WO2016080309A1 - 離型フィルム、その製造方法および半導体パッケージの製造方法 - Google Patents

離型フィルム、その製造方法および半導体パッケージの製造方法 Download PDF

Info

Publication number
WO2016080309A1
WO2016080309A1 PCT/JP2015/081989 JP2015081989W WO2016080309A1 WO 2016080309 A1 WO2016080309 A1 WO 2016080309A1 JP 2015081989 W JP2015081989 W JP 2015081989W WO 2016080309 A1 WO2016080309 A1 WO 2016080309A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
polymer
gas barrier
resin
mold
Prior art date
Application number
PCT/JP2015/081989
Other languages
English (en)
French (fr)
Inventor
渉 笠井
政己 鈴木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201580062947.8A priority Critical patent/CN107004609B/zh
Priority to SG11201702684XA priority patent/SG11201702684XA/en
Priority to MYPI2017701698A priority patent/MY186869A/en
Priority to DE112015005259.3T priority patent/DE112015005259T5/de
Priority to KR1020177008803A priority patent/KR102411741B1/ko
Priority to JP2016560188A priority patent/JP6515933B2/ja
Publication of WO2016080309A1 publication Critical patent/WO2016080309A1/ja
Priority to US15/479,577 priority patent/US10699916B2/en
Priority to PH12017500688A priority patent/PH12017500688B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention provides a release film disposed on a cavity surface of the mold, the release film.
  • the present invention relates to a mold film manufacturing method and a semiconductor package manufacturing method using the release film.
  • Semiconductor chips are usually sealed with resin for shielding and protecting from the outside air and mounted on a substrate as a molded product called a package.
  • a curable resin such as a thermosetting resin such as an epoxy resin is used for sealing the semiconductor chip.
  • a method for sealing a semiconductor chip for example, a substrate on which a semiconductor chip is mounted is arranged so that the semiconductor chip is located at a predetermined location in a mold, and a curable resin is filled in the mold.
  • a so-called transfer molding method or compression molding method for curing is known.
  • a package is formed as a packaged product for each chip connected via a runner that is a flow path of a curable resin.
  • a release film may be used for the purpose of improving the release property of the package from the mold.
  • the release film is also useful in that it prevents the curable resin from sticking to the mold.
  • gas (outgas) generated from the curable resin or a low-viscosity substance permeates the release film and comes into contact with the high temperature mold There is a problem of contaminating the mold. When mold contamination occurs, the semiconductor element sealing process must be stopped for cleaning the mold, and the production efficiency of the semiconductor package decreases.
  • Patent Documents 1 to 3 a release film provided with a metal foil or a metal or metal oxide deposition film as a gas barrier layer.
  • Patent Document 4 a release film obtained by laminating a resin film having a high release property and a resin film having a high gas barrier property (such as an ethylene-vinyl alcohol copolymer film)
  • JP 2002-361443 A Japanese Patent Laid-Open No. 2004-79666 International Publication No. 2007/125834 International Publication No. 2008/020543
  • release films such as those described in Patent Documents 1 to 3 are insufficient in followability to the mold. Specifically, the release film is stretched as a whole when being vacuum-adsorbed to the mold in the sealing step, and is greatly deformed depending on the part.
  • the gas barrier layer is a metal foil
  • the gas barrier layer is easily broken when vacuum-adsorbed.
  • the gas barrier layer is a vapor deposition film
  • it is more difficult to break than the metal foil, but when the deformation becomes large, there arises a problem that cracking occurs as in the case of the metal foil. When cracking occurs, the gas barrier properties are impaired, and the mold cannot be prevented from being contaminated.
  • a pinhole may open when the release film is made to follow the mold.
  • the gas barrier properties are impaired, and further, curable resin or the like leaks from the portions and adheres to the mold, resulting in poor release. Further, even when the pinhole is not opened, mold contamination cannot be sufficiently suppressed.
  • An object of the present invention is to provide a release film that is excellent in releasability and can reduce mold contamination in a semiconductor element sealing step, a method for manufacturing the release film, and a method for manufacturing a semiconductor package using the release film. There is to do.
  • the present invention provides a release film having the following configurations [1] to [15], a method for producing the release film, and a method for producing a semiconductor package.
  • a mold release film disposed on a surface of a mold in contact with a curable resin in manufacturing a semiconductor package in which a semiconductor element is disposed in a mold and sealed with a curable resin to form a resin sealing portion Because A resin side release layer that comes into contact with the curable resin at the time of forming the resin sealing portion, and a gas barrier layer,
  • the gas barrier layer comprises at least one polymer (I) selected from the group consisting of a polymer having vinyl alcohol units and a polymer having vinylidene chloride units; A release film, wherein the gas barrier layer has a thickness of 0.1 to 5 ⁇ m.
  • the polymer (I) includes a polymer having a vinyl alcohol unit, The release film according to [1], wherein the polymer having a vinyl alcohol unit is polyvinyl alcohol or a polymer containing a vinyl alcohol unit and a vinyl acetate unit.
  • the release film according to [3], wherein the units other than the vinyl alcohol unit and the vinyl acetate unit are units represented by the following formula (1).
  • R 1 to R 6 are each independently a hydrogen atom or a monovalent organic group
  • X is a single bond or a bond chain.
  • the polymer (I) includes a polymer having a vinyl alcohol unit, The release film of any one of [1] to [4], wherein the polymer having a vinyl alcohol unit has a crosslinked structure.
  • the step of forming the gas barrier layer comprises forming a gas barrier layer comprising at least one polymer (I) selected from the group consisting of a polymer having a vinyl alcohol unit and a polymer having a vinylidene chloride unit, and a liquid medium.
  • the manufacturing method of the release film characterized by including the process of applying the coating liquid for coating and drying and forming a coating film.
  • the gas barrier layer forming coating solution further comprises a crosslinking agent, [11] The method for producing a release film according to [11], wherein the step of forming the gas barrier layer further includes a step of forming a crosslinked structure by crosslinking the polymer (I) after the step of forming the coating film. [13] The method for producing a release film according to [12], wherein the content of the crosslinking agent is 1 to 20% by mass with respect to the polymer (I). [14]
  • the polymer (I) includes a polymer having a vinyl alcohol unit, The method for producing a release film according to any one of [11] to [13], wherein the liquid medium is an aqueous medium.
  • a method for manufacturing a semiconductor package comprising a semiconductor element and a resin sealing portion that is formed from a curable resin and seals the semiconductor element, Placing the release film of any one of [1] to [10] on the surface of the mold that contacts the curable resin; A substrate on which a semiconductor element is mounted is disposed in the mold, and a space in the mold is filled with a curable resin and cured to form a resin sealing portion, thereby forming the substrate, the semiconductor element, and the Obtaining a sealing body having a resin sealing portion; Releasing the sealing body from the mold; A method for manufacturing a semiconductor package, comprising:
  • the mold release is excellent and the contamination of the mold in the semiconductor element sealing step can be reduced.
  • the method for producing a release film of the present invention it is possible to produce a release film that is excellent in releasability and can reduce contamination of a mold in a semiconductor element sealing step.
  • contamination of the mold in the sealing process can be reduced.
  • FIG. 5 is a cross-sectional view schematically illustrating steps ( ⁇ 1) to ( ⁇ 3) in the first embodiment of the method for manufacturing a semiconductor package of the present invention. It is sectional drawing which illustrates typically the process ((alpha) 4) in 1st Embodiment of the manufacturing method of the semiconductor package of this invention.
  • FIG. 10 is a cross-sectional view showing steps ( ⁇ 2) to ( ⁇ 3) in the second embodiment of the method for producing a semiconductor package of the present invention. It is sectional drawing which shows the process ((beta) 4) in 2nd Embodiment of the manufacturing method of the semiconductor package of this invention. It is sectional drawing which shows the process ((beta) 5) in 2nd Embodiment of the manufacturing method of the semiconductor package of this invention. It is a figure explaining the measuring method of the xylene gas permeability at the time of 2mm level
  • the “unit” in the polymer constituting the resin indicates a constituent part derived from the monomer in the polymer, formed by polymerization of the monomer.
  • the unit may be a unit directly formed by polymerization, or may be a unit in which a part of the structure of the unit is converted into another structure by chemically converting the polymer obtained by polymerization. .
  • a unit directly formed by polymerization of a monomer is also referred to as a “unit based on a monomer”.
  • “Fluorine resin” refers to a resin containing a fluorine atom in its structure.
  • the mold release film of the present invention is disposed on the surface of the mold that contacts the curable resin in manufacturing a semiconductor package in which the semiconductor element is disposed in the mold and sealed with a curable resin to form a resin sealing portion.
  • the release film of the present invention is disposed so as to cover a cavity surface of a mold having a cavity having a shape corresponding to the shape of the resin sealing portion, for example, when forming the resin sealing portion of the semiconductor package, By disposing between the formed resin sealing portion and the cavity surface of the mold, the obtained semiconductor package can be easily released from the mold.
  • details of the release film of the present invention will be described.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a release film of the present invention.
  • the release film 1 of 1st Embodiment is equipped with the resin side release layer 2 and gas barrier layer 3 which contact
  • the release film 1 is disposed with the surface 2a on the resin side release layer 2 side facing the cavity of the mold when the semiconductor package is manufactured, and contacts the curable resin when forming the resin sealing portion.
  • the surface 3a on the gas barrier layer 3 side is in close contact with the cavity surface of the mold.
  • Examples of the resin-side release layer 2 include a layer containing a resin having releasability.
  • a resin having releasability is a resin in which a layer composed only of the resin can function as a release layer.
  • the resin having releasability include fluororesin, polymethylpentene, syndiotactic polystyrene, and silicone rubber. Among these, fluororesin, polymethylpentene, and syndiotactic polystyrene are preferable, and fluororesin is particularly preferable because it has particularly high heat resistance and generates less outgassing during heating. These resins may be used alone or in combination of two or more.
  • a fluoroolefin polymer is preferable from the viewpoint of releasability and heat resistance.
  • the fluoroolefin polymer is a polymer having units based on a fluoroolefin.
  • the fluoroolefin polymer may further have units other than the units based on the fluoroolefin.
  • Examples of the fluoroolefin include tetrafluoroethylene (hereinafter also referred to as “TFE”), vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and the like.
  • a fluoroolefin may be used individually by 1 type, and may use 2 or more types together.
  • fluoroolefin polymers examples include ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA), And tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV).
  • EFE ethylene-tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer
  • TSV tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer
  • a fluoroolefin polymer may be used individually by 1 type, and may use 2 or more
  • ETFE is particularly preferable because of its high elongation at high temperatures.
  • ETFE is a copolymer having units based on TFE (hereinafter also referred to as “TFE units”) and units based on ethylene (hereinafter also referred to as “E units”).
  • TFE units TFE units
  • E units ethylene
  • ETFE a polymer having a TFE unit, an E unit, and a unit based on a monomer other than TFE and ethylene (hereinafter, also referred to as “third monomer”) is preferable. It is easy to adjust the crystallinity of ETFE, and consequently the tensile properties of the resin-side release layer 2, depending on the type and content of units based on the third monomer. For example, having a unit based on a third monomer (particularly a monomer having a fluorine atom) improves the tensile strength and elongation at high temperatures (particularly around 180 ° C.).
  • Examples of the third monomer include a monomer having a fluorine atom and a monomer having no fluorine atom.
  • Examples of the monomer having a fluorine atom include the following monomers (a1) to (a5).
  • Monomer (a1) a fluoroolefin compound having 2 or 3 carbon atoms.
  • Monomer (a2) X (CF 2 ) n CY ⁇ CH 2 (wherein X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8).
  • Alkylethylene Monomer (a3): a fluorovinyl ether compound.
  • Monomer (a5) a fluorine-containing monomer having an aliphatic ring structure.
  • Examples of the monomer (a1) include a fluoroethylene compound (trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.), a fluoropropylene compound (hexafluoropropylene (hereinafter also referred to as “HFP”), 2- Hydropentafluoropropylene and the like).
  • a fluoroethylene compound trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.
  • a fluoropropylene compound hexafluoropropylene (hereinafter also referred to as “HFP”)
  • HFP hexafluoropropylene
  • 2- Hydropentafluoropropylene and the like 2- Hydropentafluoropropylene and the like.
  • the monomer (a2) a monomer having n of 2 to 6 is preferable, and a monomer having n of 2 to 4 is particularly preferable.
  • a monomer in which X is a fluorine atom and Y is a hydrogen atom, that is, (perfluoroalkyl) ethylene is particularly preferable.
  • Specific examples of the monomer (a2) include the following compounds.
  • PFBE perfluorobutyl ethylene
  • the monomer (a3) include the following compounds.
  • the monomer which is a diene among the following is a monomer which can be cyclopolymerized.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3
  • CF 2 CFO (CF 2) 3 O (CF 2) 2 CF 3
  • CF 2 CFO (CF 2 CF (CF 3) O) 2 (CF 2) 2 CF 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3
  • CF 2 CFO (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F and the like.
  • monomer (a5) examples include perfluoro (2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2- Methylene-4-methyl-1,3-dioxolane) and the like.
  • Examples of the monomer having no fluorine atom include the following monomers (b1) to (b4).
  • Monomer (b1) Olefin compound.
  • Monomer (b2) Vinyl ester compound.
  • Monomer (b3) Vinyl ether compound.
  • Monomer (b4) an unsaturated acid anhydride.
  • Specific examples of the monomer (b1) include propylene and isobutene.
  • Specific examples of the monomer (b2) include vinyl acetate.
  • Specific examples of the monomer (b3) include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether.
  • Specific examples of the monomer (b4) include maleic anhydride, itaconic anhydride, citraconic anhydride, hymic anhydride (5-norbornene-2,3-dicarboxylic anhydride) and the like.
  • a 3rd monomer may be used individually by 1 type, and may use 2 or more types together.
  • the third monomer it is easy to adjust the crystallinity, and it has excellent tensile strength and elongation at high temperature (especially around 180 ° C.) by having a unit based on the third monomer (particularly a monomer having a fluorine atom). Therefore, monomer (a2), HFP, PPVE, and vinyl acetate are preferable, HFP, PPVE, CF 3 CF 2 CH ⁇ CH 2 , and PFBE are more preferable, and PFBE is particularly preferable. That is, ETFE is particularly preferably a copolymer having TFE units, E units, and units based on PFBE.
  • the molar ratio of TFE units to E units is preferably 80/20 to 40/60, more preferably 70/30 to 45/55, and 65/35 to 50/50. Is particularly preferred.
  • the TFE unit / E unit is within the above range, the heat resistance and mechanical strength of ETFE are excellent.
  • the proportion of units based on the third monomer in ETFE is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, based on the total (100 mol%) of all units constituting ETFE. 0.20 to 10 mol% is particularly preferable. When the proportion of the units based on the third monomer is within the above range, the heat resistance and mechanical strength of ETFE are excellent.
  • the ratio of the unit based on PFBE is 0.5 to 4.0 mol% with respect to the total (100 mol%) of all units constituting ETFE. Preferably, it is 0.7 to 3.6 mol%, more preferably 1.0 to 3.6 mol%. If the ratio of the unit based on PFBE is within the above range, the tensile elastic modulus at 180 ° C. of the release film can be adjusted within the above range. In addition, the tensile strength and elongation at high temperatures (particularly around 180 ° C.) are improved.
  • the melt flow rate (MFR) of ETFE is preferably 2 to 40 g / 10 minutes, more preferably 5 to 30 g / 10 minutes, and particularly preferably 10 to 20 g / 10 minutes.
  • MFR is a measure of molecular weight, and the larger the MFR, the smaller the molecular weight.
  • the MFR of ETFE is a value measured at a load of 49 N and 297 ° C. in accordance with ASTM D3159.
  • the resin side release layer 2 may be made of only the above resin, and may further contain additives such as an inorganic additive and an organic additive in addition to the above resin.
  • additives such as an inorganic additive and an organic additive in addition to the above resin.
  • the inorganic additives include inorganic fillers such as carbon black, silica, titanium oxide, cerium oxide, aluminum cobalt oxide, mica (mica), and zinc oxide.
  • the organic additive include silicone oil and metal soap.
  • the resin side release layer 2 preferably does not contain an inorganic filler.
  • the release film 1 has excellent releasability, heat resistance that can withstand the mold temperature during molding (typically 150 to 180 ° C.), and withstand the flow and pressure of the curable resin. It has sufficient strength to obtain and is excellent in elongation at high temperatures.
  • the surface of the resin-side release layer 2 that is in contact with the curable resin at the time of forming the resin sealing portion, that is, the surface 2a on the resin-side release layer 2 side of the release film 1 may be smooth or uneven. Good. In terms of releasability, it is preferable that irregularities are formed.
  • the arithmetic average roughness (Ra) of the surface 2a is preferably 0.01 to 0.2 ⁇ m, particularly preferably 0.05 to 0.1 ⁇ m.
  • Ra of the surface 2a when the unevenness is formed is preferably 1.0 to 2.1 ⁇ m, particularly preferably 1.2 to 1.9 ⁇ m.
  • Arithmetic mean roughness (Ra) is a value measured based on JIS B0601: 2013 (ISO4287: 1997, Amd.1: 2009).
  • the reference length lr (cut-off value ⁇ c) for the roughness curve is 0.8 mm.
  • the surface shape in the case where irregularities are formed may be a shape in which a plurality of convex portions and / or concave portions are randomly distributed, or a shape in which a plurality of convex portions and / or concave portions are regularly arranged.
  • the shape and size of the plurality of convex portions and / or concave portions may be the same or different.
  • the convex portion include long ridges extending on the surface of the release film, and scattered protrusions
  • the concave portion includes long grooves extending on the surface of the release film. Hole and the like.
  • Examples of the shape of the ridge or groove include a straight line, a curved line, a bent shape, and the like.
  • a plurality of ridges or grooves may exist in parallel to form a stripe shape.
  • Examples of the cross-sectional shape of the ridges or grooves in the direction perpendicular to the longitudinal direction include polygons such as triangles (V-shaped), semicircles, and the like.
  • Examples of the shape of the protrusion or the hole include a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, and other polygonal pyramids, a cone, a hemisphere, a polyhedron, and various other irregular shapes.
  • the thickness of the resin side release layer 2 is preferably 12 to 100 ⁇ m, particularly preferably 25 to 75 ⁇ m. If the thickness of the resin-side release layer 2 is equal to or greater than the lower limit of the above range, the release film 1 can be easily handled (for example, handled in a roll-to-roll manner) and gold can be pulled while pulling the release film 1. Wrinkles are less likely to occur when placed over the mold cavity. If the thickness of the resin side release layer 2 is equal to or less than the upper limit of the above range, generation of outgas during heating from the resin side release layer 2 itself can be suppressed, and the effect of reducing the contamination of the mold is more excellent. Moreover, the release film 1 can be easily deformed and has excellent mold followability.
  • the gas barrier layer 3 is composed of a polymer having vinyl alcohol units (hereinafter also referred to as “polymer (A)”) and a polymer having vinylidene chloride units (hereinafter also referred to as “polymer (B)”). At least one polymer (I) selected from the group.
  • the “vinyl alcohol unit” is a unit in which an acetoxy group of a vinyl acetate unit is converted to a hydroxyl group by chemically converting a polymer obtained by polymerization of vinyl acetate.
  • the polymer (I) may or may not have a crosslinked structure.
  • a polymer (A) may consist only of a vinyl alcohol unit, and may further have units other than a vinyl alcohol unit.
  • the proportion of vinyl alcohol units in the polymer (A) is preferably 60 mol% or more, more preferably 70 mol% or more, particularly preferably 80 mol% or more based on the total of all units. If the ratio of the vinyl alcohol unit is equal to or higher than the lower limit, the gas barrier property of the gas barrier layer 3 is more excellent.
  • polymer (A) examples include the following polymer (A1) or polymer (A2).
  • Polymer (A1) A polymer having a vinyl alcohol unit and not having a crosslinked structure.
  • Polymer (A2) A polymer having a vinyl alcohol unit and a crosslinked structure.
  • a polymer (A1) may consist only of a vinyl alcohol unit, and may further have units other than a vinyl alcohol unit.
  • the polymer (A1) include polyvinyl alcohol (hereinafter also referred to as “PVA”), a copolymer having vinyl alcohol units, and units other than vinyl alcohol units and vinyl acetate units (hereinafter referred to as “copolymers”). (A11) ”)) and the like.
  • the copolymer (A11) may further have a vinyl acetate unit. Any one of these polymers may be used alone, or two or more thereof may be used in combination.
  • PVA is a polymer composed only of vinyl alcohol units, or a polymer composed of vinyl alcohol units and vinyl acetate units.
  • Examples of PVA include a complete saponification product of polyvinyl acetate (saponification degree of 99 mol% or more and 100 mol% or less), a semi-complete saponification product (saponification degree of 90 mol% or more and less than 99 mol%), and a partial saponification product (saponification degree of 70 mol%). And less than 90 mol%).
  • the degree of saponification of PVA is preferably from 80 to 100 mol%, more preferably from 85 to 100 mol%, particularly preferably from 90 to 100 mol%.
  • the degree of saponification is a unit ratio (mol%) representing the ratio of acetoxy groups contained in polyvinyl acetate, which is a raw material of PVA, to hydroxyl groups due to saponification, and is defined by the following formula.
  • the degree of saponification can be determined by the method defined in JIS K6726: 1994.
  • Degree of saponification (mol%) ⁇ (number of hydroxyl groups) / (number of hydroxyl groups + number of acetoxy groups) ⁇ ⁇ 100
  • Examples of other units in the copolymer (A11) include units having a dihydroxyalkyl group, an acetoacetyl group, an oxyalkylene group, a carboxy group, an alkoxycarbonyl group, and the like, units derived from olefins such as ethylene, and the like.
  • the copolymer (A11) may have one other unit, or two or more units.
  • Examples of the unit having a dihydroxyalkyl group include a 1,2-diol structural unit represented by the following formula (1).
  • R 1 to R 6 are each independently a hydrogen atom or a monovalent organic group.
  • R 1 to R 6 are preferably all hydrogen atoms, but may be monovalent organic groups as long as the resin properties are not significantly impaired.
  • the organic group is not particularly limited, but is preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a tert-butyl group. If necessary, it may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group.
  • X is a single bond or a bond chain. From the viewpoint of improving crystallinity and reducing intermolecular voids in the amorphous part, a single bond is preferable.
  • the bonding chain is not particularly limited, but for example, a hydrocarbon group such as an alkylene group, an alkenylene group, an alkynylene group, a phenylene group, or a naphthylene group (these hydrocarbon groups are substituted with a halogen such as fluorine, chlorine, or bromine).
  • the 1,2-diol structural unit represented by the formula (1) is particularly preferably a unit in which R 1 to R 6 are all hydrogen atoms and X is a single bond. That is, the unit represented by the following formula (1a) is particularly preferable.
  • Examples of the unit having an acetoacetyl group include units having a structure in which —CR 4 (OH) —CR 5 R 6 (OH) in the above formula (1) is substituted with —COCH 2 COCH 3 , and X is —O -Is preferred.
  • —CR 4 (OH) —CR 5 R 6 (OH) in the above formula (1) is — (R 21 O) n —R 22 (wherein R 21 has 2 carbon atoms) an alkylene group of ⁇ 5, R 22 is a hydrogen atom or an alkyl group having a carbon number of 1 ⁇ 5, n is include units of substituted structures is an integer of 1 ⁇ 5.), X is -O -Is preferred.
  • Examples of the unit having a carboxy group include units having a structure in which —CR 4 (OH) —CR 5 R 6 (OH) in the above formula (1) is substituted with —COOH, wherein X is a single bond. preferable.
  • Specific examples include acrylic acid units and methacrylic acid units.
  • the unit having an alkoxycarbonyl group for example, —CR 4 (OH) —CR 5 R 6 (OH) in the formula (1) is —COOR 23 (wherein R 23 is an alkyl group having 1 to 5 carbon atoms). )), And a unit in which X is a single bond is preferable.
  • Specific examples include methyl acrylate units and methyl methacrylate units.
  • the copolymer (A11) can be obtained, for example, by a method of reacting a modifier with PVA, a method of saponifying a copolymer of vinyl acetate and another monomer, or the like.
  • Specific examples of the copolymer (A11) include a copolymer having a vinyl alcohol unit and a unit having a 1,2-diol structure, and an acetoacetylated PVA (a vinyl alcohol unit and a unit having an acetoacetyl group).
  • Copolymer examples include vinyl alcohol-acrylic acid-methyl methacrylate copolymer and ethylene-vinyl alcohol copolymer.
  • the preferable range of the saponification degree of the copolymer (A11) is the same as that of PVA.
  • the content of other units in the copolymer (A11) is preferably from 2 to 30 mol%, particularly preferably from 5 to 20 mol%, based on the total of all units.
  • the copolymer (A11) is a copolymer having a vinyl alcohol unit and a 1,2-diol structural unit represented by the above formula (1) (hereinafter also referred to as “copolymer (A11-1)”). .) Is preferred.
  • the copolymer (A11-1) preferably has a total of 85 to 98 mol% of vinyl alcohol units and vinyl acetate units and 2 to 15 mol% of 1,2-diol structural units. More preferably, the total units are 88 to 96 mol% and the 1,2-diol structural units are 4 to 12 mol%, and the total of vinyl alcohol units and vinyl acetate units are 90 to 95 mol%, 1,2-diol. It is particularly preferable to have 5 to 10 mol% of structural units.
  • the ratio of the vinyl alcohol unit in the total of the vinyl alcohol unit and the vinyl acetate unit, that is, the preferred range of the degree of saponification is the same as that of PVA.
