WO2016107292A1 - 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法 - Google Patents

一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法 Download PDF

Info

Publication number
WO2016107292A1
WO2016107292A1 PCT/CN2015/094340 CN2015094340W WO2016107292A1 WO 2016107292 A1 WO2016107292 A1 WO 2016107292A1 CN 2015094340 W CN2015094340 W CN 2015094340W WO 2016107292 A1 WO2016107292 A1 WO 2016107292A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
reverse osmosis
osmosis membrane
methacrylate
acrylate
Prior art date
Application number
PCT/CN2015/094340
Other languages
English (en)
French (fr)
Inventor
胡群辉
路宏伟
彭博
喻慧
贺攀
王进
刘旦
黄涛
Original Assignee
湖南澳维环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南澳维环保科技有限公司 filed Critical 湖南澳维环保科技有限公司
Publication of WO2016107292A1 publication Critical patent/WO2016107292A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Definitions

  • the invention relates to a hydrophilic anti-contamination polyamide composite reverse osmosis membrane and a preparation method thereof, and belongs to the technical field of water treatment.
  • Reverse osmosis membrane separation technology has high separation efficiency, low energy consumption and high selectivity. It has been widely used in seawater desalination, separation and concentration, drinking water purification, wastewater recycling and other fields.
  • the polyamide composite membrane has the advantages of high rejection rate, large flux, excellent chemical stability, wide pH range (4-11), low operating pressure requirements, etc., and has become a mainstream product in the field of reverse osmosis membranes.
  • the polyamide composite membrane also has serious problems of membrane fouling in the application process, especially in the fields of high-pollution water treatment, water reuse and chemical separation, which seriously hinders the further popularization and application of the composite membrane.
  • hydrophilic modification methods in the prior art are mainly divided into two categories: one is to apply a hydrophilic anti-contamination layer on the surface of the polyamide composite membrane by surface coating, such as CN 1213985A on the surface of the reverse osmosis membrane.
  • PVA coated, electrically neutral can inhibit the electrostatic adsorption of membrane-contaminated substances with charge in water;
  • CN 1923348A uses a lower saponification degree (75%) PVA aqueous solution to react with a crosslinking agent to prepare a cross-linked PVA layer, which overcomes the above
  • the patent has the disadvantages of difficult operation and low strength; however, in the surface coating method, since the hydrophilic and pollution-resistant layer and the polyamide functional layer have no chemical bond, the hydrophilic anti-contamination layer is used during the use of the film material. It gradually dissolves in water and falls off, eventually losing the protective layer.
  • a hydrophilic polymer molecular brush is grafted onto the surface of the polyamide composite membrane by covalent grafting, and CN 101439271A uses N-hydroxythiosuccinimide sodium salt or N-hydroxythiosuccinyl group.
  • An imide is an activated ester method of an intermediate, grafting a -(CH 2 CH 2 O)n-polymer hydrophilic chain to a polyamide skin layer; CN 1353626A grafts a polyalkylene oxide group onto a crosslinked polyamide surface, With improved anti-fouling performance.
  • the number of hydrophilic polymer molecular brushes which are covalently grafted on the surface is limited, and a dense hydrophilic coating cannot be formed, resulting in a composite.
  • the membrane is poor in hydrophilicity and low in anti-pollution ability.
  • Another patent application CN101530751 relates to a polymer composite membrane structure, in particular to a self-cleaning polymer reverse osmosis membrane.
  • the self-cleaning reverse osmosis membrane of the application is characterized in that a porous support membrane is polycondensed by a polycondensation of an aromatic polyamine and a polybasic acid chloride to form a polyamide-based ultra-thin desalting layer, and a layer is laminated on the composite desalting layer by a solution coating technique.
  • a temperature sensitive functional polymer material having a low critical transition temperature.
  • the temperature sensitive functional polymer material The polymer formed by copolymerization of various monomers such as hydroxyethyl methacrylate is based on the principle that the affinity and hydrophobic properties of the temperature-sensitive copolymer under different temperature conditions can be used to clean the surface of the film. Therefore, such a reverse osmosis membrane still belongs to the above-mentioned coated film material, and the obtained reverse osmosis membrane still inevitably contains the common disadvantage of the above-mentioned coated reverse osmosis membrane, that is, hydrophilic resistance during use of the membrane material. The contaminated layer gradually dissolves in water and falls off, eventually losing the protective layer.
  • the technical problem to be solved by the present invention is to overcome the disadvantages of the prior art described above and to provide a hydrophilic anti-contamination polyamide composite reverse osmosis membrane and a preparation method thereof.
  • the technical solution adopted by the present invention to solve the technical problem is as follows:
  • the present invention provides a hydrophilic anti-contamination polyamide composite reverse osmosis membrane comprising a porous support layer, a crosslinked polyamide layer, and a hydrophilic group grafted onto the crosslinked polyamide layer by a radical polymerization reaction
  • An acrylate or methacrylate structural unit, and the hydrophilic group is an amino group and/or a hydroxyl group.
  • the free radical polymerization graft modification is a modification method starting from a monomer, and a monomer having different characteristics is brought into contact with a radical active reaction site on the surface of the film to be polymerized to form a graft layer.
  • the graft modification method can select copolymerization grafting monomers with different characteristics according to different modification requirements, and has the advantages of higher grafting density and controllable grafting thickness.
  • the acrylate-containing compound containing a hydrophilic group is one or more selected from the group consisting of hydroxyethyl acrylate (HEA), hydroxypropyl acrylate (HPA), and dimethylaminoethyl acrylate (DMAEA).
  • the methacrylate compound containing a hydrophilic group is selected from the group consisting of hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), dimethylaminoethyl methacrylate (DMAEMA), and methyl group.
  • HEMA hydroxyethyl methacrylate
  • HPMA hydroxypropyl methacrylate
  • DMAEMA dimethylaminoethyl methacrylate
  • DEAEMA diethylaminoethyl acrylate
  • the acrylate or methacrylate compound containing a hydrophilic group is hydroxyethyl methacrylate (HEMA), hydroxyethyl acrylate (HEA) or dimethylaminoethyl methacrylate. (DMAEMA).
  • the porous support layer is a polysulfone membrane.
