.84317315 0.00000000 -195.97740908 10.96270342 0.00000000 -198.62281719 1.80162097 0.00000000 -196.45010574 -7.41479310 0.00000000 -189.49577612 -16.43782216 0.00000000 X [mm] Y [mm] Z [mm]
-177.89719433 -25.0100461 1 0.00000000-177.89719433 -25.0100461 1 0.00000000
-161.89435001 -32.88564405 0.00000000-161.89435001 -32.88564405 0.00000000
-141.83277687 -39.84892316 0.00000000-141.83277687 -39.84892316 0.00000000
-1 18.16525762 -45.72666520 0.00000000-1 18.16525762 -45.72666520 0.00000000
-91.45022545 -50.39326310 0.00000000-0.40022545 -50.39326310 0.00000000
-62.34514559 -53.76818640 0.000000000.00000000. -62.34514559 -53.76818640
-31.59291444 -55.80674921 0.00000000-31.59291444 -55.80674921 0.00000000
-0.00000000 -56.48822373 0.00000000-0.00000000 -56.48822373 0.00000000
31.59291444 -55.80674921 0.0000000031.59291444 -55.80674921 0.00000000
62.34514559 -53.76818640 0.000000000.003000000
91.45022545 -50.39326310 0.0000000091.45022545 -50.39326310 0.00000000
1 18.16525762 -45.72666520 0.000000001 18.16525762 -45.72666520 0.00000000
141.83277687 -39.84892316 0.00000000141.83277687 -39.84892316 0.00000000
161.89435001 -32.88564405 0.00000000161.89435001 -32.88564405 0.00000000
177.89719433 -25.0100461 1 0.00000000177.89719433 -25.0100461 1 0.00000000
189.49577612 -16.43782216 0.000000000.00900 million
196.45010574 -7.41479310 0.00000000196.45010574 -7.41479310 0.00000000
198.62281719 1.80162097 0.00000000198.62281719 1.80162097 0.00000000
195.97740908 10.96270342 0.00000000195.97740908 10.96270342 0.00000000
188.57919514 19.84317315 0.000000000.008 million
176.59845642 28.24503313 0.00000000176.59845642 28.24503313 0.00000000
160.31308861 35.9912571 1 0.00000000160.31308861 35.9912571 1 0.00000000
140.10740705 42.9161 1 197 0.00000000140.10740705 42.9161 1 197 0.00000000
1 16.46546521 48.86006031 0.000000001 16.46546521 48.86006031 0.00000000
89.95971748 53.67233536 0.0000000089.95971748 53.67233536 0.00000000
61.23683000 57.21904481 0.0000000061.23683000 57.21904481 0.00000000
31.00173429 59.39348922 0.0000000031.00173429 59.39348922 0.00000000
Tabelle 6 zu Fig. 14 Table 6 to FIG. 14
Die Projektionsoptik 26 hat eine Bildfeldgröße in der x-Richtung von zweimal 13,0 mm und in der y-Richtung von 1,2 mm. Anders als bei den vorstehenden Ausführungen ist bei der Projekti- onsoptik 26 das Objektfeld 4 und das Bildfeld 8 jeweils rechteckig. Entsprechend ist die Feldkrümmung 0. The projection optics 26 has an image field size in the x-direction of twice 13.0 mm and in the y-direction of 1.2 mm. In contrast to the above explanations, in the case of the projection optics 26, the object field 4 and the image field 8 are each rectangular. Accordingly, the field curvature is 0.
Eine bildseitige numerische Apertur beträgt bei der Projektionsoptik 26 0,45. Ein Verkleinerungsfaktor beträgt in der ersten Abbildungslicht-Ebene xz 4,00 (ßx) und in der zweiten Abbil- dungslicht-Ebene yz 8,00 (ßy). Ein objektseitiger Hauptstrahlwinkel CRA beträgt 4,2°. Eine Pu- pillenobskuration beträgt maximal 13 %. An image-side numerical aperture in the projection optics 26 is 0.45. A reduction factor in the first imaging light plane is xz 4.00 (β x ) and in the second imaging light plane yz is 8.00 (β y ). An object-side main beam angle CRA is 4.2 °. A pill obesity is a maximum of 13%.
Die Projektionsoptik 26 hat eine Gesamttransmission von 9,29 %. Ein Objekt-Bildversatz dois beträgt bei der Projektionsoptik 26 etwa 2170 mm. Die Spiegel der Projektionsoptik 26 können in einem Quader mit den xyz-Kantenlängen 822 mm x 2551 mm x 1449 mm untergebracht werden. Bei der Projektionsoptik 26 ist die Objektebene 5 um die x- Achse relativ zur Bildebene 9 um 9,1° verkippt. The projection optics 26 has a total transmission of 9.29%. An object image offset dois is approximately 2170 mm in the projection optics 26. The mirrors of the projection optics 26 can be accommodated in a cuboid with the xyz edge lengths 822 mm x 2551 mm x 1449 mm. In the projection optics 26, the object plane 5 is tilted about the x-axis relative to the image plane 9 by 9.1 °.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegeln M6 und der Bildebene beträgt 80 mm, Ein mittlerer Wellenfrontfehler rms beträgt etwa 35 ητλ. A working distance between the wafer-near mirror M6 and the image plane is 80 mm. A mean wavefront error rms is about 35 ητλ.
Anhand der Fig. 17 bis 19 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 27 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 16 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optical system 27 will now be explained with reference to FIGS. 17 to 19, which may be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1. Components and functions which have already been explained above in connection with FIGS. 1 to 16 may carry the same reference numbers and will not be discussed again in detail.
Die Projektionsoptik 27 hat insgesamt 9 Spiegel Ml bis M9. Die Spiegel Ml, M2, M3, M5, M6, M7 sind als GI-Spiegel ausgeführt. Die verbleibenden Spiegel M4, M8 und M9 sind als NI- Spiegel ausgeführt. Auch bei der Projektionsoptik 27 ist, wie bei allen vorstehend beschriebenen Projektionsoptiken, der im Abbildungslichtstrahlengang letzte Spiegel M9 mit einer Durchtrittsöffnung 17 für das Abbildungslicht 3 ausgeführt. Der Abbildungslichtstrahlengang hat bei der Projektionsoptik 27 einen Kreuzungspunkt. Es kreuzen sich dabei die Abbildungslicht- Teilstrahlen einerseits zwischen den Spiegeln M2 und M3 und andererseits zwischen den Spiegeln M6 und M7 in einem Kreuzungsbereich 28. The projection optics 27 has a total of 9 mirrors Ml to M9. The mirrors M1, M2, M3, M5, M6, M7 are designed as GI mirrors. The remaining mirrors M4, M8 and M9 are designed as NI mirrors. In the case of the projection optics 27 as well, as in the case of all projection optics described above, the last mirror M9 in the imaging light beam path is designed with a passage opening 17 for the imaging light 3. The imaging light beam path has a crossing point in the projection optics 27. The imaging light partial beams intersect on the one hand between the mirrors M2 and M3 and on the other hand between the mirrors M6 and M7 in an intersection region 28.
Auch bei der Projektionsoptik 27 liegt ein Erstebenen-Zwischenbild 18 nahe der Durchtrittsöff- nung 17 im Spiegel M9 und zwei Zweitebenen-Zwischenbilder 19, 20 vor. Das erste der beiden Zweitebenen-Zwischenbilder 19 liegt bei der Projektionsoptik 27 im Abbildungslichtstrahlengang zwischen den Spiegeln M4 und M5 nahe der Reflexion am Spiegel M5. Das zweite der beiden Zweitebenen-Zwischenbilder liegt im Abbildungslicht- Strahlengang zwischen den Spiegeln M7 und M8 nahe der Reflexion am Spiegeln M7. Eine Aperturblende AS liegt im Abbildungslichtstrahlengang zwischen den Spiegeln M2 und M3 nach dem Kreuzungsbereich 28. Das Abbildungslichtbündel ist im Bereich der Aperturblende AS vollumfänglich zugänglich. In the case of the projection optics 27, there is also a first plane intermediate image 18 close to the passage opening 17 in the mirror M9 and two second plane intermediate images 19, 20. The first of the two second level intermediate images 19 is located in the projection optical system 27 in the imaging light beam path between the mirrors M4 and M5 near the reflection of the mirror M5. The second of the two second-level intermediate images lies in the imaging light beam path between the mirrors M7 and M8 near the reflection at the mirror M7. An aperture diaphragm AS lies in the imaging light beam path between the mirrors M2 and M3 after the crossing region 28. The imaging light beam is fully accessible in the region of the aperture diaphragm AS.
Die Spiegel Ml bis M9 sind wiederum als Freiformflächen-Spiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. The mirrors M1 to M9 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies.
Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M9 der Projektionsoptik 27. The following table once again shows the mirror parameters of the mirrors M1 to M9 of the projection optics 27.
Ml M2 M3 M4 M5 M6 M7 M8 M9 maximaler Ml M2 M3 M4 M5 M6 M7 M8 M9 maximum
Einfallswinkel 83.1 75.4 82.3 16.1 78.8 75.6 82.9 75.6 68.8  Incidence angle 83.1 75.4 82.3 16.1 78.8 75.6 82.9 75.6 68.8
chcricrstr c~ chcricrstr c ~
169.8 255.3 441.6 753.3 670.0 589.6 304.4 354.8 750.4 ckung in x- Richtung [mm]  169.8 255.3 441.6 753.3 670.0 589.6 304.4 354.8 750.4 in the x direction [mm]
Reflexions flächen erstre-Reflection surfaces
326.6 366.7 407.7 134.7 97.9 264.6 132.0 176.2 731.9 ckung in y- Richtung [mm] 326.6 366.7 407.7 134.7 97.9 264.6 132.0 176.2 731.9 in the y direction [mm]
maximaler maximum
Spiegeldurch- 330.5 369.8 442.2 753.3 670.0 589.6 305.5 354.8 751.8  Mirrors 330.5 369.8 442.2 753.3 670.0 589.6 305.5 354.8 751.8
messer [mm] knife [mm]
Bei der Projektionsoptik 27 haben die Spiegel Ml und M2 ein y/x- Aspektverhältnis, das größer ist als 1. Keiner der Spiegel Ml bis M9 hat ein y/x- Aspektverhältnis, das größer ist als 2. Der Spiegel Ml hat das größte y/x- Aspektverhältnis im Bereich von 1,9. In the projection optics 27, the mirrors M1 and M2 have a y / x aspect ratio that is greater than 1. None of the mirrors M1 to M9 has a y / x aspect ratio that is greater than 2. The mirror M1 has the largest y / x aspect ratio in the range of 1.9.
Bei der Projektionsoptik 27 hat der Spiegel M4 den größten maximalen Durchmesser von 753,3 mm. Dieser Durchmesser ist geringfügig größer als derjenige des letzten Spiegels M9, der 751,8 mm beträgt. Fünf der neun Spiegel Ml bis M9 haben einen Durchmesser, der kleiner ist als 450 mm. Vier der neun Spiegel Ml bis M9 haben einen Durchmesser, der kleiner ist als 400 mm. Fig. 19 zeigt die Randkonturen der Reflexionsflächen der Spiegel Ml bis M9. In the projection optics 27, the mirror M4 has the largest maximum diameter of 753.3 mm. This diameter is slightly larger than that of the last mirror M9, which is 751.8 mm. Five of the nine mirrors M1 to M9 have a diameter that is less than 450 mm. Four of the nine mirrors M1 to M9 have a diameter that is less than 400 mm. 19 shows the edge contours of the reflection surfaces of the mirrors M1 to M9.
Die optischen Designdaten der Projektionsoptik 27 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach den Fig. 2 bis 4 entsprechen. The optical design data of the projection optics 27 can be found in the following tables, which correspond in their structure to the tables for projection optics 7 according to FIGS. 2 to 4.
Ausführungsbeispiel Fig. 17 Embodiment FIG. 17
NA 0.5 NA 0.5
Wellenlänge 13.5 nm beta_x -4.0 beta_y -8.0Wavelength 13.5 nm beta_x -4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.0 mmField size_y 1.0 mm
Feldkrümmung 0.012345 1/mm rms 10.4 mlField curvature 0.012345 1 / mm rms 10.4 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 17 Table 1 to Fig. 17
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M9 -866.8072275 0.0022782 -774.1551842 0.0026165 REFLM9 -866.8072275 0.0022782 -774.1551842 0.0026165 REFL
M8 16799.31 13404 -0.0001 190 468.0718547 -0.0042729 REFLM8 16799.31 13404 -0.0001 190 468.0718547 -0.0042729 REFL
M7 -2294.4146894 0.0002863 -1705.1686250 0.0035712 REFLM7 -2294.4146894 0.0002863 -1705.1686250 0.0035712 REFL
M6 -1428.0401884 0.0003739 -1527.9490527 0.0049036 REFLM6 -1428.0401884 0.0003739 -1527.9490527 0.0049036 REFL
M5 -1803.1480743 0.0003449 1798.9550061 -0.0035758 REFLM5 -1803.1480743 0.0003449 1798.9550061 -0.0035758 REFL
M4 -3252.9549354 0.0005968 -979.9292401 0.0021027 REFLM4 -3252.9549354 0.0005968 -979.9292401 0.0021027 REFL
M3 4728.4030238 -0.0000695 9129.5671479 -0.0013325 REFLM3 4728.4030238 -0.0000695 9129.5671479 -0.0013325 REFL
M2 5562.6987709 -0.0000997 -5283.6560864 0.0013653 REFLM2 5562.6987709 -0.0000997 -5283.6560864 0.0013653 REFL
M1 -60685.4143772 0.0000065 -9650.8869136 0.0010566 REFLM1 -60685.4143772 0.0000065 -9650.8869136 0.0010566 REFL
Tabelle 2 zu Fig. 17 Table 2 to Fig. 17
Koeffizient M9 M8 M7Coefficient M9 M8 M7
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -866.80722750 16799.31 134000 -2294.41468900KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -866.80722750 16799.31 134000 -2294.41468900
C7 -1.16750793e-08 8.78095547e-07 -6.17468179e-08C7 -1.16750793e-08 8.78095547e-07 -6.17468179e-08
C9 -3.227879e-08 -1.81981 1 1 e-06 -1.04202991 e-07C9 -3.227879e-08 -1.81981 1 1 e-06 -1.04202991 e-07
C10 1.9034586e-1 1 6.23675302e-10 7.3871998e-1 1C10 1.9034586e-1 1 6.23675302e-10 7.3871998e-1 1
C12 -6.936691 16e-1 1 9.021444e-10 -5.40603404e-1 1C12 -6.936691 16e-1 1 9.021444e-10 -5.40603404e-1 1
C14 -9.10699557e-12 6.12688457e-09 -6.46020015e-1 1C14 -9.10699557e-12 6.12688457e-09 -6.46020015e-1 1
C16 3.15819834e-14 1.17072896e-12 -3.52872023e-14C16 3.15819834e-14 1.17072896e-12 -3.52872023e-14
C18 -5.07731957e-14 6.23133942e-12 9.05095754e-13C18 -5.07731957e-14 6.23133942e-12 9.05095754e-13
C20 -3.43495607e-14 -9.16741216e-12 2.0007813e-12C20 -3.43495607e-14 -9.16741216e-12 2.0007813e-12
C21 -3.27663144e-17 9.71634515e-16 1.092241 12e-16C21 -3.27663144e-17 9.71634515e-16 1.092241 12e-16
C23 -1.23584293e-16 9.4783838e-15 4.07690678e-15C23 -1.23584293e-16 9.4783838e-15 4.07690678e-15
C25 -1.48878993e-16 7.54253173e-15 1.5218218e-14C25 -1.48878993e-16 7.54253173e-15 1.5218218e-14
C27 -2.01063297e-17 -1.52044449e-13 6.05641827e-15C27 -2.01063297e-17 -1.52044449e-13 6.05641827e-15
C29 1.5610135e-20 8.3013727e-18 5.29921031 e-18 izient M9 M8 M7C29 1.5610135e-20 8.3013727e-18 5.29921031 e-18 efficient M9 M8 M7
C31 -1.99814617e-20 5.36304932e-18 8.07953201 e-18C31-1.99814617e-20 5.36304932e-18 8.07953201 e-18
C33 -1.1 1450808e-19 -2.50804621 e-16 -3.2570662e-16C33 -1.1 1450808e-19 -2.50804621 e-16 -3.2570662e-16
C35 -6.07436807e-20 1.39798089e-15 -8.0581 1987e-16C35 -6.07436807e-20 1.39798089e-15 -8.0581 1987e-16
C36 -3.55570338e-23 3.89794855e-21 -4.657121 12e-22C36 -3.55570338e-23 3.89794855e-21 -4.657121 12e-22
C38 -2.50288622e-22 2.41971723e-20 -7.26833672e-20C38 -2.50288622e-22 2.41971723e-20 -7.26833672e-20
C40 -4.27782804e-22 -6.12588427e-20 -3.22790412e-18C40 -4.27782804e-22 -6.12588427e-20 -3.22790412e-18
C42 -2.71769746e-22 2.15559322e-18 -1.50014564e-17C42 -2.71769746e-22 2.15559322e-18 -1.50014564e-17
C44 -4.35242415e-23 -3.53718368e-18 -2.10967102e-17C44 -4.35242415e-23 -3.53718368e-18 -2.10967102e-17
C46 3.98426924e-26 -1.32724993e-23 -1.02393958e-22C46 3.98426924e-26 -1.32724993e-23 -1.02393958e-22
C48 5.7285325e-27 5.76804727e-24 -1.07933989e-20C48 5.7285325e-27 5.76804727e-24 -1.07933989e-20
C50 -1.74816328e-25 8.93039513e-22 -8.20017408e-20C50 -1.74816328e-25 8.93039513e-22 -8.20017408e-20
C52 -2.51560547e-25 -6.17750026e-21 -2.58788551 e-19C52-2.51560547e-25 -6.17750026e-21 -2.58788551 e-19
C54 -5.59816005e-26 -2.62650678e-20 -2.59842357e-19C54 -5.59816005e-26 -2.62650678e-20 -2.59842357e-19
C55 -2.27621057e-29 -4.92904916e-27 5.63858543e-26C55 -2.27621057e-29 -4.92904916e-27 5.63858543e-26
C57 -4.68887693e-28 2.28490721 e-25 -1.91342595e-23C57 -4.68887693e-28 2.28490721 e-25 -1.91342595e-23
C59 -1.21077926e-27 1.24045883e-24 -1.95979904e-22C59 -1.21077926e-27 1.24045883e-24 -1.95979904e-22
C61 -1.34960352e-27 6.99435043e-24 -1.01941857e-21C61 -1.34960352e-27 6.99435043e-24 -1.01941857e-21
C63 -6.45173081 e-28 -3.32275577e-23 -2.41468045e-21C63-6.45173081 e-28 -3.32275577e-23 -2.41468045e-21
C65 -5.87726468e-29 1.50175538e-22 -1.7630178e-21C65 -5.87726468e-29 1.50175538e-22 -1.7630178e-21
C67 4.45396788e-32 5.1 1 19351 e-28 -2.04915236e-26C67 4.45396788e-32 5.1 1 19351 e-28 -2.04915236e-26
C69 5.51 131 174e-32 2.63032348e-27 -2.53651339e-25C69 5.51 131 174e-32 2.63032348e-27 -2.53651339e-25
C71 -2.08374464e-31 7.53232015e-27 -1.75316445e-24C71 -2.08374464e-31 7.53232015e-27 -1.75316445e-24
C73 -6.43925301 e-31 -1.0184489e-25 -6.62874977e-24C73 -6.43925301 e-31 -1.0184489e-25 -6.62874977e-24
C75 -3.80140733e-31 5.90051712e-25 -1.2861965e-23C75 -3.80140733e-31 5.90051712e-25 -1.2861965e-23
C77 -2.62734124e-31 1.34460748e-24 -6.1504095e-24C77 -2.62734124e-31 1.34460748e-24 -6.1504095e-24
C78 -1.81539619e-34 1.41 12104e-31 -1.28307565e-29C78-1.81539619e-34 1.41 12104e-31 -1.28307565e-29
C80 -3.87877832e-34 -3.22975415e-31 -1.77832019e-28C80 -3.87877832e-34 -3.22975415e-31 -1.77832019e-28
C82 -9.50620474e-34 -2.74623061 e-30 -1.52243334e-27C82 -9.50620474e-34 -2.74623061 e-30 -1.52243334e-27
C84 -1.22684771 e-33 -1.52852009e-28 -7.00528843e-27C84 -1.22684771 e-33 -1.52852009e-28 -7.00528843e-27
C86 -4.68273715e-34 4.63890933e-28 -2.14475826e-26C86 -4.68273715e-34 4.63890933e-28 -2.14475826e-26
C88 -3.31350093e-34 -3.31483992e-27 -3.7840444e-26C88 -3.31350093e-34 -3.31483992e-27 -3.7840444e-26
C90 -2.36738088e-34 -1.42151698e-26 -6.47532148e-27C90 -2.36738088e-34 -1.42151698e-26 -6.47532148e-27
C92 -9.00803971 e-38 -1.98638804e-33 -4.9137387e-32C92 -9.00803971 e-38 -1.98638804e-33 -4.9137387e-32
C94 4.1621932e-37 -1.61097703e-32 -5.58389838e-31C94 4.1621932e-37 -1.61097703e-32 -5.58389838e-31
C96 -3.03008076e-37 -6.312729e-32 -2.80619132e-30C96 -3.03008076e-37 -6.312729e-32 -2.80619132e-30
C98 -1.85579089e-36 1.07008134e-30 -9.56158675e-30C98-1.85579089e-36 1.07008134e-30 -9.56158675e-30
C100 -1.23900393e-36 -2.08486148e-31 -2.7250613e-29C100 -1.23900393e-36 -2.08486148e-31 -2.7250613e-29
C102 -1.34403292e-36 6.69649223e-30 -5.09959978e-29C102 -1.34403292e-36 6.69649223e-30 -5.09959978e-29
C104 6.21670071 e-37 3.5356384e-29 1.28713474e-29C104 6.21670071 e-37 3.5356384e-29 1.28713474e-29
C105 -1.98093774e-40 0 0C105 -1.98093774e-40 0 0
C107 -2.5557529e-39 0 0C107 -2.5557529e-39 0 0
C109 -1.05792795e-38 0 0 cm -2.05131 19e-38 0 0C109 -1.05792795e-38 0 0 -2.05131 19e-38 0 0
C1 13 -2.38857043e-38 0 0C1 13 -2.38857043e-38 0 0
C1 15 -1.66561627e-38 0 0C1 15 -1.66561627e-38 0 0
C1 17 -5.21569492e-39 0 0C1 17 -5.21569492e-39 0 0
C1 19 -4.32149861 e-40 0 0C1 19 -4.32149861 e-40 0 0
C121 5.86326897e-43 0 0C121 5.86326897e-43 0 0
C123 1.71432174e-43 0 0C123 1.71432174e-43 0 0
C125 9.72731414e-43 0 0C125 9.72731414e-43 0 0
C127 8.87965167e-43 0 0C127 8.87965167e-43 0 0
C129 -1.24386669e-42 0 0C129 -1.24386669e-42 0 0
C131 -6.0507722e-42 0 0C131 -6.0507722e-42 0 0
C133 -1.87199557e-42 0 0 Koeffizient M9 C133 -1.87199557e-42 0 0 Coefficient M9
C135 -2.70433567e-42  C135 -2.70433567e-42
Tabelle 3a zu Fig. 17 Table 3a to Fig. 17
Koeffizient M6 M5 M4Coefficient M6 M5 M4
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1428.04018800 -1803.14807400 -3252.95493500KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1428.04018800 -1803.14807400 -3252.95493500
C7 4.27764592e-07 1.267072e-07 1.00985236e-07 C9 -6.14217231e-08 -7.14563402e-09 -6.1822491e-08 C10 2.85032609e-10 -1.59934504e-12 -7.25353647e-11 C12 -2.10890593e-10 4.51122111e-10 -5.08897932e-11 C14 -1.04116732e-09 1.3708745e-09 -3.6473465e-10 C16 -5.47215882e-13 -1.15113425e-13 1.49177251e-14 C18 -1.21252244e-12 -6.08056768e-13 2.58895804e-13 C20 -8.04452139e-13 -7.24133342e-12 -1.04297967e-12 C21 6.24395637e-17 1.12122965e-16 3.46316226e-17 C23 -1.22488487e-15 5.31682676e-16 -4.3573283e-17 C25 1.93894654e-15 3.79094438e-15 4.88555627e-16 C27 6.1 182821e-15 -8.66426346e-14 7.49855686e-16 C29 -6.02877018e-19 9.12169339e-19 4.78255626e-20 C31 3.15486125e-18 -1.00992269e-18 -6.70828206e-20 C33 1.71876661 e-17 9.37575205e-17 6.34973765e-19 C35 8.81823493e-18 3.41647588e-15 1.22964652e-17 C36 1.8107487e-22 -2.89061035e-22 -5.13743928e-23 C38 2.81007224e-21 1.01682473e-21 -5.57192066e-23 C40 2.10783719e-21 -5.76887097e-20 -2.77676738e-21 C42 -2.02106332e-20 -1.68705709e-18 -2.72529513e-20 C44 -2.47262722e-19 1.4815978e-16 8.55807158e-20 C46 -2.18867888e-24 -1.98347379e-24 -9.52054888e-26 C48 -5.58835437e-24 2.67202796e-23 6.51265722e-25 C50 -1.32824471 e-22 -6.16516709e-22 3.20028199e-23 C52 -7.55905184e-22 -5.2956271 e-20 1.76590223e-22 C54 -1.38795101e-21 1.22196395e-18 -5.1899596e-21 C55 -1.95572414e-27 9.54335495e-28 7.1 1250833e-29 C57 -1.54116067e-27 5.51567556e-27 8.95991852e-28 C59 -1.10763545e-25 4.96695555e-25 1.69284305e-27 C61 -5.90773942e-25 -2.72829594e-23 -1.5115867e-25 C63 -1.98933904e-24 -4.01265763e-23 2.1243805e-24 C65 1.26252468e-24 -4.02328436e-20 2.08401169e-23 C67 1.81326459e-29 5.67543261 e-30 2.714e-32 C69 -5.52644338e-29 -3.72306985e-28 -1.38037069e-30 C71 -6.23281305e-29 2.22465939e-26 -5.8554786e-29 C73 1.81738193e-27 -3.90182078e-25 -6.6606928e-27 C75 2.14916057e-26 3.31383345e-23 -1.15631076e-26 C77 2.45531374e-26 -1.08852997e-21 1.19941073e-25 C78 5.61446965e-33 -1.62996535e-33 -6.54978682e-35 C80 -3.14271637e-33 -2.13205986e-32 -3.84844227e-33 C82 3.91267533e-32 -4.18395599e-30 -1.88731708e-32 C84 5.72404322e-31 2.50482179e-28 4.0887544e-30 C86 2.04498774e-29 -6.91099846e-27 3.03868316e-29 C88 1.54960845e-28 6.02044471 e-25 -1.88015638e-28 C90 5.17527548e-30 -1.0374045e-23 -3.16125863e-27 Koeffizient M6 M5 M4C7 4.27764592e-07 1.267072e-07 1.00985236e-07 C9 -6.14217231e-08 -7.14563402e-09 -6.1822491e-08 C10 2.85032609e-10 -1.59934504e-12 -7.25353647e-11 C12 -2.10890593e-10 C16 -5.47215882e-13 -1.15113425e-13 1.49177251e-14 C18 -1.21252244e-12 -6.08056768e-13 C88 -8.04452139e-13 -7.24133342e-12 -1.04297967e-12 C21 6.24395637e-17 1.12122965e-16 3.46316226e-17 C23 -1.22488487e-15 5.31682676e-16 -4.3573283e-17 C25 1.93894654 e-15 C37 6.1 182821e-15 -8.66426346e-14 7.49855686e-16 C29 -6.02877018e-19 9.12169339e-19 4.78255626e-20 C31 3.15486125e-18 -1.00992269e-18 - C38 2.81007224e-21 C38 8.81823493e-18 3.41677588e-15 1.22964652e-17 C36 1.8107487e-22 -2.89061035e-22 -5.13743928e-23 C38 2.81007224e-21 C42 -2.02106332e-20 -1.68705709e-18 -2.72529513e-2 0 C44 -2.47262722e-19 1.4815978e-16 8.55807158e-20 C46 -2.18867888e-24 -1.98347379e-24 -9.52054888e-26 C48 -5.58835437e-24 2.67202796e-23 6.51265722e-25 C50 -1.32824471 e- 22-6.16516709e-22 C52-7.55905184e-22 -5.2956271 e-20 1.76590223e-22 C54 -1.38795101e-21 1.22196395e-18 -5.1899596e-21 C55 -1.95572414e-27 9.54335495e-28 7.1 1250833e-29 C57 -1.54116067e-27 5.51567556e-27 8.95991852e-28 C59 -1.10763545e-25 4.96695555e-25 1.69284305e-27 C61 -5.90773942e-25 -2.72829594e-23 -1.5115867e-25 C63 - 1.98933904e-24 -4.01265763e-23 2.1243805e-24 C65 1.26252468e-24 -4.02328436e-20 2.08401169e-23 C67 1.81326459e-29 5.67543261 e-30 2.714e-32 C69 -5.52644338e-29 -3.72306985e 281.38037069e-30 C71 2.14916057e-26 3.31383345e-23 -1.15631076e-29 C73 1.81738193e-27 -3.90182078e-25 -6.6606928e-27 C75 2.14916057e-26 3.31383345e-23 -1.15631076e-29 C77-245531374e-26-1.08852997e-21 1.19941073e-25 C78 5.61446965e-33 -1.62996535e-33 -6.54978682e-35 C80 -3.14271637e-33 -2.13205986e-32 -3.84844 227e-33 C82 3.91267533e-32 -4.18395599e-30 -1.88731708e-32 C84 5.72404322e-31 2.50482179e-28 4.0887544e-30 C86 2.04498774e-29 -6.91099846e-27 3.03868316e-29 C88 1.54960845e-28 6.02044471 e-25 -1.88015638e-28 C90 5.17527548e-30 -1.0374045e-23 -3.16125863e-27 Coefficient M6 M5 M4
C92 6.42753428e-35 -9.97525491 e-36 1.2646031e-37 C94 1.52301705e-35 1.82950393e-33 2.23965486e-35 C96 ■1.47788252e-34 -8.72657446e-32 -6.71336498e-34 C98 1.50892249e-34 1.35409691 e-31 -1.04126049e-32 C100 3.98962853e-32 -4.13438548e-29 2.263743e-31 C102 3.01155182e-31 3.44434789e-27 1.40136966e-30 C104 1.89515076e-31 -3.63109737e-26 2.19047602e-29C92 6.42753428e-35 -9.97525491 e-36 1.2646031e-37 C94 1.52301705e-35 1.82950393e-33 2.23965486e-35 C96 ■ 1.47788252e-34 -8.72657446e-32 -6.71336498e-34 C98 1.50892249e-34 1.35409691 e-31 -1.04126049e-32 C100 3.98962853e-32 -4.13438548e-29 2.263743e-31 C102 3.01155182e-31 3.44434789e-27 1.40136966e-30 C104 1.89515076e-31 -3.63109737e-26 2.19047602e-29
Tabelle 3b zu Fig. 17 Table 3b to Fig. 17
Koeffizient M3 M2 M1Coefficient M3 M2 M1
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 4728.40302400 5562.69877100 -60685.41438000KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 4728.40302400 5562.69877100 -60685.41438000
C7 3.61924163e-08 -2.6704986e-08 3.18396583e-08 C9 -9.09400287e-09 4.92069061 e-08 -5.61785678e-08 C10 1.66121272e-10 2.85945157e-10 2.00099393e-11 C12 3.14017712e-11 1.7543017e-10 -1.96165665e-11 C14 2.4941173e-11 1.9667076e-11 -1.06060991 e-10 C16 2.31506575e-14 -5.96445065e-14 -7.74363249e-14 C18 1.76964023e-13 -8.28471598e-14 -3.1260441e-14 C20 1.63396775e-14 5.89862775e-14 -2.21560889e-13 C21 -7.28717776e-17 -4.02951969e-16 -3.69444556e-17 C23 -3.75579206e-17 3.45033757e-16 -9.78225945e-16 C25 4.59399079e-16 1.24492889e-17 -1.70892112e-16 C27 -1.18304491e-16 -2.78756077e-16 -4.32330918e-16 C29 -7.50643063e-19 -3.0805972e-18 -6.64795481 e-20 C31 -9.33852618e-20 1.94354444e-18 9.2062443e-19 C33 1.86784143e-18 1.72349432e-18 -4.0341719e-19 C35 2.66729478e-19 9.34868812e-19 7.75268883e-19 C36 4.01258937e-22 -2.33334008e-21 1.28461574e-19 C38 -8.23187379e-22 -1.92684343e-20 1.99616288e-19 C40 1.49421902e-21 2.31550048e-21 5.47670117e-20 C42 4.72750154e-21 -1.86112917e-21 1.95018351 e-20 C44 -2.61134724e-21 9.05455405e-21 3.19738342e-21 C46 -8.1476518e-24 1.04531901e-22 -3.14500232e-22 C48 -4.67926054e-24 -3.07010776e-23 3.55621884e-22 C50 9.96367582e-24 4.05168914e-23 1.15857141e-21 C52 -5.63570004e-24 -4.25589231 e-23 1.50292097e-22 C54 -1.96315571 e-23 2.69155178e-24 -4.22027773e-23 C55 -6.32105216e-26 2.36074182e-25 -2.0609926e-23 C57 -5.5869514e-26 7.49827714e-25 -2.67127439e-23 C59 -6.03481823e-27 1.27721888e-25 -4.72519756e-24 C61 5.72251835e-26 3.75574802e-25 2.43544621 e-24 C63 -4.81078871 e-26 1.38096394e-25 -3.61474814e-25 C65 -5.293619e-28 -1.47197601 e-25 -2.58312448e-25 C67 -1.05665619e-28 5.70444448e-29 1.04981547e-26 C69 -9.35967107e-29 1.54864005e-27 -5.00353406e-26 C71 -7.45163445e-29 8.49518579e-28 -9.69578012e-26 C73 3.23937637e-29 1.17862243e-27 -5.21036133e-26 C75 1.23502373e-28 1.42504572e-27 -5.29641094e-27 C77 1.99884473e-28 -9.05697691 e-29 -4.96757793e-29 C78 4.62768807e-31 -3.66791362e-30 1.17108755e-27 Koeffizient M3 M2 M1C7 3.61924163e-08 -2.6704986e-08 3.18396583e-08 C9 -9.09400287e-09 4.92069061 e-08 -5.61785678e-08 C10 1.66121272e-10 2.85945157e-10 2.00099393e-11 C12 3.14017712e-11 1.7543017e 10 -1.96165665e-11 C14 2.4941173e-11 1.9667076e-11 -1.06060991 e-10 C16 2.31506575e-14 -5.96445065e-14 -7.74363249e-14 C18 1.76964023e-13 -8.28471598e-14 -3.1260441e-14 C20-163336775e-14 5.89862775e-14 -2.21560889e-13 C21 -7.28717776e-17 -4.02951969e-16 -3.69444556e-17 C23 -3.75579206e-17 3.45033757e-16 -9.78225945e-16 C25 4.59399079e-16 C29 -7.50643063e-19 -3.0805972e-18 -6.64795481 e-20 C31 -9.33852618e-20 1.94354444e 1.24492889e-17 -1.70892112e-16 C27-1.18304491e-16 -2.78756077e-16 -4.32330918e-16 C36 2.66729478e-19 9.34868812e-19 7.75268883e-19 C36 4.01258937e-22 -2.33334008e-21 1.28461574e-19 C38 -8.23187379e -22 -1.92684343e-20 1.99616288e-19 C40 1.49421902e-21 2.31550048e-21 5.47670117e-20 C42 4.72750154e-21 -1.86112917e-21 1.95018351 e-2 0 C44 -2.61134724e-21 9.05455405e-21 3.19738342e-21 C46-8.1476518e-24 1.04531901e-22 -3.14500232e-22 C48 -4.67926054e-24 -3.07010776e-23 3.55621884e-22 C50 9.96367582e-24 2.155.97.10e-23 1.15857141e-21 C52 -5.63570004e-24 -4.25589231 e-23 2.69155178e-24 -4.22027773e-23 C55 -6.32105216e-26 2.36074182e-25 -2.0609926 e-23 C57 -5.5869514e-26 7.49827714e-25 -2.67127439e-23 C59-6.03481823e-27 1.27721888e-25 -4.72519756e-24 C61 5.72251835e-26 3.75574802e-25 2.43544621 e-24 C63 -4.81078871 e -26 1.38096394e-25 -3.61474814e-25 C65 -5.293619e-28 -1.47197601 e-25 -2.58312448e-25 C67 -1.05665619e-28 5.70444448e-29 1.04981547e-26 C69 -9.35967107e-29 1.54864005e C73 -7.45163445e-29 8.49518579e-28 -9.69578012e-26 C73 3.23937637e-29 1.17862243e-27 -5.21036133e-26 C75 1.23502373e-28 1.42504572e-27 -5.29641094e-27 C77 1.7884473e-28 -9.05697691 e-29 -4.96757793e-29 C78 4.62768807e-31 -3.66791362e-30 1.17108755e-27 Coefficient M3 M2 M1
C80 2.01004484e-31 -1.33376517e-29 1.96800952e-27 C82 -2.04780369e-31 -9.59453599e-30 4.90123394e-28 C84 -1.83439038e-31 -6.383457e-30 -7.65331985e-28 C86 2.22521716e-31 -1.45702307e-30 -3.04755827e-28 C88 1.4576265e-30 -1.04939729e-30 -1.27821433e-29 C90 4.89653954e-31 1.6223442e-30 2.60372926e-30 C92 1.291584e-33 -4.48909307e-32 4.05041524e-30 C94 1.68046406e-34 -6.48100172e-32 8.44993426e-30 C96 8.98812615e-34 -8.87297065e-32 1.19335237e-31 C98 1.44926189e-33 -3.33931372e-32 -1.58514417e-30 C100 1.61667889e-33 -1.1 191494e-32 -4.87213504e-31 C102 2.9240278e-33 -1.3401 1075e-32 -6.07148296e-33 C104 4.46022792e-34 2.24305766e-33 5.01077783e-33C80 2.01004484e-31 -1.33376517e-29 1.96800952e-27 C82 -2.04780369e-31 -9.59453599e-30 4.90123394e-28 C84 -1.83439038e-31 -6.383457e-30 -7.65331985e-28 C86 2.22521716e-31 -1.45702307e-30 -3.04755827e-28 C88 1.4576265e-30 -1.04939729e-30 -1.27821433e-29 C90 4.89653954e-31 1.6223442e-30 2.60372926e-30 C92 1.291584e-33 -4.48909307e-32 4.05041524e -30 C94 1.68046406e-34 -6.48100172e-32 8.44993426e-30 C96 8.98812615e-34 -8.87297065e-32 1.19335237e-31 C98 1.44926189e-33 -3.33931372e-32 -1.58514417e-30 C100 1.61667889e-33 -1.1 191494e-32 -4.87213504e-31 C102 2.9240278e-33 -1.3401 1075e-32 -6.07148296e-33 C104 4.46022792e-34 2.24305766e-33 5.01077783e-33
Tabelle 3c zu Fig. 17 Table 3c to Fig. 17
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M9 0.00000000 0.00000000 713 83346098 M8 0.00000000 -199.50194718 1 10 47777299 M7 0.00000000 128.62607427 1098 64247245 M6 0.00000000 515.91461 1 14 1356 40753743 M5 0.00000000 742.3741 1066 1363 84229101 M4 0.00000000 1340.69974378 969 49103752 M3 0.00000000 507.31215558 1051 71634870 Blende 0.00000000 308.06159909 1 147 17260780 M2 0.00000000 -176.78443109 1379 45094669 M1 0.00000000 -469.61783006 1834 00281766Image plane 0.00000000 0.00000000 0 00000000 M9 0.00000000 0.00000000 713 83346098 M8 0.00000000 -199.50194718 1 10 47777299 M7 0.00000000 128.62607427 1098 64247245 M6 0.00000000 515.91461 1 14 1356 40753743 M5 0.00000000 742.3741 1066 1363 84229101 M4 0.00000000 1340.69974378 969 49103752 M3 0.00000000 507.31215558 1051 71634870 aperture 0.00000000 308.06159909 1 147 17260780 M2 0.00000000 -176.78443109 1379 45094669 M1 0.00000000 -469.61783006 1834 00281766
Objektebene 0.00000000 -525.34409896 2142 751 19785 Tabelle 4a zu Fig. 17 Object level 0.00000000 -525.34409896 2142 751 19785 Table 4a to FIG. 17
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M9 -9.14833640 0.00000000 -0.00000000M9 -9.14833640 0.00000000 -0.00000000
M8 161.66708308 -0.00000000 -0.00000000M8 161.66708308 -0.00000000 -0.00000000
M7 52.63856031 -0.00000000 -0.00000000M7 52.63856031 -0.00000000 -0.00000000
M6 17.76332452 0.00000000 -0.00000000M6 17.76332452 0.00000000 -0.00000000
M5 -15.75408205 0.00000000 -0.00000000M5 -15.75408205 0.00000000 -0.00000000
M4 250.48833875 0.00000000 -0.00000000M4 250.48833875 0.00000000 -0.00000000
M3 164.38361 154 -0.00000000 0.00000000M3 164.38361 154 -0.00000000 0.00000000
Blende 64.83614755 -0.00000000 180.00000000Aperture 64.83614755 -0.00000000 180.00000000
M2 138.59631791 -0.00000000 -0.00000000M2 138.59631791 -0.00000000 -0.00000000
M1 1 1 1.51091807 -0.00000000 0.00000000M1 1 1 1.51091807 -0.00000000 0.00000000
Objektebene 15.48957967 -0.00000000 180.00000000 Tabelle 4b zu Fig. 17 Object level 15.48957967 -0.00000000 180.00000000 Table 4b to FIG. 17
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M9 9.10898391 0.65665659M9 9.10898391 0.65665659
M8 0.15757055 0.66566547M8 0.15757055 0.66566547
M7 70.82640064 0.72236638M7 70.82640064 0.72236638
M6 74.5179581 1 0.79553776M6 74.5179581 1 0.79553776
M5 71.88564195 0.74519096 Oberfläche Einfallswinkel[deg] Reflektivität M5 71.88564195 0.74519096 Surface angle of incidence [deg] reflectivity
M4 13.92249363 0.64314446 M3 80.53767244 0.88529643 M2 73.90465970 0.78455360 M1 78.689071 14 0.86057777 M4 13.92249363 0.64314446 M3 80.53767244 0.88529643 M2 73.90465970 0.78455360 M1 78.689071 14 0.86057777
Gesamttransmission 0.0720 Tabelle 5 zu Fig. 17 Total transmission 0.0720 Table 5 to Fig. 17
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
0.00000000 33.09539039 0.000000000.00000000 33.09539039 0.00000000
27.98016280 32.83576102 0.0000000027.98016280 32.83576102 0.00000000
55.32425435 32.05074898 0.0000000055.32425435 32.05074898 0.00000000
81.40074512 30.72264495 0.0000000081.40074512 30.72264495 0.00000000
105.58948827 28.82419673 0.00000000105.58948827 28.82419673 0.00000000
127.29244915 26.32536013 0.00000000127.29244915 26.32536013 0.00000000
145.94921302 23.20382833 0.00000000145.94921302 23.20382833 0.00000000
161.05688683 19.45738748 0.00000000161.05688683 19.45738748 0.00000000
172.19243862 15.1 1500672 0.00000000172.19243862 15.1 1500672 0.00000000
179.03446120 10.24419289 0.00000000179.03446120 10.24419289 0.00000000
181.381 15751 4.95267331 0.00000000181,381 15751 4.95267331 0.00000000
179.16172567 -0.61635830 0.000000001700000000. -0.61635830 0.00000000
172.43973897 -6.29280692 0.00000000172.43973897 -6.29280692 0.00000000
161.40839010 -1 1.88969195 0.00000000161.40839010 -1 1.88969195 0.00000000
146.37862928 -17.21448827 0.00000000146.37862928 -17.21448827 0.00000000
127.76237102 -22.08081609 0.00000000127.76237102 -22.08081609 0.00000000
106.05334108 -26.31822001 0.00000000106.05334108 -26.31822001 0.00000000
81.80784000 -29.77880701 0.0000000081.80784000 -29.77880701 0.00000000
55.62700619 -32.34167284 0.0000000055.62700619 -32.34167284 0.00000000
28.14162808 -33.91669706 0.0000000028.14162808 -33.91669706 0.00000000
0.00000000 -34.44802533 0.000000000.00000000 -34.44802533 0.00000000
-28.14162808 -33.91669706 0.00000000-28.14162808 -33.91669706 0.00000000
-55.62700619 -32.34167284 0.00000000-.0062700619 -32.34167284 0.00000000
-81.80784000 -29.77880701 0.00000000-008.80784000 -29.77880701 0.00000000
-106.05334108 -26.31822001 0.00000000-106.05334108 -26.31822001 0.00000000
-127.76237102 -22.08081609 0.00000000-127.76237102 -22.08081609 0.00000000
-146.37862928 -17.21448827 0.00000000-146.37862928 -17.21448827 0.00000000
-161.40839010 -1 1.88969195 0.00000000-161.40839010 -1 1.88969195 0.00000000
-172.43973897 -6.29280692 0.00000000-172.43973897 -6.29280692 0.00000000
-179.16172567 -0.61635830 0.00000000-179.16172567 -0.61635830 0.00000000
-181.381 15751 4.95267331 0.00000000-181.381 15751 4.95267331 0.00000000
-179.03446120 10.24419289 0.00000000-179.03446120 10.24419289 0.00000000
-172.19243862 15.1 1500672 0.00000000-172.19243862 15.1 1500672 0.00000000
-161.05688683 19.45738748 0.00000000-161.05688683 19.45738748 0.00000000
-145.94921302 23.20382833 0.00000000-145.94921302 23.20382833 0.00000000
-127.29244915 26.32536013 0.00000000-127.29244915 26.32536013 0.00000000
-105.58948827 28.82419673 0.00000000-105.58948827 28.82419673 0.00000000
-81.40074512 30.72264495 0.00000000-81.40074512 30.72264495 0.00000000
-55.32425435 32.05074898 0.00000000-55.32425435 32.05074898 0.00000000
-27.98016280 32.83576102 0.00000000-27.98016280 32.83576102 0.00000000
Tabelle 6 zu Fig. 17 Die Projektionsoptik 27 hat eine Gesamttransmission von 7,2 %. Die Projektionsoptik 27 hat eine bildseitige numerische Apertur von 0,50. Table 6 to Fig. 17 The projection optics 27 has a total transmission of 7.2%. The projection optics 27 has a picture-side numerical aperture of 0.50.
Ein Verkleinerungsfaktor in der ersten Abbildungslicht-Ebene xz beträgt 4 (ßx). Ein Verkleine- rungsfaktor in der zweiten Abbildungslicht-Ebene yz beträgt 8 (ßy). Ein objektseitiger Hauptstrahlwinkel CRA beträgt 5,5°. Eine maximale Pupillenobskuration beträgt 15 %. A reduction factor in the first imaging light plane xz is 4 (β x ). A reduction factor in the second imaging light plane yz is 8 (β y ). An object-side main beam angle CRA is 5.5 °. A maximum pupil obscuration is 15%.
Ein Objekt-Bildversatz dois der Projektionsoptik 27 beträgt etwa 530 mm. Die Spiegel der Projektionsoptik 27 können in einem Quader mit den xyz-Kantenlängen 753 mm x 1869 mm x 1860 mm untergebracht werden. An object image offset dois of the projection optics 27 is about 530 mm. The mirrors of the projection optics 27 can be accommodated in a cuboid with the xyz edge lengths 753 mm × 1869 mm × 1860 mm.
Bei der Projektionsoptik 27 ist die Objektebene 5 relativ zur Bildebene 9 um eine zur x- Achse parallele Achse um 15,5 % verkippt. Ein Arbeitsabstand zwischen dem wafernächsten Spiegel M8 und der Bildebene 9 beträgt 83 mm. Ein mittlerer Wellenfrontfehler rms beträgt 10,4 ηιλ. In the projection optics 27, the object plane 5 is tilted by 15.5% relative to the image plane 9 about an axis parallel to the x axis. A working distance between the wafer-closest mirror M8 and the image plane 9 is 83 mm. A mean wavefront error rms is 10.4 ηιλ.
Anhand der Fig. 20 bis 22 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 29 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 19 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optical system 29 which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1 is explained below with reference to FIGS. 20 to 22. Components and functions, which have already been explained above in connection with FIGS. 1 to 19, optionally bear the same reference numbers and will not be discussed again in detail.
Die Fig. 20 zeigt einen Meridionalschnitt der Projektionsoptik 29. Die Fig. 21 zeigt eine sagittale Ansicht der Projektionsoptik 29. Die Fig. 22 zeigt wiederum die Randkonturen der Reflexions- flächen der Spiegel Ml bis M9 der Projektionsoptik 29. FIG. 21 shows a meridional section of the projection optics 29. FIG. 21 shows a sagittal view of the projection optics 29. FIG. 22 again shows the edge contours of the reflection surfaces of the mirrors M1 to M9 of the projection optics 29.
Die Projektionsoptik 29 hat 3 NI-Spiegel, nämlich die Spiegel Ml, M8 und M9. Die Projektionsoptik 29 hat sechs GI-Spiegel, nämlich die Spiegel M2 bis M7. The projection optics 29 has 3 NI mirrors, namely the mirrors Ml, M8 and M9. The projection optics 29 has six GI mirrors, namely the mirrors M2 to M7.
Die Spiegel M2 bis M7 haben alle die gleiche Richtung der Spiegel-Umlenkwirkung. Diesbezüglich ähnelt die Projektionsoptik 29 der Projektionsoptik 26 nach den Fig. 14 bis 16. Die Spiegel Ml bis M9 sind wiederum als Freiformflächen-Spiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M9 der Projektionsoptik 29. The mirrors M2 to M7 all have the same direction of the mirror deflection effect. In this regard, the projection optics 29 are similar to the projection optics 26 of FIGS. 14 to 16. The mirrors M1 to M9 are again designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies. The following table once again shows the mirror parameters of the mirrors M1 to M9 of the projection optics 29.
Ml M2 M3 M4 M5 M6 M7 M8 M9 M1 M2 M3 M4 M5 M6 M7 M8 M9
maximaler maximum
Einfallswinkel 12.1 84.2 80.6 79.1 75.8 78.8 85.3 17.9 10.4  Angle of incidence 12.1 84.2 80.6 79.1 75.8 78.8 85.3 17.9 10.4
chcricrstr c~ chcricrstr c ~
567.4 681.0 749.5 752.9 644.5 538.0 281.4 589.1 929.8 ckung in x- Richtung [mm]  567.4 681.0 749.5 752.9 644.5 538.0 281.4 589.1 929.8 in the x direction [mm]
Reflexions flächen erstre-Reflection surfaces
280.0 584.6 369.2 312.1 169.0 98.4 450.0 200.5 889.4 ckung in y- Richtung [mm] 280.0 584.6 369.2 312.1 169.0 98.4 450.0 200.5 889.4 in the y direction [mm]
maximaler maximum
Spiegeldurch- 567.6 681.3 750.7 752.7 644.5 538.1 452.3 589.1 930.3  Mirror-throughs 567.6 681.3 750.7 752.7 644.5 538.1 452.3 589.1 930.3