  • the viscosity (20 ° C.) of a 4% by mass aqueous solution of the polymer (A1) is preferably 2.5 to 100 MPa ⁇ s, more preferably 3 to 70 MPa ⁇ s, and particularly preferably 5 to 60 MPa ⁇ s. If the viscosity is equal to or higher than the lower limit of the above range, the gas barrier layer 3 tends not to be cracked. Workability at the time of forming the gas barrier layer 3 is excellent.
  • the viscosity is measured according to JIS K6726: 1994.
  • the viscosity of the 4% by mass aqueous solution of the polymer (A1) can be adjusted by the molecular weight of the polymer (A1) and the saponification degree of the polymer (A1).
  • the polymer obtained by making a polymer (A1) and a crosslinking agent react is mentioned, for example. If the polymer (A1) can be self-crosslinked by heat or the like (for example, acetoacetylated PVA), the polymer (A1) may be obtained by self-crosslinking. Examples of the polymer (A1) to be reacted with the crosslinking agent include those described above, PVA or a copolymer (A11) is preferable, and PVA or a copolymer (A11-1) is particularly preferable. That is, the polymer (A2) is preferably a PVA or copolymer (A11) having a crosslinked structure, and particularly preferably a PVA or copolymer (A11-1) having a crosslinked structure.
  • crosslinking agent a water-soluble crosslinking agent that reacts with a hydroxyl group to form a crosslinked structure is preferable.
  • specific examples include organometallic compounds, isocyanate compounds having two or more isocyanate groups, and bisvinylsulfone compounds.
  • organometallic compound examples include an alkoxide compound, a chelate compound, and an acylate compound of a metal selected from the group consisting of titanium, aluminum, zirconium, and tin. These may be used alone or in combination of two or more.
  • alkoxide compound examples include a titanium alkoxide compound, and a compound represented by the following formula (II) is preferable.
  • R 11 to R 14 are each independently an alkyl group. R 11 to R 14 may be the same or different.
  • the alkyl group preferably has 1 to 8 carbon atoms.
  • n is an integer of 1 to 10.
  • Specific examples of the titanium alkoxide compound represented by the formula (II) include tetraisopropyl titanate, tetra n-propyl titanate, tetra n-butyl titanate, tetra t-butyl titanate, tetraisobutyl titanate, tetraethyl titanate, tetraisooctyl titanate.
  • diisopropyl diisooctyl titanate which is a mixed alkyl titanate, isopropyl triisooctyl titanate, tetra n-butyl titanate dimer condensed with tetraalkyl titanate, tetra n-butyl titanate tetramer, and the like.
  • a titanium chelate compound having a structure in which a chelating agent is coordinated to the titanium alkoxide compound represented by the formula (II) is preferable.
  • the chelating agent is not particularly limited, but at least one selected from the group consisting of ⁇ -diketones, ⁇ -ketoesters, polyhydric alcohols, alkanolamines and oxycarboxylic acids has stability against hydrolysis of titanium compounds. It is preferable in terms of improvement.
  • acylate compounds include metal polyhydroxystearate, bisacetylacetonate, tetraacetylacetonate, polyacetylacetonate, octylene glycolate, ethylacetoacetate, and lactate.
  • Preferable structures include a biuret structure, an isocyanurate structure, an adduct structure compound, and the like.
  • Examples of bisvinylsulfone compounds include 1,2-bis (vinylsulfonyl) ethane, bis ⁇ 2- (vinylsulfonyl) ethyl ⁇ ether, 1,5-bis (vinylsulfonyl) -3-hydroxypentane, and 1,2-bis.
  • the crosslinking agent is an alkoxide compound, chelate compound, or acylate compound of the metal, for example, M (—O—R) n
  • M represents a metal atom derived from the alkoxide compound or the like, and n represents the valence of M.
  • R represents an integer of 2 or more, and R represents a residue obtained by removing a hydroxyl group from a vinyl alcohol unit.
  • R 15 (—NH—CO—O—R) p
  • R 15 represents a residue obtained by removing an isocyanate group from an isocyanate compound
  • p represents an integer of 2 or more
  • R represents a residue obtained by removing a hydroxyl group from a vinyl alcohol unit
  • the degree of crosslinking of the polymer (A2) can be adjusted by the amount of the crosslinking agent and the temperature at which the polymer (A1) reacts with the crosslinking agent, but greatly varies depending on the molecular structure of the crosslinking agent.
  • an isocyanate compound and an organometallic compound are preferable from the point of moderate reactivity.
  • organometallic compounds organotitanium compounds and organozirconium compounds are particularly preferred.
  • crosslinkable functional group examples include a carbonyl group, a carboxyl group, and an acetoacetyl group.
  • crosslinking agent having these crosslinkable functional groups include dihydrazide compounds, diamine compounds, methylol compounds, and dialdehyde compounds.
  • a polymer (B) may consist only of a vinylidene chloride unit, and may further have units other than a vinylidene chloride unit.
  • the proportion of vinylidene chloride units in the polymer (A) is preferably 70 mol% or more, particularly preferably 80 mol% or more, based on the total of all units. If the ratio of vinylidene chloride units is not less than the above lower limit value, the gas barrier property of the gas barrier layer 3 is more excellent.
  • polymer (B) examples include the following polymer (B1) or polymer (B2).
  • Polymer (B1) A polymer having vinylidene chloride units and not having a crosslinked structure.
  • Polymer (B2) A polymer having a vinylidene chloride unit and having a crosslinked structure.
  • Examples of the polymer (B1) include polyvinylidene chloride and vinylidene chloride-alkyl acrylate copolymers.
  • a polymer (B2) the polymer obtained by making a polymer (B1) and a crosslinking agent react is mentioned, for example.
  • a crosslinking agent a water-soluble crosslinking agent that reacts with a halogen group or a functional group bonded to an alkyl acrylate to form a crosslinked structure is preferable.
  • Specific examples include organometallic compounds, isocyanate compounds having two or more isocyanate groups, and bisvinylsulfone compounds. Specific examples of these crosslinking agents include the same ones as described above.
  • the polymer (I) in the gas barrier layer 3 preferably contains the polymer (A), more preferably contains the PVA or the copolymer (A11), and more preferably contains the PVA or the copolymer. It is particularly preferable that the compound (A11-1) is contained.
  • the polymer (A) in the gas barrier layer 3 may be the polymer (A1) or the polymer (A2), the outgas from the gas barrier layer 3 is further reduced, and the contamination reduction effect of the mold is more excellent.
  • the polymer (A2) is preferred, the PVA or copolymer (A11) having a crosslinked structure is more preferred, and the PVA or copolymer (A11-1) having a crosslinked structure is particularly preferred.
  • the insolubilization degree of the gas barrier layer 3 obtained from the basis weight W2 (g / m 2 ) of the gas barrier layer 3 by the following formula is preferably 10 to 80%, particularly preferably 30 to 80%.
  • Insolubility (%) (W2 / W1) ⁇ 100
  • the degree of insolubilization is an indicator of the degree of crosslinking of the polymer (A). There exists a tendency for an insolubilization degree to become high, so that the crosslinking degree of a polymer (A) is high. If the insolubilization degree is not less than the lower limit of the above range, the generation of gas from the gas barrier layer 3 itself can be suppressed, and the effect of reducing mold contamination is excellent. If the degree of insolubilization is not more than the upper limit of the above range, the gas barrier layer 3 is difficult to break when following the mold, and the effect of reducing mold contamination is excellent. The degree of insolubilization corresponds to the degree of cross-linking of the polymer (A).
  • the degree of cross-linking is, for example, as described above, the kind and amount of the cross-linking agent to be reacted with the polymer (A), and the polymer (A1). It can be adjusted by the temperature at the time of reacting with the crosslinking agent.
  • ⁇ Dissolution test> The release film is immersed in ion exchange water at 80 ° C. and heated for 1 hour. Meanwhile, stirring is performed for 1 minute at intervals of 30 minutes. The release film after heating for 1 hour is washed by immersing it in another 80 ° C. ion exchange water for 10 minutes. The release film after washing is immersed in ion exchange water at 20 to 25 ° C. for 10 minutes, and washing and cooling are performed. The release film after washing and cooling is vacuum dried at 100 ° C. for 2 hours.
  • the gas barrier layer 3 may contain components other than the polymer (I) as necessary.
  • examples of other components include inorganic particles, antistatic agents, lubricants, and the like.
  • the thickness of the gas barrier layer 3 is 0.1 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m. If the thickness of the gas barrier layer 3 is equal to or greater than the lower limit of the above range, sufficient gas barrier properties can be secured, and the effect of reducing mold contamination is excellent. If the thickness of the gas barrier layer 3 is less than or equal to the upper limit of the above range, outgas from the gas barrier layer itself can be reduced, and the effect of reducing mold contamination is excellent. Further, since the elongation characteristics of the resin side release layer 2 are not affected, pinholes are hardly generated. It is also economical.
  • the thickness of the release film 1 is preferably 25 to 100 ⁇ m, particularly preferably 30 to 75 ⁇ m. If the thickness of the release film 1 is equal to or greater than the lower limit of the above range, the release film 1 is easy to handle, and when the release film 1 is placed so as to cover the mold cavity while being pulled, It is difficult for wrinkles to occur. If the thickness of the release film 1 is equal to or less than the upper limit of the above range, generation of outgas during heating from the release film 1 itself can be suppressed, and the effect of reducing the contamination of the mold is more excellent. Moreover, the release film 1 can be easily deformed and has excellent mold followability. The thickness of the release film 1 is preferably thinner within the above range as the mold cavity is larger. Further, it is preferable that the more complex the mold having a large number of cavities, the thinner the range.
  • the release film 1 has a xylene gas transmittance of 20% or less, particularly preferably 10% or less, when measured by the following measuring method when a 2 mm step is followed.
  • permeability is not prescribed
  • the total mass (g) of the test specimen is measured with an electronic balance, and the value is defined as the mass before heating.
  • the test specimen is placed on a hot plate heated to 180 ° C., the vacuum pump is turned on, and the test specimen is allowed to stand for 15 minutes while maintaining the degree of vacuum at ⁇ 100 kPa or less. After 15 minutes, the vacuum pump is turned off and the connection is removed, and the entire mass (g) of the test specimen is measured immediately, and the value is defined as the mass after heating.
  • the xylene gas permeability is calculated by the following formula.
  • Xylene gas permeability (%) ⁇ (mass before heating ⁇ mass after heating) /1.5 ⁇ ⁇ 100 The measurement method will be described in more detail with reference to the drawings in the following examples.
  • the release film 1 has a mass reduction rate at 180 ° C. of preferably 0.15% or less, particularly preferably 0.1% or less, measured by the following measurement method.
  • the lower limit of the mass reduction rate is not particularly defined.
  • Mass reduction rate (%) ⁇ (mass before heating) ⁇ (mass after heating) ⁇ / (mass before heating) ⁇ 100
  • step (i) As a manufacturing method of the release film 1, the following manufacturing methods are preferable. Including a step of forming a gas barrier layer 3 on one side of a resin film (a substrate including a resin side release layer) that forms the resin side release layer 2;
  • the step of forming the gas barrier layer 3 is a step of applying a gas barrier layer forming coating solution containing the polymer (I) and a liquid medium and drying to form a coating film (hereinafter referred to as “step (i)”. ").
  • the gas barrier layer forming coating solution may further contain a crosslinking agent.
  • the step of forming the gas barrier layer 3 is a step of forming a crosslinked structure by crosslinking the polymer (I) after the step of forming the coating film ( Hereinafter, it is preferable to further include “step (ii)”.
  • a resin film which forms the resin side mold release layer 2 As a resin film which forms the resin side mold release layer 2, a commercially available resin film may be used and the resin film manufactured by the well-known manufacturing method may be used.
  • the resin film may be subjected to surface treatment such as corona treatment, plasma treatment, and primer coating treatment. It does not specifically limit as a manufacturing method of a resin film, A well-known manufacturing method can be utilized. Examples of the method for producing a resin film having smooth both surfaces include a method of melt molding with an extruder equipped with a T die having a predetermined lip width. Examples of the method for producing a resin film having irregularities formed on one or both sides include a method of transferring the original irregularities on the surface of the resin film by thermal processing.
  • the following method ( 1), (2) and the like are preferable.
  • the methods (1) and (2) by using a roll-shaped master, continuous processing becomes possible, and the productivity of the resin film having irregularities is remarkably improved.
  • an impression cylinder roll having irregularities on its surface is used, a resin film having irregularities on both sides can be obtained.
  • (1) A method in which a resin film is passed between a cooling roll and a pressing roll, and the unevenness formed on the surface of the pressing roll is continuously transferred to the surface of the resin film.
  • the resin extruded from the die of the extruder is passed between a cooling roll and a pressing roll, and the thermal resin is formed into a film shape.
  • the surface of the pressing roll is applied to the surface of the film-shaped resin.
  • a method of continuously transferring the formed irregularities in addition, in the methods (1) and (2), when a chill roll having an uneven surface is used, a resin film having an uneven surface on both surfaces is obtained.
  • the polymer (I) and the crosslinking agent are the same as described above.
  • the polymer (I) in the gas barrier layer-forming coating solution preferably does not have a cross-linked structure from the viewpoint of the coating properties of the gas barrier layer-forming coating solution. That is, the polymer (A1) is preferable for the polymer (A), and the polymer (B1) is preferable for the polymer (B).
  • the liquid medium one that dissolves or disperses the polymer (I) in the gas barrier layer forming coating solution is used, and one that dissolves is preferable.
  • the polymer (I) in the gas barrier layer forming coating solution is the polymer (A)
  • the liquid medium is preferably an aqueous medium.
  • the aqueous medium is a liquid medium containing at least water, and examples thereof include water and a mixed solvent of water and an organic solvent.
  • the organic solvent in the mixed solvent those having compatibility with water are preferable, and examples thereof include methanol, ethanol, propanol, and isopropanol. Any one of these organic solvents may be used alone, or two or more thereof may be mixed and used.
  • the liquid medium is preferably water.
  • the polymer (I) in the gas barrier layer forming coating liquid is a mixture of the polymer (A) and the polymer (B)
  • water is preferable as the liquid medium.
  • the gas barrier layer forming coating solution may contain components other than the polymer (I) and the crosslinking agent, if necessary. Examples of other components include the same components as those described above.
  • the content of the polymer (I) in the gas barrier layer-forming coating solution is preferably 2 to 15% by mass, and preferably 5 to 12% by mass with respect to the total amount (100% by mass) of the gas barrier layer-forming coating solution. Particularly preferred. If the content of the polymer (I) is not less than the lower limit of the above range, the film-forming property during drying is excellent, and if it is not more than the upper limit of the above range, the coatability is excellent.
  • the content of the crosslinking agent in the gas barrier layer forming coating solution is set in consideration of the degree of crosslinking of the polymer (I) in the gas barrier layer 3.
  • the content of the crosslinking agent in the gas barrier layer forming coating solution is preferably 1 to 20% by mass relative to the polymer (I). Mass% is particularly preferred. If the content of the crosslinking agent is not less than the lower limit of the above range, the generation of gas from the gas barrier layer 3 itself can be suppressed, and the effect of reducing the contamination of the mold is excellent. When the content of the crosslinking agent is not more than the upper limit of the above range, the gas barrier layer 3 is difficult to break when following the mold, and the effect of reducing the contamination of the mold is excellent.
  • the gas barrier layer forming coating solution can be prepared by mixing the polymer (I), a liquid medium, and, if necessary, a crosslinking agent and other components.
  • the step of forming the gas barrier layer 3 includes a step (i) and a step (ii) as necessary.
  • a gas barrier layer-forming coating solution is applied and dried to form a coating film.
  • a coating method a method known as a wet coating method can be used, and is not particularly limited. Specific examples include a spin coating method, a roll coating method, a casting method, a dipping method, a water casting method, a Langmuir-Blodget method, a die coating method, an ink jet method, and a spray coating method. Drying may be performed by air drying at normal temperature or by heating and baking. The baking temperature is preferably equal to or higher than the boiling point of the liquid solvent.
  • step (ii) the polymer contained in the coating film formed in step (i) is crosslinked to form a crosslinked structure.
  • the crosslinking of the polymer can be performed by, for example, a method of baking the coating film, a method of irradiating the coating film with ultraviolet rays or an electron beam, and the like.
  • the baking temperature is preferably 40 to 60 ° C. If it is 40 degreeC or more, the crosslinking reaction of a coating film will fully advance, and if it is 60 degrees C or less, there will be little deterioration of a coating film or a base material.
  • Bake integration time temperature (° C.) ⁇ time (hour)
  • the drying step in step (i) may also serve as step (ii).
  • the release film 1 by having the gas barrier layer 3, contamination of the mold in the semiconductor element sealing process can be reduced.
  • a release film obtained by laminating a resin film having a high release property and a resin film having a high gas barrier property has been proposed.
  • a resin film having a high gas barrier property a PET film, an easily moldable PET film, nylon Film and ethylene-vinyl alcohol copolymer film.
  • the thickness of the resin film having a high gas barrier property is 10 ⁇ m or more.
  • the gas barrier performance is obtained by having a thickness of 10 ⁇ m or more, the resin contained in the resin film does not necessarily have high heat resistance, and when the resin is exposed to high temperature in the sealing process, a lot of outgas is generated from the gas barrier layer itself. It occurred and caused the contradictory phenomenon that the gas barrier layer itself contaminated the mold.
  • the thickness of the gas barrier layer 3 is as thin as 5 ⁇ m or less, the amount of resin that causes outgassing is small. Therefore, compared with the prior art, the amount of outgas generated from the gas barrier layer 3 itself is small, and mold contamination can be reduced.
  • the heat resistance is higher than when the polymer (I) does not have a cross-linked structure, and the amount of outgas generated is smaller.
  • the gas barrier layer 3 contains polymer (I).
  • the gas barrier layer 3 is excellent in stretchability, and when the release film 1 is made to follow the mold, the gas barrier layer 3 is not easily broken and pinholes are hardly opened in the release film 1. Therefore, excellent gas barrier properties are maintained even after following the mold. Therefore, the outgas etc. which generate
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the release film of the present invention.
  • the mold release film 4 of the second embodiment is a mold for forming a resin side mold release layer 5 in contact with the curable resin, a gas barrier layer 6, an adhesive layer 7 and a resin seal part when forming the resin seal part.
  • the release film 4 has a configuration in which a mold-side release layer 8 is laminated on the gas barrier layer 3 side of the release film 1 of the first embodiment via an adhesive layer 7.
  • the release film 4 is disposed with the surface 5a on the resin side release layer 5 side facing the cavity of the mold when the semiconductor package is manufactured, and contacts the curable resin when forming the resin sealing portion. At this time, the surface 8a on the mold side release layer side is in close contact with the cavity surface of the mold. By curing the curable resin in this state, a resin sealing portion having a shape corresponding to the shape of the cavity of the mold is formed.
  • the resin side release layer 5 is the same as the resin side release layer 2 in the first embodiment. The same applies to preferred embodiments other than the thickness.
  • the thickness of the resin side release layer 5 is preferably 12 to 50 ⁇ m, particularly preferably 25 to 50 ⁇ m. If the thickness of the resin-side release layer 5 is equal to or greater than the lower limit of the above range, the release film 4 can be easily handled (for example, handled in a roll-to-roll manner), and gold can be pulled while pulling the release film 4. Wrinkles are less likely to occur when placed over the mold cavity.
  • the thickness of the resin-side release layer 5 is equal to or less than the upper limit of the above range, generation of outgas during heating from the resin-side release layer 5 itself can be suppressed, and the effect of reducing the contamination of the mold is more excellent. Moreover, the release film 4 can be easily deformed and has excellent mold followability.
  • the gas barrier layer 6 is the same as the gas barrier layer 3 in the first embodiment.
  • the preferred embodiment is also the same.
  • the adhesive layer 7 is a layer that improves the adhesion between the gas barrier layer 6 and the mold side release layer 8.
  • Examples of the adhesive layer 7 include a layer formed from an adhesive.
  • the adhesive means a material containing a main agent and a curing agent, which is cured by heating or the like and exhibits adhesiveness.
  • the adhesive may be a one-component adhesive or a two-component adhesive.
  • polyvinyl acetate adhesive As the adhesive, known adhesives for dry lamination can be used.
  • polyvinyl acetate adhesive homopolymer or copolymer of acrylate ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or acrylate ester and other monomers (methyl methacrylate, Polyacrylic acid ester adhesives composed of copolymers with acrylonitrile, styrene, etc .; cyanoacrylate adhesives; ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid, etc.) Ethylene copolymer adhesives made of copolymers, etc .; Cellulose adhesives; Polyester adhesives; Polyamide adhesives; Polyimide adhesives; Amino resin adhesives made of urea resins or melamine resins; -Resin adhesives; epoxy adhesives; polyols (polyether
  • the thickness of the adhesive layer 7 is preferably 0.1 to 1 ⁇ m, particularly preferably 0.2 to 0.5 ⁇ m.
  • the thickness of the adhesive layer 7 is equal to or greater than the lower limit of the above range, the adhesion between the gas barrier layer 6 and the mold side release layer 8 is sufficiently excellent. If the thickness of the adhesive layer 7 is equal to or less than the upper limit of the above range, generation of outgas during heating from the adhesive layer 7 itself can be suppressed, and the effect of reducing the contamination of the mold is more excellent.
  • polyester examples of the mold-side release layer 8 include a layer containing a resin having releasability.
  • the resin having releasability include fluororesin, polymethylpentene, syndiotactic polystyrene, polyester, polyamide, and silicone rubber.
  • fluororesin the thing similar to what was mentioned by description of the resin side release layer 2 is mentioned.
  • Polyester is preferably polyethylene terephthalate (hereinafter also referred to as “PET”), easily molded PET, polybutylene terephthalate (hereinafter also referred to as “PBT”), or polynaphthalene terephthalate from the viewpoint of heat resistance and strength.
  • PET is obtained by copolymerizing other monomers in addition to ethylene glycol and terephthalic acid (or dimethyl terephthalate) to improve moldability.
  • PET is PET having a glass transition temperature Tg measured by the following method of 105 ° C. or lower.
  • Tg is determined when tan ⁇ (E ′′ / E ′), which is the ratio of the storage elastic modulus E ′ and the loss elastic modulus E ′′ measured based on ISO 6721-4: 1994 (JIS K7244-4: 1999), takes the maximum value.
  • Temperature. Tg is measured by setting the frequency to 10 Hz, the static force to 0.98 N, the dynamic displacement to 0.035%, and increasing the temperature from 20 ° C. to 180 ° C.
  • the polyamide nylon 6 and nylon MXD6 are preferable in terms of heat resistance, strength, and gas barrier properties.
  • the polyamide may be stretched or not.
  • the resin contained in the mold side release layer 8 is preferably a fluororesin, polymethylpentene, or syndiotactic polystyrene, and particularly preferably a fluororesin.
  • the mold side release layer 8 may be made of only the above resin, and may further contain additives such as an inorganic additive and an organic additive in addition to the above resin.
  • additives such as an inorganic additive and an organic additive in addition to the above resin.
  • the inorganic additives include inorganic fillers such as carbon black, silica, titanium oxide, cerium oxide, aluminum cobalt oxide, mica (mica), and zinc oxide.
  • the organic additive include silicone oil and metal soap.
  • the mold side release layer 8 preferably does not contain an inorganic filler.
  • the surface of the mold-side release layer 8 that comes into contact with the mold when the resin sealing portion is formed that is, the surface 8a on the mold-side release layer 8 side of the release film 4 may be smooth or uneven. Also good. In terms of releasability, it is preferable that irregularities are formed.
  • a preferable mode for the unevenness is the same as that of the resin-side release layer 2 described above, and a preferable mode for the surface 8a is the same as that of the surface 2a.
  • the preferable range of the thickness of the mold side release layer 8 is the same as that of the resin side release layer 5.
  • a preferable range of the thickness of the release film 4 is the same as that of the release film 1.
  • the preferable range of the mass reduction rate at 180 ° C. of the release film 4 is the same as that of the release film 1.
  • step (i- 2) As a manufacturing method of the release film 4, the following manufacturing methods are preferable.
  • the step of forming the gas barrier layer 6 is a step of applying a gas barrier layer-forming coating solution containing the polymer (I) and a liquid medium and drying to form a coating film (hereinafter referred to as “step (i- 2) ").
  • the gas barrier layer forming coating solution may further contain a crosslinking agent.
  • the step of forming the gas barrier layer 6 is a step of forming a cross-linked structure by cross-linking the polymer (I) after the step (i-2). It is also preferable to further include “step (ii-2)”.
  • ⁇ Second resin film> As a 2nd resin film, a commercially available resin film may be used and the resin film manufactured by the well-known manufacturing method may be used. The resin film may be subjected to surface treatment such as corona treatment, plasma treatment, and primer coating treatment. It does not specifically limit as a manufacturing method of a 2nd resin film, The well-known manufacturing method quoted by description of the 1st resin film can be utilized.
  • the gas barrier layer forming coating solution is the same as the gas barrier layer forming coating solution in the first embodiment.