  • the reverse osmosis membrane is a flat membrane, a hollow fiber membrane, or a tubular membrane.
  • the present invention also provides a method for preparing the reverse osmosis membrane, comprising: preparing a film containing a crosslinked polyamide layer on a porous support film by an interfacial polymerization method, a solution containing an initiator, and containing a water-soluble acrylate
  • the solution of the methacrylate-based monomer is sequentially contacted with the surface of the crosslinked polyamide layer of the film, and then heat-treated to obtain a hydrophilic acrylate structural unit or a methacrylate structural unit graft modified Contaminated polyamide composite reverse osmosis membrane.
  • the method comprises the following steps,
  • Step A forming a crosslinked polyamide layer: repeatedly rinsing the surface of the porous support film with deionized water, and then purging the membrane surface with nitrogen to no droplets; preparing a metaphenylene diamine having a mass concentration of 1.5 to 3.5%, quality An aqueous solution of triethylamine having a concentration of 1.0 to 1.5%, camphorsulfonic acid having a mass concentration of 1.5 to 2.5%, sodium dodecylsulfonate having a concentration of 0 to 1.0%, The surface of the porous support membrane is contacted with the aqueous phase solution for 20-40 s, and then the membrane surface is purged with nitrogen until no droplets are formed; a n-hexane solution containing a concentration of 0.1 to 0.2% of trimesoyl chloride is prepared as an oil phase.
  • the surface of the porous support membrane impregnated with the aqueous phase solution is contacted with the above oil phase solution for 10 to 30 s, and the organic solvent is evaporated and dried at 70 to 100 ° C to obtain a crosslinked polyamide layer on the porous support film;
  • Step B obtaining the hydrophilic anti-contamination polyamide composite reverse osmosis membrane: rinsing the surface of the crosslinked polyamide layer obtained in the step A with deionized water, and then purging the membrane surface with nitrogen to no droplet; An aqueous solution of the initiator having a concentration of 0.05 to 0.1%, the surface of the crosslinked polyamide layer is contacted with the above initiator solution for 5 to 10 minutes, and then the membrane surface is purged with nitrogen until no droplets are formed; the preparation has a mass concentration of 5 to 10%.
  • the initiator is ammonium persulfate, sodium persulfate, potassium persulfate, azobisisobutylphosphonium hydrochloride, azobisisobutyrazoline hydrochloride, azobiscyanovaleric acid, At least one of azodiisopropylimidazolines; more preferably the initiator is ammonium persulfate, sodium persulfate or potassium persulfate.
  • the invention has the beneficial effects that the invention forms a hydrophilic molecular brush on the surface of the polyamide composite film by the method of free radical polymerization grafting, and the graft density is higher, and the prepared polyamide composite film has better Hydrophilic and anti-pollution ability.
  • the preparation method is simple and easy to operate, has short process flow and low cost, and can realize industrial scale production.
  • Example 1 is a surface scanning electron micrograph of a crosslinked polyamide composite reverse osmosis membrane prepared in Comparative Example 1;
  • Example 2 is a scanning electron micrograph of the surface of the hydrophilic anti-contaminant polyamide composite reverse osmosis membrane prepared in Example 1.
  • the surface of the polysulfone membrane was washed repeatedly with deionized water, and the membrane surface was purged with nitrogen until no droplets were formed.
  • the surface of the polysulfone membrane was contacted with the above aqueous phase solution for 30 s, and then the membrane surface was purged with nitrogen until no droplets were formed; a n-hexane solution containing a concentration of 0.12% of trimesoyl chloride was prepared, and the polysulfone immersed in the aqueous phase solution was prepared.
  • the surface of the membrane was contacted with the above oil phase solution for 15 s. After the organic solvent was evaporated, the mixture was heat-treated at 80 ° C to obtain a crosslinked polyamide composite reverse osmosis membrane.
  • the membrane was tested on a cross-flow membrane test bench.
  • the initial flux and desalination rate of the membrane were tested under the test conditions of 2000 ppm NaCl and 200 ppm milk powder aqueous solution, 225 psi operating pressure, temperature 25 ° C, and pH 6.5-7.5. After running for 4 hours, the water flux of the above NaCl and milk powder aqueous solution was tested again, and the results are shown in Table 1.
  • the crosslinked polyamide composite reverse osmosis membrane of Comparative Example 1 is used as a crosslinked polyamide composite reverse osmosis membrane to be grafted;
  • the surface of the crosslinked polyamide composite reverse osmosis membrane (crosslinked polyamide layer) to be grafted is washed with deionized water, and then the membrane surface is purged with nitrogen until no droplets are formed; an ammonium persulfate aqueous solution having a mass concentration of 0.07% is prepared.
  • the surface of the crosslinked polyamide composite reverse osmosis membrane to be grafted was contacted with the above initiator solution for 7 min, and then the membrane surface was purged with nitrogen until no droplets were formed; the monomer containing hydroxyethyl methacrylate having a mass concentration of 7.0% was prepared.
  • the aqueous solution of (HEMA) was contacted with the above solution for 10 min on the surface of the crosslinked polyamide composite reverse osmosis membrane containing the initiator, and heat-treated at 75 ° C to obtain a hydrophilic anti-contaminant polyamide composite reverse osmosis membrane.
  • the hydrophilic anti-contamination polyamide composite reverse osmosis membrane was prepared in the same manner as in Example 1, except that the contact time of the surface of the crosslinked polyamide composite reverse osmosis membrane containing the initiator with the monomer solution was 5 min.
  • the hydrophilic anti-contamination polyamide composite reverse osmosis membrane was prepared in the same manner as in Example 1, except that the contact time of the surface of the crosslinked polyamide composite reverse osmosis membrane containing the initiator with the monomer solution was 20 min.
  • the hydrophilic anti-contamination polyamide composite reverse osmosis membrane was prepared in the same manner as in Example 1, except that the water-soluble monomer was hydroxyethyl acrylate (HEA).
  • HSA hydroxyethyl acrylate
  • the hydrophilic anti-contamination polyamide composite reverse osmosis membrane was prepared in the same manner as in Example 1, except that the water-soluble monomer was dimethylaminoethyl methacrylate (DMAEMA).
  • DMAEMA dimethylaminoethyl methacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种亲水性抗污染聚酰胺复合反渗透膜,包括多孔支撑层、交联聚酰胺层和通过自由基聚合反应接枝于交联聚酰胺层上的含有亲水基团的丙烯酸酯类或甲基丙烯酸酯类结构单元,且亲水基团为氨基和/或羟基;其制备方法,包括,通过界面聚合法在多孔支撑膜上制备得到含交联聚酰胺层的膜,将含有引发剂的溶液、和含有水溶性丙烯酸酯类或甲基丙烯酸酯类单体的溶液依次与该膜的交联聚酰胺层表面接触,再经热处理得到亲水性抗污染聚酰胺复合反渗透膜。

