WO2020040240A1 - 離型フィルムおよび成型品の製造方法 - Google Patents

離型フィルムおよび成型品の製造方法 Download PDF

Info

Publication number
WO2020040240A1
WO2020040240A1 PCT/JP2019/032753 JP2019032753W WO2020040240A1 WO 2020040240 A1 WO2020040240 A1 WO 2020040240A1 JP 2019032753 W JP2019032753 W JP 2019032753W WO 2020040240 A1 WO2020040240 A1 WO 2020040240A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
release film
layer
release layer
film
Prior art date
Application number
PCT/JP2019/032753
Other languages
English (en)
French (fr)
Inventor
誠治 山本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201980055764.1A priority Critical patent/CN112601646B/zh
Priority to JP2020531182A priority patent/JP6863523B2/ja
Publication of WO2020040240A1 publication Critical patent/WO2020040240A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation

Definitions

  • the present invention relates to a method for producing a release film and a molded product.
  • the release film is often used for the purpose of protecting the surface of the molded product or the laminate when manufacturing a molded product or when producing a laminate in which different materials are bonded.
  • a release film is a cover lay film (hereinafter, also referred to as a “CL film”) or a reinforcing film with an adhesive applied to a flexible film having an exposed circuit (hereinafter, also referred to as a “circuit exposed film”). It is used when a flexible printed circuit board (hereinafter, also referred to as “FPC”) is manufactured by bonding boards by a heat press.
  • the release film has conventionally been required to improve two characteristics described below.
  • the first required characteristic is the ease with which the release film can be peeled off after the production of the molded product or the laminate, that is, the releasability.
  • the second required property is adhesion of the release film to the surface of the molded product or the laminate, that is, followability. Therefore, conventionally, research and development have been carried out on improving characteristics such as releasability and followability of a release film.
  • Patent Literature 1 discloses a release film having a polyester layer having irregularities formed on its surface to satisfy specific conditions.
  • a cushioning material such as paper or silicon rubber, a release film, a CL film, and a circuit exposure film are applied to the pressed object stacked in this order by the heating described above. It was usual to perform a pressing process (for example, Patent Document 2).
  • the inventors of the present invention have conducted intensive studies from the viewpoint of improving the balance between the releasability of the release film and the followability of the surface-roughened FPC of the release film. Has been found to be effective from the viewpoint of improving the releasability of FPC having a roughened surface.
  • the index of the arithmetic flat height and the index of the ratio of the surface area to the area of the release surface were controlled, and this problem was solved. They have found that they can do this and have completed the present invention.
  • a release film having a first release layer containing a thermoplastic resin on one release surface The arithmetic mean height Sa of the one release surface is 0.6 ⁇ m or more and 2.3 ⁇ m or less; In an arbitrary area of the one release surface, when the area of the area is A (mm 2 ) and the surface area of the area is S (mm 2 ), the S / A is 1.005 or more and 1.025 or less. Certain release films are provided.
  • a method for manufacturing a molded product is provided, wherein a surface of the object on which the release film is disposed is formed of a material including a thermosetting resin.
  • the present invention it is possible to improve the balance between the releasability and the followability while obtaining good releasability of the release film from the surface-roughened FPC.
  • FIG. 1 is a cross-sectional view of the release film according to the present embodiment.
  • the release film 10 includes a release layer 1 containing a first thermoplastic resin, a cushion layer 3, and a release layer 2 containing a second thermoplastic resin in a thickness direction. It has a laminated structure laminated in this order.
  • the release layer 1 is provided on one surface of the release film 10, and the release layer 2 is provided on the other surface of the release film 10.
  • the release film 10 is disposed such that the release layer 1 side is in contact with a molding target including a circuit and the like. That is, the surface on the side in contact with the molding target is the first release surface of the release film 10, and the surface on the side opposite to the surface on the side in contact with the molding target is the second release surface of the release film 10. The mold surface.
  • the surface of the molding target before the release film 10 is arranged is usually formed of a material containing a thermosetting resin in a semi-cured state.
  • the release film 10 is used by arranging it on the surface of a molding target formed of a material containing a thermosetting resin in a semi-cured state. Then, a desired molded product can be obtained by performing a heat press in a state where the release film 10 is arranged on the surface of the molding object.
  • the release layer 1 is a layer that forms a surface (first release surface) that is in contact with a molding target when hot pressing is performed using the release film 10.
  • the release layer 1 contains particles.
  • the average particle diameter d50 of the particles is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the average particle diameter d50 of the particles is preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle diameter d50 of the particles is equal to or more than the lower limit, the rigidity of the release film 10 can be improved, and the releasability from the surface-roughened FPC can be improved.
  • the average particle diameter d50 of the particles is equal to or less than the above upper limit, the balance between the releasability and the followability is improved, and a molded article having a good finished appearance can be produced.
  • the particles are preferably inorganic particles from the viewpoint of improving the rigidity of the release film 10.
  • the inorganic particles include crystalline silica, amorphous silica, and silica such as fused silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, and oxide.
  • examples include particles using one or more of zinc, alumina, aluminum nitride, aluminum borate whiskers, boron nitride, antimony oxide, E glass, D glass, S glass, and zeolite.
  • the inorganic particles only one type of particles may be used alone, or different types of particles may be used in combination.
  • the inorganic particles may be subjected to a surface treatment using a silane coupling agent or the like for the purpose of improving the adhesion to the resin, or a core-shell type particle obtained by performing an organic coating treatment on the inorganic particles for the purpose of improving the dispersibility. May be used.
  • silica such as crystalline silica, amorphous silica, and fused silica is preferable, and spherical fused silica is more preferable.
  • the content of the particles with respect to the total amount of the release layer 1 is preferably 3% by weight or more and 30% by weight or less, more preferably 5% by weight or more and 20% by weight or less. This makes it possible to improve the balance between the releasability of the release layer 1 and the surface-roughened FPC and the followability.
