DE102022206832A1 - METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM - Google Patents

METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM Download PDF

Info

Publication number
DE102022206832A1
DE102022206832A1 DE102022206832.7A DE102022206832A DE102022206832A1 DE 102022206832 A1 DE102022206832 A1 DE 102022206832A1 DE 102022206832 A DE102022206832 A DE 102022206832A DE 102022206832 A1 DE102022206832 A1 DE 102022206832A1
Authority
DE
Germany
Prior art keywords
optical component
variable
disturbance
manipulated variable
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022206832.7A
Other languages
German (de)
Inventor
Luca Mettenleiter
Matthias Fetzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Priority to DE102022206832.7A priority Critical patent/DE102022206832A1/en
Priority to PCT/EP2023/068423 priority patent/WO2024008732A1/en
Publication of DE102022206832A1 publication Critical patent/DE102022206832A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Abstract

Verfahren zum Regeln einer Position einer optischen Komponente (102) einer Lithographieanlage (1), mit den Schritten:a) Ermitteln (S3) einer ersten Stellgröße (ur) basierend auf einer Abweichung (e) eines Istwerts (y) von einem Sollwert (r) der Position der optischen Komponente (102),b) Ermitteln (S6) einer zweiten Stellgröße (us) zur Störgrößenaufschaltung basierend auf einer erfassten Störgröße (d) und einer vorhergesagten Änderung der Position der optischen Komponente (102) aufgrund der erfassten Störgröße (d), undc) Ansteuern (S8) einer Aktoreinrichtung (114) zum Positionieren der optischen Komponente (102) basierend auf der ersten und zweiten Stellgröße (ur, us).Method for controlling a position of an optical component (102) of a lithography system (1), with the steps: a) determining (S3) a first manipulated variable (ur) based on a deviation (e) of an actual value (y) from a setpoint value (r ) the position of the optical component (102), b) determining (S6) a second manipulated variable (us) for the disturbance variable based on a detected disturbance variable (d) and a predicted change in the position of the optical component (102) due to the detected disturbance variable (d ), andc) controlling (S8) an actuator device (114) for positioning the optical component (102) based on the first and second manipulated variables (ur, us).

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Regeln einer Position einer optischen Komponente einer Lithographieanlage und eine entsprechende Regelungsvorrichtung, ein Positioniersystem und eine Lithographieanlage.The present invention relates to a method for controlling a position of an optical component of a lithography system and a corresponding control device, a positioning system and a lithography system.

Die Mikrolithographie wird zur Herstellung mikrostrukturierter Bauelemente, wie beispielsweise integrierter Schaltkreise, angewendet. Der Mikrolithographieprozess wird mit einer Lithographieanlage durchgeführt, welche ein Beleuchtungssystem und ein Projektionssystem aufweist. Das Bild einer mittels des Beleuchtungssystems beleuchteten Maske (Retikel) wird hierbei mittels des Projektionssystems auf ein mit einer lichtempfindlichen Schicht (Photoresist) beschichtetes und in der Bildebene des Projektionssystems angeordnetes Substrat, beispielsweise einen Siliziumwafer, projiziert, um die Maskenstruktur auf die lichtempfindliche Beschichtung des Substrats zu übertragen.Microlithography is used to produce microstructured components, such as integrated circuits. The microlithography process is carried out using a lithography system which has an illumination system and a projection system. The image of a mask (reticle) illuminated by the illumination system is projected by means of the projection system onto a substrate, for example a silicon wafer, which is coated with a light-sensitive layer (photoresist) and arranged in the image plane of the projection system, in order to project the mask structure onto the light-sensitive coating of the substrate transferred to.

Getrieben durch das Streben nach immer kleineren Strukturen bei der Herstellung integrierter Schaltungen werden derzeit EUV-Lithographieanlagen entwickelt, welche Licht mit einer Wellenlänge im Bereich von 0,1 nm bis 30 nm, insbesondere 13,5 nm, verwenden. Da die meisten Materialien Licht dieser Wellenlänge absorbieren, müssen bei solchen EUV-Lithographieanlagen reflektierende Optiken, das heißt Spiegel, anstelle von - wie bisher - brechenden Optiken, das heißt Linsen, eingesetzt werden.Driven by the pursuit of ever smaller structures in the production of integrated circuits, EUV lithography systems are currently being developed which use light with a wavelength in the range from 0.1 nm to 30 nm, in particular 13.5 nm. Since most materials absorb light of this wavelength, reflective optics, i.e. mirrors, must be used in such EUV lithography systems instead of - as before - refracting optics, i.e. lenses.

Die Anforderungen an die Genauigkeit und Präzision der Abbildungseigenschaften von Lithographieanlagen steigen ständig an. Aus dynamischer Sicht gilt es im Zuge dessen den Einfluss von Störeinträgen auf die Bewegung verschiedener Bauteile der Lithographieanlage zu minimieren. Beispielsweise ist eine sehr genaue Positionierung von optischen Komponenten, insbesondere Spiegeln, der Lithographieanlage erforderlich. Dynamische Störanregungen von optischen Komponenten können zum Beispiel durch die Bewegung anderer Bauteile der Lithographieanlage oder durch akustische Störungen erzeugt werden. Akustische Störungen werden beispielsweise als Longitudinalwellen durch Kühlflüssigkeiten in Kühlleitungen einer Kühlvorrichtung der optischen Komponente übertragen.The demands on the accuracy and precision of the imaging properties of lithography systems are constantly increasing. From a dynamic perspective, it is important to minimize the influence of interference on the movement of various components of the lithography system. For example, very precise positioning of optical components, in particular mirrors, of the lithography system is required. Dynamic interference from optical components can be generated, for example, by the movement of other components of the lithography system or by acoustic interference. Acoustic disturbances are transmitted, for example, as longitudinal waves through cooling liquids in cooling lines of a cooling device of the optical component.

Mit weiterer Zunahme der Komplexität von Lithographieanlagen sind weitere dynamische Störanregungen innerhalb und außerhalb des Systems zu erwarten, sodass zusätzliche Mechanismen für deren Unterdrückung bzw. Kompensierung wünschenswert und erforderlich sind.As the complexity of lithography systems continues to increase, further dynamic interference excitations inside and outside the system are to be expected, so that additional mechanisms for their suppression or compensation are desirable and necessary.

Vor diesem Hintergrund besteht eine Aufgabe der vorliegenden Erfindung darin, ein verbessertes Verfahren zum Regeln einer Position einer optischen Komponente einer Lithographieanlage und eine entsprechende Regelungsvorrichtung, ein Positioniersystem und eine Lithographieanlage bereitzustellen.Against this background, an object of the present invention is to provide an improved method for controlling a position of an optical component of a lithography system and a corresponding control device, a positioning system and a lithography system.

Gemäß einem ersten Aspekt wird ein Verfahren zum Regeln einer Position einer optischen Komponente einer Lithographieanlage vorgeschlagen. Das Verfahren umfasst die Schritte:

  1. a) Ermitteln einer ersten Stellgröße basierend auf einer Abweichung eines Istwerts von einem Sollwert der Position der optischen Komponente,
  2. b) Ermitteln einer zweiten Stellgröße zur Störgrößenaufschaltung basierend auf einer erfassten Störgröße und einer vorhergesagten Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße, und
  3. c) Ansteuern einer Aktoreinrichtung zum Positionieren der optischen Komponente basierend auf der ersten und zweiten Stellgröße.
According to a first aspect, a method for regulating a position of an optical component of a lithography system is proposed. The procedure includes the steps:
  1. a) determining a first manipulated variable based on a deviation of an actual value from a target value of the position of the optical component,
  2. b) determining a second manipulated variable for switching on the disturbance variable based on a detected disturbance variable and a predicted change in the position of the optical component due to the detected disturbance variable, and
  3. c) controlling an actuator device for positioning the optical component based on the first and second manipulated variables.

Durch das vorgeschlagene Verfahren ist eine Positionsregelung der optischen Komponente basierend auf einer Regelung mit Störgrößenaufschaltung möglich. The proposed method enables position control of the optical component based on control with disturbance variable input.

Insbesondere basiert die vorgeschlagene Positionsregelung auf einer Feedbackregelung durch eine Rückführung des Istwerts der Position der optischen Komponente an einen Regler zum Ermitteln der ersten Stellgröße. Des Weiteren sieht die vorgeschlagene Positionsregelung eine Berücksichtigung des Einflusses einer Störgröße in einer Vorsteuerung durch eine Störgrößenaufschaltung einer zweiten Stellgröße vor. Mithilfe der Störgrößenaufschaltung kann eine Auswirkung der Störgröße auf die Position der optischen Komponente kompensiert werden, bevor sich eine Regelabweichung aufgrund der Störgröße bemerkbar macht.In particular, the proposed position control is based on a feedback control by feeding back the actual value of the position of the optical component to a controller to determine the first manipulated variable. Furthermore, the proposed position control provides for the influence of a disturbance variable to be taken into account in a pilot control by feeding a second manipulated variable into the disturbance variable. With the help of the disturbance variable, the effect of the disturbance on the position of the optical component can be compensated for before a control deviation due to the disturbance becomes noticeable.

Durch das vorgeschlagene Verfahren kann folglich die Position der optischen Komponente auch bei dynamischer Störanregung besser geregelt werden. Insbesondere können die Auswirkungen von Störanregung, wie beispielsweise von mechanischen Schwingungsanregungen, akustischen Anregungen und elektromagnetischen Anregungen, auf die optische Komponente besser unterdrückt werden. Dies führt zu einer größeren Präzession der optischen Eigenschaften der optischen Komponente und damit zu einer besseren Abbildungseigenschaft der Lithographieanlage. Zudem können Störanregung auch bei zunehmend komplexer werdenden Lithographieanlagen mit einer zunehmenden Anzahl an Störquellen besser kompensiert werden.The proposed method can therefore be used to better regulate the position of the optical component, even in the event of dynamic disturbance excitation. In particular, the effects of interference excitations, such as mechanical vibration excitations, acoustic excitations and electromagnetic excitations, on the optical component can be better suppressed. This leads to greater precession of the optical properties of the optical component and thus to better imaging properties of the lithography system. In addition, interference excitation can be better compensated for in increasingly complex lithography systems with an increasing number of interference sources.

Das Verfahren dient zum regelbasierten Positionieren einer optischen Komponente einer Lithographieanlage, wie beispielsweise eines Spiegels.The method is used for rule-based positioning of an optical component of a lithography system, such as a mirror.

Die Lithographieanlage ist zum Beispiel eine EUV- oder eine DUV-Lithographieanlage. Dabei steht EUV für „extremes Ultraviolett“ (Engl.: extreme ultraviolet, EUV) und bezeichnet eine Wellenlänge des Arbeitslichts im Bereich von 0,1 nm bis 30 nm, insbesondere 13,5 nm. Weiterhin steht DUV für „tiefes Ultraviolett“ (Engl.: deep ultraviolet, DUV) und bezeichnet eine Wellenlänge des Arbeitslichts zwischen 30 nm und 250 nm.The lithography system is, for example, an EUV or a DUV lithography system. EUV stands for “extreme ultraviolet” (EUV) and refers to a wavelength of work light in the range from 0.1 nm to 30 nm, in particular 13.5 nm. Furthermore, DUV stands for “deep ultraviolet” (Engl .: deep ultraviolet, DUV) and refers to a wavelength of work light between 30 nm and 250 nm.

Die EUV- oder DUV-Lithographieanlage umfasst ein Beleuchtungssystem und ein Projektionssystem. Insbesondere wird mit der EUV- oder DUV-Lithographieanlage das Bild einer mittels des Beleuchtungssystems beleuchteten Maske (Retikel) mittels des Projektionssystems auf ein mit einer lichtempfindlichen Schicht (Photoresist) beschichtetes und in der Bildebene des Projektionssystems angeordnetes Substrat, beispielsweise einen Siliziumwafer, projiziert, um die Maskenstruktur auf die lichtempfindliche Beschichtung des Substrats zu übertragen.The EUV or DUV lithography system includes an illumination system and a projection system. In particular, with the EUV or DUV lithography system, the image of a mask (reticle) illuminated by the lighting system is projected by means of the projection system onto a substrate, for example a silicon wafer, which is coated with a light-sensitive layer (photoresist) and arranged in the image plane of the projection system to transfer the mask structure to the photosensitive coating of the substrate.

Die Position der optischen Komponente ist beispielsweise eine Position in Bezug auf sechs Freiheitsgrade der optischen Komponente. Die sechs Freiheitsgrade umfassen insbesondere drei Translationsfreiheitgrade (in drei zueinander senkrechten Raumrichtungen) und drei Rotationsfreiheitgrade (bezüglich einer Rotation um die drei zueinander senkrechter Raumrichtungen).The position of the optical component is, for example, a position with respect to six degrees of freedom of the optical component. The six degrees of freedom include in particular three translational degrees of freedom (in three mutually perpendicular spatial directions) and three rotational degrees of freedom (with respect to a rotation around the three mutually perpendicular spatial directions).

Das Ermitteln der ersten Stellgröße erfolgt basierend auf der Istwert-Sollwert-Abweichung der Position der optischen Komponente, wodurch eine Positionsregelung basierend auf einer Rückkopplung des gemessenen aktuellen Werts (Istwert) der Position der optischen Komponente möglich ist. Bei der vorgeschlagenen Regelung kann deshalb die erste Stellgröße in Abhängigkeit von den sich tatsächlich einstellenden Werten der Position der optischen Komponente - und nicht nur in Abhängigkeit von einem mit einem Modell vorhergesagten Verhalten der Regelstrecke - festgelegt werden.The first manipulated variable is determined based on the actual value-setpoint deviation of the position of the optical component, which makes position control possible based on feedback of the measured current value (actual value) of the position of the optical component. In the proposed control, the first manipulated variable can therefore be determined depending on the actual values of the position of the optical component - and not only depending on the behavior of the controlled system predicted with a model.

Der Istwert der Position der optischen Komponente wird beispielsweise gemessen und zu einem Eingang einer Positionsregler-Einrichtung rückgeführt.The actual value of the position of the optical component is measured, for example, and fed back to an input of a position controller device.

Der Sollwert der Position der optischen Komponente ist beispielsweise ein statischer Wert, sodass die Position der optischen Komponente auf eine Ruheposition entsprechend dem statischen Wert geregelt wird. Der Sollwert der Position der optischen Komponente kann sich jedoch auch in Abhängigkeit der Zeit verändern, sodass es das Ziel der Regelung ist, dass die Position der optischen Komponente einem vorgegebenen zeitabhängigen Weg (Trajektorie) folgt.The setpoint of the position of the optical component is, for example, a static value, so that the position of the optical component is regulated to a rest position corresponding to the static value. However, the setpoint of the position of the optical component can also change depending on time, so that the aim of the control is that the position of the optical component follows a predetermined time-dependent path (trajectory).

Die Abweichung des Istwerts der Position der optischen Komponenten von dem Sollwert (d. h. die Regelabweichung des vorgeschlagenen Regelkreises) wird insbesondere durch negative Zuführung (Subtraktion) des Istwerts zu dem Sollwert ermittelt.The deviation of the actual value of the position of the optical components from the target value (i.e. the control deviation of the proposed control loop) is determined in particular by negatively adding (subtracting) the actual value to the target value.

Die erste Stellgröße wird derart ermittelt, dass die aktuelle Position der optischen Komponente (Regelgröße) dem Sollwert (Führungsgröße) angepasst wird. Die erste Stellgröße wird beispielsweise von einer Positionsregler-Einrichtung ermittelt und ist eine Ausgangsgröße der Positionsregler-Einrichtung. Die erste Stellgröße ist insbesondere ein Maß für eine auf die optische Komponente anzuwendende Positionsänderung.The first manipulated variable is determined in such a way that the current position of the optical component (controlled variable) is adapted to the setpoint (command variable). The first manipulated variable is determined, for example, by a position controller device and is an output variable of the position controller device. The first manipulated variable is in particular a measure of a change in position to be applied to the optical component.