Description

一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法 技术领域
本发明涉及一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法,属于水处理技术领域。
背景技术
反渗透膜分离技术具有高效率、低能耗、高选择性等分离特性,已被广泛应用于海水淡化、分离浓缩、饮用水净化、废水资源化等领域。聚酰胺复合膜具有截留率高,通量较大,化学稳定性优良,PH范围宽(4-11),操作压力要求低等优点,已经成为反渗透膜领域的主流产品。但是聚酰胺复合膜在应用过程中也存在膜污染严重的问题,尤其是在高污染水处理、水回用以及化工分离等领域中的应用,严重阻碍了复合膜的进一步推广应用。
为了提高聚酰胺复合膜的抗污染性,通常需要对复合膜表面层上进行亲水化改性。现有技术中亲水改性方法主要分为两类:一是通过表面涂覆的方法在聚酰胺复合膜表面涂覆一层亲水性抗污染层,如CN 1213985A在反渗透膜的表面上涂覆PVA,具有电中性,可抑制水中具有电荷的膜污染物质的静电吸附;CN 1923348A用皂化度较低(75%)的PVA水溶液与交联剂反应制备交联PVA层,克服了上述专利中操作困难、强度低等缺点;但是表面涂覆的方法中由于这种亲水性耐污染层与聚酰胺功能层没有化学键的作用力,在膜材料的使用过程中亲水性抗污染层逐渐溶于水而脱落,最终失去保护层的作用。二是通过共价接枝的方法将具有亲水性的聚合物分子刷接枝到聚酰胺复合膜表面,CN 101439271A采用N-羟基硫代琥珀酰亚胺钠盐或N-羟基硫代琥珀酰亚胺为中间体的活化酯法,对聚酰胺皮层接枝-(CH2CH2O)n-高分子亲水链;CN 1353626A将聚环氧烷基团接枝于交联聚酰胺表面,具有改善的防积垢性能。但是由于聚酰胺层表面残留的活性基团的量有限,且活性较低,导致表面共价接枝的亲水性聚合物分子刷的数量也有限,无法形成致密的亲水涂层,导致复合膜亲水性差,抗污染能力低。
另有专利申请CN101530751中涉及一种高分子复合膜结构,具体是指一种能自我清洁的高分子反渗透膜。该申请的自清洁型反渗透膜的特征在于多孔支撑膜上通过芳香族多元胺与多元酰氯界面缩聚复合有一层聚酰胺类超薄脱盐层,在复合脱盐层上通过溶液涂覆技术复合有一层具有低临界转变温度的温敏性功能高分子材料。所述温敏性功能高分子材料 为由甲基丙烯酸羟乙酯等多种单体共聚形成的聚合物,其原理是利用温敏性共聚物在不同温度条件下的亲、疏水性能转换达到清洁膜表面的作用。因此,这种反渗透膜仍然属于上述涂覆类膜材料,所得的反渗透膜仍然不可避免地含带上述涂覆类反渗透膜的共同缺点,即在膜材料的使用过程中亲水性抗污染层逐渐溶于水而脱落,最终失去保护层的作用。
因此,本领域还需要一种具备持续高抗污染性的聚酰胺复合反渗透膜。
发明内容
本发明要解决的技术问题是:克服上述现有技术的缺点,提供一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法。本发明为解决该技术问题采用的技术方案如下:
本发明提供一种亲水性抗污染聚酰胺复合反渗透膜,包括多孔支撑层、交联聚酰胺层和通过自由基聚合反应接枝于所述交联聚酰胺层上的含有亲水基团的丙烯酸酯类或甲基丙烯酸酯类结构单元,且所述亲水基团为氨基和/或羟基。
自由基聚合接枝改性是一种从单体出发的改性方法,将具有不同特性的单体与膜表面的自由基活性反应位点接触而发生聚合反应,形成接枝层。这种接枝改性方法可以根据不同改性要求选择不同特性的单体进行共聚接枝,具有接枝密度更高,接枝厚度可控的优点。
优选地,含有亲水基团的丙烯酸酯类化合物为选自丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)和丙烯酸二甲基氨基乙酯(DMAEA)中的一种或多种,含有亲水基团的甲基丙烯酸酯类化合物为选自甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸羟丙酯(HPMA)、甲基丙烯酸二甲基氨基乙酯(DMAEMA)和甲基丙烯酸二乙氨基乙酯(DEAEMA)中的一种或多种。更为优选地,含有亲水基团的丙烯酸酯类化合物或甲基丙烯酸酯类化合物为甲基丙烯酸羟乙酯(HEMA)、丙烯酸羟乙酯(HEA)或者甲基丙烯酸二甲基氨基乙酯(DMAEMA)。
在一种具体的实施方式中,所述多孔支撑层为聚砜膜。在另一种具体的实施方式中,所述反渗透膜为平板膜、中空纤维膜或者管式膜。
本发明还提供一种所述反渗透膜的制备方法,包括,通过界面聚合法在多孔支撑膜上制备得到含交联聚酰胺层的膜,将含有引发剂的溶液、和含有水溶性丙烯酸酯类或甲基丙烯酸酯类单体的溶液依次与该膜的交联聚酰胺层表面接触,再经热处理得到亲水性丙烯酸酯类结构单元或甲基丙烯酸酯类结构单元接枝改性的抗污染聚酰胺复合反渗透膜。
优选的,所述方法包括如下步骤,