messer [mm] knife [mm]
Abgesehen vom Spiegel M7 hat kein Spiegel der Projektionsoptik 29 ein y/x- Aspektverhältnis, das größer ist als 1. Das y/x- Aspektverhältnis des Spiegels M7 beträgt etwa 1,6. Apart from the mirror M7, no mirror of the projection optics 29 has a y / x aspect ratio larger than 1. The y / x aspect ratio of the mirror M7 is about 1.6.
Den größten maximalen Durchmesser hat der im Abbildungsstrahlengang letzte Spiegel M9 mit 930,3 mm. Die Maximaldurchmesser aller anderen Spiegel Ml bis M8 sind kleiner als 800 mm. Vier der neun Spiegel Ml bis M9 haben einen maximalen Durchmesser, der kleiner ist als 600 mm. The largest maximum diameter has the last in the imaging beam path M9 mirror with 930.3 mm. The maximum diameters of all other mirrors M1 to M8 are less than 800 mm. Four of the nine mirrors Ml to M9 have a maximum diameter that is less than 600 mm.
Die Projektionsoptik 29 hat wiederum genau ein Erstebenen-Zwischenbild 18 im Bereich der Durchtrittsöffnung 17 im Spiegel M9 und zwei Zweitebenen-Zwischenbilder 19, 20. Das erste der beiden Zweitebenen-Zwischenbilder 19 liegt im Abbildungslichtstrahlengang zwischen den GI-Spiegeln M4 und M5. Das zweite der beiden Zweitebenen-Zwischenbilder 20 liegt im Abbildungslichtstrahlengang zwischen den beiden Gl-Spiegeln M6 und M7. The projection optics 29 again has exactly one first-level intermediate image 18 in the region of the through-opening 17 in the mirror M9 and two second-level intermediate images 19, 20. The first of the two second-level intermediate images 19 lies in the image light beam path between the two GI mirrors M4 and M5. The second of the two second-level intermediate images 20 lies in the imaging light beam path between the two Gl mirrors M6 and M7.
Die optischen Designdaten der Projektionsoptik 29 können den nachfolgenden Tabellen entnommen werden, die in ihrem den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. The optical design data of the projection optics 29 can be found in the following tables, which in their tables correspond to the projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 20 Embodiment FIG. 20
NA 0.5 NA 0.5
Wellenlänge 13.5 nm beta_x -4.0 beta_y -8.0Wavelength 13.5 nm beta_x -4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.2 mmField size_y 1.2 mm
Feldkrümmung 0.0 1/mm rms 1 1 .4 mlField curvature 0.0 1 / mm rms 1 1 .4 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 20 Table 1 to Fig. 20
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M9 -1221.3204850 0.0016299 -934.3318163 0.0021506 REFLM9 -1221.3204850 0.0016299 -934.3318163 0.0021506 REFL
M8 -4215.6636573 0.0004744 484.8221637 -0.0041252 REFLM8 -4215.6636573 0.0004744 484.8221637 -0.0041252 REFL
M7 -3514.6574105 0.0000960 -8774.5487881 0.0013514 REFLM7 -3514.6574105 0.0000960 -8774.5487881 0.0013514 REFL
M6 -1322.0337936 0.0004485 -1544.1607213 0.0043686 REFLM6 -1322.0337936 0.0004485 -1544.1607213 0.0043686 REFL
M5 -1225.5513700 0.0004448 -1 165.4051512 0.0062957 REFLM5 -1225.5513700 0.0004448 -1 165.4051512 0.0062957 REFL
M4 -2025.8551251 0.0002369 -3191.5729569 0.00261 17 REFLM4 -2025.8551251 0.0002369 -3191.5729569 0.00261 17 REFL
M3 -2688.6482003 0.0001407 26540.8770199 -0.0003984 REFLM3 -2688.6482003 0.0001407 26540.8770199 -0.0003984 REFL
M2 -5902.4437402 0.0000558 6888.6468544 -0.0017631 REFLM2 -5902.4437402 0.0000558 6888.6468544 -0.0017631 REFL
M1 -8202.7105009 0.0002401 -1786.9980352 0.001 1365 REFLM1 -8202.7105009 0.0002401 -1786.9980352 0.001 1365 REFL
Tabelle 2 zu Fig. 20 Table 2 to FIG. 20
Koeffizient M9 M8 M7Coefficient M9 M8 M7
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1221.32048500 -4215.66365700 -3514.65741 100KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1221.32048500 -4215.66365700 -3514.65741 100
C7 6.48621457e-09 -2.70181739e-07 8.70215332e-08 C9 2.51048646e-09 -2.09527218e-08 1.01 13038e-07 C10 1.1 1 165132e-1 1 1.39330486e-10 1.53416608e-10 C12 -2.91336189e-1 1 2.28376849e-10 -3.98919589e-10 C14 -3.29969657e-12 -7.78019798e-10 -1.19879074e-10 C16 -3.30962098e-14 -3.1436571 1 e-13 6.78606735e-13 C18 -5.74881439e-15 -1.38334025e-12 2.50172985e-13 C20 1.80725216e-16 -1.91669172e-12 1.37309377e-13 C21 -1.51549926e-17 3.1057383e-17 -1.6001 1616e-15 C23 -2.05973575e-17 4.30103776e-16 1.40263065e-15 C25 -4.20086457e-17 6.9930155e-16 -8.79758937e-16 C27 -2.12400508e-18 -4.03780946e-14 -1.20104305e-16 C29 1.46401 176e-20 3.26975136e-19 -1.429431 18e-17 Koeffizient M9 M8 M7C7 6.48621457e-09 -2.70181739e-07 8.70215332e-08 C9 2.51048646e-09 -2.09527218e-08 1.01 13038e-07 C10 1.1 1 165132e-1 1 1.39330486e-10 1.53416608e-10 C12 -2.91336189e-1 1 C28 -3.7896.689e-10 C14-3.29969657e-12 -7.78019798e-10 -1.19879074e-10 C16 -3.30962098e-14 -3.1436571 1 e-13 6.78606735e-13 C18 -5.74881439e-15 -1.38334025e -12 2.50172985e-13 C20 1.80725216e-16 -1.91669172e-12 1.37309377e-13 C21 -1.51549926e-17 3.1057383e-17 -1.6001 1616e-15 C23 -2.05973575e-17 4.30103776e-16 1.40263065e-15 C25 C29 -2.12400508e-18 -4.03780946e-14 -1.20104305e-16 C29 1.46401 176e-20 3.26975136e-19 -1.429431 18e-17 Coefficient M9 M8 M7
C31 -3.24776004e-20 -1.36352471 e-18 4.18802461 e-18 C33 -1.58227638e-20 -1.65158046e-17 2.50288724e-18 C35 4.55306998e-22 4.30975727e-17 2.83728882e-19 C36 4.37750241 e-25 3.33999042e-22 8.85677189e-21 C38 -6.15751054e-23 7.72867676e-21 -7.76607264e-20 C40 -7.41239376e-23 6.55036238e-20 5.92531624e-21 C42 -4.2219319e-23 1.92030538e-19 -5.82582739e-21 C44 4.71729051 e-24 -1.1750837e-18 -4.39302422e-22 C46 -3.00005887e-26 -3.07649844e-24 9.31126292e-23 C48 -5.02441216e-26 -6.78983324e-23 -3.53569596e-22 C50 -5.54469897e-26 -2.02571647e-22 8.15194828e-24 C52 -5.86302543e-27 2.66454688e-21 3.01898725e-24 C54 1.18379859e-26 1.2454532e-20 -1.19322371e-24 C55 -1.46294994e-29 -6.51798397e-28 -2.12225804e-25 C57 -3.92398918e-29 -9.21288857e-27 -4.70156385e-25 C59 -1.07024742e-28 -1.55766648e-26 -2.8868744e-24 C61 -1.03272515e-28 -1.62790893e-24 -4.10931912e-25 C63 -2.52905737e-29 -1.66410272e-23 -3.27456225e-26 C65 6.01515241e-30 1.15374037e-23 5.46227836e-27 C67 -6.77138154e-33 6.29495646e-30 -3.98723172e-27 C69 -3.36895071 e-32 2.74167033e-28 -1.31637748e-26 C71 -5.91932375e-32 3.25317607e-27 -1.64283121e-26 C73 -5.65496784e-32 9.06080301 e-27 -1.13987301e-27 C75 -4.22550137e-33 -5.47076775e-26 2.26180236e-28 C77 1.86347639e-33 -2.69737159e-25 -2.47129491e-30 C78 -5.69521668e-36 9.676187e-34 -2.32708681 e-33 C80 -1.44414441e-36 -1.96827508e-32 -2.4890295e-29 C82 -1.99322435e-34 -1.56292087e-30 -4.63833458e-29 C84 -2.96282143e-34 -1.35084229e-29 -3.19539678e-29 C86 -8.59003806e-35 -1.65029179e-29 2.64292864e-30 C88 2.78969129e-35 2.719885e-28 -3.38078195e-31 C90 2.7443014e-35 5.38264343e-28 -8.02912406e-33 C92 2.63716255e-38 0 0 C94 -1.41483782e-38 0 0 C96 -5.25192176e-38 0 0 C98 -2.20234859e-37 0 0 C100 -4.82347119e-38 0 0 C102 1.86723295e-37 0 0 C104 8.8737411e-38 0 0 C105 -4.36464732e-42 0 0 C107 -1.21008936e-40 0 0 C109 -3.65476297e-41 0 0 cm -6.15824076e-41 0 0C31-3.24776004e-20 -1.36352471 e-18 3.33999042e. C33 4.37750241 e-25 3.33999042e -22 8.85677189e-21 C38-6.15751054e-23 7.72867676e-21 -7.76607264e-20 C40-7.41239376e-23 6.55036238e-20 5.92531624e-21 C42 -4.2219319e-23 1.92030538e-19 -5.82582739e-21 C44-5.54469897e. C44-5.52441216e-26-6.78983324e-23-53569596e-22 C50 -5.54469897e -26 -2.02571647e-22 8.15194828e-24 C52 -5.86302543e-27 2.66454688e-21 3.01898725e-24 C54 1.18379859e-26 1.2454532e-20 -1.19322371e-24 C55 -1.46294994e-29 -6.51798397e-28 C59-3.92398918e-29 -9.21288857e-27 -4.70156385e-25 C59-1.07024742e-28 -1.55766648e-26 -2.8868744e-24 C61-1.03272515e-28 -1.62790893e-24 -4.10931912 E-25 C63 -2.52905737e-29 -1.66410272e-23 -3.27456225e-26 C65 6.01515241e-30 1.15374037e-23 5.46227836e-27 C67 -6.77138154e-33 6.29495646e-30 -3.98723172e-27 C69-3.36895071 e-32 2.74167033e-28 -1.31637748e-26 C71 -5.91932375e-32 3.25317607e-27 -1.64283121e-26 C73 -5.65496784e-32 9.06080301 e-27 -1.13987301e-27 C75 -4.22550137e-33 -5.47076775e-26 2.26180236e-28 C77 1.86347639e-33 -2.69737159e-25 -2.47129491e-30 C78 -5.69521668e-36 9.676187e-34 -2.32708681 e-33 C80 -1.44414441e 36 -1.96827508e-32 -2.4890295e-29 C82 -1.99322435e-34 -1.56292087e-30 -4.63833458e-29 C84 -2.96282143e-34 -1.35084229e-29 -3.19539678e-29 C86 -8.59003806e-35 1.65029179e-29 2.64292864e-30 C88 2.78969129e-35 2.719885e-28 -3.38078195e-31 C90 2.7443014e-35 5.38264343e-28 -8.02912406e-33 C92 2.63716255e-38 0 0 C94 -1.41483782e-38 0 0 C96 -5.25192176e-38 0 0 C98 -2.20234859e-37 0 0 C100 -4.82347119e-38 0 0 C102 1.86723295e-37 0 0 C104 8.8737411e-38 0 0 C105 -4.36464732e-42 0 0 C107 -1.21008936 e-40 0 0 C109 -3.65476297e-41 0 0 cm -6.15824076e-41 0 0
C113 -7.64763975e-41 0 0 C115 -3.96878813e-41 0 0 C117 7.7510377e-41 0 0 C119 5.35056123e-41 0 0C113 -7.64763975e-41 0 0 C115 -3.96878813e-41 0 0 C117 7.7510377e-41 0 0 C119 5.35056123e-41 0 0
Tabelle 3a zu Fig. 20 Table 3a to Fig. 20
Koeffizient M6 M5 M4Coefficient M6 M5 M4
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1322.03379400 -1225.55137000 -2025.85512500 Koeffizient M6 M5 M4KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1322.03379400 -1225.55137000 -2025.85512500 Coefficient M6 M5 M4
C7 4.27950112e-08 -5.84703546e-08 -8.97366121e-08 C9 4.17284284e-07 -9.39099159e-07 -8.97651368e-08 C10 -1.7358341e-12 -2.04679461 e-11 -3.35542823e-11 C12 -4.21877305e-10 5.37555035e-10 -6.64926214e-11 C14 -3.15656821e-09 -2.68438704e-09 -1.78345381 e-11 C16 -1.08839994e-13 -6.61750395e-13 3.15319489e-14 C18 4.01366751e-12 1.44422461 e-12 -7.98256204e-15 C20 1.30233138e-11 -1.03660478e-11 -1.25346627e-13 C21 -1.07645526e-17 1.82221706e-17 4.02332593e-17 C23 -2.1 1833236e-15 -2.48580207e-15 4.75597672e-17 C25 -9.67123493e-15 1.30554838e-14 -2.10674203e-16 C27 -1.33144249e-13 2.09485848e-14 1.99899839e-16 C29 1.88196584e-18 4.56414396e-19 8.74600426e-20 C31 9.71980395e-18 -3.44014518e-18 -8.86388592e-19 C33 1.82639944e-16 8.1516558e-17 1.23472448e-19 C35 1.5126297e-15 2.78986798e-16 1.09548579e-19 C36 -4.625507e-22 2.18674967e-22 1.21593626e-22 C38 -2.76640535e-21 5.38282737e-21 -1.20532003e-21 C40 6.93994125e-20 -2.09335725e-20 1.49330284e-21 C42 6.12829851 e-19 -3.19701569e-19 5.02053714e-21 C44 9.01881312e-19 2.42814691e-18 -4.27170182e-21 C46 -1.38069564e-23 -1.2039556e-24 -1.15189186e-24 C48 -2.58649381 e-22 7.77124773e-24 3.16705352e-24 C50 -2.90784805e-21 -3.59675767e-22 4.0653013e-24 C52 -5.42006595e-20 -3.5170037e-21 -1.91026596e-23 C54 -2.29979118e-19 -1.07320159e-20 9.44350026e-24 C55 4.3212238e-27 -6.42267011e-28 -6.34734328e-28 C57 1.22210193e-25 -4.99247996e-27 3.71231003e-27 C59 -1.30493616e-24 -1.21918885e-25 1.0081319e-27 C61 -6.14045583e-23 2.30701112e-24 -4.23834329e-26 C63 -2.46817892e-22 -4.92852048e-23 -7.42880115e-26 C65 5.49135377e-21 -9.47901007e-23 3.62157818e-26 C67 7.03790422e-29 5.43910058e-30 3.15461775e-30 C69 2.97708262e-27 8.70163166e-30 -5.37401656e-30 C71 1.01856775e-25 1.02008574e-27 -1.05505788e-29 C73 2.19711129e-24 1.35856777e-26 1.68378824e-29 C75 1.26099993e-23 -2.42376141e-25 1.4961554e-28 C77 -7.1 1644827e-23 7.74230426e-25 -1.92517608e-28 C78 -1.25601496e-32 8.04588789e-34 1.07210323e-33 C80 -1.08697771 e-30 1.08540263e-32 -4.28340028e-33 C82 -3.07198117e-29 6.63449584e-31 1.41427412e-33 C84 -8.12369626e-28 -3.04722399e-30 1.04543684e-31 C86 -1.50045253e-26 7.92742778e-29 6.73484186e-31 C88 -6.8056223e-26 -5.58379196e-28 1.28702955e-30 C90 3.36436769e-25 6.19385096e-27 3.17119137e-31C7-427950112e-08-5.84703546e-08 -8.97366121e-08 C9 4.17284284e-07 -9.39099159e-07 -8.97651368e-08 C10 -1.7358341e-12-2.04679461 e-11 -3.35542823e-11 C12-4.21877305e -10 5.37555035e-10 -6.64926214e-11 C14-3.15656821e-09 -2.68438704e-09 -1.78345381 e-11 C16 -1.08839994e-13 -6.61750395e-13 3.15319489e-14 C18 4.01366751e-12 1.44422461 e- 12 -7.98256204e-15 C20 1.30233138e-11 -1.03660478e-11 -1.25346627e-13 C21 -1.07645526e-17 1.82221706e-17 4.02332593e-17 C23 -2.1 1833236e-15 -2.48580207e-15 4.75597672e-17 C25-9.67123493e-16 C27-1.33144249e-13 2.09485848e-14 1.99899839e-16 C29 1.88196584e-18 4.56414396e-19 8.74600426e-20 C31 9.71980395e-18 -3.44014518e -18 -8.86388592e-19 C33 1.82639944e-16 8.1516558e-17 1.23472448e-19 C35 1.5126297e-15 2.78986798e-16 1.09548579e-19 C36-4.625507e-22 2.18674967e-22 1.21593626e-22 C38 -2.76640535 e-21 5.38282737e-21 -1.20532003e-21 C40 6.93994125e-20 -2.09335725e-20 1.49330284e-21 C42 6.12829851 e-19 -3.19701569e-19 5.02053 714e-21 C44 -2-, 078-81312e-21 C46-1.38069564e-23 -1.2039556e-24 -1.15189186e-24 C48 -2.58649381 e-22 7.77124773e-24 3.16705352e-24 C50 -2.90784805 e-21 -3.59675767e-22 4.0653013e-24 C52 -5.42006595e-20 -3.5170037e-21 -1.91026596e-23 C54 -2.29979118e-19 -1.07320159e-20 9.44350026e-24 C55 4.3212238e-27 -6.42267011 c59 -1.30493616e-24 -1.21918885e-25 1.0081319e-27 C61 -6.14045583e-23 2.30701112e-24 -4.23834329e -66 C63 -2.46817892e-22 -4.92852048e-23 -7.42880115e-26 C65 5.49135377e-21 -9.47901007e-23 3.62157818e-26 C67 7.03790422e-29 5.43910058e-30 3.15461775e-30 C69 2.97708262e-27 C71 2.187.37.29e-24 1.35856777e-26 1.68378824e-29 C75 1.26099993e-23 -2.42376141e-25 1.4961554e-28 C77 -7.1 1644827e-23 7.74230426e-25 -1.92517608e-28 C78 -1.25601496e-32 8.04588789e-34 1.07210323e-33 C80 -1.08697771 e-30 1.08540263e-32 -4.28340028e-33 C82 -3.07198117e-29 6.63449584e-31 1.41427412e-33 C84 -8.12369626e-28 -3.04722399e-30 1.04543684e-31 C86 -1.50045253e-26 7.92742778e-29 6.73484186e-31 C88 - 6.9056223e-26 -5.58379196e-28 1.28702955e-30 C90 3.36436769e-25 6.19385096e-27 3.17119137e-31
Tabelle 3b zu Fig. 20 Table 3b to Fig. 20
Koeffizient M3 M2 M1Coefficient M3 M2 M1
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -2688.64820000 -5902.44374000 -8202.71050100 Koeffizient M3 M2 M1KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -2688.64820000 -5902.44374000 -8202.71050100 Coefficient M3 M2 M1
C7 -5.4242055e-09 8.83048352e-08 6.2978424e-09 C9 -1.34994231 e-08 6.69061957e-08 -2.81576029e-08 C10 -4.50309645e-1 1 -9.75267665e-1 1 2.48161861 e-1 1 C12 -9.28536251 e-12 -4.70618898e-1 1 2.99096443e-12 C14 8.67137628e-12 5.027971 13e-1 1 -5.9279665e-1 1 C16 1.06056197e-13 -3.32025035e-13 -4.50793228e-14 C18 4.2812029e-14 -1.4148906e-13 4.96691078e-14 C20 -8.67184017e-14 -2.05141367e-14 -1.048468e-13 C21 -1.1873352e-16 3.58039305e-17 2.89600708e-17 C23 -2.77948857e-16 -3.09393609e-16 1.28726971 e-16 C25 -6.49893216e-17 -3.62342671 e-16 5.07326679e-16 C27 6.02898901 e-17 -1.8762241 e-16 -4.00525976e-16 C29 -1.57467526e-20 6.13077125e-19 6.09790017e-20 C31 -3.54755545e-19 -2.24632097e-19 3.76370302e-19 C33 1.16755371 e-19 -7.61264438e-19 1.101 16263e-19 C35 -1.70088294e-19 -4.44194779e-19 -2.63499738e-18 C36 -7.01576249e-23 1.88463965e-22 -4.5509124e-23 C38 1.0799985e-21 3.89264895e-22 -4.42107849e-22 C40 -1.82739825e-21 2.09684763e-23 -3.53826268e-22 C42 -4.2205569e-21 -1.20838494e-21 -8.47370257e-21 C44 -3.93429468e-22 -8.84141926e-22 -5.43189415e-21 C46 -4.18972217e-25 -1.841 13508e-25 -4.34461019e-25 C48 3.46458657e-24 3.40575576e-24 -7.24968778e-24 C50 5.62145231 e-24 5.45106155e-24 -2.09880353e-23 C52 9.1501 1889e-24 9.21654467e-25 1.16157164e-23 C54 4.19488997e-24 -1.591 19253e-24 4.16022167e-23 C55 4.72464228e-28 -1.39930124e-27 7.24355278e-30 C57 -4.91680241 e-27 1.56494908e-27 -4.09367164e-28 C59 5.25537606e-27 1.26075995e-26 -2.48389699e-26 C61 3.29546805e-26 1.44671246e-26 -7.79737962e-26 C63 4.56591637e-26 8.83632165e-27 2.60595725e-25 C65 4.78091055e-26 -1.98660532e-27 4.34169209e-25 C67 2.17612083e-30 -8.37804268e-31 1.59224842e-30 C69 -8.5439834e-30 6.28752374e-31 4.76515206e-29 C71 -2.65983135e-29 2.4285503e-30 3.30166016e-28 C73 -5.98513653e-29 1.42242261 e-29 7.65304059e-28 C75 -7.69832277e-29 1.55423735e-29 2.64998122e-28 C77 -1.1 1232906e-28 -9.76791313e-31 -4.26662374e-28 C78 -4.63832043e-34 3.39359504e-33 5.21447544e-34 C80 5.20269628e-33 9.14348231 e-34 1.00883236e-32 C82 -1.31600486e-32 -1.12272624e-32 2.25573959e-31 C84 -1.5855366e-31 -1.22099672e-32 1.698327e-30 C86 -4.77316653e-31 5.53234051 e-33 2.80871381 e-30 C88 -9.19684751 e-31 9.25716556e-33 -3.34205539e-30 C90 -5.58433631 e-31 4.34744206e-34 -8.1 1996042e-30C7 -5.4242055e-09 8.83048352e-08 6.2978424e-09 C9 -1.34994231 e-08 6.69061957e-08 -2.81576029e-08 C10 -4.50309645e-1 1 -9.75267665e-1 1 2.48161861 e-1 1 C12 -9.28536251 e-12 -4.70618898e-1 1 2.99096443e-12 C14 8.67137628e-12 5.027971 13e-1 1 -5.9279665e-1 1 C16 1.06056197e-13 -3.32025035e-13 -4.50793228e-14 C18 4.2812029e-14 - 1.4148906e-13 C -8.67184017e-14 -2.05141367e-14 -1.048468e-13 C21 -1.1873352e-16 3.58039305e-17 2.89600708e-17 C23 -2.77948857e-16 -3.09393609e-16 1.28726971 e-16 C25-6.49893216e-17 -3.62342671 e-16 5.07326679e-16 C27 6.02898901 e-17 -1.8762241 e-16 -4.00525976e-16 C29 -1.57467526e-20 6.13077125e-19 6.09790017e-20 C31-3.54755545 e-19 C 36-7.01576249e-23 1.76755371 e-19 -7.61264438e-19 1.101 16263e-19 C35-1.70088294e-19 -4.44194779e-19 -2.63499738e-18 C36-7.01576249e-23 1.88463965e -22 -4.5509124e-23 C38 1.0799985e-21 3.89264895e-22 -4.42107849e-22 C40 -1.82739825e-21 2.09684763e-23 -3.53826268e-22 C42 -4.2205569e-21 -1.20838494e-2 1 -8.47370257e-21 C44 -3.93429468e-22 -8.84141926e-22 -5.43189415e-21 C46 -4.18972217e-25 -1.841 13508e-25 -4.34461019e-25 C48 3.46458657e-24 3.40575576e-24 -7.24968778e -24 C50 5.62145231 e-24 5.45106155e-24 -2.09880353e-23 C52 9.1501 1889e-24 9.21654467e-25 1.16157164e-23 C54 4.19488997e-24 -1.591 19253e-24 4.16022167e-23 C55 4.72464228e-28 -1.39930124 e-27 C-4.295-C827-C57-4.91680241 e-27 1.56494908e-27 -4.09367164e-28 C59 5.25537606e-27 1.26075995e-26 -2.48389699e-26 C61 3.29546805e-26 1.44671246e-26 -7.79737962e-26 C63 4.56591637e-26 8.83632165e-27 2.60595725e-25 C65 4.78091055e-26 -1.98660532e-27 4.34169209e-25 C67 2.17612083e-30 -8.37804268e-31 1.59224842e-30 C69 -8.5439834e-30 6.28752374- 31 4.76515206e-29 C71 -2.65983135e-29 2.4285503e-30 3.30166016e-28 C73 -5.98513653e-29 1.42242261 e-29 7.65304059e-28 C75 -7.69832277e-29 1.55423735e-29 2.64998122e-28 C77 -1.1 C32-4.63832043e-34 3.39359504e-33 5.21447544e-34 C80 5.20269628e-33 9.1 No. 4348231 e-34 1.00883236e-32 C82 -1.31600486e-32 -1.12272624e-32 2.25573959e-31 C84 -1.5855366e-31 -1.22099672e-32 1.698327e-30 C86 -4.77316653e-31 5.53234051 e-33 2.80871381 e -30 C88 -9.19684751 e-31 9.25716556e-33 -3.34205539e-30 C90 -5.58433631 e-31 4.34744206e-34 -8.1 1996042e-30
Tabelle 3c zu Fig. 20 Table 3c to Fig. 20
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0.00000000Image level 0.00000000 0.00000000 0.00000000
M9 0.00000000 0.00000000 874.92613231M9 0.00000000 0.00000000 874.92613231
M8 0.00000000 149.96653386 108.05779848M8 0.00000000 149.96653386 108.05779848
M7 0.00000000 -63.62123637 1200.25946018M7 0.00000000 -63.62123637 1200.25946018
M6 0.00000000 -271 .52684626 1553.41894167 Oberfläche DCX DCY DCZM6 0.00000000 -271 .52684626 1553.41894167 Surface DCX DCY DCZ
M5 -0.00000000 -470 91963555 1646.49107699 M4 -0.00000000 -1082 43401319 1575.57656013 M3 -0.00000000 -1402 07740902 1356.86559672 M2 -0.00000000 -1675 34361 170 948.86652584 Blende -0.00000000 -1780 4727691 1 552.55974886 M1 -0.00000000 -1939 88081432 -48.36287033M5 -0.00000000 -470 91963555 1646.49107699 M4 -0.00000000 -1082 43401319 1575.57656013 M3 -0.00000000 -1402 07740902 1356.86559672 M2 -0.00000000 -1675 34361 170 948.86652584 Cover -0.00000000 -1780 4727691 1 552.55974886 M1 -0.00000000 -1939 88081432 -48.36287033
Objektebene -0.00000000 -2133 49017642 2102.38048006 Tabelle 4a zu Fig. 20 Object level -0.00000000 -2133 49017642 2102.38048006 Table 4a to FIG. 20
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000 M9 5.53247750 0.00000000 -0.00000000 M8 191.06495501 -0.00000000 -0.00000000 M7 -69.22482399 0.00000000 0.00000000 M6 -42.26836342 0.00000000 -0.00000000 M5 -9.20367069 0.00000000 0.00000000 M4 20.49802677 0.00000000 -0.00000000 M3 45.28410877 0.00000000 -0.00000000 M2 65.66507482 -0.00000000 -0.00000000 Blende 170.67859831 -0.00000000 0.00000000 M1 175.14354488 0.00000000 0.00000000Image plane -0.00000000 0.00000000 -0.00000000 M9 5.53247750 0.00000000 -0.00000000 M8 191.06495501 -0.00000000 -0.00000000 M7 -69.22482399 0.00000000 0.00000000 0.00000000 -0.00000000 M6 M5 -42.26836342 -9.20367069 0.00000000 0.00000000 0.00000000 -0.00000000 M4 M3 20.49802677 45.28410877 0.00000000 -0.00000000 -0.00000000 -0.00000000 diaphragm M2 65.66507482 170.67859831 -0.00000000 0.00000000 M1 175.14354488 0.00000000 0.00000000
Objektebene 0.15719400 -0.00000000 180.00000000 Tabelle 4b zu Fig. 20 Object level 0.15719400 -0.00000000 180.00000000 Table 4b to FIG. 20
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M9 5.53247750 0.66251340 M8 0.00000000 0.66565840 M7 80.28977900 0.88208835 M6 72.75376044 0.76274834 M5 74.18154684 0.78956505 M4 76.1 1675570 0.82230133 M3 79.09716229 0.86620474 M2 80.52187166 0.88509282 M1 10.00034173 0.65468031M9 5.53247750 0.66251340 M8 0.00000000 0.66565840 M7 80.28977900 0.88208835 M6 72.75376044 0.76274834 M5 74.18154684 0.78956505 M4 76.1 1675570 0.82230133 M3 79.09716229 0.86620474 M2 80.52187166 0.88509282 M1 10.00034173 0.65468031
Gesamttransmission 0.0967 Tabelle 5 zu Fig. 20 Total transmission 0.0967 Table 5 to Fig. 20
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
-0.00000000 75.15520054 0.00000000 -47.96870740 74.37166721 0.00000000 -94.83418130 72.01003446 0.00000000 -139.51000833 68.04638564 0.00000000 -180.94300303 62.46695638 0.00000000 -218.12954032 55.29607159 0.00000000 -250.13349992 46.62001 1 18 0.00000000 -276.10831313 36.59891053 0.00000000 -295.32537634 25.4638161 1 0.00000000 -307.20933498 13.50153273 0.00000000 -31 1.37631602 1.03396852 0.00000000 -307.66695882 -1 1.59968020 0.00000000 -296.16560163 -24.05538106 0.00000000 X[mm] Y[mm] Z[mm]-0.00000000 75.15520054 0.00000000 -47.96870740 74.37166721 0.00000000 -94.83418130 72.01003446 0.00000000 -139.51000833 68.04638564 0.00000000 -180.94300303 62.46695638 0.00000000 -218.12954032 55.29607159 0.00000000 -250.13349992 46.62001 1 18 0.00000000 -276.10831313 36.59891053 0.00000000 -295.32537634 25.4638161 1 0.00000000 -307.20933498 13.50153273 0.00000000 -31 1.37631602 1.03396852 0.00000000 -307.66695882 -1 1.59968020 0.00000000 -296.16560163 -24.05538106 0.00000000 X [mm] Y [mm] Z [mm]
-277.19991698 -35.99362549 0.00000000-277.19991698 -35.99362549 0.00000000
-251.32062868 -47.08956739 0.00000000-251.32062868 -47.08956739 0.00000000
-219.26580101 -57.04356306 0.00000000-219.26580101 -57.04356306 0.00000000
-181.91736137 -65.58890956 0.00000000-181.91736137 -65.58890956 0.00000000
-140.25750388 -72.49589183 0.00000000-140.25750388 -72.49589183 0.00000000
-95.33052822 -77.57496890 0.00000000-0000000000 -95.33052822 -77.57496890 0.00000000
-48.21392686 -80.68258848 0.00000000-48.21392686 -80.68258848 0.00000000
-0.00000000 -81.72869195 0.00000000-0.00000000 -81.72869195 0.00000000
48.21392686 -80.68258848 0.000000000.00000000
95.33052822 -77.57496890 0.0000000095.33052822 -77.57496890 0.00000000
140.25750388 -72.49589183 0.00000000140.25750388 -72.49589183 0.00000000
181.91736137 -65.58890956 0.00000000181.91736137 -65.58890956 0.00000000
219.26580101 -57.04356306 0.00000000219.26580101 -57.04356306 0.00000000
251.32062868 -47.08956739 0.00000000251.32062868 -47.08956739 0.00000000
277.19991698 -35.99362549 0.00000000277.19991698 -35.99362549 0.00000000
296.16560163 -24.05538106 0.00000000296.16560163 -24.05538106 0.00000000
307.66695882 -11.59968020 0.00000000307.66695882 -11.59968020 0.00000000
311.37631602 1.03396852 0.00000000311.37631602 1.03396852 0.00000000
307.20933498 13.50153273 0.00000000307.20933498 13.50153273 0.00000000
295.32537634 25.46381611 0.00000000295.32537634 25.46381611 0.00000000
276.10831313 36.59891053 0.00000000276.10831313 36.59891053 0.00000000
250.13349992 46.62001118 0.00000000250.13349992 46.62001118 0.00000000
218.12954032 55.29607159 0.00000000218.12954032 55.29607159 0.00000000
180.94300303 62.46695638 0.00000000180.94300303 62.46695638 0.00000000
139.51000833 68.04638564 0.00000000139.51000833 68.04638564 0.00000000
94.83418130 72.01003446 0.0000000094.83418130 72.01003446 0.00000000
47.96870740 74.37166721 0.0000000047.96870740 74.37166721 0.00000000
Tabelle 6 zu Fig. 20 Table 6 to FIG. 20
Die Projektionsoptik 29 hat eine Gesamttransmission von 9,67 %. Eine bildseitige numerische Apertur der Projektionsoptik 29 beträgt 0,50. Der Verkleinerungsfaktor ßx in der ersten Abbildungslicht-Ebene xz beträgt 4. Der Verkleinerungsfaktor ßy in der zweiten Abbildungslicht-Ebene yz beträgt 8. Auch hier führt die unterschiedliche Anzahl der Zwischenbilder in den beiden Ablasslicht-Ebenen zu einer Korrektur des Image Flip aufgrund der ungeraden Spiegelanzahl. The projection optics 29 has a total transmission of 9.67%. An image-side numerical aperture of the projection optics 29 is 0.50. The reduction factor β x in the first imaging light plane xz is 4. The reduction factor β y in the second imaging light plane yz is 8. Again, the different number of intermediate images in the two drain light planes results in correction of the image flip due to the odd number of mirrors.
Ein objektseitiger Hauptstrahlwinkel CRA beträgt 5,0°. Eine maximale Obskuration der Eintrittspupille beträgt 12 %. Ein Objekt-Bildversatz dois beträgt etwa 2150 mm. Die Spiegel der Projektionsoptik 29 können in einem Quader mit xyz-Kantenlängen 930 mm x 2542 mm x 1713 mm untergebracht werden. An object-side main beam angle CRA is 5.0 °. A maximum obscuration of the entrance pupil is 12%. An object image offset dois is about 2150 mm. The mirrors of the projection optics 29 can be accommodated in a cuboid with xyz edge lengths 930 mm x 2542 mm x 1713 mm.
Die Objektebene 5 ist zur Bildebene 9 um die x- Achse um einen Winkel T von 0,2° verkippt. Ein Arbeitsabstand zwischen dem wafernächsten Spiegel M8 und der Bildebene 9 beträgt 80 mm. Ein mittlerer Wellenfrontfehler rms beträgt 11,4 ηιλ. Die Aperturblende AS ist bei der Projektionsoptik 29 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 angeordnet. Im Bereich der Aperturblende AS ist das Abbildungslichtbündel vollumfänglich zugänglich. The object plane 5 is tilted to the image plane 9 about the x-axis by an angle T of 0.2 °. A working distance between the wafer-closest mirror M8 and the image plane 9 is 80 mm. A mean wavefront error rms is 11.4 ηιλ. The aperture diaphragm AS is arranged in the projection optical system 29 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the imaging light beam is fully accessible.
Anhand der Fig. 23 bis 25 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 30 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 22 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. Die Fig. 23 zeigt einen Meridionalschnitt der Projektionsoptik 30. Die Fig. 24 zeigt eine sagittale Ansicht der Projektionsoptik 30. Die Fig. 25 zeigt wiederum die Randkonturen der Reflexions- flächen der zehn Spiegel Ml bis MIO der Projektionsoptik 30. A further embodiment of a projection optical system 30, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. Components and functions, which have already been explained above in connection with FIGS. 1 to 22, optionally bear the same reference numbers and will not be discussed again in detail. FIG. 23 shows a meridional section of the projection optics 30. FIG. 24 shows a sagittal view of the projection optics 30. FIG. 25 again shows the edge contours of the reflection surfaces of the ten mirrors M1 to M10 of the projection optics 30.
Die Projektionsoptik 30 hat drei NI-Spiegel, nämlich die Spiegel Ml, M9 und MIO. Die Projek- tionsoptik 30 hat sieben GI-Spiegel, nämlich die Spiegel M2 bis M8. The projection optics 30 has three NI mirrors, namely mirrors M1, M9 and MIO. The projection optics 30 has seven GI mirrors, namely the mirrors M2 to M8.
Die Spiegel M2 bis M8 haben alle die gleiche Richtung der Spiegel-Umlenkwirkung. Diesbezüglich ähnelt die Projektionsoptik 30 den Projektionsoptiken 26 nach den Fig. 14 bis 16 und 29 nach den Fig. 20 bis 22. The mirrors M2 to M8 all have the same direction of the mirror deflection effect. In this regard, the projection optics 30 are similar to the projection optics 26 of FIGS. 14-16 and 29 of FIGS. 20-22.
Die Spiegel Ml bis MIO sind wiederum als Freiformflächenspiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. The mirrors M1 to MIO are again embodied as free-form surface mirrors, for which the free-form surface equation (1) specified above applies.
Die nachfolgenden Tabellen zeigen wiederum die Spiegelparameter der Spiegel Ml bis MIO der Proj ektionsoptik 30. Ml M2 M3 M4 M5 maximaler The following tables again show the mirror parameters of the mirrors M1 to MIO of the projection optics 30. M1 M2 M3 M4 M5 maximum
13.1 83.4 80.9 83.0 81.1  13.1 83.4 80.9 83.0 81.1
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächenerstre- ckung in x-Richtung 585.6 573.4 596.4 684.0 746.7 Reflection surface area in x-direction 585.6 573.4 596.4 684.0 746.7
[mm] [Mm]
Reflexionsflächenerstre- ckung in y-Richtung 298.5 234.7 366.9 417.9 419.8 Reflection surface extension in the y direction 298.5 234.7 366.9 417.9 419.8
[mm] [Mm]
maximaler  maximum
Spiegeldurchmesser 585.6 573.5 603.1 689.3 748.8 Mirror diameter 585.6 573.5 603.1 689.3 748.8
[mm] [Mm]
M6 M7 M8 M9 MIO maximaler M6 M7 M8 M9 MIO maximum
83.5 80.6 80.9 24.0 8.2  83.5 80.6 80.9 24.0 8.2
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächenerstre- ckung in x-Richtung 731.5 643.0 524.9 323.8 1008.4 Reflection surface area in x-direction 731.5 643.0 524.9 323.8 1008.4
[mm] [Mm]
Reflexionsflächenerstre- ckung in y-Richtung 262.5 153.0 213.1 258.0 996.9 Reflection surface extension in the y direction 262.5 153.0 213.1 258.0 996.9
[mm] [Mm]
maximaler  maximum
Spiegeldurchmesser 733.0 643.0 525.0 324.0 1008.9 Mirror diameter 733.0 643.0 525.0 324.0 1008.9
[mm] [Mm]
Alle Spiegel Ml bis MIO der Projektionsoptik 30 haben ein y/x-Aspektverhältnis, das kleiner ist als 1. All mirrors Ml to MIO of the projection optics 30 have a y / x aspect ratio that is less than one.
Den größten maximalen Durchmesser hat der im Abbildungsstrahlengang letzte Spiegel MIO mit 1008,9 mm. Die Maximaldurchmesser aller anderen Spiegel Ml bis M9 sind kleiner als 750 mm. Sieben der zehn Spiegel haben einen maximalen Durchmesser, der kleiner ist als 700 mm. Vier der zehn Spiegel haben einen maximalen Durchmesser, der kleiner ist als 600 mm. The largest maximum diameter has the last in the imaging beam path mirror MIO with 1008.9 mm. The maximum diameters of all other mirrors M1 to M9 are less than 750 mm. Seven of the ten mirrors have a maximum diameter that is less than 700 mm. Four of the ten mirrors have a maximum diameter that is less than 600 mm.
Die Projektionsoptik 30 hat wiederum genau ein Erstebenen-Zwischenbild 18 im Bereich der Durchtrittsöffnung 17 im Spiegel MIO und zwei Zweitebenen-Zwischenbilder 19, 20. Ein Abstand zwischen dem Erstebenen-Zwischenbild 18 und der Durchtrittsöffnung 17 ist kleiner als ein Drittel des Abstandes zwischen dem letzten Spiegel MIO und dem Bildfeld 8. The projection optics 30 in turn has exactly one first plane intermediate image 18 in the region of the passage opening 17 in the mirror MIO and two second plane intermediate images 19, 20. A distance between the first plane intermediate image 18 and the passage opening 17 is less than one third of the distance between the last Mirror MIO and the image field 8.
Das erste der beiden Zweitebenen-Zwischenbilder 19 liegt bei der Projektionsoptik 30 im Bereich einer Reflexion des Abbildungslichts 3 am Gl-Spiegel M4. Das zweite der beiden Zweitebenen-Zwischenbilder 20 liegt im Abbildungslichtstrahlengang im Bereich der Reflexion am Gl-Spiegel M6. The first of the two second level intermediate images 19 is located in the projection optics 30 in the region of a reflection of the imaging light 3 at the Mirr mirror M4. The second of the two second-level intermediate images 20 lies in the imaging light beam path in the region of the reflection at the Mirr mirror M6.
Die optischen Designdaten der Projektionsoptik 30 können den nachfolgenden Tabellen ent- nommen werden, die in ihrem den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. The optical design data of the projection optics 30 can be taken from the following tables, which correspond in their tables to the projection optics 7 according to FIG. 2.
Ausführungsbeispiel embodiment
NA  N / A
Wellenlänge  wavelength
beta_x  beta_x
beta_y  beta_y
Feldgröße_x  Feldgröße_x
Feldgröße_y  Feldgröße_y
Feldkrümmung  curvature of field
rms  rms
Blende  cover
Tabelle 1 zu Fig. 23  Table 1 to FIG. 23
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M10 -975.5487706 0.0020377 -962.5583837 0.0020905 REFLM10 -975.5487706 0.0020377 -962.5583837 0.0020905 REFL
M9 1786.9869429 -0.001 1 192 61 1.2039578 -0.0032722 REFLM9 1786.9869429 -0.001 1 192 61 1.2039578 -0.0032722 REFL
M8 -2095.9442088 0.0002189 3875.9706125 -0.0022490 REFLM8 -2095.9442088 0.0002189 3875.9706125 -0.0022490 REFL
M7 -1045.4690941 0.0004223 -10312.0596231 0.0008787 REFLM7 -1045.4690941 0.0004223 -10312.0596231 0.0008787 REFL
M6 -1215.3805004 0.0002681 -38549.7142600 0.0003185 REFLM6 -1215.3805004 0.0002681 -38549.7142600 0.0003185 REFL
M5 -1644.5074901 0.0002579 -2517.0332413 0.0037473 REFLM5 -1644.5074901 0.0002579 -2517.0332413 0.0037473 REFL
M4 -214162.6635241 0.0000017 -3370.4881649 0.0032692 REFLM4 -214162.6635241 0.0000017 -3370.4881649 0.0032692 REFL
M3 4047.7543473 -0.0000871 -7308.5674280 0.0015528 REFLM3 4047.7543473 -0.0000871 -7308.5674280 0.0015528 REFL
M2 5005.1733746 -0.0000808 1 156.6671379 -0.0085532 REFLM2 5005.1733746 -0.0000808 1 156.6671379 -0.0085532 REFL
M1 -3798.9753152 0.0005177 -1377.91 1 1045 0.0014761 REFLM1 -3798.9753152 0.0005177 -1377.91 1 1045 0.0014761 REFL
Tabelle 2 zu Fig. 23 Koeffizient M10 M9 M8Table 2 to FIG. 23 Coefficient M10 M9 M8
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -975.54877060 1786.98694300 -2095.94420900KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -975.54877060 1786.98694300 -2095.94420900
C7 -5.95804097e-09 -8.03929648e-07 8.3011434e-08 C9 1.52364857e-08 7.43589206e-07 4.7181499e-07 C10 9.28099e-13 2.37499492e-10 -2.02775452e-11 C12 -2.03295286e-11 1.68623915e-09 9.33342076e-10 C14 -3.41805e-12 1.15900623e-09 1.88007174e-09 C16 -1.42799093e-14 -2.01463554e-12 6.1 1396757e-13 C18 4.97214041e-15 2.06895474e-13 4.85149273e-12 C20 1.32525577e-14 2.94709467e-12 8.94508956e-12 C21 1.49502256e-18 2.85556664e-16 -7.74114074e-17 C23 -3.1935411e-17 9.04365887e-15 4.65092634e-15 C25 -3.31420566e-17 1.05454924e-14 3.08749913e-14 C27 -5.86281511e-18 7.34133351e-15 5.17090551e-14 C29 -1.26997904e-20 5.76866938e-18 9.30619914e-19 C31 -7.76177662e-21 -1.79812907e-17 4.34796101e-17 C33 1.50829309e-20 8.14507407e-18 2.19762816e-16 C35 1.22801974e-20 2.27167577e-17 2.99980346e-16 C36 2.1467814e-24 7.6583843e-20 -1.1 1004135e-21 C38 -4.69712554e-23 6.25650447e-20 4.461594e-20 C40 -7.77443045e-23 3.54035566e-20 4.26992684e-19 C42 -4.52759935e-23 2.60958385e-20 1.54031954e-18 C44 -4.5075988e-24 -1.97889894e-19 1.4763913e-18 C46 -1.2818549e-26 -2.24761699e-22 5.00232186e-23 C48 -1.56907351 e-26 -9.99234563e-23 3.46718952e-22 C50 7.63880336e-27 3.04672894e-22 2.81615015e-21 C52 2.62423865e-26 1.12872852e-21 7.73566576e-21 C54 1.3223325e-26 -1.39660252e-21 7.25601264e-21 C55 -4.91404028e-31 -1.7749894e-24 7.28168609e-27 C57 -5.49015313e-29 -4.18918707e-25 -2.27362519e-25 C59 -1.19636029e-28 2.37980171 e-24 1.10460061 e-24 C61 -1.21575333e-28 1.30384498e-24 7.85664558e-24 C63 -4.81080894e-29 3.8847099e-24 3.09055201 e-23 C65 -1.1 1934428e-29 6.79231048e-24 6.70387564e-23 C67 -3.35019698e-32 -2.38620726e-28 -2.44599566e-28 C69 -5.67292204e-32 -1.19770461 e-27 1.34268575e-27 C71 -6.03548629e-32 -8.03882829e-27 1.73920457e-26 C73 6.30996158e-33 -1.53983174e-26 1.45057385e-25 C75 5.19267709e-32 -6.20914706e-26 4.77275337e-25 C77 1.23924124e-32 4.47651624e-26 6.1 1524253e-25 C78 -2.3725453e-36 2.34547492e-29 4.49789027e-32 C80 -8.83337074e-35 1.30801418e-30 5.00787029e-30 C82 -3.20486752e-34 -5.45618829e-29 6.24961973e-29 C84 -4.31424577e-34 -1.19872753e-28 6.80689304e-28 C86 -2.83533832e-34 -1.66096044e-29 3.1258368e-27 C88 -8.20994418e-35 -2.02826868e-28 6.05199729e-27 C90 -1.16789084e-35 -6.83570559e-29 2.9852638e-27 C92 -2.843655e-38 1.53289092e-32 1.35088954e-33 C94 3.36094687e-38 -1.7850554e-32 4.90992003e-32 C96 1.49968333e-37 4.20515949e-32 9.22306786e-31 C98 1.69899738e-37 1.4826376e-31 6.47768699e-30 C100 8.80150382e-38 4.50266357e-31 2.24773669e-29 C102 -7.03462778e-38 1.46581483e-30 3.28786082e-29 Koeffizient M10 M9 M8C7 -5.95804097e-09 -8.03929648e-07 8.3011434e-08 C9 1.52364857e-08 7.43589206e-07 4.7181499e-07 C10 9.28099e-13 2.37499492e-10 -2.02775452e-11 C12 -2.03295286e-11 1.68623915e -09 9.33342076e-10 C14-3.41805e-12 1.15900623e-09 1.88007174e-09 C16 -1.42799093e-14 -2.01463554e-12 6.1 1396757e-13 C18 4.97214041e-15 2.06895474e-13 4.85149273e-12 C20 1.32525577 e-14 2.94709467e-12 8.94508956e-12 C21 1.49502256e-18 2.85556664e-16 -7.74114074e-17 C23-3.1935411e-17 9.04365887e-15 4.65092634e-15 C25 -3.31420566e-17 1.05454924e-14 3.08749913 e-14 C27-5.86281511e-18 7.34133351e-15 5.17090551e-14 C29 -1.26997904e-20 5.76866938e-18 9.30619914e-19 C31 -7.76177662e-21 -1.79812907e-17 4.34796101e-17 C33 1.50829309e It should be noted that the present invention is incorporated by reference. It is hereby incorporated by reference C40-7.77443045e-23 3.54035566e-20 4.26992684e-19 C42 -4.52759935e-23 2.60958385e-20 1.54031954e-18 C44 -4.5075988e -24 -1.97889894e-19 1.4763913e-18 C46 -1.2818549e-26 -2.24761699e-22 5.00232186e-23 C48 -1.56907351 e-26 -9.99234563e-23 3.46718952e-22 C50 7.63880336e-27 3.04672894e-22 2.81615015e-21 C52 2.62423865e-26 1.12872852e-21 7.73566576e-21 C54 1.3223325e-26 -1.39660252e-21 7.25601264e-21 C55 -4.91404028e-31 -1.7749894e-24 7.28168609e-27 C57 -5.49015313e -29 -4.18918707e-25 -2.27362519e-25 C59 -1.19636029e-28 2.37980171 e-24 1.10460061 e-24 C61 -1.21575333e-28 1.30384498e-24 7.85664558e-24 C63 -4.81080894e-29 3.8847099e-24 C79 -5.67292204e-32 -1.19770461 e-27 1.34268575e-27 C71 -6.03548629e-32 -8.03882829e-27 1.73920457e-26 C73 6.30996158e-33 -1.53983174e-26 1.45057385e-25 C75 5.19267709e-32 -6.20914706e-26 4.77275337e-25 C77 1.23924124e-32 4.47651624- 26 6.1 1524253e-25 C78 -2.3725453e-36 2.34547492e-29 4.49789027e-32 C80 -8.83337074e-35 1.30801418e-30 5.00787029e-30 C82 -3.2 6.2486752e-34 -5.45618829e-29 6.24961973e-29 C84 -4.31424577e-34 -1.19872753e-28 6.80689304e-28 C86 -2.83533832e-34 -1.66096044e-29 3.1258368e-27 C88 -8.20994418e-35 -2.02826868 e-28 6.05199729e-27 C90 -1.16789084e-35 -6.83570559e-29 2.9852638e-27 C92 -2.843655e-38 1.53289092e-32 1.35088954e-33 C94 3.36094687e-38 -1.7850554e-32 4.90992003e-32 C96 1.49968333e-37 C98-69899731e-31 C98 1.69899738e-37 1.4826376e-31 6.47768699e-30 C100 8.80150382e-38 4.50266357e-31 2.24773669e-29 C102 -7.03462778e-38 1.46581483e-30 3.28786082 e-29 Coefficient M10 M9 M8
