WO2021200409A1 - 耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法 - Google Patents

耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法 Download PDF

Info

Publication number
WO2021200409A1
WO2021200409A1 PCT/JP2021/012068 JP2021012068W WO2021200409A1 WO 2021200409 A1 WO2021200409 A1 WO 2021200409A1 JP 2021012068 W JP2021012068 W JP 2021012068W WO 2021200409 A1 WO2021200409 A1 WO 2021200409A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resin
release sheet
mold release
sheet
Prior art date
Application number
PCT/JP2021/012068
Other languages
English (en)
French (fr)
Inventor
勇三 村木
雅弘 新井
府統 秋葉
橘 俊光
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP21778897.5A priority Critical patent/EP4130110A1/en
Priority to KR1020227037333A priority patent/KR20220164522A/ko
Priority to CN202180026908.8A priority patent/CN115380061A/zh
Priority to US17/916,100 priority patent/US20230158718A1/en
Publication of WO2021200409A1 publication Critical patent/WO2021200409A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a heat-resistant mold release sheet and a method for carrying out a process involving heating and melting of a resin using the heat-resistant mold release sheet.
  • Patent Document 1 discloses a cutting sheet of polytetrafluoroethylene (hereinafter referred to as "PTFE”), which is a kind of fluororesin.
  • PTFE polytetrafluoroethylene
  • the PTFE sheet which is a heat-resistant resin sheet, is expected to be used at a high temperature.
  • melt molding of resin using a mold heat pressurization treatment using a heat pressurizing device for an object containing resin, etc.
  • a process involving heating and melting of resin is carried out.
  • a heat-resistant mold release sheet between the resin or the object containing the resin and the member in contact with the resin or the object to prevent direct contact between the resin or the object and the member. Be done.
  • a heat-resistant resin sheet for example, a PTFE cutting sheet, as the heat-resistant mold release sheet.
  • the PTFE sheet includes a cast sheet produced by drying and firing a coating film of PTFE dispersion, but the cast sheet does not cause the above problem.
  • An object of the present invention is that when a resin or an object containing a resin is provided in a process involving heating and melting of the resin, the resin or the object is arranged between the resin or the object and a member in contact with the resin or the object in the process.
  • a heat-resistant mold release sheet that prevents direct contact between the resin or the object and the member, and although it contains a heat-resistant resin cutting sheet, the above-mentioned defects and deterioration of homogeneity are caused by the cutting sheet.
  • the purpose is to provide a sheet suitable for preventing the occurrence of problems in the process.
  • the present invention When the resin or an object containing the resin is provided in a step involving heating and melting of the resin, it is arranged between the resin or the object and a member in contact with the resin or the object in the step.
  • a heat-resistant mold release sheet that prevents direct contact between the resin or the object and the member. Includes cutting sheets of polytetrafluoroethylene (PTFE) or modified PTFE. The content of tetrafluoroethylene (TFE) unit in the modified PTFE is 99% by mass or more.
  • the present invention is a method of carrying out a process involving heating and melting of a resin.
  • a heat-resistant mold release sheet is arranged between the resin or an object containing the resin to be subjected to the step and the resin or a member in contact with the object in the step, and the resin is formed by the heat-resistant mold release sheet.
  • the step is carried out in a state where direct contact between the object and the member is prevented.
  • the heat-resistant mold release sheet is the heat-resistant mold release sheet of the present invention.
  • the above-mentioned problem that may occur when a cutting sheet is used is that streaky wrinkles extending in a specific direction, typically the MD direction, are cut by heating when melting the resin. It was found that this is because it occurs on the sheet, and that the wrinkles are presumed to be due to the manufacturing method peculiar to the cutting sheet.
  • the raw material powder is preformed into a columnar shape or the like, and at that time, a strong pressure is applied in one direction. This direction coincides with the above-mentioned specific direction in which wrinkles are generated after the cutting sheet is formed, and the compression strain due to the pressure applied during preforming remains on the cutting sheet and is released by the above heating.
  • FIG. 1 is a cross-sectional view schematically showing an example of a heat-resistant mold release sheet of the present invention.
  • FIG. 2 is a schematic view for explaining an example of melt molding of a resin using the heat-resistant mold release sheet of the present invention.
  • FIG. 3 is a schematic view for explaining an example of heat and pressure treatment using the heat-resistant mold release sheet of the present invention.
  • the heat-resistant mold release sheet of this embodiment is shown in FIG.
  • the heat-resistant mold release sheet 1 of FIG. 1 is composed of a PTFE cutting sheet 2.
  • the heat-resistant mold release sheet 1 of FIG. 1 has a single-layer structure of a cutting sheet 2.
  • the heat-resistant mold release sheet 1 has high heat resistance and flexibility derived from PTFE contained in the cutting sheet 2. It should be noted that the cutting sheet can be identified from the fact that when the surface of the sheet is magnified and observed, linear scratches peculiar to the cutting sheet (known to those skilled in the art as cutting scratches) are confirmed.
  • a microscope such as an optical microscope or a surface property evaluation device can be used for magnified observation of the surface.
  • Cutting scratches occur because the resin shavings accumulated on the cutting blade when the sheet is obtained by cutting process linearly scratch the surface of the sheet.
  • the cutting scratches usually extend in the MD direction of the cutting sheet 2.
  • the MD direction of the strip-shaped cutting sheet 2 is usually the longitudinal direction of the sheet.
  • the dimensional shrinkage rate caused by heating at 175 ° C. and 30 minutes in each of the two in-plane directions of the sheet 1 and orthogonal to each other (hereinafter referred to as "dimensional shrinkage rate").
  • the above two directions are typically the MD direction and the TD direction of the cutting sheet 2.
  • the TD direction of the strip-shaped cutting sheet 2 is usually the width direction of the sheet.
  • Dimensional shrinkage rate, the heat resistant release sheet 1 from the dimensions X 1 after size X 0 and heating before heating was measured standing under heating conditions of 175 ° C. and 30 minutes, the formula: (X 0 -X 1 ) / X 0 ⁇ 100 (%).
  • the dimensional shrinkage may be 0.5% or more, 1.0% or more, 1.5% or more, 1.7% or more, 1.9% or more, 2. It may be 0% or more, 3.0% or more, 4.0% or more, and further 5.0% or more.
  • the upper limit of the dimensional shrinkage is, for example, 10% or less, 8.0% or less, 7.0% or less, 6.0% or less, 5.0% or less, 4.0%. Below, it may be 3.0% or less, 2.5% or less, 2.0% or less, 1.9% or less, and further 1.7% or less.
