WO2016093178A1 - 離型フィルムおよび半導体パッケージの製造方法 - Google Patents

離型フィルムおよび半導体パッケージの製造方法 Download PDF

Info

Publication number
WO2016093178A1
WO2016093178A1 PCT/JP2015/084204 JP2015084204W WO2016093178A1 WO 2016093178 A1 WO2016093178 A1 WO 2016093178A1 JP 2015084204 W JP2015084204 W JP 2015084204W WO 2016093178 A1 WO2016093178 A1 WO 2016093178A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
resin
mold
antistatic
release
Prior art date
Application number
PCT/JP2015/084204
Other languages
English (en)
French (fr)
Inventor
渉 笠井
政己 鈴木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020177008802A priority Critical patent/KR102476428B1/ko
Priority to JP2016563660A priority patent/JP6515934B2/ja
Priority to CN201580066776.6A priority patent/CN107000268B/zh
Publication of WO2016093178A1 publication Critical patent/WO2016093178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip

Definitions

  • the present invention provides a release film disposed on a cavity surface of a mold and the release film in the manufacture of a semiconductor package in which a semiconductor element is disposed in a mold and sealed with a curable resin to form a resin sealing portion.
  • the present invention relates to a method for manufacturing a semiconductor package using a mold film.
  • a semiconductor element is usually sealed with a resin for shielding and protecting from the outside air, and is mounted on a substrate as a molded product called a package.
  • a curable resin such as a thermosetting resin such as an epoxy resin is used.
  • a method for sealing a semiconductor element for example, a substrate on which a semiconductor element is mounted is arranged so that the semiconductor element is located at a predetermined position in a cavity of a mold, and a curable resin is filled in the cavity.
  • a so-called transfer molding method or compression molding method is known.
  • a package is molded as a package molded product for each element connected via a runner which is a flow path of a curable resin.
  • the release property of the package from the mold is often improved by adjusting the mold structure, adding a release agent to the curable resin, or the like.
  • packages of BGA method, QFN method, and wafer level CSP (WL-CSP) method are increasing due to demands for smaller packages and more pins.
  • QFN method in order to ensure the standoff and prevent the occurrence of resin burrs on the terminal part
  • BGA method and WL-CSP method in order to improve the release property of the package from the mold, A release film is often arranged.
  • the release film is placed on the cavity surface of the mold in such a state that a long release film in a wound state is unwound from an unwinding roll and pulled by an unwinding roll and a winding roll. This is performed by supplying the product onto a mold and adsorbing it on the cavity surface in a vacuum.
  • a short release film cut in advance according to a mold is also supplied to the mold (Patent Document 1).
  • a resin film As the release film, a resin film is generally used.
  • a release film has a problem of being easily charged. For example, when a release film wound in a roll is unwound and used, static electricity is generated when the release film is peeled off, and the release film is charged. In this case, foreign matter such as dust existing in the manufacturing atmosphere adheres to the charged release film, which causes package shape abnormality (burr generation, foreign matter adhesion, etc.) and mold contamination. Further, when the charged release film comes into contact with the semiconductor element, there is a concern that the semiconductor element is destroyed by electric discharge.
  • the release film is neutralized, but the risk of dust roll-up by air is increased, and the release film is charged at the time of contact between the release film and the semiconductor element. It is not possible to prevent the charging-discharging.
  • the method (2) if carbon black is included that sufficiently lowers the surface resistance value, the transparency of the release film is lost, and the mold cannot be seen through the release film. There are problems such as soiling the mold. If the mold cannot be visually recognized through the release film, the position of the release film on the mold is likely to be displaced and the adsorption failure associated therewith is likely to occur.
  • the method (3) has a problem that the antistatic effect of the release film is lost in the sealing step (for example, 180 ° C.).
  • An object of the present invention is to provide a release film having excellent antistatic action even under a high temperature environment (for example, 180 ° C.) and excellent in transparency, and a method for producing a semiconductor package using the release film. It is in.
  • the present invention provides a release film and a semiconductor package manufacturing method having the following configurations [1] to [15].
  • [1] A mold release film disposed on a surface of a mold in contact with a curable resin in manufacturing a semiconductor package in which a semiconductor element is disposed in a mold and sealed with a curable resin to form a resin sealing portion Because A releasable substrate in contact with the curable resin at the time of forming the resin sealing portion, and an antistatic layer in contact with the mold at the time of forming the resin sealing portion,
  • the antistatic layer comprises at least one antistatic agent selected from the group consisting of a conductive polymer and a conductive metal oxide; A release film having a total light transmittance of 80% or more.
  • GR Suditomo Bakelite
  • the release film having a size of 13 cm ⁇ 13 cm was previously neutralized, and then placed so that the surface opposite to the antistatic layer side was in contact with the curable resin, and further 13 cm ⁇ 13 cm on the release film.
  • a second stainless steel plate is put on and used as a sample.
  • the sample produced by the above procedure was pressed with a press machine at a temperature of 180 ° C., a pressure of 1 MPa for 3 minutes, taken out from the press machine, placed on a hot plate at 180 ° C., and a second stainless steel plate After removing the film, the release film is peeled off over 5 seconds. Within 5 seconds, the charged voltage on the side of the peeled release film that was in contact with the curable resin was measured using a surface potentiometer with the distance between the release film and the measurement terminal fixed at 3 cm.
  • the resin binder is acrylic resin, silicone resin, urethane resin, polyester resin, polyamide resin, vinyl acetate resin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, chlorotrifluoroethylene-vinyl alcohol.
  • the release film according to [6] or [7] wherein the content of the antistatic agent is 3 to 50% by mass with respect to the resin binder.
  • the release film according to [11], wherein the releasable substrate is a single-layer structure made of a releasable transparent resin.
  • the release film according to [11] or [12], wherein the releasable transparent resin is a fluororesin, polymethylpentene, syndiotactic polystyrene, or a silicone resin.
  • the release film of [11] or [12], wherein the releaseable transparent resin is an ethylene-tetrafluoroethylene copolymer.
  • a method of manufacturing a semiconductor package having a semiconductor element and a resin sealing portion made of a cured curable resin that seals the semiconductor element Placing the release film of any one of [1] to [14] on the surface of the mold contacting the curable resin;
  • a substrate on which the semiconductor element is mounted is formed by disposing a substrate on which the semiconductor element is mounted in the mold and filling the space in the mold with a curable resin to be cured to form a resin sealing portion. And obtaining a sealing body having the resin sealing portion, Releasing the sealing body from the mold;
  • a method for manufacturing a semiconductor package comprising:
  • the release film of the present invention has an excellent antistatic effect even in a high temperature environment (for example, 180 ° C.) and is excellent in transparency.
  • FIG. 5 is a cross-sectional view schematically illustrating steps ( ⁇ 1) to ( ⁇ 3) in the first embodiment of the method for manufacturing a semiconductor package of the present invention. It is sectional drawing which illustrates typically the process ((alpha) 4) in 1st Embodiment of the manufacturing method of the semiconductor package of this invention.
  • FIG. 10 is a cross-sectional view showing steps ( ⁇ 2) to ( ⁇ 3) in the second embodiment of the method for producing a semiconductor package of the present invention. It is sectional drawing which shows the process ((beta) 4) in 2nd Embodiment of the manufacturing method of the semiconductor package of this invention. It is sectional drawing which shows the process ((beta) 5) in 2nd Embodiment of the manufacturing method of the semiconductor package of this invention.
  • the “unit” in the resin indicates a structural unit (monomer unit) constituting the resin.
  • “Fluorine resin” refers to a resin containing a fluorine atom in its structure.
  • the mold release film of the present invention is disposed on the surface of the mold that contacts the curable resin in manufacturing a semiconductor package in which the semiconductor element is disposed in the mold and sealed with a curable resin to form a resin sealing portion.
  • the release film of the present invention is disposed so as to cover a cavity surface of a mold having a cavity having a shape corresponding to the shape of the resin sealing portion, for example, when forming the resin sealing portion of the semiconductor package, By disposing between the formed resin sealing portion and the cavity surface of the mold, the obtained semiconductor package can be easily released from the mold.
  • details of the release film of the present invention will be described.
  • the release film of the present invention includes a releasable base material that comes into contact with a curable resin when the resin sealing portion is formed, and an antistatic layer that comes into contact with a mold when the resin sealing portion is formed.
  • the releasable substrate is made of a transparent resin body having a single layer structure or a multilayer structure, and at least a layer constituting a surface in contact with the curable resin is made of a releasable transparent resin.
  • the “releasable transparent resin” refers to a resin having releasability and sufficient transparency so that the total light transmittance of the release film is 80% or more.
  • the antistatic layer may be composed only of a conductive polymer that is an antistatic agent, but is preferably composed of a layer containing an antistatic agent and a resin binder.
  • An antistatic layer containing an antistatic agent and a resin binder is applied to one side of a releasable substrate with a coating liquid containing an antistatic agent, a resin binder, and a liquid medium such as a solvent, and the liquid medium is removed, Preferably it is formed.
  • it can also form by laminating
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a release film of the present invention.
  • the release film 1 of 1st Embodiment is equipped with the mold release base material 2 which contacts curable resin at the time of formation of a resin sealing part, and the antistatic layer 3 which contacts a metal mold
  • the releasable substrate 2 has a single layer structure.
  • the mold release film 1 is disposed with the surface 2a on the mold release substrate 2 side facing the cavity of the mold when the semiconductor package is manufactured, and contacts the curable resin when forming the resin sealing portion. At this time, the surface 3a on the antistatic layer 3 side is in close contact with the cavity surface of the mold. By curing the curable resin in this state, a resin sealing portion having a shape corresponding to the shape of the cavity of the mold is formed.
  • the total light transmittance of the release film 1 is 80% or more, preferably 85% or more. If the total light transmittance is 80% or more, it is easy to recognize the position of the mold through the release film 1 when actually setting the release film 1 in the semiconductor sealing device. Therefore, it is easy to align the release film 1 and the mold, and an adsorption error in which the position of the release film and the vacuum suction hole for fixing the release film is not easily generated. Moreover, since it can confirm visually when a foreign material is caught between the mold and the release film 1, there is a probability that a defective product in which the shape of the foreign material is transferred to the resin sealing portion through the release film 1 is generated. Lower.
  • the upper limit of the total light transmittance is not particularly set, but is preferably 99% or less.
  • the releasable substrate 2 examples include those containing a releasable transparent resin (however, no antistatic agent is included).
  • a releasable transparent resin fluororesin, polymethylpentene, syndiotactic polystyrene, mold release, in terms of excellent releasability, heat resistance at the sealing temperature of the semiconductor package (for example, 180 ° C.), and mold followability Of these, preferred are silicone resins. Of these, fluororesin, polymethylpentene, and syndiotactic polystyrene are preferable and fluororesin is particularly preferable in terms of excellent releasability. These resins may be used alone or in combination of two or more.
  • a fluoroolefin polymer is preferable from the viewpoint of excellent releasability and heat resistance.
  • the fluoroolefin polymer is a polymer having units based on a fluoroolefin.
  • the fluoroolefin polymer may further have units other than the units based on the fluoroolefin.
  • Examples of the fluoroolefin include tetrafluoroethylene (hereinafter also referred to as “TFE”), vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and the like.
  • a fluoroolefin may be used individually by 1 type, and may use 2 or more types together.
  • fluoroolefin polymers examples include ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA), And tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV).
  • EFE ethylene-tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer
  • TSV tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer
  • a fluoroolefin polymer may be used individually by 1 type, and may use 2 or more
  • ETFE is particularly preferable because of its high elongation at high temperatures.
  • ETFE is a copolymer having units based on TFE (hereinafter also referred to as “TFE units”) and units based on ethylene (hereinafter also referred to as “E units”).
  • ETFE is preferably a polymer having TFE units, E units, and units based on a third monomer other than TFE and ethylene. It is easy to adjust the crystallinity of ETFE, and consequently the tensile properties of the releasable substrate 2, depending on the type and content of units based on the third monomer. For example, having a unit based on a third monomer (particularly a monomer having a fluorine atom) improves the tensile strength and elongation at high temperatures (particularly around 180 ° C.).
  • Examples of the third monomer include a monomer having a fluorine atom and a monomer having no fluorine atom.
  • Examples of the monomer having a fluorine atom include the following monomers (a1) to (a5).
  • Monomer (a1) a fluoroolefin having 2 or 3 carbon atoms.
  • Monomer (a2) X (CF 2 ) n CY ⁇ CH 2 (wherein X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8). Fluorine monomer.
  • Monomer (a3) fluorovinyl ethers.
  • Monomer (a5) a fluorine-containing monomer having an aliphatic ring structure.
  • Examples of the monomer (a1) include fluoroethylenes (trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.), fluoropropylenes (hexafluoropropylene (hereinafter also referred to as “HFP”), 2- Hydropentafluoropropylene and the like).
  • fluoroethylenes trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.
  • fluoropropylenes hexafluoropropylene (hereinafter also referred to as “HFP”)
  • HFP hexafluoropropylene
  • 2- Hydropentafluoropropylene and the like 2- Hydropentafluoropropylene and the like.
  • the monomer (a2) a monomer having n of 2 to 6 is preferable, and a monomer having n of 2 to 4 is particularly preferable.
  • a monomer in which X is a fluorine atom and Y is a hydrogen atom, that is, (perfluoroalkyl) ethylene is particularly preferable.
  • Specific examples of the monomer (a2) include the following compounds.
  • PFBE perfluorobutyl ethylene
  • the monomer (a3) include the following compounds.
  • the monomer which is a diene among the following is a monomer which can be cyclopolymerized.
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CF (CF 2 ) 2 CF 3 (perfluoro (propyl vinyl ether); hereinafter also referred to as “PPVE”)
  • PPVE perfluoro (propyl vinyl ether
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3
  • CF 2 CFO (CF 2) 3 O (CF 2) 2 CF 3
  • CF 2 CFO (CF 2 CF (CF 3) O) 2 (CF 2) 2 CF 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3
  • CF 2 CFO (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F and the like.
  • monomer (a5) examples include perfluoro (2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2- Methylene-4-methyl-1,3-dioxolane) and the like.
  • Examples of the monomer having no fluorine atom include the following monomers (b1) to (b4).
  • Monomer (b1) Olefin.
  • Monomer (b2) Vinyl esters.
  • Monomer (b3) Vinyl ethers.
  • Specific examples of the monomer (b1) include propylene and isobutene.
  • Specific examples of the monomer (b2) include vinyl acetate.
  • Specific examples of the monomer (b3) include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether.
  • Specific examples of the monomer (b4) include maleic anhydride, itaconic anhydride, citraconic anhydride, hymic anhydride (5-norbornene-2,3-dicarboxylic anhydride) and the like.
  • a 3rd monomer may be used individually by 1 type, and may use 2 or more types together.
  • the third monomer it is easy to adjust the crystallinity, and it has excellent tensile strength and elongation at high temperature (especially around 180 ° C.) by having a unit based on the third monomer (particularly a monomer having a fluorine atom). Therefore, monomer (a2), HFP, PPVE, and vinyl acetate are preferable, HFP, PPVE, CF 3 CF 2 CH ⁇ CH 2 , and PFBE are more preferable, and PFBE is particularly preferable. That is, ETFE is particularly preferably a copolymer having TFE units, E units, and units based on PFBE.
  • the molar ratio of TFE units to E units is preferably 80/20 to 40/60, more preferably 70/30 to 45/55, and 65/35 to 50/50. Is particularly preferred.
  • the TFE unit / E unit is within the above range, the heat resistance and mechanical strength of ETFE are excellent.
  • the proportion of units based on the third monomer in ETFE is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, based on the total (100 mol%) of all units constituting ETFE. 0.20 to 10 mol% is particularly preferable. When the proportion of the units based on the third monomer is within the above range, the heat resistance and mechanical strength of ETFE are excellent.
  • the ratio of the unit based on PFBE is 0.5 to 4.0 mol% with respect to the total (100 mol%) of all units constituting ETFE. Preferably, it is 0.7 to 3.6 mol%, more preferably 1.0 to 3.6 mol%. If the ratio of the unit based on PFBE is within the above range, the tensile elastic modulus at 180 ° C. of the release film can be adjusted within the above range. In addition, the tensile strength and elongation at high temperatures (particularly around 180 ° C.) are improved.
  • the melt flow rate (MFR) of ETFE is preferably 2 to 40 g / 10 minutes, more preferably 5 to 30 g / 10 minutes, and particularly preferably 10 to 20 g / 10 minutes.
  • MFR is a measure of molecular weight, and the larger the MFR, the smaller the molecular weight.
  • the MFR of ETFE is a value measured at a load of 49 N and 297 ° C. in accordance with ASTM D3159.
  • the releasable substrate 2 may be composed of only a releasable transparent resin, and may further contain components other than the releasable transparent resin in addition to the releasable transparent resin.
  • release components other than the releasable transparent resin may be contained as long as the transparency and the adhesion between the releasable substrate 2 and the antistatic layer 3 are not impaired.
  • the mold release component include silicone oil and fluorine-based surfactant.
  • the releasable substrate 2 preferably does not contain an antistatic agent.
  • the release film 1 has excellent releasability, heat resistance that can withstand the mold temperature during molding (typically 150 to 180 ° C.), and withstand the flow and pressure of the curable resin. It has sufficient strength to obtain and is excellent in elongation at high temperatures.
  • the surface of the releasable substrate 2 that is in contact with the curable resin at the time of forming the resin sealing portion, that is, the surface 2a on the releasable substrate 2 side of the release film 1 may be smooth or uneven. Good. In terms of excellent releasability, it is preferable that irregularities are formed.
  • the surface shape in the case where irregularities are formed may be a shape in which a plurality of convex portions and / or concave portions are randomly distributed, or a shape in which a plurality of convex portions and / or concave portions are regularly arranged.