  • Step (i-2) and step (ii-2) in the step of forming the gas barrier layer are the same as step (i) and step (ii) in the first embodiment, respectively.
  • Dry lamination can be performed by a known method. For example, an adhesive is applied on the gas barrier layer 6 formed on the first resin film, dried, and the second resin film is laminated thereon, and heated to a predetermined temperature (dry lamination temperature). And crimping between the pair of rolls (laminate rolls). Thereby, the release film 4 can be obtained. After dry lamination, curing, cutting or the like may be performed as necessary.
  • the release film of the present invention has been described with reference to the first and second embodiments, but the present invention is not limited to the above embodiment.
  • Each configuration in the above embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other modifications of the configuration can be made without departing from the spirit of the present invention.
  • the resin-side release layer 5, the gas barrier layer 6, the adhesive layer 7, and the mold-side release layer 8 are stacked in this order.
  • the gas barrier layer 6 and the adhesive layer 7 It may be replaced.
  • the gas barrier layer 6 may be formed on the mold side release layer 8, and then the resin side release layer 5 may be dry laminated on the gas barrier layer 6 using an adhesive.
  • the gas barrier layer 6 is preferably provided at a position adjacent to the mold-side release layer 8 in terms of preventing permeation of outgas from the adhesive layer 7.
  • the adhesive layer 7 may not be provided.
  • the release film of the present invention may further include a layer other than the resin side release layer, the gas barrier layer, the adhesive layer, and the mold side release layer.
  • the other layer include an antistatic layer.
  • the release film When the release film has an antistatic layer, the release film exhibits antistatic properties, and even when a part of the semiconductor element is in direct contact with the release film during manufacture of the semiconductor package, the release film is charged. -It is possible to suppress the destruction of the semiconductor element due to the discharge.
  • the surface resistance of the antistatic layer from the viewpoint of antistatic, preferably 10 10 ⁇ / ⁇ or less, particularly preferably 10 9 ⁇ / ⁇ or less.
  • the antistatic layer examples include a layer containing an antistatic agent.
  • a polymer antistatic agent is preferable.
  • the polymer antistatic agent a known polymer compound can be used as the antistatic agent.
  • a cationic copolymer having a quaternary ammonium base in the side group an anionic polymer containing polystyrene sulfonic acid, a polyether ester amide, an ethylene oxide-epichlorohydrin, a non-ionic polymer containing a polyether ester, Examples thereof include conjugated conductive polymers. These may be used alone or in combination of two or more.
  • the adhesive forming the adhesive layer 7 may contain an antistatic agent, and the adhesive layer 7 may have a function as an antistatic layer.
  • the release film of the present invention includes a resin-side release layer / gas barrier layer / mold-side release layer from the side in contact with the curable resin when the resin sealing portion is formed.
  • 3 layer configuration of mold layer 3 layer configuration of resin side release layer / antistatic layer / gas barrier layer, 4 layer configuration of resin side release layer / gas barrier layer / adhesive layer / mold side release layer, resin side release Those having any one of the four layers of mold layer / adhesive layer / gas barrier layer / mold side release layer are preferable.
  • a layer configuration in which the gas barrier layer is closest to the mold side is preferable in that all the gas generated from the release film itself can be suppressed, and a two-layer configuration of a resin side release layer / gas barrier layer is particularly preferable.
  • the semiconductor package manufactured by the method for manufacturing a semiconductor package of the present invention described later using the release film of the present invention includes an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light emitting diode having a light emitting element, and the like. Can be mentioned.
  • the package shape of the integrated circuit may cover the entire integrated circuit or may cover a part of the integrated circuit (exposing a part of the integrated circuit). Specific examples include BGA (Ball Grid Array), QFN (Quad Flat Non-leaded package), SON (Small Outline Non-leaded package), and the like.
  • the semiconductor package is preferably manufactured through collective sealing and singulation from the viewpoint of productivity.
  • the sealing method is a MAP (Molded Array Packaging) method or a WL (Wafer Level packaging) method.
  • FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor package.
  • the semiconductor package 110 of this example includes a substrate 10, a semiconductor chip (semiconductor element) 12 mounted on the substrate 10, a resin sealing portion 14 that seals the semiconductor chip 12, and an upper surface of the resin sealing portion 14. 14a and an ink layer 16 formed on 14a.
  • the semiconductor chip 12 has a surface electrode (not shown)
  • the substrate 10 has a substrate electrode (not shown) corresponding to the surface electrode of the semiconductor chip 12, and the surface electrode and the substrate electrode are electrically connected by a bonding wire 18. Connected.
  • the thickness of the resin sealing portion 14 (the shortest distance from the installation surface of the semiconductor chip 12 of the substrate 10 to the upper surface 14a of the resin sealing portion 14) is not particularly limited, but is “the thickness of the semiconductor chip 12” or more. 12 thickness + 1 mm ”or less is preferable, and“ thickness of semiconductor chip 12 ”or more and“ thickness of semiconductor chip 12 + 0.5 mm ”or less are particularly preferable.
  • FIG. 4 is a schematic cross-sectional view showing another example of a semiconductor package.
  • the semiconductor package 120 of this example includes a substrate 70, a semiconductor chip (semiconductor element) 72 mounted on the substrate 70, and an underfill (resin sealing portion) 74.
  • the underfill 74 fills a gap between the substrate 70 and the main surface of the semiconductor chip 72 (surface on the substrate 70 side), and the back surface (surface opposite to the substrate 70 side) of the semiconductor chip 72 is exposed. is doing.
  • a manufacturing method of a semiconductor package of the present invention is a manufacturing method of a semiconductor package having a semiconductor element and a resin sealing portion that is formed from a curable resin and seals the semiconductor element, The step of placing the release film of the present invention described above on the surface of the mold that contacts the curable resin, A substrate on which a semiconductor element is mounted is disposed in the mold, and a space in the mold is filled with a curable resin and cured to form a resin sealing portion, thereby forming the substrate, the semiconductor element, and the Obtaining a sealing body having a resin sealing portion; Releasing the sealing body from the mold.
  • the manufacturing method of the semiconductor package of the present invention can employ a known manufacturing method except that the release film of the present invention is used.
  • a compression molding method or a transfer molding method can be cited as a method for forming the resin sealing portion, and a known compression molding device or transfer molding device can be used as the device used at this time.
  • the manufacturing conditions may be the same as the conditions in a known semiconductor package manufacturing method.
  • FIGS. 1 A first embodiment of the semiconductor package manufacturing method of the present invention will be described with reference to FIGS.
  • This embodiment is an example in which the semiconductor package 110 shown in FIG. 3 is manufactured by a compression molding method using the aforementioned release film 1 as a release film.
  • the manufacturing method of the semiconductor package of this embodiment includes the following steps ( ⁇ 1) to ( ⁇ 7).
  • ( ⁇ 1) In a mold having a fixed upper mold 20, a cavity bottom member 22, and a frame-shaped movable lower mold 24 disposed at the periphery of the cavity bottom member 22, the release film 1 is a cavity 26 of the mold.
  • the release film 1 so that the surface 2a on the resin side release layer 2 side of the release film 1 faces the space in the cavity 26 (so that the surface 3a on the gas barrier layer 3 side is in contact with the cavity surface of the mold).
  • Step of arranging 1 (FIG. 5).
  • ( ⁇ 2) A step of vacuum-sucking the release film 1 to the cavity surface side of the mold (FIG. 5).
  • ( ⁇ 3) A step of filling the cavity 26 whose cavity surface is covered with the release film 1 with the curable resin 40 (FIG. 5).
  • the substrate 10 on which the plurality of semiconductor chips 12 are mounted is placed at a predetermined position in the cavity 26, and the mold is clamped (FIG. 6), and the plurality of semiconductor chips 12 are collectively collected by the curable resin 40.
  • the resin sealing part which collectively seals the substrate 10 and the plurality of semiconductor chips 12 mounted on the substrate 10 and the plurality of semiconductor chips 12 14 is a step of obtaining a collective sealing body.
  • 12 is a process of obtaining a singulated sealing body having 12 and a resin sealing portion 14 for sealing the semiconductor chip 12.
  • the present embodiment is an example in which the semiconductor package 120 shown in FIG. 4 is manufactured by the transfer method using the above-described release film 1 as a release film.
  • the manufacturing method of the semiconductor package of this embodiment includes the following steps ( ⁇ 1) to ( ⁇ 5).
  • ( ⁇ 1) The release film 1 covers the cavity 54 of the upper mold 50 of the mold having the upper mold 50 and the lower mold 52, and the surface 2 a on the resin-side release layer 2 side of the release film 1 is inside the cavity 54. Step (FIG.
  • Step 4 The plunger 64 of the resin arrangement part 62 of the lower mold 52 is pushed up, and the curable resin 40 previously arranged in the resin arrangement part 62 is filled into the cavity 54 through the resin introduction part 60 of the upper mold 50 and cured.
  • a step of taking out the semiconductor package 120 from the mold (FIG. 11).
  • a cured product 76 obtained by curing the curable resin 40 in the resin introduction portion 60 is attached to the underfill 74 of the semiconductor package 120 taken out at this time. The cured product 76 is cut off to obtain the semiconductor package 120.
  • the step ( ⁇ 6) and the step ( ⁇ 7) are performed in this order.
  • the step ( ⁇ 6) and the step ( ⁇ 7) are performed in the reverse order. Also good. That is, an ink layer is formed using ink on the surface of the resin sealing portion of the collective sealing body taken out from the mold, and then the substrate and the resin sealing portion of the collective sealing body are cut. Good.
  • the timing at which the resin sealing portion is peeled from the release film is not limited to when the resin sealing portion is taken out from the mold, and the resin sealing portion is taken out from the mold together with the release film, and then released from the resin sealing portion.
  • the mold film may be peeled off.
  • the distance between each of the plurality of semiconductor chips 12 to be collectively sealed may be uniform or non-uniform. It is preferable to make the distance between each of the plurality of semiconductor chips 12 uniform from the viewpoint that the sealing can be made uniform and the load applied to each of the plurality of semiconductor chips 12 becomes uniform (the load becomes the smallest).
  • the semiconductor package 110 may be manufactured by a transfer molding method as in the second embodiment, and the semiconductor package 120 may be manufactured by a compression molding method as in the first embodiment.
  • the release film may be the release film of the present invention and is not limited to the release film 1.
  • a release film 4 may be used. As a metal mold
  • a well-known thing can be used as a metal mold
  • die in 2nd Embodiment it is not limited to what is shown in FIG. 8, A well-known thing can be used as a metal mold
  • the semiconductor package manufactured by the semiconductor package manufacturing method of the present invention is not limited to the semiconductor packages 110 and 120. Depending on the semiconductor package to be manufactured, the steps ( ⁇ 6) to ( ⁇ 7) in the first embodiment may not be performed.
  • the shape of the resin sealing portion is not limited to that shown in FIGS. 3 to 4, and there may be a step or the like.
  • One or more semiconductor elements may be sealed in the resin sealing portion.
  • the ink layer is not essential. When a light emitting diode is manufactured as a semiconductor package, the resin sealing portion also functions as a lens portion, and therefore an ink layer is not usually formed on the surface of the resin sealing portion.
  • various lens shapes such as a substantially hemispherical type, a bullet type, a Fresnel lens type, a saddle type, and a substantially hemispherical lens array type can be adopted as the shape of the resin sealing part.
  • examples 1 to 25 described later examples 1 to 18 are examples, and examples 19 to 25 are comparative examples.
  • the evaluation methods and materials used in each example are shown below.
  • the thickness of the film was measured in accordance with ISO 4591: 1992 (JIS K7130: 1999 method B1, method for measuring thickness of sample taken from plastic film or sheet by mass method).
  • the thickness of the gas barrier layer was measured with a transmission infrared film thickness meter RX-100 (trade name, manufactured by Kurashiki Boseki Co., Ltd.).
  • Dissolution test The release film cut into 10 cm square was immersed in ion exchange water at 80 ° C. and heated for 1 hour. Meanwhile, stirring was performed for 1 minute at intervals of 30 minutes. Stirring was performed using a stirrer. After the heating for 1 hour is completed, the release film is taken out, washed by immersing in ion exchange water at 80 ° C. in a different container for 10 minutes, and further washed at 20-25 ° C. in ion exchange water in a different container. It was immersed for 10 minutes for cleaning and cooling. The release film after washing and cooling was vacuum dried at 100 ° C. for 2 hours.
  • a threaded hole 92a was formed in the bottom surface of the concave portion, and a vacuum pump TSW-200 (trade name, manufactured by Sato Vacuum Co., not shown) was connected.
  • the second container 92 is arranged on the first container 91 so that the opening of the recess faces downward (the first container 91 side), and the first container 91 and the second container 92 are
  • the test film 90 was formed by connecting with a release film 100 and a polytetrafluoroethylene flange 94 sandwiched therebetween and fixing with a screw.
  • the mass (g) of the entire test body 90 hereinafter referred to as “mass before heating”) was measured with an electronic balance (manufactured by Sartorius).
  • the test specimen 90 was placed on a hot plate (not shown) heated to 180 ° C., the vacuum pump was turned on, and the test specimen 90 was allowed to stand for 15 minutes with the vacuum maintained at ⁇ 100 kPa or less.
  • the porous ceramic 93 is in contact with the bottom surface of the second container 92 in the test body 90, and the lower surface of the porous ceramic 93 and the lower end of the second container 92.
  • a step of 2 mm is formed between (the opening surface of the recess).
  • the release film 100 is stretched so as to be in close contact with the inner peripheral surface of the concave portion of the second container 92 and the lower surface of the porous ceramic 93.
  • Xylene gas permeability (%) ⁇ (mass before heating ⁇ mass after heating) /1.5 ⁇ ⁇ 100
  • a semiconductor molding compression molding apparatus PMC1040 (trade name, manufactured by TOWA) was used for the test.
  • the semiconductor sealing compression molding apparatus PMC1040 includes a mold (a fixed upper mold 20, a cavity bottom member 22, a movable lower mold 24) as shown in FIG. Compression molding according to the following procedure was performed for 2,000 shots under the following conditions.
  • the release film is unwound from a roll, fixed on a stage, and then cut into a predetermined length. Thereafter, a curable resin is sown on the release film, and in that state, is carried onto the cavity formed by the cavity bottom member 22 and the movable lower mold 24. After the release film is placed on the cavity, the fixed upper mold 20 and the movable lower mold 24 are clamped, and air is extracted from the vacuum suction holes at the peripheral edge of the cavity with a vacuum pump, and the release film is directed to the cavity surface.
  • the cavity bottom member 22 is raised so as to have a predetermined final depth and clamping force, and this state is maintained for a predetermined clamping time, and compression molding is performed.
  • Gohsenol NM-11 Product name. Completely saponified PVA powder, manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree 99 mol%, viscosity in a 4 mass% aqueous solution (20 ° C.) 14 mPa ⁇ s.
  • Gohsenol AL-06R Product name. Semi-completely saponified PVA powder, manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree 94 mol%, viscosity (20 ° C.) in a 4% by mass aqueous solution 7 mPa ⁇ s.
  • Gohsenol GL-05 Product name.
  • Partially saponified PVA powder manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree 89 mol%, viscosity in a 4 mass% aqueous solution (20 ° C.) 8 mPa ⁇ s.
  • G-polymer OKS-1011 Product name (hereinafter also simply referred to as “G-polymer”). Copolymer powder having a total of 92 mol% of vinyl alcohol units and vinyl acetate units and 8 mol% of units having a 1,2-diol structural unit represented by the formula (1), manufactured by Nippon Synthetic Chemical Co., Ltd.
  • Soarnol D2908 Product name (hereinafter also simply referred to as “Soarnol”).
  • Diofan 193D Product name (hereinafter also simply referred to as “Diofan”).
  • Polyvinylidene chloride aqueous dispersion manufactured by Solvay Plastics, solid content of 30% by mass.
  • (Crosslinking agent) Duranate WB40-100 Product name (hereinafter also simply referred to as “Duranate”). Water-dispersed isocyanate, manufactured by Asahi Kasei Corporation. Solid content 100 mass%.
  • ORGATIXX ZC-300 Product name (hereinafter also simply referred to as “ZC-300”). Zirconium ammonium lactate, manufactured by Matsumoto Fine Chemicals. Solid content 12% by weight.
  • ORGATICS TC-300 Product name (hereinafter also simply referred to as “TC-300”). Lactic acid titanate ammonium salt, manufactured by Matsumoto Fine Chemical Co., Ltd. Solid content 42% by weight.
  • ORGATICS T-2762 Product name (hereinafter also simply referred to as “T-2762”). Organo titanium compound, manufactured by Matsumoto Fine Chemical Co., Ltd. Solid content 62% by weight.
  • Gas barrier layer forming coating solutions 1 to 12 Prepared by mixing the materials shown in Table 1. Of the materials in Table 1, the amount of Diofan, ZC-300, TC-300, and T-2762 is not a solid content but an amount including a liquid medium (for example, in the case of Diofan, as a polyvinylidene chloride aqueous dispersion). Amount).
  • ETFE film 1 Fluon ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, taken up between a pressing roll with irregularities on its surface and a mirror-finished metal roll, 50 ⁇ m thick The film was formed.
  • the temperature of the extruder and T die was 320 ° C.
  • the temperature of the pressing roll and metal roll was 100 ° C.
  • Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the mirror surface side was subjected to corona treatment so that the wetting tension based on ISO8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • ETFE film 2 Fluon ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities on the surface and a cooling roll with a mirror surface, and is 25 ⁇ m thick The film was formed.
  • the temperature of the extruder and the T die was 320 ° C.
  • the temperature of the pressing roll and the cooling roll was 100 ° C.
  • Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the mirror surface side was subjected to corona treatment so that the wetting tension based on ISO8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • ETFE film 3 Fluon ETFE C-88AXP (manufactured by Asahi Glass Co., Ltd.) was fed to an extruder equipped with a T-die and taken on a mirror-cooled roll to form a 12 ⁇ m thick film.
  • the temperature of the extruder and the T die was 320 ° C.
  • the temperature of the cooling roll was 180 ° C.
  • Ra of the surface of the obtained film was 0.1 ⁇ m on both sides.
  • One side was subjected to corona treatment so that the wetting tension based on ISO 8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • LM-ETFE film Fluon LM-ETFE LM720AP (manufactured by Asahi Glass Co., Ltd.) is fed to an extruder equipped with a T-die, and is taken up between a pressing roll with irregularities on the surface and a mirror cooling roll, and is 50 ⁇ m. A film having a thickness was formed.
  • the temperature of the extruder and the T die was 300 ° C.
  • the temperature of the pressing roll and the cooling roll was 100 ° C.
  • Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the mirror surface side was subjected to corona treatment so that the wetting tension based on ISO8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • Polymethylpentene film: TPX MX004 (manufactured by Mitsui Chemicals, Inc.) is fed to an extruder equipped with a T-die, taken up between a pressing roll with irregularities on the surface and a cooling roll with a mirror surface, and has a thickness of 50 ⁇ m A film was formed.
  • the temperature of the extruder and the T die was 300 ° C.
  • the temperature of the pressing roll and the cooling roll was 100 ° C.
  • Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the mirror surface side was subjected to corona treatment so that the wetting tension based on ISO8296: 1987 (JIS K6768: 1999) was 40 mN / m or more.
  • Syndiotactic polystyrene film Zalec 142ZE (manufactured by Idemitsu Kosan Co., Ltd.) is fed to an extruder equipped with a T-die, taken up by a mirror-cooled roll, and simultaneously stretched in the direction of flow of the film and the direction orthogonal to the direction of flow And a film having a thickness of 50 ⁇ m was formed.
  • the temperature of the extruder and T die is 270 ° C
  • the temperature of the cooling roll is 100 ° C
  • the stretching temperature is 115 ° C
  • the stretching ratio is 3.3 times in both the flow direction and the direction orthogonal to the flow direction
  • the stretching speed is 500% / min.
  • Eval film An ethylene-vinyl alcohol copolymer film (manufactured by Kuraray Co., Ltd., trade name: Eval EF-F) having a thickness of 12 ⁇ m was used.
  • Easy-molded PET film An easily-molded PET film having a thickness of 25 ⁇ m (manufactured by Teijin DuPont Films, trade name: Teflex FT3PE) was used.
  • Nylon film An unstretched nylon film (trade name: Diamilon CZ, manufactured by Mitsubishi Plastics, Inc.) having a thickness of 25 ⁇ m was used.
  • the adhesive was prepared by mixing 60 parts of a polyester polyol (Crisbon NT-258 manufactured by DIC), 3.4 parts of an isocyanate adduct (Coronate 2096 manufactured by Nippon Polyurethane Industry Co., Ltd.), and 63.4 parts of ethyl acetate. Prepared.
  • Examples 1 to 17, 19 to 20 The coating liquid for gas barrier layer formation shown in Tables 2 to 3 is applied to one side of the film shown in the column of the resin side release layer in Tables 2 to 3 by a direct gravure method using a gravure coater.
  • the gas barrier layer was coated so as to have the thickness (coating thickness in solid content) shown in FIG.
  • the coating thickness (solid content) is 0.1 to 1 ⁇ m
  • the coating thickness (solid content) exceeds 1 ⁇ m Used a roll of grating 125 # -depth 85 ⁇ m. Drying was performed at 100 ° C.
  • Example 18 A gas barrier layer-forming coating solution 7 was applied in the same manner as in Example 7 except that the film used for the resin-side release layer was changed, and dried to form a gas barrier layer. Next, an adhesive was applied on one side of the film shown in the column of the mold side release layer in Table 3 and dried to form an adhesive layer. The adhesive is applied by a direct gravure method using a gravure coater so that the coating thickness becomes 0.3 ⁇ m (solid content), and a gravure plate having a grid of ⁇ 100 mm ⁇ 250 mm width 150 # —depth 40 ⁇ m roll Made using. Drying was performed at 100 ° C. for 1 minute through a roll support drying furnace at an air volume of 19 m / sec.
  • the above films were stacked so that the gas barrier layer and the adhesive layer were in contact with each other, and the laminate was passed between a pair of rolls.
  • Lamination conditions were a roll temperature of 50 ° C. and a lamination pressure of 0.5 MPa. After laminating, curing was carried out in an oven at 40 ° C. for 3 days. Thus, a release film having a layer structure of resin side release layer / gas barrier layer / adhesive layer / mold side release layer was obtained.
  • Examples 21, 22, 24 On one side of the film shown in the column of the gas barrier layer in Table 4, an adhesive was applied and dried to form an adhesive layer.
  • the film shown in the column of the resin side release layer in Table 4 was overlaid on the adhesive layer, and was laminated by passing between a pair of rolls.
  • the conditions for applying and drying the adhesive and laminating were the same as in Example 18.
  • an adhesive was applied to the opposite surface of the gas barrier layer and dried to form an adhesive layer.
  • the film shown in the column of the mold side release layer in Table 3 was superposed and laminated by passing between a pair of rolls.
  • the conditions for applying and drying the adhesive and laminating were the same as in Example 18. After laminating, curing was carried out in an oven at 40 ° C. for 3 days. Thereby, a release film having a layer structure of resin side release layer / adhesive layer / gas barrier layer / adhesive layer / mold side release layer was obtained.
  • An ETFE film 1 was provided with an aluminum vapor deposition layer having a thickness of 1 ⁇ m by a physical vapor deposition (PVD) method. Thereby, a release film having a layer structure of resin side release layer / gas barrier layer was obtained.
  • PVD physical vapor deposition
  • Example 25 The ETFE film 1 was used as the release film of Example 25 as it was.
  • the evaluation results of the mold antifouling property were particularly excellent when the insolubilities were 20 to 80%.
  • the coating liquid for forming the gas barrier layer does not contain a crosslinking agent and the examples 1, 5, 10, and 12 having different types of polymers are compared, the gas barrier property (xylene gas permeability) at the time of following a 2 mm step is The results of Examples 1 and 5 of PVA or copolymer (A11-1) were excellent.
  • Examples 7 and 13 to 15 differing only in the film used for the resin-side release layer were compared Examples 7 and 15 in which the resin was a fluororesin had a lower mass reduction rate of 180 ° C.
  • the release films of Example 7 and Example 18 were compared, the thickness of the release film as a whole was almost the same, but Example 7 had a lower 180 ° C. mass reduction rate. This is considered to be due to the outgas from the adhesive layer in Example 18.
  • the release film of Example 19 using a 7 ⁇ m-thick gas barrier layer has a larger 180 ° C. mass reduction rate than Examples 1 to 18, and has a large amount of outgassing at high temperatures. Therefore, the mold antifouling evaluation results were poor.
  • the release film of Example 20 using a 0.05 ⁇ m-thick gas barrier layer was insufficient in gas barrier properties when following a 2 mm step because the release layer was thin. Therefore, the mold antifouling evaluation results were poor.
  • the release film of Example 21 using a 12 ⁇ m-thick ethylene-vinyl alcohol copolymer film as the gas barrier layer has a 180 ° C. mass reduction rate larger than those of Examples 1 to 18 and a large amount of outgassing at high temperatures.
  • the release film of the present invention is excellent in releasability when the semiconductor element is sealed with a curable resin, and can reduce contamination of the mold in the sealing process of the semiconductor element.
  • Examples of the semiconductor package obtained using the release film of the present invention include an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light emitting diode having a light emitting element, and the like. It should be noted that the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-235735 filed on November 20, 2014 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