C104 -2.97045845e-38 -3.94310002e-31 5.81148918e-30 C105 -4.76141065e-42 -1.41949569e-34 -1.69050404e-37 C107 1.6878978e-40 4.95411568e-35 6.59328032e-37 C109 2.60807696e-40 9.52116258e-34 3.43622241 e-34 C111 3.44175669e-40 2.38482471 e-33 3.4960256e-33 C113 3.99153873e-40 2.88133837e-33 1.87453448e-32 C115 1.03370812e-40 7.70741325e-34 5.38181997e-32 C117 -1.35912164e-40 5.14237082e-33 6.45183346e-32 C119 -2.83877758e-41 1.15789492e-34 5.47296591 e-34 C121 -5.9855365e-44 0 0 C123 -3.58371657e-43 0 0 C125 -6.74451435e-43 0 0 C127 -5.68244733e-43 0 0 C129 -8.7411743e-44 0 0 C131 2.72373418e-43 0 0 C133 3.47596581 e-43 0 0 C135 1.15763536e-43 0 0 C136 7.3034626e-48 0 0 C138 -4.12182647e-46 0 0 C140 -1.49526036e-45 0 0 C142 -3.2358839e-45 0 0 C144 -4.18920423e-45 0 0 C146 -3.39263213e-45 0 0 C148 -1.33209474e-45 0 0 C150 -1.863829e-47 0 0 C152 6.14799467e-47 0 0C104 -2.97045845e-38 -3.94310002e-31 C105 -4.76141065e-42 -1.41949569e-34 -1.69050404e-37 C107 1.6878978e-40 4.95411568e-35 6.59328032e-37 C109 2.60807696e-40 9.52116258 e-34 3.43622241 e-34 C111 3.44175669e-40 2.38482471 e-33 3.4960256e-33 C113 3.99153873e-40 2.88133837e-33 1.87453448e-32 C115 1.03370812e-40 7.70741325e-34 5.38181997e-32 C117 -1.35912164e -40 5.14237082e-33 6.45183346e-32 C119 -2.83877758e-41 1.15789492e-34 5.47296591 e-34 C121 -5.9855365e-44 0 0 C123 -3.58371657e-43 0 0 C125 -6.74451435e-43 0 0 C127 - 5.68244733e-43 0 0 C129 -8.7411743e-44 0 0 C131 2.72373418e-43 0 0 C133 3.47596581 e-43 0 0 C135 1.15763536e-43 0 0 C136 7.3034626e-48 0 0 C138 -4.12182647e-46 0 0 C140 -1.49526036e-45 0 0 C142 -3.2358839e-45 0 0 C144 -4.18920423e-45 0 0 C146 -3.39263213e-45 0 0 C148 -1.33209474e-45 0 0 C150 -1.863829e-47 0 0 C152 6.14799467 e-47 0 0
Tabelle 3a zu Fig. 23 Table 3a to Fig. 23
Koeffizient M7 M6 M5Coefficient M7 M6 M5
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1045.46909400 -1215.38050000 -1644.50749000KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1045.46909400 -1215.38050000 -1644.50749000
C7 9.5792129e-08 9.85907747e-08 1.54027134e-07 C9 6.62613291 e-08 -2.44290281 e-08 -9.05741401e-09 C10 -7.40502097e-11 -4.12531064e-11 -3.18252976e-11 C12 4.08948603e-10 -2.13920421e- 10 1.69205919e-10 C14 -9.87692725e-10 9.31726672e-11 -1.13306483e-12 C16 2.14106934e-13 6.28352563e-14 -2.24154389e-13 C18 3.43955471 e-13 4.40526697e-13 1.46427009e-15 C20 1.97092267e-12 -5.12351393e-13 -5.17690392e-15 C21 -2.27675195e-16 1.18505694e-16 2.22667245e-16 C23 2.42352609e-16 -4.14773002e-16 1.79837464e-17 C25 8.58109566e-15 -1.56476746e-15 1.13489728e-16 C27 -2.25847919e-14 1.80874528e-15 2.01629864e-16 C29 -9.27614962e-19 -3.8444837e-19 -6.10856847e-19 C31 7.90475103e-19 6.61811399e-19 -4.27607556e-19 C33 -8.76130063e-18 6.63551226e-18 -3.51912523e-19 C35 -1.35523796e-18 -1.18525201e-17 -6.95837547e-19 C36 1.98141766e-22 2.92380598e-22 -4.45944546e-22 C38 3.654101e-21 1.43515228e-21 4.39560373e-22 C40 3.03300085e-21 -7.04841407e-21 1.80506109e-21 C42 3.96315687e-19 -2.20895897e-20 3.79556064e-21 izient M7 M6 M5C7 9.5902129e-08 9.85907747e-08 1.54027134e-07 C9 6.62613291 e-08 -2.44290281 e-08 -9.05741401e-09 C10 -7.40502097e-11 -4.12531064e-11 -3.18252976e-11 C12 4.08948603e-10 - C16 2.14106934e-13 6.28352563e-14 -2.24154389e-13 C18 3.43955471 e-13 4.40526697e-13 1.46427009e-15. 2.13920421- 10 1.69205919e-10 C14 -9.87692725e-10 9.31726672e-11 -1.13306483e-12 C16 2.14106934e-13 C20-97092267e-12-5.12351393e-13 -5.17690392e-15 C21-2.27675195e-16 1.18505694e-16 2.22667245e-16 C23 2.42352609e-16 -4.14773002e-16 1.79837464e-17 C25 8.58109566e-15 -1.56476746 e-15 C27-2.25847919e-14 1.80874528e-15 2.01629864e-16 C29 -9.27614962e-19 -3.8444837e-19 -6.10856847e-19 C31 7.90475103e-19 6.61811399e-19 -4.27607556e 19 C33 -8.76130063e-18 6.63551226e-18 -3.51912523e-19 C35 -1.35523796e-18 -1.18525201e-17 -6.95837547e-19 C36 1.98141766e-22 2.92380598e-22 -4.45944546e-22 C38 3.654101e 21 1.43515228e-21 4.39560373e-22 C40 3.03300085e-21 -7.04841407e-21 1.80506109e-21 C42 3.96315687e-19 -2.20895897e-20 3.79556064 e-21 efficient M7 M6 M5
C44 -7.54291762e-19 4.26828311e-20 6.39845413e-21C44 -7.54291762e-19 4.26828311e-20 6.39845413e-21
C46 1.35299802e-23 8.61301054e-24 2.48638664e-24C46 1.35299802e-23 8.61301054e-24 2.48638664e-24
C48 1.7517203e-24 -5.90539907e-25 -2.7786426e-24C48 1.7517203e-24 -5.90539907e-25 -2.7786426e-24
C50 3.03043526e-22 1.90322534e-23 -1.2995714e-23C50 3.03043526e-22 1.90322534e-23 -1.2995714e-23
C52 4.48492838e-22 1.34714972e-22 -3.17115678e-23C52 4.48492838e-22 1.34714972e-22 -3.17115678e-23
C54 2.61364128e-21 -2.00099998e-22 -2.27789546e-23C54 2.61364128e-21 -2.00099998e-22 -2.27789546e-23
C55 2.62872082e-27 -3.52236706e-27 4.46219179e-28C55 2.62872082e-27 -3.52236706e-27 4.46219179e-28
C57 -8.29018857e-26 -7.37835617e-27 3.23080215e-27C57 -8.29018857e-26 -7.37835617e-27 3.23080215e-27
C59 -9.87595964e-26 2.59399915e-28 5.88214824e-27C59 -9.87595964e-26 2.59399915e-28 5.88214824e-27
C61 -1.33683359e-24 -1.20217809e-25 2.37543587e-26C61 -1.33683359e-24 -1.20217809e-25 2.37543587e-26
C63 2.38226885e-24 -5.62138903e-25 -1.29437348e-26C63 2.38226885e-24 -5.62138903e-25 -1.29437348e-26
C65 1.12061078e-23 1.57580136e-24 -5.84130015e-26C65 1.12061078e-23 1.57580136e-24 -5.84130015e-26
C67 -8.62369094e-29 -3.44232588e-29 -1.30394282e-30C67 -8.62369094e-29 -3.44232588e-29 -1.30394282e-30
C69 1.0856691e-28 6.66914299e-29 5.00509797e-30C69 1.0856691e-28 6.66914299e-29 5.00509797e-30
C71 -2.00936961 e-27 1.43708604e-28 3.39871859e-29C71-2.00936961 e-27 1.43708604e-28 3.39871859e-29
C73 -9.21543403e-27 3.23430874e-28 2.92457247e-28C73 -9.21543403e-27 3.23430874e-28 2.92457247e-28
C75 -8.74991463e-26 3.06388254e-28 6.08263151 e-28C75 -8.74991463e-26 3.06388254e-28 6.08263151 e-28
C77 -7.71033623e-25 -1.17311277e-26 3.80152335e-28C77 -7.71033623e-25 -1.17311277e-26 3.80152335e-28
C78 -6.23778722e-33 1.26615681 e-32 -4.13882349e-33C78 -6.23778722e-33 1.26615681 e-32 -4.13882349e-33
C80 6.21014273e-31 3.5254233e-33 -1.46703005e-32C80 6.21014273e-31 3.5254233e-33 -1.46703005e-32
C82 8.95894887e-31 -2.19232643e-31 1.85054171 e-32C82 8.95894887e-31 -2.19232643e-31 1.85054171 e-32
C84 -2.18641836e-31 -1.17554177e-30 -1.84470244e-32C84 -2.18641836e-31 -1.17554177e-30-1.84470244e-32
C86 1.3695322e-29 5.18933781 e-30 -9.47400187e-32C86 1.3695322e-29 5.18933781 e-30 -9.47400187e-32
C88 1.75395859e-27 -9.16361654e-30 4.88248476e-31C88 1.75395859e-27 -9.16361654e-30 4.88248476e-31
C90 -1.43209341 e-26 7.8544656e-29 1.17574141e-30C90 -1.43209341 e-26 7.8544656e-29 1.17574141e-30
C92 2.05090173e-34 3.9960171e-35 -1.08187025e-35C92 2.05090173e-34 3.9960171e-35 -1.08187025e-35
C94 -7.60088632e-34 -1.09957929e-34 -1.18791897e-35C94 -7.60088632e-34 -1.09957929e-34 -1.18791897e-35
C96 1.00872099e-32 4.54994406e-34 -3.05105106e-34C96 1.00872099e-32 4.54994406e-34 -3.05105106e-34
C98 2.26804397e-31 4.51060461 e-33 -2.50549956e-33C98 2.26804397e-31 4.51060461 e-33 -2.50549956e-33
C100 2.46369136e-30 -4.31519977e-32 -7.93503412e-33C100 2.46369136e-30 -4.31519977e-32 -7.93503412e-33
C102 1.13090407e-29 1.35113735e-31 -1.22506006e-32C102 1.13090407e-29 1.35113735e-31 -1.22506006e-32
C104 1.44593604e-29 -3.99172166e-31 -9.13299628e-33C104 1.44593604e-29 -3.99172166e-31 -9.13299628e-33
C105 -4.19017572e-38 -1.38399499e-38 1.89493701 e-38C105 -4.19017572e-38 -1.38399499e-38 1.89493701 e-38
C107 -1.50992299e-36 -1.40332039e-38 2.1432617e-38C107 -1.50992299e-36 -1.40332039e-38 2.1432617e-38
C109 -4.25127052e-36 3.01861848e-37 1.09876139e-38 cm 1.05208601e-34 -6.8370801 e-37 1.2616574e-36C109 -4.25127052e-36 3.01861848e-37 1.09876139e-38 cm 1.05208601e-34 -6.8370801 e-37 1.2616574e-36
C113 1.76414667e-33 -6.60279764e-36 7.4946947e-36C113 1.76414667e-33 -6.60279764e-36 7.4946947e-36
C115 3.99316502e-33 9.13127758e-35 1.86018645e-35C115 3.99316502e-33 9.13127758e-35 1.86018645e-35
C117 1.48508087e-32 -3.68280235e-34 2.26682249e-35C117 1.48508087e-32 -3.68280235e-34 2.26682249e-35
C119 7.17664912e-31 8.31069559e-34 1.34001465e-35C119 7.17664912e-31 8.31069559e-34 1.34001465e-35
Tabelle 3b zu Fig. 23 Table 3b to Fig. 23
Koeffizient M4 M3 M2Coefficient M4 M3 M2
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 214162.66350000 4047.75434700 5005.17337500KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 214162.66350000 4047.75434700 5005.17337500
C7 2.98068193e-07 -3.40159923e-08 1.53289528e-07 C9 5.61609225e-08 -1.0109082e-07 -1.19599907e-06 C10 -2.31126138e-10 -1.13587051e-10 -1.71565532e-10 C12 -9.68157642e-12 -1.96351094e-12 -9.69554638e-10 C14 1.78309191e-11 -2.07056507e-10 2.52024483e-09 C16 -1.43916345e-13 -1.39220002e-13 -3.34685833e-13 Koeffizient M4 M3 M2C7 2.98068193e-07 -3.40159923e-08 1.53289528e-07 C9 5.61609225e-08 -1.0109082e-07 -1.19599907e-06 C10 -2.31126138e-10 -1.13587051e-10 -1.71565532e-10 C12 -9.68157642e- 12 -1.96351094e-12 -9.69554638e-10 C14 1.78309191e-11 -2.07056507e-10 2.52024483e-09 C16 -1.43916345e-13 -1.39220002e-13 -3.34685833e-13 Coefficient M4 M3 M2
C18 -1.38913507e-13 -6.9799513e-14 2.79609875e-12 C20 -4.27413144e-14 -5.7781008e-13 -3.54664231e-14 C21 -4.76669999e-16 -2.33642412e-16 5.21059427e-16 C23 4.42788651 e-16 -7.61513304e-17 1.96357314e-15 C25 3.27344931 e-17 -6.04184022e-16 -6.04569672e-16 C27 -6.38302953e-17 -1.53772654e-15 -5.41292875e-14 C29 -1.40930006e-18 1.96589441 e-19 -2.38101659e-18 C31 3.79697584e-19 -6.83863216e-19 -1.51800562e-17 C33 3.33127907e-19 -2.23362525e-18 -8.74528208e-17 C35 -1.65970278e-20 -5.24001813e-18 4.78342984e-16 C36 2.46259394e-21 -7.31967756e-22 -1.77577302e-21 C38 -9.63192307e-22 6.52093992e-22 4.99470817e-21 C40 -4.6441045e-22 -2.83339637e-21 5.13512935e-20 C42 6.32863913e-22 -1.31280497e-20 8.91850061e-19 C44 5.74325671 e-22 -2.16776697e-20 -3.00994968e-18 C46 6.35531003e-24 3.38804527e-24 -5.59164118e-24 C48 -5.57913557e-25 -3.20270766e-24 -8.48881414e-24 C50 -1.7256835e-24 -1.3538911e-23 2.8296468e-22 C52 -3.33754858e-24 -6.04654145e-23 -6.46376294e-21 C54 3.48516782e-25 -7.28443369e-23 1.32941809e-20 C55 -5.23980471 e-27 -3.85287855e-27 -4.04572356e-27 C57 -4.69201423e-27 1.14702936e-26 -4.39721795e-27 C59 -3.05001052e-27 1.13591604e-26 -1.44344469e-25 C61 8.5077925e-28 -2.82985611e-26 -5.73252344e-24 C63 -1.61770546e-26 -9.78900011e-26 2.58611178e-23 C65 -1.33708124e-26 -1.27638251 e-25 -1.54141621e-23 C67 -1.10490492e-29 -1.44433652e-29 1.70927884e-28 C69 -4.15774494e-30 4.27636912e-29 -8.23476294e-29 C71 -2.07939058e-29 8.82142368e-29 -2.37746803e-28 C73 6.3114047e-29 1.79835007e-28 5.30603865e-26 C75 1.19639508e-28 -2.14539274e-28 6.20757645e-26 C77 1.38131207e-29 -6.24476296e-28 -2.94223714e-25 C78 -1.27622264e-33 8.64007915e-32 -4.19387448e-33 C80 4.1304249e-32 -9.26936252e-32 -3.59838074e-31 C82 3.73020917e-32 8.32970473e-32 4.82922533e-31 C84 -3.48343186e-32 4.58966665e-31 1.04705138e-29 C86 -1.27316151e-31 1.50473043e-31 -1.405332e-28 C88 1.02926202e-31 -4.84455042e-30 -1.06018689e-27 C90 1.5520292e-31 -5.08388151 e-30 2.33228215e-27 C92 -5.77087985e-36 -2.3208429e-35 -4.51778365e-34 C94 3.27155345e-35 -2.05177822e-34 5.85507675e-34 C96 2.22541179e-34 -1.4182386e-34 -5.47410971 e-33 C98 1.2929922e-34 -7.3618392e-34 -2.13598023e-31 C100 -1.21610939e-33 -3.56951639e-34 -1.18107064e-30 C102 -1.38966172e-33 -2.1 1845232e-32 3.21534062e-30 C104 -2.04957978e-34 -1.52325188e-32 -7.77916404e-30 C105 2.32832807e-38 -3.20761498e-37 5.85487373e-38 C107 -1.15973567e-37 1.32126849e-37 1.86190597e-36 C109 -1.3025795e-37 -6.18369858e-37 2.34340078e-36 cm -6.82017694e-37 -2.75175491 e-36 9.43098976e-35C18 -1.38913507e-13 -6.9799513e-14 2.79609875e-12 C20 -4.27413144e-14 -5.7781008e-13 -3.54664231e-14 C21 -4.76669999e-16 -2.33642412e-16 5.21059427e-16 C23 4.42788651 e- C27 -6.38302953e-17 -1.53772654e-15 -5.41292875e-14 C29 -1.40930006e-18 1.96589441 e- 19-2.38101659e-18 C31 3.79697584e-19 -6.83863216e-19 -1.51800562e-17 C33 3.33127907e-19 -2.23362525e-18 -8.74528208e-17 C35 -1.65970278e-20 -5.24001813e-18 4.78342984e 16 C36 6.46259394e-21 -7.31967756e-22 -1.77577302e-21 C38-9.63192307e-22 6.52093992e-22 4.99470817e-21 C40 -4.6441045e-22 -2.83339637e-21 5.13512935e-20 C42 6.32863913e-22 C46 6.35531003e-24 3.38804527e-24 -5.59164118e-24 C48 -5.57913557e-25 -3.20270766e-24 - 8.48881414e-24 C50 -1.7256835e-24 -1.3538911e-23 2.8296468e-22 C52-3.33754858e-24 -6.04654145e-23 -6.46376294e-21 C54 3.48516782e-25 -7.28443369e-2 3 1.32941809e-20 C55-5.23980471 e-27 -3.85287855e-27 -4.04572356e-27 C57 -4.69201423e-27 1.14702936e-26 -4.39721795e-27 C59-3.05001052e-27 1.13591604e-26 -1.44344469e C63 -1.61770546e-26 -9.78900011e-26 2.58611178e-23 C65 -1.33708124e-26 -1.27638251 e-25 -1.54141621e-23 C67 -1.10490492 e-29 -1.44433652e-29 1.70927884e-28 C69 -4.15774494e-30 4.27636912e-29 -8.23476294e-29 C71 -2.07939058e-29 8.82142368e-29 -2.37746803e-28 C73 6.3114047e-29 1.79835007- 28 5.30603865e-26 C75 1.19639508e-28 -2.14539274e-28 6.20757645e-26 C77 1.38131207e-29 -6.24476296e-28 -2.94223714e-25 C78 -1.27622264e-33 8.64007915e-32 -4.19387448e-33 C80 4.1304249e-32 -9.26936252e-32 -3.59838074e-31 C82 3.73020917e-32 8.32970473e-32 4.82922533e-31 C84 -3.48343186e-32 4.58966665e-31 1.04705138e-29 C86 -1.27316151e-31 1.50473043e 31 -1.405332e-28 C88 1.02926202e-31 -4.84455042e-30 -1.06018689e-27 C90 1.5520292e-31 -5.08388151 e-30 2.33228215e-27 C92 -5.77087985e-36 -2 C94 2.22541179e-34 -1.4182386e-34 -5.47410971 e-33 C98 1.2929922e-34 -7.3618392e-34 -2.13598023 e-31 C100 -1.21610939e-33 -3.56951639e-34 -1.18107064e-30 C102 -1.38966172e-33 -2.1 1845232e-32 3.21534062e-30 C104 -2.04957978e-34 -1.52325188e-32 -7.77916404e-30 C105 2.32832807e-38 -3.20761498e-37 5.85487373e-38 C107 -1.15973567e-37 1.32126849e-37 1.86190597e-36 C109 -1.3025795e-37 -6.18369858e-37 2.34340078e-36 cm -6.82017694e-37 - 2.75175491 e-36 9.43098976e-35
C113 7.41982901e-37 -3.00662899e-36 1.09550777e-33 C115 2.83757994e-36 5.08471416e-36 5.96651054e-33 C117 2.33564828e-36 -2.86756309e-35 -1.87181852e-33 C119 -6.03189805e-37 -1.32771814e-35 1.02742882e-32 Tabelle 3c zu Fig. 23 C113 7.41982901e-37 -300662899e-36 1.09550777e-33 C115 2.83757994e-36 5.08471416e-36 5.96651054e-33 C117 2.33564828e-36 -2.86756309e-35 -1.87181852e-33 C119 -6.03189805e-37 -1.32771814 e-35 1.02742882e-32 Table 3c to Fig. 23
Koeffizient M1Coefficient M1
KY 0.00000000 KX 0.00000000 RX -3798.97531500KY 0.00000000 KX 0.00000000 RX -3798.97531500
C7 -4.03766338e-09 C9 4.3194842e-09 C10 6.01080824e-11 C12 1.63211364e-11 C14 -3.27624583e-11 C16 3.92017522e-15 C18 -2.92031813e-14 C20 2.05676259e-14 C21 3.06304743e-17 C23 -2.76883852e-17 C25 -6.03618233e-17 C27 -1.63598483e-16 C29 -1.25011464e-19 C31 1.42263601 e-19 C33 2.19802e-19 C35 -7.16733765e-19 C36 -2.29879048e-22 C38 -4.25456289e-23 C40 6.77664934e-22 C42 -5.73097971 e-23 C44 1.03597287e-20 C46 1.49835059e-25 C48 -4.94722185e-26 C50 -4.46231936e-24 C52 3.41955215e-24 C54 -9.96533789e-24 C55 3.57497059e-28 C57 -2.65994162e-27 C59 -3.06521007e-26 C61 -6.30968074e-26 C63 -1.0307333e-25 C65 -3.32819547e-25 C67 1.85388921e-30 C69 -3.53159276e-30 C71 3.10470607e-29 C73 4.14868733e-29 C75 -7.66872797e-29 C77 8.66901471e-28 C78 4.01154289e-33 C80 1.8007793e-32 C82 2.61587328e-31 C84 1.39265589e-30 C86 3.42875335e-30 C88 4.66556397e-30 C90 5.03706516e-30 C92 -1.9480775e-36 C94 2.1044583e-35 Koeffizient M1 C7 -4.03766338e-09 C9 4.3194842e-09 C10 6.01080824e-11 C12 1.63211364e-11 C14-3.27624583e-11 C16 3.92017522e-15 C18 -2.92031813e-14 C20 2.05676259e-14 C21 3.06304743e-17 C23 - C36 -2.29879048e-22 C38 -4.25456289e-23 C37-1.23511464e-19 C31 1.42263601 e-19 C33 2.19802e-19 C35 -7.16733765e-19 C40-4. 772 928-4 C54-9.965337e-24 C54-9.96533789e-24 C55 3.57497059e-28 C57 -2.65994162e-27 C59-3.06521007e-26 C63-3.30968074e-26 C63-1.0307333e-25 C65-3.32819547e-25 C67 1.85388921e-30 C69-3.53159276e-30 C71 3.10470607e-29 C73 4.14868733e-29 C75-7.66872797e-29 C77-6.76901471e-28 C78 4.01154289e-33 C80 1.8007793e-32 C82 2.61587328e-31 C84 1.39265589e-30 C86 3.42875335e-30 C88 4.66556397e-30 C90 5.03706516e-30 C92 -1.9480775e -36 C94 2.1044583e-35 Coefficient M1
C96 3.40943999e-34 C98 -1.69349476e-34 C100 -2.17147474e-34 C102 -4.10866825e-33 C104 -2.24081208e-32 C105 -1.3866307e-38 C107 5.17463408e-39 C109 -8.29771816e-37 cm -8.04376424e-36 C96-C104 -2.24081208e-32 C105 -1.3866307e-38 C107 5.17463408e-39 C109 -8.29771816e-37 cm -8.04376424e -36
C1 13 -2.81931438e-35 C1 15 -6.54260577e-35 C1 17 -5.75688991 e-35 C1 19 2.4263521 1 e-36C1 13 -2.81931438e-35 C1 15 -6.54260577e-35 C1 17 -5.75688991 e-35 C1 19 2.4263521 1 e-36
Tabelle 3d zu Fig. 23 Table 3d to FIG. 23
Oberfläche DCX DCY DCZ Surface DCX DCY DCZ
Bildebene 0.00000000 0 .00000000 0 00000000 M10 0.00000000 0.00000000 887 59443974 M9 0.00000000 172.59978370 121 13732975 M8 -0.00000000 -99.24967241 1334 28063207 M7 -0.00000000 -43.1 1388355 1572 24075699 M6 -0.00000000 1 12.95031228 1761 46566363 M5 -0.00000000 503.77097618 2006 77295677 M4 -0.00000000 1 183.14523455 21 14 39526090 M3 -0.00000000 1743.06358961 1985 12864378 M2 -0.00000000 2003.97800329 1804 40694815 Blende -0.00000000 21 13.61386051 1637 66603203 M1 -0.00000000 2492.77847092 1061 00930582Image plane 0.00000000 0 .00000000 0 00000000 M10 0.00000000 0.00000000 0.00000000 172.59978370 887 59443974 M9 121 13732975 M8 -0.00000000 -99.24967241 1334 28063207 M7 -0.00000000 -43.1 1388355 1572 24075699 M6 -0.00000000 1 12.95031228 1761 46566363 M5 -0.00000000 503.77097618 2006 77295677 M4 -0.00000000 183.14523455 1 21 14 39526090 M3 -0.00000000 1743.06358961 1985 12864378 M2 -0.00000000 2003.97800329 1804 40694815 Cover -0.00000000 21 13.61386051 1637 66603203 M1 -0.00000000 2492.77847092 1061 00930582
Objektebene -0.00000000 2076.12855898 3021 09698946 Tabelle 4a zu Fig. 23 Object level -0.00000000 2076.12855898 3021 09698946 Table 4a to FIG. 23
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000 M10 6.34541885 0.00000000 -0.00000000 M9 192.66070633 0.00000000 -0.00000000 M8 89.67846951 0.00000000 0.00000000 M7 63.60604245 0.00000000 -0.00000000 M6 41.30053662 -0.00000000 0.00000000 M5 20.55849861 -0.00000000 -0.00000000 M4 -1.99914258 -0.00000000 -0.00000000 M3 -23.8541 1988 -0.00000000 -0.00000000 M2 -45.69125060 -0.00000000 0.00000000 Blende -3.79702826 180.00000000 -0.00000000 M1 202.66318975 0.00000000 -0.00000000Image plane -0.00000000 0.00000000 -0.00000000 M10 6.34541885 0.00000000 -0.00000000 192.66070633 0.00000000 -0.00000000 M9 M8 89.67846951 0.00000000 0.00000000 0.00000000 -0.00000000 M7 M6 63.60604245 41.30053662 -0.00000000 0.00000000 M5 20.55849861 -0.00000000 -0.00000000 M4 -1.99914258 -0.00000000 -0.00000000 M3 -23.8541 1988 -0.00000000 - 0.00000000 M2 -45.69125060 -0.00000000 0.00000000 Aperture -3.79702826 180.00000000 -0.00000000 M1 202.66318975 0.00000000 -0.00000000
Objektebene 17.00057091 -0.00000000 0.00000000 Tabelle 4b zu Fig. 23 Object level 17.00057091 -0.00000000 0.00000000 Table 4b to FIG. 23
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M10 6.31397756 0.66150254 M9 0.06437817 0.66566199 M8 76.73613039 0.83201039 M7 77.24808925 0.83978524 Oberfläche Einfallswinkel[deg] Reflektivität M10 6.31397756 0.66150254 M9 0.06437817 0.66566199 M8 76.73613039 0.83201039 M7 77.24808925 0.83978524 Surface angle of incidence [deg] reflectivity
M6 80.62494847 0.88641903 M5 77.75809141 0.84731989 M4 79.54253199 0.87222913 M3 79.84982464 0.87631951 M2 78.33671 121 0.85563145 M1 10.48014292 0.65352413 M6 80.62494847 0.88641903 M5 77.75809141 0.84731989 M4 79.54253199 0.87222913 M3 79.84982464 0.87631951 M2 78.33671 121 0.85563145 M1 10.48014292 0.65352413
Gesarnttransmission 0.0988 Tabelle 5 zu Fig. 23 Total transmission 0.0988 Table 5 to Fig. 23
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
0.00000000 58.6389491 1 0.000000000.00000000 58.6389491 1 0.00000000
42.42944258 58.04084453 0.0000000042.42944258 58.04084453 0.00000000
83.98447050 56.24367346 0.0000000083.98447050 56.24367346 0.00000000
123.78358698 53.24189366 0.00000000123.78358698 53.24189366 0.00000000
160.93247075 49.03816514 0.00000000160.93247075 49.03816514 0.00000000
194.52480961 43.66001421 0.00000000194.52480961 43.66001421 0.00000000
223.65792956 37.17775396 0.00000000223.65792956 37.17775396 0.00000000
247.46839690 29.71554726 0.00000000247.46839690 29.71554726 0.00000000
265.18506321 21.45178837 0.00000000265.18506321 21.45178837 0.00000000
276.18941267 12.612271 18 0.00000000276.18941267 12.612271 18 0.00000000
280.07094098 3.45771 151 0.00000000280.07094098 3.45771 151 0.00000000
276.66743077 -5.73341781 0.00000000276.66743077 -5.73341781 0.00000000
266.08310291 -14.68331396 0.00000000266.08310291 -14.68331396 0.00000000
248.68009273 -23.13096284 0.00000000248.68009273 -23.13096284 0.00000000
225.04389947 -30.84493482 0.00000000225.04389947 -30.84493482 0.00000000
195.93172761 -37.63275631 0.00000000195.93172761 -37.63275631 0.00000000
162.21535772 -43.34567089 0.00000000162.21535772 -43.34567089 0.00000000
124.82654256 -47.87714206 0.00000000124.82654256 -47.87714206 0.00000000
84.71 129442 -51.15623627 0.0000000084.71 129442 -51.15623627 0.00000000
42.80037098 -53.13928275 0.0000000042.80037098 -53.13928275 0.00000000
0.00000000 -53.80277791 0.000000000.00000000 -53.80277791 0.00000000
-42.80037098 -53.13928275 0.00000000-0000000000 -53.13928275 0.00000000
-84.71 129442 -51.15623627 0.00000000-0.84 129442 -51.15623627 0.00000000
-124.82654256 -47.87714206 0.00000000-124.82654256 -47.87714206 0.00000000
-162.21535772 -43.34567089 0.00000000-162.21535772 -43.34567089 0.00000000
-195.93172761 -37.63275631 0.00000000-1900.93172761 -37.63275631 0.00000000
-225.04389947 -30.84493482 0.00000000-225.04389947 -30.84493482 0.00000000
-248.68009273 -23.13096284 0.00000000-248.68009273 -23.13096284 0.00000000
-266.08310291 -14.68331396 0.00000000-266.08310291 -14.68331396 0.00000000
-276.66743077 -5.73341781 0.00000000-276.66743077 -5.73341781 0.00000000
-280.07094098 3.45771 151 0.00000000-280.07094098 3.45771 151 0.00000000
-276.18941267 12.612271 18 0.00000000-276.18941267 12.612271 18 0.00000000
-265.18506321 21.45178837 0.00000000-265.18506321 21.45178837 0.00000000
-247.46839690 29.71554726 0.00000000-247.46839690 29.71554726 0.00000000
-223.65792956 37.17775396 0.00000000-223.65792956 37.17775396 0.00000000
-194.52480961 43.66001421 0.00000000-19.4.52480961 43.66001421 0.00000000
-160.93247075 49.03816514 0.00000000-160.93247075 49.03816514 0.00000000
-123.78358698 53.24189366 0.00000000-123.78358698 53.24189366 0.00000000
-83.98447050 56.24367346 0.00000000-83.98447050 56.24367346 0.00000000
-42.42944258 58.04084453 0.00000000-42.42944258 58.04084453 0.00000000
Tabelle 6 zu Fig. 23 Die Projektionsoptik 30 hat eine Gesamttransmission von 9,88 %. Table 6 to FIG. 23 The projection optics 30 has a total transmission of 9.88%.
Eine bildseitige numerische Apertur der Projektionsoptik 30 beträgt 0,55. Der Verkleinerungsfaktor ßx in der ersten Abbildungslicht-Ebene xz beträgt 4. Der Verkleinerungsfaktor ßy in der zweiten Abbildungslicht-Ebene yz beträgt 8. An image-side numerical aperture of the projection optics 30 is 0.55. The reduction factor β x in the first imaging light plane xz is 4. The reduction factor β y in the second imaging light plane yz is 8.
Ein objektseitiger Hauptstrahlwinkel CRA beträgt 5,0°. Eine maximale Obskuration der Eintrittspupille beträgt 20 %. Ein Objekt-Bildversatz dois beträgt etwa 2080 mm. Die Spiegel der Projektionsoptik 30 können in einem Quader mit xyz-Kantenlängen 1008 mm x 3091 mm x 2029 mm untergebracht werden. An object-side main beam angle CRA is 5.0 °. A maximum obscuration of the entrance pupil is 20%. An object image offset dois is about 2080 mm. The mirrors of the projection optics 30 can be accommodated in a cuboid with xyz edge lengths of 1008 mm × 3091 mm × 2029 mm.
Die Objektebene 5 ist zur Bildebene 9 um die x- Achse um einen Winkel T von 17° verkippt. The object plane 5 is tilted to the image plane 9 about the x-axis by an angle T of 17 °.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegel MIO und der Bildebene 9 beträgt 87 mm. Ein mittlerer Wellenfrontfehler rms beträgt 10,60 m . A working distance between the wafer-near mirror MIO and the image plane 9 is 87 mm. A mean wavefront error rms is 10.60 m.
Die Aperturblende AS ist bei der Projektionsoptik 30 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 angeordnet. Im Bereich der Aperturblende AS ist das Abbildungslichtbündel vollumfänglich zugänglich. The aperture diaphragm AS is arranged in the projection optical system 30 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the imaging light beam is fully accessible.
Anhand der Fig. 26 bis 28 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 31 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 25 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optical system 31, which can be used instead of the projection optical system 7 in the projection exposure apparatus 1 according to FIG. 1, is explained below with reference to FIGS. 26 to 28. Components and functions which have already been explained above in connection with FIGS. 1 to 25 may carry the same reference numbers and will not be discussed again in detail.
Die Fig. 26 zeigt einen Meridionalschnitt der Projektionsoptik 31. Die Fig. 27 zeigt eine sagittale Ansicht der Projektionsoptik 31. Die Fig. 28 zeigt wiederum die Randkonturen der Reflexions- flächen der zehn Spiegel Ml bis MIO der Projektionsoptik 31. FIG. 26 shows a meridional section of the projection optics 31. FIG. 27 shows a sagittal view of the projection optics 31. FIG. 28 again shows the edge contours of the reflection surfaces of the ten mirrors M1 to M10 of the projection optics 31.
Die Projektionsoptik 31 hat drei NI-Spiegel, nämlich die Spiegel Ml, M9 und MIO. Die Projektionsoptik 31 hat sieben GI-Spiegel, nämlich die Spiegel M2 bis M8. Die Spiegel M2 bis M8 haben alle die gleiche Richtung der Spiegel-Umlenkwirkung. Diesbezüglich ähnelt die Projektionsoptik 31 der Projektionsoptik 30 nach den Fig. 23 bis 25. The projection optics 31 has three NI mirrors, namely mirrors M1, M9 and MIO. The projection optics 31 has seven GI mirrors, namely the mirrors M2 to M8. The mirrors M2 to M8 all have the same direction of the mirror deflection effect. In this regard, the projection optics 31 are similar to the projection optics 30 of FIGS. 23 to 25.
Die Spiegel Ml bis MIO sind wiederum als Freiformflächenspiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. The mirrors M1 to MIO are again embodied as free-form surface mirrors, for which the free-form surface equation (1) specified above applies.
Die nachfolgenden Tabellen zeigen wiederum die Spiegelparameter der Spiegel Ml bis MIO der Projektionsoptik 31 The following tables again show the mirror parameters of the mirrors M1 to MIO of the projection optics 31
Ml M2 M3 M4 M5 maximaler M1 M2 M3 M4 M5 maximum
12.8 82.0 79.3 83.0 80.4  12.8 82.0 79.3 83.0 80.4
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächenerstre- ckung in x-Richtung 507.0 348.8 349.6 328.9 399.0 Reflection surface area in x-direction 507.0 348.8 349.6 328.9 399.0
[mm] [Mm]
Reflexionsflächenerstre- ckung in y-Richtung 266.7 235.5 309.7 283.1 329.1 Reflection surface displacement in the y-direction 266.7 235.5 309.7 283.1 329.1
[mm] [Mm]
maximaler  maximum
Spiegeldurchmesser 507.1 349.1 385.0 408.8 421.5 Mirror diameter 507.1 349.1 385.0 408.8 421.5
[mm] [Mm]
M6 M7 M8 M9 MIO maximaler M6 M7 M8 M9 MIO maximum
83.0 80.4 79.5 21.6 7.0  83.0 80.4 79.5 21.6 7.0
Einfallswinkel [°]  Angle of incidence [°]
Reflexionsflächenerstre- ckung in x-Richtung 388.8 358.0 290.1 233.2 891.4 Reflection surface extension in x-direction 388.8 358.0 290.1 233.2 891.4
[mm] [Mm]
Reflexionsflächenerstre- Reflexionsflächenerstre-
194.1 117.0 206.0 197.3 879.5 ckung in y-Richtung [mm] 194.1 117.0 206.0 197.3 879.5 in the y-direction [Mm]
maximaler  maximum
Spiegeldurchmesser 393.8 358.0 290.3 234.2 892.0 Mirror diameter 393.8 358.0 290.3 234.2 892.0
[mm] [Mm]
Alle Spiegel Ml bis MIO der Projektionsoptik 31 haben ein y/x- Aspektverhältnis, das kleiner ist als 1. Den größten maximalen Durchmesser hat der im Abbildungsstrahlengang letzte Spiegel MIO mit 892,0 mm. Die Maximaldurchmesser aller anderen Spiegel Ml bis M9 sind kleiner als 550 mm. Acht der zehn Spiegel haben einen maximalen Durchmesser, der kleiner ist als 500 mm. Sechs der zehn Spiegel haben einen maximalen Durchmesser, der kleiner ist als 400 mm. Die Projektionsoptik 31 hat wiederum genau ein Erstebenen-Zwischenbild 18 im Bereich der Durchtrittsöffnung 17 im Spiegel MIO und zwei Zweitebenen-Zwischenbilder 19, 20. Das erste der beiden Zweitebenen-Zwischenbilder 19 liegt im Abbildungsstrahlengang im Bereich der Reflexion am GI-Spiegel M4. Das zweite der beiden Zweitebenen-Zwischenbilder 20 liegt im Abbildungsstrahlengang im Bereich der Reflexion am GI-Spiegel M7. All mirrors Ml to MIO of the projection optics 31 have a y / x aspect ratio which is smaller than 1. The largest maximum diameter has the last mirror MIO in the imaging beam path of 892.0 mm. The maximum diameters of all other mirrors M1 to M9 are less than 550 mm. Eight of the ten mirrors have a maximum diameter that is less than 500 mm. Six of the ten mirrors have a maximum diameter that is less than 400 mm. The projection optics 31 in turn has exactly one first plane intermediate image 18 in the region of the passage opening 17 in the mirror MIO and two second plane intermediate images 19, 20. The first of the two second plane intermediate images 19 lies in the imaging beam path in the region of reflection at the GI mirror M4. The second of the two second-level intermediate images 20 lies in the imaging beam path in the region of the reflection at the GI mirror M7.
Der Spiegel M7 (vergleiche Fig. 28) hat eine Reflexionsflächen-Randkontur R mit einer Grundform GF, die wiederum der gebogenen Grundform des Objektfeldes 4 beziehungsweise des Bildfeldes 8 der Projektionsoptik 31 entspricht. Längs der in der Fig. 28 oben gezeigten, in Bezug auf die Grundform GF langen Seitenkante dieser Randkontur RK sind zwei Konturaus- Wölbungen KA angeordnet. Die Funktion dieser Konturauswölbungen KA entspricht derjenigen, die vorstehend in Bezugnahme auf den Spiegel M6 der Projektionsoptik 7 der Ausführung nach den Fig. 2 bis 4 bereits erläutert wurde. The mirror M7 (see FIG. 28) has a reflection surface edge contour R with a basic shape GF, which in turn corresponds to the curved basic shape of the object field 4 or of the image field 8 of the projection optics 31. Along the side edge of this edge contour RK which is shown in FIG. 28 above, with respect to the basic shape GF, two contour convexities KA are arranged. The function of this contour bulge KA corresponds to that which has already been explained above with reference to the mirror M6 of the projection optics 7 of the embodiment according to FIGS. 2 to 4.
Die optischen Designdaten der Projektionsoptik 31 können den nachfolgenden Tabellen ent- nommen werden, die in ihrem den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. The optical design data of the projection optics 31 can be taken from the following tables, which correspond in their tables to the projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 26 Embodiment FIG. 26
NA 0.55 NA 0.55
Wellenlänge 13.5 nm beta x 4.0 beta_y -7.5 Wavelength 13.5 nm beta x 4.0 beta_y -7.5
Feldgröße_x 26.0 mm Feldgröße_y 1.0 mm Feldkrümmung -0.012345 1/mm rms 7.8 ml Blende AS Feldgröße_x 26.0 mm Feldgröße_y 1.0 mm field curvature -0.012345 1 / mm rms 7.8 ml aperture AS
Tabelle 1 zu Fig. 26 Table 1 to FIG. 26
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M10 -850.9984003 0.0023394 -842.5330814 0.0023847 REFLM10 -850.9984003 0.0023394 -842.5330814 0.0023847 REFL
M9 690.4525083 -0.0028966 439.5683912 -0.0045499 REFLM9 690.4525083 -0.0028966 439.5683912 -0.0045499 REFL
M8 -1626.5101949 0.0003056 18899.4493659 -0.0004259 REFLM8 -1626.5101949 0.0003056 18899.4493659 -0.0004259 REFL
M7 -894.6483361 0.0005281 -33415.4312586 0.0002534 REFLM7 -894.6483361 0.0005281 -33415.4312586 0.0002534 REFL
M6 -1304.5130313 0.000281 1 -18951.9259358 0.0005756 REFLM6 -1304.5130313 0.000281 1 -18951.9259358 0.0005756 REFL
M5 -2002.4714622 0.0002249 -1848.6392687 0.0048054 REFLM5 -2002.4714622 0.0002249 -1848.6392687 0.0048054 REFL
M4 -13571.6618991 0.0000291 -2667.7243909 0.0038029 REFLM4 -13571.6618991 0.0000291 -2667.7243909 0.0038029 REFL
M3 2929.4401727 -0.0001380 -5283.0628904 0.0018729 REFLM3 2929.4401727 -0.0001380 -5283.0628904 0.0018729 REFL
M2 1765.1515098 -0.0002484 1283.3399004 -0.0071079 REFLM2 1765.1515098 -0.0002484 1283.3399004 -0.0071079 REFL
M1 -2088.8983816 0.0009404 -1280.5878935 0.0015901 REFLM1 -2088.8983816 0.0009404 -1280.5878935 0.0015901 REFL
Tabelle 2 zu Fig. 26 Table 2 to FIG. 26
Koeffizient M10 M9 M8Coefficient M10 M9 M8
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -850.99840030 690.45250830 -1626.51019500KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -850.99840030 690.45250830 -1626.51019500
C7 -7.03002946e-09 -1.12832575e-06 6.12641257e-08 C9 1.55280432e-08 1.2159954e-06 1.3921232e-07 C10 -1.121 1 1283e-1 1 1.70900183e-09 -1.05449944e-10 C12 -3.09329566e-1 1 5.22963449e-09 5.54183446e-10 C14 -1.74817678e-12 1.12031 1 12e-09 3.43759946e-10 C16 -1.17459377e-14 -1.10629457e-1 1 1.01509149e-12 C18 6.10523134e-15 9.95900689e-12 6.2656672e-13 C20 1.61333143e-14 -4.44954285e-12 1.72502948e-12 C21 -1.59220258e-17 1.52048436e-14 5.145233e-16 C23 -7.04797949e-17 6.22062916e-14 5.09268635e-17 C25 -5.27874467e-17 7.53214031 e-14 2.67922335e-15 C27 -1.10240684e-17 1.53301075e-14 7.76389234e-15 C29 -2.16726344e-20 -1.38206693e-16 -2.15656063e-18 C31 -9.04198121 e-21 3.08632687e-17 -8.64279245e-18 C33 2.30879218e-20 -5.76656034e-17 1.5099794e-17 C35 1.00834913e-20 -1.03425145e-16 2.63359643e-17 C36 -2.14878734e-23 7.59951862e-20 -9.46694556e-21 C38 -1.19644095e-22 6.67732433e-19 1.9173226e-21 C40 -1.66028267e-22 1.35355603e-18 -6.98066679e-20 C42 -9.26934025e-23 6.38737212e-19 -5.18396999e-20 C44 -2.71890576e-23 1.08072084e-19 2.45233569e-19 C46 -3.03368513e-26 -2.20243567e-21 1.5327447e-22 C48 -3.19077558e-26 -2.43245202e-21 1.04282583e-21 C50 1.1631 1692e-26 -7.73188086e-21 -1.17201 163e-21 C52 1.8557501 e-26 -1.40710351 e-20 -4.02316222e-21 C54 -1.13552496e-26 -1.34258539e-20 5.39197892e-21 Koeffizient M10 M9 M8C7 -7.03002946e-09 -1.12832575e-06 6.12641257e-08 C9 1.55280432e-08 1.2159954e-06 1.3921232e-07 C10 -1.121 1 1283e-1 1 1.70900183e-09 -1.05449944e-10 C12 -3.09329566e- 1 1 5.22963449e-09 5.54183446e-10 C14 -1.74817678e-12 1.12031 1 12e-09 3.43759946e-10 C16 -1.17459377e-14 -1.10629457e-1 1 1.01509149e-12 C18 6.10523134e-15 9.95900689e-12 6.2656672e-13 C20 1.61333143e-14 -4.44954285e-12 1.72502948e-12 C21 -1.59220258e-17 1.52048436e-14 5.145233e-16 C23 -7.04797949e-17 6.22062916e-14 5.09268635e-17 C25 -5.27874467e -17 7.53214031 e-14 2.67922335e-15 C27 -1.10240684e-17 1.53301075e-14 7.76389234e-15 C29 -2.16726344e-20 -1.38206693e-16 -2.15656063e-18 C31 -9.04198121 e-21 3.08632687e-17 -8.64279245e-18 C33 2.30879218e-20 -5.76656034e-17 1.5099794e-17 C35 1.00834913e-20 -1.03425145e-16 2.63359643e-17 C36 -2.14878734e-23 7.59951862e-20 -9.46694556e-21 C38 - 6.4268225e-22 6.67732433e-19 6.727.32.12e-21 C40 -1.66028267e-22 1.35355603e-18 -6.98066679e-20 C42 -9.26934025e-23 6.38737212e-19 -5.183969 99e-20 C44 -2.71890576e-23 1.08072084e-19 2.45233569e-19 C46-3.03368513e-26 -2.20243567e-21 1.5327447e-22 C48 -3.19077558e-26 -2.43245202e-21 1.04282583e-21 C50 1.1631 1692e -26 -7.73188086e-21 -1.17201 163e-21 C52 1.8557501 e-26 -1.40710351 e-20 -4.02316222e-21 C54 -1.13552496e-26 -1.34258539e-20 5.39197892e-21 Coefficient M10 M9 M8
C55 -3.49082911e-29 -5.77685598e-24 1.5698251 e-24C55-3.49082911e-29 -5.77685598e-24 1.5698251 e-24
C57 -3.19623602e-28 3.81572271 e-23 -2.70267218e-24C57 -3.19623602e-28 3.81572271 e-23 -2.70267218e-24
C59 -6.62888681 e-28 1.13738432e-22 -2.77569561 e-24C59 -6.62888681 e-28 1.13738432e-22 -2.77569561 e-24
C61 -5.49474662e-28 9.8457023e-23 -8.1 161275e-24C61 -5.49474662e-28 9.8457023e-23 -8.1 161275e-24
C63 -2.33723415e-28 6.44703944e-23 -8.56751222e-24C63-2.33723415e-28 6.44703944e-23 -8.56751222e-24
C65 -6.1 1229244e-29 -7.54582826e-23 4.1 168243e-23C65 -6.1 1229244e-29 -7.54582826e-23 4.1 168243e-23
C67 -8.43043691 e-32 -2.50016809e-26 -1.2946523e-26C67 -8.43043691 e-32 -2.50016809e-26 -1.2946523e-26
C69 -2.12547632e-31 5.66061831 e-26 -9.65290282e-26C69 -2.12547632e-31 5.66061831 e-26 -9.65290282e-26
C71 -1.79344385e-31 4.54813421 e-25 -6.79293961 e-26C71-1.79344385e-31 4.54813421 e-25 -6.79293961 e-26
C73 1.06815298e-31 1.29533612e-24 4.956337e-25C73 1.06815298e-31 1.29533612e-24 4.956337e-25
C75 1.05755587e-31 1.55384636e-24 6.14365077e-25C75 1.05755587e-31 1.55384636e-24 6.14365077e-25
C77 8.46368304e-33 5.60304945e-25 -3.49493613e-25C77 8.46368304e-33 5.60304945e-25 -3.49493613e-25
C78 1.06144694e-35 8.75573136e-28 -1.03825281 e-28C78 1.06144694e-35 8.75573136e-28 -1.03825281 e-28
C80 7.27835685e-34 -2.58893701 e-27 2.13916224e-28C80 7.27835685e-34 -2.58893701 e-27 2.13916224e-28
C82 2.42013765e-33 -1.2067901 e-26 1.24128655e-28C82 2.42013765e-33 -1.2067901 e-26 1.24128655e-28
C84 2.59612915e-33 -1.49597539e-26 1.36300786e-27C84 2.59612915e-33 -1.49597539e-26 1.36300786e-27
C86 8.89251311e-34 -5.08486485e-27 2.54214587e-27C86 8.89251311e-34 -5.08486485e-27 2.54214587e-27
C88 4.24278168e-35 -4.81867076e-27 2.75194399e-27C88 4.24278168e-35 -4.81867076e-27 2.75194399e-27
C90 -8.34509197e-36 5.09469282e-27 -5.79969549e-27C90 -8.34509197e-36 5.09469282e-27 -5.79969549e-27
C92 1.70298609e-37 8.27996984e-31 4.94243267e-31C92 1.70298609e-37 8.27996984e-31 4.94243267e-31
C94 7.35037693e-37 -5.9450189e-30 3.34975554e-30C94 7.35037693e-37 -5.9450189e-30 3.34975554e-30
C96 1.54424725e-36 -2.94477093e-29 8.03367696e-30C96 1.54424725e-36 -2.94477093e-29 8.03367696e-30
C98 6.13331746e-37 -1.01069595e-28 -3.3727749e-29C98 6.13331746e-37 -1.01069595e-28 -3.3727749e-29
C100 -1.28065428e-36 -2.0690222e-28 -7.64674986e-29C100 -1.28065428e-36 -2.0690222e-28 -7.64674986e-29
C102 -9.35297851 e-37 -2.09170374e-28 -3.50268561 e-29C102 -9.35297851 e-37 -2.09170374e-28 -3.50268561 e-29
C104 -8.72230446e-38 -1.92939795e-29 1.77267398e-29C104 -8.72230446e-38 -1.92939795e-29 1.77267398e-29
C105 -4.33579071 e-40 -3.92839494e-32 2.73420503e-33C105 -4.33579071 e-40 -3.92839494e-32 2.73420503e-33
C107 -6.67869952e-39 1.31611785e-31 -6.73493598e-33C107 -6.67869952e-39 1.31611785e-31 -6.73493598e-33
C109 -2.55657274e-38 9.19416961e-31 -8.86390859e-34 cm -4.10862904e-38 1.67494418e-30 -1.04183129e-31C109 -2.55657274e-38 9.19416961e-31 -8.86390859e-34 cm -4.10862904e-38 1.67494418e-30 -1.04183129e-31
C113 -3.02138728e-38 1.02449935e-30 -3.89787802e-31C113 -3.02138728e-38 1.02449935e-30 -3.89787802e-31
C115 -1.06320348e-38 -3.76885269e-31 -4.0813407e-31C115 -1.06320348e-38 -3.76885269e-31 -4.0813407e-31
C117 -2.62841711e-39 -3.60960998e-31 -6.43010051 e-32C117 -2.62841711e-39 -3.60960998e-31 -6.43010051 e-32
C119 -3.19060904e-40 -9.39336476e-32 7.0451153e-31C119 -3.19060904e-40 -9.39336476e-32 7.0451153e-31
C121 -8.77211122e-43 -4.89468126e-35 -7.66026768e-36C121 -8.77211122e-43 -4.89468126e-35 -7.66026768e-36
C123 -3.85601224e-42 6.89110707e-35 -3.23128947e-35C123 -3.85601224e-42 6.89110707e-35 -3.23128947e-35
C125 -9.53448338e-42 6.3366408e-34 -2.45165302e-34C125 -9.53448338e-42 6.3366408e-34 -2.45165302e-34
C127 -9.67154428e-42 2.01379939e-33 6.53749443e-34C127 -9.67154428e-42 2.01379939e-33 6.53749443e-34