  • the shape and size of the plurality of convex portions and / or concave portions may be the same or different.
  • Examples of the convex portion include long ridges extending on the surface of the release film, and scattered protrusions, and the concave portion includes long grooves extending on the surface of the release film. Hole and the like.
  • Examples of the shape of the ridge or groove include a straight line, a curved line, a bent shape, and the like.
  • On the surface of the release film a plurality of ridges or grooves may exist in parallel to form a stripe shape.
  • Examples of the cross-sectional shape of the ridges or grooves in the direction perpendicular to the longitudinal direction include polygons such as triangles (V-shaped), semicircles, and the like.
  • Examples of the shape of the protrusion or the hole include a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, and other polygonal pyramids, a cone, a hemisphere, a polyhedron, and various other irregular shapes.
  • the arithmetic average roughness Ra of the surface 2a is preferably 0.1 to 2.5 ⁇ m, particularly preferably 0.2 to 2.0 ⁇ m. If the arithmetic average roughness Ra of the surface 2a is not less than the lower limit of the above range, the resin flow trace (flow mark) of the formed resin sealing portion is not conspicuous. If arithmetic mean roughness Ra of the surface 2a is below the upper limit of the said range, the visibility of the marking given to a resin sealing part will be more excellent after formation of a resin sealing part.
  • the arithmetic average roughness Ra of the surface of the releasable substrate 2 on the antistatic layer 3 side is preferably 0.2 to 2.5 ⁇ m, particularly preferably 0.2 to 2.0 ⁇ m. If the arithmetic average roughness Ra on the surface of the antistatic layer 3 is within the above range, the releasable substrate of the antistatic layer 3 is formed when the antistatic layer 3 is formed on the releasable substrate 2.
  • the arithmetic average roughness Ra of the surface opposite to the second side, that is, the surface 3a on the antistatic layer 3 side of the release film 1 tends to be within the range described later.
  • Arithmetic mean roughness Ra is a value measured based on JIS B0601: 2013 (ISO 4287: 1997, Amd. 1: 2009).
  • the reference length lr (cut-off value ⁇ c) for the roughness curve is 0.8 mm.
  • the thickness of the releasable substrate 2 is preferably 12 to 100 ⁇ m, particularly preferably 25 to 75 ⁇ m. If the thickness of the releasable substrate 2 is equal to or greater than the lower limit of the above range, “cracking” of the antistatic layer 3 due to “folding” of the releasable substrate 2 is difficult to occur, and the antistatic property is impaired. Hateful. Further, the release film 1 is easy to handle (for example, roll-to-roll handling), and when the release film 1 is pulled so as to cover the mold cavity, wrinkles are unlikely to occur.
  • the antistatic effect by the antistatic layer 3 is sufficiently extended to the surface (sealing surface) on the releasable substrate 2 side.
  • the release film 1 can be easily deformed and has excellent mold followability.
  • the antistatic layer 3 contains at least one antistatic agent selected from the group consisting of a conductive polymer and a conductive metal oxide (hereinafter also referred to as “antistatic agent (I)”).
  • the conductive polymer is a polymer in which electrons move and diffuse through the polymer skeleton.
  • Examples of the conductive polymer include a polyaniline polymer, a polyacetylene polymer, a polyparaphenylene polymer, a polypyrrole polymer, a polythiophene polymer, and a polyvinyl carbazole polymer.
  • the weight average molecular weight of the conductive polymer is preferably 20,000 to 500,000, particularly preferably 40,000 to 200,000. When the weight average molecular weight of the conductive polymer is outside the above range (that is, when it is less than 20,000 or exceeds 500,000), the dispersion stability of the conductive polymer in water may be lowered.
  • the mass average molecular weight is measured by gel permeation chromatography (GPC) using, for example, an ultrahydrogel 500 column manufactured by Waters.
  • the conductive metal oxide include tin-doped indium oxide, antimony-doped tin oxide, phosphorus-doped tin oxide, zinc antimonate, and antimony oxide.
  • Antistatic agent (I) may be used individually by 1 type, and may use 2 or more types together.
  • the antistatic agent (I) is preferably a polyaniline polymer, a polypyrrole polymer, or a polythiophene polymer from the viewpoint of excellent heat resistance and conductivity.
  • the antistatic agent (I) is preferably dispersed in the resin binder. That is, the antistatic layer 3 is preferably a layer in which the antistatic agent (I) is dispersed in a resin binder.
  • the resin binder is not particularly limited as long as it has heat resistance that can withstand heat (for example, 180 ° C.) in the sealing process. Because of its excellent heat resistance, the resin binder is acrylic resin, silicone resin, urethane resin, polyester resin, polyamide resin, vinyl acetate resin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, chlorotrifluoroethylene.
  • polyester resin and acrylic resin are particularly preferable from the viewpoint of excellent heat resistance and dispersibility of the antistatic agent (I).
  • the resin binder may be cross-linked. When the resin binder is crosslinked, the heat resistance is excellent as compared with the case where the resin binder is not crosslinked.
  • the antistatic layer 3 may further contain an antistatic agent other than the antistatic agent (I) as long as the effects of the present invention are not impaired.
  • antistatic agents include humidity-dependent antistatic agents.
  • the humidity-dependent antistatic agent itself is an antistatic agent that does not have electrical conductivity.
  • a cationic copolymer having a quaternary ammonium base in the side group an anionic polymer containing polystyrene sulfonic acid
  • Examples include ether ester amides, ethylene oxide-epichlorohydrin oligomers, nonionic polymers including polyether esters, silicate oligomers, and the like. These adsorb moisture in the air and prevent charging by releasing charge through the moisture.
  • the antistatic agent (I) itself has conductivity, the antistatic action obtained by the antistatic agent (I) does not depend on humidity (non-humidity dependence), and is a high temperature of 100 ° C. or higher. Is also demonstrated.
  • the antistatic layer 3 may contain additives other than the antistatic agent as long as the antistatic property and transparency are not impaired.
  • the additive include a lubricant, a colorant, a coupling agent and the like that improve releasability from the mold.
  • the lubricant include microbeads made of thermoplastic resin, fumed silica, polytetrafluoroethylene (PTFE) fine particles, and the like.
  • PTFE polytetrafluoroethylene
  • various organic and inorganic colorants can be used, and examples thereof include cobalt blue, red pepper, and cyanine blue.
  • Examples of coupling agents include silane coupling agents and titanate coupling agents.
  • the content of the antistatic agent (I) in the antistatic layer 3 is preferably such that the surface resistance value of the antistatic layer 3 is 10 10 ⁇ / ⁇ or less.
  • the surface resistance value of the antistatic layer 3 is particularly preferably 10 9 ⁇ / ⁇ or less.
  • the lower limit of the antistatic layer 3 is not particularly limited, but is preferably 10 4 ⁇ / ⁇ or more.
  • the content of the antistatic agent (I) is 3 to 50% by mass with respect to the resin binder (100% by mass). It is preferably 5 to 20% by mass. If the content of the antistatic agent (I) is not less than the lower limit of the above range, the surface resistance value of the antistatic layer 3 tends to be not more than the above upper limit depending on the type of the antistatic agent (I). If content of antistatic agent (I) is below the upper limit of the said range, the adhesiveness of the antistatic layer 3 and a mold release base material will be excellent.
  • the content of the humidity-dependent antistatic agent in the antistatic layer 3 is not particularly limited, but considering the cost, dispersibility, etc., it is 10% by mass or less with respect to the antistatic agent (I) (100% by mass). Is preferable, and 0 mass% is particularly preferable. That is, it is particularly preferable that the antistatic layer 3 does not contain a humidity-dependent antistatic agent.
  • the thickness of the antistatic layer 3 is preferably from 100 to 1,000 nm, particularly preferably from 200 to 800 nm. When the thickness of the antistatic layer 3 is not less than the lower limit of the above range, the antistatic layer 3 tends to be a continuous coating film, and excellent antistatic properties are easily obtained. If the thickness is not more than the upper limit of the above range, the antistatic layer 3 is unlikely to peel off.
  • the arithmetic average roughness Ra of the surface of the antistatic layer 3 opposite to the release substrate 2 side, that is, the surface 3a of the release film 1 on the antistatic layer 3 side is 0.2 to 2.5 ⁇ m.
  • the range of 0.2 to 2.0 ⁇ m is particularly preferable. If the arithmetic average roughness Ra of the surface 3a is not less than the lower limit of the above range, the surface 3a and the mold are less likely to cause blocking and wrinkles due to blocking are less likely to occur. If the arithmetic average roughness Ra of the surface 3a is less than or equal to the upper limit of the above range, a resin binder film (including an antistatic agent (I) is included in the vicinity of the surface of the antistatic layer 3 when the antistatic layer 3 is formed. No film) is easily formed, and the antistatic property is sufficiently exhibited.
  • an antistatic agent (I) is included in the vicinity of the surface of the antistatic layer 3 when the antistatic layer 3 is formed. No film
  • the release film 1 preferably has a post-sealing film voltage measured by the following measurement method of 200 V or less, particularly preferably 100 V or less.
  • the post-sealing film voltage is an index indicating the difficulty of charging the release film when the resin sealing portion and the release film are peeled after the resin sealing portion is formed. The smaller the post-sealing film voltage, the harder it is to charge when the resin sealing part and the release film are peeled off.
  • the release film having a size of 13 cm ⁇ 13 cm was previously neutralized, and then placed so that the surface opposite to the antistatic layer side was in contact with the curable resin, and further 13 cm ⁇ 13 cm on the release film.
  • a second SUS plate is placed and used as a sample.
  • the sample produced by the above procedure was pressed with a press machine at a temperature of 180 ° C., a pressure of 1 MPa for 3 minutes, taken out from the press machine, and then placed on a 180 ° C. hot plate to obtain a second SUS plate.
  • the release film is peeled off over 5 seconds. Within 5 seconds, the charged voltage on the side of the peeled release film that was in contact with the curable resin was measured using a surface potentiometer with the distance between the release film and the measurement terminal fixed at 3 cm.
  • the release film 1 can be produced, for example, by a production method having the following step (i).
  • a coating liquid containing an antistatic agent (I), a resin binder, and a liquid medium (hereinafter also referred to as “antistatic liquid”) is applied.
  • a step of forming the antistatic layer 3 by drying and crosslinking the resin binder as necessary. After drying, the resin binder may be cross-linked as necessary.
  • a surface treatment may be performed. Examples of the surface treatment include corona treatment, plasma treatment, silane coupling agent coating, and adhesive application.
  • the antistatic agent (I) and the resin binder are the same as described above.
  • the liquid medium include water and organic solvents.
  • the organic solvent include alcohol compounds and ester compounds.
  • the antistatic liquid may further include a crosslinking agent.
  • a well-known thing can be used as a crosslinking agent, For example, an isocyanate compound, an epoxy resin, a melamine resin, an aziridine compound etc. are mentioned.
  • the solid content concentration of the antistatic liquid is preferably 1 to 10% by mass, particularly preferably 2 to 8% by mass. If the solid content concentration is not less than the lower limit of the above range, the coating property is excellent, and if it is not more than the upper limit value, the dispersibility of the antistatic agent (I) and the like is excellent.
  • a coating method of the antistatic liquid various known wet coating methods can be used, and examples thereof include a gravure coating method and a die coating method.
  • the drying temperature is preferably 50 to 100 ° C.
  • examples of the resin binder crosslinking method include ultraviolet (UV) crosslinking and thermal crosslinking.
  • the drying process may also serve as a thermal crosslinking process.
  • the release film 1 since the antistatic layer that comes into contact with the mold at the time of forming the resin sealing portion contains the antistatic agent (I), excellent antistatic even in a high temperature environment (for example, 180 ° C.). Demonstrate the effect. Specifically, according to the release film 1, when the resin sealing portion for sealing the semiconductor element is formed by the semiconductor package manufacturing method, the release film is charged when the release film and the semiconductor element come into contact with each other. It becomes difficult to do. In addition, the release film is less likely to be charged when the resin sealing portion and the release film are peeled off after the resin sealing portion for sealing the semiconductor element is formed by the semiconductor package manufacturing method.
  • the release film 1 the total light transmittance is 80% or more, and the transparency is high. Therefore, at the time of manufacturing the semiconductor package, an adsorption error is hardly generated when the release film is adsorbed to the mold.
  • the position of the antistatic layer in the release film and the type of the antistatic agent contained in the antistatic layer are important.
  • the antistatic layer 3 is in contact with the mold when the resin sealing portion is formed, so that the antistatic layer 3 is in contact with the metal portion of the mold. Therefore, it is possible to quickly diffuse the charge staying in the releasable substrate 2 due to peeling, and to make the charged voltage zero.
  • the release film has a structure in which the antistatic layer 3 is not in direct contact with the mold, the slight charge generated continues to remain without slowing down for a long time.
  • the antistatic agent (I) is a non-humidity-dependent antistatic agent, and exhibits an antistatic action even at a high temperature (for example, 180 ° C.) under the sealing temperature of the semiconductor package.
  • the antistatic agent is humidity-dependent (for example, a cationic antistatic agent having a quaternary ammonium salt)
  • the antistatic action is based on the principle of adsorbing moisture in the air and releasing the charge.
  • the adsorbed moisture is desorbed and the antistatic effect is lost.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the release film of the present invention.
  • the release film 4 of the second embodiment includes a releasable base material 5 that comes into contact with the curable resin when the resin sealing portion is formed, and an antistatic layer 3 that comes into contact with the mold when the resin sealing portion is formed.
  • the releasable base material 5 is provided with a release layer 5B formed by applying a release layer forming agent on one surface (surface opposite to the antistatic layer 3 side) of the base body 5A. is there.
  • the mold release film 4 is disposed with the surface 5a on the mold release substrate 5 side facing the cavity of the mold when the semiconductor package is manufactured, and comes into contact with the curable resin when the resin sealing portion is formed. At this time, the surface 3a on the antistatic layer 3 side is in close contact with the cavity surface of the mold. By curing the curable resin in this state, a resin sealing portion having a shape corresponding to the shape of the cavity of the mold is formed.
  • any material that is transparent and can be used at a semiconductor package sealing temperature (for example, 180 ° C.) can be selected.
  • the material of the base body 5A include polyester resin, polyamide resin, polycarbonate resin, polyurethane elastomer, and polyester elastomer.
  • the release layer forming agent for forming the release layer 5B include a solution of the release transparent resin, a liquid curable silicone resin that becomes a release silicone resin, and the like.
  • the surface of the releasable substrate 5 that comes into contact with the curable resin when the resin sealing portion is formed that is, the surface 5a on the releasable substrate 5 side of the release film 4 may be smooth or uneven. Good. In terms of releasability, it is preferable that irregularities are formed. A preferable mode for the unevenness is the same as that of the above-described releasable substrate 2, and a preferable mode for the surface 5a is the same as that of the above-described surface 2a.
  • a preferable range of the thickness of the releasable substrate 5 is the same as that of the releasable substrate 2.
  • the thickness of the release layer 5B is preferably 0.2 to 5 ⁇ m, particularly preferably 0.5 to 2 ⁇ m. If the thickness of the release layer 5B is not less than the lower limit of the above range, the release property is more excellent, and if it is not more than the upper limit, the antistatic property is excellent.
  • the release film 4 can be produced in the same manner as the release film 1 of the first embodiment except that the release base 5 is used instead of the release base 2.
  • the release base 5 is used instead of the release base 2.
  • the releasable substrate 5 a commercially available product may be used, or a product manufactured by a known method may be used.
  • the post-sealing film voltage measured by the above measurement method of the release film 4 is preferably 200V or less, and particularly preferably 100V or less.
  • the release film 4 exhibits an excellent antistatic effect even in a high-temperature environment (for example, 180 ° C.), like the release film 1 of the first embodiment. Moreover, it is excellent in transparency.
  • the release film of the present invention has been described with reference to the first and second embodiments, but the present invention is not limited to the above embodiment.
  • Each configuration in the above embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other modifications of the configuration can be made without departing from the spirit of the present invention.
  • the releasable substrate 2 in the first embodiment may be a multilayer structure obtained by laminating a plurality of transparent resin films.
  • at least the layer constituting the surface in contact with the curable resin is made of a releasable transparent resin.
  • the transparent resins constituting each of the plurality of layers may be the same or different, and all of the plurality of layers may be made of a releasable transparent resin.
  • the transparent resin other than the releasable transparent resin include acrylic resin, polyester resin, polyamide resin, polycarbonate resin, polyurethane elastomer, and polyester elastomer. From the viewpoint of mold followability, tensile elongation, production cost, and the like, the releasable substrate 2 is preferably a single layer structure of the releasable transparent resin.
  • the release substrate and the antistatic layer are directly laminated.
  • the release film of the present invention has another structure between the release substrate and the antistatic layer. May be provided.
  • examples of other layers include a gas barrier layer, a colored layer, a rigid layer (PET film, etc.), and the like. Any one of these layers may be used alone, or two or more thereof may be used in combination.
  • the release film of the present invention includes a release substrate / antistatic layer, a release substrate / gas barrier layer / antistatic layer, and a release property from the side in contact with the curable resin when the resin sealing portion is formed.
  • Those having any layer structure of substrate / colored layer / antistatic layer are preferred.
  • a layer structure of a releasable substrate / antistatic layer in which the antistatic layer and the releasable substrate are in direct contact with each other is preferable because of excellent antistatic properties, and a single layer is used as in the first embodiment.
  • a two-layer structure of a releasable substrate / antistatic layer having a structure is particularly preferred.
  • the semiconductor package manufactured by the method for manufacturing a semiconductor package of the present invention described later using the release film of the present invention includes an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light emitting diode having a light emitting element, and the like. Can be mentioned.