  • the dimensional shrinkage rates in the above two directions can differ from each other.
  • the dimensional shrinkage in each direction can take one range selected from the plurality of preferable ranges described above independently of each other.
  • the difference between the dimensional shrinkage rates in each of the above two directions is less than 5.0%, 4.5% or less, 4.0% or less, 3.5% or less, 3.1% or less, 3. 0% or less, 2.5% or less, 2.0% or less, 1.5% or less, 1.0% or less, 0.7% or less, 0.5% or less, and even 0.3% or less. May be good.
  • the dimensional shrinkage rate in the TD direction of the conventional cutting sheet is 0% or less. In other words, in the conventional cutting sheet, the residual compressive strain is released by heating and expands in the TD direction. On the other hand, in the heat-resistant mold release sheet 1, the dimensional shrinkage rate in the TD direction may be larger than the dimensional shrinkage rate in the MD direction.
  • the heat-resistant mold release sheet 1 in FIG. 1 includes a PTFE cutting sheet 2.
  • the heat-resistant mold release sheet 1 may include a modified PTFE cutting sheet 2.
  • the modified PTFE cutting sheet 2 is excellent in heat resistance and flexibility like the PTFE cutting sheet 2, and can be manufactured by the same manufacturing method as the PTFE cutting sheet 2.
  • Modified PTFE is a copolymer of TFE and a modified comonomer. In order to be classified as modified PTFE, the content of tetrafluoroethylene (TFE) units in the copolymer is required to be 99% by mass or more.
  • the modified PTFE is, for example, a copolymer of TFE and at least one modified comonomer selected from ethylene, perfluoroalkyl vinyl ether and hexafluoropropylene.
  • the cutting sheet 2 is preferably a fired sheet containing PTFE or modified PTFE that has undergone firing.
  • calcination means heating the PTFE or modified PTFE obtained by polymerization to a temperature equal to or higher than its melting point (327 ° C. for PTFE), for example, 340 to 380 ° C.
  • the thickness of the heat-resistant release sheet 1 is, for example, 10 ⁇ m or more, and may be 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, and further 50 ⁇ m or more.
  • the upper limit of the thickness is, for example, 500 ⁇ m or less, 200 ⁇ m or less, and may be 100 ⁇ m or less.
  • the coefficient of linear thermal expansion ⁇ of the heat-resistant mold release sheet 1 in the temperature range of 25 ° C. to 175 ° C. in each of the above two directions may be 150 ⁇ 10 -6 / ° C. or less, and 125 ⁇ 10 -6 / ° C. °C or less, 120 ⁇ 10 -6 / °C or less, 110 ⁇ 10 -6 / °C or less, 100 ⁇ 10 -6 / °C or less, 90 ⁇ 10 -6 / °C or less, 50 ⁇ 10 -6 / °C or less, 30 ⁇ It may be 10 -6 / ° C or lower, and further may be 0 ⁇ 10 -6 / ° C or lower.
  • the coefficient of linear thermal expansion ⁇ in the MD direction is 125 ⁇ 10 -6 / ° C or less, 120 ⁇ 10 -6 / ° C or less, 110 ⁇ 10 -6 / ° C or less, 100 ⁇ 10 -6 / ° C or less, and further 90 ⁇ It may be 10 -6 / ° C or lower, 0 ⁇ 10 -6 / ° C or higher, 25 ⁇ 10 -6 / ° C or higher, and further 50 ⁇ 10 -6 / ° C or higher.
  • the linear thermal expansion coefficient in the TD direction ⁇ , 125 ⁇ 10 -6 / °C less, 120 ⁇ 10 -6 / °C less, 110 ⁇ 10 -6 / °C less, 100 ⁇ 10 -6 / °C less, 90 ⁇ 10 - 6 / ° C or lower, 50 ⁇ 10 -6 / ° C or lower, 30 ⁇ 10 -6 / ° C or lower, and even 0 ⁇ 10 -6 / ° C or lower, ⁇ 400 ⁇ 10 -6 / ° C or higher, ⁇ It may be 300 ⁇ 10 -6 / ° C or higher, and further may be ⁇ 200 ⁇ 10 -6 / ° C or higher.
  • the coefficient of linear thermal expansion ⁇ in the TD direction may be a negative value.
  • the coefficient of linear thermal expansion ⁇ of the heat-resistant mold release sheet 1 can be obtained by thermomechanical analysis (TMA). TMA may be carried out under the following conditions. The average value obtained by measuring at least five test pieces can be defined as the coefficient of linear thermal expansion ⁇ .
  • Measurement temperature range 25 ° C-175 ° C Mode: Tension mode Specimen: Width 4 mm x Length 20 mm Tensile direction: Dimensional direction of test piece Tensile load: 2 gf Temperature rise rate: 5 ° C / min Surrounding atmosphere of test piece at the time of measurement: Japanese Industrial Standards (former Japanese Industrial Standards; JIS) K7197: 1991 "Test method by thermomechanical analysis of plastics" Around the atmosphere of the piece "
  • the tensile strength of the heat-resistant mold release sheet 1 may be 30 MPa or more and the maximum tensile elongation may be 250% or more in each of the above two directions.
  • the tensile strength may be 35 MPa or more, 40 MPa or more, 45 MPa or more, 50 MPa or more, and further 55 MPa or more.
  • the upper limit of the tensile strength is, for example, 100 MPa or less.
  • the maximum tensile elongation may be 275% or more, 300% or more, 325% or more, 350% or more, 400% or more, and further 450% or more.
  • the upper limit of the maximum tensile elongation is, for example, 600% or less.
  • the tensile strength and the maximum tensile elongation can be set in any combination within the above ranges. According to the heat-resistant mold release sheet 1 having the tensile strength and the maximum tensile elongation in the above range, for example, the supply of the sheet 1 by transportation can be performed more reliably and stably for a process involving heating and melting of the resin.
  • the tensile strength and maximum tensile elongation of the heat-resistant mold release sheet 1 can be obtained by a tensile test using a tensile tester.
  • the shape of the test piece is, for example, a dumbbell-shaped No. 3 shape defined in JIS K6251: 1993.
  • the measurement conditions are, for example, a distance between the marked lines of the test piece of 20 mm, a distance between the chucks of 35 mm, and a tensile speed of 200 mm / min.
  • the maximum tensile elongation can be calculated from the distance between the marked lines before the test and the distance between the marked lines at the time of breaking.
  • the measurement temperature is, for example, 25 ⁇ 10 ° C.
  • the heat-resistant mold release sheet 1 another layer may be arranged on at least one main surface. However, when good thermal conductivity is required as the heat-resistant mold release sheet 1, it is preferable that no other layer is arranged on the main surface. In other words, the heat-resistant mold release sheet 1 may be a single layer.
  • At least one main surface may not be surface-treated.
  • An example of the surface treatment is an adhesiveness improving treatment for improving the adhesiveness (adhesiveness to other articles) of the main surface of the PTFE sheet or the modified PTFE sheet.
  • Examples of the adhesiveness improving treatment are plasma treatment, sputtering treatment, sodium treatment, and in particular, plasma treatment.
  • the heat-resistant release sheet 1 is preferably a non-porous sheet.
  • the heat-resistant mold release sheet 1 may be a sheet having no holes communicating with both main surfaces, at least in the use area.
  • the heat-resistant release sheet 1 may be an impermeable sheet that does not allow a fluid such as water to permeate in the thickness direction based on the high liquid repellency (water repellency and oil repellency) of PTFE or modified PTFE. ..
  • the heat-resistant release sheet 1 may be an insulating sheet (non-conductive sheet) based on the high insulating property of PTFE or modified PTFE. Insulation is represented by, for example, a surface resistivity of 1 ⁇ 10 14 ⁇ / ⁇ or more.