  • the thickness of the release layer 1 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of obtaining good release properties even during high-temperature and high-pressure pressing while obtaining appropriate strength.
  • the thickness of the release layer 1 is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less, further preferably 30 ⁇ m or less, and further more preferably 20 ⁇ m or less. It is. By setting the thickness of the release layer 1 to be equal to or more than the lower limit, good releasability is easily obtained. On the other hand, by setting the thickness of the release layer 1 to be equal to or less than the upper limit, good followability is obtained.
  • the thickness of the release layer 1 is preferably set in accordance with the balance with the thickness of the entire release film, from the viewpoint of balancing the releasability and the followability.
  • the thickness of the release layer 1 is preferably 15 to 40%, more preferably 20 to 30%, based on the thickness of the entire release film.
  • the arithmetic average height Sa of the first release surface of the release film 10 is 0.6 ⁇ m or more and 2.3 ⁇ m or less, and preferably 0.7 ⁇ m or more and 2.0 ⁇ m or less.
  • the arithmetic mean height Sa can be measured according to ISO25178.
  • S / A is 1. 005 or more and 1.025 or less.
  • the S / A is equal to or more than the lower limit, the releasability from the roughened FPC can be improved.
  • the S / A is set to be equal to or less than the above upper limit, it becomes possible to maintain good followability.
  • the arbitrary region of the first release surface may be any region as long as the release film 10 functions as a release film.
  • the arithmetic mean height Sa and the numerical value of S / A in the release film 10 are based on the particle size of the particles contained in the release layer 1, the content of the particles, and the thickness of the release film 10 and the release layer 1. It can be adjusted by controlling. That is, for example, if the particle size of the particles is larger than the thickness of the release layer 1, the irregularities due to the particles on the first release surface of the release film 10 tend to be remarkable, and the content of the particles When the ratio is large, the unevenness due to particles on the first release surface of the release film 10 tends to be remarkable.
  • the peel strength of the first release surface is preferably as low as possible, but is preferably 0.1 N / 50 mm or less, and it is preferable that the release strength is naturally released from the FPC. By doing so, it is possible to improve the releasability from the molding object.
  • the peel strength can be measured by the following method. First, a circuit board whose surface is roughened by performing an argon (Ar) plasma treatment on the circuit board on which the coverlay film is laminated is obtained. Next, the circuit board having a roughened surface is vertically bonded so that the first release surface of the release film 10 faces the above-described circuit board, and is subjected to hot pressing using a vacuum press. Thus, a test piece is prepared. Thereafter, the peel strength of the first release surface is measured by peeling the release film 10 from the obtained test piece using a tensile tester.
  • Ar argon
  • the release layer 1 contains a thermoplastic resin.
  • the thermoplastic resin include polyalkylene terephthalate resins such as polyethylene terephthalate resin (PET), polybutylene terephthalate resin (PBT), polytrimethylene terephthalate resin (PTT), polyhexamethylene terephthalate resin (PHT), Methyl 1-pentene resin (TPX: hereinafter also referred to as polymethylpentene resin), syndiotactic polystyrene resin (SPS), polypropylene resin (PP) and a copolymer resin obtained by copolymerizing other components. These may be used alone or in combination of two or more.
  • one or more selected from the group consisting of polymethylpentene resin, polybutylene terephthalate resin, syndiotactic polystyrene resin and polypropylene resin are used. Is preferable, and a polymethylpentene resin is more preferable.
  • the release layer 1 includes, in addition to the above thermoplastic resin, additives such as antioxidants, slip agents, antiblocking agents, antistatic agents, coloring agents such as dyes and pigments, stabilizers, fluororesins, silicone rubber, and the like.
  • additives such as antioxidants, slip agents, antiblocking agents, antistatic agents, coloring agents such as dyes and pigments, stabilizers, fluororesins, silicone rubber, and the like.
  • An inorganic filler such as an impact resistance imparting agent, titanium oxide, calcium carbonate, and talc may be contained.
  • the release layer 2 is a layer that forms a surface (second release surface) that is in contact with the press hot plate when hot pressing is performed using the release film 10.
  • the release layer 2 may include particles.
  • the average particle diameter d50 of the particles contained in the release layer 2 is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 40 ⁇ m or less. By doing so, it is possible to provide irregularities of a desired size on the second release surface.
  • the content of the particles with respect to the total amount of the release layer 2 is preferably 0.05% by weight to 30% by weight, more preferably 0.1% by weight to 20% by weight, and more preferably 1% by weight to 10% by weight. It is more preferred that the content be not more than weight%.
  • the particles contained in the release layer 2 can be the same particles as the particles contained in the release layer 1.
  • the particles contained in the release layer 1 and the particles contained in the release layer 2 may be particles composed of the same material or particle diameter, or particles composed of different materials or particle diameters.
  • the thickness of the release layer 2 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of obtaining good release properties even during high-temperature and high-pressure pressing while obtaining appropriate strength.
  • the thickness of the release layer 2 is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less, further more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less. It is.
  • the thickness of the release layer 2 is preferably set according to the balance with the thickness of the entire release film, from the viewpoint of balancing the releasability and the followability.
  • the thickness of the release layer 2 is preferably 15 to 40%, more preferably 20 to 30%, based on the thickness of the entire release film.
  • the release layer 2 contains a thermoplastic resin.
  • the same thermoplastic resin as described in the release layer 1 can be used.
  • the thermoplastic resins used in the release layer 1 and the release layer 2 may be the same or different.
  • the release layer 2 may be formed using the same material as the release layer 1 or may be different.
  • cushion layer 3 The cushion layer 3 is interposed between the release layer 1 and the release layer 2.