  • the package shape of the integrated circuit may cover the entire integrated circuit or may cover a part of the integrated circuit (exposing a part of the integrated circuit). Specific examples include BGA (Ball Grid Array), QFN (Quad Flat Non-leaded package), SON (Small Outline Non-leaded package), and the like.
  • the semiconductor package is preferably manufactured through collective sealing and singulation from the viewpoint of productivity.
  • the sealing method is a MAP (Molded Array Packaging) method or a WL (Wafer Level packaging) method.
  • FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor package.
  • the semiconductor package 110 of this example is formed on the substrate 10, the semiconductor chip 12 mounted on the substrate 10, the resin sealing portion 14 that seals the semiconductor chip 12, and the upper surface 14 a of the resin sealing portion 14.
  • An ink layer 16 The semiconductor chip 12 has a surface electrode (not shown), the substrate 10 has a substrate electrode (not shown) corresponding to the surface electrode of the semiconductor chip 12, and the surface electrode and the substrate electrode are electrically connected by a bonding wire 18. Connected.
  • the thickness of the resin sealing portion 14 (the shortest distance from the installation surface of the semiconductor chip 12 of the substrate 10 to the upper surface 14a of the resin sealing portion 14) is not particularly limited, but is “the thickness of the semiconductor chip 12” or more. 12 thickness + 1 mm ”or less is preferable, and“ thickness of semiconductor chip 12 ”or more and“ thickness of semiconductor chip 12 + 0.5 mm ”or less are particularly preferable.
  • FIG. 4 is a schematic cross-sectional view showing another example of a semiconductor package.
  • the semiconductor package 120 of this example includes a substrate 70, a semiconductor chip 72 mounted on the substrate 70, and an underfill (resin sealing portion) 74.
  • the underfill 74 fills a gap between the substrate 70 and the main surface of the semiconductor chip 72 (surface on the substrate 70 side), and the back surface (surface opposite to the substrate 70 side) of the semiconductor chip 72 is exposed. is doing.
  • the manufacturing method of the semiconductor package of this invention can employ
  • a compression molding method or a transfer molding method can be cited as a method for forming the resin sealing portion, and a known compression molding device or transfer molding device can be used as the device used at this time.
  • the manufacturing conditions may be the same as the conditions in a known semiconductor package manufacturing method.
  • FIGS. 1 A first embodiment of the semiconductor package manufacturing method of the present invention will be described with reference to FIGS.
  • This embodiment is an example in which the semiconductor package 110 shown in FIG. 3 is manufactured by a compression molding method using the aforementioned release film 1 as a release film.
  • the manufacturing method of the semiconductor package of this embodiment includes the following steps ( ⁇ 1) to ( ⁇ 7).
  • ( ⁇ 1) In a mold having a fixed upper mold 20, a cavity bottom member 22, and a frame-shaped movable lower mold 24 disposed at the periphery of the cavity bottom member 22, the release film 1 is a cavity 26 of the mold.
  • the present embodiment is an example in which the semiconductor package 120 shown in FIG. 4 is manufactured by the transfer method using the above-described release film 1 as a release film.
  • the manufacturing method of the semiconductor package of this embodiment includes the following steps ( ⁇ 1) to ( ⁇ 5).
  • ( ⁇ 1) The release film 1 covers the cavity 54 of the upper mold 50 of the mold having the upper mold 50 and the lower mold 52, and the surface 2 a of the release film 1 on the side of the releasable substrate 2 is inside the cavity 54. Step (FIG.
  • Step 4 The plunger 64 of the resin arrangement part 62 of the lower mold 52 is pushed up, and the curable resin 40 previously arranged in the resin arrangement part 62 is filled into the cavity 54 through the resin introduction part 60 of the upper mold 50 and cured.
  • a step of taking out the semiconductor package 120 from the mold (FIG. 11).
  • a cured product 76 obtained by curing the curable resin 40 in the resin introduction portion 60 is attached to the underfill 74 of the semiconductor package 120 taken out at this time. The cured product 76 is cut off to obtain the semiconductor package 120.
  • the step ( ⁇ 6) and the step ( ⁇ 7) are performed in this order.
  • the step ( ⁇ 6) and the step ( ⁇ 7) are performed in the reverse order. Also good. That is, an ink layer is formed using ink on the surface of the resin sealing portion of the collective sealing body taken out from the mold, and then the substrate and the resin sealing portion of the collective sealing body are cut. Good.
  • the timing at which the resin sealing portion is peeled from the release film is not limited to when the resin sealing portion is taken out from the mold, and the resin sealing portion is taken out from the mold together with the release film, and then released from the resin sealing portion.
  • the mold film may be peeled off.
  • the distance between each of the plurality of semiconductor elements to be collectively sealed may be uniform or non-uniform. It is preferable to make the distance between the plurality of semiconductor elements uniform from the viewpoint that the sealing can be made uniform and the load applied to each of the plurality of semiconductor elements becomes uniform (the load becomes the smallest).
  • the semiconductor package 110 may be manufactured by a transfer molding method as in the second embodiment, and the semiconductor package 120 may be manufactured by a compression molding method as in the first embodiment.
  • the release film may be the release film of the present invention and is not limited to the release film 1.
  • a release film 4 may be used. As a metal mold
  • a well-known thing can be used as a metal mold
  • die in 2nd Embodiment it is not limited to what is shown in FIG. 8, A well-known thing can be used as a metal mold
  • the semiconductor package manufactured by the semiconductor package manufacturing method of the present invention is not limited to the semiconductor packages 110 and 120. Depending on the semiconductor package to be manufactured, the steps ( ⁇ 6) to ( ⁇ 7) in the first embodiment may not be performed.
  • the shape of the resin sealing portion is not limited to that shown in FIGS. 3 to 4, and there may be a step or the like.
  • One or more semiconductor elements may be sealed in the resin sealing portion.
  • the ink layer is not essential. When a light emitting diode is manufactured as a semiconductor package, the resin sealing portion also functions as a lens portion, and therefore an ink layer is not usually formed on the surface of the resin sealing portion.
  • various lens shapes such as a substantially hemispherical type, a bullet type, a Fresnel lens type, a saddle type, and a substantially hemispherical lens array type can be adopted as the shape of the resin sealing part.
  • Examples 1 to 18 described later examples, and Examples 14 to 18 are comparative examples.
  • the evaluation methods and materials used in each example are shown below.
  • the thickness ( ⁇ m) of the base material was measured in accordance with ISO 4591: 1992 (JIS K7130: 1999 method B1, thickness measurement method of a sample taken from a plastic film or sheet).
  • the thickness (nm) of the antistatic layer was measured with a transmission infrared film thickness meter RX-100 (manufactured by Kurashiki Boseki Co., Ltd.).
  • Ra arithmetic mean roughness Ra
  • the arithmetic average roughness Ra ( ⁇ m) of the surface was measured based on JIS B0601: 2013 (ISO 4287: 1997, Amd. 1: 2009).
  • the reference length lr (cut-off value ⁇ c) was 0.8 mm, and the measurement length was 8 mm.
  • SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd.
  • Ra was obtained for a total of 6 locations, 3 in the direction orthogonal to the flow direction during film production and 3 in the parallel direction.
  • the average value thereof was defined as Ra of the surface.
  • the surface resistance value ( ⁇ / ⁇ ) was measured according to IEC 60093, a double ring electrode method.
  • the measuring instrument was an ultrahigh resistance meter R8340 (manufactured by Advantec), and the measurement was performed at an applied voltage of 500 V and an application time of 1 minute.
  • the charged voltage on the side of the peeled release film that was in contact with the curable resin was quickly measured.
  • a surface potential meter MP-520-1 manufactured by Midori Safety Co., Ltd.
  • the distance between the release film and the measuring terminal was fixed at 3 cm.
  • the measured value was calculated by rounding off the digit of 1V (the measurement upper limit of the apparatus is 2,000V).
  • the results were evaluated according to the following criteria. A (good): 0 to 100V. B (possible): 101-200V. X (defect): 201V or more.
  • the epoxy resin (Sumicon EME G770H type F ver. GR, manufactured by Sumitomo Bakelite Co., Ltd.) is obtained by pulverizing and mixing the following raw materials with a super mixer for 5 minutes.
  • Phenol aralkyl type epoxy resin containing phenylene skeleton (Nippon Kayaku Co., Ltd., NC-3000, softening point 58 ° C., epoxy equivalent 277): 8 parts by mass.
  • Bisphenol A type epoxy resin manufactured by Japan Epoxy Resin, YL6810, melting point 45 ° C., epoxy equivalent 172): 2 parts by mass.
  • Phenol aralkyl resin containing a phenylene skeleton (manufactured by Mitsui Chemicals, XLC-4L. Softening point 65 ° C., hydroxyl group equivalent 165): 2 parts by mass.
  • Phenol novolac resin (manufactured by Sumitomo Bakelite, PR-HF-3, softening point 80 ° C., hydroxyl group equivalent 105): 2 parts by mass.
  • Curing accelerator triphenylphosphine
  • Inorganic filler (melted spherical silica having an average particle diameter of 16 ⁇ m): 84 parts by mass.
  • Carnauba wax 0.1 parts by mass.
  • Carbon black 0.3 part by mass.
  • Coupling agent (3-glycidoxypropyltrimethoxysilane): 0.2 parts by mass.
  • Total light transmittance The total light transmittance (%) of the release film was measured according to ISO 14782: 1999 using a haze meter NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • Mold adsorption time zone voltage By measuring the charged voltage of the release film when the release film is adsorbed to the mold, the antistatic property of the release film at the time of contact between the semiconductor element and the release film is confirmed.
  • the charged voltage when the release film was adsorbed to the mold was measured with a contact surface potential meter MODEL821HH (manufactured by Trek Japan).
  • ETFE film 1 Fluon (registered trademark) ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities formed on the surface and a mirror-finished metal roll. A 50 ⁇ m film was formed. The temperature of the extruder and T die was 320 ° C., and the temperature of the pressing roll and metal roll was 100 ° C. Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the antistatic liquid coating surface was subjected to corona treatment so that the wetting tension based on ISO 8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • the “antistatic liquid coated surface” of the film is a surface coated with the antistatic liquid, and is a surface having “coated surface Ra” shown in Tables 1 to 3 described later.
  • ETFE film 2 Fluon (registered trademark) ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities formed on the surface and a mirror-finished metal roll. A 50 ⁇ m film was formed. The temperature of the extruder and T die was 320 ° C., and the temperature of the pressing roll and metal roll was 50 ° C. Ra of the surface of the obtained film was 1.3 ⁇ m on the pressing roll side and 0.1 ⁇ m on the mirror side. The antistatic liquid coated surface was subjected to corona treatment in the same manner as ETFE film 1.
  • ETFE film 3 Fluon (registered trademark) ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities formed on the surface and a mirror-finished metal roll. A 100 ⁇ m film was formed. The temperature of the extruder and T die was 320 ° C., and the temperature of the pressing roll and metal roll was 100 ° C. The Ra of the surface of the obtained film was 2.2 ⁇ m on the pressing roll side and 0.3 ⁇ m on the mirror side. The antistatic liquid coated surface was subjected to corona treatment in the same manner as ETFE film 1.
  • ETFE film 4 Fluon (registered trademark) ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities formed on the surface and a mirror-finished metal roll. A 50 ⁇ m film was formed. The temperature of the extruder and T die was 330 ° C., and the temperature of the pressing roll and metal roll was 150 ° C. The Ra of the surface of the obtained film was 2.7 ⁇ m on the pressing roll side and 0.3 ⁇ m on the mirror side. The antistatic liquid coated surface was subjected to corona treatment in the same manner as ETFE film 1.
  • LM-ETFE film Fluon (registered trademark) LM-ETFE LM-720AP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll having irregularities formed on the surface and a mirror-finished metal roll. A film having a thickness of 50 ⁇ m was formed. The temperature of the extruder and T die was 320 ° C., and the temperature of the pressing roll and metal roll was 100 ° C. Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side. The antistatic liquid coated surface was subjected to corona treatment in the same manner as ETFE film 1.
  • PMP (polymethylpentene) film: TPX (registered trademark) MX004 (manufactured by Mitsui Chemicals) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll having irregularities formed on the surface and a metal roll having a mirror surface, and has a thickness of 50 ⁇ m. A film was formed.
  • the temperature of the extruder and the T die was 300 ° C., and the temperature of the pressing roll and metal roll was 100 ° C.
  • Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • SPS (syndiotactic polystyrene) film Zalek (registered trademark) 142ZE (made by Idemitsu Kosan Co., Ltd.) is fed into an extruder equipped with a T-die, taken between mirror-finished metal rolls, and stretched simultaneously in the film flow direction and in the direction perpendicular to the flow direction. And a film having a thickness of 50 ⁇ m was formed.
  • the temperature of the extruder and the T-die is 270 ° C.
  • the temperature of the cooling roll is 100 ° C.
  • the stretching temperature is 115 ° C.
  • the stretching ratio is 3.3 times in both the flow direction and the direction orthogonal to the flow direction
  • the stretching speed is 500%. / Min.
  • Silicone coated PET film NS separator MA100 (manufactured by Nakamoto Pax Co., Ltd., thickness: 100 ⁇ m) was used.
  • a releasable silicone coating layer is provided on one side of a PET film, and the thickness of the silicone coating layer is 5 ⁇ m.
  • TPU polyurethane elastomer film with release layer: 3- (2-perfluorohexylethoxy) -1,2-dihydroxypropane (trade name: Ftop (registered trademark) MF100) with respect to 100 parts by mass of Pandex (registered trademark) T8166DN (manufactured by DIC Bayer Polymer Co., Ltd.) 0.1 parts by mass), fed to an extruder equipped with a T die and extruded, and in the take-up machine, the matte-processed PET film is used as the separator from the pressing roll side, and the mirror-processed PET film is used from the metal cooling roll side.
  • Ftop registered trademark
  • T8166DN manufactured by DIC Bayer Polymer Co., Ltd.
  • Release layer material Fluorine-containing copolymer containing reactive silicone as copolymerized unit EFCLEAR (registered trademark) KD270 (manufactured by Kanto Denka Kogyo Co., Ltd.) and hexamethylene diisocyanate-based isocyanurate type compound DURANATE (registered trademark) TSE- 100 (manufactured by Asahi Kasei Co., Ltd.) was mixed so that the NCO / OH ratio was 1, and diluted with ethyl acetate so that the solid content concentration became 7% by mass.
  • Ra of the surface of the obtained film the mat-processed PET film application surface was 2.1 ⁇ m, and the mirror-processed PET film application surface (release surface) was 0.2 ⁇ m.
  • Conductive tin oxide sol phosphorus-doped tin oxide
  • Cellnax registered trademark
  • CX-S204IP solid content 20% by mass, manufactured by Nissan Chemical Industries, Ltd.
  • 5 parts of polyamide resin Macromelt 6827 pellet, manufactured by Henkel).
  • Antistatic liquid 4 The following materials (parts are solid masses) were mixed. The obtained mixture was diluted with ethyl acetate so as to have a solid content of 5% by mass, whereby antistatic liquid 4 was obtained. 2 parts of polyaniline-based conductive polymer dispersion CORERON YE (solid content: 10% by mass, manufactured by Polymerites Corporation). Polyester resin Polyester (registered trademark) SP181 (pellet, Nippon Synthetic Chemical Co., Ltd.) 5 parts. Isocyanate-based curing agent, Coronate L (solid content 70% by mass, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.5 part.
  • Antistatic liquid 5 Silicone resin-containing polythiophene-based conductive polymer paint Sepulzida (registered trademark) AS-F (solid content 15% by mass, manufactured by Shin-Etsu Polymer Co., Ltd.) diluted with methyl ethyl ketone to a solid content of 3% by mass for charging The prevention liquid 5 was obtained.
  • Antistatic liquid 7 The following materials (parts are solid masses) were mixed. The obtained mixture was diluted with ethyl acetate so as to have a solid content of 5% by mass, whereby antistatic liquid 7 was obtained. 1.3 parts of carbon black. Polyester resin Polyester MSP640 (pellet, Nippon Synthetic Chemical Co., Ltd.) 5 parts. Isocyanate-based curing agent Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.5 part.
  • Example 1 The antistatic liquid 1 was applied to the surface of the ETFE film 1 on the Ra 0.2 ⁇ m side using a gravure coater and dried to form an antistatic layer having a thickness of 200 nm. Coating was performed by a direct gravure method using a grid 150 # -depth 40 ⁇ m roll of ⁇ 100 mm ⁇ 250 mm width as a gravure plate, and the coating speed was 4 m / min. Drying was carried out at 100 ° C. for 1 minute through a roll support drying furnace at an air volume of 15 m / sec. Thereafter, the film was cured in an oven at 40 ° C. for 3 days to obtain a release film.
  • Examples 2 to 13, Examples 15 to 17 Separated in the same manner as in Example 1 except that the type of antistatic liquid, the coating surface of the releasable substrate, the type of releasable substrate or the thickness of the antistatic layer were changed as shown in Tables 1 to 3. A mold film was obtained.
  • Example 14 The ETFE film 1 was used as the release film of Example 14 as it was.
  • an overcoat solution 1 was further coated thereon using a gravure coater and dried to form an overcoat layer having a thickness of 2 ⁇ m. Formed. Drying was performed by blowing hot air. Thereafter, the film was cured in an oven at 40 ° C. for 3 days to obtain a release film.
  • the type of release base used the thickness and Ra of the coated surface, the type of antistatic liquid, the thickness of the antistatic layer, the antistatic layer side of the release film ( Tables 1 to 3 show the surface resistance value of Example 18 (overcoat layer side), post-sealing film voltage, total light transmittance, mold adsorption test result, mold adsorption time band voltage, and mold blocking test result. Shown in
  • the Ra on the surface on the antistatic layer side was measured and found to be the same as the Ra on the coated surface of the release substrate.
  • the release films of Examples 1 to 13 had a low surface resistance value on the side of the antistatic layer, zero voltage at the time of die adsorption, and an excellent antistatic effect.
  • the film voltage after sealing was low, and the antistatic effect was sufficiently excellent even after exposure to high temperatures.
  • the release films of Examples 1 to 13 had a total light transmittance of 80% or more and excellent transparency, so that no adsorption error occurred in the mold adsorption test.
  • the number of occurrences of wrinkles in the release film during the adsorption of the mold is small, and in particular, in the example where the Ra on the surface on the antistatic layer side is 0.2 to 2.5 ⁇ m, The number of times was zero.
  • the release film of Example 14 having no antistatic layer was insufficient in antistatic action.
  • the release film of Example 15 in which the antistatic agent is a quaternary ammonium salt-containing acrylic resin was excellent in antistatic action immediately after production, but the film charge voltage after sealing was high, and the antistatic action was greatly reduced by high temperature.
  • the antistatic layer of Example 17 uses the same liquid as the antistatic layer of Example 1, but the transmittance is low because the thickness of the antistatic layer is as thick as 500 nm.
  • the release film of Example 18 having a structure in which an overcoat layer was provided on the antistatic layer and the antistatic layer was not in direct contact with the mold had the same surface resistance as that of Example 10, but when the mold was adsorbed. The charged voltage was 90V. This is considered because the staying electric charge did not diffuse quickly. It should be noted that the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-248936 filed on December 9, 2014 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