步骤A,形成交联聚酰胺层:用去离子水反复冲洗多孔支撑膜的表面,再用氮气吹扫膜面至无液滴;配制含有质量浓度为1.5~3.5%的间苯二胺、质量浓度为1.0~1.5%的三乙胺、质量浓度为1.5~2.5%的樟脑磺酸、质量浓度为0~1.0%的十二烷基磺酸钠的水溶液, 将所述多孔支撑膜表面与上述水相溶液接触20~40s,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.1~0.2%的均苯三甲酰氯的正己烷溶液为油相溶液,将浸含有水相溶液的多孔支撑膜表面与上述油相溶液接触10~30s,有机溶剂挥发干后于70~100℃下热处理得到多孔支撑膜上的交联聚酰胺层;
步骤B,得到所述亲水性抗污染聚酰胺复合反渗透膜:用去离子水冲洗步骤A中得到的交联聚酰胺层表面,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.05~0.1%的引发剂水溶液,将交联聚酰胺层表面与上述引发剂溶液接触5~10min,再用氮气吹扫膜面至无液滴;配制含有质量浓度为5~10%的水溶性丙烯酸酯类或甲基丙烯酸酯类单体,将含有引发剂的交联聚酰胺层表面与上述溶液接触5~20min,于60~85℃下热处理得到所述亲水性抗污染聚酰胺复合反渗透膜。
优选地,所述引发剂为过硫酸铵、过硫酸钠、过硫酸钾、偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉中至少一种;更优选所述引发剂为过硫酸铵、过硫酸钠或者过硫酸钾。
本发明的有益效果是:本发明通过自由基聚合接枝的方法在聚酰胺复合膜的表面形成一层亲水性分子刷,其接枝密度更高,制备的聚酰胺复合膜具有更好的亲水性和抗污染能力。其制备方法简单易操作、工艺流程短、成本低,可实现工业化规模生产。
附图说明
图1为对比例1中制备的交联聚酰胺复合反渗透膜的表面扫描电镜图;
图2为实施例1中制备的亲水性抗污染聚酰胺复合反渗透膜的表面扫描电镜图。
具体实施方式
下面结合实施例和附图对本发明作进一步的详细说明,但本发明的保护范围不仅局限于实施例。
对比例1
用去离子水反复冲洗聚砜膜表面,再用氮气吹扫膜面至无液滴。配制含有质量浓度为3.0%的间苯二胺、质量浓度为1.1%的三乙胺、质量浓度为2.0%的樟脑磺酸、质量浓度为0.5%的十二烷基磺酸钠的水溶液,将聚砜膜表面与上述水相溶液接触30s,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.12%的均苯三甲酰氯的正己烷溶液,将浸含有水相溶液的聚砜膜表面与上述油相溶液接触15s,待有机溶剂挥发干后,于80℃下热处理得到交联聚酰胺复合反渗透膜。
取膜片在错流式膜片检测台上测试,在2000ppmNaCl和200ppm奶粉的水溶液、225psi操作压力、温度25℃、pH值6.5~7.5的测试条件下,测试膜片的初始通量和脱盐率,运行4小时后再测试上述NaCl和奶粉水溶液的水通量,所得结果见表1。
实施例1
以对比例1的交联聚酰胺复合反渗透膜作为待接枝的交联聚酰胺复合反渗透膜;
用去离子水冲洗待接枝交联聚酰胺复合反渗透膜(交联聚酰胺层)表面,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.07%的过硫酸铵水溶液,将待接枝的交联聚酰胺复合反渗透膜表面与上述引发剂溶液接触7min,再用氮气吹扫膜面至无液滴;配制含有质量浓度为7.0%的单体甲基丙烯酸羟乙酯(HEMA)的水溶液,将含有引发剂的交联聚酰胺复合反渗透膜表面与上述溶液接触10min,于75℃下热处理得到亲水性抗污染聚酰胺复合反渗透膜。
测试方法与对比例1相同,所得结果见表1。
实施例2
亲水性抗污染聚酰胺复合反渗透膜的制备方法与实施例1相同,但含有引发剂的交联聚酰胺复合反渗透膜表面与单体溶液的接触时间为5min。
测试方法与对比例1相同,所得结果见表1。
实施例3
亲水性抗污染聚酰胺复合反渗透膜的制备方法与实施例1相同,但含有引发剂的交联聚酰胺复合反渗透膜表面与单体溶液的接触时间为20min。
测试方法与对比例1相同,所得结果见表1。
实施例4
亲水性抗污染聚酰胺复合反渗透膜的制备方法与实施例1相同,但水溶性单体为丙烯酸羟乙酯(HEA)。
测试方法与对比例1相同,所得结果见表1。
实施例5
亲水性抗污染聚酰胺复合反渗透膜的制备方法与实施例1相同,但水溶性单体为甲基丙烯酸二甲基氨基乙酯(DMAEMA)。
测试方法与对比例1相同,所得结果见表1。
表1
Figure PCTCN2015094340-appb-000001
对比图1和图2可以明显看出,实施例1中膜经过步骤B的自由基聚合接枝改性,膜表面反应生成了一层亲水性聚合物分子刷。
由表1可见,实施例1-5的膜表面接触角小于对比例的膜表面接触角,说明通过本发明所述方法制备的亲水性抗污染反渗透膜的亲水性优于传统聚酰胺复合反渗透膜。
污染液测试结果发现,实施例1-5中膜的初始通量稍低于对比例;但是运行4小时后,实施例1-5中膜的通量衰减率仅为10.2-13.1%,远小于对比例1中膜的通量衰减率34.5%,且运行4小时后实施例1-5中膜的通量远高于对比例1中膜的通量,以上结果表明本发明所述亲水性抗污染聚酰胺复合反渗透膜的抗污染性明显优于传统聚酰胺复合反渗透膜。