 離型性に優れかつ封止工程での金型の汚染を低減できる離型フィルム、その製造方法、および前記離型フィルムを用いた半導体パッケージの製造方法の提供。 離型フィルム1は、半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、樹脂封止部の形成時に硬化性樹脂と接する樹脂側離型層2と、ガスバリア層3とを備え、ガスバリア層3が、ビニルアルコール単位を有する重合体および塩化ビニリデン単位を有する重合体からなる群から選択される少なくとも1種の重合体(I)を含み、ガスバリア層3の厚さが0.1~5μmである。

Description

離型フィルム、その製造方法および半導体パッケージの製造方法
 本発明は、半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型のキャビティ面に配置される離型フィルム、前記離型フィルムの製造方法および前記離型フィルムを用いた半導体パッケージの製造方法に関する。
 半導体チップは通常、外気からの遮断・保護のため樹脂で封止され、パッケージと呼ばれる成形品として基板上に実装されている。半導体チップの封止には、エポキシ樹脂等の熱硬化性樹脂等の硬化性樹脂が用いられる。半導体チップの封止方法としては、たとえば、半導体チップが実装された基板を、該半導体チップが金型内の所定の場所に位置するように配置し、金型内に硬化性樹脂を充填して硬化させる、いわゆるトランスファ成形法または圧縮成形法が知られている。
 従来、パッケージは、硬化性樹脂の流路であるランナーを介して連結した1チップ毎のパッケージ成形品として成形されている。この場合、金型からのパッケージの離型性向上を目的として離型フィルムが使用されることがある。
 離型フィルムは、硬化性樹脂の金型への固着を防止する点でも有用である。しかし、半導体素子の封止工程においては、離型フィルムを配置していても、硬化性樹脂から発生したガス(アウトガス)や低粘度物質が離型フィルムを透過して高温の金型と接触し、金型を汚染する問題がある。金型汚染が生じると、金型の洗浄のために半導体素子の封止工程を休止せざるを得ず、半導体パッケージの生産効率が低下する。近年、封止に用いる硬化性樹脂の低溶融粘度化や液状樹脂化が進んでおり、上記の問題が一層生じやすくなっている。
 硬化性樹脂からのアウトガス等による金型汚染を防止するために、ガスバリア層として金属箔や金属または金属酸化物の蒸着膜を設けた離型フィルムが提案されている(特許文献1~3)。また、離型性の高い樹脂フィルムと、ガスバリア性が高い樹脂フィルム(エチレン-ビニルアルコール共重合体フィルム等)とをラミネートした離型フィルムが提案されている(特許文献4)。
特開2002-361643号公報 特開2004-79566号公報 国際公開第2007/125834号 国際公開第2008/020543号
 しかし、特許文献1~3に記載されるような離型フィルムは、金型への追従性が不充分である。具体的には、離型フィルムは、封止工程で金型へ真空吸着させる際に全体的に引き伸ばされ、部位によっては大きく変形する。ガスバリア層が金属箔の場合、真空吸着させる際にガスバリア層が割れやすい。ガスバリア層が蒸着膜の場合、金属箔よりは割れにくいものの、変形が大きくなると、金属箔の場合と同様に割れが発生する問題が生じる。割れが発生すると、ガスバリア性が損なわれ、金型の汚染を防止できなくなる。
 特許文献4に記載の離型フィルムは、本発明者らの検討によれば、金型に追従させた際にピンホールが開くことがある。離型フィルムにピンホールが開くと、ガスバリア性が損なわれ、さらにはその部分から硬化性樹脂等が漏れて金型に付着し、離型不良が生じる。また、ピンホールが開かない場合でも、金型汚染を充分には抑制できない。
 本発明の目的は、離型性に優れかつ半導体素子の封止工程での金型の汚染を低減できる離型フィルム、その製造方法、および前記離型フィルムを用いた半導体パッケージの製造方法を提供することにある。
 本発明は、以下の[1]~[15]の構成を有する離型フィルム、その製造方法および半導体パッケージの製造方法を提供する。
 [1]半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、
 樹脂封止部の形成時に硬化性樹脂と接する樹脂側離型層と、ガスバリア層とを備え、
 前記ガスバリア層が、ビニルアルコール単位を有する重合体および塩化ビニリデン単位を有する重合体からなる群から選択される少なくとも1種の重合体(I)を含み、
 前記ガスバリア層の厚さが0.1~5μmであることを特徴とする離型フィルム。
 [2]前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
 前記ビニルアルコール単位を有する重合体が、ポリビニルアルコール、または、ビニルアルコール単位と酢酸ビニル単位とを含む重合体である、[1]の離型フィルム。
 [3]前記ビニルアルコール単位を有する重合体がさらにビニルアルコール単位および酢酸ビニル単位以外の単位を含む重合体である、[2]の離型フィルム。
 [4]前記ビニルアルコール単位および酢酸ビニル単位以外の単位が、下式(1)で表される単位である、[3]の離型フィルム。
Figure JPOXMLDOC01-appb-C000002
 ここで、R~Rはそれぞれ独立して水素原子または1価の有機基であり、Xは単結合または結合鎖である。
 [5]前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
 前記ビニルアルコール単位を有する重合体が、架橋構造を有する、[1]~[4]のいずれかの離型フィルム。
 [6]前記ガスバリア層の坪量W1(g/m)と、当該離型フィルムに以下の溶解試験を行った後に残存するガスバリア層の坪量W2(g/m)とから以下の式で求められる、前記ガスバリア層の不溶化度が10~80%である、[5]の離型フィルム。
 不溶化度(%)=(W2/W1)×100
 (溶解試験)
 離型フィルムを80℃のイオン交換水中に浸漬し、1時間加熱する。その間、30分間間隔で1分間の撹拌を行う。1時間の加熱が終了した後の離型フィルムを、別の80℃のイオン交換水に10分間浸漬して洗浄する。洗浄後の離型フィルムを、20~25℃のイオン交換水に10分間浸漬し、洗浄および冷却を行う。洗浄および冷却を行った後の離型フィルムを、100℃で2時間真空乾燥させる。
 [7]前記樹脂側離型層の厚さが12~100μmである、[1]~[6]のいずれかの離型フィルム。
 [8]前記樹脂側離型層が、フッ素樹脂を含む、[1]~[7]のいずれかの離型フィルム。
 [9]前記フッ素樹脂が、エチレン-テトラフルオロエチレン共重合体である、[8]の離型フィルム。
 [10]前記離型フィルムが、前記樹脂側離型層と前記ガスバリア層との2層構造を有するフィルムである、[1]~[9]のいずれかの離型フィルム。
 [11]前記[1]~[10]のいずれかの離型フィルムを製造する方法であって、
 樹脂側離型層を含む基材の片面に、ガスバリア層を形成する工程を含み、
 前記ガスバリア層を形成する工程が、ビニルアルコール単位を有する重合体および塩化ビニリデン単位を有する重合体からなる群から選択される少なくとも1種の重合体(I)と、液状媒体とを含むガスバリア層形成用塗工液を塗工し、乾燥して塗膜を形成する工程を含むことを特徴とする離型フィルムの製造方法。
 [12]前記ガスバリア層形成用塗工液が、架橋剤をさらに含み、
 前記ガスバリア層を形成する工程が、前記塗膜を形成する工程の後、前記重合体(I)を架橋させて架橋構造を形成する工程をさらに含む、[11]の離型フィルムの製造方法。
 [13]前記架橋剤の含有量が、前記重合体(I)に対して1~20質量%である、[12]の離型フィルムの製造方法。
 [14]前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
 前記液状媒体が、水性媒体である、[11]~[13]のいずれかの離型フィルムの製造方法。
 [15]半導体素子と、硬化性樹脂から形成され、前記半導体素子を封止する樹脂封止部とを有する半導体パッケージの製造方法であって、
 金型の硬化性樹脂が接する面に、[1]~[10]のいずれかの離型フィルムを配置する工程と、
 半導体素子が実装された基板を前記金型内に配置し、前記金型内の空間に硬化性樹脂を満たして硬化させ、樹脂封止部を形成することにより、前記基板と前記半導体素子と前記樹脂封止部とを有する封止体を得る工程と、
 前記封止体を前記金型から離型する工程と、
を含むことを特徴とする半導体パッケージの製造方法。
 本発明の離型フィルムによれば、離型性に優れかつ半導体素子の封止工程での金型の汚染を低減できる。
 本発明の離型フィルムの製造方法によれば、離型性に優れかつ半導体素子の封止工程での金型の汚染を低減できる離型フィルムを製造できる。
 本発明の半導体パッケージの製造方法によれば、封止工程での金型の汚染を低減できる。
本発明の離型フィルムの第1実施形態を示す概略断面図である。 本発明の離型フィルムの第2実施形態を示す概略断面図である。 本発明の半導体パッケージの製造方法により製造する半導体パッケージの一例を示す略断面図である。 本発明の半導体パッケージの製造方法により製造する半導体パッケージの他の一例を示す概略断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α1)~(α3)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α4)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第1実施形態における工程(α4)を模式的に説明する断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β1)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β2)~(β3)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β4)を示す断面図である。 本発明の半導体パッケージの製造方法の第2実施形態における工程(β5)を示す断面図である。 2mm段差追従時のキシレンガス透過率の測定方法を説明する図である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 樹脂を構成する重合体における「単位」は、モノマーの重合によって形成された、当該重合体におけるモノマーに由来する構成部分を示す。単位は、重合によって直接形成された単位であってもよく、重合によって得られた重合体を化学変換することによって該単位の一部の構造が別の構造に変換された単位であってもよい。モノマーの重合によって直接形成された単位を「モノマーに基づく単位」ともいう。
 「フッ素樹脂」とは、構造中にフッ素原子を含む樹脂を示す。
 本発明の離型フィルムは、半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置されるフィルムである。本発明の離型フィルムは、たとえば、半導体パッケージの樹脂封止部を形成する際に、該樹脂封止部の形状に対応する形状のキャビティを有する金型のキャビティ面を覆うように配置され、形成した樹脂封止部と金型のキャビティ面との間に配置されることによって、得られた半導体パッケージの金型からの離型を容易にする。
 以下、本発明の離型フィルムの詳細を説明する。
〔第1実施形態の離型フィルム〕
 図1は、本発明の離型フィルムの第1実施形態を示す概略断面図である。
 第1実施形態の離型フィルム1は、樹脂封止部の形成時に硬化性樹脂と接する樹脂側離型層2と、ガスバリア層3とを備える。
 離型フィルム1は、半導体パッケージの製造時に、樹脂側離型層2側の表面2aを金型のキャビティに向けて配置され、樹脂封止部の形成時に硬化性樹脂と接触する。また、この時、ガスバリア層3側の表面3aは金型のキャビティ面に密着する。この状態で硬化性樹脂を硬化させることにより、金型のキャビティの形状に対応した形状の樹脂封止部が形成される。
(樹脂側離型層)
 樹脂側離型層2としては、離型性がある樹脂を含む層が挙げられる。
 離型性がある樹脂は、当該樹脂のみからなる層が離型層として機能し得る樹脂である。離型性がある樹脂としては、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、シリコーンゴム等が挙げられる。中でも、特に耐熱性が高く、加熱時のアウトガスの発生が少ない点で、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレンが好ましく、フッ素樹脂が特に好ましい。これらの樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フッ素樹脂としては、離型性および耐熱性の点から、フルオロオレフィン系重合体が好ましい。フルオロオレフィン系重合体は、フルオロオレフィンに基づく単位を有する重合体である。フルオロオレフィン系重合体は、フルオロオレフィンに基づく単位以外の単位をさらに有してもよい。
 フルオロオレフィンとしては、テトラフルオロエチレン(以下、「TFE」ともいう。)、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等が挙げられる。フルオロオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 フルオロオレフィン系重合体としては、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオリド共重合体(THV)等が挙げられる。フルオロオレフィン系重合体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フルオロオレフィン系重合体としては、高温での伸びが大きい点から、ETFEが特に好ましい。ETFEは、TFEに基づく単位(以下、「TFE単位」ともいう。)と、エチレンに基づく単位(以下、「E単位」ともいう。)とを有する共重合体である。
 ETFEとしては、TFE単位と、E単位と、TFEおよびエチレン以外のモノマー(以下、「第3のモノマー」ともいう。)に基づく単位とを有する重合体が好ましい。第3のモノマーに基づく単位の種類や含有量によってETFEの結晶化度、ひいては樹脂側離型層2の引張特性を調整しやすい。たとえば第3のモノマー(特にフッ素原子を有するモノマー)に基づく単位を有することで、高温(特に180℃前後)における引張強伸度が向上する。
 第3のモノマーとしては、フッ素原子を有するモノマーと、フッ素原子を有しないモノマーとが挙げられる。
 フッ素原子を有するモノマーとしては、下記のモノマー(a1)~(a5)が挙げられる。
 モノマー(a1):炭素数2または3のフルオロオレフィン化合物。
 モノマー(a2):X(CFCY=CH(ただし、X、Yは、それぞれ独立に水素原子またはフッ素原子であり、nは2~8の整数である。)で表されるペルフルオロアルキルエチレン。
 モノマー(a3):フルオロビニルエーテル化合物。
 モノマー(a4):官能基含有フルオロビニルエーテル化合物。
 モノマー(a5):脂肪族環構造を有する含フッ素モノマー。
 モノマー(a1)としては、フルオロエチレン化合物(トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、クロロトリフルオロエチレン等)、フルオロプロピレン化合物(ヘキサフルオロプロピレン(以下、「HFP」ともいう。)、2-ヒドロペンタフルオロプロピレン等)等が挙げられる。
 モノマー(a2)としては、nが2~6のモノマーが好ましく、nが2~4のモノマーが特に好ましい。また、Xがフッ素原子、Yが水素原子であるモノマー、すなわち(ペルフルオロアルキル)エチレンが特に好ましい。
 モノマー(a2)の具体例としては、下記の化合物が挙げられる。
 CFCFCH=CH
 CFCFCFCFCH=CH((ペルフルオロブチル)エチレン。以下、「PFBE」ともいう。)、
 CFCFCFCFCF=CH
 CFHCFCFCF=CH
 CFHCFCFCFCF=CH等。
 モノマー(a3)の具体例としては、下記の化合物が挙げられる。なお、下記のうちジエンであるモノマーは環化重合し得るモノマーである。
 CF=CFOCF
 CF=CFOCFCF
 CF=CF(CFCF(ペルフルオロ(プロピルビニルエーテル)。以下、PPVEともいう。)、
 CF=CFOCFCF(CF)O(CFCF
 CF=CFO(CFO(CFCF
 CF=CFO(CFCF(CF)O)(CFCF
 CF=CFOCFCF(CF)O(CFCF
 CF=CFOCFCF=CF
 CF=CFO(CFCF=CF等。
 モノマー(a4)の具体例としては、下記の化合物が挙げられる。
 CF=CFO(CFCOCH
 CF=CFOCFCF(CF)O(CFCOCH
 CF=CFOCFCF(CF)O(CFSOF等。
 モノマー(a5)の具体例としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等が挙げられる。
 フッ素原子を有しないモノマーとしては、下記のモノマー(b1)~(b4)が挙げられる。
 モノマー(b1):オレフィン化合物。
 モノマー(b2):ビニルエステル化合物。
 モノマー(b3):ビニルエーテル化合物。
 モノマー(b4):不飽和酸無水物。
 モノマー(b1)の具体例としては、プロピレン、イソブテン等が挙げられる。
 モノマー(b2)の具体例としては、酢酸ビニル等が挙げられる。
 モノマー(b3)の具体例としては、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等が挙げられる。
 モノマー(b4)の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸(5-ノルボルネン-2,3-ジカルボン酸無水物)等が挙げられる。
 第3のモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 第3のモノマーとしては、結晶化度を調整しやすい点、第3のモノマー(特にフッ素原子を有するモノマー)に基づく単位を有することで高温(特に180℃前後)における引張強伸度に優れる点から、モノマー(a2)、HFP、PPVE、酢酸ビニルが好ましく、HFP、PPVE、CFCFCH=CH、PFBEがより好ましく、PFBEが特に好ましい。すなわち、ETFEとしては、TFE単位と、E単位と、PFBEに基づく単位とを有する共重合体が特に好ましい。
 ETFEにおいて、TFE単位と、E単位とのモル比(TFE単位/E単位)は、80/20~40/60が好ましく、70/30~45/55がより好ましく、65/35~50/50が特に好ましい。TFE単位/E単位が前記範囲内であれば、ETFEの耐熱性および機械的強度に優れる。
 ETFE中の第3のモノマーに基づく単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.01~20モル%が好ましく、0.10~15モル%がより好ましく、0.20~10モル%が特に好ましい。第3のモノマーに基づく単位の割合が前記範囲内であれば、ETFEの耐熱性および機械的強度に優れる。
 第3のモノマーに基づく単位がPFBEに基づく単位を含む場合、PFBEに基づく単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.5~4.0モル%が好ましく、0.7~3.6モル%がより好ましく、1.0~3.6モル%が特に好ましい。PFBEに基づく単位の割合が前記範囲内であれば、離型フィルムの180℃における引張弾性率を前記範囲内に調整できる。また、高温(特に180℃前後)における引張強伸度が向上する。
 ETFEの溶融流量(MFR)は、2~40g/10分が好ましく、5~30g/10分がより好ましく、10~20g/10分が特に好ましい。MFRは、分子量の目安であり、MFRが大きいほど、分子量が小さい傾向がある。ETFEのMFRが前記範囲内であれば、ETFEの成形性が向上し、離型フィルムの機械的強度に優れる。
 ETFEのMFRは、ASTM D3159に準拠して、荷重49N、297℃にて測定される値である。
 樹脂側離型層2は、前記の樹脂のみからなるものでもよく、前記の樹脂に加えて、無機系添加剤、有機系添加剤等の添加物をさらに含有してもよい。無機系添加剤としては、カーボンブラック、シリカ、酸化チタン、酸化セリウム、酸化アルミコバルト、マイカ(雲母)、酸化亜鉛等の無機フィラー等が挙げられる。有機系添加剤としては、シリコーンオイル、金属石鹸等が挙げられる。
 金型追従性の点では、樹脂側離型層2は、無機フィラーを含まないことが好ましい。
 樹脂側離型層2としては、フッ素樹脂を含む層が好ましく、フッ素樹脂のみからなる層が特に好ましい。この場合、離型フィルム1は、離型性に優れ、また、成形時の金型の温度(典型的には150~180℃)に耐え得る耐熱性、硬化性樹脂の流動や加圧力に耐え得る強度等を充分に有し、高温における伸びにも優れる。
 樹脂側離型層2の、樹脂封止部の形成時に硬化性樹脂と接する面、すなわち離型フィルム1の樹脂側離型層2側の表面2aは、平滑でもよく凹凸が形成されていてもよい。離型性の点では、凹凸が形成されていることが好ましい。
 平滑である場合の表面2aの算術平均粗さ(Ra)は、0.01~0.2μmが好ましく、0.05~0.1μmが特に好ましい。
 凹凸が形成されている場合の表面2aのRaは、1.0~2.1μmが好ましく、1.2~1.9μmが特に好ましい。
 算術平均粗さ(Ra)は、JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づき測定される値である。粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとする。
 凹凸が形成されている場合の表面形状は、複数の凸部および/または凹部がランダムに分布した形状でもよく、複数の凸部および/または凹部が規則的に配列した形状でもよい。複数の凸部および/または凹部の形状や大きさは、同じでもよく異なってもよい。
 凸部としては、離型フィルムの表面に延在する長尺の凸条、点在する突起等が挙げられ、凹部としては、離型フィルムの表面に延在する長尺の溝、点在する穴等が挙げられる。
 凸条または溝の形状としては、直線、曲線、折れ曲がり形状等が挙げられる。離型フィルム表面においては、複数の凸条または溝が平行に存在して縞状をなしていてもよい。凸条または溝の、長手方向に直交する方向の断面形状としては、三角形(V字形)等の多角形、半円形等が挙げられる。
 突起または穴の形状としては、三角錐形、四角錐形、六角錐形等の多角錐形、円錐形、半球形、多面体形、その他各種不定形等が挙げられる。
 樹脂側離型層2の厚さは、12~100μmであることが好ましく、25~75μmが特に好ましい。樹脂側離型層2の厚さが前記範囲の下限値以上であれば、離型フィルム1の取り扱い(たとえばロール・トゥ・ロールでの扱い)が容易であり、離型フィルム1を引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。樹脂側離型層2の厚さが前記範囲の上限値以下であれば、樹脂側離型層2そのものからの加熱時のアウトガスの発生を抑制でき、金型の汚染低減効果がより優れる。また、離型フィルム1が容易に変形可能で、金型追従性に優れる。
(ガスバリア層)
 ガスバリア層3は、ビニルアルコール単位を有する重合体(以下、「重合体(A)」ともいう。)および塩化ビニリデン単位を有する重合体(以下、「重合体(B)」ともいう。)からなる群から選択される少なくとも1種の重合体(I)を含む。
 なお、「ビニルアルコール単位」とは、酢酸ビニルの重合によって得られた重合体を化学変換することによって酢酸ビニル単位のアセトキシ基が水酸基に変換された単位である。