C129 6.71055197e-43 6.28157945e-33 2.58964212e-33C129 6.71055197e-43 6.28157945e-33 2.58964212e-33
C131 6.86184229e-42 9.91715428e-33 3.69905543e-33C131 6.86184229e-42 9.91715428e-33 3.69905543e-33
C133 3.00403221 e-42 9.21971687e-33 2.53197671 e-33C133 3.00403221 e-42 9.21971687e-33 2.53197671 e-33
C135 2.12945038e-43 1.25764882e-33 4.45495448e-33C135 2.12945038e-43 1.25764882e-33 4.45495448e-33
C136 1.13878838e-45 6.8751793e-37 -2.4618018e-38C136 1.13878838e-45 6.8751793e-37 -2.4618018e-38
C138 1.87411622e-44 -2.13811275e-36 5.65630181 e-38C138 1.87411622e-44 -2.13811275e-36 5.65630181 e-38
C140 8.54897409e-44 -2.28771775e-35 -2.62366196e-37C140 8.54897409e-44 -2.28771775e-35 -2.62366196e-37
C142 1.78978429e-43 -5.83739868e-35 2.3076713e-36C142 1.78978429e-43 -5.83739868e-35 2.3076713e-36
C144 1.87587925e-43 -6.00556142e-35 1.27178851 e-35C144 1.87587925e-43 -6.00556142e-35 1.27178851 e-35
C146 9.29426856e-44 -4.29425805e-37 2.38221259e-35C146 9.29426856e-44 -4.29425805e-37 2.38221259e-35
C148 2.25947742e-44 4.99346508e-35 2.24046545e-35C148 2.25947742e-44 4.99346508e-35 2.24046545e-35
C150 5.2803677e-45 4.17428318e-35 1.09648004e-35C150 5.2803677e-45 4.17428318e-35 1.09648004e-35
C152 5.67509953e-46 6.18032669e-36 9.30861482e-36C152 5.67509953e-46 6.18032669e-36 9.30861482e-36
C154 7.54374179e-49 0 0C154 7.54374179e-49 0 0
C156 4.33032443e-48 0 0C156 4.33032443e-48 0 0
C158 1.44192772e-47 0 0 Koeffizient M10 M9 M8C158 1.44192772e-47 0 0 Coefficient M10 M9 M8
C160 2.32499596e-47 0 0C160 2.32499596e-47 0 0
C162 1.17862963e-47 0 0C162 1.17862963e-47 0 0
C164 -1.16609868e-47 0 0C164 -1.16609868e-47 0 0
C166 -1.42697874e-47 0 0C166 -1.42697874e-47 0 0
C168 -4.03481152e-48 0 0C168 -4.03481152e-48 0 0
C170 -2.03671085e-49 0 0C170 -2.03671085e-49 0 0
C171 -1.661131e-51 0 0C171 -1.661131e-51 0 0
C173 -2.82534838e-50 0 0C173 -2.82534838e-50 0 0
C175 -1.41975872e-49 0 0C175 -1.41975872e-49 0 0
C177 -3.59720313e-49 0 0C177 -3.59720313e-49 0 0
C179 -5.05571087e-49 0 0C179 -5.05571087e-49 0 0
C181 -3.89904427e-49 0 0C181 -3.89904427e-49 0 0
C183 -1.57429847e-49 0 0C183 -1.57429847e-49 0 0
C185 -4.02999425e-50 0 0C185 -4.02999425e-50 0 0
C187 -1.06893714e-50 0 0C187 -1.06893714e-50 0 0
C189 -1.25335447e-51 0 0C189 -1.25335447e-51 0 0
Tabelle 3a zu Fig. 26 Table 3a to Fig. 26
Koeffizient M7 M6 M5Coefficient M7 M6 M5
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -894.64833610 -1304.51303100 -2002.47146200KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -894.64833610 -1304.51303100 -2002.47146200
C7 1.08112771e-07 1.04335481 e-07 1.10979512e-07 C9 -1.13000051e-07 -2.20798445e-08 6.00145368e-09 C10 -1.17589399e-10 -4.78714462e-11 6.40363293e-11 C12 4.20978683e-10 -2.5290518e-10 1.95262505e-10 C14 -1.39671003e-09 4.1 1188896e-10 -1.57759281 e-11 C16 -1.06370796e-13 2.58531409e-14 -2.55096961 e-13 C18 1.63118441e-12 -5.99630932e-13 -4.64367829e-13 C20 -5.21760043e-12 -1.84885391e-12 1.78763837e-13 C21 -4.20095046e-16 5.35288064e-18 4.78304505e-16 C23 -1.28788127e-15 1.16592841e-15 6.76366991 e-16 C25 2.24603177e-14 -4.24493445e-16 6.43409213e-16 C27 -6.66272337e-14 1.37793734e-14 -1.3197354e-16 C29 3.41059778e-18 9.53689977e-20 -2.58200642e-19 C31 -3.68397697e-18 -2.92104626e-19 -1.45175003e-18 C33 1.52001612e-16 -6.90020201 e-18 -1.00464425e-18 C35 -4.91058447e-16 -1.20787125e-16 -2.98913737e-19 C36 4.98603076e-21 -1.41092473e-21 -2.74358727e-21 C38 -9.16903491e-21 1.97406532e-21 5.24074149e-22 C40 -1.47271995e-19 -3.34460739e-20 1.40871746e-20 C42 3.07422757e-18 1.06724041 e-19 9.53341509e-21 C44 -6.2957705e-18 1.32000706e-18 1.47064843e-20 C46 -1.85365336e-22 4.76594089e-24 8.2933825e-24 C48 -1.28210118e-21 2.58185303e-23 6.44879498e-24 C50 -8.73336698e-21 -1.26595369e-22 -1.53890294e-23 C52 -1.99451811e-20 -3.26154339e-21 9.77860571 e-24 C54 -1.35148582e-19 -7.66852471 e-21 7.3231509e-25 C55 -2.04919022e-25 -2.00836232e-25 1.76764762e-25 C57 -2.13209361 e-25 2.12156909e-25 1.07292061 e-25 C59 6.67031327e-24 -6.13616768e-25 -2.86382758e-25 C61 -1.2510699e-22 4.10599237e-24 -5.40705817e-25 izient M7 M6 M5C7 1.081.37.107 e-07 1.10979512e-07 C9 -1.13000051e-07 -2.20798445e-08 6.00145368e-09 C10 -1.17589399e-10 -4.78714462e-11 6.40363293e-11 C12 4.20978683e-10 -2.5290518 e-10 C18 -1.63118441e-12 -5.99630932e-13 -4.64367829e-12 C16 -1.06370796e-13 2.58531409e-14 -2.55096961 e-13 C18-1.39671003e-09 4.1 1188896e-10 -1.57759281 e-11 -13 C20 -5.21760043e-12 -1.84885391e-12 1.78763837e-13 C21 -4.20095046e-16 5.35288064e-18 4.78304505e-16 C23 -1.28788127e-15 1.16592841e-15 6.76366991 e-16 C25 2.24603177e-14 -4.24493445e-16 6.43409213e-16 C27 -6.66272337e-14 1.37793734e-14 -1.3197354e-16 C29 3.41059778e-18 9.53689977e-20 -2.58200642e-19 C31 -3.68397697e-18 -2.92104626e-19 C36-4.91058447e-16 -1.20787125e-16 -2.98913737e-19 C36 4.98603076e-21 -1.41092473e-21 -2.74358727e-21 C38 -9.16903491e-21 1.97.765.26e-21 5.24074149e-22 C40 -1.47271995e-19 -3.34460739e-20 1.40871746e-20 C42 3.07422757e-18 1.06724041 e-19 9.53341509e-21 C44 -6.2957705e-18 C -8.486.686e-18 1.47064843e-C6-1.85365336e-22 4.76594089e-24 8.2933825e-24 C48 -1.28210118e-21 2.58185303e-23 6.44879498e-24 C50 -8.73336698e -21 -1.26595369e-22 -1.53890294e-23 C52 -1.99451811e-20 -3.26154339e-21 9.77860571 e-24 C54 -1.35148582e-19 -7.66852471 e-21 7.3231509e-25 C55 -2.04919022e-25 -2.00836232 e-25 C57-61531327e-25 C57-2.13209361 E-25 C59-64531327e-24 -6.13616768e-25 -2.86382758e-25 C61 -1.2510699e-22 4.10599237e-24 -5.40705817e 25 efficient M7 M6 M5
C63 -5.62409591 e-22 6.38112745e-23 -5.83425481 e-25C63 -5.62409591 e-22 6.38112745e-23 -5.83425481 e-25
C65 -2.932744e-23 -3.1 1441795e-23 -1.829156e-24C65 -2.932744e-23 -3.1 1441795e-23 -1.829156e-24
C67 9.07561132e-27 -1.37972111 e-27 9.8408785e-29C67 9.07561132e-27 -1.37972111 e-27 9.8408785e-29
C69 1.12029331e-25 1.70924762e-27 -2.63624292e-28C69 1.12029331e-25 1.70924762e-27 -2.63624292e-28
C71 2.34177287e-25 9.92372194e-27 -1.3177282e-27C71 2.34177287e-25 9.92372194e-27 -1.3177282e-27
C73 4.9855072e-24 -5.32263488e-26 -1.64852392e-28C73 4.9855072e-24 -5.32263488e-26 -1.64852392e-28
C75 1.07981493e-23 -8.2123685e-25 1.25617763e-27C75 1.07981493e-23 -8.2123685e-25 1.25617763e-27
C77 4.20616759e-23 1.17407193e-25 9.365847e-27C77 4.20616759e-23 1.17407193e-25 9.365847e-27
C78 5.17650497e-30 8.29545495e-30 -4.04537672e-30C78 5.17650497e-30 8.29545495e-30 -4.04537672e-30
C80 8.1321703e-29 -2.18697679e-29 -2.1 1123385e-30C80 8.1321703e-29 -2.18697679e-29 -2.1 1123385e-30
C82 -5.05010944e-28 5.08995306e-29 1.04180761 e-29C82 -5.05010944e-28 5.08995306e-29 1.04180761 e-29
C84 4.1407741e-27 1.63285579e-28 3.49688833e-29C84 4.1407741e-27 1.63285579e-28 3.49688833e-29
C86 7.54993507e-26 4.12929765e-28 2.55288354e-29C86 7.54993507e-26 4.12929765e-28 2.55288354e-29
C88 2.95901058e-25 3.9753868e-27 2.10034523e-29C88 2.95901058e-25 3.9753868e-27 2.10034523e-29
C90 -4.47805219e-25 2.10900597e-26 4.9364073e-29C90 -4.47805219e-25 2.10900597e-26 4.9364073e-29
C92 -3.17297336e-31 2.7136031e-32 -1.0925254e-32C92-3.17297336e-31 2.7136031e-32 -1.0925254e-32
C94 -4.39871315e-30 7.74413927e-32 -7.37173106e-33C94 -4.39871315e-30 7.74413927e-32 -7.37173106e-33
C96 -2.21978454e-30 -1.3340811e-30 2.05419638e-32C96 -2.21978454e-30 -1.3340811e-30 2.05419638e-32
C98 -3.51293551e-29 -6.54025347e-30 -4.22617588e-32C98 -3.51293551e-29 -6.54025347e-30 -4.22617588e-32
C100 -1.7393042e-27 1.14443482e-29 -3.18007759e-32C100 -1.7393042e-27 1.14443482e-29 -3.18007759e-32
C102 2.21659182e-27 1.63902209e-29 -9.69320597e-32C102 2.21659182e-27 1.63902209e-29 -9.69320597e-32
C104 -2.261453e-26 -3.72776469e-28 -4.37544226e-31C104 -2.261453e-26 -3.72776469e-28 -4.37544226e-31
C105 -4.12534461 e-35 -1.14480182e-34 3.01382907e-35C105 -4.12534461 e-35 -1.14480182e-34 3.01382907e-35
C107 -2.76513255e-33 2.48225368e-34 3.82965838e-35C107 -2.76513255e-33 2.48225368e-34 3.82965838e-35
C109 6.66123874e-33 7.08107492e-34 -2.24841818e-34C109 6.66123874e-33 7.08107492e-34 -2.24841818e-34
C111 5.68286568e-32 1.28989041e-32 -8.72165939e-34C111 5.68286568e-32 1.28989041e-32 -8.72165939e-34
C113 -2.21079604e-30 6.06542575e-32 -7.27967829e-34C113 -2.21079604e-30 6.06542575e-32 -7.27967829e-34
C115 -2.37579413e-29 -2.19301557e-31 -4.91779127e-34C115 -2.37579413e-29 -2.19301557e-31 -4.91779127e-34
C117 -6.27847083e-30 -2.24385315e-31 -2.37594002e-34C117 -6.27847083e-30 -2.24385315e-31 -2.37594002e-34
C119 -4.78585387e-29 2.80185274e-30 -1.6756456e-34C119 -4.78585387e-29 2.80185274e-30 -1.6756456e-34
C121 3.90632846e-36 -3.01907852e-37 1.34464067e-37C121 3.90632846e-36 -3.01907852e-37 1.34464067e-37
C123 6.26723855e-35 -7.38603762e-36 6.76565399e-38C123 6.26723855e-35 -7.38603762e-36 6.76565399e-38
C125 1.05715992e-34 9.61938133e-36 -1.51891289e-37C125 1.05715992e-34 9.61938133e-36 -1.51891289e-37
C127 -3.09523937e-33 -8.01514865e-35 5.00274107e-37C127 -3.09523937e-33 -8.01514865e-35 5.00274107e-37
C129 1.20382485e-32 -1.890792e-34 8.2689123e-37C129 1.20382485e-32 -1.890792e-34 8.2689123e-37
C131 1.5791079e-31 1.25739753e-33 1.40678273e-36C131 1.5791079e-31 1.25739753e-33 1.40678273e-36
C133 -4.84783534e-31 6.43336332e-34 2.19255971e-36C133 -4.84783534e-31 6.43336332e-34 2.19255971e-36
C135 3.25553962e-30 -1.01661431e-32 7.71863723e-36C135 3.25553962e-30 -1.01661431e-32 7.71863723e-36
C136 -6.44594661 e-41 5.18329556e-40 -3.10095869e-41C136 -6.44594661 e-41 5.18329556e-40 -3.10095869e-41
C138 3.35868415e-38 6.80645707e-39 -4.35334696e-41C138 3.35868415e-38 6.80645707e-39 -4.35334696e-41
C140 1.80786666e-37 1.78639777e-38 2.42366057e-39C140 1.80786666e-37 1.78639777e-38 2.42366057e-39
C142 -2.38820743e-36 -9.21396534e-38 1.02431909e-38C142 -2.38820743e-36 -9.21396534e-38 1.02431909e-38
C144 -2.22167615e-35 3.78975523e-37 1.04663468e-38C144 -2.22167615e-35 3.78975523e-37 1.04663468e-38
C146 3.32759736e-34 -2.96891077e-37 6.10106481e-39C146 3.32759736e-34 -2.96891077e-37 6.10106481e-39
C148 2.06724289e-33 -1.82263628e-36 -4.98328999e-40C148 2.06724289e-33 -1.82263628e-36 -4.98328999e-40
C150 -3.9794396e-33 -7.77903373e-37 -3.42284275e-39C150 -3.9794396e-33 -7.77903373e-37 -3.42284275e-39
C152 2.3470777e-32 1.47710607e-35 -1.59359975e-38C152 2.3470777e-32 1.47710607e-35 -1.59359975e-38
Tabelle 3b zu Fig. 26 Table 3b to Fig. 26
Koeffizient M4 M3 M2 Coefficient M4 M3 M2
KY 0.00000000 0.00000000 0.00000000KY 0.00000000 0.00000000 0.00000000
KX 0.00000000 0.00000000 0.00000000KX 0.00000000 0.00000000 0.00000000
RX -13571.66190000 2929.44017300 1765.15151000RX -13571.66190000 2929.44017300 1765.15151000
C7 2.4867906e-07 4.08857083e-08 -5.7556894e-09 Koeffizient M4 M3 M2C7 2.4867906e-07 4.08857083e-08 -5.7556894e-09 Coefficient M4 M3 M2
C9 1.31816749e-07 -9.89325337e-08 -1.14539535e-06 C10 -1.48061453e-10 -9.97694826e-11 -5.45484776e-11 C12 -1.21532663e-10 2.57218721e-10 -6.04005833e-10 C14 1.16631039e-10 -4.04653062e-10 2.16860795e-09 C16 -1.2664286e-14 -5.04233236e-14 2.44731848e-13 C18 -5.47315517e-13 3.35933025e-13 2.42823996e-12 C20 2.41591161e-13 -8.1 11824e-13 -7.35728966e-14 C21 -1.59004743e-16 -1.59830806e-15 -2.30482615e-15 C23 1.04464337e-15 -2.87520329e-16 -4.20889256e-16 C25 -1.55721846e-15 8.61175146e-16 -7.33809515e-15 C27 7.50169667e-16 -4.10119512e-15 -2.88368567e-14 C29 -2.18585533e-18 -6.13843321 e-19 1.48260706e-17 C31 2.70123455e-18 -1.38332816e-18 -2.53495907e-17 C33 -4.38939645e-18 5.67758167e-18 5.60276862e-17 C35 1.86451426e-18 -1.33485001 e-17 1.48945852e-16 C36 5.00909256e-21 -5.45445522e-21 -4.95064554e-21 C38 -3.00745498e-21 6.14787355e-21 -4.91817794e-20 C40 1.78924217e-20 -3.67760273e-21 1.6957518e-19 C42 -6.33866332e-21 2.49007667e-20 -2.45066144e-19 C44 -9.33191026e-21 -7.67966033e-20 2.10705647e-19 C46 2.84838666e-23 5.43800202e-23 1.29798113e-22 C48 3.60495373e-23 1.02681305e-22 7.8287201 e-23 C50 1.16022145e-22 4.84478465e-23 -1.64313217e-21 C52 -7.7979898e-24 2.37125083e-22 1.04461941 e-21 C54 -8.35587682e-23 -3.51811104e-22 -5.38944309e-21 C55 1.14055283e-26 -2.62138126e-25 -4.35489266e-25 C57 -2.65384423e-26 -3.1 1299601e-25 -1.3762689e-24 C59 -3.70188932e-25 -9.09956536e-25 5.9051924e-25 C61 3.01756263e-25 -8.80462249e-25 4.52988194e-24 C63 -4.07672634e-25 1.39144761e-24 -2.30701197e-23 C65 1.09635103e-24 -5.99660749e-25 -3.82791002e-23 C67 -1.38494804e-27 -2.82529724e-27 -2.5491701 e-27 C69 -2.73347994e-27 -6.39440845e-27 -4.86335108e-27 C71 -5.51982944e-27 -7.63567546e-27 4.16119656e-26 C73 -2.9413266e-27 -7.47710103e-27 1.53698552e-25 C75 -8.74573032e-28 1.49764036e-27 3.27774011e-25 C77 7.16378196e-27 5.65452184e-27 9.56022723e-25 C78 -2.49097034e-30 1.18516516e-29 1.89603348e-29 C80 -1.94277476e-30 6.00108899e-30 1.24066875e-28 C82 4.00548354e-30 4.83120236e-29 4.6099092e-29 C84 -4.09297855e-30 4.89571367e-29 -1.18235574e-28 C86 -2.79175815e-29 -4.54 30678e-30 -3.51054923e-29 C88 3.46634258e-29 -5.10942244e-29 -3.26522615e-28 C90 -6.98750754e-29 3.42818363e-30 -3J8078944e-27 C92 2.78034443e-32 7.07006655e-32 8.91891738e-32 C94 6.87000404e-32 1.91992861e-31 1.68682533e-31 C96 1.31346242e-31 3.33161247e-31 -5.25800206e-31 C98 1.91021348e-31 3.25505098e-31 -5.93272094e-30 C100 1.22327875e-31 1.57698995e-31 -1.54795048e-29 C102 4.57847514e-32 -1.14929139e-31 -1.44958724e-29 C104 -2.87175318e-31 -3.24308979e-31 -3.25867584e-29 C105 7.49234545e-35 -2.23778665e-34 -3.95765903e-34 C107 1.36436739e-34 -5.50218186e-35 -4.14957517e-33 C109 4.06669286e-35 -1.30072273e-33 -3.38295815e-33 Koeffizient M4 M3 M2 cm 1.44266678e-34 -2.12805306e-33 1.03803927e-33C9-14076143e-10 -9.97694826e-11 -5.45484776e-11 C12-1.21532663e-10 2.57218721e-10 -6.04005833e-10 C14 1.16631039e 10 -4.04653062e-10 2.16860795e-09 C16 -1.2664286e-14 -5.04233236e-14 2.44731848e-13 C18 -5.47315517e-13 3.35933025e-13 2.42823996e-12 C20 2.41591161e-13 -8.1 11824e-13 - 7.35728966e-14 C21 -1.59004743e-16 -1.59830806e-15 -2.30482615e-15 C23 1.04464337e-15 -2.87520329e-16 -4.20889256e-16 C25 -1.55721846e-15 8.61175146e-16 -7.33809515e-15 C27-4-185857e-16-4, 10119512e-15 -2.88368567e-14 C29 -2.18585533e-18 -6.13843321 e-19 1.48260706e-17 C31 2.70123455e-18 -1.38332816e-18 -2.53495907e-17 C33 -4.38939645e 18 5.67758167e-18 5.60276862e-17 C35 1.86451426e-18 -1.33485001 e-17 1.48945852e-16 C36 5.00909256e-21 -5.45445522e-21 -4.95064554e-21 C38-3.00745498e-21 6.14787355e-21 -4.91817794 e-20 C40-9.33191026e-21 -7.67966033e-21 2.9007.67e-20 -2.45066144e-19 C44 -9.33191026e-21 -7.67966033e-20 2.10705647e-19 C46 2.84838666e-23 5.43800202e-23 1.29798113e-22 C48 3.60495373e-23 1.02681305e-22 7.8287201 e-23 C50 1.16022145e-22 4.84478465e-23 -1.64313217e-21 C52 -7.7979898e-24 2.37125083e-22 1.04461941 e-21 C54 -8.35587682e-23 -3.51811104e-22 -5.38944309e-21 C55 1.14055283e-26 -2.62138126e-25 -4.35489266e-25 C57 -2.65384423e-26 -3.1 1299601e-25 C.3-4. 3,756,269e-24 C59-3.70188932e-25 -9.09956536e-25 C5-0559-5624e-25 C61 3.01756263e-25 -8.80462249e-25 4.52988194e-24 C63 -4.07672634e-25 1.39144761e-24 -2.30701197e-23 C65 C67 -1.58494804e-27 -2.82529724e-27 -2.5491701 e-27 C69 -2.73347994e-27 -6.39440845e-27 -4.86335108e-27 C71 -5.51982944e -27 -7.63567546e-27 4.16119656e-26 C73 -2.9413266e-27 -7.47710103e-27 1.53698552e-25 C75 -8.74573032e-28 1.49764036e-27 3.27774011e-25 C77 7.16378196e-27 5.65452184e-27 9.56022723 e-25 C78 -2.49097034e-30 1.18516516e-29 1.89603348e-29 C80 -1.94277476e-30 6.00108899e-30 1.24066875e-28 C82 4.00548354e-30 4.83120 236e-29 4.6099092e-29 C84 -4.09297855e-30 4.89571367e-29 -1.18235574e-28 C86 -2.79175815e-29 -4.54 30678e-30 -3.51054923e-29 C88 3.46634258e-29 -5.10942244e-29 -3.26522615 C92 6.8807342e-29 3.42818363e-30 -3J8078944e-27 C92 2.78034443e-32 7.07006655e-32 8.91891738e-32 C94 6.87000404e-32 1.91992861e-31 1.68682533e-31 C96 1.31346242e-31 3.33161247e -31-5.25800206e-31 C98 1.91021348e-31 3.25505098e-31 -5.93272094e-30 C100 1.22327875e-31 1.57698995e-31 -1.54795048e-29 C102 4.57847514e-32 -1.14929139e-31 -1.44958724e-29 C104 -2.87175318e-31 -3.24308979e-31 -3.25867584e-29 C105 7.49234545e-35 -2.23778665e-34 -3.95765903e-34 C107 1.36436739e-34 -5.50218186e-35 -4.14957517e-33 C109 4.06669286e 35 -1.30072273e-33 -3.38295815e-33 Coefficient M4 M3 M2 cm 1.44266678e-34 -2.12805306e-33 1.03803927e-33
C113 7.55798972e-34 -5.77392498e-34 1.72138239e-32C113 7.55798972e-34 -5.77392498e-34 1.72138239e-32
C115 1.24090466e-33 4.04630096e-35 3.80780335e-32C115 1.24090466e-33 4.04630096e-35 3.80780335e-32
C117 -1.51672627e-33 2.20736189e-33 3.60119016e-32C117-1.51672627e-33 2.20736189e-33 3.60119016e-32
C119 2.54322977e-33 -1.94012119e-33 3.7836678e-31C119 2.54322977e-33 -1.94012119e-33 3.7836678e-31
C121 -1.47062443e-37 -4.95634083e-37 -6.48736325e-37C121-1.47062443e-37 -4.95634083e-37 -6.48736325e-37
C123 -6.76764495e-37 -2.62857791 e-36 -3.07063488e-36C123 -6.76764495e-37-2.62857791 e-36 -3.07063488e-36
C125 -1.52780264e-36 -5.42778062e-36 -8.49236895e-36C125-1.52780264e-36 -5.42778062e-36 -8.49236895e-36
C127 -2.43152897e-36 -6.8744822e-36 6.411214e-35C127 -2.43152897e-36 -6.8744822e-36 6.411214e-35
C129 -3.9070541 e-36 -2.64110857e-36 3.34055113e-34C129 -3.9070541 e-36 -2.64110857e-36 3.34055113e-34
C131 -1.52422552e-36 -4.57033388e-36 4.96867057e-34C131-1.52422552e-36 -4.57033388e-36 4.96867057e-34
C133 -6.94885323e-37 1.42202438e-35 3.35741831 e-34C133 -6.94885323e-37 1.42202438e-35 3.35741831 e-34
C135 4.46614262e-36 -4.43260704e-36 -1.41983923e-33C135 4.46614262e-36 -4.43260704e-36 -1.41983923e-33
C136 -5.82720549e-40 1.2738577e-39 2.95962778e-39C136 -5.82720549e-40 1.2738577e-39 2.95962778e-39
C138 -1.48616538e-39 4.40022068e-40 4.81277463e-38C138 -1.48616538e-39 4.40022068e-40 4.81277463e-38
C140 -1.59901737e-39 1.67191433e-38 6.61371003e-38C140 -1.59901737e-39 1.67191433e-38 6.61371003e-38
C142 -4.27476461 e-39 3.36569747e-38 8.78235469e-38C142 -4.27476461 e-39 3.36569747e-38 8.78235469e-38
C144 -7.9967858e-39 2.28602413e-38 -3.4335812e-37C144 -7.9967858e-39 2.28602413e-38 -3.4335812e-37
C146 -2.28492536e-38 1.51730517e-39 -1.52442242e-36C146 -2.28492536e-38 1.51730517e-39 -1.52442242e-36
C148 -1.59254776e-38 -1.46051228e-38 -1.97429432e-36C148 -1.59254776e-38 -1.46051228e-38 -1.97429432e-36
C150 2.45997969e-38 2.36937048e-38 -1.26580266e-36C150 2.45997969e-38 2.36937048e-38 -1.26580266e-36
C152 -3.70175785e-38 -4.00174707e-39 1.93212266e-36C152 -3.70175785e-38 -4.00174707e-39 1.93212266e-36
Tabelle 3c zu Fig. 26 Table 3c to Fig. 26
Koeffizient M1Coefficient M1
KY 0.00000000 KX 0.00000000 RX -2088.89838200KY 0.00000000 KX 0.00000000 RX -2088.89838200
C7 3.42683525e-08 C9 -1.6512688e-08 C10 4.38584664e-11 C12 4.18259048e-11 C14 -4.6250256e-12 C16 2.38962576e-14 C18 1.19663942e-13 C20 2.61037397e-13 C21 2.63044596e-17 C23 ■2.37150015e-17 C25 1.57559118e-16 C27 4.7889248e-16 C29 7.53232216e-20 C31 2.05517927e-19 C33 1.61629336e-19 C35 1.45937682e-18 C36 4.9764225e-23 C38 3.27842891 e-22 C40 ■2.80802645e-21 C42 2.769078e-21 C44 1.47214512e-21 C46 4.70047246e-25 C48 7.39186519e-24 C50 7.57901529e-23 Koeffizient M1 C7 3.42683525e-08 C9 -1.6512688e-08 C10 4.38584664e-11 C12 4.18259048e-11 C14 -4.6250256e-12 C16 2.38962576e-14 C18 1.19663942e-13 C20 2.61037397e-13 C21 2.63044596e-17 C23 ■ 2.37150015e-17 C25 1.57559118e-16 C27 4.7889248e-16 C29 7.53232216e-20 C31 2.05517927e-19 C33 1.61629336e-19 C35 1.45937682e-18 C36 4.9764225e-23 C38 3.27842891 e-22 C40 ■ 2.80802645e-21 C42 2.769078e-21 C44 1.47214512e-21 C46 4.70047246e-25 C48 7.39186519e-24 C50 7.57901529e-23 Coefficient M1
C52 1.65362047e-22 C52 1.65362047e-22
C54 1.09834948e-22C54 1.09834948e-22
C55 3.21208271 e-27C55 3.21208271 e-27
C57 5.61919098e-27C57 5.61919098e-27
C59 1.22809043e-25C59 1.22809043e-25
C61 5.60328258e-25C61 5.60328258e-25
C63 5.47540805e-25C63 5.47540805e-25
C65 -1.79792769e-25C65 -1.79792769e-25
C67 4.27223866e-31C67 4.27223866e-31
C69 -1.52895416e-28C69 -1.52895416e-28
C71 -1.99104409e-27C71 -1.99104409e-27
C73 -8.52429426e-27C73 -8.52429426e-27
C75 -1.3755771 1 e-26C75 -1.3755771 1 e-26
C77 -4.93968315e-27C77 -4.93968315e-27
C78 -6.87550869e-32C78 -6.87550869e-32
C80 -7.80050004e-32C80 -7.80050004e-32
C82 -2.51344446e-30C82 -2.51344446e-30
C84 -2.2898419e-29C84 -2.2898419e-29
C86 -6.02505261 e-29C86 -6.02505261 e-29
C88 -3.61828628e-29C88 -3.61828628e-29
C90 5.5528325e-30C90 5.5528325e-30
C92 -9.50562723e-36C92 -9.50562723e-36
C94 1.49044558e-33C94 1.49044558e-33
C96 2.78503789e-32C96 2.78503789e-32
C98 1.77498716e-31C98 1.77498716e-31
C100 5.21503374e-31C100 5.21503374e-31
C102 5.64843247e-31C102 5.64843247e-31
C104 1.099241 1 e-31C104 1.099241 1 e-31
C105 6.4276771 1 e-37C105 6.4276771 1 e-37
C107 1.21466068e-36C107 1.21466068e-36
C109 2.44962564e-35 cm 3.69492236e-34C109 2.44962564e-35 cm 3.69492236e-34
C1 13 1.771 1647e-33C1 13 1.771 1647e-33
C1 15 3.09168063e-33C1 15 3.09168063e-33
C1 17 1.83366676e-33C1 17 1.83366676e-33
C1 19 1.3402897e-34C1 19 1.3402897e-34
C121 6.32273889e-41C121 6.32273889e-41
C123 -7.53170421 e-39C123 -7.53170421 e-39
C125 -1.44659913e-37C125 -1.44659913e-37
C127 -1.19754969e-36C127 -1.19754969e-36
C129 -5.25380881 e-36C129 -5.25380881 e-36
C131 -1.09748045e-35C131 -1.09748045e-35
C133 -9.51371783e-36C133 -9.51371783e-36
C135 -1.14567726e-36C135 -1.14567726e-36
C136 -2.32228213e-42C136 -2.32228213e-42
C138 -8.71321698e-42C138 -8.71321698e-42
C140 -1.04819209e-40C140 -1.04819209e-40
C142 -2.03692092e-39C142 -2.03692092e-39
C144 -1.44529556e-38C144 -1.44529556e-38
C146 -4.48708715e-38C146 -4.48708715e-38
C148 -6.21272731 e-38C148 -6.21272731 e-38
C150 -3.74464272e-38C150 -3.74464272e-38
C152 -8.57142389e-39C152 -8.57142389e-39
Tabelle 3d zu Fig. 26 Oberfläche DCX DCY DCZTable 3d to Fig. 26 Surface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M10 0.00000000 0.00000000 786 31794313 M9 0.00000000 135.66761714 90 09404872 M8 -0.00000000 -80.64099022 1 189 77813151 M7 -0.00000000 -15.95855480 1398 24950705 M6 0.00000000 93.52154823 1507 83829965 M5 0.00000000 413.44248899 1650 69955943 M4 -0.00000000 950.27772844 1645 50394918 M3 -0.00000000 1417.56980610 1433 50578895 M2 -0.00000000 1602.36234269 1221 51469689 Blende -0.00000000 1657.1 1014994 1042 75065199 M1 -0.00000000 1849.90639774 413 22704495Image plane 0.00000000 0.00000000 0.00000000 0.00000000 786 M10 0 00000000 31794313 09404872 M9 0.00000000 135.66761714 90 M8 -0.00000000 -80.64099022 1 189 77813151 M7 -15.95855480 -0.00000000 0.00000000 93.52154823 1398 M6 24950705 83829965 1507 1650 69955943 M5 0.00000000 413.44248899 950.27772844 M4 -0.00000000 1645 50394918 M3 -0.00000000 1417.56980610 1433 50578895 M2 -0.00000000 1602.36234269 1221 51469689 Cover -0.00000000 1657.1 1014994 1042 75065199 M1 -0.00000000 1849.90639774 413 22704495
Objektebene 0.00000000 1995.41823598 2076 33636439 Tabelle 4a zu Fig. 26 Object level 0.00000000 1995.41823598 2076 33636439 Table 4a to FIG. 26
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000 M10 5.51329727 0.00000000 -0.00000000 M9 191.07732290 0.00000000 -0.00000000 M8 86.94524857 -0.00000000 0.00000000 M7 58.89543640 0.00000000 -0.00000000 M6 34.54583072 0.00000000 0.00000000 M5 1 1.75436531 0.00000000 -0.00000000 M4 -12.47852673 0.00000000 0.00000000 M3 -36.66195105 -0.00000000 -0.00000000 M2 -60.94687944 -0.00000000 0.00000000 Blende -17.62929935 180.00000000 -0.00000000 M1 186.01364938 -0.00000000 -0.00000000Image plane -0.00000000 0.00000000 -0.00000000 0.00000000 -0.00000000 M10 M9 5.51329727 0.00000000 -0.00000000 M8 191.07732290 86.94524857 -0.00000000 0.00000000 M7 58.89543640 0.00000000 -0.00000000 0.00000000 0.00000000 M6 M5 1 1.75436531 34.54583072 0.00000000 -0.00000000 0.00000000 0.00000000 M4 M3 -12.47852673 -36.66195105 -0.00000000 -0.00000000 M2 - 60.94687944 -0.00000000 0.00000000 Aperture -17.62929935 180.00000000 -0.00000000 M1 186.01364938 -0.00000000 -0.00000000
Objektebene -0.00029494 0.00000000 0.00000000 Tabelle 4b zu Fig. 26 Object level -0.00029494 0.00000000 0.00000000 Table 4b to FIG. 26
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M10 5.47743096 0.66257916 M9 0.16980600 0.66566578 M8 75.61 143735 0.8141 1830 M7 76.33505862 0.82576260 M6 79.43553650 0.87079247 M5 76.98906045 0.83587884 M4 78.63034221 0.85975915 M3 78.33822296 0.85565285 M2 77.33481505 0.84108094 M1 10.82988596 0.65263931M10 5.47743096 0.66257916 M9 0.16980600 0.66566578 M8 75.61 143735 0.8141 1830 M7 76.33505862 0.82576260 M6 79.43553650 0.87079247 M5 76.98906045 0.83587884 M4 78.63034221 0.85975915 M3 78.33822296 0.85565285 M2 77.33481505 0.84108094 M1 10.82988596 0.65263931
Gesamttransmission 0.0872 Tabelle 5 zu Fig. 26 Total transmission 0.0872 Table 5 to FIG. 26
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
0.00000000 55.07179086 0.00000000 28.32134635 54.58202803 0.00000000 55.9821 1712 53.09558841 0.00000000 82.33019561 50.57144987 0.00000000 X[mm] Y[mm] Z[mm]0.00000000 55.07179086 0.00000000 28.32134635 54.58202803 0.00000000 55.9821 1712 53.09558841 0.00000000 82.33019561 50.57144987 0.00000000 X [mm] Y [mm] Z [mm]
106.73054258 46.97017287 0.00000000 128.57548660 42.28058930 0.00000000 147.29804478 36.53990071 0.00000000 162.38870287 29.84523566 0.00000000 173.41580382 22.35491655 0.00000000 180.04860871 14.27850894 0.00000000 182.08062285 5.85873273 0.00000000 179.44972021 -2.65150686 0.00000000 172.25003968 -1 1.00899969 0.00000000 160.72981012 -18.991 14170 0.00000000 145.27218516 -26.39671205 0.00000000 126.36269179 -33.04140748 0.00000000 104.55198226 -38.7546541 1 0.00000000 80.42276570 -43.38151418 0.00000000 54.56592829 -46.78945614 0.00000000 27.56670420 -48.87682670 0.00000000 0.00000000 -49.57985235 0.00000000 -27.56670420 -48.87682670 0.00000000 -54.56592829 -46.78945614 0.00000000 -80.42276570 -43.38151418 0.00000000 -104.55198226 -38.7546541 1 0.00000000 -126.36269179 -33.04140748 0.00000000 -145.27218516 -26.39671205 0.00000000 -160.72981012 -18.991 14170 0.00000000 -172.25003968 -1 1.00899969 0.00000000 -179.44972021 -2.65150686 0.00000000 -182.08062285 5.85873273 0.00000000 -180.04860871 14.27850894 0.00000000 -173.41580382 22.35491655 0.00000000 -162.38870287 29.84523566 0.00000000 -147.29804478 36.53990071 0.00000000 -128.57548660 42.28058930 0.00000000 -106.73054258 46.97017287 0.00000000 -82.33019561 50.57144987 0.00000000 -55.9821 1712 53.09558841 0.00000000 -28.32134635 54.58202803 0.00000000106.73054258 128.57548660 0.00000000 46.97017287 42.28058930 36.53990071 0.00000000 0.00000000 147.29804478 162.38870287 173.41580382 0.00000000 29.84523566 22.35491655 14.27850894 0.00000000 0.00000000 180.04860871 182.08062285 179.44972021 5.85873273 0.00000000 -2.65150686 0.00000000 172.25003968 -1 1.00899969 0.00000000 160.72981012 -18,991 14170 0.00000000 145.27218516 -26.39671205 0.00000000 126.36269179 -33.04140748 0.00000000 104.55198226 -38.7546541 1 0.00000000 80.42276570 - 43.38151418 54.56592829 0.00000000 -46.78945614 0.00000000 27.56670420 -48.87682670 0.00000000 0.00000000 -49.57985235 0.00000000 -27.56670420 -48.87682670 0.00000000 -54.56592829 -46.78945614 0.00000000 -80.42276570 -43.38151418 0.00000000 -104.55198226 -38.7546541 1 0.00000000 -126.36269179 -33.04140748 0.00000000 -145.27218516 -26.39671205 0.00000000 -160.72981012 -18,991 14170 0.00000000 -172.25003968 -1 1.00899969 0.00000000 -179.44972021 -2.65150686 0.00000000 -182.08062285 5.85873273 0.00000000 -180. 04860871 14.27850894 0.00000000 -173.41580382 22.35491655 0.00000000 -162.38870287 29.84523566 0.00000000 -147.29804478 36.53990071 0.00000000 -128.57548660 42.28058930 0.00000000 -106.73054258 46.97017287 0.00000000 -82.33019561 50.57144987 0.00000000 -55.9821 1712 53.09558841 0.00000000 -28.32134635 54.58202803 0.00000000
Tabelle 6 zu Fig. 26 Table 6 to FIG. 26
Die Projektionsoptik 31 hat eine Gesamttransmission von 8,72 %. The projection optics 31 has a total transmission of 8.72%.
Eine bildseitige numerische Apertur der Projektionsoptik 31 beträgt 0,55. Der Verkleinerungsfaktor ßx in der ersten Abbildungslicht-Ebene xz beträgt 4. Der Verkleinerungsfaktor ßy in der zweiten Abbildungslicht-Ebene yz beträgt 7,5. An image-side numerical aperture of the projection optics 31 is 0.55. The reduction factor β x in the first imaging light plane xz is 4. The reduction factor β y in the second imaging light plane yz is 7.5.
Ein objektseitiger Hauptstrahlwinkel CRA beträgt 5,0°. Eine maximale Obskuration der Eintrittspupille beträgt 16 %. Ein Objekt-Bildversatz dois beträgt etwa 3230 mm. Die Spiegel der Projektionsoptik 31 können in einem Quader mit xyz-Kantenlängen 891 mm x 2395 mm x 1615 mm untergebracht werden. An object-side main beam angle CRA is 5.0 °. A maximum obscuration of the entrance pupil is 16%. An object image offset dois is about 3230 mm. The mirrors of Projection optics 31 can be accommodated in a cuboid with xyz edge lengths 891 mm x 2395 mm x 1615 mm.
Die Objektebene 5 verläuft bei der Projektionsoptik 31 parallel zur Bildebene 9. The object plane 5 runs parallel to the image plane 9 in the projection optics 31.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegel MIO und der Bildebene 9 beträgt 65 mm. Ein mittlerer Wellenfrontfehler rms beträgt 7,65 ιηλ. A working distance between the wafer-near mirror MIO and the image plane 9 is 65 mm. A mean wavefront error rms is 7.65 ιηλ.
Die Aperturblende AS ist bei der Projektionsoptik 31 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 angeordnet. Im Bereich der Aperturblende AS ist das Abbildungslichtbündel vollumfänglich zugänglich. The aperture diaphragm AS is arranged in the projection optical system 31 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the imaging light beam is fully accessible.
Anhand der Fig. 29 bis 31 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 32 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 28 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optics 32 which can be used instead of the projection optics 7 in the projection exposure apparatus 1 according to FIG. 1 will be explained below with reference to FIGS. 29 to 31. Components and functions, which have already been explained above in connection with FIGS. 1 to 28, optionally bear the same reference numbers and will not be discussed again in detail.
Die Fig. 29 zeigt einen Meridionalschnitt der Projektionsoptik 32. Die Fig. 30 zeigt eine sagittale Ansicht der Projektionsoptik 32. Die Fig. 31 zeigt wiederum die Randkonturen der Reflexions- flächen der sieben Spiegel Ml bis M7 der Projektionsoptik 32. 29 shows a meridional section of the projection optics 32. FIG. 30 shows a sagittal view of the projection optics 32. FIG. 31 again shows the edge contours of the reflection surfaces of the seven mirrors M1 to M7 of the projection optics 32.
Die Projektionsoptik 32 hat drei NI-Spiegel, nämlich die Spiegel Ml, M6 und M7. Die Projektionsoptik 32 hat vier GI-Spiegel, nämlich die Spiegel M2 bis M5. The projection optics 32 has three NI mirrors, namely mirrors M1, M6 and M7. The projection optics 32 has four GI mirrors, namely the mirrors M2 to M5.
Die Spiegel M2 bis M5 haben alle die gleiche Richtung der Spiegel-Umlenkwirkung. Diesbezüglich ähnelt die Projektionsoptik 32 der Projektionsoptik 26 nach den Fig. 14 bis 16. The mirrors M2 to M5 all have the same direction of the mirror deflection effect. In this regard, the projection optics 32 are similar to the projection optics 26 of FIGS. 14-16.
Die Spiegel Ml bis M7 sind wiederum als Freiformflächenspiegel ausgeführt, für die die vorste- hend angegebene Freiformflächengleichung (1) gilt. Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M7 der Projektionsoptik 32 The mirrors M1 to M7 are in turn designed as free-form surface mirrors, for which the free-form surface equation (1) given above applies. The following table again shows the mirror parameters of the mirrors M1 to M7 of the projection optics 32
Ml M2 M3 M4 M5 M6 M7 maximaler M1 M2 M3 M4 M5 M6 M7 maximum
17.4 76.8 74.4 73.1 77.0 14.7 8.0 17.4 76.8 74.4 73.1 77.0 14.7 8.0
Einfallswinkel [°] Angle of incidence [°]
Reflexionsflächen er- streckung in x- 376.0 475.6 562.6 479.7 181.9 468.4 902.7 Reflective surface extension in x- 376.0 475.6 562.6 479.7 181.9 468.4 902.7
Richtung [mm] Direction [mm]
Reflexionsflächen er- streckung in y- 182.5 372.5 198.5 263.3 288.3 109.2 874.7 Reflective surface extension in y- 182.5 372.5 198.5 263.3 288.3 109.2 874.7
Richtung [mm] Direction [mm]
maximaler  maximum
Spiegeldurchmesser 376.1 476.1 562.6 479.7 294.6 468.4 903.2  Mirror diameter 376.1 476.1 562.6 479.7 294.6 468.4 903.2
[mm] Sechs der Spiegel Ml bis M7 der Projektionsoptik 32 haben ein y/x- Aspektverhältnis, das kleiner ist als 1. Das y/x- Aspektverhältnis des Spiegels M5 ist kleiner als 1,6.  [mm] Six of the mirrors M1 to M7 of the projection optics 32 have a y / x aspect ratio which is smaller than 1. The y / x aspect ratio of the mirror M5 is smaller than 1.6.
Den größten maximalen Durchmesser hat der im Abbildungsstrahlengang letzte Spiegel M7 mit 903,2 mm. Die Maximaldurchmesser aller anderen Spiegel Ml bis M6 sind kleiner als 600 mm. Fünf der sieben Spiegel haben einen maximalen Durchmesser, der kleiner ist als 500 mm. The largest maximum diameter of the imaging beam in the last mirror M7 has 903.2 mm. The maximum diameters of all other mirrors M1 to M6 are less than 600 mm. Five of the seven mirrors have a maximum diameter that is less than 500 mm.
Die Projektionsoptik 32 hat wiederum genau ein Erstebenen-Zwischenbild 18 im Bereich der Durchtrittsöffnung 17 im Spiegel M7 und zwei Zweitebenen-Zwischenbilder 19, 20. Das erste der beiden Zweitebenen-Zwischenbilder 19 liegt im Abbildungsstrahlengang zwischen den Spie- geln M3 und M4. Das zweite der beiden Zweitebenen-Zwischenbilder 20 liegt im Abbildungsstrahlengang zwischen den Spiegeln M4 und M5. The projection optics 32 in turn has exactly one first plane intermediate image 18 in the region of the passage opening 17 in the mirror M7 and two second plane intermediate images 19, 20. The first of the two second plane intermediate images 19 lies in the imaging beam path between the mirrors M3 and M4. The second of the two second level intermediate images 20 lies in the imaging beam path between the mirrors M4 and M5.
Eine bildseitige numerische Apertur der Projektionsoptik 32 beträgt 0,45. Der Verkleinerungsfaktor ßx in der ersten Abbildungslicht-Ebene xz beträgt 4. Der Verkleinerungsfaktor ßy in der zweiten Abbildungslicht-Ebene yz beträgt 8. Ein objektseitiger Hauptstrahlwinkel CRA beträgt 5,2°. Ein Objekt-Bildversatz dois beträgt etwa 2470 mm. An image-side numerical aperture of the projection optics 32 is 0.45. The reduction factor β x in the first imaging light plane xz is 4. The reduction factor β y in the second imaging light plane yz is 8. An object-side main beam angle CRA is 5.2 °. An object image offset dois is about 2470 mm.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegel M7 und der Bildebene 9 beträgt 87 mm. Ein mittlerer Wellenfrontfehler rms beträgt 30,60 ητλ. A working distance between the wafer-closest mirror M7 and the image plane 9 is 87 mm. A mean wavefront error rms is 30.60 ητλ.
Die Aperturblende AS ist bei der Projektionsoptik 32 im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2 angeordnet. Im Bereich der Aperturblende AS ist das Abbildungslichtbündel vollumfänglich zugänglich. The aperture diaphragm AS is arranged in the projection optical system 32 in the imaging light beam path between the mirrors M1 and M2. In the area of the aperture diaphragm AS, the imaging light beam is fully accessible.
Anhand der Figuren 32 und 34 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 33 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Figur 1 zum Einsatz kommen kann. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Figuren 1 bis 31 bereits erläutert wurden, tragen gegebenenfalls die gleichen Be- zugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optics 33 which can be used instead of the projection optics 7 in the projection exposure apparatus 1 according to FIG. 1 is explained below with reference to FIGS. 32 and 34. Components and functions which have already been explained above in connection with FIGS. 1 to 31 may carry the same reference numerals and will not be discussed again in detail.
Die Projektionsoptik 33 nach den Fig. 32 und 34 verkleinert in einer Sagittalebene xz um einen Faktor 4 und in einer Meridionalebene yz um einen Faktor 8. Die Fig. 32 zeigt die Projektionsoptik 33 in einem Meridionalschnitt, also den Strahlengang des Abbildungslichts 3 (vgl. Einzelstrahlen 15 in der Fig. 2) in der yz-Ebene. Die Fig. 34 zeigt die Projektionsoptik 33 in einer Ansicht, bei der die Einzelstrahlen 15 auf die xz-Ebene projiziert sind, also in einer Sagittal- Ansicht. Die Meridionalebene yz wird auch als zweite Abbildungslicht-Ebene bezeichnet. Eine erste Abbildungslicht-Ebene XZHR ist diejenige Ebene, die am je- weiligen Ort des Strahlengangs des Abbildungslichts 3 aufgespannt ist von der ersten kartesi- schen Objektfeldkoordinate x und einer momentanen Abbildungslicht- Hauptpropagationsrichtung ZHR. Die Abbildungslicht-Hauptpropagationsrichtung ZHR ist die Strahlrichtung eines Hauptstrahls 16 eines zentralen Feldpunktes. Bei jeder Spiegelreflexion an den Spiegeln Ml bis M6 ändert sich diese Abbildungslicht-Hauptpropagationsrichtung ZHR in der Regel. Diese Änderung kann beschrieben werden als eine Verkippung der momentanen Abbil- dungslicht-Hauptpropagationsrichtung ZHR um die erste kartesische Objektfeldkoordinate x um einen Kippwinkel, der gleich dem Umlenkwinkel dieses Hauptstrahls 16 des zentralen Feldpunk- tes am jeweils betrachteten Spiegel Ml bis M6 ist. Die jeweiligen ersten Abbildungslicht-Ebenen XZHR sind in der Fig. 32 gestrichelt angedeutet und stehen jeweils senkrecht auf der Zeichenebene (yz-Ebene). Nachfolgend wird die erste Abbildungslicht-Ebene XZHR vereinfachend auch als erste Abbildungslicht-Ebene xz bezeichnet. The projection optics 33 according to FIGS. 32 and 34 reduce by a factor 4 in a sagittal plane xz and by a factor 8 in a meridional plane yz. FIG. 32 shows the projection optics 33 in a meridional section, ie the beam path of the imaging light 3 (cf. Individual beams 15 in FIG. 2) in the yz plane. FIG. 34 shows the projection optics 33 in a view in which the individual beams 15 are projected onto the xz plane, that is to say in a sagittal view. The meridional plane yz is also referred to as the second imaging light plane. A first imaging light plane XZHR is the plane spanned at the respective location of the beam path of the imaging light 3 from the first Cartesian object field coordinate x and a momentary imaging light main propagation direction ZHR. The imaging light main propagation direction ZHR is the beam direction of a main beam 16 of a central field point. In the case of each mirror reflection at the mirrors M1 to M6, this imaging light main propagation direction ZHR generally changes. This change can be described as a tilting of the instantaneous imaging light main propagation direction ZHR about the first Cartesian object field coordinate x by a tilt angle that is equal to the deflection angle of this main ray 16 of the central field punk. tes on each considered mirror Ml to M6. The respective first image light levels XZHR are indicated by dashed lines in FIG. 32 and each are perpendicular to the plane of the drawing (yz plane). Hereinafter, the first imaging light plane XZHR is also referred to as the first imaging light plane xz for the sake of simplification.