  • the thickness of the cushion layer 3 is preferably from 10 ⁇ m to 100 ⁇ m, more preferably from 10 ⁇ m to 90 ⁇ m, even more preferably from 10 ⁇ m to 70 ⁇ m.
  • the thickness of the cushion layer 3 is preferably from 20 ⁇ m to 50 ⁇ m, and more preferably from 30 ⁇ m to 40 ⁇ m.
  • the cushioning property of the release film 10 is obtained, and the transfer of the mesh of the below-described material used during the hot pressing to the surface of the FPC is suppressed, a good appearance is obtained, and the followability is improved.
  • the thickness of the cushion layer 3 is equal to or less than the upper limit, the releasability can be favorably maintained.
  • the resin material forming the cushion layer 3 include ⁇ -olefin-based polymers such as polyethylene and polypropylene, and ⁇ -olefin-based polymers having ethylene, propylene, butene, pentene, hexene, and methylpentene as polymer components.
  • Engineering plastics resins such as copolymers, polyethersulfone, and polyphenylene sulfide are exemplified. These may be used alone or in combination of two or more. Among them, ⁇ -olefin copolymers are preferred.
  • Examples of the ⁇ -olefin-based copolymer include a copolymer of an ⁇ -olefin such as ethylene and a (meth) acrylate, a copolymer of ethylene and vinyl acetate, and a copolymer of ethylene and (meth) acrylic acid. And a partially ion-crosslinked product thereof.
  • EMMA ethylene-methyl methacrylate copolymer
  • PP polypropylene
  • EMMA ethylene-methyl methacrylate copolymer
  • PBT polybutylene terephthalate
  • PP polypropylene
  • EMMA ethylene
  • PBT polybutylene terephthalate
  • the cushion layer 3 may further contain a rubber component.
  • the rubber component include styrene-based thermoplastic elastomers such as styrene-butadiene copolymer and styrene-isoprene copolymer, thermoplastic elastomer materials such as olefin-based thermoplastic elastomers, amide-based elastomers, polyester-based elastomers, and natural rubber. And rubber materials such as isoprene rubber, chloroprene rubber, and silicone rubber.
  • the cushion layer 3 includes an antioxidant, a slip agent, an antiblocking agent, an antistatic agent, a coloring agent such as a dye and a pigment, an additive such as a stabilizer, an impact resistance imparting agent such as a fluororesin and a silicone rubber, and an oxidizing agent.
  • An inorganic filler such as titanium, calcium carbonate, and talc may be contained.
  • a known method such as an air-cooled or water-cooled inflation extrusion method, a T-die extrusion method, or the like can be used.
  • the whole thickness of the release film 10 is preferably 30 ⁇ m or more and 180 ⁇ m or less, more preferably 30 ⁇ m or more and 150 ⁇ m or less. Further, from the viewpoint of reducing the manufacturing cost, the entire thickness of the release film 10 is preferably 30 ⁇ m or more and 100 ⁇ m or less, more preferably 40 ⁇ m or more and 90 ⁇ m or less, and further preferably 50 ⁇ m or more and 80 ⁇ m or less. By setting the thickness of the release film 10 to be equal to or more than the above lower limit value, it is easy to obtain the release property against the roughened FPC even under high temperature and high pressure conditions.
  • the cushioning property of the release film 10 is obtained, and the transfer of the mesh of the below-described material used during the hot pressing to the surface of the FPC is suppressed, a good appearance is obtained, and the followability is improved.
  • the thickness of the release film 10 is set to be equal to or less than the upper limit, the release property can be favorably maintained. Further, by setting the entire thickness of the release film 10 within the above numerical range, it is possible to uniformly apply the pressing pressure to the release film 10 at the time of producing a molded product.
  • the release film 10 includes the release layer 1 and the cushion layer 3, the arithmetic mean height Sa of the first release surface is 0.6 ⁇ m or more and 2.3 ⁇ m or less, and the first release surface
  • the S / A is 1.005 or more and 1.025 or less. That is, by controlling the surface state of the first release surface to a high degree, the balance between the releasability of the release film 10 and the roughened FPC and the followability is improved. Details of such a reason are not clear, but are presumed as follows.
  • the arithmetic average height Sa is a parameter that represents the average of the heights of peaks and valleys (height of irregularities) with respect to the average surface.
  • the larger the surface area the easier the cushioning property is to be obtained, and it is presumed that the S / A is easy to control the following ability. Therefore, by combining these, the surface shape of the entire release surface is appropriately controlled, and as a result, as a whole, the release film 10 can obtain good release properties even with respect to the roughened FPC, It is considered that the balance between the releasability and the followability can be improved.
  • the surface-roughened FPC is intended to be, for example, one that has been subjected to a plasma treatment under Ar gas and one that has an arithmetic average roughness Sa of (0.18 ⁇ m) or more. Plasma processing conditions can also be employed.
  • the release film 10 has a laminated structure in which the release layer 1, the cushion layer 3, and the release layer 2 are laminated in this order in the thickness direction.
  • the release film may have a configuration of four or more layers such as four layers and five layers having an adhesive layer, a gas barrier layer, and the like.
  • the adhesive layer and the gas barrier layer are not particularly limited, and known materials can be used.
  • the release film 10 can be produced using a known method such as a coextrusion method, an extrusion lamination method, a dry lamination method, and an inflation method.
  • the release film 10 may be manufactured separately from the release layer 1, the cushion layer 3, and the release layer 2 and then joined by a laminator or the like. It is preferable to form a film by an extrusion inflation method or a co-extrusion T-die method. Above all, a method of forming a film by a co-extrusion T-die method is particularly preferable because it is excellent in controlling the thickness of each layer.
  • the release layer 1, the cushion layer 3, and the release layer 2 may be directly bonded, or may be bonded via an adhesive layer.
  • the method for manufacturing a molded product according to the present embodiment uses the release film 10 described above.