Claims (9)

  1. 一种亲水性抗污染聚酰胺复合反渗透膜,包括多孔支撑层、交联聚酰胺层和通过自由基聚合反应接枝于所述交联聚酰胺层上的含有亲水基团的丙烯酸酯类或甲基丙烯酸酯类结构单元,且所述亲水基团为氨基和/或羟基。
  2. 根据权利要求1所述的反渗透膜,其特征在于,含有亲水基团的丙烯酸酯类化合物为选自丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)和丙烯酸二甲基氨基乙酯(DMAEA)中的一种或多种,含有亲水基团的甲基丙烯酸酯类化合物为选自甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸羟丙酯(HPMA)、甲基丙烯酸二甲基氨基乙酯(DMAEMA)和甲基丙烯酸二乙氨基乙酯(DEAEMA)中的一种或多种。
  3. 根据权利要求2所述的反渗透膜,其特征在于,含有亲水基团的丙烯酸酯类化合物或甲基丙烯酸酯类化合物为甲基丙烯酸羟乙酯(HEMA)、丙烯酸羟乙酯(HEA)或者甲基丙烯酸二甲基氨基乙酯(DMAEMA)。
  4. 根据权利要求1所述的反渗透膜,其特征在于,所述多孔支撑层为聚砜膜。
  5. 根据权利要求1所述的反渗透膜,其特征在于,所述反渗透膜为平板膜、中空纤维膜或者管式膜。
  6. 根据权利要求1~5中任意一项所述反渗透膜的制备方法,包括,通过界面聚合法在多孔支撑膜上制备得到含交联聚酰胺层的膜,将含有引发剂的溶液、和含有水溶性丙烯酸酯类或甲基丙烯酸酯类单体的溶液依次与该膜的交联聚酰胺层表面接触,再经热处理得到亲水性丙烯酸酯类结构单元或甲基丙烯酸酯类结构单元接枝改性的抗污染聚酰胺复合反渗透膜。
  7. 根据权利要求6所述的制备方法,其特征在于,所述方法包括如下步骤,
    步骤A,形成交联聚酰胺层:用去离子水反复冲洗多孔支撑膜的表面,再用氮气吹扫膜面至无液滴;配制含有质量浓度为1.5~3.5%的间苯二胺、质量浓度为1.0~1.5%的三乙胺、质量浓度为1.5~2.5%的樟脑磺酸、质量浓度为0~1.0%的十二烷基磺酸钠的水溶液,将所述多孔支撑膜表面与上述水相溶液接触20~40s,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.1~0.2%的均苯三甲酰氯的正己烷溶液为油相溶液,将浸含有水相溶液的多孔支撑膜表面与上述油相溶液接触10~30s,有机溶剂挥发干后于70~100℃下热处理得到多孔支撑膜上的交联聚酰胺层;
    步骤B,得到所述亲水性抗污染聚酰胺复合反渗透膜:用去离子水冲洗步骤A中得到 的交联聚酰胺层表面,再用氮气吹扫膜面至无液滴;配制含有质量浓度为0.05~0.1%的引发剂水溶液,将交联聚酰胺层表面与上述引发剂溶液接触5~10min,再用氮气吹扫膜面至无液滴;配制含有质量浓度为5~10%的水溶性丙烯酸酯类或甲基丙烯酸酯类单体,将含有引发剂的交联聚酰胺层表面与上述溶液接触5~20min,于60~85℃下热处理得到所述亲水性抗污染聚酰胺复合反渗透膜。
  8. 根据权利要求7所述的方法,其特征在于,所述引发剂为过硫酸铵、过硫酸钠、过硫酸钾、偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉中至少一种。
  9. 根据权利要求8所述的方法,其特征在于,所述引发剂为过硫酸铵、过硫酸钠或者过硫酸钾。
PCT/CN2015/094340 2014-12-30 2015-11-11 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法 WO2016107292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410843500.1A CN104525005B (zh) 2014-12-30 2014-12-30 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN201410843500.1 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107292A1 true WO2016107292A1 (zh) 2016-07-07

Family

ID=52840738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094340 WO2016107292A1 (zh) 2014-12-30 2015-11-11 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法

Country Status (2)