  • the surface resistivity may be 1 ⁇ 10 15 ⁇ / ⁇ or more, 1 ⁇ 10 16 ⁇ / ⁇ or more, and further 1 ⁇ 10 17 ⁇ / ⁇ or more.
  • the heat-resistant mold release sheet 1 may contain a conductive material such as carbon black, a conductive polymer, or a conductive metal oxide. In this case, the heat-resistant mold release sheet 1 may have a function based on a conductive material, for example, an antistatic function.
  • the surface resistivity of the heat-resistant mold release sheet 1 containing the conductive material is, for example, 1 ⁇ 10 12 ⁇ / ⁇ or less, even if it is 1 ⁇ 10 8 ⁇ / ⁇ or less and 1 ⁇ 10 4 ⁇ / ⁇ or less. good.
  • the shape of the heat-resistant mold release sheet 1 is, for example, a polygon including a square and a rectangle, a circle, an ellipse, and a band. The corners of the polygon may be rounded.
  • the shape of the heat-resistant mold release sheet 1 is not limited to the above example.
  • the polygonal, circular and oval heat-resistant mold release sheet 1 can be distributed as a single leaf, and the strip-shaped heat-resistant mold release sheet 1 can be distributed as a winding body (roll) wound around a winding core. be.
  • the width of the strip-shaped heat-resistant mold release sheet 1 and the width of the wound body around which the strip-shaped heat-resistant mold release sheet 1 is wound can be freely set.
  • PTFE powder (molding powder) is introduced into a mold, and a predetermined pressure is applied to the powder in the mold for a predetermined time for preforming.
  • Pre-molding can be carried out at room temperature.
  • the shape of the internal space of the mold is preferably cylindrical in order to enable cutting by a cutting lathe described later.
  • a given pressure is usually applied in the height direction of the cylinder.
  • a columnar premolded product and a PTFE block can be obtained.
  • the PTFE block is cylindrical, it is possible to use a cutting lathe that continuously cuts the surface while rotating the block, and the heat-resistant mold release sheet 1 can be efficiently formed.
  • the obtained preformed product is taken out from the mold and fired at a temperature equal to or higher than the melting point of PTFE (327 ° C.) for a predetermined time to obtain a PTFE block.
  • the obtained PTFE block is cut to a predetermined thickness to obtain a PTFE sheet which is a cutting sheet.
  • the obtained PTFE sheet is stretched in the width direction (TD direction) to obtain a PTFE cutting sheet 2 which is a uniaxially stretched sheet in the width direction. Stretching releases the compressive strain in the TD direction.
  • the obtained cutting sheet 2 may be used as it is as a heat-resistant mold release sheet 1, or may be used as a heat-resistant mold release sheet 1 after undergoing a predetermined treatment, laminating of other layers, or the like.
  • a tenter stretching device can be used for stretching.
  • the draw ratio is, for example, 1.05 to 1.2 times, and may be 1.1 to 1.5 times. When the draw ratio is in the above range, a cutting sheet 2 having no holes communicating with both main surfaces can be obtained more reliably, and the occurrence of pinholes due to stretching can be suppressed.
  • the stretching temperature is, for example, 150 to 330 ° C, and may be 200 to 300 ° C.
  • the above manufacturing method it is relatively easy to control the thickness of the heat-resistant mold release sheet 1 to be formed, and a strip-shaped heat-resistant mold release sheet 1 can also be formed. Further, by using the modified PTFE powder instead of the PTFE powder, the cutting sheet 2 of the modified PTFE can be formed by the above method.
  • the heat-resistant mold release sheet 1 can be used in a process involving heating and melting of the resin.
  • the steps are melt molding of a resin using a mold and heat pressurization treatment using a heat pressurizing device for an object containing the resin.
  • the step involving heating and melting of the resin is not limited to the above example as long as the resin or a member in contact with the object containing the resin is used in the step.
  • FIG. 2 shows an example of melt molding of resin using a mold.
  • the heat-resistant mold release sheet 1 is arranged between the mold (upper mold in FIG. 2) 12 and the resin 13 during melt molding of the resin 13 and is used as a sheet for preventing direct contact between the two. NS.
  • the mold 12 is a member that comes into contact with the resin during melt molding.
  • the melt molding in the example of FIG. 2 can be carried out by supplying the resin 13 between the mold (lower mold) 11 and the mold 12 and joining the pair of molds 11 and 12 to each other. At that time, the heat-resistant mold release sheet 1 may be adsorbed on the inner surface of the mold 12.
  • the resin 13 to be supplied may be a solid such as pellets or a molten resin.
  • the molten resin is usually supplied after the molds 11 and 12 are joined to each other.
  • the mode of melt molding of the resin using the heat-resistant mold release sheet is not limited to the above example.
  • the heat-resistant mold release sheet 1 may be supplied and arranged by transportation between the mold 11 and the mold 12.
  • the heat-resistant mold release sheet 1 supplied and arranged by transportation may have a strip shape.
  • the strip-shaped heat-resistant mold release sheet 1 may be supplied between the molds by transportation to carry out a step involving heating and melting of the resin.
  • FIG. 3 shows an example of heat pressurization treatment using a heat pressurization device.
  • the heat-resistant release sheet 1 is arranged between the heat-pressurizing surface 34 of the heat-pressurizing device 31 and the object 35 during the heat-pressurizing treatment of the object 35 containing the resin. It is used as a sheet to prevent direct contact between the two.
  • the heat pressurizing device 31 of FIG. 3 includes a stage 32 and a heat pressurizing head 33 having a heat pressurizing surface 34.
  • the heat-pressurizing head 33 is a member that comes into contact with the object 35 during the heat-pressurizing process.
  • the heat-resistant mold release sheet 1 is arranged between the heat-pressurizing head 33 and the object 35.
  • the heat pressurization head 33 and the stage 32 are brought close to each other (typically, the heat pressurization head 33 is lowered) with the object 35 placed on the stage 32.
  • the heat pressurization treatment is, for example, thermocompression bonding or heat pressing of the object 35.
  • the heat-resistant mold release sheet 1 may be supplied and arranged by transportation between the heat-pressurized surface 34 and the object 35.
  • the heat-resistant mold release sheet 1 supplied and arranged by transportation may have a strip shape.
  • the strip-shaped heat-resistant mold release sheet 1 may be supplied to the heat-pressurizing device by transportation to carry out a step involving heating and melting of the resin.
  • the heating and melting temperature of the resin in the above step is, for example, 150 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, and further 175 ° C. or higher.
  • the operating temperature of the heat-resistant mold release sheet 1 is not limited to the above example. Since it contains a PTFE or modified PTFE cutting sheet 2 having excellent heat resistance, even if the operating temperature is 200 ° C. or higher, 250 ° C. or higher, 275 ° C. or higher, or even 300 ° C. or higher, which is higher than the above example. good.