  • the method for manufacturing a molded product according to the present embodiment may be used, for example, when manufacturing a flexible printed circuit board.
  • the release film 10 is interposed between the coverlay and the press machine when the coverlay film is heated and pressed to the circuit in order to protect the circuit formed on the flexible film. Let me use it.
  • the release film 10 is used, for example, in a coverlay press laminating step, which is one of the manufacturing steps of a flexible printed wiring board. More specifically, the release film 10 is arranged so as to wrap the cover lay film in order to make the cover lay film adhere to the concave and convex portions of the circuit pattern when the cover lay film is bonded to the circuit exposure film. It is heated and pressed by a press together with the film. At this time, in order to improve the cushioning property, paper, rubber, a fluororesin sheet, glass paper, or the like, or a material obtained by combining them may be inserted between the release film and the press and then heated and pressed.
  • the release film 10 of the present embodiment may be used in the following method to produce the above-mentioned molded product.
  • the first release surface of the release layer 1 of the release film 10 according to the present embodiment is disposed on the surface of an object formed of a material containing a thermosetting resin.
  • the second release surface of the release layer 2 of the release film paper, rubber, a fluororesin sheet, glass paper or the like, or a material combining these is disposed. Thereafter, a pressing process is performed on the object on which the release film 10 is disposed in a mold.
  • thermosetting resin may be in a semi-cured state or a cured state, but when in the semi-cured state, the function and effect of the release film 10 become more remarkable.
  • the thermosetting resin is a resin composition containing an epoxy resin
  • the epoxy resin is preferably in an intermediate stage of the curing reaction, that is, in a B-stage state.
  • thermoplastic resin composition for forming the first release layer 90 parts by weight of a polymethylpentene resin (TPX (registered trademark)) (manufactured by Mitsui Chemicals, Inc., RT31) and an average particle diameter d50 of 11.7 ⁇ m were used. 10 parts by weight of fused silica (SC10-32F, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.), which is a spherical inorganic particle, was used.
  • TPX polymethylpentene resin
  • SC10-32F fused silica
  • a cushion layer 40 parts by weight of a modified polyethylene resin (ethylene-methyl methacrylate copolymer (EMMA) resin) (manufactured by Sumitomo Chemical Co., Ltd., WD106), 30 parts by weight of a polypropylene resin (manufactured by Prime Polymer Co., E111G), polymethylpentene resin A resin composition containing 30 parts by weight of (TPX (registered trademark)) (manufactured by Mitsui Chemicals, Inc., RT31) was used.
  • EMMA ethylene-methyl methacrylate copolymer
  • TPX registered trademark
  • thermoplastic resin composition for forming the second release layer 98 parts by weight of polymethylpentene resin (TPX (registered trademark)) (manufactured by Mitsui Chemicals, Inc., RT31) and fused silica as spherical inorganic particles (Nippon Steel Corporation) 2 parts by weight of SC10-32F manufactured by Sumikin Materials Co., Ltd. were used.
  • TPX polymethylpentene resin
  • SC10-32F fused silica as spherical inorganic particles manufactured by Sumikin Materials Co., Ltd.
  • Example 2 The first release layer was prepared using a thermoplastic resin material mixed with the above-mentioned TPX so that the content of fused silica with respect to the total amount of the first release layer was 20 parts by weight.
  • a release film of Example 2 was obtained in the same manner as in Example 1, except that the thickness of the mold layer was 10 ⁇ m, the thickness of the cushion layer was 40 ⁇ m, and the thickness of the second release layer was 10 ⁇ m.
  • Example 3 Instead of the fused silica SC10-32F, a fused silica having an average particle diameter d50 of 17.1 ⁇ m (SC70F, manufactured by Nippon Steel & Sumitomo Metal Materials Co., Ltd.) was used, and the above TPX was mixed so that the content of the fused silica was 5 parts by weight.
  • a release film of Example 3 was obtained in the same manner as in Example 1, except for the following.
  • Example 4 The first release layer was prepared using a thermoplastic resin material mixed with the above-mentioned TPX so that the content of fused silica with respect to the total amount of the first release layer was 10 parts by weight.
  • a release film of Example 4 was obtained in the same manner as in Example 3, except that the thickness of the mold layer was 15 ⁇ m, the thickness of the cushion layer was 30 ⁇ m, and the thickness of the second release layer was 15 ⁇ m.
  • Example 5 The first release layer was prepared using a thermoplastic resin material mixed with the above TPX so that the content of fused silica with respect to the total amount of the first release layer was 15 parts by weight.
  • a release film of Example 5 was obtained in the same manner as in Example 3, except that the thickness of the mold layer was 10 ⁇ m, the thickness of the cushion layer was 30 ⁇ m, and the thickness of the second release layer was 10 ⁇ m.
  • Example 6> Instead of the fused silica SC10-32F, a fused silica having an average particle size d50 of 23.9 ⁇ m (SC80-53F, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) was used, and the content of the fused silica was adjusted to 5 parts by weight.
  • Example 7 The first release layer was prepared using a thermoplastic resin material mixed with the above-mentioned TPX so that the content of fused silica with respect to the total amount of the first release layer was 10 parts by weight.
  • a release film of Example 7 was obtained in the same manner as in Example 6, except that the thickness of the mold layer was 15 ⁇ m, the thickness of the cushion layer was 30 ⁇ m, and the thickness of the second release layer was 15 ⁇ m.
  • Example 9 Except that the thickness of the first release layer was 30 ⁇ m, the thickness of the cushion layer was 70 ⁇ m, and the thickness of the second release layer was 30 ⁇ m, the release film of Example 9 was produced in the same manner as in Example 1. I got
  • ⁇ Comparative Example 1> instead of the fused silica SC10-32F, a fused silica (SP60, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having an average particle diameter d50 of 2.2 ⁇ m was used, and the above TPX was mixed with the TPX so that the content of the fused silica was 10 parts by weight.