Die zweite Abbildungslicht-Ebene yz enthält ebenfalls die Abbildungslicht- Hauptpropagationsrichtung ZHR und steht senkrecht auf der ersten Abbildungslicht-Ebene XZHR. The second imaging light plane yz also includes the imaging light main propagation direction ZHR and is perpendicular to the first imaging light plane XZHR.
Da die Projektionsoptik 33 ausschließlich in der Meridionalebene yz gefaltet ist, fällt die zweite Abbildungslicht-Ebene yz mit der Meridionalebene zusammen. Since the projection optics 33 are folded exclusively in the meridional plane yz, the second imaging light plane yz coincides with the meridional plane.
Dargestellt ist in der Fig. 32 der Strahlengang jeweils dreier Einzelstrahlen 15, die von drei in der Fig. 32 zueinander in der y-Richtung beabstandeten Objektfeldpunkten ausgehen. Dargestellt sind die Hauptstrahlen 16, also die Einzelstrahlen 15, die durch das Zentrum einer Pupille in einer Pupillenebene der Projektionsoptik 33 verlaufen, sowie jeweils ein oberer und ein unterer Komastrahl dieser beiden Objektfeldpunkte. Ausgehend vom Objektfeld 4 schließen die Hauptstrahlen 16 mit einer Normalen auf die Objektebene 5 einen Winkel CRA von 5,2 ° ein. Shown in FIG. 32 is the beam path in each case three individual beams 15 which emanate from three object field points spaced apart from one another in the y direction in FIG. 32. Shown are the main beams 16, so the individual beams 15 which extend through the center of a pupil in a pupil plane of the projection optics 33, and in each case an upper and a lower coma beam of these two object field points. Starting from the object field 4, the main rays 16 with a normal to the object plane 5 an angle CRA of 5.2 °.
Die Objektebene 5 liegt parallel zur Bildebene 9. The object plane 5 lies parallel to the image plane 9.
Die Projektionsoptik 33 hat eine bildseitige numerische Apertur von 0,55. Die Projektionsoptik 33 nach Fig. 32 hat insgesamt sechs Spiegel, die in der Reihenfolge desThe projection optics 33 has a picture-side numerical aperture of 0.55. The projection optics 33 of FIG. 32 has a total of six mirrors arranged in the order of
Strahlengangs der Einzelstrahlen 15, ausgehend vom Objektfeld 4, mit Ml bis M6 durchnumme- riert sind. Beam path of the individual beams 15, starting from the object field 4, with Ml to M6 durchnumme- are.
Dargestellt sind in der Fig. 32 Ausschnitte der berechneten Reflexionsflächen der Spiegel Ml bis M6. Genutzt wird ein Teilbereich dieser berechneten Reflexionsflächen. Lediglich dieser tatsächlich genutzte Bereich der Reflexionsflächen ist zuzüglich eines Überstandes bei den realen Spiegeln Ml bis M6 tatsächlich vorhanden. Diese Nutz-Reflexionsflächen werden in bekannter Weise von Spiegelkörpern getragen. Shown in FIG. 32 are sections of the calculated reflection surfaces of the mirrors M1 to M6. A subarea of these calculated reflection surfaces is used. Only this actually used area of the reflection surfaces is plus a supernatant in the real one Mirrors Ml to M6 actually exist. These useful reflection surfaces are supported in known manner by mirror bodies.
Bei der Projektionsoptik 33 nach Fig. 32 sind alle Spiegel Ml bis M6 als Spiegel für normalen Einfall ausgeführt, also als Spiegel, auf die das Abbildungslicht 3 mit einem Einfallswinkel trifft, der kleiner ist als 45 °. Insgesamt hat die Projektionsoptik 7 nach Fig. 32 also sechs Spiegel Ml bis M6 für normalen Einfall. Diese Spiegel für normalen Einfall werden auch als NI(Normal Incidence)-Spiegel bezeichnet. Die Projektionsoptik 7 hat keinen Spiegel für streifenden Einfall (GI-Spiegel, Grazing Incidence- Spiegel). In the projection optics 33 according to FIG. 32, all the mirrors M1 to M6 are designed as mirrors for normal incidence, ie as mirrors to which the imaging light 3 strikes with an angle of incidence which is less than 45 °. Overall, therefore, the projection optics 7 according to FIG. 32 have six mirrors M1 to M6 for normal incidence. These levels of normal incidence are also referred to as NI (Normal Incidence) levels. The projection optics 7 has no mirror for grazing incidence (GI mirrors, grazing incidence mirrors).
Grundsätzlich können alle beschriebenen Ausführungsbeispiele der Projektionsoptiken um eine Ebene, die parallel zur xz-Ebene verläuft, gespiegelt werden, ohne dass sich hierbei grundlegen- de Abbildungseigenschaften ändern. In principle, all described embodiments of the projection optics can be mirrored around a plane that runs parallel to the xz plane, without this changing basic imaging properties.
Die Spiegel Ml bis M6 tragen eine die Reflektivität der Spiegel Ml bis M6 für das Abbildungslicht 3 optimierende Beschichtung. Diese hoch reflektierenden Schichten können als Mehrlagen- Schichten ausgeführt sein, wobei aufeinanderfolgende Schichten aus unterschiedlichen Materia- lien gefertigt sein können. Auch alternierende Materialschichten können zum Einsatz kommen. Eine typische Mehrlagenschicht kann fünfzig Bilagen aus jeweils einer Schicht Molybdän und einer Schicht Silizium aufweisen. Diese können zusätzliche Trennschichten aus beispielsweise C (Kohlenstoff), B4C (Borcarbid) beinhalten und können durch eine Schutzschicht oder ein The mirrors M1 to M6 carry a coating which optimizes the reflectivity of the mirrors M1 to M6 for the imaging light 3. These highly reflective layers can be designed as multi-layer layers, wherein successive layers can be made of different materials. Alternate layers of material can also be used. A typical multi-layer layer may comprise fifty bilayers each of one layer of molybdenum and one layer of silicon. These may include additional separating layers of, for example, C (carbon), B 4 C (boron carbide) and may be replaced by a protective layer or a
Schutzschichtsystem zum Vakuum abgeschlossen sein. Protective layer system to be completed for vacuum.
Weitere Informationen zur Reflektivität von NI-Spiegeln (Normal Incidence Spiegeln) finden sich in der DE 101 55 711 A. Further information on the reflectivity of NI mirrors (normal incidence mirrors) can be found in DE 101 55 711 A.
Eine Gesamt-Reflektivität beziehungsweise Systemtransmission der Projektionsoptik 33, die sich als Produkt der Reflektivitäten aller Spiegel Ml bis M8 der Projektionsoptik 33 ergibt, beträgt etwa R = 7,0 %. Der Spiegel M6, also der im Abbildungsstrahlengang letzte Spiegel vor dem Bildfeld 8, hat eine Durchtrittsöffnung 17 zum Durchtritt des Abbildungslichts 3, das vom drittletzten Spiegel M4 hin zum vorletzten Spiegel M5 reflektiert wird. Der Spiegel M6 wird um die Durchtrittsöffnung 17 herum reflektiv genutzt. Alle anderen Spiegel Ml bis M5 haben keine Durchtrittsöffnung und werden in einem lückenlos zusammenhängenden Bereich reflektiv genutzt. A total reflectivity or system transmission of the projection optics 33, which results as the product of the reflectivities of all mirrors M1 to M8 of the projection optics 33, is approximately R = 7.0%. The mirror M6, that is, the last mirror in the imaging beam path in front of the image field 8, has a passage opening 17 for the passage of the imaging light 3, which is reflected by the third last mirror M4 towards the second to last mirror M5. The mirror M6 is used reflectively around the passage opening 17. All other mirrors M1 to M5 have no passage opening and are used in a coherently coherent area reflective.
In der ersten Abbildungslicht-Ebene xz hat die Projektionsoptik 33 genau ein Erstebenen- Zwischenbild 18 im Abbildungslichtstrahlengang zwischen den Spiegeln M4 und M5. Dieses Erstebenen-Zwischenbild 18 liegt im Bereich der Durchtrittsöffnung 17. Ein Abstand zwischen der Durchtrittsöffnung 17 und dem Bildfeld 8 ist mehr als viermal so groß wie ein Abstand zwischen der Durchtrittsöffnung 17 und dem Erstebenen-Zwischenbild 18. In the first imaging light plane xz, the projection optics 33 has exactly one first-level intermediate image 18 in the imaging light beam path between the mirrors M4 and M5. This first plane intermediate image 18 lies in the region of the passage opening 17. A distance between the passage opening 17 and the image field 8 is more than four times as large as a distance between the passage opening 17 and the first plane intermediate image 18.
In der zur ersten Abbildungslicht-Ebene xz senkrechten zweiten Abbildungslicht-Ebene yz verläuft das Abbildungslicht 3 durch genau zwei Zweitebenen-Zwischenbilder 19 und 20. Das erste dieser beiden Zweitebenen-Zwischenbilder 19 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln Ml und M2. Das andere der beiden Zweitebenen-Zwischenbilder 20 liegt im Abbildungslichtstrahlengang zwischen den Spiegeln M4 und M5 im Bereich des Erstebenen- Zwischenbildes 18. Sowohl das Erstebenen-Zwischenbild 18 als auch das Zweitebenen- Zwischenbild 20 liegt also im Bereich der Durchtrittsöffnung 17 im Spiegel M6. Am Ort der Durchtrittsöffnung 17 hat das gesamte Bündel des Abbildungslichts 3 einen kleinen Durchmesser. Entsprechend kann der Durchmesser der Durchtrittsöffnung 17 klein gewählt werden, ohne das Abbildungslicht 3 im Teil-Strahlengang zwischen den Spiegeln M4 und M5 zu beschneiden. In the second imaging light plane yz, which is perpendicular to the first imaging light plane xz, the imaging light 3 passes through exactly two second-plane intermediate images 19 and 20. The first of these two second-plane intermediate images 19 lies in the imaging light beam path between the mirrors M1 and M2. The other of the two second intermediate images 20 lies in the imaging light beam path between the mirrors M4 and M5 in the region of the first-plane intermediate image 18. Thus, both the first-plane intermediate image 18 and the second-plane intermediate image 20 lie in the region of the passage opening 17 in the mirror M6. At the location of the passage opening 17, the entire bundle of the imaging light 3 has a small diameter. Accordingly, the diameter of the passage opening 17 can be made small, without cutting the imaging light 3 in the partial beam path between the mirrors M4 and M5.
Die Anzahl der Erstebenen-Zwischenbilder, bei der Projektionsoptik 33 also genau ein Erstebe- nen-Zwischenbild, und die Anzahl der Zweitebenen-Zwischenbilder, bei der Projektionsoptik 33 also genau zwei Zweitebenen-Zwischenbilder, sind bei der Projektionsoptik 33 voneinander verschieden. Diese Anzahl der Zwischenbilder unterscheidet sich bei der Projektionsoptik 33 um genau eins. Die zweite Abbildungslicht-Ebene yz, in der die größere Anzahl an Zwischenbildern, nämlich die beiden Zweitebenen-Zwischenbilder 19 und 20, vorliegt, fällt mit der Faltebene yz der Spiegel Ml bis M6 zusammen. Diese Faltebene ist die Einfallsebene des Hauptstrahls 16 des zentra- len Feldpunktes bei der Reflexion am jeweiligen Spiegel Ml bis M6. Die Zweitebenen- Zwischenbilder stehen in der Regel nicht senkrecht auf dem Hauptstrahl 16 des zentralen Feldpunktes, der die Abbildungslicht-Hauptpropagationsrichtung ZHR definiert. Ein Zwischenbild- Kippwinkel, also eine Abweichung von dieser senkrechten Anordnung, ist grundsätzlich beliebig und kann zwischen 0° und +/- 89° liegen. The number of first-level intermediate images, ie, in the projection optics 33 exactly one first-level intermediate image, and the number of second-level intermediate images, that is, exactly two second-level intermediate images in the projection optics 33, differ from one another in the projection optics 33. This number of intermediate images differs in the projection optics 33 by exactly one. The second imaging light plane yz in which the larger number of intermediate images, namely the two second-plane intermediate images 19 and 20, is present coincides with the folding plane yz of the mirrors M1 to M6. This folding plane is the plane of incidence of the principal ray 16 of the central ray. len field point in the reflection at the respective mirror Ml to M6. The second level intermediate images are usually not perpendicular to the main beam 16 of the central field point, which defines the imaging light main propagation direction ZHR. An inter-frame tilt angle, ie a deviation from this vertical arrangement, is basically arbitrary and can be between 0 ° and +/- 89 °.
Im Bereich der Zwischenbilder 18, 19, 20 können Hilfseinrichtungen 18a, 19a, 20a angeordnet sein. Bei diesen Hilfseinrichtungen 18a bis 20a kann es sich um Feldblenden zur zumindest abschnittsweisen Definition einer Berandung des Abbildungslichtbündels handeln. Auch eine Fel- dintensitäts- Vorgabeeinrichtung nach Art eines UNICOM, insbesondere mit in x-Richtung gestaffelten Fingerblenden, kann in einer der Zwischenbildebenen der Zwischenbilder 18 bis 20 angeordnet sein. Auxiliaries 18a, 19a, 20a can be arranged in the area of intermediate images 18, 19, 20. These auxiliary devices 18a to 20a can be field diaphragms for at least sectionally defining a boundary of the imaging light bundle. A field intensity presetting device in the manner of a UNICOM, in particular with finger apertures staggered in the x direction, can also be arranged in one of the intermediate image planes of the intermediate images 18 to 20.
Die Spiegel Ml bis M6 sind als nicht durch eine rotationssymmetrische Funktion beschreibbare Freiformflächen ausgeführt. Es sind auch andere Ausführungen der Projektionsoptik 33 möglich, bei denen mindestens einer der Spiegel Ml bis M6 als rotationssymmetrische Asphäre ausgeführt ist. Eine Asphärengleichung für eine solche rotationssymmetrische Asphäre ist bekannt aus der DE 10 2010 029 050 AI . Auch alle Spiegel Ml bis M6 können als derartige Asphären ausgeführt sein. The mirrors M1 to M6 are designed as freeform surfaces which can not be described by a rotationally symmetrical function. Other embodiments of the projection optics 33 are possible in which at least one of the mirrors M1 to M6 is designed as a rotationally symmetric asphere. An aspherical equation for such a rotationally symmetric asphere is known from DE 10 2010 029 050 AI. All mirrors M1 to M6 can also be designed as such aspheres.
Die nachfolgende Tabelle fasst die Parameter "maximaler Einfallswinkel", "Refiexionsfiächener- streckung in x-Richtung", "Reflexionsfiächenerstreckung in y-Richtung" und "maximaler Spiegeldurchmesser" für die Spiegel Ml bis M6 der Projektionsoptik 33 zusammen: The following table summarizes the parameters "maximum angle of incidence", "reflection surface extension in the x direction", "reflection surface extent in the y direction" and "maximum mirror diameter" for the mirrors M1 to M6 of the projection optics 33:
Ml M2 M3 M4 M5 M6 maximaler Einfallswinkel [°] 12 7 12 5 17 5 13 5 22 0 10 9Ml M2 M3 M4 M5 M6 Maximum angle of incidence [°] 12 7 12 5 17 5 13 5 22 0 10 9
Reflexionsfiächenerstreckung in Reflection area extension in
x-Richtung [mm] 763.7 426.9 524.9 913.0 407.7 793.7 Reflexionsfiächenerstreckung in  x direction [mm] 763.7 426.9 524.9 913.0 407.7 793.7 Reflection surface extension in
y-Richtung [mm] 315.7 148.3 256.7 354.4 206.6 767.7 maximaler Spiegeldurchmesser  y direction [mm] 315.7 148.3 256.7 354.4 206.6 767.7 maximum mirror diameter
[mml 763.9 426.9 524.9 913.0 407.8 793.8 Ein maximaler Einfallswinkel des Abbildungslichts auf allen Spiegeln Ml bis M6 ist kleiner als 25°. Dieser maximale Einfallswinkel liegt am Spiegel M5 vor und beträgt 22,0°. [mml 763.9 426.9 524.9 913.0 407.8 793.8 A maximum angle of incidence of the imaging light on all mirrors M1 to M6 is less than 25 °. This maximum angle of incidence is at the M5 mirror and is 22.0 °.
Der maximale Einfallswinkel des Abbildungslichts 3 auf den ersten vier Spiegeln Ml bis M4 im Abbildungslicht- Strahlengang nach dem Objektfeld 4 ist kleiner als 20°. Dieser maximale Einfallswinkel auf den ersten vier Spiegeln Ml bis M4 liegt beim Spiegel M3 vor und beträgt 17,5°. The maximum angle of incidence of the imaging light 3 on the first four mirrors M1 to M4 in the imaging light beam path after the object field 4 is less than 20 °. This maximum angle of incidence on the first four mirrors M1 to M4 is present at the mirror M3 and is 17.5 °.
Am stärksten weicht bei den Spiegeln Ml bis M6 der Projektionsoptik 33 ein y/x- Aspektverhältnis beim Spiegeln M4 vom Wert 1 ab und beträgt dort etwa 1 :2,6. Bei allen ande- ren Spiegeln liegt das y/x- Aspektverhältnis im Bereich zwischen 1 : 1 und 1 :2,5. Ein x/y- Aspektverhältnis der Spiegel Ml bis M4 ist jeweils größer als 2: 1. Most strongly, in the case of the mirrors M1 to M6 of the projection optics 33, a y / x aspect ratio deviates from the value 1 when mirroring M4, where it is approximately 1: 2.6. For all other mirrors, the y / x aspect ratio is in the range between 1: 1 and 1: 2.5. An x / y aspect ratio of the mirrors M1 to M4 is greater than 2: 1, respectively.
Den größten maximalen Spiegeldurchmesser hat der Spiegel M4 mit einem Durchmesser von 913 mm. Keiner der anderen Spiegel Ml bis M3, M5, M6 hat einen maximalen Durchmesser, der größer ist als 800 mm. The largest maximum mirror diameter has the M4 mirror with a diameter of 913 mm. None of the other mirrors Ml to M3, M5, M6 has a maximum diameter greater than 800 mm.
Eine pupillendefinierende Aperturblende AS ist bei der Projektionsoptik 33 im Abbildungslichtstrahlengang zwischen den Spiegeln M2 und M3 angeordnet. Im Bereich der Aperturblende AS ist das gesamte Abbildungslicht-Strahlenbündel über seinen gesamten Umfang zugänglich. Die Aperturblende AS begrenzt den gesamten äußeren Querschnitt des gesamten Abbildungslicht- Bündels. Die Aperturblende AS ist räumlich benachbart zum Zweitebenen-Zwischenbild 19 angeordnet. Diese Anordnung ermöglicht es, den Abbildungslicht-Teilstrahl zwischen den Spiegeln Ml und M2 gering zum Abbildungslicht-Teilstrahl zwischen den Spiegeln M2 und M3 zu falten, sodass ein entsprechend geringer maximaler Einfallswinkel der Eintrittsstrahlen des Abbildungs- lichts 3 auf dem Spiegel M2 resultiert. A pupil-defining aperture diaphragm AS is arranged in the projection optical system 33 in the imaging light beam path between the mirrors M2 and M3. In the area of the aperture stop AS, the entire imaging light beam is accessible over its entire circumference. The aperture stop AS limits the entire outer cross section of the entire imaging light beam. The aperture stop AS is arranged spatially adjacent to the second plane intermediate image 19. This arrangement makes it possible to fold the imaging light partial beam between the mirrors M1 and M2 low to the imaging light partial beam between the mirrors M2 and M3, so that a correspondingly low maximum incident angle of the incident beams of the imaging light 3 on the mirror M2 results.
Die optischen Designdaten der Reflexionsflächen der Spiegel Ml bis M6 der Projektionsoptik 33 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Figur 2 entsprechen. Ausführungsbeispiel Fig. 32 The optical design data of the reflection surfaces of the mirrors M1 to M6 of the projection optics 33 can be found in the following tables, whose construction corresponds to the tables for the projection optics 7 according to FIG. Embodiment FIG. 32
NA 0.55 NA 0.55
Wellenlänge 13.5 nm beta_x 4.0 beta_y -8.0Wavelength 13.5 nm beta_x 4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.025 mm Feldkrümmung 0.012055 1/mm rms 14.8 mlField size_y 1.025 mm field curvature 0.012055 1 / mm rms 14.8 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 32 Table 1 to FIG. 32
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M6 -858.8749765 0.0023024 -737.8428816 0.0027415 REFLM6 -858.8749765 0.0023024 -737.8428816 0.0027415 REFL
M5 1 1682.0944369 -0.0001709 534.1551388 -0.0037506 REFLM5 1 1682.0944369 -0.0001709 534.1551388 -0.0037506 REFL
M4 -1809.2188844 0.0010846 -1922.0843519 0.0010605 REFLM4 -1809.2188844 0.0010846 -1922.0843519 0.0010605 REFL
M3 6440.5662221 -0.0003000 -50750.8327561 0.0000408 REFLM3 6440.5662221 -0.0003000 -50750.8327561 0.0000408 REFL
M2 4674.6964470 -0.0004248 -1689.0780794 0.001 1926 REFLM2 4674.6964470 -0.0004248 -1689.0780794 0.001 1926 REFL
M1 -3024.621 1530 0.0006495 -1563.8351466 0.0013020 REFLM1 -3024.621 1530 0.0006495 -1563.8351466 0.0013020 REFL
Tabelle 2 zu Fig. 32 Table 2 to FIG. 32
Koeffizient M6 M5 M4Coefficient M6 M5 M4
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -858.87497650 1 1682.09444000 -1809.21888400KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -858.87497650 1 1682.09444000 -1809.21888400
C7 -1.75601 165e-08 9.76351323e-07 9.24894814e-09 C9 4.12151659e-08 -1.56366742e-06 -1.30495858e-08 C10 -2.3717266e-1 1 4.0532551 1 e-10 -5.79972529e-12 C12 -7.77186732e-1 1 8.75399624e-10 -3.79452218e-12 C14 -9.96610891 e-12 4.36073106e-09 -4.96523891 e-13 C16 -4.78999259e-14 1.32627983e-12 3.34101424e-15 C18 3.80178838e-14 2.2544009e-12 -4.32759723e-15 C20 6.51 1239e-14 -1.98197357e-1 1 1.12275782e-14 C21 -3.92631731 e-17 5.49613894e-16 -2.56249544e-18 C23 -1.90245505e-16 4.01086987e-15 -4.40565287e-18 C25 -1.74273842e-16 -1.5885968e-14 8.76955689e-18 C27 -2.10056418e-17 7.29644441 e-14 -4.39478392e-17 C29 -6.92447499e-20 7.26806853e-19 -1.16221 193e-21 C31 -9.67320853e-22 -9.07342399e-18 2.09560033e-20 C33 1.58051548e-19 8.64687575e-17 9.71341566e-20 C35 1.31073342e-19 -6.14527486e-16 1.0702907e-19 C36 -7.37235909e-23 1.62385505e-21 -1.65841605e-24 C38 -3.82619485e-22 -2.24043808e-21 -2.45488766e-24 C40 -6.28798296e-22 9.40837613e-20 -4.20470613e-23 C42 -3.62609295e-22 -1.26850842e-18 3.32122136e-22 C44 -1.13486477e-23 2.74573501 e-18 1.21683021 e-22 C46 -1.37331048e-25 4.2081407e-23 5.7969842e-27 C48 -1.47293299e-25 2.88686689e-22 -2.23585834e-26 C50 2.07891229e-25 -2.45657195e-22 -8.67407678e-25 C52 5.16694591 e-25 4.84753531 e-21 -2.97297137e-24 C54 2.27538477e-25 6.32501824e-21 -1.05704009e-23 izient M6 M5 M4C7 -1.75601 165e-08 9.76351323e-07 9.24894814e-09 C9 4.12151659e-08 -1.56366742e-06 -1.30495858e-08 C10 -2.3717266e-1 1 4.0532551 1 e-10 -5.79972529e-12 C12 -7.77186732e -1 1 8.75399624e-10 -3.79452218e-12 C14 -9.96610891 e-12 4.36073106e-09 -4.96523891 e-13 C16 -4.78999259e-14 1.32627983e-12 3.34101424e-15 C18 3.80178838e-14 2.2544009e-12 -4.32759723e-15 C20 6.51 1239e-14 -1.98197357e-1 1 1.12275782e-14 C21 -3.92631731 e-17 5.49613894e-16 -2.56249544e-18 C23 -1.90245505e-16 4.01086987e-15 -4.40565287e-18 C25 -1.74273842e-16 -1.5885968e-14 8.76955689e-18 C27 -2.10056418e-17 7.29644441 e-14 -4.39478392e-17 C29 -6.92447499e-20 7.26806853e-19 -1.16221 193e-21 C31 -9.67320853e C35-9.07342399e-18 2.09560033e-20 C33 1.58051548e-19 8.64687575e-17 9.71341566e-20 C35 1.31073342e-19 -6.14527486e-16 1.0702907e-19 C36 -7.37235909e-23 1.62385505e-21 -1.65841605e -24 C38 -3.82619485e-22 -2.24043808e-21 -2.45488766e-24 C40 -6.28798296e-22 9.40837613e-20 -4.20470613e-23 C42 -3.62609295e-22 -1.26850842e 18 3.32122136e-22 C44 -1.13486477e-23 2.74573501 e-18 1.21683021 e-22 C46 -1.37331048e-25 4.2081407e-23 5.7969842e-27 C48 -1.47293299e-25 2.88686689e-22 -2.23585834e-26 C50 2.07891229 e-25 -2.45657195e-22 -8.67407678e-25 C52 5.16694591 e-25 4.84753531 e-21 -2.97297137e-24 C54 2.27538477e-25 6.32501824e-21 -1.05704009e-23 efficient M6 M5 M4
C55 -3.241 19108e-29 -3.08147298e-26 5.64088431 e-30C55 -3.241 19108e-29 -3.08147298e-26 5.64088431 e-30
C57 -6.41610415e-28 3.57346972e-25 -2.00859294e-29C57 -6.41610415e-28 3.57346972e-25 -2.00859294e-29
C59 -1 .69412665e-27 2.06843583e-24 -9.524901 19e-29C59 -1 .69412665e-27 2.06843583e-24 -9.524901 19e-29
C61 -1 .7241 1595e-27 -2.47503441 e-24 1 .97416699e-27C61 -1 .7241 1595e-27 -2.47503441 e-24 1 .97416699e-27
C63 -5.7995256e-28 4.01267717e-23 -3.83090877e-26C63 -5.7995256e-28 4.01267717e-23 -3.83090877e-26
C65 -1 .635162e-29 -4.62428375e-23 1 .21532476e-25C65 -1 .635162e-29 -4.62428375e-23 1 .21532476e-25
C67 1 .22726086e-31 -1 .2494157e-27 -6.17049136e-32C67 1 .22726086e-31 -1 .2494157e-27 -6.17049136e-32
C69 2.84133671 e-31 -5.44453482e-27 -7.76588296e-31C69 2.84133671 e-31 -5.44453482e-27 -7.76588296e-31
C71 4.44381319e-31 -3.78606642e-26 -2.18932157e-31C71 4.44381319e-31 -3.78606642e-26 -2.18932157e-31
C73 1 .77800746e-30 -4.15333379e-26 1 .78648032e-29C73 1 .77800746e-30 -4.15333379e-26 1 .78648032e-29
C75 1 .6160079e-30 -1 .24201006e-25 3.46971259e-29C75 1 .6160079e-30 -1 .24201006e-25 3.46971259e-29
C77 3.10049067e-31 -3.13835508e-25 -2.00008177e-29C77 3.10049067e-31 -3.13835508e-25 -2.00008177e-29
C78 -4.00765463e-34 3.71999699e-31 -2.61982192e-35C78 -4.00765463e-34 3.71999699e-31 -2.61982192e-35
C80 -2.12693373e-33 -8.2624255e-30 5.31477481 e-34C80 -2.12693373e-33 -8.2624255e-30 5.31477481 e-34
C82 -4.00467472e-33 -9.39873312e-29 8.16603132e-33C82 -4.00467472e-33 -9.39873312e-29 8.16603132e-33
C84 -6.27063161 e-33 -1 .0314431 e-28 1 .14008163e-32C84 -6.27063161 e-33 -1 .0314431 e-28 1 .14008163e-32
C86 -3.54293249e-33 9.4886599e-28 -3.12780164e-32C86 -3.54293249e-33 9.4886599e-28 -3.12780164e-32
C88 -9.29818695e-34 -5.58939473e-27 2.06573781 e-30C88 -9.29818695e-34 -5.58939473e-27 2.06573781 e-30
C90 -7.896513e-34 -1 .32131239e-27 -6.03635915e-30C90 -7.896513e-34 -1 .32131239e-27 -6.03635915e-30
C92 -5.73838546e-37 1 .70280303e-32 2.4443233e-37C92 -5.73838546e-37 1 .70280303e-32 2.4443233e-37
C94 -3.39136484e-36 9.34845871 e-32 5.29050095e-36C94-3.39136484e-36 9.34845871 e-32 5.29050095e-36
C96 -2.86917081 e-36 5.06073109e-31 3.61960832e-35C96 -2.86917081 e-36 5.06073109e-31 3.61960832e-35
C98 5.07534678e-37 3.15612468e-30 4.78854298e-35C98 5.07534678e-37 3.15612468e-30 4.78854298e-35
C100 -2.99347712e-36 -6.44314e-30 5.76086779e-35C100 -2.99347712e-36 -6.44314e-30 5.76086779e-35
C102 -1 .31255149e-36 3.6781 1047e-29 4.76487931 e-34C102 -1 .31255149e-36 3.6781 1047e-29 4.76487931 e-34
C104 1 .74787841 e-36 -1 .5901 1 1 13e-29 2.31589865e-32C104 1 .74787841 e-36 -1 .5901 1 1 13e-29 2.31589865e-32
C105 -1 .31762349e-40 1 .09344483e-36 5.14787253e-41C105 -1 .31762349e-40 1 .09344483e-36 5.14787253e-41
C107 3.54057177e-39 1 .10846109e-34 -2.64963079e-39C107 3.54057177e-39 1 .10846109e-34 -2.64963079e-39
C109 -1 .78073131 e-39 1 .72014461 e-33 -6.49527987e-38 cm -1 .55177824e-39 3.05219736e-33 -3.04866424e-37C109 -1 .78073131 e-39 1 .72014461 e-33 -6.49527987e-38 cm -1 .55177824e-39 3.05219736e-33 -3.04866424e-37
C1 13 9.44170173e-40 -1 .606718e-32 3.01731009e-37C1 13 9.44170173e-40 -1 .606718e-32 3.01731009e-37
C1 15 -6.64945728e-39 -5.29558524e-33 6.40489097e-37C1 15 -6.64945728e-39 -5.29558524e-33 6.40489097e-37
C1 17 -3.1 1940525e-39 7.183451 17e-32 -4.90591508e-35C1 17 -3.1 1940525e-39 7.183451 17e-32 -4.90591508e-35
C1 19 5.501 10677e-39 7.25898814e-31 6.03700342e-35C1 19 5.501 10677e-39 7.25898814e-31 6.03700342e-35
C121 -9.71 158605e-43 -6.95775525e-38 -3.26101881 e-43C121 -9.71 158605e-43 -6.95775525e-38 -3.26101881 e-43
C123 7.23217134e-43 -3.34409103e-37 -1 .06619266e-41C123 7.23217134e-43 -3.34409103e-37 -1 .06619266e-41
C125 -5.69478444e-43 -2.6871 1867e-36 -1 .08286695e-40C125 -5.69478444e-43-2.6871 1867e-36-1 .08286695e-40
C127 1 .01640903e-41 -1 .59432765e-35 -5.65210621 e-40C127 1 .01640903e-41 -1 .59432765e-35 -5.65210621 e-40
C129 3.54945098e-41 -6.92583272e-35 -6.24703952e-40C129 3.54945098e-41 -6.92583272e-35 -6.24703952e-40
C131 5.75167037e-41 1 .44445437e-34 -5.42019444e-39C131 5.75167037e-41 1 .44445437e-34 -5.42019444e-39
C133 3.08126364e-41 -1 .06727558e-33 -1 .50612862e-38C133 3.08126364e-41 -1 .06727558e-33 -1 .50612862e-38
C135 2.19317005e-42 -4.78626916e-33 -4.47539966e-37C135 2.19317005e-42 -4.78626916e-33 -4.47539966e-37
C136 -2.9364696e-46 -2.35545286e-41 -3.64930823e-47C136 -2.9364696e-46 -2.35545286e-41 -3.64930823e-47
C138 -1 .90854146e-44 -2.28045861 e-40 4.04460613e-45C138 -1 .90854146e-44 -2.28045861 e-40 4.04460613e-45
C140 -4.87396267e-44 -1 .12315129e-38 1 .50547812e-43C140 -4.87396267e-44 -1 .12315129e-38 1 .50547812e-43
C142 -1 .22392623e-43 -5.18269145e-39 1 .08187079e-42C142 -1 .22392623e-43 -5.18269145e-39 1 .08187079e-42
C144 -1 .5701492e-43 8.12616097e-38 2.14893577e-42C144 -1 .5701492e-43 8.12616097e-38 2.14893577e-42
C146 -1 .41544082e-43 7.94029513e-37 -2.09572031 e-41C146 -1 .41544082e-43 7.94029513e-37 -2.09572031 e-41
C148 -4.16578745e-44 -1 .02187357e-37 -5.68091764e-42C148 -4.16578745e-44-1 .02187357e-37 -5.68091764e-42
C150 -4.93563592e-45 2.08165148e-36 4.3697037e-40C150 -4.93563592e-45 2.08165148e-36 4.3697037e-40
C152 -1 .23605467e-44 9.57945472e-36 5.32462749e-40C152 -1 .23605467e-44 9.57945472e-36 5.32462749e-40
Tabelle 3a zu Fig. 32 Koeffizient M3 M2 M1Table 3a to FIG. 32 Coefficient M3 M2 M1
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 6440.56622200 4674.69644700 -3024.62115300KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 6440.56622200 4674.69644700 -3024.62115300
C7 -2.75621082e-08 1.33344077e-07 8.13680852e-09 C9 2.13772967e-07 -4.88439323e-07 -5.25766875e-08 C10 9.05428093e-11 2.4651278e-10 -4.04575459e-12 C12 9.97338804e-11 3.42470844e-10 -1.29491379e-11 C14 8.68032839e-11 7.31944141e-10 7.96400769e-12 C16 -2.05047244e-13 -1.75843577e-13 5.544904e-16 C18 1.34167844e-13 -1.38921296e-12 -7.29182129e-15 C20 1.73209287e-13 -1.66984422e-12 3.01026401e-14 C21 9.16122712e-17 4.83036548e-16 -8.06064519e-19 C23 -1.09772479e-16 1.07200979e-15 -1.50707101e-18 C25 -7.56588666e-16 5.73756053e-15 -8.45373733e-18 C27 -1.67309364e-15 4.42677763e-15 3.25143759e-17 C29 2.16545447e-19 -1.13834484e-18 -9.71555651 e-22 C31 -5.68407901 e-19 -8.59930026e-18 1.00947506e-21 C33 -6.38803875e-18 -1.94419133e-17 -2.20716112e-20 C35 -6.0317108e-18 -1.84553665e-16 -9.50209226e-19 C36 4.37147715e-22 8.94388533e-22 3.17263448e-25 C38 -2.31254227e-22 5.73932727e-21 -5.13351486e-24 C40 -4.04758904e-21 1.1 1881151e-20 3.52315788e-23 C42 -3.17472839e-20 3.32163198e-19 6.48990287e-22 C44 -9.85162714e-20 1.8034724e-18 7.74038563e-21 C46 -4.1324221e-24 1.07264182e-23 6.57538448e-27 C48 -1.08450683e-23 1.14076514e-22 -1.23024327e-27 C50 3.68038057e-23 1.77193073e-21 -5.48205165e-26 C52 2.16095044e-22 6.33924939e-21 -2.14983022e-24 C54 2.41539568e-22 3.18513118e-20 4.1 1656476e-23 C55 -5.4475152e-27 8.76303942e-27 -2.46528392e-30 C57 8.2180888e-27 -4.28356923e-26 1.32430341 e-28 C59 1.53403997e-25 -9.18224618e-25 -1.73597019e-28 C61 4.03258962e-25 2.60047232e-24 -4.7745939e-27 C63 3.53575651 e-24 -7.63901326e-23 -6.04547381 e-26 C65 8.31549041e-24 -4.35078172e-22 -7.54618751 e-25 C67 9.87087274e-29 -3.56838335e-28 -8.88835362e-32 C69 6.42776984e-28 -2.84407951 e-27 -5.61337491 e-31 C71 1.01602965e-27 -4.57862438e-26 -4.00758063e-30 C73 1.41613033e-30 -6.37072226e-25 9.87094819e-30 C75 4.43477538e-27 -1.92873559e-24 1.24431428e-28 C77 5.64483223e-27 -2.99431785e-24 -1.94178739e-27 C78 6.57189519e-32 -3.55474086e-32 4.93765851 e-36 C80 -3.95411808e-31 -6.34983549e-32 -1.37798134e-33 C82 -6.45360265e-30 5.97194435e-30 -1.79738233e-33 C84 -1.76221617e-29 -3.4243908e-28 9.45814317e-32 C86 -4.93632546e-29 -2.90233773e-27 4.84143104e-31 C88 -3.47366201 e-28 1.64734281 e-26 2.85035612e-30 C90 -5.69693718e-28 8.7332442e-26 3.51411701e-29 C92 -9.41428626e-34 4.07301235e-33 4.99363876e-37 C94 -9.52828137e-33 3.91076643e-32 6.51134396e-36 C96 -4.03443132e-32 6.72956002e-31 4.31274648e-35 C98 -8.16791536e-32 1.07442969e-29 2.93394382e-34 C100 -5.06109148e-31 1.46674302e-28 -1.25604389e-33 C102 -2.27324283e-30 4.12153973e-28 -4.12484361 e-33 Koeffizient M3 M2 M1C7 -2.75621082e-08 1.33344077e-07 8.13680852e-09 C9 2.13772967e-07 -4.88439323e-07 -5.25766875e-08 C10 9.05428093e-11 2.4651278e-10 -4.04575459e-12 C12 9.97338804e-11 3.42470844e -10 -1.29491379e-11 C14 8.68032839e-11 7.31944141e-10 7.96400769e-12 C16 -2.05047244e-13 -1.75843577e-13 5.544904e-16 C18 1.34167844e-13 -1.38921296e-12 -7.29182129e-15 C20 1.73209287e-13 C-9.156122712e-C21 9.16122712e-17 4.83036548e-16 -8.06064519e-19 C23 -1.09772479e-16 1.07200979e-15 -1.50707101e-18 C25 -7.56588666e-16 5.73756053 e-15 C31 -5.68407901 e-19 -8.59930026e-18 1.00947506e. e-15 C -5.45373733e-18 C27-1.67309364e-15 4.42677763e-15 3.25143759e-17 C29 2.16545447e-19 -1.13834484e-18 -9.71555651 e-22 C31 -5.68407901 e-19 -8.59930026e-18 1.00947506e -21 C33-6.38803875e-18 -1.94419133e-17 -2.20716112e-20 C35 -6.0317108e-18 -1.84553665e-16 -9.50209226e-19 C36 4.37147715e-22 8.94388533e-22 3.17263448e-25 C38 -2.31254227 e-22 5.73932727e-21 -5.13351486e-24 C40 -4.04758904e-21 1.1 1881151e-20 3.52315788e-23 C42-3.17472839e-20 3.32163198e-19 6.489902 87e-22 C44 -9.85162714e-20 1.8034724e-18 7.74038563e-21 C46 -4.1324221e-24 1.07264182e-23 6.57538448e-27 C48 -1.08450683e-23 1.14076514e-22 -1.23024327e-27 C50 3.68038057- It is not intended that the invention be construed as being construed as being construed by reference -30 C57 8.2180888e-27 -4.28356923e-26 1.32430341 e-28 C59 1.53403997e-25 -9.18224618e-25 -1.73597019e-28 C61 4.03258962e-25 2.60047232e-24 -4.7745939e-27 C63 3.53575651 e-24 -7.63901326e-23 -6.04547381 e-26 C65 8.31549041e-24 -4.35078172e-22 -7.54618751 e-25 C67 9.87087274e-29 -3.56838335e-28 -8.88835362e-32 C69 6.42776984e-28 -2.84407951 e-27 -5.61337491 e-31 C71 1.01602965e-27 -4.57862438e-26 -4.00758063e-30 C73 1.41613033e-30 -6.37072226e-25 9.87094819e-30 C75 4.43477538e-27 -1.92873559e-24 1.24431428e-28 C77 5.64483223 e-27 C -3.95411808e-31 -6.34983549e -32 -1.37798134e-33 C82-6.45360265e-30 5.97194435e-30 -1.79738233e-33 C84 -1.76221617e-29 -3.4243908e-28 9.45814317e-32 C86 -4.93632546e-29 -2.90233773e-27 4.84143104e -31 C88-3.47366201 e-28 1.64734281 e-26 2.85035612e-30 C90 -5.69693718e-28 8.7332442e-26 3.51411701e-29 C92 -9.41428626e-34 4.07301235e-33 4.99363876e-37 C94 -9.52828137e-33 3.91076643e-32 6.51134396e-36 C96 -4.03443132e-32 6.72956002e-31 4.31274648e-35 C98 -8.16791536e-32 1.07442969e-29 2.93394382e-34 C100 -5.06109148e-31 1.46674302e-28 -1.25604389e 33 C102 -2.27324283e-30 4.12153973e-28 -4.12484361 e-33 Coefficient M3 M2 M1
C104 -3.25497507e-30 3.17476096e-28 7.96225335e-32 C105 -2.84264594e-37 -8.01264065e-37 6.15642053e-41 C107 4.14759235e-36 2.17790829e-35 6.4351619e-39 C109 1.13957341 e-34 3.89579308e-34 2.3184794e-38 C1 1 1 3.64220606e-34 1.62536408e-32 -7.22249316e-37 C1 13 4.64657733e-34 1.53002667e-31 -5.7129879e-36 C1 15 2.88642202e-34 1.00791788e-30 -2.03780388e-35 C1 17 7.44826089e-33 -4.72609071 e-31 -5.56109055e-35 C1 19 1.00966682e-32 -7.69819227e-30 -6.86936805e-34 C121 3.10161513e-39 -1.4205369e-38 -9.82000697e-43 C123 4.61926649e-38 -8.58182682e-38 -2.14923463e-41 C125 2.73215469e-37 -4.42601259e-36 -1.52471202e-40 C127 9.55584866e-37 -5.38081705e-35 -1.039324e-39 C129 4.89550473e-36 -1.37871892e-33 -4.79859802e-39 C131 2.76267148e-35 -1.46401094e-32 3.70949403e-38 C133 1.08744782e-34 -3.75359399e-32 5.38604799e-38 C135 1.43759826e-34 -3.76390962e-32 -1.31857729e-36 C136 3.12192213e-43 8.75181853e-42 -2.53432908e-46 C138 -1.15972236e-41 -2.91207673e-40 -1.15659019e-44 C140 -6.88975315e-40 -6.99129714e-39 -4.69836892e-44 C142 -2.90125414e-39 -2.13001905e-37 1.46558091 e-42 C144 -4.26224447e-39 -2.15878626e-36 2.57968797e-41 C146 2.12388457e-38 -1.92354163e-35 8.70323809e-41 C148 1.00587068e-37 -1.25257261 e-34 3.0826717e-40 C150 2.69054759e-37 -1.60142154e-34 2.17287446e-40 C152 3.45264757e-37 4.28993407e-35 3.7668963e-39C104 -3.25497507e-30 3.17476096e-28 7.96225335e-32 C105 -2.84264594e-37 -8.01264065e-37 6.15642053e-41 C107 4.14759235e-36 2.17790829e-35 6.4351619e-39 C109 1.13957341 e-34 3.89579308- 34 2.3184794e-38 C1 1 1 3.64220606e-34 1.62536408e-32 -7.22249316e-37 C1 13 4.64657733e-34 1.53002667e-31 -5.7129879e-36 C1 15 2.88642202e-34 1.00791788e-30 -2.03780388e- C121 3.10161513e-39 -1.4205369e-38 -9.82000697e-43 C123 4.61926649. (C123) 4.61926649 It is also known that the invention is characterized in its entirety by reference to the following claims: C125 2,73215469e-37 -4.42601259e-36 -1.52471202e-40 C127 9.55584866e-37 -5.38081705e-35 -1.039324e-39 C129 4.89550473e-36 -1.37871892 e-33 -4.79859802e-39 C131 2.76267148e-35 -1.46401094e-32 3.70949403e-38 C133 1.08744782e-34 -3.75359399e-32 5.38604799e-38 C135 1.43759826e-34 -3.76390962e-32 -1.31857729e 36 C136 3.12192213e-43 8.75181853e-42 -2.53432908e-46 C138 -1.15972236e-41 -2.91207673e-40 -1.15659019e-44 C140 -6.88975315e-40 -6.99129714e-39 -4.69836892e-44 C142 -2.90125414e-39 -2.13001905e-37 1.46558091 e-42 C144 -4.26224447e-39 -2.15878626e-36 2.57968797e-41 C146 2.12388457e-38 -1.92354163e-35 8.70323809e-41 C148 1.00587068e-37 -1.25257261 e-34 3.0826717e-40 C150 2.69054759e-37 -1.60142154e-34 2.17287446e-40 C152 3.45264757e-37 4.28993407e-35 3.7668963e-39
Tabelle 3b zu Fig. 32 Table 3b to FIG. 32
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M6 0.00000000 0.00000000 680 26363148 M5 0.00000000 175.01413342 1 15 40717146 0 0.00000000 67.03531830 696 81352059 M4 0.00000000 -177.891 18720 2015 60763050 M3 0.00000000 463.675141 1 1 1019 61228072 Blende 0.00000000 437.35060541 1536 16364485 M2 0.00000000 41 1.13780579 2050 52247554 M1 0.00000000 916.20837074 360 59865458Image plane 0.00000000 0.00000000 0 00000000 M6 0.00000000 0.00000000 680 26363148 M5 0.00000000 175.01413342 1 15 40717146 0 0.00000000 67.03531830 696 81352059 M4 0.00000000 -177,891 18720 2015 60763050 M3 0.00000000 463.675141 1 1 1019 61228072 aperture 0.00000000 437.35060541 1536 16364485 M2 0.00000000 41 1.13780579 2050 52247554 M1 0.00000000 916.20837074 360 59865458
Objektebene 0.00000000 1 103.19655335 2500 12593849 Tabelle 4a zu Fig. 32 Object level 0.00000000 1 103.19655335 2500 12593849 Table 4a to FIG. 32
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M6 8.60749020 0.00000000 -0.00000000M6 8.60749020 0.00000000 -0.00000000
M5 13.86804194 180.00000000 0.00000000M5 13.86804194 180.00000000 0.00000000
Blende 1.91361326 0.00000000 -0.00000000Aperture 1.91361326 0.00000000 -0.00000000
M4 21.65427373 0.00000000 -0.00000000M4 21.65427373 0.00000000 -0.00000000
M3 17.85241632 180.00000000 0.00000000M3 17.85241632 180.00000000 0.00000000
AS -1.32428889 0.00000000 -0.00000000AS -1.32428889 0.00000000 -0.00000000
M2 9.77865522 0.00000000 -0.00000000M2 9.77865522 0.00000000 -0.00000000
M1 5.82256804 180.00000000 0.00000000M1 5.82256804 180.00000000 0.00000000
Objektebene 0.00521430 0.00000000 -0.00000000 Tabelle 4b zu Fig. 32 Object level 0.00521430 0.00000000 -0.00000000 Table 4b to FIG. 32
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M6 8.60749020 0.65767358 M5 3.34693847 0.66458709 M4 1 1.13317026 0.65184268 M3 14.93502767 0.63931878 M2 6.86126657 0.66070757 M1 10.81735374 0.65267164M6 8.60749020 0.65767358 M5 3.34693847 0.66458709 M4 1 1.13317026 0.65184268 M3 14.93502767 0.63931878 M2 6.86126657 0.66070757 M1 10.81735374 0.65267164
Gesarnttransmission 0.0785 Tabelle 5 zu Fig. 32 Total transmission 0.0785 Table 5 to FIG. 32
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
-0.00000000 -1 12.29771418 0.00000000-0.00000000 -1 12.29771418 0.00000000
-33.95300806 -1 10.50829091 0.00000000-33.95300806 -1 10.50829091 0.00000000
-67.19709735 -105.23305301 0.00000000-67.19709735 -105.23305301 0.00000000
-99.021 12992 -96.74222105 0.00000000-99.021 12992 -96.74222105 0.00000000
-128.70836648 -85.46276877 0.000000000.00000000. -128.70836648 -85.46276877
-155.53408145 -71.94865414 0.00000000-155.53408145 -71.94865414 0.00000000