  • the heat-resistant mold release sheet 1 can be used to carry out a step involving heating and melting of the resin.
  • a heat-resistant mold release sheet 1 is arranged between a resin or an object containing a resin to be subjected to the above step and a resin or a member in contact with the object in the above step, and the resin or the resin is formed by the sheet 1.
  • the above-mentioned step is carried out in a state where the direct contact between the above-mentioned object and the above-mentioned member is prevented.
  • the resin can be melt-molded using the heat-resistant mold release sheet 1.
  • the heat-resistant mold release sheet 1 is placed between the mold 12 and the resin 13, and the resin 13 is melted in a state where the sheet 1 prevents direct contact between the mold 12 and the resin 13. Including molding (see FIG. 2).
  • a resin melt-molded product can be produced by using the heat-resistant mold release sheet 1.
  • a heat-resistant mold release sheet 1 is placed between the mold 12 and the resin 13, and the resin 13 is melt-molded in a state where the sheet 1 prevents direct contact between the mold 12 and the resin 13. (See FIG. 2).
  • the object 35 can be heat-pressurized using the heat-resistant mold release sheet 1.
  • the heat-pressurizing treatment method is a heat-pressurizing treatment method for an object 35 by a heat-pressurizing device, in which a heat-resistant release sheet 1 is arranged between the object 35 and the heat-pressurizing surface 34, and the sheet is concerned. 1 includes performing the heat pressurization treatment in a state where the object 35 and the heat pressurization surface 34 are prevented from being in direct contact with each other (see FIG. 3).
  • a heat-pressurized product can be produced by using the heat-resistant mold release sheet 1.
  • the manufacturing method is a method of manufacturing a heat-pressurized product using a heat-pressurizing device, in which a heat-resistant release sheet 1 is arranged between an object 35 and a heat-pressurized surface 34, and the sheet 1 is used as a target. This includes obtaining a heat-pressurized object of the object 35 by performing the heat-pressurization treatment in a state where direct contact between the object 35 and the heat-pressurized surface 34 is prevented.
  • the thermocompression bonding treatment is, for example, thermocompression bonding or thermocompression bonding of the object 35, and in this case, a thermocompression bonding object or a thermocompression bonded object can be obtained (see FIG. 3).
  • the thickness was determined as the average value of the values measured at 25 ° C. by a digital micrometer (minimum scale 0.001 mm) for any three points.
  • the dimensional shrinkage ratio was determined by the formula: (X 0 ⁇ X 1 ) / X 0 ⁇ 100 (%).
  • a caliper was used to measure the dimensions, and the maximum dimensions in each direction were set to X 0 and X 1 .
  • Linear coefficient of thermal expansion ⁇ (25-175 ° C)
  • the coefficient of linear thermal expansion ⁇ in the temperature range of 25 ° C. to 175 ° C. was evaluated by the above-mentioned method by TMA. The evaluation was carried out for each of the MD direction and the TD direction of the heat-resistant mold release sheet. However, the test pieces were rectangular with a width of 4 mm and a length of 20 mm, and the number of test pieces used for the evaluation was five.
  • the tensile strength (tensile breaking strength) and the maximum tensile elongation were determined by a tensile test using a tensile tester (manufactured by Shimadzu Corporation, AG-I). The evaluation was carried out for each of the MD direction and the TD direction of the heat-resistant mold release sheet.
  • the shape of the test piece was a dumbbell-shaped No. 3 shape (distance between marked lines 20 mm) defined in JIS K6251: 1993.
  • the measurement conditions were a measurement temperature of 25 ° C., a chuck distance of 35 mm, and a tensile speed of 200 mm / min.
  • the maximum tensile elongation was calculated from the distance between the marked lines before the test and the distance between the marked lines at the time of breaking.
  • the presence or absence of wrinkles when the mold was set was evaluated using a transfer mold device.
  • the mold cavity had a rectangular parallelepiped shape with a width of 50 mm, a length of 50 mm, and a depth of 0.7 mm.
  • a roll of a heat-resistant mold release sheet processed into a strip shape having a width of 170 mm was set in the apparatus, and the sheet was supplied by transportation to a mold heated to 175 ° C. and vacuum-adsorbed to the mold. The presence or absence of wrinkles was visually confirmed on the heat-resistant mold release sheet after vacuum suction.
  • PTFE powder (Polyflon PTFE M-18 manufactured by Daikin Industries, Ltd.) was introduced into a cylindrical mold and preformed under the conditions of a temperature of 23 ° C., a pressure of 8.5 MPa, and a pressure application time of 1 hour. Next, the formed preformed product was taken out from the mold and fired at 370 ° C. for 24 hours to obtain a columnar PTFE block having a height of 300 mm and an outer diameter of 470 mm. Next, the obtained PTFE block was cut with a cutting lathe to obtain a PTFE cutting sheet (thickness 55 ⁇ m, strip shape).
  • the obtained cutting sheet was stretched in the width direction (TD direction) to obtain a heat-resistant mold release sheet (thickness 50 ⁇ m) of Example 1.
  • a tenter stretching device was used to stretch the cutting sheet, the stretching temperature was 280 ° C., and the stretching ratio was 1.1 times.
  • the direction in which the pressure was applied during the preforming was the TD direction of the obtained sheet.
  • Example 2 A cutting sheet of modified PTFE (thickness 55 ⁇ m, thickness 55 ⁇ m,) was used in the same manner as in Example 1 except that modified PTFE powder (3M, Dynion TFM modified PTFE TFM1700, TFE unit content of 99% by mass or more) was used instead of PTFE powder. Band-shaped) was obtained. Next, the obtained cutting sheet was stretched in the width direction (TD direction) to obtain a heat-resistant mold release sheet (thickness 51 ⁇ m) of Example 2. The stretching method and conditions were the same as in Example 1.
  • Example 3 The heat-resistant mold release sheet of Example 3 (thickness 49 ⁇ m) was the same as in Example 2 except that the thickness of the cutting sheet before stretching was set to 70 ⁇ m and the draw ratio was set to 1.2 times by changing the cutting thickness. ) was obtained.
  • Comparative Example 1 A PTFE cutting sheet having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the cutting thickness was changed. This was used as a heat-resistant mold release sheet of Comparative Example 1 without being stretched in the width direction.
  • Comparative Example 2 A modified PTFE cutting sheet having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2 except that the cutting thickness was changed. This was used as a heat-resistant mold release sheet of Comparative Example 2 without being stretched in the width direction.
  • the heat-resistant mold release sheet of the present invention can be used in a process involving heating and melting of a resin. Examples of the steps are melt molding of a resin using a mold and heat pressurization treatment using a heat pressurizing device for an object containing the resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