  • a release film of Comparative Example 1 was obtained in the same manner as in Example 1, except for the following points.
  • the first release layer was prepared using a thermoplastic resin material mixed with the above-mentioned TPX so that the content of fused silica with respect to the total amount of the first release layer was 20 parts by weight.
  • a release film of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that the thickness of the mold layer was 20 ⁇ m, the thickness of the cushion layer was 30 ⁇ m, and the thickness of the second release layer was 20 ⁇ m.
  • the first release layer was prepared using a thermoplastic resin material blended with the above TPX so that the content of fused silica with respect to the total amount of the first release layer was 2 parts by weight.
  • a release film of Comparative Example 3 was obtained in the same manner as in Example 1, except that the thickness of the mold layer was 20 ⁇ m, the thickness of the cushion layer was 30 ⁇ m, and the thickness of the second release layer was 20 ⁇ m.
  • the first release layer was prepared using a thermoplastic resin material mixed with the above-mentioned TPX so that the content of fused silica with respect to the total amount of the first release layer was 20 parts by weight.
  • a release film of Comparative Example 4 was obtained in the same manner as in Example 3, except that the thickness of the mold layer was 10 ⁇ m, the thickness of the cushion layer was 40 ⁇ m, and the thickness of the second release layer was 10 ⁇ m.
  • ⁇ Comparative Example 5> instead of the fused silica SC10-32F, a fused silica (SC30F, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having an average particle diameter d50 of 35.6 ⁇ m was used, and the above TPX was used so that the content of the fused silica was 5 parts by weight.
  • a release film of Comparative Example 5 was obtained in the same manner as in Example 1, except for the following points.
  • Comparative Example 6 The release film of Comparative Example 6 was obtained in the same manner as in Comparative Example 1 except that the fused silica SP60 was removed and the first release layer was prepared using the thermoplastic resin material composed of 100 parts by weight of TPX. Was.
  • Arithmetic mean height (Sa) of the first release surface of the first release layer The surface of the first release surface of the first release layer in the obtained release film conforms to ISO25178. The measurement was performed using VertScan @ R3300H manufactured by Ryoka Systems Inc. The unit is ⁇ m.
  • the surface of the first release surface of the first release layer in the obtained release film is diamond-shaped.
  • the measurement was performed using VertScan @ R3300H manufactured by Kasei System Co., Ltd.
  • Releasability of first release surface of first release layer First, a circuit board whose surface was roughened by performing an Ar plasma treatment on the circuit board on which the coverlay film was laminated was obtained.
  • Ar plasma treatment Ar gas is supplied into the chamber at a flow rate of 150 sccm at a flow rate of 150 sccm, the pressure in the chamber is set to 25 Pa, and Ar plasma is generated by applying a microwave (power 300 W, frequency: 13.56 MHz). It was done by doing.
  • the first release surface of the release film 10 is vertically bonded so as to face the above-mentioned circuit board, and using a vacuum press machine at a pressure of 175 ° C.
  • a test piece is prepared by performing heat pressing for one minute. Then, the obtained test piece was taken out from the press machine, cooled in the atmosphere for 60 seconds, and then, about 180 mm / min in a 180 ° direction using a tensile tester (Force gauge AD-4932A-50N manufactured by A & D).
  • the release strength of the first release surface was measured by applying a stress at a speed and peeling the release film. In the measurement of the peel strength, the releasability was evaluated based on the following criteria. : The peel strength is 0.1 N / 50 mm or less, and the test piece peels naturally from the FPC.
  • X The peel strength is greater than 0.1 N / 50 mm, and the test piece does not spontaneously peel from the FPC.
  • Releasability 2 (Releasability of first release surface of first release layer): A circuit board that has been subjected to the same roughening treatment as that of the above-described release property evaluation is vertically bonded so that the first release surface of the release film 10 faces the above-described circuit board, and is subjected to vacuum pressing. A test piece was prepared by performing a hot press for 1 minute at 185 ° C. and a pressure of 2 MPa using a machine. Then, the obtained test piece was taken out from the press machine, cooled in the atmosphere for 60 seconds, and then, about 180 mm / min in a 180 ° direction using a tensile tester (Force gauge AD-4932A-50N manufactured by A & D).
  • the release strength of the first release surface was measured by applying a stress at a speed and peeling the release film. In the measurement of the peel strength, the releasability was evaluated based on the following criteria. :: The peel strength was 0.1 N / 50 mm or less, and the test piece was naturally peeled from the FPC. ⁇ : Peel strength is greater than 0.1 N / 50 mm and 3 N / 50 mm or less. X: Peel strength is larger than 3 N / 50 mm.
  • a 1 mm square opening was formed in a coverlay (CM type) manufactured by Arisawa Seisakusho.
  • CM type coverlay
  • a test piece was prepared in which a coverlay having the above-mentioned opening was temporarily fixed so that the surface on the side coated with the adhesive was in contact with the surface of the copper-clad laminate for a flexible wiring board.
  • the release film and the test piece are stacked so that the first release surface of the first release layer of the release film faces the surface of the test piece having the coverlay.
  • a hot press treatment was performed at 175 ° C. and 2 MPa for 2 minutes to obtain a molded product.
  • the adhesive coated on the surface of the cover tape extruded from the outer edge of the opening into the opening formed in the coverlay was observed, and the followability was evaluated based on the following criteria. :: The difference in unevenness of the exuded shape of the adhesive was less than 80 ⁇ m. X: The difference in unevenness of the exuded shape of the adhesive was 80 ⁇ m or more.