 重合体(I)は、架橋構造を有してもよく、有しなくてもよい。
 重合体(A)は、ビニルアルコール単位のみからなるものでもよく、ビニルアルコール単位以外の単位をさらに有するものでもよい。
 重合体(A)中のビニルアルコール単位の割合は、全単位の合計に対し、60モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上が特に好ましい。ビニルアルコール単位の割合が前記の下限値以上であれば、ガスバリア層3のガスバリア性がより優れる。
 重合体(A)としては、以下の重合体(A1)または重合体(A2)が挙げられる。
 重合体(A1):ビニルアルコール単位を有し、かつ架橋構造を有しない重合体。
 重合体(A2):ビニルアルコール単位を有し、かつ架橋構造を有する重合体。
 重合体(A1)は、ビニルアルコール単位のみからなるものでもよく、ビニルアルコール単位以外の単位をさらに有するものでもよい。
 重合体(A1)としては、たとえばポリビニルアルコール(以下、「PVA」ともいう。)、ビニルアルコール単位と、ビニルアルコール単位および酢酸ビニル単位以外の単位とを有する共重合体(以下、「共重合体(A11)」ともいう。)等が挙げられる。共重合体(A11)は、酢酸ビニル単位をさらに有してもよい。これらの重合体はいずれか1種を単独で用いてもよく、2種以上を併用してもよい。
 PVAは、ビニルアルコール単位のみからなる重合体、またはビニルアルコール単位と酢酸ビニル単位とからなる重合体である。
 PVAとしては、ポリ酢酸ビニルの完全けん化物(けん化度99モル%以上100モル%以下)、準完全けん化物(けん化度90モル%以上99モル%未満)、部分けん化物(けん化度70モル%以上90モル%未満)等が挙げられる。
 PVAのけん化度は、80~100モル%が好ましく、85~100モル%がより好ましく、90~100モル%が特に好ましい。けん化度が高いほど、ガスバリア層3のガスバリア性が高い傾向がある。
 けん化度は、PVAの原料であるポリ酢酸ビニルに含まれるアセトキシ基がけん化により水酸基に変化した割合を単位比(モル%)で表したものであり、下式で定義される。けん化度は、JIS K6726:1994で規定されている方法で求めることができる。
 けん化度(モル%)={(水酸基の数)/(水酸基の数+アセトキシ基の数)}×100
 共重合体(A11)における他の単位としては、ジヒドロキシアルキル基、アセトアセチル基、オキシアルキレン基、カルボキシ基、アルコキシカルボニル基等を有する単位、エチレン等のオレフィン由来の単位等が挙げられる。共重合体(A11)が有する他の単位は1種でもよく2種以上でもよい。
 ジヒドロキシアルキル基を有する単位としては、たとえば下式(1)で表される1,2-ジオール構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R~Rはそれぞれ独立して水素原子または1価の有機基である。
 R~Rがすべて水素原子であることが好ましいが、樹脂特性を大幅に損なわない程度の量であれば1価の有機基であってもよい。該有機基としては、特に限定されないが、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基が好ましく、必要に応じてハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 式(1)中、Xは単結合または結合鎖である。結晶性の向上や非晶部における分子間空隙低減の点から、単結合であることが好ましい。
 結合鎖としては、特に限定されないが、たとえばアルキレン基、アルケニレン基、アルキニレン基、フェニレン基、ナフチレン基等の炭化水素基(これらの炭化水素基は、フッ素、塩素、臭素等のハロゲン等で置換されていてもよい)、-O-、-(CHO)-、-(OCH) -、-(CHO) CH-、-CO-、-COCO-、-CO(CH) CO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR-、-OSi(OR-、-OSi(ORO-、-Ti(OR-、-OTi(OR-、-OTi(ORO-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等(Rはそれぞれ独立して任意の置換基であり、水素原子またはアルキル基が好ましく、mは自然数である。)が挙げられる。中でも、製造時の粘度安定性や耐熱性に優れる点で、炭素数1~6のアルキレン基が好ましく、メチレン基または-CHOCH-が特に好ましい。
 式(1)で表される1,2-ジオール構造単位としては、R~Rがすべて水素原子であり、Xが単結合である単位が特に好ましい。すなわち、下式(1a)で表される単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 アセトアセチル基を有する単位としては、たとえば前記式(1)における-CR(OH)-CR(OH)を-COCHCOCHで置換した構造の単位が挙げられ、Xが-O-であるものが好ましい。
 オキシアルキレン基を有する単位としては、たとえば前記式(1)における-CR(OH)-CR(OH)を-(R21O)-R22(ただし、R21は炭素数2~5のアルキレン基であり、R22は水素原子または炭素数1~5のアルキル基であり、nは1~5の整数である。)で置換した構造の単位が挙げられ、Xが-O-であるものが好ましい。
 カルボキシ基を有する単位としては、たとえば前記式(1)における-CR(OH)-CR(OH)を-COOHで置換した構造の単位が挙げられ、Xが単結合であるものが好ましい。具体例としては、アクリル酸単位、メタクリル酸単位等が挙げられる。
 アルコキシカルボニル基を有する単位としては、たとえば前記式(1)における-CR(OH)-CR(OH)を-COOR23(ただし、R23は炭素数1~5のアルキル基である。)で置換した構造の単位が挙げられ、Xが単結合であるものが好ましい。具体例としては、アクリル酸メチル単位、メタクリル酸メチル単位等が挙げられる。
 共重合体(A11)は、たとえば、PVAに変性剤を反応させる方法、酢酸ビニルと他のモノマーとの共重合体をけん化する方法等により得ることができる。
 共重合体(A11)の具体例としては、ビニルアルコール単位と1,2-ジオール構造を有する単位とを有する共重合体、アセトアセチル化PVA(ビニルアルコール単位とアセトアセチル基を有する単位とを有する共重合体)、アルキレンオキシド変性PVA(ビニルアルコール単位とオキシアルキレン基を有する単位とを有する共重合体)、カルボン酸変性PVA(ビニルアルコール単位とカルボキシ基を有する単位とを有する共重合体)、ビニルアルコール-アクリル酸-メタクリル酸メチル共重合体、エチレン-ビニルアルコール共重合体等が挙げられる。
 共重合体(A11)のけん化度の好ましい範囲は、PVAと同様である。
 共重合体(A11)中の他の単位の含有量は、全単位の合計に対し、2~30モル%が好ましく、5~20モル%が特に好ましい。
 共重合体(A11)としては、ビニルアルコール単位と前記式(1)で表される1,2-ジオール構造単位とを有する共重合体(以下、「共重合体(A11-1)」ともいう。)が好ましい。
 共重合体(A11-1)は、ビニルアルコール単位および酢酸ビニル単位を合計で85~98モル%、1,2-ジオール構造単位を2~15モル%有することが好ましく、ビニルアルコール単位および酢酸ビニル単位を合計で88~96モル%、1,2-ジオール構造単位を4~12モル%有することがより好ましく、ビニルアルコール単位および酢酸ビニル単位を合計で90~95モル%、1,2-ジオール構造単位を5~10モル%有することが特に好ましい。ビニルアルコール単位および酢酸ビニル単位の合計のうちのビニルアルコール単位の割合、つまりけん化度の好ましい範囲は、PVAと同様である。
 重合体(A1)の4質量%水溶液の粘度(20℃)は、2.5~100MPa・sが好ましく、3~70MPa・sがより好ましく、5~60MPa・sが特に好ましい。該粘度が前記範囲の下限値以上であれば、ガスバリア層3にクラックが生じにくい傾向があり、前記範囲の上限値以下であれば、重合体(A1)と水性媒体と含む塗工液を塗工してガスバリア層3を形成する際の作業性が優れる。
 なお、上記粘度はJIS K6726:1994に準じて測定されるものである。
 重合体(A1)の4質量%水溶液の粘度は、重合体(A1)の分子量や、重合体(A1)のけん化度によって調整できる。
 重合体(A2)としては、たとえば、重合体(A1)と架橋剤とを反応させて得られる重合体が挙げられる。重合体(A1)が、熱等により自己架橋可能なもの(たとえばアセトアセチル化PVA)であれば、重合体(A1)を自己架橋させて得られるものであってもよい。
 架橋剤と反応させる重合体(A1)としては、前記と同様のものが挙げられ、PVAまたは共重合体(A11)が好ましく、PVAまたは共重合体(A11-1)が特に好ましい。すなわち、重合体(A2)は、架橋構造を有するPVAまたは共重合体(A11)であることが好ましく、架橋構造を有するPVAまたは共重合体(A11-1)であることが特に好ましい。
 架橋剤としては、水酸基と反応して架橋構造を形成する水溶性の架橋剤が好ましい。具体例としては、有機金属化合物、イソシアネート基を2以上有するイソシアネート化合物、ビスビニルスルホン化合物等が挙げられる。
 有機金属化合物としては、チタン、アルミニウム、ジルコニウムおよびスズからなる群から選択される金属のアルコキシド化合物、キレート化合物、アシレート化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 アルコキシド化合物としては、チタンアルコキシド化合物等が挙げられ、下式(II)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(II)中、R11~R14はそれぞれ独立にアルキル基である。R11~R14はそれぞれ同一であってもよく異なっていてもよい。アルキル基の炭素数は1~8が好ましい。
 nは1~10の整数である。
 式(II)で表されるチタンアルコキシド化合物として具体的には、テトライソプロピルチタネート、テトラn-プロピルチタネート、テトラn-ブチルチタネート、テトラt-ブチルチタネート、テトライソブチルチタネート、テトラエチルチタネート、テトライソオクチルチタネート、混合アルキルチタネートであるジイソプロピルジイソオクチルチタネート、イソプロピルトリイソオクチルチタネート、テトラアルキルチタネートが縮合したテトラn-ブチルチタネート2量体、テトラn-ブチルチタネート4量体等が挙げられる。
 キレート化合物としては、式(II)で表されるチタンアルコキシド化合物にキレート化剤が配位した構造を有するチタンキレート化合物が好ましい。
 キレート化剤としては特に限定されないが、β-ジケトン、β-ケトエステル、多価アルコール、アルカノールアミンおよびオキシカルボン酸からなる群から選択される少なくとも1種が、チタン化合物の加水分解等に対する安定性を向上させる点で好ましい。
 アシレート化合物としては、金属のポリヒドロキシステアレート、ビスアセチルアセトナート、テトラアセチルアセトナート、ポリアセチルアセトナート、オクチレングリコレート、エチルアセトアセテート、ラクテート等が挙げられる。
 イソシアネート化合物としては、水溶性の化合物が好ましい。好ましい構造としては、ビウレット構造、イソシアヌレート構造、アダクト構造の化合物等が挙げられる。
 ビスビニルスルホン化合物としては、1,2-ビス(ビニルスルホニル)エタン、ビス{2-(ビニルスルホニル)エチル}エーテル、1,5-ビス(ビニルスルホニル)-3-ヒドロキシペンタン、1,2-ビス(ビニルスルホニルアセトアミド)エタン、1,3-ビス(ビニルスルホニルアセトアミド)プロパン、1,5-ビス(ビニルスルホニル)-3-メトキシペンタン、1,8-ビス(ビニルスルホニル)-3,6-オキサオクタン、ビス{2-(1’-メチルビニルスルホニル)エチル}エーテル、1,2-ビス{(1’-メチルビニルスルホニル)アセトアミド}エタン、1,3-ビス{(1’-ビニルスルホニル)アセトアミド}プロパン等が挙げられる。
 架橋剤が前記金属のアルコキシド化合物、キレート化合物、アシレート化合物である場合、たとえば、M(-O-R)(Mは前記アルコキシド化合物等に由来する金属原子を示し、nはMの価数であって2以上の整数を示し、Rはビニルアルコール単位から水酸基を除いた残基を示す。)という架橋構造単位が形成される。
 架橋剤がイソシアネート化合物である場合、たとえば、R15(-NH-CO-O-R)(R15はイソシアネート化合物からイソシアネート基を除いた残基を示し、pは2以上の整数を示し、Rはビニルアルコール単位から水酸基を除いた残基を示す。)という架橋構造単位が形成される。
 重合体(A2)の架橋度は、架橋剤の量や、重合体(A1)と架橋剤とを反応させる際の温度によっても調整できるが、架橋剤の分子構造によって大きく異なる。架橋剤の反応性は、イソシアネート化合物=ビスビニルスルホン化合物<有機ジルコニア化合物<有機チタネート化合物である。
 架橋剤としては、適度な反応性の点から、イソシアネート化合物、有機金属化合物が好ましい。有機金属化合物の中では、有機チタン化合物、有機ジルコニウム化合物が特に好ましい。
 架橋剤と反応させる重合体(A1)が、水酸基以外の架橋性官能基を含む場合は、それに対応した架橋剤を使用してもよい。架橋性官能基としては、カルボニル基、カルボキシル基、アセトアセチル基等が挙げられる。これらの架橋性官能基を有する場合の架橋剤として、ジヒドラジド化合物、ジアミン化合物、メチロール化合物、ジアルデヒド化合物等が挙げられる。
 重合体(B)は、塩化ビニリデン単位のみからなるものでもよく、塩化ビニリデン単位以外の単位をさらに有するものでもよい。
 重合体(A)中の塩化ビニリデン単位の割合は、全単位の合計に対し、70モル%以上が好ましく、80モル%以上が特に好ましい。塩化ビニリデン単位の割合が前記の下限値以上であれば、ガスバリア層3のガスバリア性がより優れる。
 重合体(B)としては、以下の重合体(B1)または重合体(B2)が挙げられる。
 重合体(B1):塩化ビニリデン単位を有し、かつ架橋構造を有しない重合体。
 重合体(B2):塩化ビニリデン単位を有し、かつ架橋構造を有する重合体。
 重合体(B1)としては、ポリ塩化ビニリデン、塩化ビニリデン-アルキルアクリレート共重合体等が挙げられる。
 重合体(B2)としては、たとえば、重合体(B1)と架橋剤とを反応させて得られる重合体が挙げられる。
 架橋剤としては、ハロゲン基、あるいはアルキルアクリレートに結合した官能基と反応して架橋構造を形成する水溶性の架橋剤が好ましい。具体例として、有機金属化合物、イソシアネート基を2以上有するイソシアネート化合物、ビスビニルスルホン化合物等が挙げられる。これらの架橋剤の具体例としては、前記と同様のものが挙げられる。
 ガスバリア層3中の重合体(I)は、ガスバリア性がより優れる点で、重合体(A)を含むことが好ましく、PVAまたは共重合体(A11)を含むことがより好ましく、PVAまたは共重合体(A11-1)を含むことが特に好ましい。
 ガスバリア層3中の重合体(A)は、重合体(A1)でもよく重合体(A2)でもよく、ガスバリア層3からのアウトガスがより低減され、金型の汚染低減効果がより優れる点で、重合体(A2)が好ましく、架橋構造を有するPVAまたは共重合体(A11)がより好ましく、架橋構造を有するPVAまたは共重合体(A11-1)が特に好ましい。
 ガスバリア層3中の重合体(I)が重合体(A)を含む場合、ガスバリア層3の坪量W1(g/m)と、離型フィルム1に以下の溶解試験を行った後に残存するガスバリア層3の坪量W2(g/m)とから以下の式で求められる、ガスバリア層3の不溶化度が、10~80%であることが好ましく、30~80%が特に好ましい。
 不溶化度(%)=(W2/W1)×100
 該不溶化度は、重合体(A)の架橋度の指標である。重合体(A)の架橋度が高いほど、不溶化度が高くなる傾向がある。不溶化度が前記範囲の下限値以上であれば、ガスバリア層3自体からのガスの発生が抑えられ、金型の汚染低減効果が優れる。不溶化度が前記範囲の上限値以下であれば、金型追従時にガスバリア層3が割れにくく、金型汚染低減効果が優れる。
 該不溶化度は、重合体(A)の架橋度に対応しており、該架橋度は、たとえば前述したように、重合体(A)と反応させる架橋剤の種類や量、重合体(A1)と架橋剤とを反応させる際の温度等によって調整できる。
 <溶解試験>
 離型フィルムを80℃のイオン交換水中に浸漬し、1時間加熱する。その間、30分間間隔で1分間の撹拌を行う。1時間の加熱が終了した後の離型フィルムを、別の80℃のイオン交換水に10分間浸漬して洗浄する。洗浄後の離型フィルムを、20~25℃のイオン交換水に10分間浸漬し、洗浄および冷却を行う。洗浄および冷却を行った後の離型フィルムを、100℃で2時間真空乾燥させる。
 ガスバリア層3は、必要に応じて、重合体(I)以外の成分を含んでもよい。
 他の成分としては、たとえば、無機粒子、帯電防止剤、潤滑剤等が挙げられる。
 ガスバリア層3の厚さは、0.1~5μmであり、0.5~3μmが好ましい。ガスバリア層3の厚さが前記範囲の下限値以上であれば、充分なガスバリア性が確保でき、金型の汚染低減効果が優れる。ガスバリア層3の厚さが前記範囲の上限値以下であれば、ガスバリア層そのものからのアウトガスを低減でき、金型の汚染低減効果が優れる。また、樹脂側離型層2の伸び特性に影響を与えないためピンホールが発生しにくい。さらに経済性にも優れる。
(離型フィルムの厚さ)
 離型フィルム1の厚さは、25~100μmが好ましく、30~75μmが特に好ましい。離型フィルム1の厚さが前記範囲の下限値以上であれば、離型フィルム1の取り扱いが容易であり、離型フィルム1を引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。離型フィルム1の厚さが前記範囲の上限値以下であれば、離型フィルム1そのものからの加熱時のアウトガスの発生を抑制でき、金型の汚染低減効果がより優れる。また、離型フィルム1が容易に変形可能で、金型追従性に優れる。
 離型フィルム1の厚さは、金型のキャビティが大きいほど、前記範囲内において薄いことが好ましい。また、多数のキャビティを有する複雑な金型であるほど、前記範囲内において薄いことが好ましい。
(離型フィルムの2mm段差追従時のキシレンガスの透過率)
 離型フィルム1は、以下の測定方法で測定される、2mm段差追従時のキシレンガスの透過率が、20%以下であることが好ましく、10%以下が特に好ましい。該透過率が低いほど、金型の汚染低減効果に優れる。該透過率の下限は特に規定されないが、たとえば0.1%以上である。
 <2mm段差追従時のキシレンガス透過率の測定方法>
 Φ60mm、深さ10mmの凹部を持つアルミニウム製の第一の容器に、キシレンの1.5gを適下する。第一の容器と同形状のアルミニウム製の第二の容器の凹部内に、Φ60mm、厚さ8mmの多孔質セラミックスをはめ込む。また、該凹部の底面にはねじ切り穴を開け、真空ポンプを接続する。第一の容器の上に第二の容器を、凹部の開口が下側(第一の容器側)を向くように配置し、第一の容器と第二の容器とを、それらの間に離型フィルムとフランジを挟んだ状態で接続し、ねじによって固定して試験体とする。該試験体の全体の質量(g)を電子天秤で測定し、その値を加熱前質量とする。
 次いで、前記試験体を、180℃に加熱したホットプレート上に置くとともに、真空ポンプの電源を入れ、真空度を-100kPa以下に保った状態で15分間静置する。15分間経過後、真空ポンプを止めて接続を外し、速やかに前記試験体の全体の質量(g)を測定し、その値を加熱後質量とする。測定結果から、以下の式により、キシレンガス透過率を算出する。
 キシレンガス透過率(%)={(加熱前質量-加熱後質量)/1.5}×100
 該測定方法については、後述の実施例で、図面を用いてより詳細に説明する。
(離型フィルムの180℃における質量減少率)
 離型フィルム1は、以下の測定方法で測定される、180℃における質量減少率が、0.15%以下であることが好ましく、0.1%以下が特に好ましい。該透過率が低いほど、封止工程での離型フィルム1自身からのアウトガスが少なく、金型の汚染低減効果に優れる。該質量減少率の下限は特に規定されない。
 <180℃質量減少率の測定方法>
 離型フィルムを10cm角に切り出して試料を作製し、該試料の質量(mg)を、天秤を用いて測定し、その値を加熱前質量とする。
 次いで2枚の15cm角、厚さ0.2mmのステンレス板の間に試料を挟む。これを180℃、1MPaの条件で、20分間プレスする。その後、試料を取り出し、該試料の質量(mg)を、前記と同じ方法で測定し、その値を加熱後質量とする。
 測定結果から、以下の式に基づいて質量減少率(%)を算出する。
 質量減少率(%)={(加熱前質量)-(加熱後質量)}/(加熱前質量)×100
(離型フィルムの製造方法)
 離型フィルム1の製造方法としては、以下の製造方法が好ましい。
 樹脂側離型層2を形成する樹脂フィルム(樹脂側離型層を含む基材)の片面に、ガスバリア層3を形成する工程を含み、
 ガスバリア層3を形成する工程が、重合体(I)と、液状媒体とを含むガスバリア層形成用塗工液を塗工し、乾燥して塗膜を形成する工程(以下、「工程(i)」ともいう。)を含む製造方法。
 ガスバリア層形成用塗工液は、架橋剤をさらに含んでもよい。
 ガスバリア層形成用塗工液が架橋剤を含む場合、ガスバリア層3を形成する工程が、前記塗膜を形成する工程の後に、前記重合体(I)を架橋させて架橋構造を形成する工程(以下、「工程(ii)」ともいう。)をさらに含むことが好ましい。
 <樹脂フィルム>
 樹脂側離型層2を形成する樹脂フィルムとしては、市販の樹脂フィルムを用いてもよく、公知の製造方法により製造した樹脂フィルムを用いてもよい。樹脂フィルムには、コロナ処理、プラズマ処理、プライマー塗工処理等の表面処理が施されてもよい。
 樹脂フィルムの製造方法としては、特に限定されず、公知の製造方法を利用できる。
 両面が平滑である樹脂フィルムの製造方法としては、たとえば、所定のリップ幅を有するTダイを具備する押出機で溶融成形する方法等が挙げられる。
 片面または両面に凹凸が形成されている樹脂フィルムの製造方法としては、たとえば、熱加工で樹脂フィルムの表面に元型の凹凸を転写する方法が挙げられ、生産性の点から、下記の方法(1)、(2)等が好ましい。方法(1)、(2)では、ロール状の元型を用いることによって、連続した加工が可能となり、凹凸が形成された樹脂フィルムの生産性が著しく向上する。方法(1)、(2)において、圧胴ロールとして表面に凹凸が形成されたものを用いると、両面に凹凸が形成されている樹脂フィルムが得られる。
 (1)樹脂フィルムを冷却ロールと押し当てロールとの間に通し、樹脂フィルムの表面に押し当てロールの表面に形成された凹凸を連続的に転写する方法。
 (2)押出機のダイスから押し出された樹脂を冷却ロールと押し当てロールとの間に通し、該熱樹脂をフィルム状に成形すると同時に、該フィルム状の樹脂の表面に押し当てロールの表面に形成された凹凸を連続的に転写する方法。
 なお、方法(1)、(2)において、冷却ロールとして表面に凹凸が形成されたものを用いると、両面に凹凸が形成されている樹脂フィルムが得られる。
 <ガスバリア層形成用塗工液>
 重合体(I)、架橋剤はそれぞれ、前記と同様である。
 ガスバリア層形成用塗工液中の重合体(I)は、ガスバリア層形成用塗工液の塗工性の点から、架橋構造を有しないことが好ましい。つまり、重合体(A)であれば重合体(A1)が好ましく、重合体(B)であれば重合体(B1)が好ましい。
 液状媒体としては、ガスバリア層形成用塗工液中の重合体(I)を溶解または分散するものが用いられ、溶解するものが好ましい。
 ガスバリア層形成用塗工液中の重合体(I)が重合体(A)である場合、液状媒体としては、水性媒体が好ましい。
 水性媒体は、少なくとも水を含む液状媒体であり、水、水と有機溶剤との混合溶媒等が挙げられる。