 高温環境下であっても優れた帯電防止作用があり、透明性に優れる離型フィルムおよび該離型フィルムを用いた半導体パッケージの製造方法の提供。 半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、樹脂封止部の形成時に硬化性樹脂と接する離型性基材2(ただし、帯電防止剤を含まない。)と、樹脂封止部の形成時に金型と接する帯電防止層3とを備え、帯電防止層3が、導電性重合体および導電性金属酸化物からなる群から選ばれる少なくとも1種の帯電防止剤を含み、全光線透過率が80%以上である離型フィルム。

Description

離型フィルムおよび半導体パッケージの製造方法
 本発明は、半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型のキャビティ面に配置される離型フィルムおよび該離型フィルムを用いた半導体パッケージの製造方法に関する。
 半導体素子は通常、外気からの遮断・保護のため樹脂で封止され、パッケージと呼ばれる成形品として基板上に実装されている。半導体素子の封止には、エポキシ樹脂等の熱硬化性樹脂等の硬化性樹脂が用いられる。半導体素子の封止方法としては、たとえば、半導体素子が実装された基板を、該半導体素子が金型のキャビティ内の所定の場所に位置するように配置し、キャビティ内に硬化性樹脂を充填して硬化させる、いわゆるトランスファ成形法または圧縮成形法が知られている。
 従来、パッケージは、硬化性樹脂の流路であるランナーを介して連結した1素子毎のパッケージ成形品として成形されている。この場合、金型からのパッケージの離型性向上は、金型構造の調整、硬化性樹脂への離型剤の添加等によりなされることが多い。一方、パッケージの小型化、多ピン化の要請からBGA方式やQFN方式、さらにはウエハレベルCSP(WL-CSP)方式のパッケージが増加している。QFN方式では、スタンドオフの確保および端子部への樹脂バリ発生を防止するため、またBGA方式およびWL-CSP方式では、金型からのパッケージの離型性向上のため、金型のキャビティ面に離型フィルムが配置されることが多い。
 金型のキャビティ面への離型フィルムの配置は、一般的に、巻き重ねられた状態の長尺の離型フィルムを巻出ロールから巻き出し、巻出ロールおよび巻取ロールによって引っ張られた状態で金型上に供給し、真空でキャビティ面に吸着せしめることによって行われる。また、最近では、予め金型に合わせてカットした短尺の離型フィルムを金型に供給することも行われている(特許文献1)。
 離型フィルムとしては、樹脂フィルムが一般的に用いられている。しかし、かかる離型フィルムは帯電しやすい問題がある。たとえばロール状に巻き取られた状態の離型フィルムを巻き出して使用する場合、離型フィルムの剥離時に静電気が発生し、離型フィルムが帯電する。この場合、製造雰囲気下に存在する粉塵等の異物が帯電した離型フィルムに付着してパッケージの形状異常(バリ発生、異物付着等)や金型汚れの原因になる。また、帯電した離型フィルムが半導体素子に接触した際に、放電により半導体素子が破壊される懸念がある。とりわけ、半導体素子の封止装置として顆粒樹脂を採用する装置が増えており(たとえば特許文献2)、離型フィルムに顆粒樹脂から発生する粉じんが付着することによる形状異常や金型汚れは無視できなくなっている。
 また、近年はパッケージの薄型化や、放熱性の向上の要請から、半導体素子をフリップチップ接合し、半導体素子の背面を露出させるパッケージが増えてきている。この工程はモールドアンダーフィル(Molded Underfill;MUF)工程と呼ばれる。MUF工程では、半導体素子の保護とマスキングのために、離型フィルムと半導体素子とが直接接触した状態で封止が行われる(たとえば特許文献3)。離型フィルムが帯電しやすいと、硬化した硬化性樹脂と離型フィルムとを剥離する際に、離型フィルムが帯電し、次いで放電が生じて、半導体素子が破壊される懸念がある。
 この対策として、(1)離型フィルムが金型に運ばれる前に、高電圧が印加された電極間を通して、イオン化されたエアーを離型フィルムに吹き付けて除電する方法(特許文献4)、(2)カーボンブラックを含有させて離型フィルムの表面抵抗値を下げる方法(特許文献5)、(3)離型フィルムを構成する基材に帯電防止剤を塗工し、さらに架橋型アクリル系粘着剤を塗工し架橋させて、離型フィルムに離型層を設ける方法(特許文献6)等が提案されている。(3)の方法において、帯電防止剤としては、第4級アンモニウム塩を有するカチオン性帯電防止剤が、帯電防止性に優れるため好適であるとされている。
特開2009-272398号公報 特開2008-279599号公報 特開2013-123063号公報 特開2000-252309号公報 特開2002-280403号公報 特開2005-166904号公報
 しかし、(1)の方法では、離型フィルムは除電されるが、エアーによる埃の巻き上げのリスクが高まるうえ、離型フィルムと半導体素子との接触時に離型フィルムが帯電するために、剥離時の帯電-放電を防ぐことはできない。
 (2)の方法では、表面抵抗値を充分に下げるだけのカーボンブラックを含有すると、離型フィルムの透明性が失われ、離型フィルム越しの金型視認ができなくなる、カーボンブラックが脱落して金型を汚す、等の問題がある。離型フィルム越しの金型視認ができないと、金型上での離型フィルムの位置ずれやそれに伴う吸着不良が生じやすい。
 (3)の方法では、封止工程(たとえば180℃)で、離型フィルムの帯電防止作用が失われる問題がある。
 本発明の目的は、高温環境下(たとえば180℃)であっても優れた帯電防止作用があり、透明性に優れる離型フィルムおよび該離型フィルムを用いた半導体パッケージの製造方法を提供することにある。
 本発明は、以下の[1]~[15]の構成を有する離型フィルムおよび半導体パッケージの製造方法を提供する。
 [1]半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、
 樹脂封止部の形成時に硬化性樹脂と接する離型性基材と、前記樹脂封止部の形成時に金型と接する帯電防止層とを備え、
 前記帯電防止層が、導電性重合体および導電性金属酸化物からなる群から選ばれる少なくとも1種の帯電防止剤を含み、
 全光線透過率が80%以上であることを特徴とする離型フィルム。
 [2]以下の測定方法で測定される封止後フィルム帯電圧が200V以下である、[1]の離型フィルム。
 (封止後フィルム帯電圧の測定方法)
 13cm×13cmの第一のステンレス板上に、13cm×13cm、厚さ100μmのアルミニウム箔(JIS H4000:2006のAIN30P)を乗せ、その上に、スペーサとして、10cm×12cm、厚さ125μmのポリイミドフィルムの中央を8cm×10cmの大きさでくりぬいたものを乗せ、さらに前記ポリイミドフィルムのくりぬいた部分に、硬化性樹脂として半導体封止用エポキシ樹脂 スミコンEME G770H typeF ver.GR(住友ベークライト社製)の2.7gを播く。その上に、13cm×13cmの前記離型フィルムを、事前に除電をしてから、帯電防止層側と反対面が前記硬化性樹脂に接触するように載置し、その上にさらに13cm×13cmの第二のステンレス板を乗せ、サンプルとする。
 以上の手順で作製したサンプルを、プレス機にて、温度180℃、圧力1MPa、時間3分間でプレスし、プレス機から取り出したのち、全体を180℃のホットプレートに乗せ、第二のステンレス板を取り除いた後、離型フィルムを5秒かけて剥離する。その後5秒以内に、剥離した離型フィルムの、硬化性樹脂に接触していた側の帯電圧を、表面電位計を用い、離型フィルムと測定端子の距離を3cmに固定して測定する。
 [3]前記帯電防止層の表面抵抗値が1010Ω/□以下である、[1]または[2]の離型フィルム。
 [4]前記帯電防止層側の表面の算術平均粗さRaが0.2~2.5μmである、[1]~[3]のいずれかの離型フィルム。
 [5]前記帯電防止層の厚さが100~1,000nmである、[1]~[4]のいずれかの離型フィルム。
 [6]前記帯電防止層が、前記帯電防止剤と樹脂バインダとを含む、[1]~[5]のいずれかの離型フィルム。
 [7]前記樹脂バインダが、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、クロロトリフロロエチレン-ビニルアルコール共重合体およびテトラフロロエチレン-ビニルアルコール共重合体からなる群から選ばれる少なくとも1種からなる、[6]の離型フィルム。
 [8]前記帯電防止剤の含有量が、前記樹脂バインダに対して3~50質量%である、[6]または[7]の離型フィルム。
 [9]前記離型性基材側の表面の算術平均粗さRaが0.1~2.5μmである、[1]~[8]のいずれかの離型フィルム。
 [10]前記離型性基材の厚さが12~100μmである、[1]~[9]のいずれかの離型フィルム。
 [11]前記離型性基材が単層または多層構造の透明樹脂体からなり、少なくとも硬化性樹脂と接する表面を構成する層が離型性透明樹脂からなる、[1]~[10]のいずれかの離型フィルム。
 [12]前記離型性基材が、離型性透明樹脂からなる単層構造体である、[11]の離型フィルム。
 [13]前記離型性透明樹脂が、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレンまたはシリコーン樹脂である、[11]または[12]の離型フィルム。
 [14]前記離型性透明樹脂がエチレン-テトラフルオロエチレン共重合体である、[11]または[12]の離型フィルム。
 [15]半導体素子と、前記半導体素子を封止する、硬化した硬化性樹脂からなる樹脂封止部とを有する半導体パッケージの製造方法であって、
 金型の硬化性樹脂が接する面に、[1]~[14]のいずれかの離型フィルムを配置する工程と、
 半導体素子が実装された基板を前記金型内に配置し、前記金型内の空間に硬化性樹脂を満たして硬化させて樹脂封止部を形成することにより、前記半導体素子が実装された基板と前記樹脂封止部とを有する封止体を得る工程と、
 前記封止体を前記金型から離型する工程と、
を含むことを特徴とする半導体パッケージの製造方法。
 本発明の離型フィルムは、高温環境下(たとえば180℃)であっても優れた帯電防止作用があり、透明性に優れる。
本発明の離型フィルムの第1実施形態を示す概略断面図である。 本発明の離型フィルムの第2実施形態を示す概略断面図である。 本発明の半導体パッケージの製造方法により製造する半導体パッケージの一例を示す略断面図である。 本発明の半導体パッケージの製造方法により製造する半導体パッケージの他の一例を示す概略断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α1)~(α3)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α4)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α4)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β1)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β2)~(β3)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β4)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β5)を示す断面図である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 樹脂における「単位」は、当該樹脂を構成する構成単位(モノマー単位)を示す。
 「フッ素樹脂」とは、構造中にフッ素原子を含む樹脂を示す。
 本発明の離型フィルムは、半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置されるフィルムである。本発明の離型フィルムは、たとえば、半導体パッケージの樹脂封止部を形成する際に、該樹脂封止部の形状に対応する形状のキャビティを有する金型のキャビティ面を覆うように配置され、形成した樹脂封止部と金型のキャビティ面との間に配置されることによって、得られた半導体パッケージの金型からの離型を容易にする。
 以下、本発明の離型フィルムの詳細を説明する。
 本発明の離型フィルムは、樹脂封止部の形成時に硬化性樹脂と接する離型性基材と、前記樹脂封止部の形成時に金型と接する帯電防止層とを備える。
 離型性基材は、単層構造または多層構造の透明樹脂体からなり、少なくとも硬化性樹脂と接する表面を構成する層が離型性透明樹脂からなる。本発明において、「離型性透明樹脂」とは、離型性があり、かつ離型フィルムの全光線透過率が80%以上となるに十分な透明性がある樹脂をいう。また、「離型性がある」とは、当該樹脂のみからなる層が離型層として機能し得ることを意味する。
 帯電防止層は、帯電防止剤である導電性重合体のみから構成されていてもよいが、帯電防止剤と樹脂バインダを含む層からなることが好ましい。帯電防止剤と樹脂バインダを含む帯電防止層は、帯電防止剤と樹脂バインダと溶剤等の液状媒体とを含む塗工液を離型性基材の片面に塗布し、液状媒体を除去して、形成されることが好ましい。また、帯電防止剤と樹脂バインダとを含むフィルムを離型性基材の片面に積層して形成することもできる。
〔第1実施形態の離型フィルム〕
 図1は、本発明の離型フィルムの第1実施形態を示す概略断面図である。
 第1実施形態の離型フィルム1は、樹脂封止部の形成時に硬化性樹脂と接する離型性基材2と、前記樹脂封止部の形成時に金型と接する帯電防止層3とを備える。離型性基材2は、単層構造である。
 離型フィルム1は、半導体パッケージの製造時に、離型性基材2側の表面2aを金型のキャビティに向けて配置され、樹脂封止部の形成時に硬化性樹脂と接触する。また、この時、帯電防止層3側の表面3aは金型のキャビティ面に密着する。この状態で硬化性樹脂を硬化させることにより、金型のキャビティの形状に対応した形状の樹脂封止部が形成される。
(全光線透過率)
 離型フィルム1の全光線透過率は、80%以上であり、85%以上が好ましい。全光線透過率が80%以上であれば、実際に半導体封止装置に離型フィルム1をセットする際に、離型フィルム1越しに金型の位置を認識しやすい。そのため、離型フィルム1と金型との位置合わせが容易であり、離型フィルムを固定する真空吸着孔と離型フィルムの位置とがずれる吸着エラーが生じにくい。また、金型と離型フィルム1との間に異物を噛みこんだ場合に目視で確認できるため、離型フィルム1越しに異物の形状が樹脂封止部に転写された不良品が出る確率が低くなる。
 該全光線透過率の上限は特に設定されないが、99%以下であるとよい。
(離型性基材)
 離型性基材2としては、離型性透明樹脂を含むもの(ただし、帯電防止剤を含まない。)が挙げられる。
 離型性透明樹脂としては、離型性、半導体パッケージの封止温度(たとえば180℃)における耐熱性、金型追従性に優れる点で、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、離型性のシリコーン樹脂等が好ましい。中でも、離型性に優れる点で、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレンが好ましく、フッ素樹脂が特に好ましい。これらの樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フッ素樹脂としては、離型性および耐熱性に優れる点から、フルオロオレフィン系重合体が好ましい。フルオロオレフィン系重合体は、フルオロオレフィンに基づく単位を有する重合体である。フルオロオレフィン系重合体は、フルオロオレフィンに基づく単位以外の単位をさらに有してもよい。
 フルオロオレフィンとしては、テトラフルオロエチレン(以下、「TFE」ともいう。)、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等が挙げられる。フルオロオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 フルオロオレフィン系重合体としては、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオリド共重合体(THV)等が挙げられる。フルオロオレフィン系重合体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フルオロオレフィン系重合体としては、高温での伸びが大きい点から、ETFEが特に好ましい。ETFEは、TFEに基づく単位(以下、「TFE単位」ともいう。)と、エチレンに基づく単位(以下、「E単位」ともいう。)とを有する共重合体である。
 ETFEとしては、TFE単位と、E単位と、TFEおよびエチレン以外の第3のモノマーに基づく単位とを有する重合体が好ましい。第3のモノマーに基づく単位の種類や含有量によってETFEの結晶化度、ひいては離型性基材2の引張特性を調整しやすい。たとえば第3のモノマー(特にフッ素原子を有するモノマー)に基づく単位を有することで、高温(特に180℃前後)における引張強伸度が向上する。
 第3のモノマーとしては、フッ素原子を有するモノマーと、フッ素原子を有しないモノマーとが挙げられる。
 フッ素原子を有するモノマーとしては、下記のモノマー(a1)~(a5)が挙げられる。
 モノマー(a1):炭素数2または3のフルオロオレフィン類。
 モノマー(a2):X(CFCY=CH(ただし、X、Yは、それぞれ独立に水素原子またはフッ素原子であり、nは2~8の整数である。)で表される含フッ素モノマー。
 モノマー(a3):フルオロビニルエーテル類。
 モノマー(a4):官能基含有フルオロビニルエーテル類。
 モノマー(a5):脂肪族環構造を有する含フッ素モノマー。
 モノマー(a1)としては、フルオロエチレン類(トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、クロロトリフルオロエチレン等)、フルオロプロピレン類(ヘキサフルオロプロピレン(以下、「HFP」ともいう。)、2-ヒドロペンタフルオロプロピレン等)等が挙げられる。