Durch das Ermitteln der zweiten Stellgröße kann - zusätzlich zur Rückkopplungsregelung mithilfe der ersten Stellgröße - eine Störgröße im Sinne einer Vorsteuerung berücksichtigt werden. Die Störgröße ist insbesondere eine Störgröße, die eine Positionsänderung der optischen Komponente verursacht. Zudem ist die Störgröße insbesondere eine Störgröße, deren Auswirkung auf die Position der optischen Komponente vorausgesagt werden kann. Eine Voraussage kann beispielsweise durch eine Modellrechnung, eine Simulation und/oder eine Berechnung erfolgen, in welche die erfasste Störgröße als Eingangsgröße eingeht. Die Störgröße ist außerdem insbesondere eine Störgröße, die erfasst, z. B. gemessen, werden kann. Beispielsweise ist die Störgröße eine Störgröße, deren zeitlicher Verlauf erfasst werden kann. Zum Beispiel wird die Störgröße mithilfe einer Sensoreinrichtung und/oder durch einen Störgrößenbeobachter erfasst. By determining the second manipulated variable - in addition to the feedback control using the first manipulated variable - a disturbance variable can be taken into account in the sense of a feedforward control. The disturbance variable is in particular a disturbance variable that causes a change in position of the optical component. In addition, the disturbance variable is in particular a disturbance variable whose effect on the position of the optical component can be predicted. A prediction can be made, for example, through a model calculation, a simulation and/or a calculation in which the detected disturbance variable is included as an input variable. The disturbance variable is also in particular a disturbance variable that detects, e.g. B. can be measured. For example, the disturbance variable is a disturbance variable whose progression over time can be recorded. For example, the disturbance variable is detected using a sensor device and/or by a disturbance variable observer.

Die zweite Stellgröße wird beispielsweise von einer Störgrößenaufschalt-Einrichtung ermittelt und ist eine Ausgangsgröße der Störgrößenaufschalt-Einrichtung.The second manipulated variable is determined, for example, by a disturbance variable switching device and is an output variable of the disturbance variable switching device.

Die vorhergesagte Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße ist insbesondere eine vorhergesagte Störgrößenübertragung der Störgröße auf die optische Komponente.The predicted change in the position of the optical component due to the detected disturbance is in particular a predicted disturbance transfer of the disturbance to the optical component.

Die optische Komponente ist mithilfe der Aktoreinrichtung beweglich (beispielsweise an einem Tragrahmen) befestigt, um die Position der optischen Komponente einstellen zu können. Die Aktoreinrichtung stellt eine Aktorik des Regelkreises dar. Die Aktoreinrichtung umfasst insbesondere einen oder mehrere Aktoren (Aktuatoren) zum Ändern der Position der optischen Komponente. Beispielsweise dient die Aktoreinrichtung dazu, die Position der optischen Komponente in den sechs Freiheitsgraden zu ändern. Das Ansteuern der Aktoreinrichtung erfolgt insbesondere durch das Übertragen eines Steuersignals an die Aktoreinrichtung.The optical component is movably attached (for example to a support frame) using the actuator device in order to be able to adjust the position of the optical component. The actuator device represents an actuator system of the control loop. The actuator device includes in particular one or more actuators (actuators). Changing the position of the optical component. For example, the actuator device serves to change the position of the optical component in the six degrees of freedom. The actuator device is controlled in particular by transmitting a control signal to the actuator device.

Die erste Stellgröße, die zweite Stellgröße, der Istwert, der Sollwert, die Abweichung des Istwerts vom Sollwert und/oder die Störgröße ist/sind beispielsweise zeitabhängige Größen.The first manipulated variable, the second manipulated variable, the actual value, the setpoint, the deviation of the actual value from the setpoint and/or the disturbance variable is/are, for example, time-dependent variables.

Gemäß einer Ausführungsform ist die erste Stellgröße eine Ausgangsgröße einer Positionsregler-Einrichtung. Weiterhin wird die zweite Stellgröße zwischen der Positionsregler-Einrichtung und der Aktoreinrichtung auf die erste Stellgröße angewendet.According to one embodiment, the first manipulated variable is an output variable of a position controller device. Furthermore, the second manipulated variable between the position controller device and the actuator device is applied to the first manipulated variable.

Die steuernden Eingriffe basierend auf der zweiten Stellgröße greifen also erst nach der Ermittlung der Istwert-Sollwert-Abweichung bzw. der ersten Stellgröße durch die Positionsregler-Einrichtung ein. Somit wird sichergestellt, dass die steuernden Eingriffe basierend auf der zweiten Stellgröße nicht durch Regelung der Positionsregler-Einrichtung ausgeglichen werden. Dadurch wird die Stabilität der Regelung der Positionsregler-Einrichtung nicht beeinträchtigt und/oder gefährdet.The controlling interventions based on the second manipulated variable only take effect after the actual value-setpoint deviation or the first manipulated variable has been determined by the position controller device. This ensures that the controlling interventions based on the second manipulated variable are not compensated for by regulating the position controller device. As a result, the stability of the control of the position controller device is not impaired and/or endangered.

Man kann auch sagen, dass die zweite Stellgröße auf die erste Stellgröße aufgeschaltet wird.You can also say that the second manipulated variable is connected to the first manipulated variable.

Gemäß einer weiteren Ausführungsform wird eine Gesamtstellgröße basierend auf der ersten und zweiten Stellgröße ermittelt, und wird die Aktoreinrichtung der optischen Komponente basierend auf der Gesamtstellgröße angesteuert.According to a further embodiment, a total manipulated variable is determined based on the first and second manipulated variables, and the actuator device of the optical component is controlled based on the overall manipulated variable.

Beispielsweise umfasst das Verfahren vor Schritt c) einen Schritt eines Ermittelns der Gesamtstellgröße. Die Gesamtstellgröße wird zum Beispiel durch Subtrahieren der zweiten Stellgröße von der ersten Stellgröße ermittelt. Man kann auch sagen, die Gesamtstellgröße wird durch Summation ermittelt, wobei die zweite Stellgröße negativ zugeführt wird.For example, the method before step c) includes a step of determining the overall manipulated variable. The total manipulated variable is determined, for example, by subtracting the second manipulated variable from the first manipulated variable. You can also say that the total manipulated variable is determined by summation, with the second manipulated variable being supplied negatively.

Die Gesamtstellgröße setzt sich damit insbesondere aus einem Anteil der Vorsteuerung (Störgrößenaufschaltung) und einem Anteil der Regelung (erste Stellgröße, die auf der Abweichung des Istwerts vom Sollwert basiert) zusammen.The overall manipulated variable is therefore composed, in particular, of a portion of the precontrol (feedback) and a portion of the control (first manipulated variable, which is based on the deviation of the actual value from the setpoint).

Gemäß einer weiteren Ausführungsform umfasst die optische Komponente ein Trägerelement mit mindestens einer Flüssigkeitsleitung, insbesondere Kühlleitung. Weiterhin weist die erfasste Störgröße eine Änderung eines Drucks einer Flüssigkeit in der mindestens einen Flüssigkeitsleitung auf.According to a further embodiment, the optical component comprises a carrier element with at least one liquid line, in particular a cooling line. Furthermore, the detected disturbance variable has a change in a pressure of a liquid in the at least one liquid line.

Die optische Komponente ist beispielsweise ein Spiegel mit einem Substrat (Spiegelsubstrat) und einer optisch aktiven Fläche. In diesem Fall ist das Trägerelement beispielsweise das Substrat. Die optische Komponente kann jedoch auch zusätzlich zu einem Substrat eine weitere Trägerstruktur umfassen, welche das Trägerelement bildet.The optical component is, for example, a mirror with a substrate (mirror substrate) and an optically active surface. In this case, the carrier element is, for example, the substrate. However, in addition to a substrate, the optical component can also comprise a further support structure, which forms the support element.

Die mindestens eine Flüssigkeitsleitung dient zum Durchleiten einer Flüssigkeit.The at least one liquid line serves to pass a liquid through.

Die mindestens eine Flüssigkeitsleitung ist zum Beispiel eine Kühlleitung zum Durchleiten einer Kühlflüssigkeit, wie beispielsweise Wasser. Die mindestens eine Kühlleitung ist beispielsweise Teil einer Kühlvorrichtung zum Kühlen der optischen Komponente.The at least one liquid line is, for example, a cooling line for passing a cooling liquid, such as water. The at least one cooling line is, for example, part of a cooling device for cooling the optical component.

Die Kühlvorrichtung dient insbesondere zur Vermeidung hoher Temperaturen und Temperaturschwankungen der optischen Komponente. Insbesondere Spiegel einer EUV-Lithographieanlage (als Beispiel einer optischen Komponente) erwärmen sich infolge einer Absorption der energiereichen EUV-Strahlung. Dadurch hervorgerufene hohe Temperaturen und Temperaturschwankungen im Spiegel und damit einhergehende thermische Verformungen des Spiegels können zu Wellenfrontaberrationen führen und damit die Abbildungseigenschaften der Spiegel beeinträchtigen. Zur Vermeidung von thermisch induzierten Deformationen werden optische Komponenten der Lithographieanlage aktiv gekühlt.The cooling device serves in particular to avoid high temperatures and temperature fluctuations of the optical component. In particular, mirrors of an EUV lithography system (as an example of an optical component) heat up as a result of absorption of the high-energy EUV radiation. The resulting high temperatures and temperature fluctuations in the mirror and the associated thermal deformations of the mirror can lead to wavefront aberrations and thus impair the imaging properties of the mirror. To avoid thermally induced deformations, optical components of the lithography system are actively cooled.

Zur Kühlung wird eine bestimmte Kühlmittelflussrate benötigt, welche über ein Pumpensystem realisiert wird. Dadurch kommt es zu einer dynamischen Störanregung, denn jede Pumpe erzeugt lokale Druckschwankungen. Diese werden über einen Kühlmittelschall (Wasserschall, longitudinale Wasserschallwelle) durch den gesamten Kühlkreislauft übertragen. Weiterhin kann jede Querschnittsänderung und jede Umlenkung der Flüssigkeitsleitung sowie jedes eingebaute Ventil des Kühlkreislaufs eine Störquelle darstellen, die lokale Druckschwankungen der Flüssigkeit verursacht. Diese Art von dynamischen Störanregungen wird auch flussinduzierte Vibrationen (Engl. „Flow Induced Vibrations“, FIV) genannt. Durch Wasserschall wird die Störanregung an die gekühlte optische Komponente weitergeleitet. Dies verursacht, dass die Position der optischen Komponente von der Sollposition abweicht.A certain coolant flow rate is required for cooling, which is achieved via a pump system. This leads to dynamic disturbance excitation because each pump generates local pressure fluctuations. These are transmitted through the entire cooling circuit via coolant sound (water sound, longitudinal water sound wave). Furthermore, every change in cross-section and every deflection of the liquid line as well as every installed valve in the cooling circuit can represent a source of interference that causes local pressure fluctuations in the liquid. This type of dynamic disturbance excitation is also called flow-induced vibrations (FIV). The interference excitation is passed on to the cooled optical component through water sound. This causes the position of the optical component to deviate from the target position.

Dadurch, dass die erfasste Störgröße eine Änderung des Drucks der Flüssigkeit in der mindestens einen Flüssigkeitsleitung der optischen Komponente aufweist, kann der Einfluss einer Druckschwankung durch die vorgeschlagene Störgrößenaufschaltung kompensiert werden.Because the detected disturbance variable has a change in the pressure of the liquid in the at least one liquid line of the optical component, the influence of a pressure fluctuation can be compensated for by the proposed disturbance variable connection.

Gemäß einer weiteren Ausführungsform weist die Änderung des Drucks der Flüssigkeit eine in der Flüssigkeit transportierte Druckwelle, eine periodische Druckschwankung der Flüssigkeit und/oder eine Druckschwankung der Flüssigkeit mit einer Frequenz im Bereich von 1 Hz und 2 kHz auf.According to a further embodiment, the change in the pressure of the liquid comprises a pressure wave transported in the liquid, a periodic pressure fluctuation of the liquid and/or a pressure fluctuation of the liquid with a frequency in the range of 1 Hz and 2 kHz.

Beispielsweise liegt eine Frequenz der Druckschwankung der Flüssigkeit im Bereich von 1 Hz und 1 kHz, 1 Hz und 500 Hz, 1 Hz und 200 Hz, und/oder 50 und 150 Hz.For example, a frequency of the pressure fluctuation of the liquid is in the range of 1 Hz and 1 kHz, 1 Hz and 500 Hz, 1 Hz and 200 Hz, and/or 50 and 150 Hz.

Gemäß einer weiteren Ausführungsform verursacht die Änderung des Drucks der Flüssigkeit eine strömungsinduzierte Vibration der optischen Komponente.According to a further embodiment, the change in pressure of the liquid causes a flow-induced vibration of the optical component.

Insbesondere umfasst die Vorhersage der Änderung der Position der optischen Komponenten aufgrund der erfassten Änderung des Drucks der Flüssigkeit eine Vorhersage einer strömungsinduzierten Vibration der optischen Komponente.In particular, the prediction of the change in position of the optical components due to the detected change in the pressure of the liquid includes a prediction of a flow-induced vibration of the optical component.

Gemäß einer weiteren Ausführungsform weist die Störgröße eine Änderung eines magnetischen Feldes und/oder eines elektromagnetischen Feldes in einer Umgebung der optischen Komponente auf.According to a further embodiment, the disturbance variable has a change in a magnetic field and/or an electromagnetic field in an environment of the optical component.

Eine Änderung eines magnetischen Feldes und/oder eines elektromagnetischen Feldes in der Umgebung der optischen Komponente kann beispielsweise durch Elektromotoren verursacht werden. Die Lithographieanlage kann eine Vielzahl von Elektromotoren bzw. elektromagnetischen Antrieben aufweisen. Beispielsweise wird ein Waferhalter (Engl.: wafer stage) der Lithographieanlage mithilfe eines Waferverlagerungsantriebs angetrieben. Beispielsweise wird ein Maskenhalter / Retikelhalter (Engl.: reticle stage) der Lithographieanlage mithilfe eines Retikelverlagerungsantrieb angetrieben. All diese Antriebe können beispielsweise durch Elektromotoren realisiert sein, welche elektromagnetische Wechselfelder erzeugen. Die elektromagnetischen Wechselfelder wirken auf magnetisch aktive Bauteile, wie beispielsweise Bauteile, die Eisen, Kupfer und/oder Nickel aufweisen, und werden dort in Störkräfte umgewandelt. Da auch die optische Komponente magnetische Materialien aufweisen kann, können magnetische Felder und/oder elektromagnetische Felder in der Umgebung der optischen Komponente zu einer Positionsänderung der optischen Komponente führen.A change in a magnetic field and/or an electromagnetic field in the vicinity of the optical component can be caused, for example, by electric motors. The lithography system can have a variety of electric motors or electromagnetic drives. For example, a wafer stage of the lithography system is driven using a wafer displacement drive. For example, a mask holder/reticle stage of the lithography system is driven using a reticle displacement drive. All of these drives can be implemented, for example, by electric motors that generate alternating electromagnetic fields. The alternating electromagnetic fields act on magnetically active components, such as components that contain iron, copper and/or nickel, and are converted there into disruptive forces. Since the optical component can also have magnetic materials, magnetic fields and/or electromagnetic fields in the vicinity of the optical component can lead to a change in position of the optical component.

Durch Erfassen der elektromagnetischen Störung, zum Beispiel durch Messen einer Feldstärke eines magnetischen und/oder elektromagnetischen Feldes und/oder Messen eines zeitlichen Verlaufs der entsprechenden Feldstärke, können die angreifenden Störkräfte und damit die zu erwartende Positionsänderung der optischen Komponente mithilfe von Messdaten, Simulationsdaten und/oder Modellen vorhergesagt werden.By detecting the electromagnetic interference, for example by measuring a field strength of a magnetic and/or electromagnetic field and/or measuring a time course of the corresponding field strength, the attacking interference forces and thus the expected change in position of the optical component can be determined using measurement data, simulation data and/or or models can be predicted.

Gemäß einer weiteren Ausführungsform weist die Störgröße eine Bewegung weiterer von der optischen Komponente verschiedener Komponenten und/oder Elemente der Lithographieanlage auf.According to a further embodiment, the disturbance variable has a movement of further components and/or elements of the lithography system that are different from the optical component.

Die weiteren Komponenten und/oder Elemente der Lithographieanlage umfassen beispielsweise eine oder mehrere bewegbare Halterungen, wie zum Beispiel einen Waferhalter und/oder einen Retikelhalter. Die weiteren Komponenten und/oder Elemente der Lithographieanlage können beispielsweise auch ein oder mehrere bewegbare Spiegel umfassen, deren Position einer Trajektorie im Raum folgt (zum Beispiel einen „stepping mirror“ und/oder einen „scanning mirror“).The further components and/or elements of the lithography system include, for example, one or more movable holders, such as a wafer holder and/or a reticle holder. The other components and/or elements of the lithography system can also include, for example, one or more movable mirrors whose position follows a trajectory in space (for example a “stepping mirror” and/or a “scanning mirror”).