-178.77033514 -56.83454541 0.00000000-178.77033514 -56.83454541 0.00000000
-197.70656829 -40.78032165 0.00000000-197.70656829 -40.78032165 0.00000000
-21 1.69220377 -24.42406785 0.00000000-21 1.69220377 -24.42406785 0.00000000
-220.19846094 -8.34604314 0.00000000-220.19846094 -8.34604314 0.00000000
-222.88505781 6.96008041 0.00000000-222.88505781 6.96008041 0.00000000
-219.650501 17 21.10835728 0.00000000-219,650,501 17 21.10835728 0.00000000
-210.64850400 33.82750503 0.00000000-210.64850400 33.82750503 0.00000000
-196.26500687 44.95249418 0.000000000.006 million
-177.06410535 54.40979859 0.00000000-177.06410535 54.40979859 0.00000000
-153.72103885 62.20042270 0.00000000-153.72103885 62.20042270 0.00000000
-126.96076580 68.38008729 0.00000000-126.96076580 68.38008729 0.00000000
-97.5131 1407 73.03741008 0.00000000-97.5131 1407 73.03741008 0.00000000
-66.08745553 76.27157774 0.00000000-66.08745553 76.27157774 0.00000000
-33.36449943 78.17125573 0.00000000-33.36449943 78.17125573 0.00000000
-0.00000000 78.79727683 0.00000000-0.00000000 78.79727683 0.00000000
33.36449943 78.17125573 0.0000000033.36449943 78.17125573 0.00000000
66.08745553 76.27157774 0.0000000066.08745553 76.27157774 0.00000000
97.5131 1407 73.03741008 0.0000000097.5131 1407 73.03741008 0.00000000
126.96076580 68.38008729 0.00000000126.96076580 68.38008729 0.00000000
153.72103885 62.20042270 0.00000000153.72103885 62.20042270 0.00000000
177.06410535 54.40979859 0.00000000177.06410535 54.40979859 0.00000000
196.26500687 44.95249418 0.00000000196.26500687 44.95249418 0.00000000
210.64850400 33.82750503 0.00000000210.64850400 33.82750503 0.00000000
219.650501 17 21.10835728 0.00000000219.650501 17 21.10835728 0.00000000
222.88505781 6.96008041 0.00000000222.88505781 6.96008041 0.00000000
220.19846094 -8.34604314 0.00000000220.19846094 -8.34604314 0.00000000
21 1.69220377 -24.42406785 0.0000000021 1.69220377 -24.42406785 0.00000000
197.70656829 -40.78032165 0.00000000197.70656829 -40.78032165 0.00000000
178.77033514 -56.83454541 0.00000000178.77033514 -56.83454541 0.00000000
155.53408145 -71.94865414 0.00000000155.53408145 -71.94865414 0.00000000
128.70836648 -85.46276877 0.000000000.00000000
99.021 12992 -96.74222105 0.0000000099.021 12992 -96.74222105 0.00000000
67.19709735 -105.23305301 0.0000000067.19709735 -105.23305301 0.00000000
33.95300806 -1 10.50829091 0.00000000 - HO - 33.95300806 -1 10.50829091 0.00000000 - HO -
Tabelle 6 zu Fig. 32 Table 6 to FIG. 32
Eine Gesamt-Reflektivität der Projektionsoptik 33 beträgt etwa 7,85 %. Die Referenzachsen der Spiegel sind in der Regel gegenüber einer Normalen auf die Bildebene 9 verkippt, wie die tabellierten Verkippungswerte deutlich machen. A total reflectivity of the projection optics 33 is about 7.85%. The reference axes of the mirrors are generally tilted with respect to a normal to the image plane 9, as the tabulated tilt values make clear.
Das Bildfeld 8 hat eine x-Erstreckung von zweimal 13 mm und eine y-Erstreckung von 1 mm. Die Projektionsoptik 33 ist optimiert für eine Betriebswellenlänge des Beleuchtungslichts 3 von 13,5 nm. The image field 8 has an x-extension of twice 13 mm and a y-extension of 1 mm. The projection optics 33 is optimized for an operating wavelength of the illumination light 3 of 13.5 nm.
Eine Berandung einer Blendenfläche der Blende (vgl. auch die Tabelle 6 zur Fig. 32) ergibt sich durch Durchstoßpunkte an der Blendenfläche aller Strahlen des Beleuchtungslichts 3, die bildsei- tig am Feldmittelpunkt mit einer vollen bildseitigen telezentrischen Apertur in Richtung der Blendenfläche propagieren. Bei der Ausführung der Blende als Aperturblende handelt es sich bei der Berandung um eine innere Berandung. A boundary of a diaphragm surface of the diaphragm (see also Table 6 for Fig. 32) results from puncture points on the diaphragm surface of all beams of the illumination light 3, the image side propagate at the field center point with a full image-side telecentric aperture in the direction of the diaphragm surface. When the aperture is designed as an aperture diaphragm, the boundary is an inner boundary.
Die Blende AS kann in einer Ebene liegen oder auch dreidimensional ausgeführt sein. Die Ausdehnung der Blende AS kann in Scanrichtung (y) kleiner sein als in cross-Scanrichtung (x). The diaphragm AS can lie in one plane or can also be embodied in three dimensions. The extent of the diaphragm AS can be smaller in the scanning direction (y) than in the cross-scanning direction (x).
Eine Baulänge der Projektionsoptik 33 in der z-Richtung, also ein Abstand zwischen der Objektebene 5 und der Bildebene 9, beträgt etwa 2500 mm. A length of the projection optics 33 in the z-direction, that is, a distance between the object plane 5 and the image plane 9, is about 2500 mm.
Eine Pupillenobskuration beträgt bei der Projektionsoptik 33 15 % der gesamten Apertur der Eintrittspupille. Weniger als 15 % der numerischen Apertur sind aufgrund der Durchtrittsöffnung 17 also obskuriert. Die Konstruktion der Obskurationsberandung erfolgt analog der vorstehend im Zusammenhang mit der Blende 18 erläuterten Konstruktion der Blendenberandung. Bei der Ausführung als Obskurationsblende handelt es sich bei der Berandung um eine äußere Berandung der Blende. In einer Systempupille der Projektionsoptik 33 ist eine aufgrund der Obskura- tion nicht beleuchtbare Fläche kleiner als 0,152 der Fläche der gesamten Systempupille. Die nicht beleuchtete Fläche innerhalb der Systempupille kann in der x-Richtung eine andere Ausdehnung haben als in der y-Richtung. Die nicht beleuchtete Fläche in der Systempupille kann rund, ellip- tisch, quadratisch oder rechteckig sein. Diese nicht beleuchtbare Fläche in der Systempupille kann zudem in Bezug auf ein Zentrum der Systempupille in der x-Richtung und/oder in der y- Richtung dezentriert sein. Ein y- Abstand dois (Objekt-Bild- Versatz) zwischen einem zentralen Objektfeldpunkt und einem zentralen Bildfeldpunkt beträgt etwa 1100 mm. Ein Arbeitsabstand zwischen dem Spiegel M5 und der Bildebene 9 beträgt 90 mm. A pupil obscuration in projection optics 33 is 15% of the total aperture of the entrance pupil. Less than 15% of the numerical aperture are therefore obscured due to the passage opening 17. The construction of the obscurant boundary takes place analogously to the construction of the diaphragm boundary explained above in connection with the diaphragm 18. When executed as Obskurationsbrende it is at the boundary to an outer boundary of the aperture. In a system pupil of the projection optics 33, an area that can not be illuminated due to the obscuration is less than 0.15 2 of the area of the entire system pupil. The unilluminated area within the system pupil may have a different extent in the x-direction than in the y-direction. The unilluminated area in the system pupil may be round, elliptical be table, square or rectangular. This non-illuminable area in the system pupil may also be decentered with respect to a center of the system pupil in the x-direction and / or in the y-direction. A y-distance dois (object-to-image offset) between a central object field point and a central image field point is about 1100 mm. A working distance between the mirror M5 and the image plane 9 is 90 mm.
Die Spiegel der Projektionsoptik 33 können in einem Quader mit den xyz-Kantenlängen 913 mm x 1418 mm x 1984 mm untergebracht werden. The mirrors of the projection optics 33 can be accommodated in a cuboid with the xyz edge lengths 913 mm × 1418 mm × 1984 mm.
Die Projektionsoptik 33 ist bildseitig näherungsweise telezentrisch. The projection optics 33 is approximately telecentric on the image side.
Anhand der Fig. 33 und 35 wird nachfolgend eine weitere Ausführung einer Projektionsoptik 34 erläutert, die anstelle der Projektionsoptik 7 bei der Projektionsbelichtungsanlage 1 nach Fig. 1 zum Einsatz kommen kann. Die Fig. 33 zeigt wiederum einen Meridionalschnitt und die Fig. 35 zeigt eine Sagittal- Ansicht der Projektionsoptik 34. Komponenten und Funktionen, die vorstehend im Zusammenhang mit den Fig. 1 bis 32 und 34 bereits erläutert wurden, tragen gegebenenfalls die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. A further embodiment of a projection optics 34, which can be used instead of the projection optics 7 in the projection exposure apparatus 1 according to FIG. 1, will be explained below with reference to FIGS. 33 and 35. FIG. 33 again shows a meridional section and FIG. 35 shows a sagittal view of the projection optics 34. Components and functions which have already been explained above in connection with FIGS. 1 to 32 and 34 optionally carry the same reference numbers and become not discussed again in detail.
Die Spiegel Ml bis M6 sind wiederum als Freiformflächen-Spiegel ausgeführt, für die die vorstehend angegebene Freiformflächengleichung (1) gilt. The mirrors M1 to M6 are again embodied as free-form surface mirrors, for which the free-form surface equation (1) specified above applies.
Die nachfolgende Tabelle zeigt wiederum die Spiegelparameter der Spiegel Ml bis M6 der Pro- jektionsoptik 34. The following table once again shows the mirror parameters of the mirrors M1 to M6 of the projection optics 34.
Ml M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
maximaler Einfallswinkel [°] 9.0 14.2 16.6 11.3 21.4 9.7 maximum angle of incidence [°] 9.0 14.2 16.6 11.3 21.4 9.7
Reflexionsflächenerstreckung  Reflective surface extension
in x-Richtung [mm] 509.7 525.9 442.0 857.3 464.6 950.6 in the x-direction [mm] 509.7 525.9 442.0 857.3 464.6 950.6
Reflexionsflächenerstreckung  Reflective surface extension
in y- Richtung [mm] 210.7 153.5 171.9 293.9 172.2 917.1 in the y direction [mm] 210.7 153.5 171.9 293.9 172.2 917.1
maximaler 509.7 526.0 442.1 857.3 464.6 950.9 Spiegeldurchmesser [mm] maximum 509.7 526.0 442.1 857.3 464.6 950.9 Mirror diameter [mm]
Keiner der Spiegel Ml bis M6 hat ein y/x- Aspektverhältnis seiner Reflexionsfläche, das größer ist als 1. Das kleinste y/x- Aspektverhältnis hat der Spiegel M2 mit etwa 1 :3,4. Den größten maximalen Spiegeldurchmesser hat hier der Spiegel M6 mit 950,9 mm. None of the mirrors Ml to M6 has a y / x aspect ratio of its reflecting surface which is larger than 1. The smallest y / x aspect ratio has the mirror M2 about 1: 3.4. The largest maximum mirror diameter here is the mirror M6 with 950.9 mm.
Die optischen Designdaten der Projektionsoptik 34 können den nachfolgenden Tabellen entnommen werden, die in ihrem Aufbau den Tabellen zur Projektionsoptik 7 nach Fig. 2 entsprechen. The optical design data of the projection optics 34 can be found in the following tables, which correspond in their structure to the tables for the projection optics 7 according to FIG. 2.
Ausführungsbeispiel Fig. 33 Embodiment FIG. 33
NA 0.55 NA 0.55
Wellenlänge 13.5 nm beta_x 4.0 beta_y -8.0Wavelength 13.5 nm beta_x 4.0 beta_y -8.0
Feldgröße_x 26.0 mmField size_x 26.0 mm
Feldgröße_y 1.2 mm Feldkrümmung 0.012345 1/mm rms 15.3 mlFeldgröße_y 1.2 mm field curvature 0.012345 1 / mm rms 15.3 ml
Blende ASAperture AS
Tabelle 1 zu Fig. 33 Table 1 to Fig. 33
OberRadius_x[mm] Power_x[1/mm] Radius_y[mm] Power_y[1/mm] Betriebsfläche modusUpperRadius_x [mm] Power_x [1 / mm] Radius_y [mm] Power_y [1 / mm] Operating surface mode
M6 -1006.7284257 0.0019693 -842.2517827 0.0023954 REFLM6 -1006.7284257 0.0019693 -842.2517827 0.0023954 REFL
M5 5965.3172078 -0.0003353 391.8243663 -0.0051043 REFLM5 5965.3172078 -0.0003353 391.8243663 -0.0051043 REFL
M4 -1561.8151501 0.0012619 -1649.3044398 0.0012306 REFLM4 -1561.8151501 0.0012619 -1649.3044398 0.0012306 REFL
M3 1880.6366574 -0.0010299 3383.4646405 -0.0006104 REFLM3 1880.6366574 -0.0010299 3383.4646405 -0.0006104 REFL
M2 -5843.2989604 0.0003379 -914.8700717 0.0022144 REFLM2 -5843.2989604 0.0003379 -914.8700717 0.0022144 REFL
M1 -4100.6049314 0.0004851 -898.9161353 0.0022371 REFLM1 -4100.6049314 0.0004851 -898.9161353 0.0022371 REFL
Tabelle 2 zu Fig. 33 Table 2 to Fig. 33
Koeffizient M6 M5 M4Coefficient M6 M5 M4
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1006.72842600 5965.31720800 -1561.81515000KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX -1006.72842600 5965.31720800 -1561.81515000
C7 -2.36080773e-08 1.28554798e-06 3.94514132e-09 C9 -4.2069464e-09 1.07681842e-06 -1.62903175e-09 C10 -1.17644873e-1 1 4.17941495e-10 -6.48276378e-12 C12 -3.59134517e-1 1 2.88742693e-09 1.76483997e-1 1 C14 -1.63305797e-1 1 6.95203918e-09 3.4186017e-13 C16 -3.32910335e-14 1.1 1774422e-12 7.60337079e-16 C18 -3.36483434e-14 1.32703447e-1 1 6.40178912e-15 C20 -7.90772381 e-15 1.3867734e-1 1 2.201 13512e-14 izient M6 M5 M4C7 -2.36080773e-08 1.28554798e-06 3.94514132e-09 C9 -4.2069464e-09 1.07681842e-06 -1.62903175e-09 C10 -1.17644873e-1 1 4.17941495e-10 -6.48276378e-12 C12-3.59134517e 1 1 2.88742693e-09 1.76483997e-1 1 C14 -1.63305797e-1 1 6.95203918e-09 3.4186017e-13 C16 -3.32910335e-14 1.1 1774422e-12 7.60337079e-16 C18-3.36483434e-14 1.32703447e-1 1 6.40178912e-15 C20 -7.90772381 e-15 1.3867734e-1 1 2.201 13512e-14 efficient M6 M5 M4
C21 -2.39696783e-17 7.7521509e-16 -5.4865664e-18C21 -2.39696783e-17 7.7521509e-16 -5.4865664e-18
C23 -7.21389701 e-17 1 .13884842e-14 4.9767441 1 e-18C23 -7.21389701 e-17 1 .13884842e-14 4.9767441 1 e-18
C25 -8.58520679e-17 5.1496675e-14 1 .61922965e-17C25 -8.58520679e-17 5.1496675e-14 1 .61922965e-17
C27 -2.49737385e-17 1 .03640903e-13 5.2042106e-17C27 -2.49737385e-17 1 .03640903e-13 5.2042106e-17
C29 -2.36771533e-20 6.69920634e-18 -2.46740499e-21C29 -2.36771533e-20 6.69920634e-18 -2.46740499e-21
C31 -7.23068755e-20 7.48829488e-17 2.94884664e-20C31 -7.23068755e-20 7.48829488e-17 2.94884664e-20
C33 -5.04364058e-20 3.19263293e-16 9.68386762e-20C33 -5.04364058e-20 3.19263293e-16 9.68386762e-20
C35 -8.81491788e-21 4.7637767e-17 1 .61788245e-19C35 -8.81491788e-21 4.7637767e-17 1 .61788245e-19
C36 -3.07931348e-23 1 .88599363e-21 -4.7228178e-25C36-3.07931348e-23 1 .88599363e-21 -4.7228178e-25
C38 -1 .2368233e-22 3.86262162e-20 1 .5000994e-23C38 -1 .2368233e-22 3.86262162e-20 1 .5000994e-23
C40 -2.10717929e-22 3.74624343e-19 -1 .71575087e-22C40 -2.10717929e-22 3.74624343e-19 -1 .71575087e-22
C42 -1 .55975256e-22 5.55280341 e-19 -2.29927658e-21C42 -1 .55975256e-22 5.55280341 e-19 -2.29927658e-21
C44 -3.49712831 e-23 2.54793079e-19 -4.86801861 e-21C44 -3.49712831 e-23 2.54793079e-19 -4.86801861 e-21
C46 -2.66204224e-26 6.027065e-24 8.05564747e-27C46 -2.66204224e-26 6.027065e-24 8.05564747e-27
C48 -1 .06852252e-25 1 .35565132e-22 -2.12494726e-26C48 -1 .06852252e-25 1 .35565132e-22 -2.12494726e-26
C50 -1 .39905245e-25 1 .28558155e-21 3.31373857e-25C50 -1 .39905245e-25 1 .28558155e-21 3.31373857e-25
C52 -7.38507052e-26 3.91068516e-21 5.70573409e-24C52 -7.38507052e-26 3.91068516e-21 5.70573409e-24
C54 -1 .20370276e-26 -7.12291 126e-21 1 .41345158e-24C54 -1 .20370276e-26 -7.12291 126e-21 1 .41345158e-24
C55 -2.69457175e-29 -2.23174837e-27 -2.1395474e-30C55 -2.69457175e-29 -2.23174837e-27 -2.1395474e-30
C57 -1 .77986898e-28 3.32509965e-25 -1 .48447807e-28C57 -1 .77986898e-28 3.32509965e-25 -1 .48447807e-28
C59 -3.66895205e-28 3.531 18757e-24 3.27794124e-28C59 -3.66895205e-28 3.531 18757e-24 3.27794124e-28
C61 -3.98218369e-28 2.6586045e-23 1 .89615686e-26C61 -3.98218369e-28 2.6586045e-23 1 .89615686e-26
C63 -2.03566054e-28 4.0294128e-23 1 .00894697e-25C63 -2.03566054e-28 4.0294128e-23 1 .00894697e-25
C65 -5.30268041 e-29 3.23594134e-22 1 .13309229e-25C65 -5.30268041 e-29 3.23594134e-22 1 .13309229e-25
C67 -3.0047318e-32 2.9829458e-28 -1 .83843732e-32C67 -3.0047318e-32 2.9829458e-28 -1 .83843732e-32
C69 -1 .55074503e-31 7.06201039e-27 -2.03057508e-31C69 -1 .55074503e-31 7.06201039e-27 -2.03057508e-31
C71 -4.70669939e-31 7.46696177e-26 1 .53278455e-30C71 -4.70669939e-31 7.46696177e-26 1 .53278455e-30
C73 -3.89482265e-31 1 .82406791 e-25 -5.45541074e-29C73 -3.89482265e-31 1 .82406791 e-25 -5.45541074e-29
C75 -8.18915595e-32 8.6022715e-25 -3.66861957e-28C75 -8.18915595e-32 8.6022715e-25 -3.66861957e-28
C77 -8.15530371 e-33 6.57527779e-25 -1 .39584841 e-28C77 -8.15530371 e-33 6.57527779e-25 -1 .39584841 e-28
C78 -3.3235481 e-35 6.71728717e-32 1 .15787845e-35C78-3.3235481 e-35 6.71728717e-32 1 .15787845e-35
C80 -2.61 100277e-34 -1 .18245822e-30 1 .13061 166e-33C80 -2.61 100277e-34 -1 .18245822e-30 1 .13061 166e-33
C82 -1 .07477883e-33 3.624861 e-29 3.47838169e-33C82 -1 .07477883e-33 3.624861 e-29 3.47838169e-33
C84 -1 .84308773e-33 -9.0142297e-29 -5.12555002e-32C84 -1 .84308773e-33 -9.0142297e-29 -5.12555002e-32
C86 -1 .82743964e-33 -1 .42012455e-27 -5.72799315e-31C86 -1 .82743964e-33 -1 .42012455e-27 -5.72799315e-31
C88 -9.28722157e-34 -1 .85608864e-27 -1 .62324547e-30C88 -9.28722157e-34-1 .85608864e-27-1 .62324547e-30
C90 -1 .04744708e-34 -2.7671563e-26 -3.15634748e-31C90 -1 .04744708e-34 -2.7671563e-26 -3.15634748e-31
C92 -1 .28436626e-37 -3.28236635e-33 4.59915186e-38C92 -1 .28436626e-37 -3.28236635e-33 4.59915186e-38
C94 -4.58925734e-37 -6.13084953e-32 1 .76190676e-36C94 -4.58925734e-37 -6.13084953e-32 1 .76190676e-36
C96 1 .46331065e-37 -1 .19479671 e-30 1 .1 1464545e-35C96 1 .46331065e-37 -1 .19479671 e-30 1 .1 1464545e-35
C98 5.73381884e-37 -1 .06320106e-29 9.94287718e-36C98 5.73381884e-37 -1 .06320106e-29 9.94287718e-36
C100 2.03899668e-37 -2.83336892e-29 1 .19466153e-33C100 2.03899668e-37 -2.83336892e-29 1 .19466153e-33
C102 -3.72313868e-37 -1 .09821473e-28 6.56891 196e-33C102 -3.72313868e-37-1 .09821473e-28 6.56891 196e-33
C104 -1 .33892457e-37 8.26930634e-29 6.75668551 e-34C104 -1 .33892457e-37 8.26930634e-29 6.75668551 e-34
C105 2.54605643e-42 -2.91865459e-37 -2.91255207e-41C105 2.54605643e-42 -2.91865459e-37 -2.91255207e-41
C107 4.2759669e-40 4.89002957e-36 -3.18092396e-39C107 4.2759669e-40 4.89002957e-36 -3.18092396e-39
C109 1 .37326821 e-39 -5.61432253e-34 -2.61564889e-38 cm 2.26926013e-39 -8.66021369e-33 -3.59867394e-38C109 1 .37326821 e-39 -5.61432253e-34 -2.61564889e-38 cm 2.26926013e-39 -8.66021369e-33 -3.59867394e-38
C1 13 3.77714415e-39 -1 .88255881 e-32 1 .06600252e-36C1 13 3.77714415e-39 -1 .88255881 e-32 1 .06600252e-36
C1 15 3.89548381 e-39 -7.64730421 e-32 6.80748387e-36C1 15 3.89548381 e-39 -7.64730421 e-32 6.80748387e-36
C1 17 2.09996643e-39 -3.16857153e-32 2.850714e-36C1 17 2.09996643e-39 -3.16857153e-32 2.850714e-36
C1 19 2.54320661 e-40 3.19444666e-31 -1 .04473406e-35C1 19 2.54320661 e-40 3.19444666e-31 -1 .04473406e-35
C121 1 .21614444e-43 2.32998757e-38 0C121 1 .21614444e-43 2.32998757e-38 0
C123 6.49368051 e-44 5.04254106e-37 0 Koeffizient M6 M5 M4C123 6.49368051 e-44 5.04254106e-37 0 Coefficient M6 M5 M4
C125 -2.89343618e-42 7.30943297e-36 0 C127 -6.07402874e-42 1.21067923e-34 0 C129 -6.32771343e-42 7.23619769e-34 0 C131 -3.36969492e-42 1.2428046e-33 0 C133 -2.104793e-43 3.52791806e-33 0 C135 1.77306314e-43 -1.02737596e-32 0 C136 -1.52575809e-46 2.12924071e-42 0 C138 -2.30237851 e-45 2.07292225e-40 0 C140 -7.87878875e-45 4.36510753e-39 0 C142 -1.5800379e-44 9.4878367e-38 0 C144 -2.52175277e-44 9.4252e-37 0 C146 -2.658207e-44 3.21331684e-36 0 C148 -1.73727174e-44 1.06350303e-35 0 C150 -6.65813017e-45 -1.05592399e-35 0 C152 -8.98636196e-46 3.26212163e-35 0C125 -2.89343618e-42 7.30943297e-36 0 C127 -6.07402874e-42 1.21067923e-34 0 C129 -6.32771343e-42 7.23619769e-34 0 C131-3.36969492e-42 1.2428046e-33 0 C133 -2.104793e-43 3.52791806e-33 0 C135 1.77306314e-43 -1.02737596e-32 0 C136 -1.52575809e-46 2.12924071e-42 0 C138 -2.30237851 e-45 2.07292225e-40 0 C140 -7.87878875e-45 4.36510753e-39 0 C142 -1.5800379e-44 9.4878367e-38 0 C144 -2.52175277e-44 9.4252e-37 0 C146 -2.658207e-44 3.21331684e-36 0 C148 -1.73727174e-44 1.06350303e-35 0 C150 -6.65813017e-45 - 1.05592399e-35 0 C152 -8.98636196e-46 3.26212163e-35 0
Tabelle 3a zu Fig. 33 Table 3a to Fig. 33
Koeffizient M3 M2 M1Coefficient M3 M2 M1
KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 1880.63665700 -5843.29896000 -4100.60493100KY 0.00000000 0.00000000 0.00000000 KX 0.00000000 0.00000000 0.00000000 RX 1880.63665700 -5843.29896000 -4100.60493100
C7 -4.94029343e-08 1.49179578e-07 7.73453613e-09 C9 1.90649177e-07 -1.56715489e-08 3.20483091 e-08 C10 8.97962559e-11 1.04449418e-10 -2.45522201 e-11 C12 -8.62966033e-10 -3.739312e-12 -1.01617201e-10 C14 1.72078355e-10 -1.31318293e-10 -2.77000383e-10 C16 -2.00154532e-13 -9.73768186e-14 2.03576356e-14 C18 -9.1 1364311e-13 -1.58355358e-13 1.94910249e-13 C20 -2.01758014e-12 4.96235302e-13 -6.81883948e-13 C21 7.35882998e-16 8.20220031 e-17 -4.61681069e-18 C23 4.83251272e-16 1.51701684e-16 -7.82206035e-18 C25 2.49131175e-15 -7.21394993e-16 3.21596342e-16 C27 -4.5294101 e-15 -2.73671786e-15 -1.27108558e-15 C29 1.74504569e-18 -1.9860959e-21 -2.12228815e-20 C31 -2.18679872e-18 5.75861209e-19 -2.22428091 e-19 C33 -9.36508454e-18 -1.31083424e-18 -9.06535225e-20 C35 -4.96430229e-17 -3.13301142e-17 -3.51793744e-17 C36 3.43328396e-22 8.20150186e-23 3.04376562e-23 C38 -1.35049644e-20 1.73800191e-21 1.58444309e-22 C40 7.32106265e-21 2.64009548e-20 1.87047244e-21 C42 4.07732261 e-19 2.4290507e-19 1.91910499e-20 C44 6.44543663e-19 9.92250873e-19 -1.3098699e-19 C46 -1.1357514e-23 -6.85737803e-25 -6.72152116e-26 C48 1.88750153e-23 -8.28542257e-24 9.48692673e-25 C50 2.43074745e-22 1.86471291 e-22 2.91710329e-24 C52 4.11977741 e-22 2.03147349e-21 -2.07056289e-23 C54 4.49237652e-21 3.61364485e-23 -2.45380768e-23 C55 -1.28868081 e-27 1.40543445e-27 -8.73981974e-28 C57 3.3048524e-25 -3.74175772e-26 -2.95434759e-28 C59 3.91588107e-25 -5.74632156e-25 6.78617966e-27 C61 -1.12703785e-23 -9.65404462e-24 -5.41578074e-25 C63 -5.52941228e-23 -6.43759572e-23 -3.28650311e-24 Koeffizient M3 M2 M1C7 -4.94029343e-08 1.49179578e-07 7.73453613e-09 C9 1.90649177e-07 -1.56715489e-08 3.20483091 e-08 C10 8.97962559e-11 1.04449418e-10 -2.45522201 e-11 C12 -8.62966033e-10 -3.739312 e-12 -1.01617201e-10 C14 1.72078355e-10 -1.31318293e-10 -2.77000383e-10 C16 -2.00154532e-13 -9.73768186e-14 2.03576356e-14 C18 -9.1 1364311e-13 -1.58355358e-13 1.94910249 e-13 C20 -2.01758014e-12 4.96235302e-13 -6.81883948e-13 C21 7.35882998e-16 8.20220031 e-17 -4.61681069e-18 C23 4.83251272e-16 1.51701684e-16 -7.82206035e-18 C25 2.49131175- 15-7.21394993e-16 C27-4.5294101 e-15 -2.73671786e-15 -1.27108558e-15 C29 1.74504569e-18 -1.9860959e-21 -2.12228815e-20 C31 -2.18679872e-18 5.75861209e- C35 -4.96430229e-17 -3.13301142e-17 -3.51793744e-17 C36 3.43328396e-22 8.20150186e-23 3.04376562e- e-19 C33 -9.36508454e-18 -1.31083424e-18 -9.06535225e-20 23 C38 -1.35049644e-20 1.73800191e-21 1.58444309e-22 C40 7.32106265e-21 2.64009548e-20 1.87047244e-21 C42 4.07732261 e-19 2.4290507e-19 1.91 C48 2.43074745e. C46-14307473e-19 C46-1.1357514e-23 -6.85737803e-25 -6.72152116e-26 C48 1.88750153e-23 -8.28542257e-24 9.48225873e-25 -22 1.86471291 e-22 2.91710329e-24 C52 4.11977741 e-22 2.03147349e-21 -2.07056289e-23 C54 4.49237652e-21 3.61364485e-23 -2.45380768e-23 C55 -1.28868081 e-27 1.40543445e-27 -8.73981974 E-28 C57 C-3 C-3-C-1-C-1-C-1-C-7-C-1-C-7-C-7-C-7-C-1-C-1-C-7-C-7-C-1-C-1-C-7-C-1-C-7-C-7 5.52941228e-23 -6.43759572e-23 -3.28650311e-24 Coefficient M3 M2 M1
C65 -1.17857183e-24 -2.55557626e-22 1.29846463e-24 C67 5.60276243e-30 1.246671 e-29 2.14903234e-30 C69 -2.96093489e-28 1.81 147151 e-28 6.03676056e-30 C71 -1.53896678e-26 1.04355606e-27 6.52210129e-29 C73 -5.38762556e-27 -6.35307839e-26 2.61271 121 e-28 C75 7.03953591 e-26 -3.37289815e-25 3.72205453e-28 C77 -2.39732418e-25 4.3699226e-25 6.61454986e-26 C78 -7.38287739e-32 -5.151 1 1 147e-33 7.78620254e-33 C80 -8.0679497e-30 5.93676557e-31 -1.10593906e-32 C82 -1.86642027e-29 7.6402297e-30 -7.5135761 e-31 C84 1.46666077e-28 1.53054394e-28 4.2156926e-30 C86 1.16839579e-27 1.93800725e-27 7.20454782e-29 C88 2.71039548e-27 9.64306599e-27 2.63101456e-28 C90 -5.57449245e-27 3.35251 1 16e-26 1.62675507e-28 C92 6.90715973e-35 -7.74524297e-35 -1.59436458e-35 C94 -3.53289956e-33 -9.77085827e-34 -6.04425154e-35 C96 1.38988534e-31 -2.7791015e-32 -8.37212226e-34 C98 1.05676201 e-30 4.47091465e-32 -4.218493e-33 C100 -2.8300685e-31 4.8671863e-30 -9.32282295e-33 C102 -4.21395731 e-30 1.61442883e-29 -2.37304382e-32 C104 4.27990879e-30 -4.06284648e-29 -3.24174527e-30 C105 8.74018101 e-37 9.1640292e-39 -2.68034362e-38 C107 7.20609305e-35 -3.31672266e-36 6.17847878e-38 C109 3.05138754e-34 -4.71797412e-35 6.49183349e-36 cm -1.16191956e-33 -6.0757407e-34 1.55751393e-35C65 -1.17857183e-24 -2.55557626e-22 1.29846463e-24 C67 5.60276243e-30 1.246671 e-29 2.14903234e-30 C69 -2.96093489e-28 1.81 147151 e-28 6.03676056e-30 C71 -1.53896678e-26 1.04355606 e-27 6.52210129e-29 C73 -5.38762556e-27 -6.35307839e-26 2.61271 121 e-28 C75 7.03953591 e-26 -3.37289815e-25 3.72205453e-28 C77 -2.39732418e-25 4.3699226e-25 6.61454986e- 26 C78 -7.38287739e-32 -5.151 1 1 147e-33 7.78620254e-33 C80 -8.0679497e-30 5.93676557e-31 -1.10593906e-32 C82 -1.86642027e-29 7.6402297e-30 -7.5135761 e-31 C84 1.46666077 e-28 1.53054394e-28 4.2156926e-30 C86 1.16839579e-27 1.93800725e-27 7.20454782e-29 C88 2.71039548e-27 9.64306599e-27 2.63101456e-28 C90 -5.57449245e-27 3.35251 1 16e-26 1.62675507e -28 C92 6.90715973e-35 -7.74524297e-35 -1.59436458e-35 C94-3.53289956e-33 -9.77085827e-34 -6.04425154e-35 C96 1.38988534e-31 -2.7791015e-32 -8.37212226e-34 C98 1.05676201 e-30 C-4 .4. 4,195,631-E-30 1.61442883e-29 -2.37 304382e-32 C104 4.27990879e-30 -4.06284648e-29 -3.24174527e-30 C105 8.74018101 e-37 9.1640292e-39 -2.68034362e-38 C107 7.20609305e-35 -3.31672266e-36 6.17847878e-38 C109 3.05138754E 34 -4.71797412e-35 6.49183349e-36 cm -1.16191956e-33 -6.0757407e-34 1.55751393e-35
C1 13 -1.12796824e-32 -1.48310841 e-32 -4.66813792e-34 C1 15 -4.60817817e-32 -1.3034314e-31 -2.94237332e-33 C1 17 -5.07248021 e-32 -5.0498434e-31 -8.09943855e-33 C1 19 3.25810602e-31 -1.65054488e-30 -1.34504174e-32C1 13 -1.12796824e-32 -1.48310841 e-32 -4.66813792e-34 C1 15 -4.60817817e-32 -1.3034314e-31 -2.94237332e-33 C1 17 -5.07248021 e-32 -5.0498434e-31 -8.09943855e- 33 C1 19 3.25810602e-31 -1.65054488e-30 -1.34504174e-32
Tabelle 3b zu Fig. 33 Table 3b to Fig. 33
Oberfläche DCX DCY DCZSurface DCX DCY DCZ
Bildebene 0.00000000 0.00000000 0 00000000 M6 0.00000000 0.00000000 823 56702252 M5 0.00000000 180.17345446 156 98468248 M4 0.00000000 -344.49567167 2142 94126767 M3 0.00000000 169.32702293 1392 39086385 Blende 0.00000000 124.47525498 1855 02797681 M2 0.00000000 62.86723152 2490 50255031 M1 0.00000000 488.47152498 1529 14826845Image plane 0.00000000 0.00000000 0 00000000 M6 0.00000000 0.00000000 823 56702252 M5 0.00000000 180.17345446 156 98468248 M4 0.00000000 -344.49567167 2142 94126767 M3 0.00000000 169.32702293 1392 39086385 Cover 0.00000000 124.47525498 1855 02797681 M2 0.00000000 62.86723152 2490 50255031 M1 0.00000000 488.47152498 1529 14826845
Objektebene 0.00000000 177.89305993 3000 03510500 Tabelle 4a zu Fig. 33 Object level 0.00000000 177.89305993 3000 03510500 Table 4a to FIG. 33
Oberfläche TLA[deg] TLB[deg] TLC[deg]Surface TLA [deg] TLB [deg] TLC [deg]
Bildebene -0.00000000 0.00000000 -0.00000000Image level -0.00000000 0.00000000 -0.00000000
M6 7.56264709 0.00000000 -0.00000000M6 7.56264709 0.00000000 -0.00000000
M5 14.96206408 180.00000000 0.00000000M5 14.96206408 180.00000000 0.00000000
M4 24.59708091 0.00000000 -0.00000000M4 24.59708091 0.00000000 -0.00000000
M3 19.96636844 180.00000000 0.00000000M3 19.96636844 180.00000000 0.00000000
Blende 8.44368788 0.00000000 -0.00000000Aperture 8.44368788 0.00000000 -0.00000000
M2 14.70850835 0.00000000 -0.00000000M2 14.70850835 0.00000000 -0.00000000
M1 17.90125287 180.00000000 0.00000000 Oberfläche TLA[deg] TLB[deg] TLC[deg]M1 17.90125287 180.00000000 0.00000000 Surface TLA [deg] TLB [deg] TLC [deg]
Objektebene 16.92289808 0.00000000 -0.00000000 Tabelle 4b zu Fig. 33 Object level 16.92289808 0.00000000 -0.00000000 Table 4b to FIG. 33
Oberfläche Einfallswinkel[deg] ReflektivitätSurface angle of incidence [deg] reflectivity
M6 7.56264709 0.65958150 M5 0.16323010 0.66566562 M4 9.79824693 0.65514770 M3 14.42895939 0.64127863 M2 9.17109930 0.65652593 M1 5.97835478 0.66195441M6 7.56264709 0.65958150 M5 0.16323010 0.66566562 M4 9.79824693 0.65514770 M3 14.42895939 0.64127863 M2 9.17109930 0.65652593 M1 5.97835478 0.66195441
Gesarnttransmission 0.0802 Tabelle 5 zu Fig. 33 Total transmission 0.0802 Table 5 to Fig. 33
X[mm] Y[mm] Z[mm]X [mm] Y [mm] Z [mm]
-0.00000000 -74.47687523 0.00000000-0.00000000 -74.47687523 0.00000000
-33.42303871 -73.30016348 0.00000000-33.42303871 -73.30016348 0.00000000
-66.20895326 -69.81789891 0.00000000-66.20895326 -69.81789891 0.00000000
-97.69836577 -64.16914383 0.00000000-97.69836577 -64.16914383 0.00000000
-127.19700543 -56.57212560 0.00000000-127.19700543 -56.57212560 0.00000000
-153.97830881 -47.30798153 0.00000000-153.97830881 -47.30798153 0.00000000
-177.30271236 -36.70256857 0.00000000-177.30271236 -36.70256857 0.00000000
-196.45254533 -25.10940417 0.000000000.00000000. -6.10.45254533 -25.10940417 0.00000000
-210.77915870 -12.89656449 0.00000000-200.77915870 -12.89656449 0.00000000
-219.75712654 -0.43675223 0.00000000-200.75712654 -0.43675223 0.00000000
-223.03684474 1 1.90374040 0.00000000-223.03684474 1 1.90374040 0.00000000
-220.48252499 23.78006122 0.00000000-220.48252499 23.78006122 0.00000000
-212.18414282 34.88544628 0.000000000.00000000
-198.44034760 44.96581894 0.00000000-198.44034760 44.96581894 0.00000000
-179.71982840 53.82983649 0.00000000-179.71982840 53.82983649 0.00000000
-156.61422236 61.35361805 0.00000000-156.61422236 61.35361805 0.00000000
-129.79477480 67.47742250 0.00000000-129.79477480 67.47742250 0.00000000
-99.97891473 72.19240955 0.00000000-99.97891473 72.19240955 0.00000000
-67.90733792 75.52146833 0.00000000-67.90733792 75.52146833 0.00000000
-34.33014480 77.49927798 0.00000000-34.33014480 77.49927798 0.00000000
-0.00000000 78.15483696 0.00000000-0.00000000 78.15483696 0.00000000
34.33014480 77.49927798 0.0000000034.33014480 77.49927798 0.00000000
67.90733792 75.52146833 0.0000000067.90733792 75.52146833 0.00000000
99.97891473 72.19240955 0.0000000099.97891473 72.19240955 0.00000000
129.79477480 67.47742250 0.00000000129.79477480 67.47742250 0.00000000
156.61422236 61.35361805 0.00000000156.61422236 61.35361805 0.00000000
179.71982840 53.82983649 0.00000000179.71982840 53.82983649 0.00000000
198.44034760 44.96581894 0.00000000198.44034760 44.96581894 0.00000000
212.18414282 34.88544628 0.00000000212.18414282 34.88544628 0.00000000
220.48252499 23.78006122 0.00000000220.48252499 23.78006122 0.00000000
223.03684474 1 1.90374040 0.00000000223.03684474 1 1.90374040 0.00000000
219.75712654 -0.43675223 0.00000000219.75712654 -0.43675223 0.00000000
210.77915870 -12.89656449 0.00000000210.77915870 -12.89656449 0.00000000
196.45254533 -25.10940417 0.00000000196.45254533 -25.10940417 0.00000000
177.30271236 -36.70256857 0.00000000177.30271236 -36.70256857 0.00000000
153.97830881 -47.30798153 0.00000000153.97830881 -47.30798153 0.00000000
127.19700543 -56.57212560 0.000000000.00000000
97.69836577 -64.16914383 0.00000000 X[mm] Y[mm] Z[mm] 97.69836577 -64.16914383 0.00000000 X [mm] Y [mm] Z [mm]
66.20895326 -69.81789891 0.00000000 33.42303871 -73.30016348 0.00000000 66.20895326 -69.81789891 0.00000000 33.42303871 -73.30016348 0.00000000
Tabelle 6 zu Fig. 33 Table 6 to Fig. 33
Eine Gesamt-Reflektivität der Projektionsoptik 34 beträgt etwa 8,02 %. Die Projektionsoptik 34 hat eine bildseitige numerische Apertur von 0,55. In der ersten Abbildungslicht-Ebene xz hat die Projektionsoptik 34 einen Verkleinerungsfaktor ßx von 4,00. In der zweiten Abbildungslicht-Ebene yz hat die Projektionsoptik 21 einen Verkleinerungsfaktor ßy von -8,00. Ein objektseitiger Hauptstrahlwinkel beträgt 5,2°. Eine Baulänge der Projektionsoptik 34 beträgt etwa 3000 mm. Eine Pupillenobskuration beträgt 9 %. Ein Objekt-Bild- Versatz dois be- trägt etwa 177,89 mm und ist damit deutlich kleiner als der Objekt-Bild- Versatz dois der Projektionsoptik 7 nach Fig. 32. A total reflectivity of the projection optics 34 is about 8.02%. The projection optics 34 has a picture-side numerical aperture of 0.55. In the first imaging light plane xz, the projection optics 34 has a reduction factor β x of 4.00. In the second imaging light plane yz, the projection optics 21 has a reduction factor β y of -8.00. An object-side main beam angle is 5.2 °. An overall length of the projection optics 34 is about 3000 mm. A pupil obscuration is 9%. An object-image offset dois is approximately 177.89 mm and is thus significantly smaller than the object-image offset dois of the projection optics 7 according to FIG. 32.
Die Spiegel der Projektionsoptik 34 können in einem Quader mit xyz-Kantenlängen von 951 mm x 1047 mm x 2380 mm untergebracht werden. The mirrors of the projection optics 34 can be accommodated in a cuboid with xyz edge lengths of 951 mm × 1047 mm × 2380 mm.
Das Retikel 10 und damit die Objektebene 5 ist um einen Winkel T von 10° um die x- Achse relativ zur Bildebene 9 verkippt. Dieser Kippwinkel T ist in der Fig. 33 angedeutet. The reticle 10 and thus the object plane 5 is tilted by an angle T of 10 ° about the x-axis relative to the image plane 9. This tilt angle T is indicated in FIG. 33.
Ein Arbeitsabstand zwischen dem wafernächsten Spiegel M5 und der Bildebene 9 beträgt etwa 126 mm. A working distance between the wafer-closest mirror M5 and the image plane 9 is about 126 mm.
Einige Daten vorstehend beschriebener Projektionsoptiken sind in den nachfolgenden Tabellen I und II nochmals zusammengefasst. Die jeweils erste Spalte dient zur Zuordnung der Daten zum jeweiligen Ausführungsbeispiel. Some data of projection optics described above are summarized in Tables I and II below. The first column is used to assign the data to the respective embodiment.
In der nachfolgenden Tabelle I sind die optischen Parameter numerische Apertur (NA), Bildfeldausdehnung in x-Richtung (Fieldsize X), Bildfeldausdehnung in y-Richtung (Fieldsize Y), Bildfeldkrümmung (Field Curvature) und Gesamt-Reflektivität beziehungsweise Systemtransmission (Transmission) zusammengefasst. In der nachfolgenden Tabelle II sind die Parameter„Abfolge des Spiegeltyps" (Mirror Type Order),„Abfolge der Spiegel-Umlenkwirkung" (Mirror Rotation Order),„Brechkraftabfolge in der xz-Ebene" (x Power Order) sowie„Brechkraftabfolge in der yz-Ebene" (y Power Order) angegeben. Diese Abfolgen beginnen jeweils mit dem letzten Spiegel im Strahlengang, folgen also der umgekehrten Strahlrichtung. Beispielsweise bezieht sich die Abfolge„ROLLRRRL" auf die Umlenkwirkung in der Reihenfolge M8 bis Ml bei der Ausführung nach Fig. 2. Table I below summarizes the optical parameters numerical aperture (NA), image field extent in x-direction (Fieldsize X), image field extent in y-direction (Fieldsize Y), field curvature and total reflectivity or system transmission (transmission) , In the following Table II, the parameters "mirror type order", "mirror rotation order", "power sequence xz" and "power of refraction" in the yz level "(y Power Order). These sequences start each with the last mirror in the beam path, so follow the reverse beam direction. For example, the sequence "ROLLRRRL" refers to the deflection effect in the order M8 to Ml in the embodiment of FIG. 2.
FIG. NA FIELDSIZE X FIELDSIZE Y FIELD CURVATURE TRANSMISSION% FIG. NA FIELDSIZE X FIELDSIZE Y FIELD CURVATURE TRANSMISSION%
2 0,55 26 1 0,0123455 8,02  2 0.55 26 1 0.0123455 8.02
5 0,5 26 1,2 0 9,11  5 0.5 26 1.2 0 9.11
8 0,5 26 1 -0,0123455 7,82  8 0.5 26 1 -0.0123455 7.82
11 0,55 26 1 0,0123455 8,32  11 0.55 26 1 0.0123455 8.32
14 0,45 26 1,2 0 9,29  14 0.45 26 1.2 0 9.29
17 0,5 26 1 0,0123455 7,2  17 0.5 26 1 0.0123455 7.2
20 0,5 26 1,2 0 9,67  20 0.5 26 1.2 0 9.67
23 0,55 26 1 -0,0123455 9,88  23 0.55 26 1 -0.0123455 9.88
26 0,55 26 1 -0,0123455 8,72  26 0.55 26 1 -0.0123455 8.72
Tabelle I Table I
MIRROR TYPE MIRROR ROTATIONMIRROR TYPE MIRROR ROTATION
FIG. xPOWER ORDER yPOWER ORDER FIG. xPOWER ORDER yPOWER ORDER
ORDER ORDER  ORDER ORDER
2 N NGGNGGN ROLLRRRL +— +-+ +-++++++  2N NGGNGGN ROLLRRRL + - + - + + - ++++++
5 N NGGNGGN RRLLRRRL +-++++-+ +-++++++  5 N NGGNGGN RRLLRRRL + - ++++ - + + - ++++++
8 N NN N NN L0LRLR +-+-+- +-++++  8N NN NNN L0LRLR + - + - + - + - ++++
11 N NGGNGGN ROLLRRRL +— +-+ +— ++++  11 N NGGNGGN ROLLRRRL + - + - + + - ++++
14 N NGGGGN R0LLLLR +++++++ +-+++-+  14 N NGGGGN R0LLLLR +++++++ + - +++ - +
17 N NGGGNGGG L0RRRRRRR +-++++--+ +-++-+-++  17 NGGGNGGG L0RRRRRRR + - ++++ - + + - ++ - + - ++
20 N NGGGGGGN R0LLLLLLR +++++++++ +-++++--+  20 N NGGGGGGN R0LLLLLR +++++++++ + - ++++ - +
23 N NGGGGGGGN R0RRRRRRRL +-+++++--+ +--+++++-+  23 N NGGGGGGGN R0RRRRRRRL + - +++++ - + + - +++++ - +
26 N NGGGGGGGN R0RRRRRRRL +-+++++--+ +--+++++-+  26 N NGGGGGGGN R0RRRRRRRL + - +++++ - + + - +++++ - +
Tabelle !! Table !!
Beim Spiegeltyp bezieht sich die Angabe„N" auf einen normal incidence (Nl)-Spiegel und die Bezeichnung„G" auf einen grazing incidence (Gl)-Spiegel. Bei den Brechkraftabfolgen steht „+" für eine konkave und„-" für eine konvexe Spiegelfläche. Beim Vergleich der Brechkraftab- folgen in x und y ist zu sehen, dass alle Ausführungsbeispiele mit Ausnahme beispielsweise der Ausführung nach Fig. 5, in x und y unterschiedliche Brechkraft- Abfolgen haben. Diese Spiegel mit unterschiedlichen Vorzeichen der Brechkraft in x und y stellen Sattelflächen beziehungswei- se torische Flächen dar. Soweit in einem der Ausführungsbeispiele Gl-Spiegel auftreten, treten diese jeweils zumindest paarweise auf, wie der Spiegeltyp- Abfolge in der Tabelle II zu entnehmen ist. Zur Herstellung eines mikro- oder nanostrukturierten Bauteils wird die Projektionsbelichtungs- anlage 1 folgendermaßen eingesetzt: Zunächst werden die Reflexionsmaske 10 beziehungsweise das Retikel und das Substrat beziehungsweise der Wafer 11 bereitgestellt. Anschließend wird eine Struktur auf dem Retikel 10 auf eine lichtempfindliche Schicht des Wafers 11 mithilfe der Projektionsbelichtungsanlage 1 projiziert. Durch Entwicklung der lichtempfindlichen Schicht wird dann eine Mikro- oder Nanostruktur auf dem Wafer 11 und somit das mikrostrukturierte Bauteil erzeugt. In the mirror type, the indication "N" refers to a normal incidence (Nl) level and the term "G" refers to a grazing incidence (Gl) level. In the power sequences "+" stands for a concave and "-" for a convex mirror surface. When comparing the refractive power sequences in x and y, it can be seen that all embodiments, with the exception, for example, of the embodiment according to FIG. 5, have different refractive power sequences in x and y. These mirrors with different signs of refractive power in x and y represent saddle surfaces, respectively. As far as Gl-levels occur in one of the embodiments, these occur in each case at least in pairs, as the mirror-type sequence can be seen in Table II. To produce a microstructured or nanostructured component, the projection exposure apparatus 1 is used as follows: First, the reflection mask 10 or the reticle and the substrate or the wafer 11 are provided. Subsequently, a structure on the reticle 10 is projected onto a photosensitive layer of the wafer 11 by means of the projection exposure apparatus 1. By developing the photosensitive layer, a microstructure or nanostructure is then produced on the wafer 11 and thus the microstructured component.