 モノマー(a2)としては、nが2~6のモノマーが好ましく、nが2~4のモノマーが特に好ましい。また、Xがフッ素原子、Yが水素原子であるモノマー、すなわち(ペルフルオロアルキル)エチレンが特に好ましい。
 モノマー(a2)の具体例としては、下記の化合物が挙げられる。
 CFCFCH=CH
 CFCFCFCFCH=CH((ペルフルオロブチル)エチレン。以下、「PFBE」ともいう。)、
 CFCFCFCFCF=CH
 CFHCFCFCF=CH
 CFHCFCFCFCF=CH等。
 モノマー(a3)の具体例としては、下記の化合物が挙げられる。なお、下記のうちジエンであるモノマーは環化重合し得るモノマーである。
 CF=CFOCF
 CF=CFOCFCF
 CF=CF(CFCF(ペルフルオロ(プロピルビニルエーテル)。以下、「PPVE」ともいう。)、
 CF=CFOCFCF(CF)O(CFCF
 CF=CFO(CFO(CFCF
 CF=CFO(CFCF(CF)O)(CFCF
 CF=CFOCFCF(CF)O(CFCF
 CF=CFOCFCF=CF
 CF=CFO(CFCF=CF等。
 モノマー(a4)の具体例としては、下記の化合物が挙げられる。
 CF=CFO(CFCOCH
 CF=CFOCFCF(CF)O(CFCOCH
 CF=CFOCFCF(CF)O(CFSOF等。
 モノマー(a5)の具体例としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等が挙げられる。
 フッ素原子を有しないモノマーとしては、下記のモノマー(b1)~(b4)が挙げられる。
 モノマー(b1):オレフィン類。
 モノマー(b2):ビニルエステル類。
 モノマー(b3):ビニルエーテル類。
 モノマー(b4):不飽和酸無水物。
 モノマー(b1)の具体例としては、プロピレン、イソブテン等が挙げられる。
 モノマー(b2)の具体例としては、酢酸ビニル等が挙げられる。
 モノマー(b3)の具体例としては、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等が挙げられる。
 モノマー(b4)の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸(5-ノルボルネン-2,3-ジカルボン酸無水物)等が挙げられる。
 第3のモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 第3のモノマーとしては、結晶化度を調整しやすい点、第3のモノマー(特にフッ素原子を有するモノマー)に基づく単位を有することで高温(特に180℃前後)における引張強伸度に優れる点から、モノマー(a2)、HFP、PPVE、酢酸ビニルが好ましく、HFP、PPVE、CFCFCH=CH、PFBEがより好ましく、PFBEが特に好ましい。すなわち、ETFEとしては、TFE単位と、E単位と、PFBEに基づく単位とを有する共重合体が特に好ましい。
 ETFEにおいて、TFE単位と、E単位とのモル比(TFE単位/E単位)は、80/20~40/60が好ましく、70/30~45/55がより好ましく、65/35~50/50が特に好ましい。TFE単位/E単位が前記範囲内であれば、ETFEの耐熱性および機械的強度に優れる。
 ETFE中の第3のモノマーに基づく単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.01~20モル%が好ましく、0.10~15モル%がより好ましく、0.20~10モル%が特に好ましい。第3のモノマーに基づく単位の割合が前記範囲内であれば、ETFEの耐熱性および機械的強度に優れる。
 第3のモノマーに基づく単位がPFBEに基づく単位を含む場合、PFBEに基づく単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.5~4.0モル%が好ましく、0.7~3.6モル%がより好ましく、1.0~3.6モル%が特に好ましい。PFBEに基づく単位の割合が前記範囲内であれば、離型フィルムの180℃における引張弾性率を前記範囲内に調整できる。また、高温(特に180℃前後)における引張強伸度が向上する。
 ETFEの溶融流量(MFR)は、2~40g/10分が好ましく、5~30g/10分がより好ましく、10~20g/10分が特に好ましい。MFRは、分子量の目安であり、MFRが大きいほど、分子量が小さい傾向がある。ETFEのMFRが前記範囲内であれば、ETFEの成形性が向上し、離型フィルムの機械的強度に優れる。
 ETFEのMFRは、ASTM D3159に準拠して、荷重49N、297℃にて測定される値である。
 離型性基材2は、離型性透明樹脂のみからなるものでもよく、離型性透明樹脂に加えて、離型性透明樹脂以外の成分をさらに含有してもよい。
 たとえば、透明性、および離型性基材2と帯電防止層3との密着性を損なわない範囲で、離型性透明樹脂以外の離型成分を含有してもよい。該離型成分としては、シリコーンオイル、フッ素系界面活性剤等が挙げられる。
 本発明の有用性の点では、離型性基材2は、帯電防止剤を含まないことが好ましい。
 離型性基材2としては、フッ素樹脂を含む層が好ましく、フッ素樹脂のみからなる層が特に好ましい。この場合、離型フィルム1は、離型性に優れ、また、成形時の金型の温度(典型的には150~180℃)に耐え得る耐熱性、硬化性樹脂の流動や加圧力に耐え得る強度等を充分に有し、高温における伸びにも優れる。
 離型性基材2の、樹脂封止部の形成時に硬化性樹脂と接する面、すなわち離型フィルム1の離型性基材2側の表面2aは、平滑でもよく凹凸が形成されていてもよい。離型性に優れる点では、凹凸が形成されていることが好ましい。
 凹凸が形成されている場合の表面形状は、複数の凸部および/または凹部がランダムに分布した形状でもよく、複数の凸部および/または凹部が規則的に配列した形状でもよい。複数の凸部および/または凹部の形状や大きさは、同じでもよく異なってもよい。
 凸部としては、離型フィルムの表面に延在する長尺の凸条、点在する突起等が挙げられ、凹部としては、離型フィルムの表面に延在する長尺の溝、点在する穴等が挙げられる。
 凸条または溝の形状としては、直線、曲線、折れ曲がり形状等が挙げられる。離型フィルム表面においては、複数の凸条または溝が平行に存在して縞状をなしていてもよい。凸条または溝の、長手方向に直交する方向の断面形状としては、三角形(V字形)等の多角形、半円形等が挙げられる。
 突起または穴の形状としては、三角錐形、四角錐形、六角錐形等の多角錐形、円錐形、半球形、多面体形、その他各種不定形等が挙げられる。
 表面2aの算術平均粗さRaは、0.1~2.5μmが好ましく、0.2~2.0μmが特に好ましい。表面2aの算術平均粗さRaが前記範囲の下限値以上であれば、形成される樹脂封止部の樹脂流れ跡(フローマーク)が目立たない。表面2aの算術平均粗さRaが前記範囲の上限値以下であれば、樹脂封止部の形成後に、樹脂封止部に施すマーキングの視認性がより優れる。
 離型性基材2の帯電防止層3側の表面の算術平均粗さRaは、0.2~2.5μmが好ましく、0.2~2.0μmが特に好ましい。帯電防止層3側の表面の算術平均粗さRaが前記の範囲内であれば、離型性基材2上に帯電防止層3を形成した場合に、帯電防止層3の離型性基材2側とは反対側の表面、つまり離型フィルム1の帯電防止層3側の表面3aの算術平均粗さRaが後述の範囲内となりやすい。
 算術平均粗さRaは、JIS B0601:2013(ISO 4287:1997,Amd.1:2009)に基づき測定される値である。粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとする。
 離型性基材2の厚さは、12~100μmであることが好ましく、25~75μmが特に好ましい。離型性基材2の厚さが前記範囲の下限値以上であれば、離型性基材2の「折れ」による帯電防止層3の「割れ」が発生しにくく、帯電防止性が損なわれにくい。また、離型フィルム1の取り扱い(たとえばロール・トゥ・ロールでの扱い)が容易であり、離型フィルム1を引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。離型性基材2の厚さが前記範囲の上限値以下であれば、帯電防止層3による帯電防止効果が、離型性基材2側の表面(封止面)まで充分に及ぶ。また、離型フィルム1が容易に変形可能で、金型追従性に優れる。
(帯電防止層)
 帯電防止層3は、導電性重合体および導電性金属酸化物からなる群から選ばれる少なくとも1種の帯電防止剤(以下、「帯電防止剤(I)」ともいう。)を含む。
 導電性重合体とは、重合体の骨格を伝って、電子が移動し、拡散する重合体である。導電性重合体としては、たとえばポリアニリン系重合体、ポリアセチレン系重合体、ポリパラフェニレン系重合体、ポリピロール系重合体、ポリチオフェン系重合体、ポリビニルカルバゾール系重合体等が挙げられる。
 導電性重合体の質量平均分子量は、20,000~500,000が好ましく、40,000~200,000が特に好ましい。導電性重合体の質量平均分子量が前記範囲外であると(すなわち、20,000未満または500,000を超える場合)、導電性重合体の水に対する分散安定性が低下する場合がある。質量平均分子量は、たとえば、ウォーターズ社製ultrahydrogel500カラム等を使用したゲル透過クロマトグラフィ(GPC)で測定される。
 導電性金属酸化物としては、たとえば錫ドープ酸化インジウム、アンチモンドープ酸化錫、リンドープ酸化錫、アンチモン酸亜鉛、酸化アンチモン等が挙げられる。
 帯電防止剤(I)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 帯電防止剤(I)としては、耐熱性および導電性に優れる点で、ポリアニリン系重合体、ポリピロール系重合体、ポリチオフェン系重合体が好ましい。
 帯電防止層3において、帯電防止剤(I)は、樹脂バインダ中に分散していることが好ましい。すなわち、帯電防止層3は、樹脂バインダ中に帯電防止剤(I)が分散した層であることが好ましい。
 樹脂バインダとしては、封止工程での熱(たとえば180℃)に耐えられる耐熱性を有するものであれば特に制限されない。耐熱性に優れることから、樹脂バインダは、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、クロロトリフロロエチレン-ビニルアルコール共重合体およびテトラフロロエチレン-ビニルアルコール共重合体からなる群から選ばれる少なくとも1種を含むことが好ましい。中でも、機械的強度に優れる点で、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、クロロトリフロロエチレン-ビニルアルコール共重合体、テトラフロロエチレン-ビニルアルコール共重合体のいずれか1種(たとえばアクリル樹脂のみ)からなることが好ましい。
 樹脂バインダとしては、耐熱性や帯電防止剤(I)の分散性に優れる点から、ポリエステル樹脂、アクリル樹脂が特に好ましい。
 帯電防止層3において、樹脂バインダは、架橋されていてもよい。樹脂バインダが架橋されていると、架橋されていない場合に比べて、耐熱性が優れる。
 帯電防止層3は、本発明の効果を損なわない範囲で、帯電防止剤(I)以外の帯電防止剤をさらに含んでもよい。
 他の帯電防止剤としては、たとえば湿度依存性の帯電防止剤が挙げられる。湿度依存性の帯電防止剤は、それ自体は導電性を有しない帯電防止剤であり、たとえば側基に4級アンモニウム塩基を有するカチオン系共重合体、ポリスチレンスルホン酸を含むアニオン系高分子、ポリエーテルエステルアミド、エチレンオキサイド-エピクロルヒドリンオリゴマー、ポリエーテルエステル等を含む非イオン系高分子、シリケートオリゴマー等が挙げられる。これらは、空気中の水分を吸着し、水分を介して電荷を逃がすことで帯電を防止している。しかし、100℃以上の高温においては、吸着していた水分が脱離するため、電荷を逃がすことができずに帯電防止性が失われる。
 一方、帯電防止剤(I)は、それ自体が導電性を有するため、帯電防止剤(I)によって得られる帯電防止作用は、湿度に依存せず(非湿度依存性)、100℃以上の高温においても発揮される。
 帯電防止層3には、帯電防止性および透明性を損なわない範囲で、帯電防止剤以外の添加剤が含まれていてもよい。該添加剤としては、金型との離型性を向上させる滑剤、着色剤、カップリング剤等が挙げられる。滑剤としては、熱可塑性樹脂からなるマイクロビーズ、ヒュームドシリカ、ポリテトラフルオロエチレン(PTFE)微粒子等が挙げられる。着色剤としては、各種の有機、無機の着色剤を用いることができ、たとえばコバルトブルー、べんがら、シアニンブルー等が挙げられる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤等が挙げられる。
 帯電防止層3中の帯電防止剤(I)の含有量は、帯電防止層3の表面抵抗値が1010Ω/□以下となる量が好ましい。帯電防止層3の表面抵抗値は、10Ω/□以下が特に好ましい。該表面抵抗値が前記の上限値以下であると、半導体パッケージと離型フィルム1とを剥離する際の離型性基材2の帯電を充分に中和し、見掛け上の帯電を0にできる。帯電防止層3の下限は特に制限されないが、10Ω/□以上が好ましい。
 帯電防止層3が、樹脂バインダ中に帯電防止剤(I)が分散した層である場合、帯電防止剤(I)の含有量は、樹脂バインダ(100質量%)に対し、3~50質量%が好ましく、5~20質量%が特に好ましい。帯電防止剤(I)の含有量が前記範囲の下限値以上であれば、帯電防止剤(I)の種類にもよるが、帯電防止層3の表面抵抗値が前記の上限値以下となりやすい。帯電防止剤(I)の含有量が前記範囲の上限値以下であれば、帯電防止層3と離型性基材との密着性が優れる。
 帯電防止層3中の湿度依存性の帯電防止剤の含有量は、特に限定されないが、コスト、分散性等を考慮すると、帯電防止剤(I)(100質量%)に対し、10質量%以下が好ましく、0質量%が特に好ましい。すなわち、帯電防止層3は、湿度依存性の帯電防止剤を含まないことが特に好ましい。
 帯電防止層3の厚さは、100~1,000nmが好ましく、200~800nmが特に好ましい。帯電防止層3の厚さが前記範囲の下限値以上であれば、帯電防止層3が連続した塗膜となりやすく、優れた帯電防止性が得られやすい。該厚さが前記範囲の上限値以下であれば、帯電防止層3のはがれが起きにくい。
 帯電防止層3の、離型性基材2側とは反対側の表面、つまり離型フィルム1の帯電防止層3側の表面3aの算術平均粗さRaは、0.2~2.5μmが好ましく、0.2~2.0μmが特に好ましい。表面3aの算術平均粗さRaが前記範囲の下限値以上であれば、表面3aと金型がブロッキングを起こしにくく、ブロッキングによるシワが生じにくい。表面3aの算術平均粗さRaが前記範囲の上限値以下であれば、帯電防止層3を形成する際に、帯電防止層3の表面付近に樹脂バインダの膜(帯電防止剤(I)を含まない膜)が形成されにくく、帯電防止性が充分に発揮されやすい。
(封止後フィルム帯電圧)
 離型フィルム1は、以下の測定方法で測定される封止後フィルム帯電圧が200V以下であることが好ましく、100V以下が特に好ましい。
 該封止後フィルム帯電圧は、樹脂封止部を形成した後に樹脂封止部と離型フィルムとを剥離する際の離型フィルムの帯電しにくさを示す指標である。封止後フィルム帯電圧が小さいほど、樹脂封止部と離型フィルムとを剥離する際に帯電しにくい。
 <封止後フィルム帯電圧の測定方法>
 13cm×13cmの第一のステンレス(以下、「SUS」ともいう。)板上に、13cm×13cm、厚さ100μmのアルミニウム箔(JIS H4000:2006のAIN30P)を乗せ、その上に、スペーサとして、10cm×12cm、厚さ125μmのポリイミドフィルムの中央を8cm×10cmの大きさでくりぬいたものを乗せ、さらに前記ポリイミドフィルムのくりぬいた部分に、硬化性樹脂として半導体封止用エポキシ樹脂 スミコンEME G770H typeF ver.GR(住友ベークライト社製)の2.7gを播く。その上に、13cm×13cmの前記離型フィルムを、事前に除電をしてから、帯電防止層側と反対面が前記硬化性樹脂に接触するように載置し、その上にさらに13cm×13cmの第二のSUS板を乗せ、サンプルとする。
 以上の手順で作製したサンプルを、プレス機にて、温度180℃、圧力1MPa、時間3分間でプレスし、プレス機から取り出したのち、全体を180℃のホットプレートに乗せ、第二のSUS板を取り除いた後、離型フィルムを5秒かけて剥離する。その後5秒以内に、剥離した離型フィルムの、硬化性樹脂に接触していた側の帯電圧を、表面電位計を用い、離型フィルムと測定端子の距離を3cmに固定して測定する。
(離型フィルムの製造方法)
 離型フィルム1は、たとえば、以下の工程(i)を有する製造方法により製造できる。
 (i)離型性基材2の一方の面上に、帯電防止剤(I)と樹脂バインダと液状媒体とを含む塗液(以下、「帯電防止液」ともいう。)を塗工し、乾燥し、必要に応じて前記樹脂バインダを架橋させて、帯電防止層3を形成する工程。
 乾燥後、必要に応じて、前記樹脂バインダを架橋させてもよい。
 離型性基材2の帯電防止液を塗工する表面においては、帯電防止層3との密着性を向上させるために、表面処理が施されてもよい。表面処理としては、コロナ処理、プラズマ処理、シランカップリング剤塗工、接着剤の塗布等が挙げられる。
 <帯電防止液>
 帯電防止剤(I)、樹脂バインダはそれぞれ前記と同様である。
 液状媒体としては、水、有機溶剤等が挙げられる。有機溶剤としては、アルコール化合物、エステル化合物等が挙げられる。
 前記樹脂バインダを架橋させる場合、前記帯電防止液は、架橋剤をさらに含んでもよい。架橋剤としては、公知のものを用いることができ、たとえばイソシアネート化合物、エポキシ樹脂、メラミン樹脂、アジリジン化合物等が挙げられる。