Country Link
CN (1) CN104525005B (zh)
WO (1) WO2016107292A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743377A (zh) * 2019-10-21 2020-02-04 浙江理工大学 同步提高聚酰胺反渗透复合膜通量及抗污染性能的方法
CN113244781A (zh) * 2021-05-17 2021-08-13 江苏泷膜环境科技有限公司 一种抗黄化复合反渗透膜及其制备方法
CN113634133A (zh) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法
CN114307668A (zh) * 2021-12-01 2022-04-12 佛山市南海区苏科大环境研究院 Pgma共聚微球-聚乙烯亚胺涂层改性聚合物膜及其制备方法
CN114570218A (zh) * 2021-12-29 2022-06-03 杭州水处理技术研究开发中心有限公司 一种聚酰胺复合膜及其制备工艺
CN114797486A (zh) * 2022-04-13 2022-07-29 合肥凯华环保科技有限公司 废水脱氨用亲水后可重新疏水的疏水膜
CN114832639A (zh) * 2022-05-24 2022-08-02 北京工商大学 改性复合纳滤膜的制备方法及应用
CN115025627A (zh) * 2022-07-07 2022-09-09 湖南澳维科技股份有限公司 一种废旧反渗透膜元件的修复试剂、修复方法和应用
CN115090128A (zh) * 2021-09-13 2022-09-23 浙江美易膜科技有限公司 具有仿蛇皮保护层的耐洗耐磨擦复合纳滤膜及其制备方法
CN115569536A (zh) * 2022-09-28 2023-01-06 浙江大学 一种抗污染超滤膜及其制备方法和应用
CN115838492A (zh) * 2022-10-11 2023-03-24 山东明化新材料有限公司 一种超亲水聚苯硫醚复合膜及其制备方法
CN116459684A (zh) * 2023-06-19 2023-07-21 蓝星(杭州)膜工业有限公司 复合膜及其制备方法和应用
CN116899633A (zh) * 2023-09-13 2023-10-20 赛普(杭州)过滤科技有限公司 一种亲水阴离子交换层析介质及其制备方法与应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525005B (zh) * 2014-12-30 2017-06-09 湖南澳维环保科技有限公司 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN104841295A (zh) * 2015-06-09 2015-08-19 国家海洋局天津海水淡化与综合利用研究所 一种介孔氧化硅球/半芳香聚酰胺纳米复合反渗透膜及其制备方法
CN104841296A (zh) * 2015-06-09 2015-08-19 国家海洋局天津海水淡化与综合利用研究所 一种纳米氧化硅球/聚哌嗪酰胺纳米复合纳滤膜及其制备方法
CN105833749B (zh) * 2016-01-22 2019-03-29 国家海洋局天津海水淡化与综合利用研究所 一种抗生物污染的聚酰胺反渗透复合膜及其制备方法
CN105664742A (zh) * 2016-04-13 2016-06-15 伊美特(上海)环保科技有限公司 一种提高聚酰胺反渗透膜水通量及抗污染能力的方法
CN106422797B (zh) * 2016-07-06 2019-11-05 安徽师范大学 一种芳香聚酰胺复合正渗透膜抗氯抗污染改性方法
CN107970776A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种反渗透膜及其制备方法和应用
CN106621832A (zh) * 2016-12-08 2017-05-10 厦门建霖工业有限公司 一种抗生物污染的反渗透膜制备方法及制备装置
CN107126850A (zh) * 2017-05-23 2017-09-05 中国石油大学(华东) 一种聚磺酰胺纳滤或反渗透复合膜及其制备方法
CN107081079B (zh) * 2017-05-27 2019-09-10 东南大学 一种高效亲水化改性抗污染聚醚砜膜的制备方法及应用
CN107243262B (zh) * 2017-06-06 2020-11-24 四川大学 一种高通量抗污染聚酰胺复合反渗透膜及其制备方法
CN107469649B (zh) * 2017-09-05 2021-05-14 湖南澳维环保科技有限公司 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN109847597B (zh) * 2018-12-20 2021-07-27 浙江工业大学 一种高通量高脱盐反渗透膜及其制备方法
CN110975644B (zh) * 2019-12-04 2022-06-14 自然资源部天津海水淡化与综合利用研究所 一种抗污染和抗氧化聚酰胺复合反渗透膜及其制备方法
CN112808006B (zh) * 2021-01-08 2023-03-10 天津大学 高截留率共价有机框架膜及其原料组合物、制备方法
CN113041841B (zh) * 2021-03-22 2022-07-12 万华化学集团股份有限公司 一种抗污染浓水隔网的制备方法及应用
CN113181779B (zh) * 2021-07-01 2021-10-26 湖南沁森高科新材料有限公司 一种聚酰胺复合反渗透膜的制备方法
CN114307686B (zh) * 2021-11-16 2022-11-15 中国科学院生态环境研究中心 一种基于醚类自由基的聚酰胺复合膜高通量改性方法
CN113877449A (zh) * 2021-11-22 2022-01-04 启成(江苏)净化科技有限公司 一种反渗透膜的制备工艺
CN116143234A (zh) * 2021-11-22 2023-05-23 沃顿科技股份有限公司 一种海水淡化反渗透膜的制备方法和由其制备的反渗透膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244367A (zh) * 2007-02-13 2008-08-20 世韩工业株式会社 高结垢阻力的有选择性的膜
CN101439270B (zh) * 2008-12-04 2011-08-24 宁波灏钻科技有限公司 一种亲水性抗污染反渗透膜的制备方法