提供される耐熱離型シートは、樹脂の加熱溶融を伴う工程に樹脂又は樹脂を含む対象物を供する際に、樹脂又は対象物と、上記工程において樹脂又は対象物に接する部材との間に配置されて、樹脂又は対象物と上記部材との直接の接触を防ぐシートである。上記シートは、ポリテトラフルオロエチレン(PTFE)又は変性PTFEの切削シートを含む。変性PTFEにおけるテトラフルオロエチレン(TFE)単位の含有率は99質量%以上である。上記シートの面内方向であって互いに直交する2つの方向の各々について、175℃及び30分の加熱によって生じる寸法収縮率は0%を超える。上記シートは、耐熱性樹脂の切削シートを含みながらも、切削シートに起因した上記工程における問題の発生を防ぐことに適している。

Description

耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法
 本発明は、耐熱離型シート及びこれを用いて樹脂の加熱溶融を伴う工程を実施する方法に関する。
 耐熱性樹脂としてフッ素樹脂が知られている。特許文献1には、フッ素樹脂の一種であるポリテトラフルオロエチレン(以下、「PTFE」と記載)の切削シートが開示されている。耐熱性樹脂シートであるPTFEシートは、高温下での使用が想定される。
特開2001-341138号公報
 金型を用いた樹脂の溶融成形や、樹脂を含む対象物に対する熱加圧装置を用いた熱加圧処理等では、樹脂の加熱溶融を伴う工程が実施される。その際、樹脂又は樹脂を含む対象物と、樹脂又は対象物に接触する部材との間に耐熱離型シートを配置して、樹脂又は対象物と当該部材との直接の接触を防ぐことが考えられる。また、耐熱離型シートには、耐熱性樹脂シート、例えばPTFEの切削シート、を用いることが考えられる。しかし、本発明者らの検討によれば、切削シートを使用した場合には、溶融成形により得た成形体の表面に筋状に延びる欠点が生じたり、熱加圧処理の均質性が低下したりする場合があることが判明した。なお、PTFEシートには、切削シート以外にも、PTFEディスパージョンの塗布膜を乾燥及び焼成させて製造するキャストシートがあるが、キャストシートでは上記問題は生じない。
 本発明の目的は、樹脂の加熱溶融を伴う工程に樹脂又は樹脂を含む対象物を供する際に、樹脂又は対象物と、当該工程において樹脂又は対象物に接する部材との間に配置されて、樹脂又は対象物と上記部材との直接の接触を防ぐ耐熱離型シートであって、耐熱性樹脂の切削シートを含みながらも、上記欠点の発生や均質性の低下等、切削シートに起因した上記工程における問題の発生を防ぐことに適したシートの提供にある。
 本発明は、
 樹脂の加熱溶融を伴う工程に前記樹脂又は前記樹脂を含む対象物を供する際に、前記樹脂又は前記対象物と、前記工程において前記樹脂又は前記対象物に接する部材との間に配置されて、前記樹脂又は前記対象物と前記部材との直接の接触を防ぐ耐熱離型シートであって、
 ポリテトラフルオロエチレン(PTFE)又は変性PTFEの切削シートを含み、
 前記変性PTFEにおけるテトラフルオロエチレン(TFE)単位の含有率は99質量%以上であり、
 前記耐熱離型シートの面内方向であって互いに直交する2つの方向の各々について、175℃及び30分の加熱によって生じる寸法収縮率が0%を超える、耐熱離型シート、
 を提供する。
 別の側面から、本発明は、
 樹脂の加熱溶融を伴う工程を実施する方法であって、
 前記工程に供される前記樹脂又は前記樹脂を含む対象物と、前記工程において前記樹脂又は前記対象物に接する部材との間に耐熱離型シートを配置して、前記耐熱離型シートにより前記樹脂又は前記対象物と前記部材との直接の接触を防いだ状態で前記工程を実施することを含み、
 前記耐熱離型シートが、上記本発明の耐熱離型シートである、方法
 を提供する。
 本発明者らの検討によれば、切削シートを使用した場合に生じうる上記問題は、樹脂を溶融させる際の加熱によって特定の方向、典型的にはMD方向、に延びる筋状の皺が切削シートに生じるためであること、及び、上記皺は、切削シートに特有の製法に起因すると推定されることが判明した。切削シートの製造では、原料粉末を円柱状等に予備成形するが、その際、強い圧力が一方向に加えられる。この方向は、切削シートとなった後に皺の発生する上記特定の方向に一致しており、予備成形時に加えられた圧力による圧縮歪みが切削シートに残留し、上記加熱により解放されることで、筋状の皺が生じると考えられる。一方、本発明の耐熱離型シートでは、シートの面内方向であって互いに直交する2つの方向の各々について、175℃及び30分の加熱(樹脂を溶融させる典型的な加熱に対応する)によって生じる寸法収縮率が0%を超える。これは、本発明の耐熱離型シートにおいて上記圧縮歪みの残留が抑えられていることを意味する。したがって、本発明の耐熱離型シートによれば、上記欠点の発生や均質性の低下等、切削シートに起因した上記工程における問題の発生を防ぐことができる。
図1は、本発明の耐熱離型シートの一例を模式的に示す断面図である。 図2は、本発明の耐熱離型シートを用いた樹脂の溶融成形の一例を説明するための模式図である。 図3は、本発明の耐熱離型シートを用いた熱加圧処理の一例を説明するための模式図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。
 [耐熱離型シート]
 本実施形態の耐熱離型シートを図1に示す。図1の耐熱離型シート1は、PTFEの切削シート2から構成される。図1の耐熱離型シート1は、切削シート2の単層構造を有する。耐熱離型シート1は、切削シート2に含まれるPTFEに由来する高い耐熱性及び柔軟性を有する。なお、切削シートであることは、当該シートの表面を拡大観察したときに、切削シートに特有の線状のキズ(切削キズとして当業者に周知)が確認されることから判別できる。表面の拡大観察には、光学顕微鏡等の顕微鏡や表面性状評価装置を使用できる。切削キズは、切削加工によってシートを得る際に切削刃に堆積した樹脂の削りカスがシート表面に線状に傷をつけるために生じる。切削キズは、通常、切削シート2のMD方向に延びる。帯状の切削シート2のMD方向は、通常、シートの長手方向である。
 耐熱離型シート1では、当該シート1の面内方向であって互いに直交する2つの方向の各々について、175℃及び30分の加熱によって生じる寸法収縮率(以下、「寸法収縮率」と記載)が0%を超える。上記2つの方向は、典型的には、切削シート2のMD方向及びTD方向である。帯状の切削シート2のTD方向は、通常、シートの幅方向である。寸法収縮率は、175℃及び30分の加熱条件下に耐熱離型シート1を静置して測定された加熱前の寸法X0及び加熱後の寸法X1から、式:(X0-X1)/X0×100(%)により与えられる。上記2つの方向の各々について、寸法収縮率は、0.5%以上であってもよく、1.0%以上、1.5%以上、1.7%以上、1.9%以上、2.0%以上、3.0%以上、4.0%以上、更には5.0%以上であってもよい。上記2つの方向の各々について、寸法収縮率の上限は、例えば10%以下であり、8.0%以下、7.0%以下、6.0%以下、5.0%以下、4.0%以下、3.0%以下、2.5%以下、2.0%以下、1.9%以下、更には1.7%以下であってもよい。上記2つの方向の寸法収縮率は、互いに異なりうる。各方向の寸法収縮率は、互いに独立して、上述した複数の好ましい範囲から選ばれる一つの範囲をとることができる。また、上記2つの方向の各々における寸法収縮率の間の差は、5.0%未満、4.5%以下、4.0%以下、3.5%以下、3.1%以下、3.0%以下、2.5%以下、2.0%以下、1.5%以下、1.0%以下、0.7%以下、0.5%以下、更には0.3%以下であってもよい。なお、従来の切削シートにおけるTD方向の寸法収縮率は0%以下である。換言すれば、従来の切削シートでは、残留した圧縮歪みが加熱により解放されてTD方向に膨張する。一方、耐熱離型シート1では、TD方向の寸法収縮率がMD方向の寸法収縮率に比べて大きくてもよい。
 図1の耐熱離型シート1は、PTFEの切削シート2を含む。ただし、耐熱離型シート1は、変性PTFEの切削シート2を含んでもよい。変性PTFEの切削シート2は、PTFEの切削シート2と同様に耐熱性及び柔軟性に優れると共に、PTFEの切削シート2と同じ製法による製造が可能である。変性PTFEは、TFEと変性コモノマーとの共重合体である。変性PTFEとして分類されるためには、共重合体におけるテトラフルオロエチレン(TFE)単位の含有率は99質量%以上が必要とされている。変性PTFEは、例えば、TFEと、エチレン、パーフルオロアルキルビニルエーテル及びヘキサフルオロプロピレンから選ばれる少なくとも1種の変性コモノマーとの共重合体である。