 帯電防止液の固形分濃度は、1~10質量%が好ましく、2~8質量%が特に好ましい。固形分濃度が前記範囲の下限値以上であれば、塗工性に優れ、上限値以下であれば、帯電防止剤(I)等の分散性に優れる。
 <工程(i)>
 帯電防止液の塗工方法としては、公知の各種ウェットコート法を用いることができ、たとえばグラビアコート法、ダイコート法等が挙げられる。乾燥温度は、50~100℃が好ましい。
 樹脂バインダの架橋方法としては、紫外線(UV)架橋、熱架橋等が挙げられる。乾燥工程が、熱架橋工程を兼ねてもよい。
(作用効果)
 離型フィルム1にあっては、樹脂封止部の形成時に金型と接する帯電防止層が帯電防止剤(I)を含むため、高温環境下(たとえば180℃)であっても優れた帯電防止作用を発揮する。具体的には、離型フィルム1によれば、半導体パッケージの製造方法で半導体素子を封止する樹脂封止部を形成する時、離型フィルムと半導体素子が接触する際に離型フィルムが帯電しにくくなる。また、半導体パッケージの製造方法で半導体素子を封止する樹脂封止部を形成した後に樹脂封止部と離型フィルムとを剥離する際に離型フィルムが帯電しにくくなる。その結果、剥離時の帯電-放電を充分に抑制でき、半導体素子が破壊されにくくなる。
 また、離型フィルム1にあっては、全光線透過率が80%以上であり、透明度が高い。そのため、半導体パッケージの製造時に、離型フィルムを金型へ吸着する際の吸着エラーが生じにくい。
 高温環境下(たとえば180℃)であっても優れた帯電防止作用を得るためには、離型フィルムにおける帯電防止層の位置と、帯電防止層に含まれる帯電防止剤の種類とが重要である。
 樹脂封止部の形成時に金型と接する層が帯電防止層3であることで、帯電防止層3が金型の金属部と接触する。そのため、剥離により離型性基材2に滞留している電荷を速やかに拡散させ、帯電圧を0とすることが可能となる。離型フィルムが、帯電防止層3が直接金型に接しない構造となっている場合、発生したわずかな電荷は長時間徐電されずに残り続ける。特に静電気に敏感な半導体素子が露出する構造の半導体パッケージの生産においては、半導体素子と離型フィルムが接触する瞬間に離型フィルムがわずかでも静電気を帯びていると、その静電気より半導体素子にも電荷が誘起され、容易に破壊してしまう。そのため、離型フィルムが金型に吸着して接触している際の帯電圧は0であることが好ましい。
 また、帯電防止剤(I)は、前述のとおり、非湿度依存性の帯電防止剤であり、高温(たとえば180℃)である半導体パッケージの封止温度下においても帯電防止作用を発揮する。帯電防止剤が湿度依存性のもの(たとえば第4級アンモニウム塩を有するカチオン性帯電防止剤)である場合、その帯電防止作用は、空気中の水分を吸着して電荷を逃がすという原理によるため、半導体パッケージの封止温度では、吸着していた水分が脱離して帯電防止作用が失われる。
〔第2実施形態の離型フィルム〕
 図2は、本発明の離型フィルムの第2実施形態を示す概略断面図である。なお、以下において、第1実施形態に対応する構成要素には同一の符号を付してその詳細な説明を省略する。
 第2実施形態の離型フィルム4は、樹脂封止部の形成時に硬化性樹脂と接する離型性基材5と、前記樹脂封止部の形成時に金型と接する帯電防止層3とを備える。離型性基材5は、基材本体5Aの片面(帯電防止層3側とは反対側の面)に、離型層形成剤を塗工して形成された離型層5Bを備えるものである。
 離型フィルム4は、半導体パッケージの製造時に、離型性基材5側の表面5aを金型のキャビティに向けて配置され、樹脂封止部の形成時に硬化性樹脂と接触する。また、この時、帯電防止層3側の表面3aは金型のキャビティ面に密着する。この状態で硬化性樹脂を硬化させることにより、金型のキャビティの形状に対応した形状の樹脂封止部が形成される。
(離型性基材)
 基材本体5Aとしては、透明で、半導体パッケージの封止温度(たとえば180℃)で使用可能ないかなる材質のものも選択可能である。基材本体5Aの材質としては、たとえばポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられる。
 離型層5Bを形成する離型層形成剤としては、たとえば、前記離型性透明樹脂の溶液、離型性のシリコーン樹脂となる液状の硬化性シリコーン樹脂等が挙げられる。
 離型性基材5の、樹脂封止部の形成時に硬化性樹脂と接する面、すなわち離型フィルム4の離型性基材5側の表面5aは、平滑でもよく凹凸が形成されていてもよい。離型性の点では、凹凸が形成されていることが好ましい。凹凸について好ましい様態は前述の離型性基材2と同様であり、表面5aについて好ましい様態は前述の表面2aと同様である。
 離型性基材5の厚さの好ましい範囲は、離型性基材2と同様である。
 離型層5Bの厚さは、0.2~5μmが好ましく、0.5~2μmが特に好ましい。離型層5Bの厚さが前記範囲の下限値以上であれば、離型性がより優れ、上限値以下であれば、帯電防止性に優れる。
(離型フィルムの製造方法)
 離型フィルム4は、離型性基材2の代わりに離型性基材5を用いる以外は、第1実施形態の離型フィルム1と同様にして製造できる。
 離型性基材5としては、市販のものを用いてもよく、公知の方法により製造したものを用いてもよい。
(封止後フィルム帯電圧)
 離型フィルム4の、前記の測定方法で測定される封止後フィルム帯電圧は、離型フィルム1と同様に、200V以下であることが好ましく、100V以下が特に好ましい。
(作用効果)
 離型フィルム4にあっては、第1実施形態の離型フィルム1と同様に、高温環境下(たとえば180℃)であっても優れた帯電防止作用を発揮する。また、透明性に優れる。
 以上、本発明の離型フィルムについて、第1~2実施形態を示して説明したが、本発明は上記実施形態に限定されない。上記実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 第1実施形態における離型性基材2は、複数の透明樹脂フィルムを積層して得られる多層構造体でもよい。この場合、少なくとも硬化性樹脂と接する表面を構成する層は離型性透明樹脂からなる。複数の層それぞれを構成する透明樹脂は同一でもよく異なってもよく、複数の層がすべて離型性透明樹脂からなっていてもよい。離型性透明樹脂以外の透明樹脂としては、たとえば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられる。
 金型追従性、引張伸度、製造コスト等の点からは、離型性基材2は、前記離型性透明樹脂の単層構造体であることが好ましい。
 第1~2実施形態では、離型性基材と帯電防止層とが直接積層したものを示したが、本発明の離型フィルムは、離型性基材と帯電防止層との間に他の層を備えてもよい。
 他の層としては、たとえば、ガスバリア層、着色層、剛性層(PETフィルム等)等が挙げられる。これらの層はいずれか1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の離型フィルムとしては、樹脂封止部の形成時に硬化性樹脂と接する側から、離型性基材/帯電防止層、離型性基材/ガスバリア層/帯電防止層、離型性基材/着色層/帯電防止層のいずれかの層構成を有するものが好ましい。中でも、帯電防止性に優れる点で、帯電防止層と離型性基材とが直接接する離型性基材/帯電防止層の層構成のものが好ましく、第1実施形態のように、単層構造の離型性基材/帯電防止層の2層構成のものが特に好ましい。
〔半導体パッケージ〕
 本発明の離型フィルムを用いて、後述の本発明の半導体パッケージの製造方法により製造される半導体パッケージとしては、トランジスタ、ダイオード等の半導体素子を集積した集積回路;発光素子を有する発光ダイオード等が挙げられる。
 集積回路のパッケージ形状としては、集積回路全体を覆うものでも集積回路の一部を覆う(集積回路の一部を露出させる)ものでもよい。具体例としては、BGA(Ball Grid Array)、QFN(Quad Flat Non-leaded package)、SON(Small Outline Non-leaded package)等が挙げられる。
 半導体パッケージとしては、生産性の点から、一括封止およびシンギュレーションを経て製造されるものが好ましく、たとえば、封止方式がMAP(Moldied Array Packaging)方式、またはWL(Wafer Lebel packaging)方式である集積回路等が挙げられる。
 図3は、半導体パッケージの一例を示す概略断面図である。
 この例の半導体パッケージ110は、基板10と、基板10の上に実装された、半導体チップ12と、半導体チップ12を封止する樹脂封止部14と、樹脂封止部14の上面14aに形成されたインク層16とを有する。
 半導体チップ12は、表面電極(図示略)を有し、基板10は、半導体チップ12の表面電極に対応する基板電極(図示略)を有し、表面電極と基板電極とはボンディングワイヤ18によって電気的に接続されている。
 樹脂封止部14の厚さ(基板10の半導体チップ12設置面から樹脂封止部14の上面14aまでの最短距離)は、特に限定されないが、「半導体チップ12の厚さ」以上「半導体チップ12の厚さ+1mm」以下が好ましく、「半導体チップ12の厚さ」以上「半導体チップ12の厚さ+0.5mm」以下が特に好ましい。
 図4は、半導体パッケージの他の一例を示す概略断面図である。
 この例の半導体パッケージ120は、基板70と、基板70の上に実装された半導体チップ72と、アンダーフィル(樹脂封止部)74とを有する。
 アンダーフィル74は、基板70と半導体チップ72の主面(基板70側の表面)との間の間隙を充填しており、半導体チップ72の背面(基板70側とは反対側の表面)は露出している。
〔半導体パッケージの製造方法〕
 本発明の半導体パッケージの製造方法は、本発明の離型フィルムを用いること以外は、公知の製造方法を採用できる。たとえば樹脂封止部の形成方法としては、圧縮成形法またはトランスファ成形法が挙げられ、この際に使用する装置としては、公知の圧縮成形装置またはトランスファ成形装置を用いることができる。製造条件も、公知の半導体パッケージの製造方法における条件と同じ条件とすればよい。
(第1実施形態)
 図5~7を用いて、本発明の半導体パッケージの製造方法の第1実施形態を説明する。本実施形態は、離型フィルムとして前述の離型フィルム1を用いて、図3に示した半導体パッケージ110を圧縮成形法により製造する例である。
 本実施形態の半導体パッケージの製造方法は下記の工程(α1)~(α7)を含む。
 (α1)固定上型20と、キャビティ底面部材22と、キャビティ底面部材22の周縁に配置された枠状の可動下型24とを有する金型において、離型フィルム1が前記金型のキャビティ26を覆い且つ離型フィルム1の離型性基材2側の表面2aがキャビティ26内の空間に向くように(帯電防止層3側の表面3aが金型のキャビティ面と接するように)離型フィルム1を配置する工程(図5)。
 (α2)離型フィルム1を金型のキャビティ面の側に真空吸引する工程(図5)。
 (α3)離型フィルム1でキャビティ面が覆われたキャビティ26内に硬化性樹脂40を充填する工程(図5)。
 (α4)半導体チップ12等を備える半導体素子が複数実装された基板10をキャビティ26内の所定の位置に配置して金型を型締めし(図6)、硬化性樹脂40によって前記半導体素子を一括封止して樹脂封止部14を形成する(図7)ことにより、基板10と基板10上に実装された複数の半導体素子と前記複数の半導体素子を一括封止する樹脂封止部14とを有する一括封止体を得る工程。
 (α5)金型内から前記一括封止体を取り出す工程。
 (α6)前記複数の半導体素子が分離するように、前記一括封止体の基板10および樹脂封止部14を切断することにより、基板10と基板10上に実装された少なくとも1つの半導体素子と、該半導体素子を封止する樹脂封止部14とを有する個片化封止体を得る工程。
 (α7)個片化封止体の樹脂封止部14の上面14aに、インクを用いてインク層16を形成し、半導体パッケージ110を得る工程。
(第2実施形態)
 図8~11を用いて、本発明の半導体パッケージの製造方法の第2実施形態を説明する。本実施形態は、離型フィルムとして前述の離型フィルム1を用いて、図4に示した半導体パッケージ120をトランスファ法により製造する例である。
 本実施形態の半導体パッケージの製造方法は下記の工程(β1)~(β5)を含む。
 (β1)離型フィルム1が、上型50と下型52とを有する金型の上型50のキャビティ54を覆い且つ離型フィルム1の離型性基材2側の表面2aがキャビティ54内の空間に向くように(帯電防止層3側の表面3aが上型50のキャビティ面56と接するように)離型フィルム1を配置する工程(図8)。
 (β2)離型フィルム1を上型50のキャビティ面56の側に真空吸引する工程(図9)。
 (β3)半導体チップ72等を備える半導体素子が実装された基板70を下型52の基板設置部58に配置し、上型50と下型52とを型締めして、半導体チップ72の背面(基板70側とは反対側の表面)に離型フィルム1を密着させる工程(図9)。
 (β4)下型52の樹脂配置部62のプランジャ64を押し上げて、樹脂配置部62に予め配置された硬化性樹脂40を、上型50の樹脂導入部60を通じてキャビティ54内に充填し、硬化させてアンダーフィル74を形成することにより、基板70と半導体素子とアンダーフィル74とを有する半導体パッケージ120(封止体)を得る工程(図10)。
 (β5)金型内から半導体パッケージ120を取り出す工程(図11)。このとき取り出された半導体パッケージ120のアンダーフィル74には、樹脂導入部60内で硬化性樹脂40が硬化した硬化物76が付着している。硬化物76を切除して半導体パッケージ120を得る。
 以上、本発明の半導体パッケージの製造方法について、第1~2実施形態を示して説明したが、本発明は上記実施形態に限定されない。上記実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 第1実施形態においては、工程(α5)の後、工程(α6)、工程(α7)をこの順で行う例を示したが、工程(α6)、工程(α7)を逆の順番で行ってもよい。すなわち、金型から取り出した一括封止体の樹脂封止部の表面に、インクを用いてインク層を形成し、その後、一括封止体の前記基板および前記樹脂封止部を切断してもよい。
 離型フィルムから樹脂封止部を剥離するタイミングは、金型から樹脂封止部を取り出す時に限定されず、金型から離型フィルムとともに樹脂封止部を取り出し、その後、樹脂封止部から離型フィルムを剥離してもよい。
 一括封止する複数の半導体素子各々の間の距離は均一でも不均一でもよい。封止を均質にでき、複数の半導体素子各々にかかる負荷が均一になる(負荷が最も小さくなる)点から、複数の半導体素子各々の間の距離を均一にすることが好ましい。
 半導体パッケージ110を、第2実施形態のように、トランスファ成形法により製造してもよく、半導体パッケージ120を、第1実施形態のように、圧縮成形法により製造してもよい。
 離型フィルムは、本発明の離型フィルムであればよく、離型フィルム1に限定されない。たとえば離型フィルム4を用いてもよい。
 第1実施形態における金型としては、図5に示すものに限定されず、圧縮成形法に用いる金型として公知のものを使用できる。第2実施形態における金型としては、図8に示すものに限定されず、トンラスファ法に用いられる金型として公知のものを使用できる。
 本発明の半導体パッケージの製造方法により製造する半導体パッケージは、半導体パッケージ110、120に限定されない。製造する半導体パッケージによっては、第1実施形態における工程(α6)~(α7)は行わなくてもよい。たとえば樹脂封止部の形状は、図3~4に示すものに限定されず、段差等があってもよい。樹脂封止部に封止される半導体素子は1つでも複数でもよい。インク層は必須ではない。半導体パッケージとして発光ダイオードを製造する場合、樹脂封止部はレンズ部としても機能するため、通常、樹脂封止部の表面にはインク層は形成されない。レンズ部である場合、樹脂封止部の形状は、略半球型、砲弾型、フレネルレンズ型、蒲鉾型、略半球レンズアレイ型等の各種のレンズ形状が採用できる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 後述の例1~18のうち、例1~13は実施例であり、例14~18は比較例である。
 各例で使用した評価方法および材料を以下に示す。
〔評価方法〕
(厚さ)
 基材の厚さ(μm)は、ISO 4591:1992(JIS K7130:1999のB1法、プラスチックフィルムまたはシートから採った試料の質量法による厚さの測定方法)に準拠して測定した。
 帯電防止層の厚さ(nm)は、透過型赤外線膜厚計RX-100(倉敷紡績社製)により測定した。
(算術平均粗さRa)
 表面の算術平均粗さRa(μm)は、JIS B0601:2013(ISO 4287:1997,Amd.1:2009)に基づき測定した。基準長さlr(カットオフ値λc)は0.8mm、測定長さは8mmとした。測定に際しては、SURFCOM 480A(東京精密社製)を用い、フィルムの製造時の流れ方向に対して直交する方向について3か所、および平行な方向について3か所の計6か所についてRaを求め、それらの平均値を当該表面のRaとした。
(表面抵抗値)
 表面抵抗値(Ω/□)は、IEC 60093、二重リング電極法に準拠して測定した。測定機器は超高抵抗計R8340(Advantec社製)を使用し、印加電圧500V、印加時間1分間で測定を行った。
(封止後フィルム帯電圧(封止後の剥離帯電))
 剥離してすぐの離型フィルムの帯電圧を測定することで、剥離時における離型フィルムの帯電防止性を確認する。
 13cm×13cmの第一のSUS板上に、厚さ100μmのアルミニウム箔(JIS H4000:2006のAIN30P)を13cm×13cmに切って乗せた。その上に、10cm×12cmから8cm×10cmをくりぬいた厚さ125μmのポリイミドフィルム(ユーピレックス125S、宇部興産社製)をスペーサとして乗せた。さらに前記ポリイミドフィルムのくりぬいた部分に、硬化性樹脂として半導体封止用エポキシ樹脂 スミコンEME G770H typeF ver.GR(住友ベークライト社製)を適量播いた。その上に、13cm×13cmに切り出した離型フィルムを、事前に除電をしてから、帯電防止層側と反対面が硬化性樹脂に接触するように載置した。最後に13cm×13cmの第二のSUS板を乗せた。