Beispielsweise führt eine Bewegung, z. B. Beschleunigung, des Waferhalters und/oder des Retikelhalters der Lithographieanlage zu einer Störanregung der optischen Komponente. Für diese Störkräfte liegen Information über die Störung in der Regel bereits vor, da die Beschleunigungsprofile des Waferhalters und des Retikelhalters im Betrieb der Lithographieanlage normalerweise erfasst werden bzw. durch eine Regelung der Position des Waferhalters und des Retikelhalters bereits bekannt sind. Insbesondere können die Beschleunigungsprofile des Waferhalters und des Retikelhalters vorbestimmte Parameter sein, die bei der Regelung der Position des Waferhalters und des Retikelhalters angewendet werden. Weiterhin sind auch genaue Modelle bekannt, die beschreiben, wie diese Störkräfte auf die optische Komponente wirken. Somit kann eine Positionsänderung der optischen Komponente aufgrund von durch den Waferhalter und/oder den Retikelhalter eingetragene Störkräfte vorhergesagt werden. Damit können sie mithilfe des vorgeschlagenen Verfahrens durch die Störgrößenaufschaltung kompensiert werden.For example, a movement, e.g. B. acceleration, the wafer holder and / or the reticle holder of the lithography system leads to interference excitation of the optical component. For these disruptive forces, information about the disruption is usually already available, since the acceleration profiles of the wafer holder and the reticle holder are normally recorded during operation of the lithography system or are already known by regulating the position of the wafer holder and the reticle holder. In particular, the acceleration profiles of the wafer holder and the reticle holder may be predetermined parameters used in controlling the position of the wafer holder and the reticle holder. Precise models are also known that describe how these disruptive forces affect the optical component. A change in position of the optical component can therefore be predicted due to disruptive forces introduced by the wafer holder and/or the reticle holder. This means that they can be compensated for through the addition of disturbance variables using the proposed method.

Weiterhin können durch bewegbare Spiegel, bei denen die Spiegelposition insbesondere einer vorbestimmten Trajektorie im Raum folgt, Störkräfte auf die optische Komponente wirken. Auch für diese Störkräfte liegen Modelle und/oder Messdaten vor, die beschreiben, wie diese Störkräfte auf die optische Komponente wirken. Somit kann eine Positionsänderung der optischen Komponente aufgrund von Bewegungen bewegbarer Spiegel vorhergesagt werden. Damit können sie mithilfe des vorgeschlagenen Verfahrens durch die Störgrößenaufschaltung kompensiert werden.Furthermore, disruptive forces can act on the optical component through movable mirrors, in which the mirror position in particular follows a predetermined trajectory in space. There are also models and/or measurement data for these disruptive forces that describe how these disruptive forces affect the optical component. A change in position of the optical component due to movements of movable mirrors can therefore be predicted. This means that they can be compensated for through the addition of disturbance variables using the proposed method.

Gemäß einer weiteren Ausführungsform folgt der Sollwert der Position der optischen Komponente einer Trajektorie.According to a further embodiment, the setpoint follows the position of the optical component of a trajectory.

In dieser Ausführungsform ändert sich der Sollwert der Position der optischen Komponente in Abhängigkeit der Zeit, sodass die Führungsgröße des vorgeschlagenen Regelverfahrens ein zeitabhängiger Weg, d. h. eine Trajektorie, (z. B. im dreidimensionalen Raum) ist.In this embodiment, the setpoint of the position of the optical component changes as a function of time, so that the reference variable of the proposed control method is a time-dependent path, i.e. H. is a trajectory (e.g. in three-dimensional space).

In anderen Ausführungsformen kann der Sollwert der Position der optischen Komponente beispielsweise auch ein statischer Wert sein, sodass die Position der optischen Komponente auf eine Ruheposition entsprechend dem statischen Wert geregelt wird.In other embodiments, the setpoint of the position of the optical component can also be a static value, for example, so that the position of the optical component is regulated to a rest position corresponding to the static value.

Gemäß einer weiteren Ausführungsform wird die erste Stellgröße basierend auf der Abweichung des Istwerts der Position der optischen Komponente von dem Sollwert und zusätzlich basierend auf einer Vorsteuerung, die eine zeitliche Änderung des Sollwerts berücksichtigt, ermittelt.According to a further embodiment, the first manipulated variable is determined based on the deviation of the actual value of the position of the optical component from the setpoint and additionally based on a precontrol that takes into account a change in the setpoint over time.

In dieser Ausführungsform ist eine zusätzliche Vorsteuerung vorgesehen, um eine bekannte (vorbestimmte) Sollwertänderung zu berücksichtigen. Mit anderen Worten wird eine geplante Änderung des Sollwerts vorwärtsgerichtet berücksichtigt, bevor sie zu einer Regelabweichung führt.In this embodiment, an additional precontrol is provided to take a known (predetermined) setpoint change into account. In other words, a planned change in the setpoint is taken into account in a forward direction before it leads to a control deviation.

In dieser Ausführungsform werden somit zwei verschiedene Vorsteuerungen mit der Feedbackregelung von Schritt a) kombiniert. Zum einen ist die Störgrößenaufschaltung eine Vorsteuerung zur Berücksichtigung des Einflusses der Störgröße. Zum anderen ist die zusätzliche Vorsteuerung eine Vorsteuerung zur Berücksichtigung einer geplanten Änderung des Sollwerts.In this embodiment, two different feedforward controls are combined with the feedback control from step a). On the one hand, the disturbance variable feed-in is a pre-control to take the influence of the disturbance variable into account. On the other hand, the additional feedforward control is a feedforward control to take into account a planned change in the setpoint.

Durch die zusätzliche Vorsteuerung zur Berücksichtigung einer geplanten Änderung des Sollwerts kann der Istwert der Position der optischen Komponente schneller an den Sollwert angepasst werden.The additional precontrol to take a planned change in the setpoint into account allows the actual value of the position of the optical component to be adapted more quickly to the setpoint.

Gemäß einer weiteren Ausführungsform weist das Verfahren die Schritte auf:

  • Erfassen der Störgröße, und
  • Vorhersagen der Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße.
According to a further embodiment, the method has the steps:
  • Detecting the disturbance, and
  • Predicting the change in position of the optical component due to the detected disturbance.

Die Störgröße wird beispielsweise durch Messen und/oder mithilfe eines oder mehrerer Sensoren (z. B. einer Sensoreinrichtung) erfasst. Die Störgröße kann beispielsweise auch mithilfe eines Störgrößenbeobachters erfasst werden.The disturbance variable is detected, for example, by measuring and/or using one or more sensors (e.g. a sensor device). The disturbance variable can also be recorded using a disturbance variable observer, for example.

Das Verfahren kann auch einen Schritt eines Erfassens des Istwerts der Position der optischen Komponente aufweisen. Die Position des optischen Elements wird beispielsweise von einer Sensoreinrichtung erfasst. Ein Positioniersystem der Lithographianlage umfasst zum Beispiel einen Sensorrahmen mit einer Sensoreinrichtung zum Messen einer aktuellen Position der optischen Komponente relativ zu dem Sensorrahmen. Der Sensorrahmen ist beispielsweise bezüglich eines Tragrahmens der optischen Komponente schwingungsentkoppelt gelagert. Die Sensoreinrichtung umfasst z. B. einen oder mehrere Sensoren, wie zum Beispiel Interferometer und/oder andere Messvorrichtungen zum Erfassen einer Position, z.B. in den sechs Freiheitsgraden, der optischen Komponente. Die optische Komponente kann beispielsweise Reflektorelemente aufweisen zum Reflektieren eines von den Sensoren ausgesendeten Lichts (z. B. Laserlichts).The method can also have a step of detecting the actual value of the position of the optical component. The position of the optical element is detected, for example, by a sensor device. A positioning system of the lithography system includes, for example, a sensor frame with a sensor device for measuring a current position of the optical component relative to the sensor frame. The sensor frame is, for example, mounted in a vibration-decoupled manner with respect to a support frame of the optical component. The sensor device includes e.g. B. one or more sensors, such as interferometers and / or other measuring devices for detecting a position, e.g. in the six degrees of freedom, of the optical component. The optical component can, for example, have reflector elements for reflecting light emitted by the sensors (e.g. laser light).

Gemäß einer weiteren Ausführungsform umfasst das Vorhersagen der Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße ein Vorhersagen mithilfe eines vorermittelten Modells, einer Simulation und/oder einer Berechnung basierend auf der erfassten Störgröße.According to a further embodiment, predicting the change in the position of the optical component due to the detected disturbance includes predicting using a predetermined model, a simulation and/or a calculation based on the detected disturbance.

Die Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße kann beispielsweise auch mithilfe vorbekannter Messdaten, einer Modellrechnung und/oder einem Simulationsverfahren vorhergesagt werden.The change in the position of the optical component due to the detected disturbance can, for example, also be predicted using previously known measurement data, a model calculation and/or a simulation method.

Gemäß einem zweiten Aspekt wird eine Regelungsvorrichtung zum Regeln einer Position einer optischen Komponente einer Lithographieanlage vorgeschlagen. Die Regelungsvorrichtung weist auf:

  • eine erste Ermittlungseinrichtung zum Ermitteln einer ersten Stellgröße basierend auf einer Abweichung eines Istwerts von einem Sollwert der Position der optischen Komponente,
  • eine zweite Ermittlungseinrichtung zum Ermitteln einer zweiten Stellgröße zur Störgrößenaufschaltung basierend auf einer erfassten Störgröße und einer vorhergesagten Änderung der Position der optischen Komponente aufgrund der erfassten Störgröße, und
  • eine Ansteuereinrichtung zum Ansteuern einer Aktoreinrichtung der optischen Komponente basierend auf der ersten und zweiten Stellgröße.
According to a second aspect, a control device for controlling a position of an optical component of a lithography system is proposed. The control device has:
  • a first determination device for determining a first manipulated variable based on a deviation of an actual value from a target value of the position of the optical component,
  • a second determination device for determining a second manipulated variable for the disturbance variable based on a detected disturbance variable and a predicted change in the position of the optical component due to the detected disturbance variable, and
  • a control device for controlling an actuator device of the optical component based on the first and second manipulated variables.

Die erste Ermittlungseinrichtung ist beispielsweise eine Positionsregler-Einrichtung. Die zweite Ermittlungseinrichtung ist beispielsweise eine Störgrößenaufschalt-Einrichtung.The first determination device is, for example, a position controller device. The second determination device is, for example, a disturbance variable switching device.

Die jeweilige vorstehend oder nachstehend beschriebene Einrichtung, wie beispielsweise die erste und zweite Ermittlungseinrichtung und die Ansteuereinrichtung, kann hardwaretechnisch und/oder softwaretechnisch implementiert sein. Bei einer hardwaretechnischen Implementierung kann die jeweilige Einrichtung zum Beispiel als Computer oder als Mikroprozessor ausgebildet sein. Bei einer softwaretechnischen Implementierung kann die jeweilige Einrichtung als Computerprogrammprodukt, als eine Funktion, als eine Routine, als ein Algorithmus, als Teil eines Programmcodes oder als ausführbares Objekt ausgebildet sein. Ferner kann die entsprechende Einrichtung auch als Teil eines übergeordneten Steuerungssystems der Lithographieanlage ausgebildet sein.The respective device described above or below, such as the first and second determination devices and the control device, can be implemented in hardware and/or software. In the case of a hardware implementation, the respective device can be designed, for example, as a computer or as a microprocessor. In the case of a software implementation, the respective device can be designed as a computer program product, as a function, as a routine, as an algorithm, as part of a program code or as an executable object. Furthermore, the corresponding device can also be designed as part of a higher-level control system of the lithography system.

Gemäß einem dritten Aspekt wird ein Positioniersystem zum regelbasierten Positionieren einer optischen Komponente einer Lithographieanlage vorgeschlagen. Das Positioniersystem weist auf:

  • eine optische Komponente,
  • eine Aktoreinrichtung zum Bewegen der optischen Komponente, und
  • eine wie vorstehend beschriebene Regelungsvorrichtung.
According to a third aspect, a positioning system for rule-based positioning of an optical component of a lithography system is proposed. The positioning system has:
  • an optical component,
  • an actuator device for moving the optical component, and
  • a control device as described above.

In Ausführungsformen weist das Positioniersystem ferner eine Sensoreinrichtung zum Erfassen der Störgröße auf.In embodiments, the positioning system further has a sensor device for detecting the disturbance variable.

In Ausführungsformen weist das Positioniersystem ferner eine weitere Sensoreinrichtung zum Erfassen des Istwerts der Position der optischen Komponente auf.In embodiments, the positioning system further has a further sensor device for detecting the actual value of the position of the optical component.

Gemäß einem vierten Aspekt wird eine Lithographieanlage, insbesondere eine EUV-Lithographieanlage, mit einer wie vorstehend beschriebenen Regelungsvorrichtung oder einem wie vorstehend beschriebenen Positioniersystem vorgeschlagen.According to a fourth aspect, a lithography system, in particular an EUV lithography system, is proposed with a control device as described above or a positioning system as described above.

Die optische Komponente ist bevorzugt eine optische Komponente einer Projektionsoptik der Lithographieanlage (Projektionsbelichtungsanlage). Die optische Komponente kann jedoch auch eine optische Komponente eines Beleuchtungssystems der Lithographieanlage sein.The optical component is preferably an optical component of a projection optics of the lithography system (projection exposure system). However, the optical component can also be an optical component of a lighting system of the lithography system.

„Ein“ ist vorliegend nicht zwingend als beschränkend auf genau ein Element zu verstehen. Vielmehr können auch mehrere Elemente, wie beispielsweise zwei, drei oder mehr, vorgesehen sein. Auch jedes andere hier verwendete Zählwort ist nicht dahingehend zu verstehen, dass eine Beschränkung auf genau die genannte Anzahl von Elementen gegeben ist. Vielmehr sind zahlenmäßige Abweichungen nach oben und nach unten möglich, soweit nichts Gegenteiliges angegeben ist.In the present case, “on” is not necessarily to be understood as limiting it to exactly one element. Rather, several elements, such as two, three or more, can also be provided. Any other counting word used here should not be understood to mean that there is a limitation to exactly the number of elements mentioned. Rather, numerical deviations upwards and downwards are possible, unless otherwise stated.

Die für das Verfahren gemäß dem ersten Aspekt beschriebenen Ausführungsformen und Merkmale gelten für die weiteren Aspekte (Regeleinrichtung, Positioniersystem, Lithographieanlage) entsprechend und umgekehrt.The embodiments and features described for the method according to the first aspect apply accordingly to the other aspects (control device, positioning system, lithography system) and vice versa.

Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmalen oder Ausführungsformen. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der Erfindung hinzufügen.Further possible implementations of the invention also include combinations of features or embodiments described above or below with regard to the exemplary embodiments that are not explicitly mentioned. The person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the invention.

Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung. Im Weiteren wird die Erfindung anhand von bevorzugten Ausführungsformen unter Bezugnahme auf die beigelegten Figuren näher erläutert.

  • 1 zeigt einen schematischen Meridionalschnitt einer Projektionsbelichtungsanlage für die EUV-Projektionslithographie gemäß einer Ausführungsform;
  • 2 zeigt eine optische Komponente der Projektionsbelichtungsanlage aus 1 gemäß einer Ausführungsform;
  • 3 zeigt einen Kühlkreislauf zum Kühlen der optischen Komponente aus 2 gemäß einer Ausführungsform;
  • 4 zeigt ein Blockschaltbild einer Positionsregelung der optischen Komponente aus 2 gemäß einer Ausführungsform;
  • 5 zeigt schematisch funktionelle Komponenten eines Positioniersystems zum Positionieren der optischen Komponente aus 2 gemäß einer Ausführungsform;
  • 6 zeigt ein Modell zum Vorhersagen einer Änderung der Position der optischen Komponente aufgrund einer Störgröße gemäß einer Ausführungsform; und
  • 7 zeigt ein Flussablaufdiagramm eines Verfahrens zum Regeln einer Position einer optischen Komponente einer Projektionsbelichtungsanlage gemäß einer Ausführungsform.
Further advantageous refinements and aspects of the invention are the subject of the subclaims and the exemplary embodiments of the invention described below. The invention is further explained in more detail using preferred embodiments with reference to the accompanying figures.
  • 1 shows a schematic meridional section of a projection exposure system for EUV projection lithography according to one embodiment;
  • 2 shows an optical component of the projection exposure system 1 according to one embodiment;
  • 3 shows a cooling circuit for cooling the optical component 2 according to one embodiment;
  • 4 shows a block diagram of a position control of the optical component 2 according to one embodiment;
  • 5 schematically shows functional components of a positioning system for positioning the optical component 2 according to one embodiment;
  • 6 shows a model for predicting a change in the position of the optical component due to a disturbance according to an embodiment; and
  • 7 shows a flowchart of a method for controlling a position of an optical component of a projection exposure system according to an embodiment.