 切削シート2は、好ましくは、焼成を経たPTFE又は変性PTFEを含む焼成シートである。なお、本明細書において焼成とは、重合により得たPTFE又は変性PTFEをその融点(PTFEについて327℃)以上の温度、例えば340~380℃、に加熱することを意味する。
 耐熱離型シート1の厚みは、例えば10μm以上であり、20μm以上、25μm以上、30μm以上、40μm以上、更には50μm以上であってもよい。厚みの上限は、例えば500μm以下であり、200μm以下、更には100μm以下であってもよい。
 上記2つの方向の各々について、25℃から175℃の温度領域における耐熱離型シート1の線熱膨張係数αは、150×10-6/℃以下であってもよく、125×10-6/℃以下、120×10-6/℃以下、110×10-6/℃以下、100×10-6/℃以下、90×10-6/℃以下、50×10-6/℃以下、30×10-6/℃以下、更には0×10-6/℃以下であってもよい。MD方向の線熱膨張係数αは、125×10-6/℃以下、120×10-6/℃以下、110×10-6/℃以下、100×10-6/℃以下、更には90×10-6/℃以下であってもよく、0×10-6/℃以上、25×10-6/℃以上、更には50×10-6/℃以上であってもよい。TD方向の線熱膨張係数αは、125×10-6/℃以下、120×10-6/℃以下、110×10-6/℃以下、100×10-6/℃以下、90×10-6/℃以下、50×10-6/℃以下、30×10-6/℃以下、更には0×10-6/℃以下であってもよく、-400×10-6/℃以上、-300×10-6/℃以上、更には-200×10-6/℃以上であってもよい。TD方向の線熱膨張係数αは、負の値であってもよい。耐熱離型シート1の線熱膨張係数αは、熱機械分析(TMA)により求めることができる。TMAは、以下の条件下で実施すればよい。少なくとも5つの試験片を測定して得た値の平均値を、線熱膨張係数αとすることができる。
 測定温度範囲:25℃-175℃
 モード:引張モード
 試験片:幅4mm×長さ20mm
 引張方向:試験片の長さ方向
 引張荷重:2gf
 昇温速度:5℃/分
 測定時の試験片の周囲雰囲気:日本産業規格(旧日本工業規格;JIS)K7197:1991「プラスチックの熱機械分析による線膨張率試験方法」に定められた「試験片の周囲雰囲気」
 上記2つの方向の各々について、耐熱離型シート1の引張強度が30MPa以上、かつ、最大引張伸びが250%以上であってもよい。引張強度は、35MPa以上、40MPa以上、45MPa以上、50MPa以上、更には55MPa以上であってもよい。引張強度の上限は、例えば100MPa以下である。最大引張伸びは、275%以上、300%以上、325%以上、350%以上、400%以上、更には450%以上であってもよい。最大引張伸びの上限は、例えば600%以下である。引張強度及び最大引張伸びは、上述した範囲を任意の組み合わせでとることができる。上記範囲の引張強度及び最大引張伸びを有する耐熱離型シート1によれば、例えば、樹脂の加熱溶融を伴う工程に対して、搬送によるシート1の供給をより確実かつ安定して実施できる。
 耐熱離型シート1の引張強度及び最大引張伸びは、引張試験機を用いた引張試験により求めることができる。試験片の形状は、例えば、JIS K6251:1993に定められたダンベル状3号形である。上記試験片を使用する場合の測定条件は、例えば、試験片の標線間距離20mm、チャック間距離35mm及び引張速度200mm/分である。最大引張伸びは、試験前の上記標線間距離と、破断時の標線間距離とから算出できる。測定温度は、例えば、25±10℃である。
 耐熱離型シート1では、少なくとも一方の主面上に他の層が配置されていてもよい。しかし、耐熱離型シート1として良好な熱伝導性が要求される場合には、主面上には他の層が配置されていないことが好ましい。言い換えると、耐熱離型シート1は単層であってもよい。
 耐熱離型シート1では、少なくとも一方の主面、好ましくは双方の主面、が、表面処理されていなくてもよい。表面処理の例は、PTFEシート又は変性PTFEシートの主面の接着性(他の物品に対する接着性)を向上させる接着性向上処理である。接着性向上処理の例は、プラズマ処理、スパッタリング処理、ナトリウム処理であり、特に、プラズマ処理である。
 耐熱離型シート1は、好ましくは、非多孔質シートである。耐熱離型シート1は、少なくとも使用領域において、双方の主面を連通する孔を有さないシートであってもよい。耐熱離型シート1は、PTFE又は変性PTFEの有する高い撥液性(撥水性及び撥油性)に基づいて、水等の流体(fluid)を厚み方向に透過しない不透性シートであってもよい。また、耐熱離型シート1は、PTFE又は変性PTFEの有する高い絶縁性に基づいて、絶縁性シート(非導電シート)であってもよい。絶縁性は、例えば1×1014Ω/□以上の表面抵抗率により表される。表面抵抗率は、1×1015Ω/□以上、1×1016Ω/□以上、更には1×1017Ω/□以上であってもよい。耐熱離型シート1は、カーボンブラック、導電性ポリマー、導電性金属酸化物等の導電性材料を含んでいてもよい。この場合、耐熱離型シート1は、導電性材料に基づく機能、例えば帯電防止機能、を有しうる。導電性材料を含む耐熱離型シート1の表面抵抗率は、例えば、1×1012Ω/□以下であり、1×108Ω/□以下、1×104Ω/□以下であってもよい。
 耐熱離型シート1の形状は、例えば、正方形及び長方形を含む多角形、円形、楕円形、並びに帯状である。多角形の角は丸められていてもよい。ただし、耐熱離型シート1の形状は、上記例に限定されない。多角形、円形及び楕円形の耐熱離型シート1は枚葉としての流通が、帯状の耐熱離型シート1は、巻芯に巻回した巻回体(ロール)としての流通が、それぞれ可能である。帯状である耐熱離型シート1の幅、及び、帯状である耐熱離型シート1を巻回した巻回体の幅は、自由に設定できる。
 [耐熱離型シートの製造方法]
 耐熱離型シート1の製法の一例を以下に説明する。ただし、耐熱離型シート1の製法は、以下に示す例に限定されない。
 最初に、PTFE粉末(モールディングパウダー)を金型に導入し、金型内の粉末に対して所定の圧力を所定の時間加えて予備成形する。予備成形は常温で実施できる。金型の内部空間の形状は、後述の切削旋盤による切削を可能とするために円柱状であることが好ましい。この場合、所定の圧力は、通常、円柱の高さ方向に加えられる。また、この場合、円柱状の予備成形品及びPTFEブロックが得られる。PTFEブロックが円柱状である場合には、ブロックを回転させながら連続的に表面を切削する切削旋盤の利用が可能となり、耐熱離型シート1を効率的に形成できる。次に、得られた予備成形品を金型から取り出し、PTFEの融点(327℃)以上の温度で所定の時間焼成して、PTFEブロックを得る。次に、得られたPTFEブロックを所定の厚みに切削して、切削シートであるPTFEシートを得る。次に、得られたPTFEシートを幅方向(TD方向)に延伸して、幅方向への一軸延伸シートであるPTFEの切削シート2を得る。延伸により、TD方向の圧縮歪みが解放される。得られた切削シート2は、そのまま耐熱離型シート1として使用しても、所定の処理や他の層の積層等を経た後に耐熱離型シート1として使用してもよい。延伸には、テンター延伸装置を利用できる。延伸倍率は、例えば1.05~1.2倍であり、1.1~1.5倍であってもよい。延伸倍率が上記範囲にあると、双方の主面を連通する孔を有さない切削シート2がより確実に得られると共に、延伸によるピンホールの発生も抑制できる。延伸温度は、例えば150~330℃であり、200~300℃であってもよい。なお、上記製法によれば、形成する耐熱離型シート1の厚みの制御が比較的容易であり、帯状の耐熱離型シート1も形成できる。また、PTFE粉末に代わって変性PTFE粉末を用いることで、上記方法により、変性PTFEの切削シート2を形成できる。
 [耐熱離型シートの使用]
 耐熱離型シート1は、樹脂の加熱溶融を伴う工程に使用できる。工程の例は、金型を用いた樹脂の溶融成形、及び樹脂を含む対象物に対する熱加圧装置を用いた熱加圧処理である。ただし、樹脂の加熱溶融を伴う工程は、当該工程において樹脂又は樹脂を含む対象物に接する部材が用いられる限り、上記例に限定されない。
 金型を用いた樹脂の溶融成形の一例を、図2に示す。図2の例において耐熱離型シート1は、樹脂13の溶融成形時に金型(図2では上金型)12と樹脂13との間に配置されて両者の直接の接触を防ぐシートとして使用される。金型12は、溶融成形時に樹脂に接する部材である。図2の例における溶融成形は、金型(下金型)11と金型12との間に樹脂13を供給すると共に、一対の金型11,12を互いに接合して実施できる。その際、耐熱離型シート1は、金型12の内面に吸着されていてもよい。供給する樹脂13は、ペレット等の固体であっても溶融樹脂であってもよい。溶融樹脂は、通常、金型11,12を互いに接合させた後に供給される。ただし、耐熱離型シートを使用した樹脂の溶融成形の態様は、上記例に限定されない。