 混合溶媒における有機溶剤としては、水と相溶性を有するものが好ましく、たとえばメタノール、エタノール、プロパノール、イソプロパノール等が挙げられる。これらの有機溶剤は、いずれか1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 ガスバリア層形成用塗工液中の重合体(I)が重合体(B)である場合、液状媒体としては、水が好ましい。
 ガスバリア層形成用塗工液中の重合体(I)が重合体(A)と重合体(B)との混合物である場合、液状媒体としては、水が好ましい。
 ガスバリア層形成用塗工液は、必要に応じて、重合体(I)および架橋剤以外の成分を含んでもよい。他の成分としては、前述の他の成分と同様のものが挙げられる。
 ガスバリア層形成用塗工液中の重合体(I)の含有量は、ガスバリア層形成用塗工液の全量(100質量%)に対して2~15質量%が好ましく、5~12質量%が特に好ましい。重合体(I)の含有量が前記範囲の下限値以上であれば、乾燥時の造膜性に優れ、前記範囲の上限値以下であれば、塗工性に優れる。
 ガスバリア層形成用塗工液中の架橋剤の含有量は、ガスバリア層3中における重合体(I)の架橋度を考慮して設定される。ガスバリア層形成用塗工液が架橋剤をさらに含む場合、ガスバリア層形成用塗工液中の架橋剤の含有量は、重合体(I)に対して1~20質量%が好ましく、3~15質量%が特に好ましい。架橋剤の含有量が前記範囲の下限値以上であれば、ガスバリア層3自身からのガスの発生が抑えられ、金型の汚染低減効果が優れる。架橋剤の含有量が前記範囲の上限値以下であれば、金型追従時にガスバリア層3が割れにくく、金型の汚染低減効果が優れる。
 ガスバリア層形成用塗工液は、重合体(I)と、液状媒体と、必要に応じて架橋剤および他の成分を混合することにより調製できる。
 <ガスバリア層を形成する工程>
 ガスバリア層3を形成する工程は、工程(i)および必要に応じて工程(ii)を含む。
 工程(i)では、ガスバリア層形成用塗工液を塗工し、乾燥して塗膜を形成する。
 塗工方法としては、湿式塗工法として公知の方法が利用でき、特に限定されない。具体例としては、スピンコート法、ロールコート法、キャスト法、ディッピング法、水上キャスト法、ラングミュア・ブロジェット法、ダイコート法、インクジェット法、スプレーコート法等が挙げられる。
 乾燥は、常温での風乾により行ってもよく、加熱してベークすることにより行ってもよい。ベーク温度は、液状溶媒の沸点以上であることが好ましい。
 工程(ii)では、工程(i)で形成した塗膜に含まれる重合体を架橋させて架橋構造を形成する。重合体の架橋は、たとえば、塗膜をベークする方法、塗膜に紫外線や電子線を照射する方法等により行うことができる。
 塗膜をベークする方法の場合、ベーク温度は40~60℃が好ましい。40℃以上であれば塗膜の架橋反応が充分に進み、60℃以下であれば塗膜や基材の劣化が少ない。ベーク積算時間(温度(℃)×時間(時間))は4,800以上が好ましい。
 工程(i)における乾燥工程が、工程(ii)を兼ねてもよい。
(作用効果)
 離型フィルム1にあっては、ガスバリア層3を有することで、半導体素子の封止工程での金型の汚染を低減できる。
 従来、離型性が高い樹脂フィルムと、ガスバリア性が高い樹脂フィルムとをラミネートさせた離型フィルムが提案されており、ガスバリア性が高い樹脂フィルムには、PETフィルム、易成形性PETフィルム、ナイロンフィルム、エチレン-ビニルアルコール共重合体フィルム等がある。しかし、この場合、取り扱いが容易な点から、ガスバリア性が高い樹脂フィルムの厚さは10μm以上になる。10μm以上の厚さがあることでガスバリア性能は出るが、該樹脂フィルムに含まれる樹脂は耐熱性が必ずしも高くなく、封止工程での高温に曝された時に、ガスバリア層そのものから多くのアウトガスが発生し、ガスバリア層自体が金型を汚すという矛盾した現象を引き起こしていた。
 本発明にあっては、ガスバリア層3の厚さが5μm以下と薄いことで、アウトガスの原因となる樹脂の量が少ない。そのため、従来に比べて、ガスバリア層3そのものからのアウトガスの発生量が少なく、金型汚染を低減できる。特に、重合体(I)が架橋構造を有する場合、架橋構造を有しない場合に比べて耐熱性が高く、アウトガスの発生量がより少ない。
 また、本発明にあっては、ガスバリア層3が重合体(I)を含むことで、薄くても充分なガスバリア性を有する。また、ガスバリア層3が延伸性に優れており、離型フィルム1を金型に追従させる際に、ガスバリア層3が割れたり、離型フィルム1にピンホールが開いたりしにくい。そのため、金型追従後も優れたガスバリア性が維持される。そのため、封止工程で硬化性樹脂から発生するアウトガス等が離型フィルム1を通過しにくく、該アウトガス等による金型汚染を低減できる。また、ピンホールから硬化性樹脂等が漏れて金型に付着することによる離型不良が生じにくく、硬化性樹脂の硬化後、形成された樹脂封止部を有する封止体を良好に離型できる。
〔第2実施形態の離型フィルム〕
 図2は、本発明の離型フィルムの第2実施形態を示す概略断面図である。
 第2実施形態の離型フィルム4は、樹脂封止部の形成時に硬化性樹脂と接する樹脂側離型層5と、ガスバリア層6と、接着層7と、樹脂封止部の形成時に金型と接する金型側離型層8とを備える。離型フィルム4は、第1実施形態の離型フィルム1のガスバリア層3側に接着層7を介して金型側離型層8が積層した構成のものである。
 離型フィルム4は、半導体パッケージの製造時に、樹脂側離型層5側の表面5aを金型のキャビティに向けて配置され、樹脂封止部の形成時に硬化性樹脂と接触する。また、この時、金型側離型層側の表面8aは金型のキャビティ面に密着する。この状態で硬化性樹脂を硬化させることにより、金型のキャビティの形状に対応した形状の樹脂封止部が形成される。
(樹脂側離型層)
 樹脂側離型層5は、第1実施形態における樹脂側離型層2と同様である。厚さ以外の好ましい態様も同様である。
 樹脂側離型層5の厚さは、12~50μmであることが好ましく、25~50μmが特に好ましい。樹脂側離型層5の厚さが前記範囲の下限値以上であれば、離型フィルム4の取り扱い(たとえばロール・トゥ・ロールでの扱い)が容易であり、離型フィルム4を引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。樹脂側離型層5の厚さが前記範囲の上限値以下であれば、樹脂側離型層5そのものからの加熱時のアウトガスの発生を抑制でき、金型の汚染低減効果がより優れる。また、離型フィルム4が容易に変形可能で、金型追従性に優れる。
(ガスバリア層)
 ガスバリア層6は、第1実施形態におけるガスバリア層3と同様である。好ましい態様も同様である。
(接着層)
 接着層7は、ガスバリア層6と金型側離型層8との間の密着性を高める層である。
 接着層7としては、たとえば、接着剤から形成された層が挙げられる。
 接着剤は、主剤と硬化剤とを含有し、加熱等により硬化して接着性を発揮するものを意味する。接着剤は、1液型接着剤でもよく、2液型接着剤でもよい。
 接着剤としては、ドライラミネート用の接着剤として公知のものを使用できる。たとえばポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他のモノマー(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他のモノマー(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を使用できる。
 接着層7の厚さは、0.1~1μmであることが好ましく、0.2~0.5μmが特に好ましい。接着層7の厚さが前記範囲の下限値以上であれば、ガスバリア層6と金型側離型層8との間の密着性が充分に優れる。接着層7の厚さが前記範囲の上限値以下であれば、接着層7そのものからの加熱時のアウトガスの発生を抑制でき、金型の汚染低減効果がより優れる。
(金型側離型層)
 金型側離型層8としては、離型性がある樹脂を含む層が挙げられる。離型性がある樹脂としては、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリエステル、ポリアミド、シリコーンゴム等が挙げられる。
 フッ素樹脂としては、樹脂側離型層2の説明で挙げたものと同様のものが挙げられる。
 ポリエステルとしては、耐熱性、強度の点から、ポリエチレンテレフタレート(以下、「PET」ともいう。)、易成形PET、ポリブチレンテレフタレート(以下、「PBT」ともいう。)、ポリナフタレンテレフタレートが好ましい。
 易成形PETとは、エチレングリコールおよびテレフタル酸(あるいはジメチルテレフタレート)に加え、その他のモノマーを共重合して成形性を改良したものである。具体的には、以下の方法で測定されるガラス転移温度Tgが105℃以下のPETである。
 Tgは、ISO6721-4:1994(JIS K7244-4:1999)に基づき測定される貯蔵弾性率E’と損失弾性率E”の比であるtanδ(E”/E’)が最大値を取る際の温度である。Tgは、周波数は10Hz、静的力は0.98N、動的変位は0.035%とし、温度を20℃から180℃まで、2℃/分で昇温させて測定する。
 ポリアミドとしては、耐熱性、強度、ガスバリア性の点から、ナイロン6、ナイロンMXD6が好ましい。ポリアミドは延伸されたものでもされていないものでもよい。
 金型側離型層8に含まれる樹脂としては、前記の中でも、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレンが好ましく、フッ素樹脂が特に好ましい。
 金型側離型層8は、前記の樹脂のみからなるものでもよく、前記の樹脂に加えて、無機系添加剤、有機系添加剤等の添加物をさらに含有してもよい。無機系添加剤としては、カーボンブラック、シリカ、酸化チタン、酸化セリウム、酸化アルミコバルト、マイカ(雲母)、酸化亜鉛等の無機フィラー等が挙げられる。有機系添加剤としては、シリコーンオイル、金属石鹸等が挙げられる。
 金型追従性の点では、金型側離型層8は、無機フィラーを含まないことが好ましい。
 金型側離型層8の、樹脂封止部の形成時に金型と接する面、すなわち離型フィルム4の金型側離型層8側の表面8aは、平滑でもよく凹凸が形成されていてもよい。離型性の点では、凹凸が形成されていることが好ましい。凹凸について好ましい様態は前述の樹脂側離型層2と同様であり、表面8aについて好ましい様態は前述の表面2aと同様である。
 金型側離型層8の厚さの好ましい範囲は、樹脂側離型層5と同様である。
(離型フィルムの厚さ)
 離型フィルム4の厚さの好ましい範囲は、離型フィルム1と同様である。
(離型フィルムの2mm段差追従時のキシレンガスの透過率)
 離型フィルム4の2mm段差追従時のキシレンガスの透過率の好ましい範囲は、離型フィルム1と同様である。
(離型フィルムの180℃における質量減少率)
 離型フィルム4の180℃における質量減少率の好ましい範囲は、離型フィルム1と同様である。
(離型フィルムの製造方法)
 離型フィルム4の製造方法としては、以下の製造方法が好ましい。
 樹脂側離型層5を形成する第一の樹脂フィルム(離型層を含む基材)の片面に、ガスバリア層6を形成する工程と、
 前記ガスバリア層6の上に、接着剤を用いて、金型側離型層8を形成する第二の樹脂フィルムをドライラミネートする工程とを含み、
 ガスバリア層6を形成する工程が、重合体(I)と、液状媒体とを含むガスバリア層形成用塗工液を塗工し、乾燥して塗膜を形成する工程(以下、「工程(i-2)」ともいう。)を含む製造方法。
 ガスバリア層形成用塗工液は、架橋剤をさらに含んでもよい。
 ガスバリア層形成用塗工液が架橋剤を含む場合、ガスバリア層6を形成する工程が、工程(i-2)の後に、前記重合体(I)を架橋させて架橋構造を形成する工程(以下、「工程(ii-2)」ともいう。)をさらに含むことが好ましい。
 <第一の樹脂フィルム>
 第一の樹脂フィルムとしては、第1実施形態で挙げた、樹脂側離型層2を形成する樹脂フィルムと同様のものが挙げられる。
 <第二の樹脂フィルム>
 第二の樹脂フィルムとしては、市販の樹脂フィルムを用いてもよく、公知の製造方法により製造した樹脂フィルムを用いてもよい。樹脂フィルムには、コロナ処理、プラズマ処理、プライマー塗工処理等の表面処理が施されてもよい。
 第二の樹脂フィルムの製造方法としては、特に限定されず、第一の樹脂フィルムの説明で挙げたような公知の製造方法を利用できる。
 <ガスバリア層形成用塗工液>
 ガスバリア層形成用塗工液は、第1実施形態におけるガスバリア層形成用塗工液と同様である。
 <ガスバリア層を形成する工程>
 ガスバリア層を形成する工程における工程(i-2)、工程(ii-2)はそれぞれ、第1実施形態における工程(i)、工程(ii)と同様である。
 <金型側離型層をドライラミネートする工程>
 ドライラミネートは、公知の方法により行うことができる。たとえば、第一の樹脂フィルム上に形成されたガスバリア層6の上に、接着剤を塗布し、乾燥させ、その上に第二の樹脂フィルムを重ね、所定の温度(ドライラミネート温度)に加熱された一対のロール(ラミネートロール)の間に通して圧着する。これにより、離型フィルム4を得ることができる。ドライラミネート後、必要に応じて、養生、切断等を行ってもよい。
(作用効果)
 離型フィルム4にあっては、第1実施形態の離型フィルム1と同様に、半導体素子の封止工程での金型の汚染を低減できる。また、離型不良が生じにくく、硬化性樹脂の硬化後、形成された樹脂封止部を有する封止体を良好に離型できる。さらに、金型側離型層8を有することで、封止工程でガスバリア層6が金型の表面に転写されることを防止できる。
 以上、本発明の離型フィルムについて、第1~2実施形態を示して説明したが、本発明は上記実施形態に限定されない。上記実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 第2実施形態においては、樹脂側離型層5とガスバリア層6と接着層7と金型側離型層8とがこの順に積層した構成を示したが、ガスバリア層6と接着層7とが入れ替わっていてもよい。たとえば金型側離型層8にガスバリア層6を形成し、その後、ガスバリア層6の上に、接着剤を用いて樹脂側離型層5をドライラミネートしてもよい。
 接着層7からのアウトガスの透過も防止できる点では、ガスバリア層6は、金型側離型層8に隣接する位置に設けられることが好ましい。
 第2実施形態において、接着層7を有しない構成としてもよい。
 本発明の離型フィルムは、樹脂側離型層、ガスバリア層、接着層および金型側離型層以外の層をさらに備えてもよい。
 他の層としては、たとえば、帯電防止層が挙げられる。離型フィルムが帯電防止層を有すると、離型フィルムが帯電防止性が発現し、半導体パッケージの製造時に、半導体素子の一部が離型フィルムに直接接するような場合でも、離型フィルムの帯電-放電による半導体素子の破壊を抑制できる。
 帯電防止層の表面抵抗値は、帯電防止の観点から、1010Ω/□以下が好ましく、10Ω/□以下が特に好ましい。
 帯電防止層としては、帯電防止剤を含有する層が挙げられる。帯電防止剤としては、高分子系帯電防止剤が好ましい。高分子系帯電防止剤としては、帯電防止剤として公知の高分子化合物を用いることができる。たとえば、側基に4級アンモニウム塩基を有するカチオン系共重合体、ポリスチレンスルホン酸を含むアニオン系高分子、ポリエーテルエステルアミド、エチレンオキサイド-エピクロルヒドリン、ポリエーテルエステル等を含む非イオン系高分子、π共役系導電性高分子等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 接着層7を形成する接着剤に帯電防止剤を含有させて、接着層7に帯電防止層としての機能を持たせてもよい。
 本発明の離型フィルムとしては、樹脂封止部の形成時に硬化性樹脂と接する側から、樹脂側離型層/ガスバリア層の2層構成、樹脂側離型層/ガスバリア層/金型側離型層の3層構成、樹脂側離型層/帯電防止層/ガスバリア層の3層構成、樹脂側離型層/ガスバリア層/接着層/金型側離型層の4層構成、樹脂側離型層/接着層/ガスバリア層/金型側離型層の4層構成のいずれかの層構成を有するものが好ましい。
 上記の中でも、離型フィルム自体から発生するガスをすべて抑えることができる点で、ガスバリア層が最も金型側に来る層構成が好ましく、樹脂側離型層/ガスバリア層の2層構成が特に好ましい。
〔半導体パッケージ〕
 本発明の離型フィルムを用いて、後述の本発明の半導体パッケージの製造方法により製造される半導体パッケージとしては、トランジスタ、ダイオード等の半導体素子を集積した集積回路;発光素子を有する発光ダイオード等が挙げられる。
 集積回路のパッケージ形状としては、集積回路全体を覆うものでも集積回路の一部を覆う(集積回路の一部を露出させる)ものでもよい。具体例としては、BGA(Ball Grid Array)、QFN(Quad Flat Non-leaded package)、SON(Small Outline Non-leaded package)等が挙げられる。
 半導体パッケージとしては、生産性の点から、一括封止およびシンギュレーションを経て製造されるものが好ましく、たとえば、封止方式がMAP(Moldied Array Packaging)方式、またはWL(Wafer Lebel packaging)方式である集積回路等が挙げられる。
 図3は、半導体パッケージの一例を示す概略断面図である。
 この例の半導体パッケージ110は、基板10と、基板10の上に実装された半導体チップ(半導体素子)12と、半導体チップ12を封止する樹脂封止部14と、樹脂封止部14の上面14aに形成されたインク層16とを有する。
 半導体チップ12は、表面電極(図示略)を有し、基板10は、半導体チップ12の表面電極に対応する基板電極(図示略)を有し、表面電極と基板電極とはボンディングワイヤ18によって電気的に接続されている。
 樹脂封止部14の厚さ(基板10の半導体チップ12設置面から樹脂封止部14の上面14aまでの最短距離)は、特に限定されないが、「半導体チップ12の厚さ」以上「半導体チップ12の厚さ+1mm」以下が好ましく、「半導体チップ12の厚さ」以上「半導体チップ12の厚さ+0.5mm」以下が特に好ましい。
 図4は、半導体パッケージの他の一例を示す概略断面図である。
 この例の半導体パッケージ120は、基板70と、基板70の上に実装された半導体チップ(半導体素子)72と、アンダーフィル(樹脂封止部)74とを有する。
 アンダーフィル74は、基板70と半導体チップ72の主面(基板70側の表面)との間の間隙を充填しており、半導体チップ72の背面(基板70側とは反対側の表面)は露出している。
〔半導体パッケージの製造方法〕
 本発明の半導体パッケージの製造方法は、半導体素子と、硬化性樹脂から形成され、前記半導体素子を封止する樹脂封止部とを有する半導体パッケージの製造方法であって、
 金型の硬化性樹脂が接する面に、前述した本発明の離型フィルムを配置する工程と、
 半導体素子が実装された基板を前記金型内に配置し、前記金型内の空間に硬化性樹脂を満たして硬化させ、樹脂封止部を形成することにより、前記基板と前記半導体素子と前記樹脂封止部とを有する封止体を得る工程と、
 前記封止体を前記金型から離型する工程と、を含む。
 本発明の半導体パッケージの製造方法は、本発明の離型フィルムを用いること以外は、公知の製造方法を採用できる。たとえば樹脂封止部の形成方法としては、圧縮成形法またはトランスファ成形法が挙げられ、この際に使用する装置としては、公知の圧縮成形装置またはトランスファ成形装置を用いることができる。製造条件も、公知の半導体パッケージの製造方法における条件と同じ条件とすればよい。
(第1実施形態)
 図5~7を用いて、本発明の半導体パッケージの製造方法の第1実施形態を説明する。本実施形態は、離型フィルムとして前述の離型フィルム1を用いて、図3に示した半導体パッケージ110を圧縮成形法により製造する例である。
 本実施形態の半導体パッケージの製造方法は下記の工程(α1)~(α7)を含む。
 (α1)固定上型20と、キャビティ底面部材22と、キャビティ底面部材22の周縁に配置された枠状の可動下型24とを有する金型において、離型フィルム1が前記金型のキャビティ26を覆い且つ離型フィルム1の樹脂側離型層2側の表面2aがキャビティ26内の空間に向くように(ガスバリア層3側の表面3aが金型のキャビティ面と接するように)離型フィルム1を配置する工程(図5)。
 (α2)離型フィルム1を金型のキャビティ面の側に真空吸引する工程(図5)。
 (α3)離型フィルム1でキャビティ面が覆われたキャビティ26内に硬化性樹脂40を充填する工程(図5)。
 (α4)複数の半導体チップ12が実装された基板10をキャビティ26内の所定の位置に配置して金型を型締めし(図6)、硬化性樹脂40によって前記複数の半導体チップ12を一括封止して樹脂封止部14を形成する(図7)ことにより、基板10と基板10上に実装された複数の半導体チップ12と前記複数の半導体チップ12を一括封止する樹脂封止部14とを有する一括封止体を得る工程。
 (α5)金型内から前記一括封止体を取り出す工程。
 (α6)前記複数の半導体チップ12が分離するように、前記一括封止体の基板10および樹脂封止部14を切断することにより、基板10と基板10上に実装された少なくとも1つの半導体チップ12と半導体チップ12を封止する樹脂封止部14とを有する個片化封止体を得る工程。
 (α7)個片化封止体の樹脂封止部14の上面14aに、インクを用いてインク層16を形成し、半導体パッケージ110を得る工程。
(第2実施形態)
 図8~11を用いて、本発明の半導体パッケージの製造方法の第2実施形態を説明する。本実施形態は、離型フィルムとして前述の離型フィルム1を用いて、図4に示した半導体パッケージ120をトランスファ法により製造する例である。
 本実施形態の半導体パッケージの製造方法は下記の工程(β1)~(β5)を含む。
 (β1)離型フィルム1が、上型50と下型52とを有する金型の上型50のキャビティ54を覆い且つ離型フィルム1の樹脂側離型層2側の表面2aがキャビティ54内の空間に向くように(ガスバリア層3側の表面3aが上型50のキャビティ面56と接するように)離型フィルム1を配置する工程(図8)。
 (β2)離型フィルム1を上型50のキャビティ面56の側に真空吸引する工程(図9)。
 (β3)半導体チップ72が実装された基板70を下型52の基板設置部58に配置し、上型50と下型52とを型締めして、半導体チップ72の背面(基板70側とは反対側の表面)に離型フィルム1を密着させる工程(図9)。
 (β4)下型52の樹脂配置部62のプランジャ64を押し上げて、樹脂配置部62に予め配置された硬化性樹脂40を、上型50の樹脂導入部60を通じてキャビティ54内に充填し、硬化させてアンダーフィル74を形成することにより、基板70と半導体チップ72とアンダーフィル74とを有する半導体パッケージ120(封止体)を得る工程(図10)。
 (β5)金型内から半導体パッケージ120を取り出す工程(図11)。このとき取り出された半導体パッケージ120のアンダーフィル74には、樹脂導入部60内で硬化性樹脂40が硬化した硬化物76が付着している。硬化物76を切除して半導体パッケージ120を得る。
 以上、本発明の半導体パッケージの製造方法について、第1~2実施形態を示して説明したが、本発明は上記実施形態に限定されない。上記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 第1実施形態においては、工程(α5)の後、工程(α6)、工程(α7)をこの順で行う例を示したが、工程(α6)、工程(α7)を逆の順番で行ってもよい。すなわち、金型から取り出した一括封止体の樹脂封止部の表面に、インクを用いてインク層を形成し、その後、一括封止体の前記基板および前記樹脂封止部を切断してもよい。