In den Figuren sind gleiche oder funktionsgleiche Elemente mit denselben Bezugszeichen versehen worden, soweit nichts Gegenteiliges angegeben ist. Ferner sollte beachtet werden, dass die Darstellungen in den Figuren nicht notwendigerweise maßstabsgerecht sind.In the figures, identical or functionally identical elements have been given the same reference numerals, unless otherwise stated. Furthermore, it should be noted that the representations in the figures are not necessarily to scale.

1 zeigt eine Ausführungsform einer Projektionsbelichtungsanlage 1 (Lithographieanlage), insbesondere einer EUV-Lithographieanlage. Eine Ausführung eines Beleuchtungssystems 2 der Projektionsbelichtungsanlage 1 hat neben einer Licht- beziehungsweise Strahlungsquelle 3 eine Beleuchtungsoptik 4 zur Beleuchtung eines Objektfeldes 5 in einer Objektebene 6. Bei einer alternativen Ausführung kann die Lichtquelle 3 auch als ein zum sonstigen Beleuchtungssystem 2 separates Modul bereitgestellt sein. In diesem Fall umfasst das Beleuchtungssystem 2 die Lichtquelle 3 nicht. 1 shows an embodiment of a projection exposure system 1 (lithography system), in particular an EUV lithography system. One embodiment of a lighting system 2 of the projection exposure system 1 has, in addition to a light or radiation source 3, lighting optics 4 for illuminating an object field 5 in an object plane 6. In an alternative embodiment, the light source 3 can also be provided as a module separate from the other lighting system 2. In this case, the lighting system 2 does not include the light source 3.

Belichtet wird ein im Objektfeld 5 angeordnetes Retikel 7. Das Retikel 7 ist von einem Retikelhalter 8 gehalten. Der Retikelhalter 8 ist über einen Retikelverlagerungsantrieb 9, insbesondere in einer Scanrichtung, verlagerbar.A reticle 7 arranged in the object field 5 is exposed. The reticle 7 is held by a reticle holder 8. The reticle holder 8 can be displaced via a reticle displacement drive 9, in particular in a scanning direction.

In der 1 ist zur Erläuterung ein kartesisches Koordinatensystem mit einer x-Richtung x, einer y-Richtung y und einer z-Richtung z eingezeichnet. Die x-Richtung x verläuft senkrecht in die Zeichenebene hinein. Die y-Richtung y verläuft horizontal und die z-Richtung z verläuft vertikal. Die Scanrichtung verläuft in der 1 längs der y-Richtung y. Die z-Richtung z verläuft senkrecht zur Objektebene 6.In the 1 For explanation purposes, a Cartesian coordinate system with an x-direction x, a y-direction y and a z-direction z is shown. The x-direction x runs perpendicularly into the drawing plane. The y-direction y is horizontal and the z-direction z is vertical. The scanning direction is in the 1 along the y-direction y. The z direction z runs perpendicular to the object plane 6.

Die Projektionsbelichtungsanlage 1 umfasst eine Projektionsoptik 10. Die Projektionsoptik 10 dient zur Abbildung des Objektfeldes 5 in ein Bildfeld 11 in einer Bildebene 12. Die Bildebene 12 verläuft parallel zur Objektebene 6. Alternativ ist auch ein von 0° verschiedener Winkel zwischen der Objektebene 6 und der Bildebene 12 möglich.The projection exposure system 1 includes projection optics 10. The projection optics 10 is used to image the object field 5 into an image field 11 in an image plane 12. The image plane 12 runs parallel to the object plane 6. Alternatively, an angle other than 0 ° is also between the object plane 6 and the Image level 12 possible.

Abgebildet wird eine Struktur auf dem Retikel 7 auf eine lichtempfindliche Schicht eines im Bereich des Bildfeldes 11 in der Bildebene 12 angeordneten Wafers 13. Der Wafer 13 wird von einem Waferhalter 14 gehalten. Der Waferhalter 14 ist über einen Waferverlagerungsantrieb 15 insbesondere längs der y-Richtung y verlagerbar. Die Verlagerung einerseits des Retikels 7 über den Retikelverlagerungsantrieb 9 und andererseits des Wafers 13 über den Waferverlagerungsantrieb 15 kann synchronisiert zueinander erfolgen.A structure on the reticle 7 is imaged on a light-sensitive layer of a wafer 13 arranged in the area of the image field 11 in the image plane 12. The wafer 13 is held by a wafer holder 14. The wafer holder 14 can be displaced in particular along the y-direction y via a wafer displacement drive 15. The displacement, on the one hand, of the reticle 7 via the reticle displacement drive 9 and, on the other hand, of the wafer 13 via the wafer displacement drive 15 can take place synchronized with one another.

Bei der Lichtquelle 3 handelt es sich um eine EUV-Strahlungsquelle. Die Lichtquelle 3 emittiert insbesondere EUV-Strahlung 16, welche im Folgenden auch als Nutzstrahlung, Beleuchtungsstrahlung oder Beleuchtungslicht bezeichnet wird. Die Nutzstrahlung 16 hat insbesondere eine Wellenlänge im Bereich zwischen 5 nm und 30 nm. Bei der Lichtquelle 3 kann es sich um eine Plasmaquelle handeln, zum Beispiel um eine LPP-Quelle (Engl.: Laser Produced Plasma, mit Hilfe eines Lasers erzeugtes Plasma) oder um eine DPP-Quelle (Engl.: Gas Discharged Produced Plasma, mittels Gasentladung erzeugtes Plasma). Es kann sich auch um eine synchrotronbasierte Strahlungsquelle handeln. Bei der Lichtquelle 3 kann es sich um einen Freie-Elektronen-Laser (Engl.: Free-Electron-Laser, FEL) handeln.The light source 3 is an EUV radiation source. The light source 3 emits in particular EUV radiation 16, which is also referred to below as useful radiation, illumination radiation or illumination light. The useful radiation 16 in particular has a wavelength in the range between 5 nm and 30 nm. The light source 3 can be a plasma source, for example an LPP source (Laser Produced Plasma, plasma generated with the help of a laser) or a DPP source (Gas Discharged Produced Plasma). It can also be a synchrotron-based radiation source. The light source 3 can be a free electron laser (FEL).

Die Beleuchtungsstrahlung 16, die von der Lichtquelle 3 ausgeht, wird von einem Kollektor 17 gebündelt. Bei dem Kollektor 17 kann es sich um einen Kollektor mit einer oder mit mehreren ellipsoidalen und/oder hyperboloiden Reflexionsflächen handeln. Die mindestens eine Reflexionsfläche des Kollektors 17 kann im streifenden Einfall (Engl.: Grazing Incidence, GI), also mit Einfallswinkeln größer als 45°, oder im normalen Einfall (Engl.: Normal Incidence, NI), also mit Einfallwinkeln kleiner als 45°, mit der Beleuchtungsstrahlung 16 beaufschlagt werden. Der Kollektor 17 kann einerseits zur Optimierung seiner Reflektivität für die Nutzstrahlung und andererseits zur Unterdrückung von Falschlicht strukturiert und/oder beschichtet sein.The illumination radiation 16, which emanates from the light source 3, is focused by a collector 17. The collector 17 can be a collector with one or more ellipsoidal and/or hyperboloid reflection surfaces. The at least one reflection surface of the collector 17 can be in grazing incidence (GI), i.e. with angles of incidence greater than 45 °, or in normal incidence (English: Normal Incidence, NI), i.e. with angles of incidence smaller than 45 ° , with the lighting radiation 16 are applied. The collector 17 can be structured and/or coated on the one hand to optimize its reflectivity for the useful radiation and on the other hand to suppress false light.

Nach dem Kollektor 17 propagiert die Beleuchtungsstrahlung 16 durch einen Zwischenfokus in einer Zwischenfokusebene 18. Die Zwischenfokusebene 18 kann eine Trennung zwischen einem Strahlungsquellenmodul, aufweisend die Lichtquelle 3 und den Kollektor 17, und der Beleuchtungsoptik 4 darstellen.After the collector 17, the illumination radiation 16 propagates through an intermediate focus in an intermediate focus plane 18. The intermediate focus plane 18 can represent a separation between a radiation source module, having the light source 3 and the collector 17, and the illumination optics 4.

Die Beleuchtungsoptik 4 umfasst einen Umlenkspiegel 19 und diesem im Strahlengang nachgeordnet einen ersten Facettenspiegel 20. Bei dem Umlenkspiegel 19 kann es sich um einen planen Umlenkspiegel oder alternativ um einen Spiegel mit einer über die reine Umlenkungswirkung hinaus bündelbeeinflussenden Wirkung handeln. Alternativ oder zusätzlich kann der Umlenkspiegel 19 als Spektralfilter ausgeführt sein, der eine Nutzlichtwellenlänge der Beleuchtungsstrahlung 16 von Falschlicht einer hiervon abweichenden Wellenlänge trennt.The lighting optics 4 comprises a deflection mirror 19 and, downstream of it in the beam path, a first facet mirror 20. The deflection mirror 19 can be a flat deflection mirror or alternatively a mirror with an effect that influences the bundle beyond the pure deflection effect. Alternatively or additionally, the deflection mirror 19 can be designed as a spectral filter which separates a useful light wavelength of the illumination radiation 16 from false light of a wavelength that deviates from this.

Sofern der erste Facettenspiegel 20 in einer Ebene der Beleuchtungsoptik 4 angeordnet ist, die zur Objektebene 6 als Feldebene optisch konjugiert ist, wird dieser auch als Feldfacettenspiegel bezeichnet. Der erste Facettenspiegel 20 umfasst eine Vielzahl von einzelnen ersten Facetten 21, welche auch als Feldfacetten bezeichnet werden können. Von diesen ersten Facetten 21 sind in der 1 nur beispielhaft einige dargestellt.If the first facet mirror 20 is arranged in a plane of the illumination optics 4, which is optically conjugate to the object plane 6 as a field plane, it is also referred to as a field facet mirror. The first facet mirror 20 includes a large number of individual first facets 21, which can also be referred to as field facets. Of these first facets 21 are in the 1 just a few are shown as examples.

Die ersten Facetten 21 können als makroskopische Facetten ausgeführt sein, insbesondere als rechteckige Facetten oder als Facetten mit bogenförmiger oder teilkreisförmiger Randkontur. Die ersten Facetten 21 können als plane Facetten oder alternativ als konvex oder konkav gekrümmte Facetten ausgeführt sein.The first facets 21 can be designed as macroscopic facets, in particular as rectangular facets or as facets with an arcuate or part-circular edge contour. The first facets 21 can be designed as flat facets or alternatively as convex or concave curved facets.

Wie beispielsweise aus der DE 10 2008 009 600 A1 bekannt ist, können die ersten Facetten 21 selbst jeweils auch aus einer Vielzahl von Einzelspiegeln, insbesondere einer Vielzahl von Mikrospiegeln, zusammengesetzt sein. Der erste Facettenspiegel 20 kann insbesondere als mikroelektromechanisches System (MEMS-System) ausgebildet sein. Für Details wird auf die DE 10 2008 009 600 A1 verwiesen.Like, for example, from the DE 10 2008 009 600 A1 is known, the first facets 21 themselves can also each be composed of a large number of individual mirrors, in particular a large number of micromirrors. The first facet mirror 20 can in particular be designed as a microelectromechanical system (MEMS system). For details see the DE 10 2008 009 600 A1 referred.

Zwischen dem Kollektor 17 und dem Umlenkspiegel 19 verläuft die Beleuchtungsstrahlung 16 horizontal, also längs der y-Richtung y.Between the collector 17 and the deflection mirror 19, the illumination radiation 16 runs horizontally, i.e. along the y-direction y.

Im Strahlengang der Beleuchtungsoptik 4 ist dem ersten Facettenspiegel 20 nachgeordnet ein zweiter Facettenspiegel 22. Sofern der zweite Facettenspiegel 22 in einer Pupillenebene der Beleuchtungsoptik 4 angeordnet ist, wird dieser auch als Pupillenfacettenspiegel bezeichnet. Der zweite Facettenspiegel 22 kann auch beabstandet zu einer Pupillenebene der Beleuchtungsoptik 4 angeordnet sein. In diesem Fall wird die Kombination aus dem ersten Facettenspiegel 20 und dem zweiten Facettenspiegel 22 auch als spekularer Reflektor bezeichnet. A second facet mirror 22 is located downstream of the first facet mirror 20 in the beam path of the illumination optics 4. If the second facet mirror 22 is arranged in a pupil plane of the illumination optics 4, it is also referred to as a pupil facet mirror. The second facet mirror 22 can also be arranged at a distance from a pupil plane of the lighting optics 4. In this case, the combination of the first facet mirror 20 and the second facet mirror 22 is also referred to as a specular reflector.

Spekulare Reflektoren sind bekannt aus der US 2006/0132747 A1 , der EP 1 614 008 B1 und der US 6,573,978 .Specular reflectors are known from US 2006/0132747 A1 , the EP 1 614 008 B1 and the US 6,573,978 .

Der zweite Facettenspiegel 22 umfasst eine Mehrzahl von zweiten Facetten 23. Die zweiten Facetten 23 werden im Falle eines Pupillenfacettenspiegels auch als Pupillenfacetten bezeichnet.The second facet mirror 22 comprises a plurality of second facets 23. In the case of a pupil facet mirror, the second facets 23 are also referred to as pupil facets.

Bei den zweiten Facetten 23 kann es sich ebenfalls um makroskopische Facetten, die beispielsweise rund, rechteckig oder auch hexagonal berandet sein können, oder alternativ um aus Mikrospiegeln zusammengesetzte Facetten handeln. Diesbezüglich wird ebenfalls auf die DE 10 2008 009 600 A1 verwiesen.The second facets 23 can also be macroscopic facets, which can have, for example, round, rectangular or even hexagonal edges, or alternatively they can be facets composed of micromirrors. In this regard, reference is also made to the DE 10 2008 009 600 A1 referred.

Die zweiten Facetten 23 können plane oder alternativ konvex oder konkav gekrümmte Reflexionsflächen aufweisen.The second facets 23 can have flat or alternatively convex or concave curved reflection surfaces.

Die Beleuchtungsoptik 4 bildet somit ein doppelt facettiertes System. Dieses grundlegende Prinzip wird auch als Wabenkondensor (Engl.: Fly's Eye Integrator) bezeichnet.The lighting optics 4 thus forms a double faceted system. This basic principle is also known as the honeycomb condenser (Fly's Eye Integrator).

Es kann vorteilhaft sein, den zweiten Facettenspiegel 22 nicht exakt in einer Ebene, welche zu einer Pupillenebene der Projektionsoptik 10 optisch konjugiert ist, anzuordnen. Insbesondere kann der zweite Facettenspiegel 22 gegenüber einer Pupillenebene der Projektionsoptik 10 verkippt angeordnet sein, wie es zum Beispiel in der DE 10 2017 220 586 A1 beschrieben ist.It may be advantageous not to arrange the second facet mirror 22 exactly in a plane that is optically conjugate to a pupil plane of the projection optics 10. In particular, the second facet mirror 22 can be arranged tilted relative to a pupil plane of the projection optics 10, as is the case, for example, in FIG DE 10 2017 220 586 A1 is described.

Mit Hilfe des zweiten Facettenspiegels 22 werden die einzelnen ersten Facetten 21 in das Objektfeld 5 abgebildet. Der zweite Facettenspiegel 22 ist der letzte bündelformende oder auch tatsächlich der letzte Spiegel für die Beleuchtungsstrahlung 16 im Strahlengang vor dem Objektfeld 5.With the help of the second facet mirror 22, the individual first facets 21 are imaged into the object field 5. The second facet mirror 22 is the last beam-forming mirror or actually the last mirror for the illumination radiation 16 in the beam path in front of the object field 5.