 以上の手順で作製したサンプルを、プレス機にて、温度180℃、圧力1MPa、時間3分間でプレスした。プレス機から取り出したのち、全体を180℃のホットプレートに乗せ、第二のSUS板を取り除いた後、離型フィルムを5秒かけてめくり、剥離した。
 剥離した離型フィルムの、硬化性樹脂に接触していた側の帯電圧を速やかに測定した。測定機器は表面電位計MP-520-1(ミドリ安全社製)を使用し、離型フィルムと測定端子の距離を3cmに固定した。また、測定値は1Vの桁を四捨五入して求めた(装置の測定上限は2,000Vである)。その結果を以下の基準で評価した。
 A(良好):0~100V。
 B(可):101~200V。
 ×(不良):201V以上。
 なお、前記エポキシ樹脂(スミコンEME G770H type F ver. GR、住友ベークライト社製。)は、以下の原材料をスーパーミキサにより5分間粉砕混合し、顆粒化したものである。
 フェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC-3000。軟化点58℃、エポキシ当量277。):8質量部。
 ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、YL6810。融点45℃、エポキシ当量172。):2質量部。
 フェニレン骨格含有フェノールアラルキル樹脂(三井化学社製、XLC-4L。軟化点65℃、水酸基当量165。):2質量部。
 フェノールノボラック樹脂(住友ベークライト社製、PR-HF-3。軟化点80℃、水酸基当量105。):2質量部。
 硬化促進剤(トリフェニルホスフィン):0.2質量部。
 無機充填材(平均粒子径16μmの溶融球状シリカ):84質量部。
 カルナバワックス:0.1質量部。
 カーボンブラック:0.3質量部。
 カップリング剤(3-グリシドキシプロピルトリメトキシシラン):0.2質量部。
(全光線透過率)
 離型フィルムの全光線透過率(%)は、ヘーズメーターNDH5000(日本電色工業社製)を使用し、ISO 14782:1999に準拠して測定した。
(金型吸着試験)
 3インチプラスチックコアに巻取られた200mm幅の各離型フィルムを、トランスファーモールド装置YPS60(TOWA社製)にセットした。離型フィルムは、帯電防止層側の表面が金型面と対向するように配置(ただし、帯電防止層を設けなかった離型フィルムに関しては、Raが大きい面を金型面に対向するように配置)して送り出し、180℃に加熱した金型へ真空吸着させた。その際のフィルム送り方向と直行する方向の位置合わせは、カメラによる自動調整とした。その後、真空を解除することにより離型フィルムを開放し、使用済みの離型フィルムの回収および未使用の離型フィルムの金型への送り出しを行った。これら一連の工程(真空吸着、開放、フィルム送り)を100回繰り返し、離型フィルム位置ずれによる吸着エラーの回数を測定した。その結果を以下の基準で評価した。
 A(良好):0回。
 ×(不良):1回以上。
(金型吸着時帯電圧)
 離型フィルムが金型に吸着した際の離型フィルムの帯電圧を測定することで、半導体素子と離型フィルムとの接触時における離型フィルムの帯電防止性を確認する。
 上述の金型吸着試験において、離型フィルムが金型に吸着した際の帯電圧を、接触式表面電位計MODEL821HH(トレックジャパン社製)で測定した。
(金型ブロッキング試験)
 金型温度を175℃とし、キャビティを幅70mm、長さ200mm、深さ0.5mmとした以外は上述の金型吸着試験と同様に、離型フィルムの真空吸着、開放、フィルム送りを100回繰り返し、金型吸着時に離型フィルムにシワが発生した回数をカウントした。その結果を以下の基準で評価した。
 A(良好):0回。
 B(可):1~5回。
 ×(不良):5回超。
〔使用材料〕
(離型性基材)
 ETFEフィルム1:
 Fluon(登録商標) ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、金属ロールの温度は100℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。帯電防止液塗工面には、ISO 8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 なお、フィルムの「帯電防止液塗工面」とは、帯電防止液を塗工した面であり、後述の表1~3に示す「塗工面Ra」を有する面である。
 ETFEフィルム2:
 Fluon(登録商標) ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、金属ロールの温度は50℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が1.3μm、鏡面側が0.1μmであった。帯電防止液塗工面には、ETFEフィルム1と同様にしてコロナ処理を施した。
 ETFEフィルム3:
 Fluon(登録商標) ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ100μmのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、金属ロールの温度は100℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が2.2μm、鏡面側が0.3μmであった。帯電防止液塗工面には、ETFEフィルム1と同様にしてコロナ処理を施した。
 ETFEフィルム4:
 Fluon(登録商標) ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は330℃、押し当てロール、金属ロールの温度は150℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が2.7μm、鏡面側が0.3μmであった。帯電防止液塗工面には、ETFEフィルム1と同様にしてコロナ処理を施した。
 LM-ETFEフィルム:
 Fluon(登録商標) LM-ETFE LM-720AP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、金属ロールの温度は100℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。帯電防止液塗工面には、ETFEフィルム1と同様にしてコロナ処理を施した。
 PMP(ポリメチルペンテン)フィルム:
 TPX(登録商標) MX004(三井化学社製)を、Tダイを備えた押出機にフィードし、表面に凹凸が形成された押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は300℃、押し当てロール、金属ロールの温度は100℃であった。
 得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。
 SPS(シンジオタクチックポリスチレン)フィルム:
 ザレック(登録商標)142ZE(出光興産社製)を、Tダイを備えた押出機にフィードし、鏡面の金属ロールの間に引き取り、フィルムの流れ方向、および流れ方向に直行する方向に同時に延伸を行い、厚さ50μmのフィルムを製膜した。押出機、およびTダイの温度は270℃、冷却ロールの温度は100℃、延伸温度は115℃、延伸倍率は流れ方向、流れ方向に直行する方向、ともに3.3倍、延伸速度は500%/分であった。また、延伸工程ののち、215℃で熱処理を行った。さらにフィルムの片面に凸凹を形成するため、砂を吹き付けるいわゆるサンドマット処理を行った。
 得られたフィルムの表面のRaは、サンドマット処理面が1.3μm、未処理面が0.1μmであった。帯電防止液塗工面には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 シリコーン塗工PETフィルム:
 NSセパレータ MA100(中本パックス社製、厚さ100μm)を使用した。このフィルムは、PETフィルムの片面に離型性のシリコーン塗工層が設けられたもので、シリコーン塗工層の厚さは5μmである。
 離型層付きTPU(ポリウレタンエラストマー)フィルム:
 パンデックス(登録商標)T8166DN(ディーアイシーバイエルポリマー社製)の100質量部に対して、3-(2-ペルフルオロヘキシルエトキシ)-1,2-ジヒドロキシプロパン(商品名:エフトップ(登録商標)MF100)の0.1質量部を添加し、Tダイを備えた押出機にフィードして押出し、引取機内で、押し当てロール側からマット加工PETフィルムをセパレータとし、金属冷却ロール側から鏡面加工PETフィルムをセパレータとして供給し、それらを押し当てロールと金属冷却ロールとの間に挟んで冷却した。押出機、およびTダイの温度は220℃、ロールの温度はともに50℃であった。その後、このフィルムを80℃で24時間、次いで40℃で150時間エージングしたのち、両面のPETセパレータを剥離した。フィルムの厚さは50μmであった。
 次いで、鏡面加工PETフィルムが貼られていた面に、以下の離型層用材料を塗工し、乾燥して厚さ1μmの離型層を形成し、離型層付きTPUフィルムを得た。塗工は、グラビアコート法により行った。乾燥は、熱風の送風により行った。
 離型層用材料:反応性シリコーンを共重合単位として含むフッ素含有共重合体 エフクリア(登録商標)KD270(関東電化工業社製)と、ヘキサメチレンジイソシアネート系イソシアヌレート型化合物 デュラネート(登録商標)TSE-100(旭化成社製)とを、NCO/OH比が1になるように混合し、固形分濃度が7質量%となるように酢酸エチルで希釈したもの。
 得られたフィルムの表面のRaは、マット加工PETフィルム貼り付け面が2.1μm、鏡面加工PETフィルム貼り付け面(離型面)が0.2μmであった。
(帯電防止層用材料)
帯電防止液1:
 以下の各材料(部数は固形分の質量)を混合した。得られた混合物を、メチルエチルケトン/トルエン=1/1(質量比)の混合溶剤にて、固形分5質量%となるように希釈して帯電防止液1を得た。
 ポリピロール系導電性重合体分散液 CDP-310M(固形分5質量%、日本カーリット社製)2部。
 アクリル樹脂 テイサンレジン(登録商標)WS-023(固形分30質量%、ナガセケムテックス社製)10部。
 イソシアネート系硬化剤 コロネート(登録商標)L(固形分70質量%、日本ポリウレタン工業社製)0.5部。
帯電防止液2:
 以下の各材料(部数は固形分の質量)を混合した。得られた混合物を、イソプロパノール/トルエン/水=50/40/10(質量比)の混合溶剤にて、固形分5質量%となるように希釈して帯電防止液2を得た。
 導電性酸化スズゾル(リンドープ酸化錫) セルナックス(登録商標)CX-S204IP(固形分20質量%、日産化学工業社製)2部。
 ポリアミド樹脂 マクロメルト6827(ペレット、ヘンケル社製)5部。
帯電防止液3:
 以下の各材料(部数は液の質量)を混合した。得られた混合物を、イソプロパノール/トルエン/水=50/40/10(質量比)の混合溶剤にて、固形分5質量%となるように希釈して帯電防止液2を得た。
 アクリル樹脂含有、ポリチオフェン系導電性重合体分散液 アラコート(登録商標)AS601D(固形分4質量%、荒川化学工業社製)10部。
 多官能アジリジン化合物硬化剤 アラコートCL910(固形分10質量%、荒川化学工業社製)1部。
帯電防止液4: 
 以下の各材料(部数は固形分の質量)を混合した。得られた混合物を、酢酸エチルにて、固形分5質量%となるように希釈して帯電防止液4を得た。
 ポリアニリン系導電性重合体分散液 CORERON YE(固形分10質量%、Porymerits corporation製)2部。
 ポリエステル樹脂 ポリエスター(登録商標)SP181(ペレット、日本合成化学社製)5部。
 イソシアネート系硬化剤、コロネートL(固形分70質量%、日本ポリウレタン工業社製)0.5部。
帯電防止液5: 
 シリコーン樹脂含有、ポリチオフェン系導電性重合体塗料 セプルジーダ(登録商標)AS-F(固形分15質量%、信越ポリマー社製)を、メチルエチルケトンにて、固形分3質量%となるように希釈して帯電防止液5を得た。
帯電防止液6:
 以下の各材料(部数は液の質量)を混合した。得られた混合物を、イソプロパノール/水=40/30(質量比)の混合溶剤にて、固形分7質量%となるように希釈して帯電防止液6を得た。
 四級アンモニウム塩モノマー含有アクリル樹脂 ボンディップ(登録商標)PA100主剤(固形分30質量%、コニシ社製)1部。
 アミン系硬化剤 ボンディップPA100硬化剤(固形分10質量%、コニシ社製)1部。
帯電防止液7: 
 以下の各材料(部数は固形分の質量)を混合した。得られた混合物を、酢酸エチルにて、固形分5質量%となるように希釈して帯電防止液7を得た。
 カーボンブラック1.3部。
 ポリエステル樹脂 ポリエスターMSP640(ペレット、日本合成化学社製)5部。
 イソシアネート系硬化剤 コロネートL(日本ポリウレタン工業社製)0.5部。
〔例1〕
 ETFEフィルム1のRa0.2μm側の表面に、帯電防止液1を、グラビアコーターを用いて塗工し、乾燥して厚さ200nmの帯電防止層を形成した。塗工は、グラビア版として、Φ100mm×250mm幅の格子150#-深度40μmロールを使用し、ダイレクトグラビア方式で行い、塗工速度は4m/分とした。乾燥は、100℃で1分間、ロールサポート乾燥炉を通し、風量15m/秒で行った。その後、40℃のオーブン内で3日間養生をして離型フィルムを得た。
〔例2~13、例15~17〕
 帯電防止液の種類、離型性基材の塗工面、離型性基材の種類または帯電防止層の厚さを表1~3に記載のように変更した以外は例1と同様にして離型フィルムを得た。
〔例14〕
 ETFEフィルム1をそのまま例14の離型フィルムとした。
〔例18〕
 以下の各材料(部数は固形分の質量)を混合した。得られた混合物を、メチルエチルケトン/トルエン=1/1(質量比)の混合溶剤にて、固形分5質量%となるように希釈してオーバーコート液1(帯電防止液1からポリピロール分散液を除いた組成の液)を得た。
 アクリル樹脂 テイサンレジンWS-023(ナガセケムテックス社製)10部。
 コロネートL(日本ポリウレタン工業社製)0.5部。
 例1と同様にしてETFEフィルム1上に帯電防止層を形成した後、さらにその上に、オーバーコート液1を、グラビアコーターを用いて塗工し、乾燥して厚さ2μmのオーバーコート層を形成した。乾燥は、熱風の送風により行った。その後、40℃のオーブン内で3日間養生をして離型フィルムを得た。
 例1~18の離型フィルムについて、用いた離型性基材の種類、厚さおよび塗工面のRa、帯電防止液の種類、帯電防止層の厚さ、離型フィルムの帯電防止層側(例18のみオーバーコート層側)の表面抵抗値、封止後フィルム帯電圧、全光線透過率、金型吸着試験の結果、金型吸着時帯電圧、金型ブロッキング試験の結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 例1~13、例15~17の離型フィルムについて、帯電防止層側の表面のRaを測定したところ、離型性基材の塗工面のRaと同じであった。
 上記結果に示すとおり、例1~13の離型フィルムは、帯電防止層側の表面抵抗値が低く、金型吸着時帯電圧がゼロであり、優れた帯電防止作用を有していた。また、封止後フィルム帯電圧が低く、高温に曝された後も充分に優れた帯電防止作用を保持していた。
 また、例1~13の離型フィルムは、全光線透過率が80%以上であり、透明性に優れることから、金型吸着試験で吸着エラーが生じなかった。
 さらに、例1~13の離型フィルムは、金型吸着時に離型フィルムにシワが発生した回数が少なく、特に帯電防止層側の表面のRaが0.2~2.5μmの例では、該回数がゼロであった。
 一方、帯電防止層を有しない例14の離型フィルムは帯電防止作用が不充分であった。
 帯電防止剤が四級アンモニウム塩含有アクリル樹脂である例15の離型フィルムは、製造直後の帯電防止作用は優れていたが、封止後フィルム帯電圧が高く、高温により帯電防止作用が大きく低下していた。これは、四級アンモニウム塩の基を含有するカチオン系帯電防止剤の帯電防止作用が、空気中の水分を吸着して電荷を逃がすという原理によるものであり、半導体素子の封止温度である150℃以上という高温環境下では、吸着していた水分が脱離し、電荷を逃がすことができなくなるためと考えられる。
 全光線透過率が80%未満の例16~17の離型フィルムは、透明性が低いため、金型吸着試験で吸着エラーが生じた。例17の帯電防止層は例1の帯電防止層と同じ液を使用しているが、帯電防止層の厚さが500nmと厚いために透過率が低かったと考える。
 帯電防止層上にオーバーコート層が設けられ、帯電防止層が直接金型に接しない構造である例18の離型フィルムは、表面抵抗値は例10と同じであったが、金型吸着時帯電圧が90Vであった。これは、滞留している電荷が速やかに拡散しなかったためと考えられる。
 なお、2014年12月9日に出願された日本特許出願2014-248936号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 離型フィルム、2 離型性基材、3 帯電防止層、4 離型フィルム、5 離型性基材、5A 基材本体、5B 離型層、10 基板、12 半導体チップ、14 樹脂封止部、14a 樹脂封止部14の上面、16 インク層、18 ボンディングワイヤ、20 固定上型、22 キャビティ底面部材、24 可動下型、26 キャビティ、40 硬化性樹脂、50 上型、52 下型、54 キャビティ、56 キャビティ面、58 基板設置部、60 樹脂導入部、62 樹脂配置部、64 プランジャ、70 基板、72 半導体チップ、74 アンダーフィル(樹脂封止部)、76 硬化物、110 半導体パッケージ、120 半導体パッケージ