 耐熱離型シート1は、金型11と金型12との間に搬送により供給及び配置されてもよい。搬送により供給及び配置される耐熱離型シート1は、帯状であってもよい。換言すれば、帯状の耐熱離型シート1を搬送により金型の間に供給して、樹脂の加熱溶融を伴う工程を実施してもよい。
 熱加圧装置を用いた熱加圧処理の一例を、図3に示す。図3の例において耐熱離型シート1は、樹脂を含む対象物35の熱加圧装置31による熱加圧処理時に熱加圧装置31の熱加圧面34と対象物35との間に配置されて両者の直接の接触を防ぐシートとして使用される。図3の熱加圧装置31は、ステージ32と、熱加圧面34を有する熱加圧ヘッド33とを備える。熱加圧ヘッド33は、熱加圧処理時に対象物35に接する部材である。耐熱離型シート1は、熱加圧ヘッド33と対象物35との間に配置される。図3の例における熱加圧処理は、対象物35をステージ32上に戴置した状態で熱加圧ヘッド33とステージ32とを接近させて(典型的には熱加圧ヘッド33を下降させて)実施できる。熱加圧処理は、例えば、対象物35の熱圧着、熱プレスである。
 耐熱離型シート1は、熱加圧面34と対象物35との間に搬送により供給及び配置されてもよい。搬送により供給及び配置される耐熱離型シート1は、帯状であってもよい。換言すれば、帯状の耐熱離型シート1を搬送により熱加圧装置に供給して、樹脂の加熱溶融を伴う工程を実施してもよい。
 上記工程における樹脂の加熱溶融温度(耐熱離型シート1の使用温度)は、例えば150℃以上であり、160℃以上、170℃以上、更には175℃以上であってもよい。ただし、耐熱離型シート1の使用温度は、上記例に限定されない。耐熱性に優れるPTFE又は変性PTFEの切削シート2を含むことから、上記例示に比べて高い温度である200℃以上、250℃以上、275℃以上、更には300℃以上の使用温度であってもよい。
 [樹脂の加熱溶融を伴う工程を実施する方法]
 耐熱離型シート1を用いて、樹脂の加熱溶融を伴う工程を実施できる。当該方法は、上記工程に供される樹脂又は樹脂を含む対象物と、上記工程において樹脂又は上記対象物に接する部材との間に耐熱離型シート1を配置して、当該シート1により樹脂又は上記対象物と上記部材との直接の接触を防いだ状態で上記工程を実施することを含む。
 [溶融成形方法]
 耐熱離型シート1を用いて樹脂を溶融成形できる。当該溶融成形法は、金型12と樹脂13との間に耐熱離型シート1を配置して、当該シート1により金型12と樹脂13との直接の接触を防いだ状態で樹脂13を溶融成形することを含む(図2参照)。
 [溶融成形体の製造方法]
 耐熱離型シート1を用いて、樹脂の溶融成形体を製造できる。当該製造方法は、金型12と樹脂13との間に耐熱離型シート1を配置し、当該シート1により金型12と樹脂13との直接の接触を防いだ状態で樹脂13を溶融成形して、樹脂の溶融成形体を得ることを含む(図2参照)。
 [熱加圧処理方法]
 耐熱離型シート1を用いて対象物35を熱加圧処理できる。当該熱加圧処理方法は、熱加圧装置による対象物35の熱加圧処理方法であって、対象物35と熱加圧面34との間に耐熱離型シート1を配置して、当該シート1により対象物35と熱加圧面34との直接の接触を防いだ状態で熱加圧処理を実施することを含む(図3参照)。
 [熱加圧処理物の製造方法]
 耐熱離型シート1を用いて、熱加圧処理物を製造できる。当該製造方法は、熱加圧装置を用いた熱加圧処理物の製造方法であって、対象物35と熱加圧面34との間に耐熱離型シート1を配置し、当該シート1により対象物35と熱加圧面34との直接の接触を防いだ状態で熱加圧処理を実施して、対象物35の熱加圧処理物を得ることを含む。熱加圧処理は、例えば、対象物35の熱圧着、熱プレスであり、この場合、熱圧着物、熱プレス物が得られる(図3参照)。
 以下、実施例により本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
 最初に、本実施例において作製した耐熱離型シートの評価方法を示す。
 [厚み]
 厚みは、任意の3点に対するデジタルマイクロメータ(最小目盛0.001mm)による25℃での測定値の平均値として求めた。
 [寸法収縮率(175℃、30分)]
 175℃及び30分の加熱によって生じる寸法収縮率は、以下のように評価した。最初に、評価対象の耐熱離型シートについて、MD方向及びTD方向の各寸法(加熱前の寸法X0)を測定した。次に、耐熱離型シートを加熱槽に収容して175℃で30分静置した後、25℃に冷却して、MD方向及びTD方向の各寸法(加熱後の寸法X1)を測定した。測定した寸法X0及びX1から、式:(X0-X1)/X0×100(%)により、寸法収縮率を求めた。寸法の測定にはノギスを使用し、各方向の最大寸法をX0及びX1とした。
 [線熱膨張係数α(25-175℃)]
 25℃から175℃の温度領域における線熱膨張係数αは、TMAによる上述の方法により評価した。評価は、耐熱離型シートのMD方向及びTD方向の各々について実施した。ただし、試験片は幅4mm×長さ20mmの長方形状とし、評価に使用した試験片の数は5つとした。
 [引張強度及び最大引張伸び]
 引張強度(引張破断強度)及び最大引張伸びは、引張試験機(島津製作所製、AG-I)を用いた引張試験により求めた。評価は、耐熱離型シートのMD方向及びTD方向の各々について実施した。試験片の形状は、JIS K6251:1993に定められたダンベル状3号形(標線間距離20mm)とした。測定条件は、測定温度25℃、チャック間距離35mm及び引張速度200mm/分とした。最大引張伸びは、試験前の上記標線間距離と、破断時の標線間距離とから算出した。
 [金型セット時の皺の有無]
 金型セット時の皺の有無は、トランスファーモールド装置を用いて評価した。金型のキャビティは、幅50mm、長さ50mm及び深さ0.7mmの直方体状とした。巾170mmの帯状に加工した耐熱離型シートのロールを装置にセットし、175℃に加熱した金型に対して当該シートを搬送により供給して、金型に真空吸着させた。真空吸着後の耐熱離型シートについて、皺の発生の有無を目視により確認した。
 (実施例1)
 PTFE粉末(ダイキン工業製、ポリフロン PTFE M-18)を円筒状の金型に導入し、温度23℃、圧力8.5MPa及び圧力印加時間1時間の条件で予備成形した。次に、形成された予備成形品を金型から取り出し、370℃で24時間焼成して、高さ300mm、外径470mmの円柱状であるPTFEブロックを得た。次に、得られたPTFEブロックを切削旋盤により切削して、PTFEの切削シート(厚み55μm、帯状)を得た。次に、得られた切削シートをその幅方向(TD方向)に延伸して、実施例1の耐熱離型シート(厚み50μm)を得た。切削シートの延伸にはテンター延伸装置を使用し、延伸温度は280℃、延伸倍率は1.1倍とした。予備成形時に圧力が印加された方向は、得られたシートのTD方向であった。
 (実施例2)
 PTFE粉末の代わりに変性PTFE粉末(3M製、ダイニオンTFM 変性PTFE TFM1700、TFE単位の含有率99質量%以上)を使用した以外は実施例1と同様にして、変性PTFEの切削シート(厚み55μm、帯状)を得た。次に、得られた切削シートをその幅方向(TD方向)に延伸して、実施例2の耐熱離型シート(厚み51μm)を得た。延伸方法及び条件は、実施例1と同じとした。
 (実施例3)
 切削厚みを変更することで延伸前の切削シートの厚みを70μmとすると共に、延伸倍率を1.2倍とした以外は実施例2と同様にして、実施例3の耐熱離型シート(厚み49μm)を得た。
 (比較例1)
 切削厚みを変更した以外は実施例1と同様にして、厚み50μmのPTFEの切削シートを得た。これを幅方向に延伸することなく、比較例1の耐熱離型シートとした。
 (比較例2)
 切削厚みを変更した以外は実施例2と同様にして、厚み50μmの変性PTFEの切削シートを得た。これを幅方向に延伸することなく、比較例2の耐熱離型シートとした。
 評価結果を以下の表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、TD方向の寸法収縮率が負である比較例の耐熱離型シートでは、MD方向に延びる筋状の皺が金型セット時に生じたが、MD方向及びTD方向の各々について寸法収縮率が0%を超える実施例の耐熱離型シートでは、いずれの方向にも皺は生じなかった。
 本発明の耐熱離型シートは、樹脂の加熱溶融を伴う工程に使用できる。工程の例は、金型を用いた樹脂の溶融成形、及び樹脂を含む対象物に対する熱加圧装置を用いた熱加圧処理である。