Bei einer weiteren, nicht dargestellten Ausführung der Beleuchtungsoptik 4 kann im Strahlengang zwischen dem zweiten Facettenspiegel 22 und dem Objektfeld 5 eine Übertragungsoptik angeordnet sein, die insbesondere zur Abbildung der ersten Facetten 21 in das Objektfeld 5 beiträgt. Die Übertragungsoptik kann genau einen Spiegel, alternativ aber auch zwei oder mehr Spiegel aufweisen, welche hintereinander im Strahlengang der Beleuchtungsoptik 4 angeordnet sind. Die Übertragungsoptik kann insbesondere einen oder zwei Spiegel für senkrechten Einfall (NI-Spiegel, Normal Incidence Spiegel) und/oder einen oder zwei Spiegel für streifenden Einfall (GI-Spiegel, Grazing Incidence Spiegel) umfassen.In a further embodiment of the illumination optics 4, not shown, transmission optics can be arranged in the beam path between the second facet mirror 22 and the object field 5, which contributes in particular to the imaging of the first facets 21 into the object field 5. The transmission optics can have exactly one mirror, but alternatively also two or more mirrors, which are arranged one behind the other in the beam path of the lighting optics 4. The transmission optics can in particular include one or two mirrors for perpendicular incidence (NI mirror, normal incidence mirror) and/or one or two mirrors for grazing incidence (GI mirror, grazing incidence mirror).

Die Beleuchtungsoptik 4 hat bei der Ausführung, die in der 1 gezeigt ist, nach dem Kollektor 17 genau drei Spiegel, nämlich den Umlenkspiegel 19, den ersten Facettenspiegel 20 und den zweiten Facettenspiegel 22.The lighting optics 4 has the version in the 1 is shown, after the collector 17 exactly three mirrors, namely the deflection mirror 19, the first facet mirror 20 and the second facet mirror 22.

Bei einer weiteren Ausführung der Beleuchtungsoptik 4 kann der Umlenkspiegel 19 auch entfallen, sodass die Beleuchtungsoptik 4 nach dem Kollektor 17 dann genau zwei Spiegel aufweisen kann, nämlich den ersten Facettenspiegel 20 und den zweiten Facettenspiegel 22.In a further embodiment of the lighting optics 4, the deflection mirror 19 can also be omitted, so that the lighting optics 4 can then have exactly two mirrors after the collector 17, namely the first facet mirror 20 and the second facet mirror 22.

Die Abbildung der ersten Facetten 21 mittels der zweiten Facetten 23 beziehungsweise mit den zweiten Facetten 23 und einer Übertragungsoptik in die Objektebene 6 ist regelmäßig nur eine näherungsweise Abbildung.The imaging of the first facets 21 into the object plane 6 by means of the second facets 23 or with the second facets 23 and a transmission optics is generally only an approximate image.

Die Projektionsoptik 10 umfasst eine Mehrzahl von Spiegeln Mi, welche gemäß ihrer Anordnung im Strahlengang der Projektionsbelichtungsanlage 1 durchnummeriert sind.The projection optics 10 comprises a plurality of mirrors Mi, which are numbered consecutively according to their arrangement in the beam path of the projection exposure system 1.

Bei dem in der 1 dargestellten Beispiel umfasst die Projektionsoptik 10 sechs Spiegel M1 bis M6. Alternativen mit vier, acht, zehn, zwölf oder einer anderen Anzahl an Spiegeln Mi sind ebenso möglich. Bei der Projektionsoptik 10 handelt es sich um eine doppelt obskurierte Optik. Der vorletzte Spiegel M5 und der letzte Spiegel M6 haben jeweils eine Durchtrittsöffnung für die Beleuchtungsstrahlung 16. Die Projektionsoptik 10 hat eine bildseitige numerische Apertur, die beispielsweise größer ist als 0,3 und/oder 0,5 und die auch größer sein kann als 0,6 und die beispielsweise 0,7 oder 0,75 betragen kann.At the one in the 1 In the example shown, the projection optics 10 includes six mirrors M1 to M6. Alternatives with four, eight, ten, twelve or another number of mirrors Mi are also possible. The projection optics 10 is a double obscured optics. The penultimate mirror M5 and the last mirror M6 each have a passage opening for the illumination radiation 16. The projection optics 10 has an image-side numerical aperture that is, for example, larger than 0.3 and/or 0.5 and which can also be greater than 0.6 and which can be, for example, 0.7 or 0.75.

Reflexionsflächen der Spiegel Mi können als Freiformflächen ohne Rotationssymmetrieachse ausgeführt sein. Alternativ können die Reflexionsflächen der Spiegel Mi als asphärische Flächen mit genau einer Rotationssymmetrieachse der Reflexionsflächenform gestaltet sein. Die Spiegel Mi können, genauso wie die Spiegel der Beleuchtungsoptik 4, hochreflektierende Beschichtungen für die Beleuchtungsstrahlung 16 aufweisen. Diese Beschichtungen können als Multilayer-Beschichtungen, insbesondere mit alternierenden Lagen aus Molybdän und Silizium, gestaltet sein.Reflection surfaces of the mirrors Mi can be designed as free-form surfaces without an axis of rotational symmetry. Alternatively, the reflection surfaces of the mirrors Mi can be designed as aspherical surfaces with exactly one axis of rotational symmetry of the reflection surface shape. The mirrors Mi, like the mirrors of the lighting optics 4, can have highly reflective coatings for the lighting radiation 16. These coatings can be designed as multilayer coatings, in particular with alternating layers of molybdenum and silicon.

Die Projektionsoptik 10 hat einen großen Objekt-Bildversatz in der y-Richtung y zwischen einer y-Koordinate eines Zentrums des Objektfeldes 5 und einer y-Koordinate des Zentrums des Bildfeldes 11. Dieser Objekt-Bild-Versatz in der y-Richtung y kann in etwa so groß sein wie ein z-Abstand zwischen der Objektebene 6 und der Bildebene 12.The projection optics 10 has a large object image offset in the y direction y between a y coordinate of a center of the object field 5 and a y coordinate of the center of the image field 11. This object image offset in the y direction y can be in be approximately as large as a z-distance between the object plane 6 and the image plane 12.

Die Projektionsoptik 10 kann insbesondere anamorphotisch ausgebildet sein. Sie weist insbesondere unterschiedliche Abbildungsmaßstäbe βx, βy in x- und y-Richtung x, y auf. Die beiden Abbildungsmaßstäbe Bx, By der Projektionsoptik 10 liegen bevorzugt bei (6x, By) = (+/- 0,25, +/- 0,125). Ein positiver Abbildungsmaßstab 6 bedeutet eine Abbildung ohne Bildumkehr. Ein negatives Vorzeichen für den Abbildungsmaßstab 6 bedeutet eine Abbildung mit Bildumkehr.The projection optics 10 can in particular be anamorphic. In particular, it has different imaging scales βx, βy in the x and y directions x, y. The two imaging scales Bx, By of the projection optics 10 are preferably (6x, By) = (+/- 0.25, +/- 0.125). A positive magnification 6 means an image without image reversal. A negative sign for the image scale 6 means an image with image reversal.

Die Projektionsoptik 10 führt somit in x-Richtung x, das heißt in Richtung senkrecht zur Scanrichtung, zu einer Verkleinerung im Verhältnis 4:1.The projection optics 10 thus leads to a reduction in size in the x direction x, that is to say in the direction perpendicular to the scanning direction, in a ratio of 4:1.

Die Projektionsoptik 10 führt in y-Richtung y, das heißt in Scanrichtung, zu einer Verkleinerung von 8:1.The projection optics 10 leads to a reduction of 8:1 in the y direction y, that is to say in the scanning direction.

Andere Abbildungsmaßstäbe sind ebenso möglich. Auch vorzeichengleiche und absolut gleiche Abbildungsmaßstäbe in x- und y-Richtung x, y, zum Beispiel mit Absolutwerten von 0,125 oder von 0,25, sind möglich.Other image scales are also possible. Image scales of the same sign and absolutely the same in the x and y directions x, y, for example with absolute values of 0.125 or 0.25, are also possible.

Die Anzahl von Zwischenbildebenen in der x- und in der y-Richtung x, y im Strahlengang zwischen dem Objektfeld 5 und dem Bildfeld 11 kann gleich sein oder kann, je nach Ausführung der Projektionsoptik 10, unterschiedlich sein. Beispiele für Projektionsoptiken mit unterschiedlichen Anzahlen derartiger Zwischenbilder in x- und y-Richtung x, y sind bekannt aus der US 2018/0074303 A1 .The number of intermediate image planes in the x and y directions x, y in the beam path between the object field 5 and the image field 11 can be the same or, depending on the design of the projection optics 10, can be different. Examples of projection optics with different numbers of such intermediate images in the x and y directions x, y are known from US 2018/0074303 A1 .

Jeweils eine der zweiten Facetten 23 ist genau einer der ersten Facetten 21 zur Ausbildung jeweils eines Beleuchtungskanals zur Ausleuchtung des Objektfeldes 5 zugeordnet. Es kann sich hierdurch insbesondere eine Beleuchtung nach dem Köhlerschen Prinzip ergeben. Das Fernfeld wird mit Hilfe der ersten Facetten 21 in eine Vielzahl an Objektfeldern 5 zerlegt. Die ersten Facetten 21 erzeugen eine Mehrzahl von Bildern des Zwischenfokus auf den diesen jeweils zugeordneten zweiten Facetten 23.One of the second facets 23 is assigned to exactly one of the first facets 21 to form an illumination channel for illuminating the object field 5. This can in particular result in lighting based on Köhler's principle. The far field is broken down into a large number of object fields 5 using the first facets 21. The first facets 21 generate a plurality of images of the intermediate focus on the second facets 23 assigned to them.

Die ersten Facetten 21 werden jeweils von einer zugeordneten zweiten Facette 23 einander überlagernd zur Ausleuchtung des Objektfeldes 5 auf das Retikel 7 abgebildet. Die Ausleuchtung des Objektfeldes 5 ist insbesondere möglichst homogen. Sie weist vorzugsweise einen Uniformitätsfehler von weniger als 2 % auf. Die Felduniformität kann über die Überlagerung unterschiedlicher Beleuchtungskanäle erreicht werden.The first facets 21 are each imaged onto the reticle 7 by an assigned second facet 23, superimposed on one another, in order to illuminate the object field 5. The illumination of the object field 5 is in particular as homogeneous as possible. It preferably has a uniformity error of less than 2%. Field uniformity can be achieved by overlaying different lighting channels.

Durch eine Anordnung der zweiten Facetten 23 kann geometrisch die Ausleuchtung der Eintrittspupille der Projektionsoptik 10 definiert werden. Durch Auswahl der Beleuchtungskanäle, insbesondere der Teilmenge der zweiten Facetten 23, die Licht führen, kann die Intensitätsverteilung in der Eintrittspupille der Projektionsoptik 10 eingestellt werden. Diese Intensitätsverteilung wird auch als Beleuchtungssetting oder Beleuchtungspupillenfüllung bezeichnet.By arranging the second facets 23, the illumination of the entrance pupil of the projection optics 10 can be geometrically defined. By selecting the illumination channels, in particular the subset of the second facets 23 that guide light, the intensity distribution in the entrance pupil of the projection optics 10 can be adjusted. This intensity distribution is also referred to as the lighting setting or lighting pupil filling.

Eine ebenfalls bevorzugte Pupillenuniformität im Bereich definiert ausgeleuchteter Abschnitte einer Beleuchtungspupille der Beleuchtungsoptik 4 kann durch eine Umverteilung der Beleuchtungskanäle erreicht werden.A likewise preferred pupil uniformity in the area of defined illuminated sections of an illumination pupil of the illumination optics 4 can be achieved by redistributing the illumination channels.

Im Folgenden werden weitere Aspekte und Details der Ausleuchtung des Objektfeldes 5 sowie insbesondere der Eintrittspupille der Projektionsoptik 10 beschrieben.Further aspects and details of the illumination of the object field 5 and in particular the entrance pupil of the projection optics 10 are described below.

Die Projektionsoptik 10 kann insbesondere eine homozentrische Eintrittspupille aufweisen. Diese kann zugänglich sein. Sie kann auch unzugänglich sein.The projection optics 10 can in particular have a homocentric entrance pupil. This can be accessible. It can also be inaccessible.

Die Eintrittspupille der Projektionsoptik 10 lässt sich regelmäßig mit dem zweiten Facettenspiegel 22 nicht exakt ausleuchten. Bei einer Abbildung der Projektionsoptik 10, welche das Zentrum des zweiten Facettenspiegels 22 telezentrisch auf den Wafer 13 abbildet, schneiden sich die Aperturstrahlen oftmals nicht in einem einzigen Punkt. Es lässt sich jedoch eine Fläche finden, in welcher der paarweise bestimmte Abstand der Aperturstrahlen minimal wird. Diese Fläche stellt die Eintrittspupille oder eine zu ihr konjugierte Fläche im Ortsraum dar. Insbesondere zeigt diese Fläche eine endliche Krümmung.The entrance pupil of the projection optics 10 cannot regularly be illuminated precisely with the second facet mirror 22. When imaging the projection optics 10, which images the center of the second facet mirror 22 telecentrically onto the wafer 13, the aperture rays often do not intersect at a single point. However, an area can be found in which the pairwise distance of the aperture beams becomes minimal. This surface represents the entrance pupil or a surface conjugate to it in the local space. Ins In particular, this surface shows a finite curvature.

Es kann sein, dass die Projektionsoptik 10 unterschiedliche Lagen der Eintrittspupille für den tangentialen und für den sagittalen Strahlengang aufweist. It may be that the projection optics have 10 different positions of the entrance pupil for the tangential and sagittal beam paths.

In diesem Fall sollte ein abbildendes Element, insbesondere ein optisches Bauelement der Übertragungsoptik, zwischen dem zweiten Facettenspiegel 22 und dem Retikel 7 bereitgestellt werden. Mit Hilfe dieses optischen Elements kann die unterschiedliche Lage der tangentialen Eintrittspupille und der sagittalen Eintrittspupille berücksichtigt werden.In this case, an imaging element, in particular an optical component of the transmission optics, should be provided between the second facet mirror 22 and the reticle 7. With the help of this optical element, the different positions of the tangential entrance pupil and the sagittal entrance pupil can be taken into account.

Bei der in der 1 dargestellten Anordnung der Komponenten der Beleuchtungsoptik 4 ist der zweite Facettenspiegel 22 in einer zur Eintrittspupille der Projektionsoptik 10 konjugierten Fläche angeordnet. Der erste Facettenspiegel 20 ist verkippt zur Objektebene 6 angeordnet. Der erste Facettenspiegel 20 ist verkippt zu einer Anordnungsebene angeordnet, die vom Umlenkspiegel 19 definiert ist. Der erste Facettenspiegel 20 ist verkippt zu einer Anordnungsebene angeordnet, die vom zweiten Facettenspiegel 22 definiert ist.At the in the 1 As shown in the arrangement of the components of the illumination optics 4, the second facet mirror 22 is arranged in a surface conjugate to the entrance pupil of the projection optics 10. The first facet mirror 20 is tilted relative to the object plane 6. The first facet mirror 20 is arranged tilted to an arrangement plane that is defined by the deflection mirror 19. The first facet mirror 20 is arranged tilted to an arrangement plane that is defined by the second facet mirror 22.

2 zeigt Positioniersystem 100 zum Positionieren einer optischen Komponente 102 gemäß einer Ausführungsform. 2 shows positioning system 100 for positioning an optical component 102 according to an embodiment.

Die optische Komponente 102 ist beispielsweise ein Spiegel der Projektionsbelichtungsanlage 1 (Lithographieanlage), insbesondere der Projektionsoptik 10, aus 1. Die optische Komponente 102 ist beispielsweise einer der Spiegel M1 - M6. Im Folgenden wird die optische Komponente 102 als Spiegel beschrieben; in anderen Beispielen kann es sich jedoch auch um eine andere optische Komponente als ein Spiegel handeln.The optical component 102 is, for example, a mirror of the projection exposure system 1 (lithography system), in particular the projection optics 10 1 . The optical component 102 is, for example, one of the mirrors M1 - M6. The optical component 102 is described below as a mirror; however, in other examples it may also be an optical component other than a mirror.