  • a CL CM type, thickness 40 ⁇ m
  • a CL made by Arisawa Seisakusho is overlaid on the surface of the circuit exposure film on which a groove having a width of 100 ⁇ m and a depth of 50 ⁇ m is formed, and then the release film is further opposed to the circuit board. It was adhered up and down, and heated and compressed at 185 ° C. and 2 MPa for 1 minute using a vacuum press machine to form it. That is, the mold, the release film, the molding material, the release film, and the mold were laminated in this order, and heat compression molding was performed.
  • the number of voids is 00.3: The number of voids having a length of 0.3 mm or more is 0 and the number of voids of less than 0.3 mm is 1 or more x: The number of voids having a length of 0.3 mm or more is 1 or more
  • -Moldability wrinkles of molded products: A test piece with the coverlay temporarily fixed so that the adhesive-coated side of Arizawa's coverlay (CM type) is in contact with the surface of the copper-clad laminate for flexible wiring boards Produced. Next, the release film and the test piece are stacked so that the first release surface of the first release layer of the release film faces the surface of the test piece having the coverlay. After the combination, a hot press treatment was performed at 175 ° C. and 2 MPa for 2 minutes to obtain a molded product. Regarding the appearance of the FPC, the wrinkle generation rate per unit area was measured by a method based on “7.5.7.2 wrinkles” of the JPCA standard. The obtained measured values were evaluated according to the following criteria. :: The wrinkle generation rate was less than 1.5%. X: The wrinkle generation rate was 1.5% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

離型フィルム(10)は、一方の離型面に、熱可塑性樹脂を含む第1の離型層を有し、一方の離型面の算術平均高さSaが0.6μm以上2.3μm以下であり、一方の離型面の任意の領域において、当該領域の面積をA(mm)、当該領域の表面積をS(mm)としたとき、S/Aが1.005以上1.025以下である。

Description

離型フィルムおよび成型品の製造方法
 本発明は、離型フィルムおよび成型品の製造方法に関する。
 離型フィルムは、通常、成型品を製造する際や異なる材料を貼り合わせた積層体を製造する際に、かかる成型品や積層体の表面を保護する目的で、使用されることが多い。
 例えば、離型フィルムは、回路が露出したフレキシブルフィルム(以下、「回路露出フィルム」とも称する。)に対して、接着剤を介してカバーレイフィルム(以下、「CLフィルム」とも称する。)または補強板を加熱プレスにより接着してフレキシブルプリント回路基板(以下「FPC」とも称する)を作製する際に用いられる。
 そのため、離型フィルムについては、従来から以下に説明する2つの特性を向上させることが要求されてきた。
 第一に要求される特性は、成型品や上記積層体を製造した後における当該離型フィルムの剥離しやすさ、すなわち、離型性である。
 第二に要求される特性は、成型品や上記積層体の表面に対する当該離型フィルムの密着性、すなわち、追従性である。
 そこで、従来、離型フィルムにおける離型性や追従性といった特性を向上させることに関し、研究、開発が行われている。
 例えば、特許文献1には、表面に特定の条件を満たす凸凹が形成されたポリエステル層を有する離型フィルムが開示されている。
 また、フレキシブルプリント回路基板の従来の製造プロセスにおいては、紙やシリコンゴム等のクッション材、離型フィルム、CLフィルムおよび回路露出フィルムが、この順に重ねられた被プレス物に対して、上述した加熱プレス処理を行うことが通常であった(例えば、特許文献2)。
特開2009-90665号公報 特開2012-179827号公報
 しかしながら、近年、離型フィルムの各種特性について要求される技術水準は、ますます高くなってきている。なかでも、カバーレイフィルムまたは補強板との接着性を向上させる観点から表面粗化処理されたFPCに対し、特許文献1等に記載される従来の離型フィルムをそのまま用いた場合、離型フィルムと表面粗化されたFPCとの密着が過剰となり、離型性が低下する傾向があった。
 本発明の課題は、表面粗化されたFPCに対する良好な離型性を得つつ、離型性と追従性のバランスを向上させた離型フィルムを提供する事にある。
 本発明者らは、離型フィルムの表面粗化されたFPCに対する離型性と、追従性のバランスを向上させる観点から鋭意検討を行い、離型面の表面粗さについて、面方向における凹凸形状を制御することが、表面粗化されたFPCに対する離型性を向上させる観点から有効であるという知見を得た。そして、さらに検討を進めた結果、算術平高さという指標と、離型面の面積に対する表面積の比率という指標を制御することで、離型性と追従性のバランスが良好となり、かかる課題が解決できることを見出し、本発明を完成させた。
 本発明によれば、