Claims

Patentansprüche claims
1. Abbildende Optik (7; 21; 22; 23; 26; 27; 29) für die Projektionslithographie 1. Imaging optics (7; 21; 22; 23; 26; 27; 29) for projection lithography
mit einer Mehrzahl von Spiegeln (Ml bis M8; Ml bis M6; Ml bis M7; Ml bis M9; Ml bis MIO) zur Führung von Abbildungslicht (3) von einem Objektfeld (4) in einer Objektebene (5) in ein Bildfeld (8) in einer Bildebene (9) längs eines Abbildungslicht- Strahlengangs,  with a plurality of mirrors (M1 to M8; M1 to M6; M1 to M7; M1 to M9; M1 to M10) for guiding imaging light (3) from an object field (4) in an object plane (5) into an image field (8 ) in an image plane (9) along an imaging light beam path,
wobei das Objektfeld (4) aufgespannt ist von  wherein the object field (4) is spanned by
einer ersten kartesischen Objektfeldkoordinate (x) und  a first Cartesian object field coordinate (x) and
einer zweiten kartesischen Objektfeldkoordinate (y) und  a second Cartesian object field coordinate (y) and
wobei eine dritte kartesische Normalkoordinate (z) senkrecht auf beiden Objektfeldkoordinaten (x, y) steht,  wherein a third Cartesian normal coordinate (z) is perpendicular to both object field coordinates (x, y),
wobei die abbildende Optik (7; 21; 22; 23; 26; 27; 29) so ausgeführt ist, dass wherein the imaging optics (7; 21; 22; 23; 26; 27; 29) are designed so that
— das Abbildungslicht (3) in einer ersten Abbildungslicht-Ebene (XZHR) verläuft, in der eine Abbildungslicht-Hauptpropagationsrichtung (ZHR) liegt, und- The imaging light (3) in a first image light plane (XZHR) runs, in which an imaging light Hauptpropagationsrichtung (ZHR) is located, and
— das Abbildungslicht (3) in einer zweiten Abbildungslicht-Ebene (yz) verläuft, in der die Abbildungslicht-Hauptpropagationsrichtung (ZHR) liegt und die senkrecht auf der ersten Abbildungslicht-Ebene (XZHR) steht, The imaging light (3) extends in a second imaging light plane (yz) in which the imaging light main propagation direction (ZHR) lies and which is perpendicular to the first imaging light plane (XZHR),
wobei die Anzahl von Erstebenen-Zwischenbildern (18) des Abbildungslichts (3), das in der ersten Abbildungslicht-Ebene (XZHR) verläuft, und die Anzahl der Zweitebenen- Zwischenbilder (19, 20; 24, 19, 25) von Abbildungslicht (3), das in der zweiten Abbildungslicht-Ebene (yz) verläuft, voneinander verschieden sind.  the number of first-level intermediate images (18) of the imaging light (3) running in the first imaging light plane (XZHR) and the number of second-plane intermediate images (19, 20; 24, 19, 25) of imaging light (3 ) which is in the second imaging light plane (yz) are different from each other.
2. Abbildende Optik nach Anspruch 1, dadurch gekennzeichnet, dass mindestens einer der Spiegel (M2, M3, M5, M6; M2, M3, M4, M5; Ml, M2, M3, M5, M6, M7; M2, M3, M4, M5, M6, M7; M2, M3, M4, M5, M6, M7, M8) als GI-Spiegel ausgeführt ist. 2. Imaging optics according to claim 1, characterized in that at least one of the mirrors (M2, M3, M5, M6, M2, M3, M4, M5, Ml, M2, M3, M5, M6, M7, M2, M3, M4 , M5, M6, M7, M2, M3, M4, M5, M6, M7, M8) is designed as a GI mirror.
3. Abbildende Optik nach Anspruch 2, dadurch gekennzeichnet, dass eine genutzte Reflexi- onsfläche des GI-Spiegels (M2, M3, M5, M6; M2, M3, M4, M5; Ml, M2, M3, M5, M6, M7; M2, M3, M4, M5, M6, M7; M2, M3, M4, M5, M6, M7, M8) ein Aspektverhältnis (y/x) seiner Flächendimensionen von höchstens 3 aufweist. 3. Imaging optics according to claim 2, characterized in that a used reflection surface of the GI mirror (M2, M3, M5, M6, M2, M3, M4, M5, M1, M2, M3, M5, M6, M7; M2, M3, M4, M5, M6, M7, M2, M3, M4, M5, M6, M7, M8) has an aspect ratio (y / x) of its area dimensions of at most 3.
Abbildende Optik nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass diejenige Abbildungslicht-Ebene (yz), in der die größere Anzahl an Zwischenbildern (19, 20; 24, 19, 25) vorliegt, mit einer Faltebene (yz) des mindestens einen Gl-Spiegels (M2, M3, M5, M6; M2, M3, M4, M5; Ml, M2, M3, M5, M6, M7; M2, M3, M4, M5, M6, M7; M2, M3, M4, M5, M6, M7, M8) zusammenfällt. Imaging optics according to claim 2 or 3, characterized in that the image light plane (yz) in which the larger number of intermediate images (19, 20; 24, 19, 25) is present, with a folding plane (yz) of the at least one Eq M2, M3, M5, M6, M2, M3, M4, M5, M1, M2, M3, M5, M6, M7, M2, M3, M4, M5, M6, M7, M2, M3, M4, M5 , M6, M7, M8) coincides.
Abbildende Optik nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass eines der Zwischenbilder (19; 24) in der mit der Faltebene zusammenfallenden Abbildungslicht- Ebene (yz) im Strahlengang vor dem GI-Spiegel (M2; M3; M4) zwischen diesem und einem im Strahlengang direkt vorgelagerten Spiegel und ein weiteres der Zwischenbilder (20; 19; 25) in der mit der Faltebene zusammenfallenden Abbildungslicht-Ebene (yz) im Strahlengang nach dem GI-Spiegel (M2; M3; M4) zwischen diesem und einem im Strahlengang direkt nachgelagerten Spiegel ausgeführt ist. Imaging optics according to one of Claims 2 to 4, characterized in that one of the intermediate images (19; 24) in the imaging plane (yz) coinciding with the folding plane lies in the beam path in front of the GI mirror (M2; M3; M4) between the latter and one of the intermediate images (20; 19; 25) in the imaging plane coinciding with the folding plane (yz) in the beam path after the GI mirror (M2; M3; M4) between this and an im Beam path is performed directly downstream mirror.
Abbildende Optik nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass mindestens zwei im Strahlengang des Abbildungslicht (3) aufeinanderfolgende Spiegel als GI- Spiegel (M2, M3, M5, M6; M2, M3, M4, M5; Ml, M2, M3, M5, M6, M7; M2, M3, M4, M5, M6, M7; M2, M3, M4, M5, M6, M7, M8) mit gleicher Faltebene (yz) ausgeführt sind, wobei ein Zwischenbild (19, 20) in der mit der Faltebene zusammenfallenden Abbildungslicht-Ebene (yz) im Strahlengang zwischen diesen beiden GI-Spiegeln (M2, M3; M3, M4; M4, M5; M6, M7) ausgeführt ist. Imaging optics according to one of Claims 2 to 5, characterized in that at least two mirrors succeeding each other in the beam path of the imaging light (3) are in the form of GI mirrors (M2, M3, M5, M6, M2, M3, M4, M5, Ml, M2, M3, M5, M6, M7, M2, M3, M4, M5, M6, M7, M2, M3, M4, M5, M6, M7, M8) are executed with the same folding plane (yz), wherein an intermediate image (19, 20 ) in the imaging plane (yz) coincident with the folding plane in the optical path between these two GI mirrors (M2, M3, M3, M4, M4, M5, M6, M7).
Abbildende Optik nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens einer der Spiegel (M8; M6; M7; M9; MIO) eine Durchtrittsöffnung (17) zum Durchtritt des Abbildungslichts (3) aufweist und um die Durchtrittsöffnung (17) herum zur Reflexion des Abbildungslichts (3) ausgeführt ist, wobei mindestens ein Zwischenbild (18) im Bereich der Durchtrittsöffnung (17) liegt. Imaging optics according to one of claims 1 to 6, characterized in that at least one of the mirrors (M8; M6; M7; M9; MIO) has a passage opening (17) for the passage of the imaging light (3) and around the passage opening (17) is designed for reflection of the imaging light (3), wherein at least one intermediate image (18) in the region of the passage opening (17).
Abbildende Optik nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens einer der Spiegel (Ml, M4, M7, M8; Ml bis M6; Ml, M6, M7; M4, M8, M9; Ml, M8, M9; Ml, M9, MIO) als NI-Spiegel ausgeführt ist. Imaging optics according to one of claims 1 to 7, characterized in that at least one of the mirrors (Ml, M4, M7, M8; Ml to M6; Ml, M6, M7; M4, M8, M9; Ml, M8, M9; Ml , M9, MIO) is designed as NI mirror.
9. Abbildende Optik nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine ungeradzahlige Anzahl von Spiegeln (Ml bis M7; Ml bis M9) im Abbildungsstrahlengang zwischen dem Objektfeld (4) und dem Bildfeld (8). 9. Imaging optics according to one of claims 1 to 8, characterized by an odd number of mirrors (Ml to M7, Ml to M9) in the imaging beam path between the object field (4) and the image field (8).
10. Optisches System 10. Optical system
mit einer abbildenden Optik nach einem der Ansprüche 1 bis 9,  with an imaging optics according to one of claims 1 to 9,
mit einer Hilfseinrichtung (19a, 20a) angeordnet in einer Zwischenbildebene eines der with an auxiliary device (19a, 20a) arranged in an intermediate image plane of one of
Zwischenbilder (18; 19, 20; 24, 19, 25). Intermediate images (18, 19, 20, 24, 19, 25).
11. Optisches System 11. Optical system
mit einer abbildenden Optik nach einem der Ansprüche 1 bis 9,  with an imaging optics according to one of claims 1 to 9,
mit einer Beleuchtungsoptik (6) zur Beleuchtung des Objektfeldes (4) mit Beleuchtungslicht (3) einer Lichtquelle (2).  with an illumination optical system (6) for illuminating the object field (4) with illumination light (3) of a light source (2).
12. Projektionsbelichtungsanlage mit einem optischen System nach Anspruch 10 oder 11 und mit einer Lichtquelle (2) zur Erzeugung des Beleuchtungslichts (3). 12. A projection exposure apparatus with an optical system according to claim 10 or 11 and with a light source (2) for generating the illumination light (3).
13. Verfahren zur Herstellung eines strukturierten Bauteils mit folgenden Verfahrensschritten: 13. Method for producing a structured component with the following method steps:
Bereitstellen eines Retikels (10) und eines Wafers (11),  Providing a reticle (10) and a wafer (11),
Projizieren einer Struktur auf dem Retikel (10) auf eine lichtempfindliche Schicht des Wafers (11) mithilfe der Projektionsbelichtungsanlage nach Anspruch 12,  Projecting a structure on the reticle (10) onto a photosensitive layer of the wafer (11) using the projection exposure apparatus according to claim 12,
Erzeugen einer Mikro- beziehungsweise Nanostruktur auf dem Wafer (11).  Generating a micro or nanostructure on the wafer (11).
14. Strukturiertes Bauteil, hergestellt nach einem Verfahren nach Anspruch 13. 14. Structured component, produced by a method according to claim 13.
15. Spiegel (M6, M7) als Bestandteil einer abbildenden Optik (7; 31) zur Führung von Abbildungslicht (3) von einem Objektfeld (4) in einer Objektebene (5) in ein Bildfeld (8) in einer Bildebene (9) längs eines Abbildungslicht-Strahlengangs, 15. Mirrors (M6, M7) as part of an imaging optical system (7, 31) for guiding imaging light (3) from an object field (4) in an object plane (5) into an image field (8) in an image plane (9) an imaging light beam path,
mit einer zur Reflexion nutzbaren Reflexionsfläche mit einer Randkontur (RK), die eine Grundform (GF) aufweist, die einer Grundform des Objektfeldes entspricht, wobei längs einer Seitenkante dieser Randkontur (RK) mindestens zwei Konturauswölbungen (KA) angeordnet sind. with a reflection surface which can be used for reflection with an edge contour (RK) which has a basic shape (GF) which corresponds to a basic shape of the object field, wherein at least two contour bulges (KA) are arranged along one side edge of this edge contour (RK).
16. Spiegel nach Anspruch 15, dadurch gekennzeichnet, dass zwei der Konturauswölbungen (KA) längs einer langen Seite der Grundform (GF) angeordnet sind. 16. Mirror according to claim 15, characterized in that two of the contour bulges (KA) along a long side of the basic shape (GF) are arranged.
17. Spiegel nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass längs zweier Seitenkanten der Randkontur (RK) jeweils mindestens zwei Konturauswölbungen (KA) angeordnet sind. 17. Mirror according to claim 15 or 16, characterized in that along two side edges of the edge contour (RK) in each case at least two contour bulges (KA) are arranged.
PCT/EP2016/057966 2015-04-14 2016-04-12 Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type WO2016166080A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110849038.6A CN113703286B (en) 2015-04-14 2016-04-12 Mirror, imaging optical unit and projection exposure apparatus
KR1020247007473A KR20240036129A (en) 2015-04-14 2016-04-12 Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type
JP2017554278A JP6799544B2 (en) 2015-04-14 2016-04-12 An imaging optical unit for forming an image of an object field of view within the image field of view and a projection exposure apparatus including such an imaging optical unit.
KR1020177032795A KR102648040B1 (en) 2015-04-14 2016-04-12 An imaging optical unit for imaging an object field within an image field and a projection exposure apparatus comprising such imaging optical unit.
CN201680033406.7A CN107810446B (en) 2015-04-14 2016-04-12 Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit
US15/728,812 US10656400B2 (en) 2015-04-14 2017-10-10 Imaging optical unit and projection exposure unit including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015206635.5 2015-04-14
DE102015206635 2015-04-14
DE102015226531.5A DE102015226531A1 (en) 2015-04-14 2015-12-22 Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102015226531.5 2015-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/728,812 Continuation US10656400B2 (en) 2015-04-14 2017-10-10 Imaging optical unit and projection exposure unit including same

Publications (1)

Publication Number Publication Date
WO2016166080A1 true WO2016166080A1 (en) 2016-10-20

Family

ID=57043608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/057966 WO2016166080A1 (en) 2015-04-14 2016-04-12 Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type

Country Status (6)

Country Link
US (1) US10656400B2 (en)
JP (1) JP6799544B2 (en)
KR (2) KR102648040B1 (en)
CN (2) CN107810446B (en)
DE (1) DE102015226531A1 (en)
WO (1) WO2016166080A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207542A1 (en) 2017-05-04 2017-06-29 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017205130A1 (en) 2017-03-27 2017-07-06 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017210269A1 (en) 2017-06-20 2017-08-31 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017210990A1 (en) 2017-06-28 2017-08-31 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field with EUV imaging light
DE102018203283A1 (en) 2018-03-06 2018-05-17 Carl Zeiss Smt Gmbh Method for producing an optical system of a projection apparatus for projection lithography
DE102018215505A1 (en) 2018-09-12 2018-10-31 Carl Zeiss Smt Gmbh Projection optics for a projection exposure machine
DE102018216832A1 (en) 2018-10-01 2018-11-22 Carl Zeiss Smt Gmbh Method for providing an optical assembly
DE102018200956A1 (en) 2018-01-22 2018-12-27 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018200955A1 (en) 2018-01-22 2019-01-10 Carl Zeiss Smt Gmbh Mirror assembly for beam guidance of imaging light in projection lithography
WO2019020356A1 (en) 2017-07-26 2019-01-31 Carl Zeiss Smt Gmbh Optical element for the beam guidance of imaging light in projection lithography
DE102017212869A1 (en) 2017-07-26 2019-01-31 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
WO2019052790A1 (en) 2017-09-18 2019-03-21 Carl Zeiss Smt Gmbh Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography
DE102017216893A1 (en) 2017-09-25 2019-03-28 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field
DE102018208373A1 (en) 2018-05-28 2019-06-19 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018200152A1 (en) 2018-01-08 2019-07-11 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018200954A1 (en) 2018-01-22 2019-07-25 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018201170A1 (en) * 2018-01-25 2019-07-25 Carl Zeiss Smt Gmbh Imaging optics for EUV microlithography
WO2019215110A1 (en) 2018-05-09 2019-11-14 Carl Zeiss Smt Gmbh Optical system for transferring original structure portions of a lithography mask, projection optical unit for imaging an object field in which at least one original structure portion of the lithography mask is arrangeable, and lithography mask
DE102021211181A1 (en) 2021-10-05 2022-08-18 Carl Zeiss Smt Gmbh EUV projection optics
DE102021205775A1 (en) 2021-06-08 2022-12-08 Carl Zeiss Smt Gmbh imaging optics
DE102021205774A1 (en) 2021-06-08 2022-12-08 Carl Zeiss Smt Gmbh imaging optics
DE102022212382A1 (en) 2022-11-21 2023-02-23 Carl Zeiss Smt Gmbh Process for the design of projection optics and projection optics