Claims (15)

  1.  半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、
     樹脂封止部の形成時に硬化性樹脂と接する離型性基材と、前記樹脂封止部の形成時に金型と接する帯電防止層とを備え、
     前記帯電防止層が、導電性重合体および導電性金属酸化物からなる群から選ばれる少なくとも1種の帯電防止剤を含み、
     全光線透過率が80%以上であることを特徴とする離型フィルム。
  2.  以下の測定方法で測定される封止後フィルム帯電圧が200V以下である、請求項1に記載の離型フィルム。
     (封止後フィルム帯電圧の測定方法)
     13cm×13cmの第一のステンレス板上に、13cm×13cm、厚さ100μmのアルミニウム箔(JIS H4000:2006のAIN30P)を乗せ、その上に、スペーサとして、10cm×12cm、厚さ125μmのポリイミドフィルムの中央を8cm×10cmの大きさでくりぬいたものを乗せ、さらに前記ポリイミドフィルムのくりぬいた部分に、硬化性樹脂として半導体封止用エポキシ樹脂 スミコンEME G770H typeF ver.GR(住友ベークライト社製)の2.7gを播く。その上に、13cm×13cmの前記離型フィルムを、事前に除電をしてから、帯電防止層側と反対面が前記硬化性樹脂に接触するように載置し、その上にさらに13cm×13cmの第二のステンレス板を乗せ、サンプルとする。
     以上の手順で作製したサンプルを、プレス機にて、温度180℃、圧力1MPa、時間3分間でプレスし、プレス機から取り出したのち、全体を180℃のホットプレートに乗せ、第二のステンレス板を取り除いた後、離型フィルムを5秒かけて剥離する。その後5秒以内に、剥離した離型フィルムの、硬化性樹脂に接触していた側の帯電圧を、表面電位計を用い、離型フィルムと測定端子の距離を3cmに固定して測定する。
  3.  前記帯電防止層の表面抵抗値が1010Ω/□以下である、請求項1または2に記載の離型フィルム。
  4.  前記帯電防止層側の表面の算術平均粗さRaが0.2~2.5μmである、請求項1~3のいずれか一項に記載の離型フィルム。
  5.  前記帯電防止層の厚さが100~1,000nmである、請求項1~4のいずれか一項に記載の離型フィルム。
  6.  前記帯電防止層が、前記帯電防止剤と樹脂バインダとを含む、請求項1~5のいずれか一項に記載の離型フィルム。
  7.  前記樹脂バインダが、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、クロロトリフロロエチレン-ビニルアルコール共重合体およびテトラフロロエチレン-ビニルアルコール共重合体からなる群から選ばれる少なくとも1種からなる、請求項6に記載の離型フィルム。
  8.  前記帯電防止剤の含有量が、前記樹脂バインダに対して3~50質量%である、請求項6または7に記載の離型フィルム。
  9.  前記離型性基材側の表面の算術平均粗さRaが0.1~2.5μmである、請求項1~8のいずれか一項に記載の離型フィルム。
  10.  前記離型性基材の厚さが12~100μmである、請求項1~9のいずれか一項に記載の離型フィルム。
  11.  前記離型性基材が単層または多層構造の透明樹脂体からなり、少なくとも硬化性樹脂と接する表面を構成する層が離型性透明樹脂からなる、請求項1~10のいずれか一項に記載の離型フィルム。
  12.  前記離型性基材が、離型性透明樹脂からなる単層構造体である、請求項11に記載の離型フィルム。
  13.  前記離型性透明樹脂が、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレンまたはシリコーン樹脂である、請求項11または12に記載の離型フィルム。
  14.  前記離型性透明樹脂がエチレン-テトラフルオロエチレン共重合体である、請求項11または12に記載の離型フィルム。
  15.  半導体素子と、前記半導体素子を封止する、硬化した硬化性樹脂からなる樹脂封止部とを有する半導体パッケージの製造方法であって、
     金型の硬化性樹脂が接する面に、請求項1~14のいずれか一項に記載の離型フィルムを配置する工程と、
     半導体素子が実装された基板を前記金型内に配置し、前記金型内の空間に硬化性樹脂を満たして硬化させて樹脂封止部を形成することにより、前記半導体素子が実装された基板と前記樹脂封止部とを有する封止体を得る工程と、
     前記封止体を前記金型から離型する工程と、
    を含むことを特徴とする半導体パッケージの製造方法。
PCT/JP2015/084204 2014-12-09 2015-12-04 離型フィルムおよび半導体パッケージの製造方法 WO2016093178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177008802A KR102476428B1 (ko) 2014-12-09 2015-12-04 이형 필름 및 반도체 패키지의 제조 방법
JP2016563660A JP6515934B2 (ja) 2014-12-09 2015-12-04 離型フィルムおよび半導体パッケージの製造方法
CN201580066776.6A CN107000268B (zh) 2014-12-09 2015-12-04 脱模膜以及半导体封装体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-248936 2014-12-09
JP2014248936 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016093178A1 true WO2016093178A1 (ja) 2016-06-16

Family

ID=56107363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084204 WO2016093178A1 (ja) 2014-12-09 2015-12-04 離型フィルムおよび半導体パッケージの製造方法

Country Status (5)

Country Link
JP (1) JP6515934B2 (ja)
KR (1) KR102476428B1 (ja)
CN (1) CN107000268B (ja)
TW (1) TWI687296B (ja)
WO (1) WO2016093178A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040240A1 (ja) * 2018-08-24 2020-02-27 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2021200790A1 (ja) * 2020-04-02 2021-10-07 株式会社クレハ 積層フィルム、その製造方法および利用
CN114211668A (zh) * 2021-12-13 2022-03-22 上海空间电源研究所 一种无尾罩电连接器线缆环氧胶灌封工艺方法
KR20230135057A (ko) 2021-01-18 2023-09-22 에이지씨 가부시키가이샤 필름 및 반도체 패키지의 제조 방법
KR20230151995A (ko) 2021-02-25 2023-11-02 에이지씨 가부시키가이샤 필름 및 그 제조 방법, 그리고 반도체 패키지의 제조방법
JP7440133B2 (ja) 2021-01-15 2024-02-28 シルテック カンパニー リミテッド 半導体パッケージ用離型フィルム及びその製造方法
WO2024048548A1 (ja) * 2022-09-01 2024-03-07 Agc株式会社 積層体、その製造方法及び半導体パッケージの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108501297A (zh) * 2017-10-14 2018-09-07 上海尚耐自动化科技有限公司 一种用于紫外光环境下光电传感器的密封外壳的制造工艺
EP3862160A4 (en) * 2018-10-04 2022-08-10 Nitto Denko Corporation REMOVABLE HEAT-RESISTANT PROTECTION SHEET AND THERMO-COMPRESSION BONDING PROCESS
KR102262695B1 (ko) * 2018-11-22 2021-06-08 주식회사 엘지화학 폴더블 백플레이트, 폴더블 백플레이트의 제조방법 및 이를 포함하는 폴더블 디스플레이 장치
KR102256783B1 (ko) 2018-11-22 2021-05-26 주식회사 엘지화학 폴더블 백플레이트 필름 및 폴더블 백플레이트 필름의 제조방법
JP7417828B2 (ja) * 2019-11-21 2024-01-19 パナソニックIpマネジメント株式会社 電子機能用成形体及びその製造方法、並びに電子機能用成形体を用いた操作装置
CN112936914A (zh) * 2019-12-11 2021-06-11 东丽先端材料研究开发(中国)有限公司 一种复合薄膜及其应用
KR20220121070A (ko) * 2021-02-24 2022-08-31 주식회사 엘지화학 폴더블 백플레이트 필름의 제조 방법
CN114292480A (zh) * 2021-12-15 2022-04-08 温州大学新材料与产业技术研究院 一种具有优异抗断裂性和拉伸性etfe薄膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280403A (ja) * 2001-03-19 2002-09-27 Nitto Denko Corp 半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルム
JP2005166904A (ja) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2006027266A (ja) * 2004-06-17 2006-02-02 Daicel Polymer Ltd 帯電防止性樹脂シート及び電子部品包装用成形体
JP2006119355A (ja) * 2004-10-21 2006-05-11 Nitto Denko Corp 帯電防止性粘着型光学フィルム及び画像表示装置
JP2011000803A (ja) * 2009-06-19 2011-01-06 Nitto Denko Corp モールド用離型シームレスベルト
JP2013180792A (ja) * 2012-03-01 2013-09-12 Line Plast:Kk チップ型電子部品包装用カバーテープ
JP2014069385A (ja) * 2012-09-28 2014-04-21 Toray Ind Inc 耐熱離型用フィルム
JP2014221877A (ja) * 2013-05-14 2014-11-27 フジコピアン株式会社 耐熱性貼着用シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158611A (ja) * 1998-11-26 2000-06-13 Teijin Ltd 離形フィルムならびにそれを用いた樹脂シート成形用キャリヤーフィルムおよび樹脂シート保護用フィルム
JP3970464B2 (ja) 1999-02-26 2007-09-05 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
JP3956673B2 (ja) * 2001-11-07 2007-08-08 東洋紡績株式会社 薄膜セラミックシート製造用離型フィルムロール
JP4855329B2 (ja) 2007-05-08 2012-01-18 Towa株式会社 電子部品の圧縮成形方法及び装置
JP5128363B2 (ja) 2008-05-02 2013-01-23 Towa株式会社 半導体チップの樹脂封止成形方法及び金型
JP5477878B2 (ja) 2013-01-17 2014-04-23 アピックヤマダ株式会社 トランスファモールド金型およびこれを用いたトランスファモールド装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280403A (ja) * 2001-03-19 2002-09-27 Nitto Denko Corp 半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルム
JP2005166904A (ja) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2006027266A (ja) * 2004-06-17 2006-02-02 Daicel Polymer Ltd 帯電防止性樹脂シート及び電子部品包装用成形体
JP2006119355A (ja) * 2004-10-21 2006-05-11 Nitto Denko Corp 帯電防止性粘着型光学フィルム及び画像表示装置
JP2011000803A (ja) * 2009-06-19 2011-01-06 Nitto Denko Corp モールド用離型シームレスベルト
JP2013180792A (ja) * 2012-03-01 2013-09-12 Line Plast:Kk チップ型電子部品包装用カバーテープ
JP2014069385A (ja) * 2012-09-28 2014-04-21 Toray Ind Inc 耐熱離型用フィルム
JP2014221877A (ja) * 2013-05-14 2014-11-27 フジコピアン株式会社 耐熱性貼着用シート

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040240A1 (ja) * 2018-08-24 2020-02-27 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2021200790A1 (ja) * 2020-04-02 2021-10-07 株式会社クレハ 積層フィルム、その製造方法および利用
JPWO2021200790A1 (ja) * 2020-04-02 2021-10-07
JP7440133B2 (ja) 2021-01-15 2024-02-28 シルテック カンパニー リミテッド 半導体パッケージ用離型フィルム及びその製造方法
KR20230135057A (ko) 2021-01-18 2023-09-22 에이지씨 가부시키가이샤 필름 및 반도체 패키지의 제조 방법
DE112021006833T5 (de) 2021-01-18 2023-11-16 AGC Inc. Folie und Verfahren zur Herstellung eines Halbleitergehäuses
KR20230151995A (ko) 2021-02-25 2023-11-02 에이지씨 가부시키가이샤 필름 및 그 제조 방법, 그리고 반도체 패키지의 제조방법
DE112021006525T5 (de) 2021-02-25 2023-11-16 AGC Inc. Folie, verfahren zu deren herstellung und verfahren zur herstellung eines halbleitergehäuses
CN114211668A (zh) * 2021-12-13 2022-03-22 上海空间电源研究所 一种无尾罩电连接器线缆环氧胶灌封工艺方法
CN114211668B (zh) * 2021-12-13 2024-04-26 上海空间电源研究所 一种无尾罩电连接器线缆环氧胶灌封工艺方法
WO2024048548A1 (ja) * 2022-09-01 2024-03-07 Agc株式会社 積層体、その製造方法及び半導体パッケージの製造方法

Also Published As

Publication number Publication date
JPWO2016093178A1 (ja) 2017-09-14
KR102476428B1 (ko) 2022-12-09
CN107000268B (zh) 2019-11-22
TWI687296B (zh) 2020-03-11
KR20170093102A (ko) 2017-08-14
JP6515934B2 (ja) 2019-05-22
TW201632332A (zh) 2016-09-16
CN107000268A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016093178A1 (ja) 離型フィルムおよび半導体パッケージの製造方法
TWI707758B (zh) 脫模膜、其製造方法及半導體封裝件之製造方法
WO2016125796A1 (ja) フィルム、その製造方法および該フィルムを用いた半導体素子の製造方法
TWI632042B (zh) Release film and method of manufacturing semiconductor package
JP6460091B2 (ja) 半導体素子実装用パッケージの製造方法、および離型フィルム
JP6375546B2 (ja) 離型フィルム、および封止体の製造方法
TW201620716A (zh) 半導體晶圓加工用片材用基材、半導體晶圓加工用片材、及半導體裝置之製造方法
WO2016080309A1 (ja) 離型フィルム、その製造方法および半導体パッケージの製造方法
US11318641B2 (en) Laminated film and method for producing semiconductor element
WO2022153794A1 (ja) フィルム及び半導体パッケージの製造方法
TWI640595B (zh) Film-like adhesive containing particles coated with conductive fibers and use thereof
KR20190045083A (ko) 광학 필름, 광학 필름 제조 방법 및 유기 발광 전자 장치 제조 방법
CN103725214B (zh) 层叠体
JP2009248123A (ja) 半導体ウェーハの半田リフロー用治具及び半導体ウェーハの半田リフロー方法
US20220396011A1 (en) Release film and method for manufacturing release film
KR20230151995A (ko) 필름 및 그 제조 방법, 그리고 반도체 패키지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008802

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016563660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866797

Country of ref document: EP

Kind code of ref document: A1