Wie in 2 gezeigt, umfasst der Spiegel 102 eine Beschichtung 104 mit einer optisch aktiven Fläche 106. Der Spiegel 102 umfasst außerdem ein Substrat 108. In dem Substrat 108 sind Kühlleitungen 110 angeordnet, durch welche eine Kühlflüssigkeit 112, wie beispielsweise Wasser, geleitet wird, um den Spiegel 102 aktiv zu kühlen. Eine Kühlung des Spiegels 102 dient dazu, thermische Deformationen des Spiegels 102, auch bei Einstrahlung energiereicher EUV-Strahlung 16 (1), zu vermeiden.As in 2 shown, the mirror 102 comprises a coating 104 with an optically active surface 106. The mirror 102 also comprises a substrate 108. Cooling lines 110 are arranged in the substrate 108, through which a cooling liquid 112, such as water, is passed around the mirror 102 to actively cool. Cooling the mirror 102 serves to prevent thermal deformations of the mirror 102, even when exposed to high-energy EUV radiation 16 ( 1 ), to avoid.

Der Spiegel 102 ist mittels einer Aktoreinrichtung 114 beweglich an einem Tragrahmen 116 befestigt. Die Aktoreinrichtung 114 weist zum Beispiel mehrere Aktoren 118 und eine Antriebseinheit (nicht gezeigt) auf. Die Aktoreinrichtung 114 dient zum Beispiel dazu, den Spiegel 102 in Bezug auf sechs Freiheitsgrade (Translation in X-, Y- und Z-Richtung und Rotation um die X-, Y- und Z-Richtung) zu positionieren.The mirror 102 is movably attached to a support frame 116 by means of an actuator device 114. The actuator device 114 has, for example, several actuators 118 and a drive unit (not shown). The actuator device 114 serves, for example, to position the mirror 102 with respect to six degrees of freedom (translation in the X, Y and Z directions and rotation about the X, Y and Z directions).

Das Positioniersystem 100 weist weiterhin eine Sensoreinrichtung 120 auf, um eine aktuelle Position P (Istwert y(t) der Position P, 4) des Spiegels 102 zu erfassen. Die Sensoreinrichtung 120 ist in 2 lediglich schematisch angedeutet. Die Sensoreinrichtung 120 weist ein oder mehrere Sensoren, wie beispielsweise Interferometer, auf. Die Sensoren der Sensoreinrichtung 120 sind beispielsweise an einem Sensorrahmen (nicht gezeigt) befestigt. Der Sensorrahmen ist zum Beispiel schwingungsentkoppelt an dem Tragrahmen 116 befestigt. Beispielsweise wird eine aktuelle Position y(t) des Spiegels 102 mithilfe von Laserstrahlen 122 erfasst.The positioning system 100 also has a sensor device 120 to determine a current position P (actual value y(t) of the position P, 4 ) of the mirror 102 to capture. The sensor device 120 is in 2 only indicated schematically. The sensor device 120 has one or more sensors, such as interferometers. The sensors of the sensor device 120 are attached, for example, to a sensor frame (not shown). The sensor frame is, for example, attached to the support frame 116 in a vibration-decoupled manner. For example, a current position y(t) of the mirror 102 is detected using laser beams 122.

In 3 ist ein Kühlkreislauf 200 einer Kühlvorrichtung 202 zum Kühlen des Spiegels 102 gezeigt. Die Kühlvorrichtung 202 umfasst eine Kühleinheit 204 zum Kühlen einer Kühlflüssigkeit 112 (2) und Leitungen 206, 110 zum Transportieren der Kühlflüssigkeit 112. Die Kühlvorrichtung 202 umfasst zudem ein oder mehrere Pumpen 208 zum Erzeugen einer erforderlichen Kühlmittelflussrate der Kühlflüssigkeit 112. Die Kühlvorrichtung 202 umfasst weiterhin ein oder mehrere Ventile 210 zum Steuern des Kühlflusses. Die Kühlvorrichtung 202 kann zum Kühlen mehrerer Komponenten der Lithographieanlage 1 dienen. Beispielhaft ist in 3 der Spiegel 102 aus 2 als eine gekühlte Komponente eingezeichnet. Die Kühlleitungen 110 (2), die in dem Spiegelsubstrat 108 angeordnet sind, sind schematisch in 3 eingezeichnet.In 3 a cooling circuit 200 of a cooling device 202 for cooling the mirror 102 is shown. The cooling device 202 includes a cooling unit 204 for cooling a cooling liquid 112 ( 2 ) and lines 206, 110 for transporting the cooling liquid 112. The cooling device 202 also includes one or more pumps 208 for generating a required coolant flow rate of the cooling liquid 112. The cooling device 202 further includes one or more valves 210 for controlling the cooling flow. The cooling device 202 can be used to cool several components of the lithography system 1. An example is in 3 the mirror 102 2 shown as a cooled component. The cooling lines 110 ( 2 ), which are arranged in the mirror substrate 108, are shown schematically in 3 drawn.

Pumpen der Kühlvorrichtung 202, wie die Pumpe 208, verursachen lokale Druckschwankungen in der Flüssigkeit 112, wodurch eine dynamische Störanregung erzeugt wird. Diese Druckschwankungen werden über longitudinale Wasserschallwelle durch den gesamten Kühlkreislauft 200 übertragen. Weiterhin können auch Querschnittsänderungen (nicht gezeigt) der Flüssigkeitsleitung 206, 110, Umlenkungen 212 der Flüssigkeitsleitung 206, 110 und Ventile 210 des Kühlkreislaufs 200 eine Störquelle darstellen, die lokale Druckschwankungen der Flüssigkeit 112 verursacht. Durch Wasserschall wird eine solche akustische Störanregung an die gekühlte optische Komponente 102 (den Spiegel 102) weitergeleitet. Dadurch kann es zu einer Positionsänderung des Spiegels 102 kommen, sodass die tatsächliche Position y(t) des Spiegels 102 von einer Sollposition r(t) abweicht (4).Pumps of the cooling device 202, such as the pump 208, cause local pressure fluctuations in the liquid 112, thereby creating a dynamic disturbance excitation. These pressure fluctuations are transmitted through the entire cooling circuit 200 via longitudinal water sound waves. Furthermore, cross-sectional changes (not shown) of the liquid line 206, 110, deflections 212 of the liquid line 206, 110 and valves 210 of the cooling circuit 200 can also represent a source of interference that causes local pressure fluctuations in the liquid 112. Such acoustic disturbance excitation is passed on to the cooled optical component 102 (the mirror 102) by means of water sound. This can lead to a change in the position of the mirror 102, so that the actual position y(t) of the mirror 102 deviates from a target position r(t) ( 4 ).

Im Folgenden wird mit Bezug zu den 4 bis 7 ein Verfahren zum Regeln einer Position y(t) der optischen Komponente 102 (z. B. des Spiegels 102) einer Lithographieanlage 1 (Projektionsbelichtungsanlage 1, 1) gemäß einer Ausführungsform beschrieben.The following is with reference to the 4 until 7 a method for regulating a position y(t) of the optical component 102 (e.g. the mirror 102) of a lithography system 1 (projection beam lighting system 1, 1 ) described according to one embodiment.

4 zeigt ein Blockschaltbild eines Regelkreises 300 zum Regeln der Position y(t) des Spiegels 102 (2). Der Regelkreis 300 basiert auf einer Rückkopplungsregelung (Feedbackregelung) und einer Störgrößenaufschaltung, welche eine Vorsteuerung zum Berücksichtigen einer Störgröße d(t) darstellt. Die Rückkopplungsregelung wird durch eine Positionsregler-Einrichtung 302 und eine Regelstrecke 304 realisiert. Die Störgrößenaufschaltung wird durch eine Störgrößenaufschalt-Einrichtung 306 realisiert. 4 shows a block diagram of a control loop 300 for controlling the position y (t) of the mirror 102 ( 2 ). The control circuit 300 is based on a feedback control and a disturbance variable feed-in, which represents a feedforward control to take a disturbance variable d(t) into account. The feedback control is implemented by a position controller device 302 and a controlled system 304. The disturbance variable connection is implemented by a disturbance variable connection device 306.

Die Regelstrecke 304 umfasst eine Aktorik 308 zum Manipulieren der Position y(t) des Spiegels 102. Die Aktorik 308 ist insbesondere durch die Aktoreinrichtung 114 (2) realisiert. Die Regelstrecke 304 umfasst außerdem eine Sensorik 310 zur Messung der Position y(t) des Spiegels 102. Die Sensorik 310 ist insbesondere durch die Sensoreinrichtung 120 (2) realisiert. Weiterhin umfasst die Regelstrecke 304 die optische Komponente 102, zum Beispiel den Spiegel 102.The controlled system 304 includes an actuator 308 for manipulating the position y(t) of the mirror 102. The actuator 308 is in particular through the actuator device 114 ( 2 ) realized. The controlled system 304 also includes a sensor system 310 for measuring the position y(t) of the mirror 102. The sensor system 310 is in particular through the sensor device 120 ( 2 ) realized. Furthermore, the controlled system 304 includes the optical component 102, for example the mirror 102.

Die Positionsregler-Einrichtung 302 bildet zusammen mit der Regelstrecke 304 die Feedbackregelung und sorgt dafür, dass eine Abweichung e(t) der Istposition y(t) von einer Sollposition r(t) des Spiegels 102 auf einem möglichst kleinen Wert, im Idealfall auf null, gehalten wird. Dies Sollposition r(t) kann ein statischer Wert sein (r(t) = const.) oder kann auch eine Funktion sein, die von der Zeit t abhängt (r(t) ≠ const.). Insbesondere kann die Sollposition r(t) des Spiegels 102 auch einer beliebigen Trajektorie im (z. B. dreidimensionalen) Raum folgen. Die Sollposition r(t) des Spiegels 102 kann dabei einer steten oder auch einer unsteten Trajektorie im Raum folgen.The position controller device 302, together with the controlled system 304, forms the feedback control and ensures that a deviation e(t) of the actual position y(t) from a target position r(t) of the mirror 102 is as small as possible, ideally to zero , is held. This target position r(t) can be a static value (r(t) = const.) or can also be a function that depends on time t (r(t) ≠ const.). In particular, the target position r(t) of the mirror 102 can also follow any trajectory in (e.g. three-dimensional) space. The target position r(t) of the mirror 102 can follow a constant or an unsteady trajectory in space.

In einem ersten Schritt S1 des Verfahrens wird der Istwert y(t) der Position P des Spiegels 102 erfasst. Beispielsweise wird der Istwert y(t) mithilfe der Sensoreinrichtung 120 gemessen. Der Istwert y(t) wird an die Positionsregler-Einrichtung 302 übermittelt, d. h. rückgeführt bzw. rückgekoppelt. Beispielsweise wird der Istwert y(t) an die Positionsregler-Einrichtung 302 negativ rückgeführt (Minuszeichen im Regelkreis 300 in 4).In a first step S1 of the method, the actual value y(t) of the position P of the mirror 102 is recorded. For example, the actual value y(t) is measured using the sensor device 120. The actual value y(t) is transmitted to the position controller device 302, ie fed back or fed back. For example, the actual value y(t) is fed back negatively to the position controller device 302 (minus sign in the control loop 300 in 4 ).

In einem zweiten Schritt S2 des Verfahrens wird die Abweichung e(t) des Istwerts y(t) von dem Sollwert r(t) der Position P des Spiegels 102 ermittelt. Die Abweichung e(t) wird beispielsweise von der Positionsregler-Einrichtung 302 oder von einer vorgeschalteten Summationseinheit 312 ermittelt. Beispielsweise wird der Istwert y(t) von dem Sollwert r(t) subtrahiert. Zum Ermitteln der Abweichung e(t) ist in der Positionsregler-Einrichtung 302 oder in der vorgeschalteten Summationseinheit 312 der Sollwert r(t) hinterlegt, insbesondere gespeichert.In a second step S2 of the method, the deviation e(t) of the actual value y(t) from the setpoint value r(t) of the position P of the mirror 102 is determined. The deviation e(t) is determined, for example, by the position controller device 302 or by an upstream summation unit 312. For example, the actual value y(t) is subtracted from the setpoint r(t). To determine the deviation e(t), the setpoint r(t) is stored, in particular stored, in the position controller device 302 or in the upstream summation unit 312.

In einem dritten Schritt S3 des Verfahrens wird eine erste Stellgröße ur(t) basierend auf der Abweichung e(t) ermittelt.In a third step S3 of the method, a first manipulated variable u r (t) is determined based on the deviation e (t).

Auf die Position y(t) des Spiegels 102 wirken Störgrößen (nicht gezeigt), die in der Regel unbekannt und unvorhersagbar sind, so wie beispielsweise Rauschen oder Bodenvibrationen. Eine Vorhersage der Auswirkung solcher Störgrößen auf die Position y(t) des Spiegels 102 ist meist nicht möglich, sodass sie durch eine Steuerung mit offener Wirkungskette nicht ausgleichbar sind. Sie können jedoch durch die beschriebene Feedbackregelung in den Schritten S1 bis S3 über die Ermittlung der tatsächlichen Abweichung e(t) des Istwerts y(t) vom Sollwert r(t) korrigiert werden.The position y(t) of the mirror 102 is affected by disturbances (not shown) that are generally unknown and unpredictable, such as noise or ground vibrations. It is usually not possible to predict the effect of such disturbance variables on the position y(t) of the mirror 102, so that they cannot be compensated for by a control with an open effect chain. However, they can be corrected using the feedback control described in steps S1 to S3 by determining the actual deviation e(t) of the actual value y(t) from the setpoint r(t).

Anders verhält es sich im Fall von Störgrößen d(t), für welche eine Auswirkung auf die Position y(t) des Spiegels 102 (Störgrößenübertragung 314 in 4) mithilfe von Berechnungen, Modellrechnungen, Simulationen, vorermittelten Messdaten oder ähnlichem vorhergesagt werden können. In diesem Fall kann der Einfluss der Störgröße d(t) auf die Regelgröße, hier die Position y(t) des Spiegels 102, mithilfe einer Störgrößenaufschaltung us(t) berücksichtigt werden. Ein Beispiel für eine solche Störgröße d(t), die mithilfe einer Störgrößenaufschaltung berücksichtigt werden kann, sind die Druckschwankungen der Flüssigkeit 112 in Kühlkreislauf 200 (3), die zum Beispiel durch eine Pumpe 208 des Kühlkreislaufs 200 verursacht werden. Diese Druckschwankungen können zum einen gemessen werden. Zum anderen kann basierend auf den Messergebnissen eine Auswirkung der Störgröße d(t), hier der Druckschwankungen, auf die Position y(t) des Spiegels 102 vorhergesagt werden.The situation is different in the case of disturbance variables d(t), for which an effect on the position y(t) of the mirror 102 (disruption transmission 314 in 4 ) can be predicted using calculations, model calculations, simulations, predetermined measurement data or similar. In this case, the influence of the disturbance variable d(t) on the controlled variable, here the position y(t) of the mirror 102, can be taken into account using a disturbance variable feed-in u s (t). An example of such a disturbance variable d(t), which can be taken into account using a disturbance variable feed-in, is the pressure fluctuations of the liquid 112 in the cooling circuit 200 ( 3 ), which are caused, for example, by a pump 208 of the cooling circuit 200. On the one hand, these pressure fluctuations can be measured. On the other hand, based on the measurement results, an effect of the disturbance variable d(t), here the pressure fluctuations, on the position y(t) of the mirror 102 can be predicted.

Andere Beispiele für Störgrößen d(t), die mithilfe einer Störgrößenaufschaltung kompensiert werden können, sind magnetische und/oder elektromagnetische Störungen durch ein magnetisches Feld und/oder elektromagnetisches Feld (B und E in 2) in einer Umgebung U des Spiegels 102. Ein weiteres Beispiel für Störgrößen d(t), die mithilfe einer Störgrößenaufschaltung kompensiert werden können, sind Bewegungen, insbesondere Beschleunigungen, anderer Komponenten der Lithographieanlage 1, wie beispielsweise eines Waferhalters 14 und/oder eines Retikelhalters 8 (1).Other examples of disturbance variables d(t) that can be compensated for using disturbance input are magnetic and/or electromagnetic disturbances caused by a magnetic field and/or electromagnetic field (B and E in 2 ) in an environment U of the mirror 102. A further example of disturbance variables d(t) that can be compensated for using a disturbance variable connection are movements, in particular accelerations, of other components of the lithography system 1, such as a wafer holder 14 and/or a reticle holder 8 ( 1 ).