 離型フィルムから樹脂封止部を剥離するタイミングは、金型から樹脂封止部を取り出す時に限定されず、金型から離型フィルムとともに樹脂封止部を取り出し、その後、樹脂封止部から離型フィルムを剥離してもよい。
 一括封止する複数の半導体チップ12各々の間の距離は均一でも不均一でもよい。封止を均質にでき、複数の半導体チップ12各々にかかる負荷が均一になる(負荷が最も小さくなる)点から、複数の半導体チップ12各々の間の距離を均一にすることが好ましい。
 半導体パッケージ110を、第2実施形態のように、トランスファ成形法により製造してもよく、半導体パッケージ120を、第1実施形態のように、圧縮成形法により製造してもよい。
 離型フィルムは、本発明の離型フィルムであればよく、離型フィルム1に限定されない。たとえば離型フィルム4を用いてもよい。
 第1実施形態における金型としては、図5に示すものに限定されず、圧縮成形法に用いる金型として公知のものを使用できる。第2実施形態における金型としては、図8に示すものに限定されず、トンラスファ法に用いられる金型として公知のものを使用できる。
 本発明の半導体パッケージの製造方法により製造する半導体パッケージは、半導体パッケージ110、120に限定されない。製造する半導体パッケージによっては、第1実施形態における工程(α6)~(α7)は行わなくてもよい。たとえば樹脂封止部の形状は、図3~4に示すものに限定されず、段差等があってもよい。樹脂封止部に封止される半導体素子は1つでも複数でもよい。インク層は必須ではない。半導体パッケージとして発光ダイオードを製造する場合、樹脂封止部はレンズ部としても機能するため、通常、樹脂封止部の表面にはインク層は形成されない。レンズ部である場合、樹脂封止部の形状は、略半球型、砲弾型、フレネルレンズ型、蒲鉾型、略半球レンズアレイ型等の各種のレンズ形状が採用できる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 後述の例1~25のうち、例1~18は実施例であり、例19~25は比較例である。
 各例で使用した評価方法および材料を以下に示す。
〔評価方法〕
(厚さ)
 フィルムの厚さは、ISO 4591:1992(JIS K7130:1999のB1法、プラスチックフィルムまたはシートから採った試料の質量法による厚さの測定方法)に準拠して測定した。ガスバリア層の厚さは、透過型赤外線膜厚計RX-100(商品名。倉敷紡績社製)により測定した。
(算術平均粗さ(Ra))
 フィルムの表面の算術平均粗さ(Ra)は、JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づき測定した。粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとした。
(180℃引張伸度)
 JIS K7127:1999(ISO527-3:1995)に基づいて測定した。試料形状は5号ダンベル、測定温度は180℃、測定速度は200mm/分で行った。
(180℃質量減少率)
 離型フィルムを10cm角に切り出して試料を作製し、該試料の質量(加熱前質量、単位:mg)を、天秤を用いて測定した。天秤は電子天秤L420P(商品名。ザルトリウス社製)を使用した。次いで2枚の15cm角、厚さ0.2mmのステンレス板の間に試料を挟んだ(SUS304)。これを180℃、1MPaの条件で、20分間プレスした。その後、試料を取り出し、該試料の質量(加熱後質量、単位:mg)を、前記と同じ方法で測定した。測定結果から、以下の式に基づいて質量減少率(%)を算出した。
 質量減少率(%)={(加熱前質量)-(加熱後質量)}/(加熱前質量)×100
(ガスバリア層の不溶化度)
 ガスバリア層の坪量(W1)の算出:
 各例において、ガスバリア層形成用塗工液が塗工される前のフィルム(離型層)の坪量(g/m)(以下、「塗工前フィルム坪量」ともいう。)と、該フィルムにガスバリア層形成用塗工液を塗工してガスバリア層を形成した後のフィルムの坪量(g/m)(フィルムとガスバリア層との合計の坪量。以下、「塗工後フィルム坪量」ともいう。)とを測定した。その結果から、以下の式により、ガスバリア層単体の坪量W1(g/m)を算出した。
 W1=(塗工後フィルム坪量)-(塗工前フィルム坪量)
 溶解試験:
 10cm角に切り取った離型フィルムを、80℃のイオン交換水中に浸漬して1時間加熱した。その間、30分間間隔で1分間の撹拌を行った。撹拌はスタ-ラ-を用いて行った。1時間の加熱が終了した後、離型フィルムを取り出し、異なる容器に入った80℃のイオン交換水に10分間浸漬して洗浄し、さらに異なる容器に入った20~25℃のイオン交換水に10分間浸漬して洗浄および冷却を行った。洗浄および冷却を行った後の離型フィルムを、100℃で2時間真空乾燥させた。
 不溶化度の算出:
 前記溶解試験での真空乾燥後の離型フィルムの質量を測り、該離型フィルムの坪量(g/m)(以下、「溶出後フィルム坪量」ともいう。)を算出した。その結果から、以下の式により、溶解試験を行った後に残存するガスバリア層の坪量W2(g/m)を算出した。
 W2=(溶出後フィルム坪量)-(塗工前フィルム坪量)
 求めたW1およびW2から、以下の式により、不溶化度(%)を求めた。
 不溶化度(%)=(W2/W1)×100
(2mm段差追従時のキシレンガス透過率)
 図12を参照して本評価方法を説明する。
 Φ60mm、深さ10mmの凹部を持つアルミニウム製の第一の容器91に、キシレン(関東化学社製 キシレン1級)の1.5g(図12中のL)を適下した。
 第一の容器91と同形状のアルミニウム製の第二の容器92の凹部内に、Φ60mm、厚さ8mmの多孔質セラミックス(アルミナ焼結体)93をはめ込んだ。また、該凹部の底面にはねじ切り穴92aを開け、図示しない真空ポンプTSW-200(商品名。佐藤真空社製)を接続した。第一の容器91の上に第二の容器92を、凹部の開口が下側(第一の容器91側)を向くように配置し、第一の容器91と第二の容器92とを、間に離型フィルム100とポリテトラフルオロエチレン製のフランジ94を挟んだ状態で接続し、ねじによって固定して試験体90とした。試験体90全体の質量(g)(以下、「加熱前質量」という。)を電子天秤(ザルトリウス社製)で測定した。
 次いで、試験体90を、180℃に加熱した図示しないホットプレート上に置くとともに、真空ポンプの電源を入れ、真空度を-100kPa以下に保った状態で15分間静置した。このとき、試験体90内では、図12に示すように、多孔質セラミックス93が、第二の容器92の底面に接した状態となり、多孔質セラミックス93の下面と、第二の容器92の下端(凹部の開口面)との間に2mmの段差が生じる。また、離型フィルム100が、第二の容器92の凹部の内周面および多孔質セラミックス93の下面に密着するように引き伸ばされる。15分間経過後、真空ポンプを止めて接続を外し、速やかに試験体90全体の質量(g)(以下、「加熱後質量」という。)を測定した。測定結果から、以下の式により、キシレンガス透過率を算出した。
 キシレンガス透過率(%)={(加熱前質量-加熱後質量)/1.5}×100
(2mm段差追従時のバリア層割れ)
 前記キシレンガス透過率の評価の後、試験体90から離型フィルムを取り出し、ガスバリア層の割れの有無を、顕微鏡にて確認し、以下の基準で評価した。
 ○(良好):割れがない。
 △(可):角部のみ、一部バリア層の割れが見られる。
 ×(不良):全面的に割れている。
(金型防汚性試験)
 試験には半導体封止用圧縮成形装置PMC1040(商品名。TOWA社製)を使用した。半導体封止用圧縮成形装置PMC1040は、図5に示すような金型(固定上型20、キャビティ底面部材22、可動下型24)を備えるものである。
 以下の手順による圧縮成形を、以下の条件で、2,000ショット行った。
 <圧縮成形手順>
 半導体封止用圧縮成形装置PMC1040において、離型フィルムは、ロールから巻きだされ、ステージ上に固定されたのち、一定長さに切断される。その後、離型フィルム上に硬化性樹脂が播かれ、その状態で、キャビティ底面部材22および可動下型24によって形成されたキャビティ上へ運ばれる。離型フィルムがキャビティ上に設置された後、固定上型20と可動下型24とが型締めされ、キャビティ周縁部の真空吸着孔から真空ポンプで空気が抜かれ、離型フィルムのキャビティ面への追従と、硬化性樹脂の気泡抜きが行われる。その後、所定の最終深さおよびクランプ力となるようにキャビティ底面部材22が上昇し、その状態が所定のクランプ時間保持されて圧縮成形が行われる。
 <圧縮成形条件>
 金型温度:180℃。
 キャビティ大きさ:210mm×70mm。
 キャビティの最終深さ:0.6mm。
 硬化性樹脂:スミコンEME G770H type F Ver.GR(住友ベークライト社製)。
 キャビティ面への追従時の真空度:-85kPa。
 硬化性樹脂気泡抜き時の真空度:-80kPa。
 硬化性樹脂気泡抜き時間:10秒。
 クランプ時間:150秒。
 クランプ力:9.8×10N。
 2,000ショットのうち、離型フィルムにピンホールが発生して漏れた硬化性樹脂が金型に付着し離型不良となった回数を計測し、以下の基準でピンホール発生回数を評価した。
 ○(良好):10回未満。
 △(可):50回未満。
 ×(不良):50回以上。
 また、2,000ショット後の金型の汚れ状態を目視で確認し、以下の基準で金型防汚性を評価した。
 ○(良好):金型に変化は見られない。
 △(可):金型やや茶色に変色している。
 ×(不良):金型に茶色の粘凋物質が付着している。
〔使用材料〕
(重合体)
 ゴーセノール NM-11:製品名。完全けん化PVA粉末、日本合成化学社製、けん化度99モル%、4質量%水溶液における粘度(20℃)14mPa・s。
 ゴーセノール AL-06R:製品名。準完全けん化PVA粉末、日本合成化学社製、けん化度94モル%、4質量%水溶液における粘度(20℃)7mPa・s。
 ゴーセノール GL-05:製品名。部分けん化PVA粉末、日本合成化学社製、けん化度89モル%、4質量%水溶液における粘度(20℃)8mPa・s。
 G-polymer OKS-1011:製品名(以下、単に「G-polymer」ともいう。)。ビニルアルコール単位および酢酸ビニル単位を合計で92モル%、式(1)で表される1,2-ジオ-ル構造単位を有する単位を8モル%有する共重合体の粉末、日本合成化学社製、けん化度99モル%以上、4質量%水溶液における粘度(20℃)14mPa・s。
 ソアノール D2908:製品名(以下、単に「ソアノール」ともいう。)。ビニルアルコール単位および酢酸ビニル単位を合計で71モル%、エチレン単位を29モル%有するエチレン-ビニルアルコール共重合体粉末、日本合成化学社製、けん化度99モル%以上、4質量%水溶液における粘度(20℃)30mPa・s。
 Diofan 193D:製品名(以下、単に「Diofan」ともいう。)。ポリ塩化ビニリデン水性ディスパージョン、Solvay plastics社製、固形分30質量%。
(架橋剤)
 デュラネート WB40-100:製品名(以下、単に「デュラネート」ともいう。)。水分散型イソシアネート、旭化成社製。固形分100質量%。
 オルガチックス ZC-300:製品名(以下、単に「ZC-300」ともいう。)。乳酸ジルコニウムアンモニウム塩、マツモトファインケミカル社製。固形分12質量%。
 オルガチックス TC-300:製品名(以下、単に「TC-300」ともいう。)。乳酸チタネートアンモニウム塩、マツモトファインケミカル社製。固形分42質量%。
 オルガチックス T-2762:製品名(以下、単に「T-2762」ともいう。)。有機チタン化合物、マツモトファインケミカル社製。固形分62質量%。
(ガスバリア層形成用塗工液)
 ガスバリア層形成用塗工液1~12:表1に記載の材料を混合して調製した。
 表1中の材料のうち、Diofan、ZC-300、TC-300、T-2762の配合量は、固形分ではなく、液状媒体を含めた量(たとえばDiofanの場合はポリ塩化ビニリデン水性ディスパージョンとしての量)である。
Figure JPOXMLDOC01-appb-T000006
(フィルム)
 ETFEフィルム1:Fluon ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸のついた押し当てロールと、鏡面の金属ロールとの間に引き取り、50μm厚さのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、金属ロールの温度は100℃であった。得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。鏡面側には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 ETFEフィルム2:Fluon ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸のついた押し当てロールと、鏡面の冷却ロールとの間に引き取り、25μm厚さのフィルムを製膜した。押出機、およびTダイの温度は320℃、押し当てロール、冷却ロールの温度は100℃であった。得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。鏡面側には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 ETFEフィルム3:Fluon ETFE C-88AXP(旭硝子社製)を、Tダイを備えた押出機にフィードし、鏡面の冷却ロールに引き取り、12μm厚さのフィルムを製膜した。押出機、およびTダイの温度は320℃、冷却ロールの温度は180℃であった。得られたフィルムの表面のRaは、両面ともに0.1μmであった。片面には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 LM-ETFEフィルム:Fluon LM-ETFE LM720AP(旭硝子社製)を、Tダイを備えた押出機にフィードし、表面に凹凸のついた押し当てロールと、鏡面の冷却ロールとの間に引き取り、50μm厚さのフィルムを製膜した。押出機、およびTダイの温度は300℃、押し当てロール、冷却ロールの温度は100℃であった。得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。鏡面側には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 ポリメチルペンテンフィルム:TPX MX004(三井化学社製)を、Tダイを備えた押出機にフィードし、表面に凹凸のついた押し当てロールと、鏡面の冷却ロールとの間に引き取り、50μm厚さのフィルムを製膜した。押出機、およびTダイの温度は300℃、押し当てロール、冷却ロールの温度は100℃であった。得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。鏡面側には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 シンジオタクチックポリスチレンフィルム:ザレック142ZE(出光興産社製)を、Tダイを備えた押出機にフィードし、鏡面の冷却ロールに引き取り、フィルムの流れ方向、および流れ方向に直行する方向に同時に延伸を行い、50μm厚さのフィルムを製膜した。押出機、およびTダイの温度は270℃、冷却ロ-ルの温度は100℃、延伸温度は115℃、延伸倍率は流れ方向、流れ方向に直行する方向、ともに3.3倍、延伸速度は500%/分であった。また、延伸工程ののち、215℃で熱処理を行った。さらにフィルムの片面に凸凹を形成するため、砂を吹き付けるいわゆるサンドマット処理を行った。得られたフィルムの表面のRaは、サンドマット処理面が1.3μm、未処理面が0.1μmであった。未処理面には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
 エバールフィルム:12μm厚さのエチレン-ビニルアルコール共重合体フィルム(クラレ社製、商品名:エバ-ルEF-F)を使用した。
 易成形PETフィルム:25μm厚さの易成形PETフィルム(帝人デュポンフィルム社製、商品名:テフレックスFT3PE)を使用した。
 ナイロンフィルム:25μm厚さの無延伸ナイロンフィルム(三菱樹脂社製、商品名ダイアミロンC-Z)を使用した。
(接着剤)
 接着剤は、ポリエステルポリオール(DIC社製クリスボンNT-258)の60部と、イソシアネートアダクト(日本ポリウレタン工業社製コロネート2096)の3.4部と、酢酸エチルの63.4部とを混合して調製した。
〔例1~17、19~20〕
 表2~3の樹脂側離型層の欄に示すフィルムの片面上に、表2~3に示すガスバリア層形成用塗工液を、グラビアコーターを用いて、ダイレクトグラビア方式で、表2~3に示すガスバリア層の厚さ(固形分での塗工厚さ)となるように塗工し、乾燥してガスバリア層を形成した。塗工厚さ(固形分)が0.1~1μmの場合はグラビア版として、Φ100mm×250mm幅の格子 150#-深度40μmロールを使用し、塗工厚さ(固形分)が1μmを超える場合は、格子 125#-深度85μmのロールを使用した。乾燥は、100℃で1分間、ロールサポート乾燥炉を通り、風量は19m/秒で行った。乾燥後、40℃のオ-ブン内で3日間養生をした。これにより、樹脂側離型層/ガスバリア層の層構成の離型フィルムを得た。
〔例18〕
 樹脂側離型層に用いるフィルムを変更した以外は例7と同様にしてガスバリア層形成用塗工液7を塗工し、乾燥してガスバリア層を形成した。
 次いで、表3の金型側離型層の欄に示すフィルムの片面上に、接着剤を塗工し、乾燥して接着層を形成した。接着剤の塗工は、塗工厚さが0.3μm(固形分)となるように、グラビアコーターを用いて、ダイレクトグラビア方式で、グラビア版としてΦ100mm×250mm幅の格子 150#-深度40μmロールを使用して行った。乾燥は、100℃で1分間、ロールサポート乾燥炉を通り、風量は19m/秒で行った。
 ガスバリア層と接着層とが接するように上記の各フィルムを重ね、一対のロール間を通過させてラミネートした。ラミネートの条件は、ロール温度50℃、ラミネート圧力0.5MPaであった。ラミネート後、40℃のオ-ブン内で3日間養生をした。これにより、樹脂側離型層/ガスバリア層/接着層/金型側離型層の層構成の離型フィルムを得た。
〔例21、22、24〕
 表4のガスバリア層の欄に示すフィルムの片面上に、接着剤を塗工し、乾燥して接着層を形成した。該接着層の上に、表4の樹脂側離型層の欄に示すフィルムを重ね、一対のロール間を通過させてラミネートした。接着剤の塗工および乾燥ならびにラミネートの条件は、例18と同じとした。
 次いで、ガスバリア層の反対面に、接着剤を塗工し、乾燥して接着層を形成した。該接着層の上に、表3の金型側離型層の欄に示すフィルムを重ね、一対のロール間を通過させてラミネートした。接着剤の塗工および乾燥ならびにラミネートの条件は、例18と同じとした。ラミネート後、40℃のオ-ブン内で3日間養生をした。これにより、樹脂側離型層/接着層/ガスバリア層/接着層/金型側離型層の層構成の離型フィルムを得た。
〔例23〕
 ETFEフィルム1に、物理蒸着(PVD)法で厚さ1μmのアルミニウム蒸着層を設けた。これにより、樹脂側離型層/ガスバリア層の層構成の離型フィルムを得た。
〔例25〕
 ETFEフィルム1をそのまま例25の離型フィルムとした。
 例1~25の離型フィルムについて、180℃引張伸度、180℃質量減少率、ガスバリア層の不溶化度、2mm段差追従時のキシレンガス透過率およびバリア層割れ、金型防汚性、ピンホール発生回数の結果を表2~4に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 上記結果に示すとおり、例1~18の離型フィルムは、高温下での引張伸度が大きく、2mm段差追従時のガスバリア層の割れ、ピンホール等が発生しにくいものであった。また、ガスバリア層が1~5μmと薄くても、2mm段差追従時に充分なガスバリア性を発揮した。また、180℃質量減少率が低く、高温下でのアウトガスが少ないことが確認できた。実際の評価に近い金型防汚性の評価結果も良好であった。
 上記のうち、重合体が同じで、不溶化度が異なる例5~9の離型フィルムを対比すると、金型防汚性の評価結果は、不溶化度が20~80%の場合に特に優れていた。
 ガスバリア層形成用塗工液が架橋剤を含まず、重合体の種類が異なる例1、5、10、12を対比すると、2mm段差追従時のガスバリア性(キシレンガス透過率)は、重合体がPVAまたは共重合体(A11-1)である例1、5の結果が優れていた。
 PVAのけん化度のみ異なる例2~4を対比すると、けん化度が高いほど、2mm段差追従時のガスバリア性(キシレンガス透過率)が優れる傾向が見られた。
 樹脂側離型層に用いたフィルムのみ異なる例7、13~15を対比すると、樹脂がフッ素樹脂である例7、15の方が、180℃質量減少率が低かった。
 例7と例18の離型フィルムを対比すると、離型フィルム全体としての厚さはほぼ同じであるが、例7の方が180℃質量減少率が低かった。これは、例18では接着層からのアウトガスがあったためと考えられる。
 一方、7μm厚さのガスバリア層を用いた例19の離型フィルムは、180℃質量減少率が例1~18に比べて大きく、高温下でのアウトガスが多い。そのため金型防汚性の評価結果が不良であった。
 0.05μm厚さのガスバリア層を用いた例20の離型フィルムは、離型層の厚さが薄いため、2mm段差追従時のガスバリア性が不充分であった。そのため金型防汚性の評価結果が不良であった。
 ガスバリア層に、12μm厚さのエチレン-ビニルアルコール共重合体フィルムを用いた例21の離型フィルムは、180℃質量減少率が例1~18に比べて大きく、高温下でのアウトガスが多いことが示された。また、高温下での引張伸度が低く、ピンホール発生回数が多かった。金型防汚性の評価結果も不良であった。
 ガスバリア層に、25μm厚さの易成形PETフィルムを用いた例22の離型フィルムの評価結果、ガスバリア層に25μm厚さの無延伸ナイロンフィルムを用いた例24の離型フィルムの評価結果にも例21と同様の傾向が見られた。
 ガスバリア層に1μm厚さのアルミニウム蒸着層を用いた例23の離型フィルムは、2mm段差追従時にガスバリア層の割れが発生し、ガスバリア性が損なわれていた。金型防汚性の評価結果も不良であった。
 ETFEフィルム1をそのまま用いた例25の離型フィルムは、ガスバリア性が低く、金型防汚性の評価結果が不良であった。
 本発明の離型フィルムは、半導体素子を硬化性樹脂で封止する際に、離型性に優れ、かつ半導体素子の封止工程での金型の汚染を低減できる。本発明の離型フィルムを用いて得られる半導体パッケージとしては、トランジスタ、ダイオード等の半導体素子を集積した集積回路;発光素子を有する発光ダイオード等が挙げられる。
 なお、2014年11月20日に出願された日本特許出願2014-235735号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 離型フィルム、2 樹脂側離型層、3 ガスバリア層、4 離型フィルム、5 樹脂側離型層、6 ガスバリア層、7 接着層、8 金型側離型層、10 基板、12 半導体チップ(半導体素子)、14 樹脂封止部、14a 樹脂封止部14の上面、16 インク層、18 ボンディングワイヤ、20 固定上型、22 キャビティ底面部材、24 可動下型、26 キャビティ、40 硬化性樹脂、50 上型、52 下型、54 キャビティ、56 キャビティ面、58 基板設置部、60 樹脂導入部、62 樹脂配置部、64 プランジャ、70 基板、72 半導体チップ(半導体素子)、74 アンダーフィル(樹脂封止部)、76 硬化物、90 試験体、91 第一の容器、92 第二の容器、92a ねじ切り穴、93 多孔質セラミックス、94 フランジ、L キシレン、100 離型フィルム、110 半導体パッケージ、120 半導体パッケージ