CN103657438A (zh) * 2013-11-08 2014-03-26 江南大学 一种热固化的无支撑体多孔性高分子分离膜非离子型表面修饰的方法
CN104190272A (zh) * 2014-09-04 2014-12-10 北京碧水源膜科技有限公司 一种抗污染复合反渗透膜及其制备方法
CN104525005A (zh) * 2014-12-30 2015-04-22 胡群辉 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913694B2 (en) * 2001-11-06 2005-07-05 Saehan Industries Incorporation Selective membrane having a high fouling resistance
CN101112675A (zh) * 2006-07-27 2008-01-30 中国科学院大连化学物理研究所 一种复合膜表面改性方法
CN101530751A (zh) * 2009-03-13 2009-09-16 浙江理工大学 一种自清洁型反渗透膜
WO2011088505A1 (en) * 2010-01-19 2011-07-28 Flinders University Of South Australia Low-fouling filtration membranes
CN102580574B (zh) * 2012-02-29 2013-12-04 福州大学 一种抗污染自清洁聚偏氟乙烯膜及其制备方法
CN103464010B (zh) * 2013-09-21 2015-04-15 淮海工学院 抗污的高稳定性芳香聚酰胺复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244367A (zh) * 2007-02-13 2008-08-20 世韩工业株式会社 高结垢阻力的有选择性的膜
CN101439270B (zh) * 2008-12-04 2011-08-24 宁波灏钻科技有限公司 一种亲水性抗污染反渗透膜的制备方法
CN103657438A (zh) * 2013-11-08 2014-03-26 江南大学 一种热固化的无支撑体多孔性高分子分离膜非离子型表面修饰的方法
CN104190272A (zh) * 2014-09-04 2014-12-10 北京碧水源膜科技有限公司 一种抗污染复合反渗透膜及其制备方法
CN104525005A (zh) * 2014-12-30 2015-04-22 胡群辉 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743377B (zh) * 2019-10-21 2022-06-21 浙江理工大学 同步提高聚酰胺反渗透复合膜通量及抗污染性能的方法
CN110743377A (zh) * 2019-10-21 2020-02-04 浙江理工大学 同步提高聚酰胺反渗透复合膜通量及抗污染性能的方法
CN113244781A (zh) * 2021-05-17 2021-08-13 江苏泷膜环境科技有限公司 一种抗黄化复合反渗透膜及其制备方法
CN113634133A (zh) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法
CN113634133B (zh) * 2021-08-05 2023-11-07 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法
CN115090128A (zh) * 2021-09-13 2022-09-23 浙江美易膜科技有限公司 具有仿蛇皮保护层的耐洗耐磨擦复合纳滤膜及其制备方法
CN115090128B (zh) * 2021-09-13 2024-01-30 浙江美易膜科技有限公司 具有仿蛇皮保护层的耐洗耐磨擦复合纳滤膜及其制备方法
CN114307668A (zh) * 2021-12-01 2022-04-12 佛山市南海区苏科大环境研究院 Pgma共聚微球-聚乙烯亚胺涂层改性聚合物膜及其制备方法
CN114307668B (zh) * 2021-12-01 2023-09-22 佛山市南海区苏科大环境研究院 Pgma共聚微球-聚乙烯亚胺涂层改性聚合物膜及其制备方法
CN114570218A (zh) * 2021-12-29 2022-06-03 杭州水处理技术研究开发中心有限公司 一种聚酰胺复合膜及其制备工艺
CN114797486A (zh) * 2022-04-13 2022-07-29 合肥凯华环保科技有限公司 废水脱氨用亲水后可重新疏水的疏水膜
CN114797486B (zh) * 2022-04-13 2023-02-03 合肥凯华环保科技有限公司 废水脱氨用亲水后可重新疏水的疏水膜
CN114832639A (zh) * 2022-05-24 2022-08-02 北京工商大学 改性复合纳滤膜的制备方法及应用
CN115025627A (zh) * 2022-07-07 2022-09-09 湖南澳维科技股份有限公司 一种废旧反渗透膜元件的修复试剂、修复方法和应用
CN115025627B (zh) * 2022-07-07 2023-09-26 湖南澳维科技股份有限公司 一种废旧反渗透膜元件的修复试剂、修复方法和应用
CN115569536A (zh) * 2022-09-28 2023-01-06 浙江大学 一种抗污染超滤膜及其制备方法和应用
CN115569536B (zh) * 2022-09-28 2023-04-28 浙江大学 一种抗污染超滤膜及其制备方法和应用
CN115838492A (zh) * 2022-10-11 2023-03-24 山东明化新材料有限公司 一种超亲水聚苯硫醚复合膜及其制备方法
CN116459684B (zh) * 2023-06-19 2023-09-05 蓝星(杭州)膜工业有限公司 复合膜及其制备方法和应用
CN116459684A (zh) * 2023-06-19 2023-07-21 蓝星(杭州)膜工业有限公司 复合膜及其制备方法和应用
CN116899633A (zh) * 2023-09-13 2023-10-20 赛普(杭州)过滤科技有限公司 一种亲水阴离子交换层析介质及其制备方法与应用
CN116899633B (zh) * 2023-09-13 2023-12-19 赛普(杭州)过滤科技有限公司 一种亲水阴离子交换层析介质及其制备方法与应用