Im Folgenden wird der Regelkreis 300 und das Verfahren für Druckschwankungen der Flüssigkeit 112 im Kühlkreislauf 200 als ein Beispiel einer Störgröße d(t), die auf die Position y(t) des Spiegels 102 wirkt, beschrieben. Jedoch kann das Verfahren auch für andere Störgrößen d(t), die mithilfe einer Störgrößenaufschaltung kompensiert werden können, durchgeführt werden.The following describes the control circuit 300 and the method for pressure fluctuations of the liquid 112 in the cooling circuit 200 as an example of a disturbance variable d(t) that acts on the position y(t) of the mirror 102. However, the method can also be used for other disturbance variables d(t), using a Disturbance input can be compensated for.

In einem vierten Schritt S4 des Verfahrens wird die Störgröße d(t) erfasst.In a fourth step S4 of the method, the disturbance variable d(t) is detected.

Beispielsweise wird die Störgröße d(t) gemessen. Zum Erfassen der Störgröße d(t) weist die Positioniervorrichtung 100 beispielsweise eine weitere Sensoreinrichtung 124 auf. Die Sensoreinrichtung 124 umfasst z. B. einen oder mehrere Sensoren und/oder Messgeräte. In 2 ist schematisch als ein Beispiel ein Druckmessgerät 124 zum Messen eines Drucks D der Flüssigkeit 112 gezeigt. Das Druckmessgerät 124 ist in Fluidverbindung mit der Flüssigkeitsleitung 110. Das Druckmessgerät 124 ist beispielsweise ein Flüssigkeitmananometer, ein Kolbenmananometer, eine Federmananometer oder auch ein anderes Druckmessgerät zum Messen eines Drucks D der Flüssigkeit 112 in der Leitung 110.For example, the disturbance variable d(t) is measured. To detect the disturbance variable d(t), the positioning device 100 has, for example, a further sensor device 124. The sensor device 124 includes z. B. one or more sensors and/or measuring devices. In 2 is schematically shown as an example a pressure gauge 124 for measuring a pressure D of the liquid 112. The pressure measuring device 124 is in fluid communication with the liquid line 110. The pressure measuring device 124 is, for example, a liquid pressure gauge, a piston pressure gauge, a spring pressure gauge or another pressure gauge for measuring a pressure D of the liquid 112 in the line 110.

Die Störgröße d(t) kann in anderen Beispielen auch durch einen Störgrößenbeobachter erfasst werden. Dabei wird die Störgröße d(t) beispielsweise nicht direkt gemessen, sondern aus anderen (z. B. gemessenen) Prozessgrößen rekonstruiert.In other examples, the disturbance d(t) can also be detected by a disturbance observer. For example, the disturbance variable d(t) is not measured directly, but is reconstructed from other (e.g. measured) process variables.

In einem fünften Schritt S5 des Verfahrens wird eine Änderung der Position P des Spiegels 102 aufgrund der erfassten Störgröße d(t) vorhergesagt. Die Änderung der Position P des Spiegels 102 aufgrund der erfassten Störgröße d(t) ist insbesondere die Auswirkung der Störgröße d(t) auf die Position P des Spiegels 102. Diese Auswirkung kann beispielsweise mithilfe eines vorermittelten Modells vorhergesagt werden. In 6 ist als Beispiel ein einfaches Modell 400 gezeigt, welches ein Druck-Reaktions-Verhalten beschreibt. Das Modell 400 beschreibt insbesondere einen linearen Zusammenhang 402 zwischen dem Druck D der Flüssigkeit 112 und einer Kraft Fx, die aufgrund des Drucks D der Flüssigkeit 112 auf den Spiegel 102 wirkt.In a fifth step S5 of the method, a change in the position P of the mirror 102 is predicted based on the detected disturbance variable d(t). The change in the position P of the mirror 102 due to the detected disturbance variable d(t) is in particular the effect of the disturbance variable d(t) on the position P of the mirror 102. This effect can be predicted, for example, using a predetermined model. In 6 A simple model 400 is shown as an example, which describes pressure-reaction behavior. The model 400 describes in particular a linear relationship 402 between the pressure D of the liquid 112 and a force Fx which acts on the mirror 102 due to the pressure D of the liquid 112.

Beispielsweise wird die erfasste Störgrößen d(t) an die Störgrößenaufschalt-Einrichtung 306 übermittelt. Beispielsweise sind in der Störgrößenaufschalt-Einrichtung 306 eine oder mehrere Modelle, Algorithmen für Simulationsverfahren oder andere Berechnungen und/oder vorermittelte Messdaten gespeichert. Als ein Beispiel kann das Modell 400 in der Störgrößenaufschalt-Einrichtung 306 gespeichert sein. Die Störgrößenaufschalt-Einrichtung 306 ermittelt, beispielsweise basierend auf dem Modell 400, eine Auswirkung der Störgrößen d(t) auf die Position P des Spiegels 102.For example, the detected disturbance variables d(t) are transmitted to the disturbance variable switching device 306. For example, one or more models, algorithms for simulation methods or other calculations and/or predetermined measurement data are stored in the disturbance variable switching device 306. As an example, the model 400 may be stored in the disturbance input device 306. The disturbance variable switching device 306 determines, for example based on the model 400, an effect of the disturbance variables d(t) on the position P of the mirror 102.

In einem sechsten Schritt S6 des Verfahrens wird eine zweite Stellgröße us(t) zur Störgrößenaufschaltung ermittelt. Insbesondere wird die zweite Stellgröße us(t) basierend auf der erfassten Störgröße d(t) und der vorhergesagten Änderung der Position P des Spiegels 102 aufgrund der erfassten Störgrößen d(t) ermittelt. Die zweite Stellgröße us(t) wird beispielsweise einer weiteren Summationseinheit 316 zugeführt. Zum Beispiel wird die zweite Stellgröße us(t) der weiteren Summationseinheit 316 negativ zugeführt (Minuszeichen im Regelkreis 300 in 4).In a sixth step S6 of the method, a second manipulated variable u s (t) is determined for switching on the disturbance variables. In particular, the second manipulated variable u s (t) is determined based on the detected disturbance variable d(t) and the predicted change in the position P of the mirror 102 due to the detected disturbance variables d(t). The second manipulated variable u s (t) is fed to a further summation unit 316, for example. For example, the second manipulated variable u s (t) is fed negatively to the further summation unit 316 (minus sign in the control loop 300 in 4 ).

In einem siebten Schritt S7 des Verfahrens wird eine Gesamtstellgröße u(t) basierend auf der ersten Stellgröße ur(t) und der zweiten Stellgröße us(t) ermittelt. Die Gesamtstellgröße u(t) wird zum Beispiel durch Subtrahieren der zweiten Stellgröße us(t) von der ersten Stellgröße ur(t) ermittelt. Die Gesamtstellgröße u(t) setzt sich damit insbesondere aus einem Anteil us(t) einer Vorsteuerung (Störgrößenaufschaltung) und einem Anteil ur(t) einer Feedbackregelung zusammen.In a seventh step S7 of the method, a total manipulated variable u(t) is determined based on the first manipulated variable u r (t) and the second manipulated variable u s (t). The total manipulated variable u(t) is determined, for example, by subtracting the second manipulated variable u s (t) from the first manipulated variable u r (t). The overall manipulated variable u(t) is therefore composed in particular of a component u s (t) of a feedforward control (feedback) and a component u r (t) of a feedback control.

In einem achten Schritt S8 des Verfahrens wird die Aktorik 308 der Regelstrecke 304 (d. h. die Aktoreinrichtung 114, 2) basierend auf der ersten und zweiten Stellgröße ur(t), us(t), insbesondere basierend auf der Gesamtstellgröße u(t), angesteuert.In an eighth step S8 of the method, the actuator system 308 of the controlled system 304 (ie the actuator device 114, 2 ) based on the first and second manipulated variables u r (t), u s (t), in particular based on the overall manipulated variable u (t).

In 5 ist eine Regelungsvorrichtung 128 des Positioniersystems 100 gezeigt. Die Regelungsvorrichtung 128 umfasst eine erste Ermittlungseinrichtung 130 (Positionierregler-Einrichtung 302 in 4) zum Ermitteln der ersten Stellgröße ur(t) basierend auf der Abweichung e(t) des Istwerts y(t) von dem Sollwert r(t) der Position P des Spiegels 102. Die Regelungsvorrichtung 128 umfasst eine zweite Ermittlungseinrichtung 132 (Störgrößenaufschalt-Einrichtung 306 in 4) zum Ermitteln der zweiten Stellgröße us(t) zur Störgrößenaufschaltung basierend auf der erfassten Störgröße d(t) und der vorhergesagten Änderung der Position P des Spiegels 102 aufgrund der erfassten Störgröße d(t). Die Regelungsvorrichtung 128 umfasst weiterhin eine dritte Ermittlungseinrichtung 134 (weitere Summationseinheit 316 in 4) zum Ermitteln der Gesamtstellgröße u(t). Außerdem umfasst die Regelungsvorrichtung 128 eine Ansteuereinrichtung 136 zum Ansteuern der Aktoreinrichtung 114 basierend auf der ermittelten Gesamtstellgröße u(t). Beispielsweise sendet die Ansteuereinrichtung 136 ein entsprechendes Steuersignal A an die Aktoreinrichtung 114.In 5 a control device 128 of the positioning system 100 is shown. The control device 128 includes a first determination device 130 (positioning controller device 302 in 4 ) for determining the first manipulated variable u r (t) based on the deviation e (t) of the actual value y (t) from the setpoint value r (t) of the position P of the mirror 102. The control device 128 includes a second determination device 132 (interference switching Facility 306 in 4 ) for determining the second manipulated variable u s (t) for feeding the disturbance variable based on the detected disturbance variable d(t) and the predicted change in the position P of the mirror 102 due to the detected disturbance variable d(t). The control device 128 further comprises a third determination device 134 (further summation unit 316 in 4 ) to determine the total manipulated variable u(t). In addition, the control device 128 includes a control device 136 for controlling the actuator device 114 based on the determined total manipulated variable u(t). For example, the control device 136 sends a corresponding control signal A to the actuator device 114.

Der Regelkreis 300 (4) kann optional eine weitere Vorsteuerung 318 umfassen, die eine zeitliche Änderung des Sollwerts r(t) berücksichtigt. Wie vorstehend beschrieben, kann der Sollwert r(t) eine zeitabhängige Trajektorie (z. B. im dreidimensionalen Raum) sein. Der Sollwert r(t) kann dabei auch einen unsteten räumlichen Verlauf beschreiben, welcher Sollwertsprünge aufweist. Ohne vorwärtsgerichtete Berücksichtigung eines vorbekannten Sollwertsprungs, kann ein solcher Sollwertsprung der Sollposition r(t) zunächst zu einer großen Regelabweichung e(t) führen. Zur Verbesserung des Führungsverhaltens des Regelkreises 300 kann optional die weitere Vorsteuerung 318 eingesetzt werden. Die Vorsteuerung 318 ermittelt den zu erwartenden Stellgrößenbedarf abhängig von der geplanten Änderung des Sollwerts r(t). Weiterhin wird der erwartete Stellgrößenbedarf der Regelstrecke 304 durch die Stellgröße uv(t) zugeführt. Insbesondere kann aus der ersten Stellgröße ur(t) und der weiteren Stellgröße uv(t) eine neue erste Stellgröße u'r(t) ermittelt werden. Da keine weitere Feedbackschleife in den Regelkreis 300 eingeführt wird, wird die Stabilität des Regelkreises 300 durch die Vorsteuerung 318 nicht beeinflusst.The control circuit 300 ( 4 ) can optionally include a further pilot control 318, which takes into account a change in the setpoint r(t) over time. As described above, the setpoint r(t) can be a time-dependent trajectory (e.g. in three-dimensional space). The setpoint r(t) can also describe an unsteady spatial course ben, which has setpoint jumps. Without forward consideration of a previously known setpoint jump, such a setpoint jump in the setpoint position r(t) can initially lead to a large control deviation e(t). To improve the control behavior of the control circuit 300, the additional pilot control 318 can optionally be used. The feedforward control 318 determines the expected manipulated variable requirement depending on the planned change in the setpoint r(t). Furthermore, the expected manipulated variable requirement is supplied to the controlled system 304 by the manipulated variable u v (t). In particular, a new first manipulated variable u' r (t) can be determined from the first manipulated variable u r (t) and the further manipulated variable u v (t). Since no further feedback loop is introduced into the control loop 300, the stability of the control loop 300 is not influenced by the feedforward control 318.

Durch das vorgeschlagene Verfahren kann die Position P des Spiegels 102 auch bei dynamischer Störanregung d(t) besser geregelt werden. Insbesondere können die Auswirkungen von Störanregungen d(t), wie beispielsweise von mechanischen Schwingungsanregungen, akustischen Anregungen und elektromagnetischen Anregungen, auf den Spiegel 102 besser kompensiert werden. Dies führt zu einer größeren Präzession der optischen Eigenschaften des Spiegels 102 und damit zu einer besseren Abbildungseigenschaft der Lithographieanlage 1.The proposed method allows the position P of the mirror 102 to be better regulated even in the event of dynamic disturbance excitation d(t). In particular, the effects of interference excitations d(t), such as mechanical vibration excitations, acoustic excitations and electromagnetic excitations, on the mirror 102 can be better compensated. This leads to greater precession of the optical properties of the mirror 102 and thus to better imaging properties of the lithography system 1.

Obwohl die vorliegende Erfindung anhand von Ausführungsbeispielen beschrieben wurde, ist sie vielfältig modifizierbar.Although the present invention has been described using exemplary embodiments, it can be modified in many ways.

BEZUGSZEICHENLISTEREFERENCE SYMBOL LIST

11
ProjektionsbelichtungsanlageProjection exposure system
22
BeleuchtungssystemLighting system
33
Lichtquellelight source
44
BeleuchtungsoptikIllumination optics
55
ObjektfeldObject field
66
ObjektebeneObject level
77
RetikelReticule
88th
RetikelhalterReticle holder
99
RetikelverlagerungsantriebReticle displacement drive
1010
ProjektionsoptikProjection optics
1111
BildfeldImage field
1212
BildebeneImage plane
1313
Waferwafers
1414
Waferhalterwafer holder
1515
WaferverlagerungsantriebWafer displacement drive
1616
BeleuchtungsstrahlungIllumination radiation
1717
Kollektorcollector
1818
ZwischenfokusebeneIntermediate focal plane
1919
UmlenkspiegelDeflecting mirror
2020
erster Facettenspiegelfirst facet mirror
2121
erste Facettefirst facet
2222
zweiter Facettenspiegelsecond facet mirror
2323
zweite Facettesecond facet
100100
PositioniersystemPositioning system
102102
optische Komponenteoptical component
104104
BeschichtungCoating
106106
optisch aktive Flächeoptically active surface
108108
SubstratSubstrate
110110
FlüssigkeitsleitungFluid line
112112
Flüssigkeitliquid
114114
AktoreinrichtungActuator device
116116
TragrahmenSupport frame
118118
AktorActor
120120
SensoreinrichtungSensor device
122122
Laserstrahllaser beam
124124
Sensorsensor
128128
RegelungsvorrichtungControl device
130130
ErmittlungseinrichtungInvestigation facility
132132
ErmittlungseinrichtungInvestigation facility
134134
ErmittlungseinrichtungInvestigation facility
136136
AnsteuereinrichtungControl device
200200
KühlkreislaufCooling circuit
202202
KühlvorrichtungCooling device
204204
KühleinheitCooling unit
206206
FlüssigkeitsleitungFluid line
208208
Pumpepump
210210
VentilValve
212212
UmlenkungDeflection
300300
Regelkreiscontrol loop
302302
Positionsregler-EinrichtungPosition controller facility
304304
RegelstreckeControlled system
306306
Störgrößenaufschalt-EinrichtungDisturbance switching device
308308
AktorikActuators
310310
SensorikSensor technology
312312
SummationseinheitSummation unit
314314
StörgrößenübertragungDisturbance transmission
316316
SummationseinheitSummation unit
318318
VorsteuerungPilot control
400400
ModellModel
402402
lineare Funktion linear function
AA
Signalsignal
Bb
MagnetfeldMagnetic field
d(t)d(t)
StörgrößeDisturbance variable
DD
DruckPressure
e(t)e(t)
Abweichungdeviation
EE
elektrisches Feldelectric field
FxFx
KraftPower
M1-M6M1-M6
SpiegelMirror
PP
Positionposition
r(t)r(t)
SollwertSetpoint
S1-S8S1-S8
VerfahrensschritteProcedural steps
tt
ZeitTime
u(t)u(t)
Stellgrößemanipulated variable
ur(t)ur(t)
Stellgrößemanipulated variable
u'r(t)u'r(t)
Stellgrößemanipulated variable
us(t)us(t)
Stellgrößemanipulated variable
uv(t)uv(t)
Stellgrößemanipulated variable
UU
UmgebungVicinity
XX
RichtungDirection
y(t)y(t)
Istwertactual value
YY
RichtungDirection
ZZ
RichtungDirection