Families Citing this family (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210829A1 (en) 2020-08-27 2022-03-03 Carl Zeiss Smt Gmbh Pupil facet mirror for an illumination optics of a projection exposure system
DE102020211096A1 (en) 2020-09-02 2022-03-03 Carl Zeiss Smt Gmbh Field facet for a field facet mirror of a projection exposure system
DE102020212229B3 (en) 2020-09-29 2022-01-20 Carl Zeiss Smt Gmbh Aperture device for delimiting a beam path between a light source and an illumination optics of a projection exposure system for projection lithography
DE102020212351A1 (en) 2020-09-30 2022-03-31 Carl Zeiss Smt Gmbh Micromirror array for an illumination-optical component of a projection exposure system
DE102020212367A1 (en) 2020-09-30 2022-03-31 Carl Zeiss Smt Gmbh Optical component
DE102020212569A1 (en) 2020-10-06 2021-12-09 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102020212927A1 (en) 2020-10-14 2022-04-14 Carl Zeiss Smt Gmbh SUPPORT OF AN OPTICAL ELEMENT
DE102020213416A1 (en) 2020-10-23 2021-10-07 Carl Zeiss Smt Gmbh Projection exposure system with a heating device and a polarizer
CN112769039A (en) * 2020-11-03 2021-05-07 深圳阜时科技有限公司 Light source, emission module, optical sensing device and electronic equipment
DE102020213837A1 (en) 2020-11-04 2021-08-19 Carl Zeiss Smt Gmbh Facet mirror device
DE102020215906A1 (en) 2020-12-15 2022-06-15 Carl Zeiss Smt Gmbh Attenuation device, optical assembly and projection exposure system
DE102021200114A1 (en) 2021-01-08 2021-12-30 Carl Zeiss Smt Gmbh Mirror projection optics, method for checking an optical element, optical element and lithography system
DE102021212993A1 (en) 2021-01-08 2022-07-14 Carl Zeiss Smt Gmbh Method for measuring an absorption of an electromagnetic radiation by an optical element, device for measuring a transformation property of an optical element and lithography system
DE102021200113A1 (en) 2021-01-08 2022-07-14 Carl Zeiss Smt Gmbh Optical device, method for controlling an optical device, computer program product and lithography system
DE102021101523B3 (en) 2021-01-25 2021-10-14 Carl Zeiss IQS Deutschland GmbH Device for producing an adhesive connection between components of a lithography system, method for producing an adhesive connection between components of a lithography system and lithography system
DE102021213096A1 (en) 2021-01-28 2022-07-28 Carl Zeiss Smt Gmbh METHOD OF MAKING A MECHANICAL SYSTEM FOR A LITHOGRAPHY PLANT
DE102021201001A1 (en) 2021-02-03 2022-08-04 Carl Zeiss Smt Gmbh Method for manufacturing an optical element, apparatus for manufacturing an optical element, optical element and lithography system
DE102021201203A1 (en) 2021-02-09 2022-08-11 Carl Zeiss Smt Gmbh SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102021201257A1 (en) 2021-02-10 2021-12-30 Carl Zeiss Smt Gmbh Method and device for determining a spectrum of radiation, computer program product and lithography system
DE102021201396A1 (en) 2021-02-15 2022-08-18 Carl Zeiss Smt Gmbh Process for producing a multi-part mirror of a projection exposure system for microlithography
DE102021201689A1 (en) 2021-02-23 2022-08-25 Carl Zeiss Smt Gmbh Optical assembly, method for deforming an optical element and projection exposure system
DE102021202502B4 (en) 2021-03-15 2023-01-19 Carl Zeiss Smt Gmbh Device and method for changing a shape of a surface of an object
DE102021202769A1 (en) 2021-03-22 2022-09-22 Carl Zeiss Smt Gmbh Optical assembly and method for its manufacture, method for deforming an optical element and projection exposure system
DE102021202770A1 (en) 2021-03-22 2022-03-03 Carl Zeiss Smt Gmbh Process for generating a plasma and projection exposure system for semiconductor lithography
DE102021202802B3 (en) 2021-03-23 2022-03-24 Carl Zeiss Smt Gmbh Projection exposure system with a device for determining the concentration of atomic hydrogen
DE102021202849A1 (en) 2021-03-24 2022-01-05 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102021202911A1 (en) 2021-03-25 2022-09-29 Carl Zeiss Smt Gmbh Measuring device for interferometric measuring of a surface shape
DE102021202909A1 (en) 2021-03-25 2022-09-29 Carl Zeiss Smt Gmbh Measuring device for interferometric measuring of a surface shape
DE102021203475A1 (en) 2021-04-08 2022-10-13 Carl Zeiss Smt Gmbh Process for producing a mirror of a projection exposure system for microlithography
DE102021203723A1 (en) 2021-04-15 2022-04-21 Carl Zeiss Smt Gmbh CONNECTION ARRANGEMENT, PROJECTION EXPOSURE EQUIPMENT AND METHOD
DE102021203721A1 (en) 2021-04-15 2022-10-20 Carl Zeiss Smt Gmbh ACTUATOR-SENSOR DEVICE AND LITHOGRAPHY PLANT
DE102022200726A1 (en) 2021-04-23 2022-10-27 Carl Zeiss Smt Gmbh Method for determining a reflection property of an optical element to be examined, device for determining a reflection property of an optical element to be examined, computer program product and lithography system
DE102022108541A1 (en) 2021-04-23 2022-10-27 Carl Zeiss Jena Gmbh Process for the production of a test element and test element
DE102021204265A1 (en) 2021-04-29 2022-11-03 Carl Zeiss Smt Gmbh Method for cleaning a surface of an element and cleaning device
DE102021204582B3 (en) 2021-05-06 2022-07-07 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102021205104A1 (en) 2021-05-19 2022-03-03 Carl Zeiss Smt Gmbh Projection exposure system with a deformable element and method for producing an element
DE102021205149B3 (en) 2021-05-20 2022-07-07 Carl Zeiss Smt Gmbh Method and device for qualifying a faceted mirror
DE102021205278B4 (en) 2021-05-21 2023-05-17 Carl Zeiss Smt Gmbh Adjustable spacer, optical system, projection exposure apparatus and method
DE102021205368A1 (en) 2021-05-27 2022-12-01 Carl Zeiss Smt Gmbh Component for a projection exposure system for semiconductor lithography and method for designing the component
DE102021205425A1 (en) 2021-05-27 2022-12-01 Carl Zeiss Smt Gmbh Optical device, method for setting a target deformation and lithography system
DE102021205426A1 (en) 2021-05-27 2022-12-01 Carl Zeiss Smt Gmbh Optical device, method for setting a target deformation and lithography system
DE102021205809B3 (en) 2021-06-09 2022-08-18 Carl Zeiss Smt Gmbh Method for screwing an actuator-sensor module of a projection exposure system
DE102022203929A1 (en) 2021-06-16 2022-12-22 Carl Zeiss Smt Gmbh Device for positioning a first component of an optical system, component of an optical system, optical device and lithography system
DE102021206427A1 (en) 2021-06-22 2022-12-22 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102022115356A1 (en) 2021-06-24 2022-12-29 Carl Zeiss Smt Gmbh Device for temperature control of a component
DE102021206953A1 (en) 2021-07-02 2022-06-02 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY SYSTEM AND METHOD OF OPERATING AN OPTICAL SYSTEM
DE102022204833A1 (en) 2021-07-02 2023-01-05 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY EQUIPMENT AND METHOD OF MANUFACTURING AN OPTICAL SYSTEM
DE102021207522A1 (en) 2021-07-15 2023-01-19 Carl Zeiss Smt Gmbh Device and method for coating a component for a projection exposure system and component of a projection exposure system
DE102021208562A1 (en) 2021-08-06 2023-02-09 Carl Zeiss Smt Gmbh TEMPERATURE MEASUREMENT DEVICE, LITHOGRAPHY EQUIPMENT AND METHOD OF MEASURING A TEMPERATURE
DE102021208563A1 (en) 2021-08-06 2022-09-01 Carl Zeiss Smt Gmbh DEVICE AND METHOD FOR DETERMINING A TEMPERATURE IN A LITHOGRAPHY PLANT
DE102021208628A1 (en) 2021-08-09 2023-02-09 Carl Zeiss Smt Gmbh SUPPORT OF AN OPTICAL ELEMENT
DE102021120747B4 (en) 2021-08-10 2024-07-11 Carl Zeiss Sms Ltd. Method for removing a particle from a mask system
DE102021208664A1 (en) 2021-08-10 2023-02-16 Carl Zeiss Smt Gmbh Mirror for a microlithographic projection exposure system
DE102021208801B3 (en) 2021-08-11 2022-08-11 Carl Zeiss Smt Gmbh Projection exposure system and method for laying out an adhesive layer
DE102021208843A1 (en) 2021-08-12 2023-02-16 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography with a connecting element
DE102021208879A1 (en) 2021-08-13 2023-02-16 Carl Zeiss Smt Gmbh OPTICAL ELEMENT, PROJECTION OPTICS AND PROJECTION EXPOSURE SYSTEM
DE102021209098A1 (en) 2021-08-19 2022-05-25 Carl Zeiss Smt Gmbh PROTECTIVE HOSE AND PROJECTION EXPOSURE SYSTEM
DE102021209099A1 (en) 2021-08-19 2023-02-23 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102022121000B4 (en) 2021-08-23 2024-03-07 Carl Zeiss Smt Gmbh Mirror arrangement for an EUV projection exposure system with a protective device for protecting the optical effective surface and EUV projection exposure system
DE102022204387A1 (en) 2021-08-24 2023-03-16 Carl Zeiss Smt Gmbh Method and device for cleaning a surface to be cleaned, element for the lithography and/or semiconductor industry and lithography system
DE102021210103B3 (en) 2021-09-14 2023-03-02 Carl Zeiss Smt Gmbh PROCESS, OPTICAL SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102021210104A1 (en) 2021-09-14 2022-07-07 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, PROJECTION EXPOSURE EQUIPMENT AND PROCESS
DE102021210470B3 (en) 2021-09-21 2023-01-19 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102021210577A1 (en) 2021-09-23 2023-03-23 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, PROJECTION EXPOSURE EQUIPMENT AND PROCESS
DE102021210708A1 (en) 2021-09-24 2022-11-24 Carl Zeiss Smt Gmbh DOSING DEVICE AND METHOD FOR MANUFACTURING A LITHOGRAPHY PLANT
DE102022205758A1 (en) 2021-10-07 2023-04-13 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROCESS
DE102021211619A1 (en) 2021-10-14 2023-04-20 Carl Zeiss Smt Gmbh EUV multiple mirror array
DE102021211626A1 (en) 2021-10-14 2023-04-20 Carl Zeiss Smt Gmbh EUV multiple mirror array
DE102021212394A1 (en) 2021-11-03 2023-05-04 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY EQUIPMENT AND PROCESS
DE102021212553A1 (en) 2021-11-08 2023-05-11 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY EQUIPMENT AND PROCESS
DE102022210796A1 (en) 2021-11-11 2023-05-11 Carl Zeiss Smt Gmbh Method for initializing a component of a projection exposure system for semiconductor lithography
DE102021212971A1 (en) 2021-11-18 2023-05-25 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, PROJECTION EXPOSURE EQUIPMENT AND PROCESS
DE102021213168A1 (en) 2021-11-23 2023-05-25 Carl Zeiss Smt Gmbh PROCEDURE
DE102021213441A1 (en) 2021-11-29 2022-09-15 Carl Zeiss Smt Gmbh METHOD OF MAKING AN OPTICAL SYSTEM
DE102021213458A1 (en) 2021-11-30 2022-08-18 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102021213612A1 (en) 2021-12-01 2023-06-01 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, TEST EQUIPMENT, LITHOGRAPHY PLANT, ARRANGEMENT AND PROCEDURE
DE102021213610A1 (en) 2021-12-01 2023-06-01 Carl Zeiss Smt Gmbh METHOD, OPTICAL SYSTEM, TEST EQUIPMENT AND ARRANGEMENT
DE102021213864A1 (en) 2021-12-07 2022-07-07 Carl Zeiss Smt Gmbh Method and device for protecting an adhesive joint
DE102021214139A1 (en) 2021-12-10 2023-06-15 Carl Zeiss Smt Gmbh Projection exposure system with a correction determination module
DE102021214665A1 (en) 2021-12-20 2022-12-15 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography with a temperature control structure
DE102021214981A1 (en) 2021-12-23 2023-06-29 Carl Zeiss Smt Gmbh PROCESS AND DRYING DEVICE
DE102022200205B3 (en) 2022-01-11 2022-11-24 Carl Zeiss Smt Gmbh EUV projection exposure system and method for removing foreign bodies
DE102022200264A1 (en) 2022-01-12 2022-12-15 Carl Zeiss Smt Gmbh Device for tilting a mirror, optical component, optical assembly, method for tilting a mirror, method for producing a device for tilting a mirror and EUV projection exposure system
DE102022200277A1 (en) 2022-01-13 2023-01-26 Carl Zeiss Smt Gmbh Method, device, preparation method and preparation device for producing a base body, base body, optical element and lithography system
DE102022213100A1 (en) 2022-01-13 2023-07-13 Carl Zeiss Smt Gmbh ACTUATOR/SENSOR DEVICE, OPTICS MODULE AND LITHOGRAPHY PLANT
DE102022200400A1 (en) 2022-01-14 2022-06-30 Carl Zeiss Smt Gmbh CONNECTION OF COMPONENTS OF AN OPTICAL DEVICE
DE102022213113A1 (en) 2022-01-18 2023-07-20 Carl Zeiss Smt Gmbh Method for monitoring an adjustment setting, interferometric measuring device, hologram device and lithography system
DE102022212378A1 (en) 2022-01-24 2023-07-27 Carl Zeiss Smt Gmbh Device for holding and cooling an optic body, method for producing an optic body, cooling method for cooling an optic body, optical element and lithography system
DE102022211909A1 (en) 2022-01-25 2023-07-27 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY SYSTEM AND METHOD OF OPERATING AN OPTICAL SYSTEM
DE102022200976A1 (en) 2022-01-31 2023-01-05 Carl Zeiss Smt Gmbh Calibration bodies and methods for calibration
DE102022201007A1 (en) 2022-01-31 2022-11-17 Carl Zeiss Smt Gmbh Device for connecting at least a first and a second module component, module of a lithography system, optical element and lithography system
DE102023200212A1 (en) 2022-02-01 2023-08-03 Carl Zeiss Smt Gmbh Projection exposure system and method for manipulating vibrations
DE102023200336A1 (en) 2022-02-08 2023-08-10 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography with a connecting element
DE102022201304A1 (en) 2022-02-08 2023-01-05 Carl Zeiss Smt Gmbh Method for determining the end of a warm-up phase of an optical element
DE102022201301A1 (en) 2022-02-08 2023-08-10 Carl Zeiss Smt Gmbh EUV projection exposure system with a heating device
DE102022212721A1 (en) 2022-02-16 2023-08-17 Carl Zeiss Smt Gmbh PROCEDURE
DE102023201200A1 (en) 2022-03-01 2023-09-07 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102022202116A1 (en) 2022-03-02 2023-02-23 Carl Zeiss Smt Gmbh SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102022202241A1 (en) 2022-03-04 2023-03-02 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE EQUIPMENT
DE102023201812A1 (en) 2022-03-09 2023-09-14 Carl Zeiss Smt Gmbh Method and device for releasing an adhesive bond
DE102022202355A1 (en) 2022-03-09 2023-02-02 Carl Zeiss Smt Gmbh Micromirror assembly, manufacturing method for manufacturing a micromirror assembly and method for tilting a mirror surface
DE102022202424A1 (en) 2022-03-10 2023-03-02 Carl Zeiss Smt Gmbh Process and test system for the analysis of sealing systems
DE102023201828A1 (en) 2022-03-14 2023-09-14 Carl Zeiss Smt Gmbh Plug holder, heating device and projection exposure system
DE102023201560A1 (en) 2022-03-21 2023-09-21 Carl Zeiss Smt Gmbh COMPONENT AND PROJECTION EXPOSURE SYSTEM
DE102022202938A1 (en) 2022-03-24 2023-09-28 Carl Zeiss Smt Gmbh ARRANGEMENT AND PROJECTION EXPOSURE SYSTEM
DE102022202989A1 (en) 2022-03-25 2023-09-28 Carl Zeiss Smt Gmbh Optical device, method for measuring an actual tilt of an optical surface of an optical element and lithography system
DE102022203150A1 (en) 2022-03-31 2023-01-05 Carl Zeiss Smt Gmbh Optical device, method for detecting a temperature distribution and lithography system
DE102022203255A1 (en) 2022-04-01 2023-10-05 Carl Zeiss Smt Gmbh CONTROL DEVICE, OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM
DE102022203254B3 (en) 2022-04-01 2023-03-02 Carl Zeiss Smt Gmbh WATER-CONDUCTING SYSTEM, PROJECTION EXPOSURE SYSTEM AND MEASURING DEVICE
DE102022203299A1 (en) 2022-04-01 2023-10-05 Carl Zeiss Smt Gmbh Procedure for checking the quality of a screw connection
DE102022203257A1 (en) 2022-04-01 2023-10-05 Carl Zeiss Smt Gmbh CONTROL DEVICE, OPTICAL SYSTEM, LITHOGRAPHY SYSTEM AND METHOD
DE102022203298A1 (en) 2022-04-01 2023-10-05 Carl Zeiss Smt Gmbh Method and device for chemically processing a surface
DE102022203369A1 (en) 2022-04-05 2023-10-05 Carl Zeiss Smt Gmbh Arrangement, method and computer program product for calibrating facet mirrors
DE102022203393A1 (en) 2022-04-06 2023-10-12 Carl Zeiss Smt Gmbh Device and method for aligning two components
WO2023194220A1 (en) 2022-04-06 2023-10-12 Carl Zeiss Smt Gmbh Device and method for aligning two components
DE102022208738A1 (en) 2022-08-24 2024-02-29 Carl Zeiss Smt Gmbh Device and method for aligning two components
DE102022203438B4 (en) 2022-04-06 2023-12-07 Carl Zeiss Smt Gmbh Optical arrangement, optical module, optical imaging device and method, method for supporting an optical element, with an actively tiltable optical element
DE102022203433A1 (en) 2022-04-06 2023-10-12 Carl Zeiss Smt Gmbh CONNECTING COMPONENTS OF AN OPTICAL DEVICE
DE102022203758A1 (en) 2022-04-13 2023-10-19 Carl Zeiss Smt Gmbh CONNECTING COMPONENTS OF AN OPTICAL DEVICE
DE102022203745A1 (en) 2022-04-13 2022-09-15 Carl Zeiss Smt Gmbh EUV collector for an EUV projection exposure system
DE102022203881A1 (en) 2022-04-20 2023-04-13 Carl Zeiss Smt Gmbh CIRCUIT BOARD FOR AN OPTICAL SYSTEM, OPTICAL SYSTEM, LITHOGRAPHY EQUIPMENT AND METHOD FOR MANUFACTURING A CIRCUIT BOARD FOR AN OPTICAL SYSTEM
DE102022203999A1 (en) 2022-04-26 2022-07-21 Carl Zeiss Smt Gmbh Method for calibrating a diffractive measurement structure, device for calibrating a diffractive measurement structure and lithography system
DE102022204095A1 (en) 2022-04-27 2023-11-02 Carl Zeiss Smt Gmbh Method for measuring an illumination angle distribution on an object field and illumination optics with a predetermined illumination channel assignment
DE102022204044A1 (en) 2022-04-27 2023-11-02 Carl Zeiss Smt Gmbh SUPPORTING COMPONENTS OF AN OPTICAL DEVICE
DE102022204098A1 (en) 2022-04-27 2023-11-02 Carl Zeiss Smt Gmbh Illumination optics for projection lithography
DE102022204268A1 (en) 2022-04-29 2023-11-02 Carl Zeiss Smt Gmbh Optical component for a lithography system
DE102022204580A1 (en) 2022-05-11 2023-04-20 Carl Zeiss Smt Gmbh METHOD OF MAKING OR OPERATION OF A MIRROR IN A LITHOGRAPHY PLANT
DE102022204643A1 (en) 2022-05-12 2023-11-16 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY SYSTEM WITH AN OPTICAL SYSTEM AND METHOD FOR PRODUCING AN OPTICAL SYSTEM
DE102022205227A1 (en) 2022-05-25 2023-04-27 Carl Zeiss Smt Gmbh Optical device, method for determining an actual deformation, method for setting a target deformation and lithography system
DE102023203580A1 (en) 2022-05-31 2023-11-30 Carl Zeiss Smt Gmbh Coolant line for providing a fluid for temperature control of components
DE102022214283A1 (en) 2022-06-07 2023-12-07 Carl Zeiss Smt Gmbh Optical system for a lithography system and lithography system
DE102022205815A1 (en) 2022-06-08 2023-12-14 Carl Zeiss Smt Gmbh Component for a projection exposure system for semiconductor lithography and projection exposure system
DE102022206065B3 (en) 2022-06-15 2023-02-23 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, PROJECTION EXPOSURE EQUIPMENT AND PROCESS
DE102022206038A1 (en) 2022-06-15 2023-12-21 Carl Zeiss Smt Gmbh Method for compensating actuator effects of actuators
DE102022206124A1 (en) 2022-06-20 2023-12-21 Carl Zeiss Smt Gmbh DEVICE AND METHOD FOR PROCESSING A SURFACE OF AN OPTICAL ELEMENT OF A LITHOGRAPHY SYSTEM
DE102022206112A1 (en) 2022-06-20 2023-12-21 Carl Zeiss Smt Gmbh Imaging EUV optics for imaging an object field into an image field
DE102022206110A1 (en) 2022-06-20 2023-12-21 Carl Zeiss Smt Gmbh Imaging EUV optics for imaging an object field into an image field
DE102022206126A1 (en) 2022-06-20 2023-03-09 Carl Zeiss Smt Gmbh Component for use in a projection exposure system
DE102022206198A1 (en) 2022-06-21 2022-09-15 Carl Zeiss Smt Gmbh Method and device for qualifying a component of a projection exposure system for semiconductor lithography
DE102023204960A1 (en) 2022-06-30 2024-01-04 Carl Zeiss Smt Gmbh Method for operating a lithography system and lithography system
DE102022116693A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Optical element with vibration-reducing sections of fluid lines and method for producing a base body of an optical element and projection exposure system
DE102022206832A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM
DE102022116698B3 (en) 2022-07-05 2023-09-21 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102022116699A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Optical element and projection exposure system for semiconductor lithography
DE102022116695A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Base body for an optical element and method for producing a base body for an optical element and projection exposure system
DE102022116700A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Optical assembly, projection exposure system for semiconductor lithography and process
DE102022116696A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Base body for an optical element with a connection geometry and method for producing a base body of an optical element and projection exposure system
DE102022116694A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Method for producing a base body of an optical element, base body and projection exposure system for semiconductor lithography
WO2024008676A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Method for producing a base element of an optical element for semiconductor lithography, base element, optical element and projection exposure system
DE102022208286A1 (en) 2022-08-09 2024-02-15 Carl Zeiss Smt Gmbh Method for producing a base body for semiconductor lithography, optical element and projection exposure system
DE102022207027A1 (en) 2022-07-11 2024-01-11 Carl Zeiss Smt Gmbh DEVICE AND METHOD FOR PROVIDING SENSOR DATA OF AN OPTICAL SYSTEM, OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM WITH AN OPTICAL SYSTEM
DE102023206334A1 (en) 2022-07-11 2024-01-11 Carl Zeiss Smt Gmbh CONTROL DEVICE AND OPTICAL SYSTEM
DE102022207123A1 (en) 2022-07-12 2024-01-18 Carl Zeiss Smt Gmbh Pin for a clamping system
DE102022207148A1 (en) 2022-07-13 2024-01-18 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography
DE102022207312A1 (en) 2022-07-18 2024-01-18 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102022207348A1 (en) 2022-07-19 2022-09-15 Carl Zeiss Smt Gmbh PROCEDURE AND ADJUSTMENT KIT
DE102023205175A1 (en) 2022-07-22 2024-01-25 Carl Zeiss Smt Gmbh Method for determining an overall center of gravity of a distribution of light intensities
DE102022207546B3 (en) 2022-07-25 2023-10-12 Carl Zeiss Smt Gmbh Facet mirror assembly, lighting optics, optical system, projection exposure system, method for producing a microstructured component and component
DE102022207545A1 (en) 2022-07-25 2023-04-27 Carl Zeiss Smt Gmbh Optical component
DE102022207555A1 (en) 2022-07-25 2024-01-25 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY SYSTEM WITH AN OPTICAL SYSTEM AND METHOD FOR PRODUCING AN OPTICAL SYSTEM
DE102022207687A1 (en) 2022-07-27 2024-02-01 Carl Zeiss Smt Gmbh Method and device for inspecting a component, computer-implemented method and lithography system
DE102022207689A1 (en) 2022-07-27 2022-09-29 Carl Zeiss Smt Gmbh Method, device and computer program product for identifying contamination in components of an EUV lithography system
DE102022207884B4 (en) 2022-07-29 2024-02-15 Carl Zeiss Smt Gmbh Measuring device, method for interferometric measurement, processing method, optical element and lithography system
DE102022208010A1 (en) 2022-08-03 2024-02-08 Carl Zeiss Smt Gmbh Device and method for applying a fluid and component
DE102022208206A1 (en) 2022-08-08 2024-02-08 Carl Zeiss Smt Gmbh Method for stabilizing an adhesive connection of an optical assembly
DE102022208231B3 (en) 2022-08-08 2023-06-07 Carl Zeiss Smt Gmbh CONTROL DEVICE, OPTICAL SYSTEM AND LITHOGRAPHY PLANT
DE102022208204A1 (en) 2022-08-08 2023-08-31 Carl Zeiss Smt Gmbh Process for compensating for aberrations in an EUV projection exposure system
DE102022209453A1 (en) 2022-09-09 2024-03-14 Carl Zeiss Smt Gmbh Fiber strand for a sector heater, sector heater and projection device
WO2024052300A1 (en) 2022-09-09 2024-03-14 Carl Zeiss Smt Gmbh Illumination system, radiation source apparatus, method for illuminating a reticle, and lithography system
DE102023203506A1 (en) 2022-09-12 2024-03-14 Carl Zeiss Smt Gmbh Vacuum chamber for components for semiconductor lithography and method for automated cleaning of the vacuum chamber
WO2024056600A1 (en) 2022-09-13 2024-03-21 Carl Zeiss Smt Gmbh Method to adjust an illumination beam path within an illumination optics and illumination optics having an adjustment system
DE102023206503A1 (en) 2022-09-14 2024-03-14 Carl Zeiss Smt Gmbh Imaging optics
DE102022209791B3 (en) 2022-09-19 2023-07-06 Carl Zeiss Smt Gmbh EUV collector for an EUV projection exposure system
DE102022209852A1 (en) 2022-09-19 2022-11-10 Carl Zeiss Smt Gmbh THERMAL ACTUATOR ARRANGEMENT
DE102022209854A1 (en) 2022-09-20 2022-11-17 Carl Zeiss Smt Gmbh CONNECTION ARRANGEMENT
DE102023208854A1 (en) 2022-09-20 2024-03-21 Carl Zeiss Smt Gmbh COOLING DEVICE FOR COOLING A POSITION-SENSITIVE COMPONENT OF A LITHOGRAPHY SYSTEM
DE102022209868A1 (en) 2022-09-20 2024-03-21 Carl Zeiss Smt Gmbh OPTICAL ASSEMBLY, OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102022209922A1 (en) 2022-09-21 2023-09-21 Carl Zeiss Smt Gmbh REFLECTOMETER DEVICE, MEASURING ARRANGEMENT, METHOD FOR PRODUCING AN OPTICAL REFERENCE ELEMENT AND METHOD FOR MEASURING A SAMPLE OF A LITHOGRAPHY SYSTEM
DE102022210024A1 (en) 2022-09-22 2023-09-07 Carl Zeiss Smt Gmbh Method and device for qualifying a computer-generated hologram, regularization method and lithography system
DE102022210037A1 (en) 2022-09-23 2024-03-28 Carl Zeiss Smt Gmbh Arrangement for tempering at least a partial area of an optical element
DE102022210035A1 (en) 2022-09-23 2024-03-28 Carl Zeiss Smt Gmbh MANAGEMENT OF COMPONENTS OF AN OPTICAL DEVICE
DE102022210158A1 (en) 2022-09-26 2024-03-28 Carl Zeiss Smt Gmbh Arrangement, method and computer program product for calibrating facet mirrors
DE102022210132A1 (en) 2022-09-26 2022-12-01 Carl Zeiss Smt Gmbh Component for a projection exposure system for semiconductor lithography and method for producing the component
DE102022210229A1 (en) 2022-09-27 2022-11-24 Carl Zeiss Smt Gmbh Magnet system and method for low-friction mounting and/or influencing the position of an optical element
DE102022210171A1 (en) 2022-09-27 2024-03-28 Carl Zeiss Smt Gmbh OPTICAL ELEMENT, OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102022210289A1 (en) 2022-09-28 2022-12-01 Carl Zeiss Smt Gmbh Device and method for positioning an optical element, measuring device for measuring an optical surface and lithography system
DE102022210274A1 (en) 2022-09-28 2024-03-28 Carl Zeiss Smt Gmbh MEASURING DEVICE AND MEASURING METHOD FOR MEASURING A VOLTAGE DROPPING IN AN OPTICAL SYSTEM, OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM
DE102022210356A1 (en) 2022-09-29 2022-11-24 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY PLANT WITH AN OPTICAL SYSTEM AND METHOD FOR MANUFACTURING AN OPTICAL SYSTEM
DE102022125354A1 (en) 2022-09-30 2024-04-04 Asml Netherlands B.V. Cooling device for cooling a position-sensitive component of a lithography system
DE102022211226A1 (en) 2022-10-24 2024-04-25 Carl Zeiss Smt Gmbh Projection exposure system for semiconductor lithography and process
DE102022211334A1 (en) 2022-10-26 2023-09-14 Carl Zeiss Smt Gmbh Method for controlling an actuator and actuator
DE102023207047A1 (en) 2022-10-27 2024-05-02 Carl Zeiss Smt Gmbh COOLING LINE DEVICE FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR CONTROLLING A PRESSURE OF A COOLING LIQUID IN A COOLING LINE OF A LITHOGRAPHY SYSTEM
DE102023208302A1 (en) 2022-11-02 2024-05-02 Carl Zeiss Smt Gmbh SYSTEM FOR A LITHOGRAPHY SYSTEM AND LITHOGRAPHY SYSTEM
DE102022211696A1 (en) 2022-11-07 2024-05-08 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM WITH AN OPTICAL SYSTEM
DE102023208848A1 (en) 2022-11-07 2024-05-08 Carl Zeiss Smt Gmbh LIGHTING SYSTEM FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR OPERATING A LIGHTING SYSTEM OF A LITHOGRAPHY SYSTEM
DE102022211799A1 (en) 2022-11-08 2022-12-29 Carl Zeiss Smt Gmbh MANIPULATOR, OPTICAL SYSTEM, PROJECTION EXPOSURE EQUIPMENT AND PROCESS
DE102023208851A1 (en) 2022-11-08 2024-05-08 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102022211875A1 (en) 2022-11-09 2024-05-16 Carl Zeiss Smt Gmbh Method for correcting local surface elevations on reflective surfaces
DE102022212136A1 (en) 2022-11-15 2023-01-12 Carl Zeiss Smt Gmbh Process for determining image errors in high-resolution imaging systems using wavefront measurement
DE102022212120A1 (en) 2022-11-15 2023-11-23 Carl Zeiss Smt Gmbh METHOD AND FIBER INJECTION DEVICE
DE102022212168A1 (en) 2022-11-16 2024-05-16 Carl Zeiss Smt Gmbh EUV optics module for an EUV projection exposure system
DE102022212167A1 (en) 2022-11-16 2023-09-14 Carl Zeiss Smt Gmbh EUV source module for an EUV projection exposure system
DE102022212257A1 (en) 2022-11-17 2023-11-02 Carl Zeiss Smt Gmbh Method for producing a base body and base body with a lightweight structure and projection exposure system
DE102022212377A1 (en) 2022-11-21 2023-10-12 Carl Zeiss Smt Gmbh SEALING DEVICE, METHOD AND USE
DE102022212463A1 (en) 2022-11-22 2024-05-23 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR OPERATING AN OPTICAL SYSTEM OF A LITHOGRAPHY SYSTEM
DE102022212537A1 (en) 2022-11-24 2024-05-29 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY DEVICE WITH AN OPTICAL SYSTEM AND ARRANGEMENT WITH AN OPTICAL SYSTEM
DE102023100393A1 (en) 2023-01-10 2024-07-11 Carl Zeiss Smt Gmbh Mirror socket, optical system and projection exposure system
WO2024120941A1 (en) 2022-12-09 2024-06-13 Carl Zeiss Smt Gmbh Mirror socket, optical system and projection exposure apparatus
US12117731B2 (en) 2022-12-13 2024-10-15 Carl Zeiss Smt Gmbh Method for producing a mirror of a microlithographic projection exposure apparatus
DE102022213681A1 (en) 2022-12-15 2024-06-20 Carl Zeiss Smt Gmbh COOLING DEVICE FOR A LITHOGRAPHY SYSTEM
DE102022213752A1 (en) 2022-12-16 2023-02-09 Carl Zeiss Smt Gmbh Interferometer device for measuring a surface, method for interferometric measuring of a surface and lithography system
DE102022213810A1 (en) 2022-12-16 2023-02-23 Carl Zeiss Smt Gmbh Method for monitoring a lens of a lithography system, optical device for a lithography system and lithography system
DE102022213987A1 (en) 2022-12-20 2023-12-14 Carl Zeiss Smt Gmbh Method for assembling an optical assembly, optical assembly and projection exposure system
DE102022214184A1 (en) 2022-12-21 2024-06-27 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023200146A1 (en) 2023-01-11 2023-03-09 Carl Zeiss Smt Gmbh METHOD AND ADJUSTMENT SYSTEM FOR ADJUSTING A POSITION OF A FACETED MIRROR OF A LITHOGRAPHY PLANT
DE102023200235A1 (en) 2023-01-12 2024-07-18 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM
DE102023200234A1 (en) 2023-01-12 2024-07-18 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, LITHOGRAPHY DEVICE AND METHOD FOR PRODUCING AN OPTICAL SYSTEM
DE102023200329B3 (en) 2023-01-17 2024-05-02 Carl Zeiss Smt Gmbh Optical assembly, method for assembling the optical assembly and projection exposure system
DE102023200422A1 (en) 2023-01-20 2024-07-25 Carl Zeiss Smt Gmbh Module for a projection exposure system, method and projection exposure system
DE102023200423A1 (en) 2023-01-20 2023-12-28 Carl Zeiss Smt Gmbh COOLING DEVICE FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR DAMPENING A PRESSURE Fluctuation of a LIQUID IN A LIQUID LINE OF A COOLING DEVICE OF A LITHOGRAPHY SYSTEM
DE102023200933A1 (en) 2023-02-06 2024-08-08 Carl Zeiss Smt Gmbh COOLING DEVICE FOR COOLING A POSITION-SENSITIVE COMPONENT OF A LITHOGRAPHY SYSTEM AND LITHOGRAPHY SYSTEM
DE102023200970A1 (en) 2023-02-07 2024-08-08 Carl Zeiss Smt Gmbh OPTICAL ELEMENT WITH POLISHED COATING
DE102023210779A1 (en) 2023-02-08 2024-08-08 Carl Zeiss Smt Gmbh Storage device for storing an optical module on a support frame
DE102023201138A1 (en) 2023-02-13 2024-08-14 Carl Zeiss Smt Gmbh SYSTEM WITH A LITHOGRAPHY DEVICE AND A NUMBER OF ELECTRONIC MODULES AND METHOD FOR OPERATING A SYSTEM
DE102023201137A1 (en) 2023-02-13 2024-01-11 Carl Zeiss Smt Gmbh Arrangement and method for protecting an adhesive connection
DE102023201315A1 (en) 2023-02-16 2024-08-22 Carl Zeiss Smt Gmbh Mechatronic element, mirror, mirror arrangement and method for their manufacture
DE102023201546B3 (en) 2023-02-22 2024-01-25 Carl Zeiss Smt Gmbh Method for decoating an optical surface, device for decoating an optical surface and lithography system
DE102023201859A1 (en) 2023-03-01 2024-09-05 Carl Zeiss Smt Gmbh OPTICAL ASSEMBLY, OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023201860A1 (en) 2023-03-01 2023-04-20 Carl Zeiss Smt Gmbh Assembly and method of connecting two components
DE102023201858A1 (en) 2023-03-01 2024-09-05 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023201840A1 (en) 2023-03-01 2024-02-22 Carl Zeiss Smt Gmbh Assembly for semiconductor technology and projection exposure system
DE102023202127A1 (en) 2023-03-09 2024-09-12 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023202241A1 (en) 2023-03-13 2024-09-19 Carl Zeiss Smt Gmbh Device and method for measuring a component and lithography system
DE102023202493A1 (en) 2023-03-21 2024-09-26 Carl Zeiss Smt Gmbh CONTROL DEVICE, OPTICAL SYSTEM, LITHOGRAPHY DEVICE AND METHOD
DE102024202011A1 (en) 2023-03-23 2024-09-26 Carl Zeiss Smt Gmbh Device and method for removing a component bonded to a surface of an optical element of a lithography system; lithography system for semiconductor lithography
DE102023203224A1 (en) 2023-04-06 2024-10-10 Carl Zeiss Smt Gmbh Imaging EUV optics for imaging an object field into an image field
DE102023203223A1 (en) 2023-04-06 2024-10-10 Carl Zeiss Smt Gmbh Imaging EUV optics for imaging an object field into an image field
DE102023203225A1 (en) 2023-04-06 2024-10-10 Carl Zeiss Smt Gmbh Imaging EUV optics for imaging an object field into an image field
DE102023203205A1 (en) 2023-04-06 2024-10-10 Carl Zeiss Smt Gmbh Method for producing a MEMS mirror array and MEMS mirror array
DE102023203338A1 (en) 2023-04-13 2024-10-17 Carl Zeiss Smt Gmbh LITHOGRAPHY SYSTEM AND METHOD FOR OPERATING A LITHOGRAPHY SYSTEM
DE102023203339A1 (en) 2023-04-13 2024-10-17 Carl Zeiss Smt Gmbh LITHOGRAPHY SYSTEM AND METHOD FOR OPERATING A LITHOGRAPHY SYSTEM
DE102023203337A1 (en) 2023-04-13 2024-10-17 Carl Zeiss Smt Gmbh MEMS MIRROR, MICROMIRROR ARRAY AND ILLUMINATION SYSTEM FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR PRODUCING A LITHOGRAPHY SYSTEM
DE102024200575A1 (en) 2023-04-17 2024-10-17 Carl Zeiss Smt Gmbh connector assembly
DE102023210888A1 (en) 2023-04-17 2024-10-17 Carl Zeiss Smt Gmbh Method for multiple exposure of an object using an illumination optics
DE102023203520A1 (en) 2023-04-18 2024-10-24 Carl Zeiss Smt Gmbh projection exposure system
DE102023203731A1 (en) 2023-04-24 2024-10-24 Carl Zeiss Smt Gmbh Device and method for checking a component and lithography system
DE102023203832A1 (en) 2023-04-25 2024-04-04 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023203830A1 (en) 2023-04-25 2024-03-28 Carl Zeiss Smt Gmbh SPACING DEVICE, OPTICAL SYSTEM, LITHOGRAPHY SYSTEM AND METHOD
DE102023203897A1 (en) 2023-04-27 2024-04-04 Carl Zeiss Smt Gmbh METHOD FOR PRODUCING A COMPONENT OF A LITHOGRAPHY SYSTEM, COMPONENT AND LITHOGRAPHY SYSTEM
DE102023204394A1 (en) 2023-05-11 2024-05-23 Carl Zeiss Smt Gmbh Method for minimizing pressure fluctuations and projection exposure system
DE102023204481A1 (en) 2023-05-12 2024-07-25 Carl Zeiss Smt Gmbh Method for automated defect characterization of optical elements
DE102023205426A1 (en) 2023-06-12 2024-05-29 Carl Zeiss Smt Gmbh Module with two joining partners for a projection exposure system for semiconductor lithography, projection exposure system and process
DE102023205570A1 (en) 2023-06-14 2024-06-27 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023205587A1 (en) 2023-06-15 2023-07-27 Carl Zeiss Smt Gmbh Device for semiconductor lithography, method for manufacturing a joint body for a sensor of a lithography system and lithography system
DE102023116896A1 (en) 2023-06-27 2024-07-04 Carl Zeiss Smt Gmbh Method for improving the imaging properties of an optical module, control, optical module and projection exposure system
DE102023116894A1 (en) 2023-06-27 2024-07-18 Carl Zeiss Smt Gmbh Method for receiving an optical element, optical module and projection exposure system
DE102023116899A1 (en) 2023-06-27 2024-06-27 Carl Zeiss Smt Gmbh Optical module and projection exposure system
DE102023116898A1 (en) 2023-06-27 2024-06-20 Carl Zeiss Smt Gmbh Optical module and projection exposure system
DE102023116893A1 (en) 2023-06-27 2024-07-04 Carl Zeiss Smt Gmbh Device and method for compensating pendulum forces
DE102023206042A1 (en) 2023-06-27 2024-08-01 Carl Zeiss Smt Gmbh Control device
DE102023206344A1 (en) 2023-07-04 2024-06-06 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023206428A1 (en) 2023-07-06 2024-07-11 Carl Zeiss Smt Gmbh Apparatus and method for producing an optical element and lithography system
DE102023206565A1 (en) 2023-07-11 2024-05-29 Carl Zeiss Smt Gmbh WATER-BEARING SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023207630A1 (en) 2023-08-09 2024-07-25 Carl Zeiss Smt Gmbh Optical assembly and projection exposure system
DE102023207629A1 (en) 2023-08-09 2024-08-08 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023208980A1 (en) 2023-09-15 2024-08-01 Carl Zeiss Smt Gmbh MEMS micromirror unit and facet mirror
DE102023209257A1 (en) 2023-09-22 2024-09-26 Carl Zeiss Smt Gmbh OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102023209608A1 (en) 2023-09-29 2024-09-05 Carl Zeiss Smt Gmbh Projection exposure system with exchangeable modules comprising optical elements
DE102023128365A1 (en) 2023-10-17 2024-09-12 Asml Netherlands B.V. Method and control device for controlling a position of a substrate holder of a lithography system, positioning system and lithography system
DE102023136592A1 (en) 2023-12-22 2024-10-24 Carl Zeiss Smt Gmbh Optical element and projection exposure system
DE102024200329A1 (en) 2024-01-15 2024-05-08 Carl Zeiss Smt Gmbh Device and method for filtering a cooling lubricant, processing device and lithography system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891806A (en) 1996-04-22 1999-04-06 Nikon Corporation Proximity-type microlithography apparatus and method
JP2002048977A (en) 2000-08-01 2002-02-15 Nikon Corp Catoptric system and proximity exposure device using the same
DE10155711A1 (en) 2001-11-09 2003-05-22 Fraunhofer Ges Forschung Mirror for the EUV spectral region used in X-ray techniques comprises a layer arrangement having a number of partial layer systems applied on a substrate
US20070047069A1 (en) * 2000-10-20 2007-03-01 Carl Zeiss Smt Ag 8-Mirror microlithography projection objective
US20070058269A1 (en) 2005-09-13 2007-03-15 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
WO2008141686A1 (en) 2007-05-23 2008-11-27 Carl Zeiss Ag Mirror optic and imaging method for imaging an object true to side and upright in an image field
DE102009045096A1 (en) 2009-09-29 2010-10-07 Carl Zeiss Smt Ag Lighting system for microlithographic-projection exposure system for illuminating object field in object level with illumination radiation, has two mirrors, where one mirror is flat mirror
DE102010029050A1 (en) 2010-05-18 2011-03-31 Carl Zeiss Smt Gmbh Magnifying imaging lens for use in aerial image metrology system for e.g. simulation of effects of characteristics of lithography masks used for manufacturing semiconductor elements, has image plane representing lens field plane
WO2011131289A1 (en) * 2010-04-22 2011-10-27 Carl Zeiss Smt Gmbh Imaging optics, and a projection exposure apparatus for microlithography having such an imaging optics
WO2012126867A1 (en) 2011-03-22 2012-09-27 Carl Zeiss Smt Gmbh Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
DE102012202675A1 (en) * 2012-02-22 2013-01-31 Carl Zeiss Smt Gmbh Imaging optics for use in optical system of projection exposure system, has imaging lights carrying components and mirror for grazing incidence of imaging light, where mirror for touching incident is arranged in image beam path
DE102012212753A1 (en) * 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Projection optics for forming object field of optics plane in projection exposure system for microlithography, has blinding unit presetting outer boundary of optics with respect to diaphragm direction that is set parallel to planes
WO2015014753A1 (en) 2013-07-29 2015-02-05 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100694A (en) * 1998-09-22 2000-04-07 Nikon Corp Reflection/reduction projection optical system, projection aligner comprising it, and exposure method using the aligner
DE10052289A1 (en) * 2000-10-20 2002-04-25 Zeiss Carl 8 mirror microlithography projection lens
US7712905B2 (en) * 2004-04-08 2010-05-11 Carl Zeiss Smt Ag Imaging system with mirror group
DE102005042005A1 (en) * 2004-12-23 2006-07-06 Carl Zeiss Smt Ag Objective lens esp. as micro-lithography projection objective, has objective divided into first part-objective with single mirror and second part-objective with primary and secondary mirror
CN100582861C (en) * 2004-12-23 2010-01-20 卡尔蔡司Smt股份公司 High-aperture objectives with darkening pupils
EP1828829B1 (en) * 2004-12-23 2012-08-22 Carl Zeiss SMT GmbH High aperture lens with an obscured pupil
CN101836163B (en) * 2007-08-20 2012-06-27 卡尔蔡司Smt有限责任公司 Projection objective having mirror elements with reflective coatings
KR101656534B1 (en) * 2008-03-20 2016-09-09 칼 짜이스 에스엠티 게엠베하 Projection objective for microlithography
DE102010040811A1 (en) * 2010-09-15 2012-03-15 Carl Zeiss Smt Gmbh Imaging optics
US9291751B2 (en) 2013-06-17 2016-03-22 Carl Zeiss Smt Gmbh Imaging optical unit and projection exposure apparatus for projection lithography comprising such an imaging optical unit

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891806A (en) 1996-04-22 1999-04-06 Nikon Corporation Proximity-type microlithography apparatus and method
JP2002048977A (en) 2000-08-01 2002-02-15 Nikon Corp Catoptric system and proximity exposure device using the same
US20070047069A1 (en) * 2000-10-20 2007-03-01 Carl Zeiss Smt Ag 8-Mirror microlithography projection objective
DE10155711A1 (en) 2001-11-09 2003-05-22 Fraunhofer Ges Forschung Mirror for the EUV spectral region used in X-ray techniques comprises a layer arrangement having a number of partial layer systems applied on a substrate
US20070058269A1 (en) 2005-09-13 2007-03-15 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
WO2008141686A1 (en) 2007-05-23 2008-11-27 Carl Zeiss Ag Mirror optic and imaging method for imaging an object true to side and upright in an image field
DE102009045096A1 (en) 2009-09-29 2010-10-07 Carl Zeiss Smt Ag Lighting system for microlithographic-projection exposure system for illuminating object field in object level with illumination radiation, has two mirrors, where one mirror is flat mirror
WO2011131289A1 (en) * 2010-04-22 2011-10-27 Carl Zeiss Smt Gmbh Imaging optics, and a projection exposure apparatus for microlithography having such an imaging optics
DE102010029050A1 (en) 2010-05-18 2011-03-31 Carl Zeiss Smt Gmbh Magnifying imaging lens for use in aerial image metrology system for e.g. simulation of effects of characteristics of lithography masks used for manufacturing semiconductor elements, has image plane representing lens field plane
WO2012126867A1 (en) 2011-03-22 2012-09-27 Carl Zeiss Smt Gmbh Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
DE102012202675A1 (en) * 2012-02-22 2013-01-31 Carl Zeiss Smt Gmbh Imaging optics for use in optical system of projection exposure system, has imaging lights carrying components and mirror for grazing incidence of imaging light, where mirror for touching incident is arranged in image beam path
DE102012212753A1 (en) * 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Projection optics for forming object field of optics plane in projection exposure system for microlithography, has blinding unit presetting outer boundary of optics with respect to diaphragm direction that is set parallel to planes
WO2015014753A1 (en) 2013-07-29 2015-02-05 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205130A1 (en) 2017-03-27 2017-07-06 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017207542A1 (en) 2017-05-04 2017-06-29 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017210269A1 (en) 2017-06-20 2017-08-31 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
DE102017210990A1 (en) 2017-06-28 2017-08-31 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field with EUV imaging light
US11029606B2 (en) 2017-07-26 2021-06-08 Carl Zeiss Smt Gmbh Optical element for the beam guidance of imaging light in projection lithography
WO2019020356A1 (en) 2017-07-26 2019-01-31 Carl Zeiss Smt Gmbh Optical element for the beam guidance of imaging light in projection lithography
DE102017212869A1 (en) 2017-07-26 2019-01-31 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
US11092897B2 (en) 2017-09-18 2021-08-17 Carl Zeiss Smt Gmbh Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography
WO2019052790A1 (en) 2017-09-18 2019-03-21 Carl Zeiss Smt Gmbh Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography
DE102017216458A1 (en) 2017-09-18 2019-03-21 Carl Zeiss Smt Gmbh A method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography
WO2019057803A1 (en) 2017-09-25 2019-03-28 Carl Zeiss Smt Gmbh Imaging optical unit for imaging an object field into an image field
US11119413B2 (en) 2017-09-25 2021-09-14 Carl Zeiss Smt Gmbh Imaging optical unit for imaging an object field into an image field
DE102017216893A1 (en) 2017-09-25 2019-03-28 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field
DE102018200152A1 (en) 2018-01-08 2019-07-11 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
WO2019141516A1 (en) 2018-01-22 2019-07-25 Carl Zeiss Smt Gmbh Optical element for the beam guidance of imaging light in projection lithography
DE102018200955A1 (en) 2018-01-22 2019-01-10 Carl Zeiss Smt Gmbh Mirror assembly for beam guidance of imaging light in projection lithography
DE102018200954A1 (en) 2018-01-22 2019-07-25 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018200956A1 (en) 2018-01-22 2018-12-27 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
US10989897B2 (en) 2018-01-22 2021-04-27 Carl Zeiss Smt Gmbh Optical element for the beam guidance of imaging light in projection lithography
DE102018201170A1 (en) * 2018-01-25 2019-07-25 Carl Zeiss Smt Gmbh Imaging optics for EUV microlithography
WO2019145125A1 (en) 2018-01-25 2019-08-01 Carl Zeiss Smt Gmbh Imaging optical unit for euv microlithography
US11422470B2 (en) 2018-01-25 2022-08-23 Carl Zeiss Smt Gmbh Imaging optical unit for EUV microlithography
DE102019201062A1 (en) 2018-03-06 2019-09-12 Carl Zeiss Smt Gmbh Method for producing an optical system of a projection apparatus for projection lithography
DE102018203283A1 (en) 2018-03-06 2018-05-17 Carl Zeiss Smt Gmbh Method for producing an optical system of a projection apparatus for projection lithography
US11137688B2 (en) 2018-05-09 2021-10-05 Carl Zeiss Smt Gmbh Optical system for transferring original structure portions of a lithography mask, projection optical unit for imaging an object field in which at least one original structure portion of the lithography mask is arrangeable, and lithography mask
WO2019215110A1 (en) 2018-05-09 2019-11-14 Carl Zeiss Smt Gmbh Optical system for transferring original structure portions of a lithography mask, projection optical unit for imaging an object field in which at least one original structure portion of the lithography mask is arrangeable, and lithography mask
DE102018208373A1 (en) 2018-05-28 2019-06-19 Carl Zeiss Smt Gmbh Optical element for beam guidance of imaging light in projection lithography
DE102018215505A1 (en) 2018-09-12 2018-10-31 Carl Zeiss Smt Gmbh Projection optics for a projection exposure machine
DE102018216832A1 (en) 2018-10-01 2018-11-22 Carl Zeiss Smt Gmbh Method for providing an optical assembly
DE102021205775A1 (en) 2021-06-08 2022-12-08 Carl Zeiss Smt Gmbh imaging optics
DE102021205774A1 (en) 2021-06-08 2022-12-08 Carl Zeiss Smt Gmbh imaging optics
WO2022258528A1 (en) 2021-06-08 2022-12-15 Carl Zeiss Smt Gmbh Imaging optical unit
WO2022258529A1 (en) 2021-06-08 2022-12-15 Carl Zeiss Smt Gmbh Imaging optical unit
DE102021211181A1 (en) 2021-10-05 2022-08-18 Carl Zeiss Smt Gmbh EUV projection optics
DE102022212382A1 (en) 2022-11-21 2023-02-23 Carl Zeiss Smt Gmbh Process for the design of projection optics and projection optics
DE102023208850A1 (en) 2022-11-21 2024-05-23 Carl Zeiss Smt Gmbh Method for designing projection optics and projection optics

Also Published As

Publication number Publication date
KR102648040B1 (en) 2024-03-18
KR20170135968A (en) 2017-12-08
US10656400B2 (en) 2020-05-19
CN107810446A (en) 2018-03-16
CN113703286B (en) 2024-09-24
JP2018512625A (en) 2018-05-17
JP6799544B2 (en) 2020-12-16
KR20240036129A (en) 2024-03-19
DE102015226531A1 (en) 2016-10-20
US20180074303A1 (en) 2018-03-15
CN113703286A (en) 2021-11-26
CN107810446B (en) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2016166080A1 (en) Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type
EP1282011B1 (en) Reflective projection lens for EUV photolithography
DE102015209827B4 (en) Imaging optics for imaging an object field in an image field, optical system and projection exposure apparatus with such an imaging optics
WO2016188934A1 (en) Imaging optical unit for imaging an object field into an image field as well as projection exposure system having such an imaging optical unit
WO2017080937A1 (en) Imaging optical unit for imaging an object field into an image field, and projection exposure system having such an imaging optical unit
DE69030231T2 (en) Semiconductor lithography device
WO2016012425A9 (en) Imaging optical system for a metrology system for analyzing a lithography mask
DE102008043162A1 (en) Imaging optics and projection exposure system for microlithography with such an imaging optics
DE102008033340B3 (en) Imaging optics
EP1950594A1 (en) Imaging optical system, projection illumination unit for microlithography with such an optical system, method for manufacturing a microstructured component with such a projection illumination unit, microstructured component produced by the manufacturing method and use of such an optical system
DE102014208770A1 (en) Projection optics for imaging an object field in an image field and projection exposure apparatus with such a projection optics
DE102014203187A1 (en) Illumination optics for projection lithography
DE102010040811A1 (en) Imaging optics
DE102016218996A1 (en) Imaging optics for projection lithography
DE102009008644A1 (en) Imaging optics and projection exposure system for microlithography with such an imaging optics
DE102007051671A1 (en) Imaging optics and projection exposure system for microlithography with such an imaging optics
DE102016212578A1 (en) Projection optics for EUV projection lithography
DE102012208793A1 (en) Imaging optics and projection exposure equipment for projection lithography with such an imaging optics
DE102008033341A1 (en) projection lens
DE102019219209A1 (en) Surface profile measuring device for measuring the mirror of an imaging optic
DE102005024290A1 (en) Imaging system, in particular for a microlithographic projection exposure apparatus
DE102007051669A1 (en) Imaging optics, projection exposure apparatus for microlithography with such an imaging optical system and method for producing a microstructured component with such a projection exposure apparatus
WO2017080926A1 (en) Imaging optical unit for imaging an object field in an image field, and projection illumination system having such an imaging optical unit
WO2017005709A1 (en) Imaging optic for imaging an object field in an image field, as well as projection illumination system having an imaging optic of this type
DE102015221985A1 (en) Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16715557

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016715557

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017554278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032795

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16715557

Country of ref document: EP

Kind code of ref document: A1