 一方の離型面に、熱可塑性樹脂を含む第1の離型層を有する離型フィルムであって、
 前記一方の離型面の算術平均高さSaが0.6μm以上2.3μm以下であり、
 前記一方の離型面の任意の領域において、当該領域の面積をA(mm)、当該領域の表面積をS(mm)としたとき、S/Aが1.005以上1.025以下である、離型フィルム
が提供される。
 また、本発明によれば、上記離型フィルムの前記一方の離型面が対象物側になるように、前記対象物上に前記離型フィルムを配置する工程と、
 前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、
 を含み、
 前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される面が、熱硬化性樹脂を含む材料によって形成されている、成型品の製造方法が提供される。
 本発明によれば、表面粗化されたFPCに対する離型フィルムの良好な離型性を得つつ、離型性と追従性のバランスを向上できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1実施形態に係る離型フィルムの縦断面図である。
<離型フィルム>
 図1は、本実施形態に係る離型フィルムの断面図である。
 図1に示すように、離型フィルム10は、第1の熱可塑性樹脂を含む離型層1と、クッション層3と、第2の熱可塑性樹脂を含む離型層2とが、厚み方向にこの順で積層した積層構造を有する。
 また、離型層1は、離型フィルム10の一方の面に配されており、離型層2は、離型フィルム10の他方の面に配されている。
 本実施形態において、離型フィルム10は、回路等を備えた成型対象物に対し、離型層1側が接するように配置される。すなわち、成型対象物に接する側の面を、離型フィルム10の第1の離型面とし、成型対象物に接する側の面とは反対側の面を、離型フィルム10の第2の離型面とする。
 また、離型フィルム10を配置する前段階における上記成型対象物の表面は、通常、半硬化状態にある熱硬化性樹脂を含む材料によって形成されている。
 離型フィルム10は、上記半硬化状態にある熱硬化性樹脂を含む材料によって形成された成型対象物の表面上に配置して用いる。そして、成型対象物の表面に離型フィルム10を配置した状態で、加熱プレスを行うことで、所望の成型品を得ることができる。
 以下、各層について詳述する。
・離型層1(第1の離型層)
 離型層1は、離型フィルム10を用いて加熱プレスを行う際に、成型対象物に接する面(第1の離型面)を形成する層である。
 本実施形態において、離型層1は粒子を含む。粒子の平均粒径d50は、好ましくは3μm以上、より好ましくは10μm以上である。一方、粒子の平均粒径d50は、好ましくは35μm以下、より好ましくは25μm以下である。
 粒子の平均粒径d50を上記下限値以上とすることで、離型フィルム10の剛性を向上させるとともに、表面粗化したFPCとの離型性を向上させることができる。一方、粒子の平均粒径d50を上記上限値以下とすることで、離型性と追従性とのバランスを良好にし、仕上がり外観が良好な成型品を作製することができる。
 粒子は、離型フィルム10の剛性を向上させる観点から、無機粒子であることが好ましい。
 無機粒子としては、結晶性シリカ、非晶性シリカ、および溶融シリカなどのシリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、アンチモン酸化物、Eガラス、Dガラス、Sガラス、およびゼオライトからなる群から得られる1種または2種以上を用いてなる粒子が挙げられる。無機粒子は、1種類のみの粒子を単独で使用してもよいし、異なる種類の粒子を併用してもよい。無機粒子は、樹脂との密着性を向上させる目的でシランカップリング剤など用いて表面処理を行ってもよいし、分散性を向上させる目的で無機粒子に有機被膜処理を行ったコアシェル型粒子を用いてもよい。
 離型フィルムの剛性を向上させる観点から、結晶性シリカ、非晶性シリカ、および溶融シリカなどのシリカであることが好ましく、球状の溶融シリカであることがより好ましい。
 離型層1全量に対する粒子の含有量は、好ましくは3重量%以上30重量%以下であり、より好ましくは5重量%以上20重量%以下である。
 これにより、離型層1に関し、表面粗化したFPCとの離型性と追従性のバランスを向上させることができる。
 離型層1の厚みは、適度な強度を得つつ、高温、高圧プレス時でも良好な離型性を得る観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。一方、成型品に対する埋め込み性を向上させる観点から、離型層1の厚みは、好ましくは40μm以下であり、より好ましくは35μm以下であり、さらに好ましくは30μm以下であり、ことさらに好ましくは20μm以下である。
 離型層1の厚みを上記下限値以上とすることにより、良好な離型性が得られやすくなり、一方、離型層1の厚みを上記上限値以下とすることにより、良好な追従性が得られやすくなるとともに、コストダウンを図ることができる。また、離型層1の厚みは、離型性と追従性のバランスを両立する観点から、離型フィルム全体の厚みとのバランスにより設定されることが好適である。離型層1の厚みは、離型フィルム全体の厚みに対して、好ましくは15~40%であり、より好ましくは20~30%である。
 離型フィルム10の第1の離型面の算術平均高さSaは0.6μm以上2.3μm以下であり、0.7μm以上2.0μm以下であることが好ましい。
 算術平均高さSaを上記下限値以上とすることにより、粗化FPCとの離型性を高めることができる。一方、算術平均粗さSaを上記上限値以下とすることにより、追従性を良好に保持することができるようになる。
 なお、算術平均高さSaは、ISO25178に準じて測定することができる。
 また、離型フィルム10の第1の離型面の任意の領域において、当該領域の面積をA(mm)、当該領域の表面積をS(mm)としたとき、S/Aが1.005以上1.025以下である。
 S/Aを上記下限値以上とすることにより、粗化FPCとの離型性を高めることができる。一方、S/Aを上記上限値以下とすることにより、追従性を良好に保持することができるようになる。
 なお、第1の離型面の任意の領域とは、離型フィルム10が離型フィルムとして機能する領域であればいずれの領域であってもよい。
 また、離型フィルム10における算術平均高さSa、およびS/Aの数値は、離型層1に含まれる粒子の粒径、粒子の含有量、離型フィルム10及び離型層1の厚みを制御することによって調整することができる。すなわち、例えば、粒子の粒径が離型層1の厚みよりも大きければ、離型フィルム10の第1の離型面において当該粒子による凹凸が顕著になる傾向があり、また、粒子の含有量が多ければ離型フィルム10の第1の離型面に粒子による凹凸が顕著になる傾向が得られる。
 離型フィルム10において、第1の離型面の剥離強度は、低い値であるほど望ましいが、0.1N/50mm以下であり、FPCと自然剥離することが好ましい。
こうすることで、成型対象物に対する離型性を向上させることができる。