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of documents listed by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 102008009600 A1 [0085, 0090]DE 102008009600 A1 [0085, 0090]
  • US 20060132747 A1 [0088]US 20060132747 A1 [0088]
  • EP 1614008 B1 [0088]EP 1614008 B1 [0088]
  • US 6573978 [0088]US 6573978 [0088]
  • DE 102017220586 A1 [0093]DE 102017220586 A1 [0093]
  • US 20180074303 A1 [0107]US 20180074303 A1 [0107]

Claims (15)

Verfahren zum Regeln einer Position (P) einer optischen Komponente (102) einer Lithographieanlage (1), mit den Schritten: a) Ermitteln (S3) einer ersten Stellgröße (ur) basierend auf einer Abweichung (e) eines Istwerts (y) von einem Sollwert (r) der Position (P) der optischen Komponente (102), b) Ermitteln (S6) einer zweiten Stellgröße (us) zur Störgrößenaufschaltung basierend auf einer erfassten Störgröße (d) und einer vorhergesagten Änderung der Position (P) der optischen Komponente (102) aufgrund der erfassten Störgröße (d), und c) Ansteuern (S8) einer Aktoreinrichtung (114) zum Positionieren der optischen Komponente (102) basierend auf der ersten und zweiten Stellgröße (ur, us).Method for controlling a position (P) of an optical component (102) of a lithography system (1), with the steps: a) determining (S3) a first manipulated variable (u r ) based on a deviation (e) of an actual value (y) from a setpoint (r) of the position (P) of the optical component (102), b) determining (S6) a second manipulated variable (u s ) for switching on the disturbance variable based on a detected disturbance variable (d) and a predicted change in the position (P) of the optical component (102) based on the detected disturbance variable (d), and c) controlling (S8) an actuator device (114) for positioning the optical component (102) based on the first and second manipulated variables (u r , u s ). Verfahren nach Anspruch 1, wobei die erste Stellgröße (ur) eine Ausgangsgröße einer Positionsregler-Einrichtung (302) ist, und die zweite Stellgröße (us) zwischen der Positionsregler-Einrichtung (302) und der Aktoreinrichtung (114) auf die erste Stellgröße (ur) angewendet wird.Procedure according to Claim 1 , wherein the first manipulated variable (u r ) is an output variable of a position controller device (302), and the second manipulated variable (u s ) between the position controller device (302) and the actuator device (114) to the first manipulated variable (u r ) is applied. Verfahren nach Anspruch 1 oder 2, wobei eine Gesamtstellgröße (u) basierend auf der ersten und zweiten Stellgröße (ur, us) ermittelt wird (S7), und die Aktoreinrichtung (114) der optischen Komponente (102) basierend auf der Gesamtstellgröße (u) angesteuert wird.Procedure according to Claim 1 or 2 , wherein a total manipulated variable (u) is determined based on the first and second manipulated variables (u r , u s ) (S7), and the actuator device (114) of the optical component (102) is controlled based on the total manipulated variable (u). Verfahren nach einem der Ansprüche 1-3, wobei die optische Komponente (102) ein Trägerelement (108) mit mindestens einer Flüssigkeitsleitung (110), insbesondere Kühlleitung, umfasst, und die erfasste Störgröße (d) eine Änderung eines Drucks (D) einer Flüssigkeit (112) in der mindestens einen Flüssigkeitsleitung (110) aufweist.Procedure according to one of the Claims 1 - 3 , wherein the optical component (102) comprises a carrier element (108) with at least one liquid line (110), in particular a cooling line, and the detected disturbance variable (d) is a change in a pressure (D) of a liquid (112) in the at least one liquid line (110). Verfahren nach Anspruch 4, wobei die Änderung des Drucks (D) der Flüssigkeit (112) eine in der Flüssigkeit (112) transportierte Druckwelle, eine periodische Druckschwankung der Flüssigkeit (112) und/oder eine Druckschwankung der Flüssigkeit (112) mit einer Frequenz im Bereich von 1 Hz und 2 kHz aufweist.Procedure according to Claim 4 , wherein the change in the pressure (D) of the liquid (112) is a pressure wave transported in the liquid (112), a periodic pressure fluctuation of the liquid (112) and / or a pressure fluctuation of the liquid (112) with a frequency in the range of 1 Hz and 2 kHz. Verfahren nach Anspruch 4 oder 5, wobei die Änderung des Drucks (D) der Flüssigkeit (112) eine strömungsinduzierte Vibration der optischen Komponente (102) verursacht.Procedure according to Claim 4 or 5 , wherein the change in pressure (D) of the liquid (112) causes a flow-induced vibration of the optical component (102). Verfahren nach einem der Ansprüche 1-3, wobei die Störgröße (d) eine Änderung eines magnetischen Feldes (B) und/oder eines elektromagnetischen Feldes (BE) in einer Umgebung (U) der optischen Komponente (102) aufweist.Procedure according to one of the Claims 1 - 3 , wherein the disturbance variable (d) has a change in a magnetic field (B) and / or an electromagnetic field (BE) in an environment (U) of the optical component (102). Verfahren nach einem der Ansprüche 1-3, wobei die Störgröße (d) eine Bewegung weiterer von der optischen Komponente (102) verschiedener Komponenten (8, 14) und/oder Elemente der Lithographieanlage (1) aufweist.Procedure according to one of the Claims 1 - 3 , wherein the disturbance variable (d) has a movement of further components (8, 14) and / or elements of the lithography system (1) that are different from the optical component (102). Verfahren nach einem der Ansprüche 1-8, wobei der Sollwert (r) der Position (P) der optischen Komponente (102) einer Trajektorie folgt.Procedure according to one of the Claims 1 - 8th , whereby the setpoint (r) follows the position (P) of the optical component (102) of a trajectory. Verfahren nach einem der Ansprüche 1-9, wobei die erste Stellgröße (u'r) basierend auf der Abweichung (e) des Istwerts (y) der Position (P) der optischen Komponente (102) von dem Sollwert (r) und zusätzlich basierend auf einer Vorsteuerung (318), die eine zeitliche Änderung des Sollwerts (r) berücksichtigt, ermittelt wird.Procedure according to one of the Claims 1 - 9 , wherein the first manipulated variable (u' r ) is based on the deviation (e) of the actual value (y) of the position (P) of the optical component (102) from the setpoint (r) and additionally based on a precontrol (318), which a temporal change in the setpoint (r) is taken into account. Verfahren nach einem der Ansprüche 1-10, die Schritte aufweisend: Erfassen (S4) der Störgröße (d), und Vorhersagen (S5) der Änderung der Position (P) der optischen Komponente (102) aufgrund der erfassten Störgröße (d).Procedure according to one of the Claims 1 - 10 , comprising the steps: detecting (S4) the disturbance variable (d), and predicting (S5) the change in the position (P) of the optical component (102) due to the detected disturbance variable (d). Verfahren nach Anspruch 11, wobei das Vorhersagen der Änderung der Position (P) der optischen Komponente (102) aufgrund der erfassten Störgröße (d) ein Vorhersagen mithilfe eines vorermittelten Modells (400), einer Simulation und/oder einer Berechnung basierend auf der erfassten Störgröße (d) umfasst.Procedure according to Claim 11 , wherein predicting the change in the position (P) of the optical component (102) due to the detected disturbance (d) includes predicting using a predetermined model (400), a simulation and / or a calculation based on the detected disturbance (d). . Regelungsvorrichtung (128) zum Regeln einer Position (P) einer optischen Komponente (102) einer Lithographieanlage (1), aufweisend: eine erste Ermittlungseinrichtung (130, 302) zum Ermitteln einer ersten Stellgröße (ur) basierend auf einer Abweichung (e) eines Istwerts (y) von einem Sollwert (r) der Position (P) der optischen Komponente (102), eine zweite Ermittlungseinrichtung (132, 306) zum Ermitteln einer zweiten Stellgröße (us) zur Störgrößenaufschaltung basierend auf einer erfassten Störgröße (d) und einer vorhergesagten Änderung der Position (P) der optischen Komponente (102) aufgrund der erfassten Störgröße (d), und eine Ansteuereinrichtung (136) zum Ansteuern einer Aktoreinrichtung (114) der optischen Komponente (102) basierend auf der ersten und zweiten Stellgröße (ur, us).Control device (128) for controlling a position (P) of an optical component (102) of a lithography system (1), comprising: a first determination device (130, 302) for determining a first manipulated variable (u r ) based on a deviation (e). Actual value (y) of a setpoint (r) of the position (P) of the optical component (102), a second determination device (132, 306) for determining a second manipulated variable (u s ) for the disturbance variable feed-in based on a detected disturbance variable (d) and a predicted change in the position (P) of the optical component (102) due to the detected disturbance variable (d), and a control device (136) for controlling an actuator device (114) of the optical component (102) based on the first and second manipulated variables (u r , u s ). Positioniersystem (100) zum regelbasierten Positionieren einer optischen Komponente (102) einer Lithographieanlage (1), aufweisend: eine optische Komponente (102), eine Aktoreinrichtung (114) zum Bewegen der optischen Komponente (102), und eine Regelungsvorrichtung (128) nach Anspruch 13.Positioning system (100) for rule-based positioning of an optical component (102) of a lithography system (1), comprising: an optical component (102), an actuator device (114) for moving the optical component (102), and a control device (128). Claim 13 . Lithographieanlage (1), insbesondere EUV-Lithographieanlage, mit einer Regelungsvorrichtung (128) nach Anspruch 13 oder einem Positioniersystem nach Anspruch 14.Lithography system (1), in particular EUV lithography system, with a control device (128). Claim 13 or a positioning system Claim 14 .
DE102022206832.7A 2022-07-05 2022-07-05 METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM Pending DE102022206832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102022206832.7A DE102022206832A1 (en) 2022-07-05 2022-07-05 METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM
PCT/EP2023/068423 WO2024008732A1 (en) 2022-07-05 2023-07-04 Method for controlling a position of an optical component of a lithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022206832.7A DE102022206832A1 (en) 2022-07-05 2022-07-05 METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM

Publications (1)

Publication Number Publication Date
DE102022206832A1 true DE102022206832A1 (en) 2024-01-11

Family

ID=87136893

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022206832.7A Pending DE102022206832A1 (en) 2022-07-05 2022-07-05 METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM

Country Status (2)

Country Link
DE (1) DE102022206832A1 (en)
WO (1) WO2024008732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008732A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Method for controlling a position of an optical component of a lithography system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573978B1 (en) 1999-01-26 2003-06-03 Mcguire, Jr. James P. EUV condenser with non-imaging optics
US20060132747A1 (en) 2003-04-17 2006-06-22 Carl Zeiss Smt Ag Optical element for an illumination system
DE102008009600A1 (en) 2008-02-15 2009-08-20 Carl Zeiss Smt Ag Facet mirror e.g. field facet mirror, for use as bundle-guiding optical component in illumination optics of projection exposure apparatus, has single mirror tiltable by actuators, where object field sections are smaller than object field
US20180074303A1 (en) 2015-04-14 2018-03-15 Carl Zeiss Smt Gmbh Imaging optical unit and projection exposure unit including same
DE102017220586A1 (en) 2017-11-17 2019-05-23 Carl Zeiss Smt Gmbh Pupil facet mirror, illumination optics and optical system for a projection exposure apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191396B2 (en) * 2014-06-19 2019-01-29 Asml Netherlands B.V. Lithographic apparatus, object positioning system and device manufacturing method
DE102017200793A1 (en) * 2017-01-19 2018-01-11 Carl Zeiss Smt Gmbh Mirror system and projection exposure system
DE102022206832A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh METHOD FOR CONTROLLING A POSITION OF AN OPTICAL COMPONENT OF A LITHOGRAPHY SYSTEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573978B1 (en) 1999-01-26 2003-06-03 Mcguire, Jr. James P. EUV condenser with non-imaging optics
US20060132747A1 (en) 2003-04-17 2006-06-22 Carl Zeiss Smt Ag Optical element for an illumination system
EP1614008B1 (en) 2003-04-17 2009-12-02 Carl Zeiss SMT AG Optical element for a lighting system
DE102008009600A1 (en) 2008-02-15 2009-08-20 Carl Zeiss Smt Ag Facet mirror e.g. field facet mirror, for use as bundle-guiding optical component in illumination optics of projection exposure apparatus, has single mirror tiltable by actuators, where object field sections are smaller than object field
US20180074303A1 (en) 2015-04-14 2018-03-15 Carl Zeiss Smt Gmbh Imaging optical unit and projection exposure unit including same
DE102017220586A1 (en) 2017-11-17 2019-05-23 Carl Zeiss Smt Gmbh Pupil facet mirror, illumination optics and optical system for a projection exposure apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUNZE, Jan: Störgrößenaufschaltung. In: Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen. 12., überarbeitete Auflage. Berlin: Springer, 2020. S. 596-599. – ISBN 978-3-662-60745-9 DOI: https://doi.org/10.1007/978-3-662-60746-6

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008732A1 (en) 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Method for controlling a position of an optical component of a lithography system

Also Published As

Publication number Publication date
WO2024008732A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
DE102013204391B3 (en) Projection lens for imaging projection lens pattern from object plane into image plane, has field point in field plane of outgoing beam illuminating manipulator surface with sub-aperture, and manipulation system comprising manipulator
DE102015226531A1 (en) Imaging optics for imaging an object field in an image field and projection exposure apparatus with such an imaging optics
KR101388330B1 (en) Imaging optics and projection exposure installation for microlithography with an imaging optics of this type
TW201508411A (en) Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type
US11181826B2 (en) Projection exposure method and projection exposure apparatus for microlithography
DE102009048553A1 (en) Catadioptric projection objective with deflecting mirrors and projection exposure method
DE102015209051B4 (en) Projection objective with wavefront manipulator as well as projection exposure method and projection exposure apparatus
WO2024008732A1 (en) Method for controlling a position of an optical component of a lithography system
WO2018134215A1 (en) Imaging optical unit for guiding euv imaging light, and adjustment arrangement for such an imaging optical unit
WO2024068138A1 (en) Cooling device for cooling a position-sensitive component of a lithography system
DE102017202863A1 (en) Method and device for determining a position and / or orientation of an optical element
DE102021206427A1 (en) Projection exposure system for semiconductor lithography
WO2018114816A1 (en) Method for positioning a component of an optical system
DE102021210470B3 (en) Projection exposure system for semiconductor lithography
DE102023208854A1 (en) COOLING DEVICE FOR COOLING A POSITION-SENSITIVE COMPONENT OF A LITHOGRAPHY SYSTEM
JP2005183983A (en) Diffraction grating patch structure, lithographic apparatus, method of testing, method of manufacturing device, and device manufactured by the method
DE102023207047A1 (en) COOLING LINE DEVICE FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR CONTROLLING A PRESSURE OF A COOLING LIQUID IN A COOLING LINE OF A LITHOGRAPHY SYSTEM
DE102023200212A1 (en) Projection exposure system and method for manipulating vibrations
DE102023208302A1 (en) SYSTEM FOR A LITHOGRAPHY SYSTEM AND LITHOGRAPHY SYSTEM
DE102023200423A1 (en) COOLING DEVICE FOR A LITHOGRAPHY SYSTEM, LITHOGRAPHY SYSTEM AND METHOD FOR DAMPENING A PRESSURE Fluctuation of a LIQUID IN A LIQUID LINE OF A COOLING DEVICE OF A LITHOGRAPHY SYSTEM
US9459539B2 (en) Imaging optical unit for a projection exposure apparatus
DE102023203580A1 (en) Coolant line for providing a fluid for temperature control of components
DE102021202849A1 (en) Projection exposure system for semiconductor lithography
DE102022205758A1 (en) OPTICAL SYSTEM AND PROCESS
DE102016208006A1 (en) Optical arrangement, lithography system and method for changing a numerical aperture

Legal Events

Date Code Title Description
R012 Request for examination validly filed