Claims (15)

  1.  半導体素子を金型内に配置し、硬化性樹脂で封止して樹脂封止部を形成する半導体パッケージの製造において、金型の硬化性樹脂が接する面に配置される離型フィルムであって、
     樹脂封止部の形成時に硬化性樹脂と接する樹脂側離型層と、ガスバリア層とを備え、
     前記ガスバリア層が、ビニルアルコール単位を有する重合体および塩化ビニリデン単位を有する重合体からなる群から選択される少なくとも1種の重合体(I)を含み、
     前記ガスバリア層の厚さが0.1~5μmであることを特徴とする離型フィルム。
  2.  前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
     前記ビニルアルコール単位を有する重合体が、ポリビニルアルコール、または、ビニルアルコール単位と酢酸ビニル単位とを含む重合体である、請求項1に記載の離型フィルム。
  3.  前記ビニルアルコール単位を有する重合体がさらにビニルアルコール単位および酢酸ビニル単位以外の単位を含む重合体である、請求項2に記載の離型フィルム。
  4.  前記ビニルアルコール単位および酢酸ビニル単位以外の単位が、下式(1)で表される単位である、請求項3に記載の離型フィルム。
    Figure JPOXMLDOC01-appb-C000001
     ここで、R~Rはそれぞれ独立して水素原子または1価の有機基であり、Xは単結合または結合鎖である。
  5.  前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
     前記ビニルアルコール単位を有する重合体が、架橋構造を有する、請求項1~4のいずれか一項に記載の離型フィルム。
  6.  前記ガスバリア層の坪量W1(g/m)と、当該離型フィルムに以下の溶解試験を行った後に残存するガスバリア層の坪量W2(g/m)とから以下の式で求められる、前記ガスバリア層の不溶化度が10~80%である、請求項5に記載の離型フィルム。
     不溶化度(%)=(W2/W1)×100
     (溶解試験)
     離型フィルムを80℃のイオン交換水中に浸漬し、1時間加熱する。その間、30分間間隔で1分間の撹拌を行う。1時間の加熱が終了した後の離型フィルムを、別の80℃のイオン交換水に10分間浸漬して洗浄する。洗浄後の離型フィルムを、20~25℃のイオン交換水に10分間浸漬し、洗浄および冷却を行う。洗浄および冷却を行った後の離型フィルムを、100℃で2時間真空乾燥させる。
  7.  前記樹脂側離型層の厚さが12~100μmである、請求項1~6のいずれか一項に記載の離型フィルム。
  8.  前記樹脂側離型層が、フッ素樹脂を含む、請求項1~7のいずれか一項に記載の離型フィルム。
  9.  前記フッ素樹脂が、エチレン-テトラフルオロエチレン共重合体である、請求項8に記載の離型フィルム。
  10.  前記離型フィルムが、前記樹脂側離型層と前記ガスバリア層との2層構造を有するフィルムである、請求項1~9のいずれか一項に記載の離型フィルム。
  11.  請求項1~10のいずれか一項に記載の離型フィルムを製造する方法であって、
     樹脂側離型層を含む基材の片面に、ガスバリア層を形成する工程を含み、
     前記ガスバリア層を形成する工程が、ビニルアルコール単位を有する重合体および塩化ビニリデン単位を有する重合体からなる群から選択される少なくとも1種の重合体(I)と、液状媒体とを含むガスバリア層形成用塗工液を塗工し、乾燥して塗膜を形成する工程を含むことを特徴とする離型フィルムの製造方法。
  12.  前記ガスバリア層形成用塗工液が、架橋剤をさらに含み、
     前記ガスバリア層を形成する工程が、前記塗膜を形成する工程の後、前記重合体(I)を架橋させて架橋構造を形成する工程をさらに含む、請求項11に記載の離型フィルムの製造方法。
  13.  前記架橋剤の含有量が、前記重合体(I)に対して1~20質量%である、請求項12に記載の離型フィルムの製造方法。
  14.  前記重合体(I)が、ビニルアルコール単位を有する重合体を含み、
     前記液状媒体が、水性媒体である、請求項11~13のいずれか一項に記載の離型フィルムの製造方法。
  15.  半導体素子と、硬化性樹脂から形成され、前記半導体素子を封止する樹脂封止部とを有する半導体パッケージの製造方法であって、
     金型の硬化性樹脂が接する面に、請求項1~10のいずれか一項に記載の離型フィルムを配置する工程と、
     半導体素子が実装された基板を前記金型内に配置し、前記金型内の空間に硬化性樹脂を満たして硬化させ、樹脂封止部を形成することにより、前記基板と前記半導体素子と前記樹脂封止部とを有する封止体を得る工程と、
     前記封止体を前記金型から離型する工程と、
    を含むことを特徴とする半導体パッケージの製造方法。
PCT/JP2015/081989 2014-11-20 2015-11-13 離型フィルム、その製造方法および半導体パッケージの製造方法 WO2016080309A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580062947.8A CN107004609B (zh) 2014-11-20 2015-11-13 脱模膜、其制造方法以及半导体封装体的制造方法
SG11201702684XA SG11201702684XA (en) 2014-11-20 2015-11-13 Mold release film, process for its production, and process for producing semiconductor package
MYPI2017701698A MY186869A (en) 2014-11-20 2015-11-13 Mold release film, process for its production, and process for producing semiconductor package
DE112015005259.3T DE112015005259T5 (de) 2014-11-20 2015-11-13 Formwerkzeugtrennfilm, Verfahren zu dessen Herstellung und Verfahren zur Herstellung eines Halbleitergehäuses
KR1020177008803A KR102411741B1 (ko) 2014-11-20 2015-11-13 이형 필름, 그 제조 방법 및 반도체 패키지의 제조 방법
JP2016560188A JP6515933B2 (ja) 2014-11-20 2015-11-13 離型フィルム、その製造方法および半導体パッケージの製造方法
US15/479,577 US10699916B2 (en) 2014-11-20 2017-04-05 Mold release film, process for its production, and process for producing semiconductor package
PH12017500688A PH12017500688B1 (en) 2014-11-20 2017-04-11 Mold release film, process for its production, and process for producing semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235735 2014-11-20
JP2014-235735 2014-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/479,577 Continuation US10699916B2 (en) 2014-11-20 2017-04-05 Mold release film, process for its production, and process for producing semiconductor package

Publications (1)

Publication Number Publication Date
WO2016080309A1 true WO2016080309A1 (ja) 2016-05-26

Family

ID=56013850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081989 WO2016080309A1 (ja) 2014-11-20 2015-11-13 離型フィルム、その製造方法および半導体パッケージの製造方法

Country Status (10)

Country Link
US (1) US10699916B2 (ja)
JP (1) JP6515933B2 (ja)
KR (1) KR102411741B1 (ja)
CN (1) CN107004609B (ja)
DE (1) DE112015005259T5 (ja)
MY (1) MY186869A (ja)
PH (1) PH12017500688B1 (ja)
SG (1) SG11201702684XA (ja)
TW (1) TWI680516B (ja)
WO (1) WO2016080309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062606A (ja) * 2019-10-16 2021-04-22 株式会社コバヤシ 離型フィルム及び離型フィルムの製造方法
WO2022102180A1 (ja) * 2020-11-10 2022-05-19 日東電工株式会社 フッ素樹脂フィルム、ゴム成形体及びゴム成形体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145631B1 (en) 2018-06-12 2021-10-12 Facebook Technologies, Llc Display devices and methods of making the same
US10921499B1 (en) 2018-06-12 2021-02-16 Facebook Technologies, Llc Display devices and methods for processing light
KR102504837B1 (ko) 2018-07-23 2023-02-28 삼성전자 주식회사 이형 필름 공급 장치를 포함하는 수지 성형 장치
AT521672B1 (de) * 2018-09-10 2022-10-15 Facc Ag Verfahren zur Herstellung eines Faser-Kunststoff-Verbund-Vergleichskörpers und Prüfungsverfahren
JP2020047836A (ja) * 2018-09-20 2020-03-26 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
US11262584B2 (en) 2018-10-25 2022-03-01 Facebook Technologies, Llc Color foveated display devices and methods of making the same
WO2021200409A1 (ja) * 2020-04-02 2021-10-07 日東電工株式会社 耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法
KR20220094011A (ko) * 2020-12-28 2022-07-05 (주)이녹스첨단소재 Qfn 반도체 패키지용 마스크 시트

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071420A (ja) * 1999-06-30 2001-03-21 Mitsubishi Polyester Film Copp 離型フィルム
WO2008020543A1 (fr) * 2006-08-18 2008-02-21 Asahi Glass Company, Limited Film de démoulage pour encapsulation de résine de semi-conducteurs
WO2011068105A1 (ja) * 2009-12-01 2011-06-09 株式会社クラレ 多層構造体及びその製造方法
JP2014028508A (ja) * 2012-06-26 2014-02-13 Nippon Synthetic Chem Ind Co Ltd:The 積層体、及びそれを用いた包装体並びにプレススルーパック

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240993A (en) * 1978-08-07 1980-12-23 W. R. Grace & Co. Multi-layer film containing a layer of crosslinked ethylene/vinyl alcohol copolymer
KR100689974B1 (ko) 2000-04-04 2007-03-09 미쓰비시 가가꾸 폴리에스테르 필름 가부시키가이샤 이형 필름
JP2002361643A (ja) 2001-06-01 2002-12-18 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2004079566A (ja) 2002-08-09 2004-03-11 Hitachi Chem Co Ltd 半導体モールド用離型シート
KR20090018032A (ko) * 2006-04-25 2009-02-19 아사히 가라스 가부시키가이샤 반도체 수지 몰드용 이형 필름

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071420A (ja) * 1999-06-30 2001-03-21 Mitsubishi Polyester Film Copp 離型フィルム
WO2008020543A1 (fr) * 2006-08-18 2008-02-21 Asahi Glass Company, Limited Film de démoulage pour encapsulation de résine de semi-conducteurs
WO2011068105A1 (ja) * 2009-12-01 2011-06-09 株式会社クラレ 多層構造体及びその製造方法
JP2014028508A (ja) * 2012-06-26 2014-02-13 Nippon Synthetic Chem Ind Co Ltd:The 積層体、及びそれを用いた包装体並びにプレススルーパック

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062606A (ja) * 2019-10-16 2021-04-22 株式会社コバヤシ 離型フィルム及び離型フィルムの製造方法
JP7370537B2 (ja) 2019-10-16 2023-10-30 株式会社コバヤシ 離型フィルム及び離型フィルムの製造方法
WO2022102180A1 (ja) * 2020-11-10 2022-05-19 日東電工株式会社 フッ素樹脂フィルム、ゴム成形体及びゴム成形体の製造方法

Also Published As

Publication number Publication date
SG11201702684XA (en) 2017-05-30
US20170207105A1 (en) 2017-07-20
TW201630089A (zh) 2016-08-16
JP6515933B2 (ja) 2019-05-22
US10699916B2 (en) 2020-06-30
CN107004609A (zh) 2017-08-01
MY186869A (en) 2021-08-26
DE112015005259T5 (de) 2017-08-17
TWI680516B (zh) 2019-12-21
CN107004609B (zh) 2019-04-30
KR102411741B1 (ko) 2022-06-21
KR20170086466A (ko) 2017-07-26
PH12017500688A1 (en) 2017-10-09
JPWO2016080309A1 (ja) 2017-09-14
PH12017500688B1 (en) 2017-10-09

Similar Documents

Publication Publication Date Title
WO2016080309A1 (ja) 離型フィルム、その製造方法および半導体パッケージの製造方法
TWI707758B (zh) 脫模膜、其製造方法及半導體封裝件之製造方法
JP6460091B2 (ja) 半導体素子実装用パッケージの製造方法、および離型フィルム
TWI656972B (zh) 脫模膜及密封體之製造方法
KR102208014B1 (ko) 이형 필름, 및 반도체 패키지의 제조 방법
TWI687296B (zh) 脫模膜及半導體封裝件之製造方法
WO2016125796A1 (ja) フィルム、その製造方法および該フィルムを用いた半導体素子の製造方法
KR20210021465A (ko) 이형 필름 및 이형 필름의 제조 방법
JP7151720B2 (ja) 積層フィルム及び半導体素子の製造方法
JP6667836B1 (ja) 金型と離型フィルムとの組合せ、離型フィルム、金型、及び成形体の製造方法
JP7569882B2 (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
WO2024162385A1 (ja) 離型フィルム及び半導体パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008803

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016560188

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201702684X

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 112015005259

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861830

Country of ref document: EP

Kind code of ref document: A1