Also Published As

Publication number Publication date
CN104525005A (zh) 2015-04-22
CN104525005B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2016107292A1 (zh) 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN107469649B (zh) 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
Mi et al. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance
CN110052179B (zh) 一种抗污染复合纳滤膜的制备方法
Zhou et al. Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition
KR101136943B1 (ko) 내오염성이 향상된 친수성 분리막의 제조방법 및 상기 방법으로 제조된 친수성 분리막
JP5568835B2 (ja) 逆浸透膜、逆浸透膜装置及び逆浸透膜の親水化処理方法
Lin et al. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker
AU2004232679A1 (en) Hydrophilic membrane and process for making the same
CN112246110B (zh) 一种双功能层复合反渗透膜及其制备方法
CN111495202B (zh) 一种真空辅助薄层复合膜制备方法
Fang et al. Poly (N, N-dimethylaminoethyl methacrylate) grafted poly (vinyl chloride) s synthesized via ATRP process and their membranes for dye separation
JP6464866B2 (ja) 表面修飾基材、ポリマー被覆基材、およびそれらの製造方法
TWI519339B (zh) 過濾膜
JPH0268102A (ja) 水の軟化に有効なポリアミド膜の製造方法及び使用
Ndlwana et al. Heterogeneous functionalization of polyethersulfone: a new approach for pH-responsive microfiltration membranes with enhanced antifouling properties
CN111744373A (zh) 一种聚酰胺表面两性抗污染涂层的构建方法
KR20130080619A (ko) 양쪽성 이온 고분자를 포함하는 코팅층이 형성된 역삼투막 및 그 제조방법
JP6849969B2 (ja) 水処理用膜
CN102188916A (zh) 一种控制聚酰胺复合膜活性层厚度的方法
CN111389226B (zh) 一种永久性亲水的超滤膜及其制备方法
JPH1128466A (ja) 逆浸透複合膜による水の逆浸透処理方法
Wang et al. Outstanding antifouling performance of poly (vinylidene fluoride) membranes: Novel amphiphilic brushlike copolymer blends and one‐step surface zwitterionization
Wang et al. Synthesis of amphiphilic functional terpolymers towards preparation of high flux, anti-fouling, micropollutant-capturing ultrafiltration membranes
CN108452688B (zh) 一种新型反渗透膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874973

Country of ref document: EP

Kind code of ref document: A1