Claims (6)

  1.  樹脂の加熱溶融を伴う工程に前記樹脂又は前記樹脂を含む対象物を供する際に、前記樹脂又は前記対象物と、前記工程において前記樹脂又は前記対象物に接する部材との間に配置されて、前記樹脂又は前記対象物と前記部材との直接の接触を防ぐ耐熱離型シートであって、
     ポリテトラフルオロエチレン(PTFE)又は変性PTFEの切削シートを含み、
     前記変性PTFEにおけるテトラフルオロエチレン(TFE)単位の含有率は99質量%以上であり、
     前記耐熱離型シートの面内方向であって互いに直交する2つの方向の各々について、175℃及び30分の加熱によって生じる寸法収縮率が0%を超える、耐熱離型シート。
  2.  前記2つの方向の各々における前記寸法収縮率の間の差が5.0%未満である、請求項1に記載の耐熱離型シート。
  3.  前記2つの方向が前記切削シートのMD方向及びTD方向である、請求項1又は2に記載の耐熱離型シート。
  4.  前記2つの方向の各々について、25℃から175℃の温度領域における線熱膨張係数が150×10-6/℃以下である、請求項1~3のいずれかに記載の耐熱離型シート。
  5.  前記2つの方向の各々について、引張強度が30MPa以上、かつ、最大引張伸びが250%以上である、請求項1~4のいずれかに記載の耐熱離型シート。
  6.  樹脂の加熱溶融を伴う工程を実施する方法であって、
     前記工程に供される前記樹脂又は前記樹脂を含む対象物と、前記工程において前記樹脂又は前記対象物に接する部材との間に耐熱離型シートを配置して、前記耐熱離型シートにより前記樹脂又は前記対象物と前記部材との直接の接触を防いだ状態で前記工程を実施することを含み、
     前記耐熱離型シートが、請求項1~5のいずれかに記載の耐熱離型シートである、方法。
PCT/JP2021/012068 2020-04-02 2021-03-23 耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法 WO2021200409A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21778897.5A EP4130110A1 (en) 2020-04-02 2021-03-23 Heat-resistant release sheet and method for carrying out step involving heating and melting of resin
KR1020227037333A KR20220164522A (ko) 2020-04-02 2021-03-23 내열 이형 시트 및 수지의 가열 용융을 수반하는 공정을 실시하는 방법
CN202180026908.8A CN115380061A (zh) 2020-04-02 2021-03-23 耐热脱模片和实施伴有树脂的加热熔融的工序的方法
US17/916,100 US20230158718A1 (en) 2020-04-02 2021-03-23 Heat-resistant release sheet and method for performing step involving heating and melting of resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-067012 2020-04-02
JP2020067012 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021200409A1 true WO2021200409A1 (ja) 2021-10-07

Family

ID=77927866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012068 WO2021200409A1 (ja) 2020-04-02 2021-03-23 耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法

Country Status (7)

Country Link
US (1) US20230158718A1 (ja)
EP (1) EP4130110A1 (ja)
JP (1) JP2021165376A (ja)
KR (1) KR20220164522A (ja)
CN (1) CN115380061A (ja)
TW (1) TW202144152A (ja)
WO (1) WO2021200409A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624431A (en) * 1979-08-08 1981-03-09 Du Pont Mitsui Fluorochem Co Ltd Treatment for improving polytetrafluoroethylene film
JP2001341138A (ja) 2000-06-06 2001-12-11 Daikin Ind Ltd ポリテトラフルオロエチレン成形体およびその製造法
JP2002280403A (ja) * 2001-03-19 2002-09-27 Nitto Denko Corp 半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578262B2 (ja) * 1999-04-06 2004-10-20 日東電工株式会社 半導体チップの樹脂封止方法及びその方法に使用する離型フィルム
JP2003236908A (ja) * 2002-02-15 2003-08-26 Daikin Ind Ltd Ptfeシート状成形体製造方法及びptfeシート状成形体
JP5040451B2 (ja) * 2007-06-07 2012-10-03 宇部興産株式会社 離型材と片面金属箔積層樹脂フィルムとの積層体の製造方法、片面金属箔積層フィルム
CN107004609B (zh) * 2014-11-20 2019-04-30 Agc株式会社 脱模膜、其制造方法以及半导体封装体的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624431A (en) * 1979-08-08 1981-03-09 Du Pont Mitsui Fluorochem Co Ltd Treatment for improving polytetrafluoroethylene film
JP2001341138A (ja) 2000-06-06 2001-12-11 Daikin Ind Ltd ポリテトラフルオロエチレン成形体およびその製造法
JP2002280403A (ja) * 2001-03-19 2002-09-27 Nitto Denko Corp 半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルム

Also Published As

Publication number Publication date
EP4130110A1 (en) 2023-02-08
TW202144152A (zh) 2021-12-01
US20230158718A1 (en) 2023-05-25
JP2021165376A (ja) 2021-10-14
KR20220164522A (ko) 2022-12-13
CN115380061A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US7521010B2 (en) Fluoropolymer barrier material
TW201341145A (zh) 脫膜薄膜
KR101331439B1 (ko) 용융가공 불가능 폴리머로부터 물품을 형성하는 방법 및 이에 의해 형성된 물품
TWI731889B (zh) 樹脂膜及其製造方法
JP7060201B2 (ja) フッ素系樹脂多孔性膜およびその製造方法
JP2005306033A (ja) ポリテトラフルオロエチレン樹脂フィルム及びその製造方法
TWI701133B (zh) 具優異之抗起泡性的pfa模製體及控制在pfa模製體中氣泡產生的方法
WO2021200409A1 (ja) 耐熱離型シート及び樹脂の加熱溶融を伴う工程を実施する方法
US20220001498A1 (en) Heat-resistant release sheet and thermocompression bonding method
CN112789149B (zh) 耐热脱模片和热压接方法
WO2021132416A1 (ja) 複合材料用部材、複合材料、移動体及び複合材料用フィルムの製造方法
JPWO2002102572A1 (ja) ポリテトラフルオロエチレン樹脂成形品製造方法及び樹脂成形体
JP2021107538A (ja) 複合材料用部材、複合材料、移動体及びフィルムの製造方法
TW202126457A (zh) 耐熱緩衝片材及熱加壓處理方法
KR102610907B1 (ko) 다층 구조(Multi-layer)의 불소계 수지 멤브레인
TW202241714A (zh) 片材及片材之製造方法
JPH056495B2 (ja)
WO2021230116A1 (ja) 耐熱緩衝シート及び熱加圧処理方法
JP2011214705A (ja) 収縮制御方法
JP2021107537A (ja) 複合材料用部材、複合材料、移動体及びフィルムの製造方法
WO1999038670A1 (fr) Article moule en resine thermoplastique et techniques de fabrication et d'utilisation
JP2017043658A (ja) 二軸配向フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227037333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778897

Country of ref document: EP

Effective date: 20221102