 なお、上記剥離強度は、以下の方法で測定することができる。
 まず、カバーレイフィルムをラミネートした回路基板に対し、アルゴン(Ar)プラズマ処理を施す事で表面粗化した回路基板を得る。
 つぎに、表面粗化した回路基板に対して、離型フィルム10における第1の離型面が、上述した回路基板と対向するように上下に貼り合わせ、真空プレス機を用い、熱プレスを行うことにより、試験片を作製する。その後、引張試験機を用いて、得られた試験片から離型フィルム10を剥離することにより、第1の離型面の剥離強度を測定する。
 離型層1は熱可塑性樹脂を含む。
 熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂(PBT)、ポリトリメチレンテレフタレート樹脂(PTT)、ポリヘキサメチレンテレフタレート樹脂(PHT)等のポリアルキレンテレフタレート樹脂、ポリ4-メチル1-ペンテン樹脂(TPX:以下、ポリメチルペンテン樹脂ともいう。)、シンジオタクチックポリスチレン樹脂(SPS)、ポリプロピレン樹脂(PP)及び他の成分を共重合した共重合体樹脂が挙げられる。これらは、1種または2種以上を組み合わせて用いてもよい。中でも、離型層1の離型性を向上させる観点から、ポリメチルペンテン樹脂、ポリブチレンテレフタレート樹脂、シンジオタクチックポリスチレン樹脂およびポリプロピレン樹脂からなる群より選択される1種または2種以上を用いることが好ましく、ポリメチルペンテン樹脂であることがより好ましい。
 離型層1は、上記の熱可塑性樹脂のほか、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、染料および顔料等着色剤、安定剤等の添加剤、フッ素樹脂、シリコーンゴム等の耐衝撃性付与剤、酸化チタン、炭酸カルシウム、タルク等の無機充填剤を含有させてもよい。
・離型層2
 離型層2は、離型フィルム10を用いて加熱プレスを行う際に、プレス熱板と接する面(第2の離型面)を形成する層である。
 離型層2は、粒子を含んでもよい。離型層2に含まれる粒子の平均粒径d50は、3μm以上50μm以下であることが好ましく、10μm以上40μm以下であることがより好ましい。
 こうすることで、第2の離型面に対して所望の大きさの凹凸を付与することができる。
 離型層2全量に対する粒子の含有量は、0.05重量%以上30重量%以下であることが好ましく、0.1重量%以上20重量%以下であることがより好ましく、1重量%以上10重量%以下であることがさらに好ましい。
 なお、離型層2に含まれる粒子は、上記離型層1に含まれる粒子と同様の粒子とすることができる。なお、離型層1に含まれる粒子と、離型層2に含まれる粒子は、同じ材料または粒径からなる粒子であってもよく、異なる材料または粒径からなる粒子であってもよい。
 離型層2の厚みは、適度な強度を得つつ、高温、高圧プレス時でも良好な離型性を得る観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。一方、成型品に対する埋め込み性を向上させる観点から、離型層2の厚みは、好ましくは40μm以下であり、より好ましくは35μm以下であり、さらに好ましくは30μm以下であり、ことさらに好ましくは20μm以下である。また、離型層2の厚みは、離型性と追従性のバランスを両立する観点から、離型フィルム全体の厚みとのバランスにより設定されることが好適である。離型層2の厚みは、離型フィルム全体の厚みに対して、好ましくは15~40%であり、より好ましくは20~30%である。
 離型層2は、熱可塑性樹脂を含む。離型層2で用いられる熱可塑性樹脂は、上記離型層1で説明したのと同様の熱可塑性樹脂を用いることができる。離型層1と離型層2で用いられる熱可塑性樹脂は、同じであってもよく、異なっていてもよい。また、離型層2は、離型層1と同様の材料を用いて形成されてもよく、異なっていてもよい。
・クッション層3
 クッション層3は、離型層1と離型層2との間に介在する。
 クッション層3の厚みは、10μm以上100μm以下であることが好ましく、10μm以上90μm以下であることがより好ましく、10μm以上70μm以下であることがさらに好ましい。また、製造コストを低減する観点から、クッション層3の厚みは、20μm以上50μm以下であることが好ましく、30μm以上40μm以下であることがより好ましい。
 クッション層3の厚さが上記下限値以上とすることにより、高温・高圧条件下でも粗化FPCに対する離型性が得られやすくなる。さらに、離型フィルム10のクッション性が得られ、加熱プレス時に使用される後述の資材などの網目がFPC表面に転写するのを抑制し良好な外観が得られるとともに、追従性が良好になる。一方、クッション層3の厚さを上記上限値以下とすることにより、離型性を良好に維持できる。
 クッション層3を形成する樹脂材料の具体例としては、ポリエチレン、ポリプロプレン等のα-オレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、メチルペンテン等を重合体成分として有するα-オレフィン系共重合体、ポリエーテルスルホン、ポリフェニレンスルフィド等のエンジニアリングプラスチックス系樹脂等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、α-オレフィン系共重合体が好ましい。
 α-オレフィン系共重合体としては、エチレン等のα-オレフィンと(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体、およびそれらの部分イオン架橋物等が挙げられる。
 さらに、良好なクッション機能を得る観点から、エチレン等のα-オレフィン-(メタ)アクリル酸エステル共重合体を単独で用いたもの、または、ポリブチレンテレフタレートと1,4シクロヘキサンジメタノール共重合ポリエチレンテレフタレートとの混合物、α-オレフィン系重合体とエチレン等のα-オレフィン-(メタ)アクリル酸エステル共重合体との混合物が好ましい。
 たとえば、エチレンとエチレン-メチルメタクリレート共重合体(EMMA)との混合物、ポリプロピレン(PP)とエチレン-メチルメタクリレート共重合体(EMMA)との混合物、ポリブチレンテレフタレート(PBT)とポリプロピレン(PP)とエチレン-メチルメタクリレート共重合体(EMMA)との混合物、などがより好ましい。
 クッション層3は、さらにゴム成分を含んでもよい。ゴム成分としては、例えば、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体等のスチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、アミド系エラストマー、ポリエステル系エラストマー等の熱可塑性エラストマー材料、天然ゴム、イソプレンゴム、クロロプレンゴム、シリコンゴム等のゴム材料等が挙げられる。
 クッション層3には、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、染料および顔料等の着色剤、安定剤等の添加剤、フッ素樹脂、シリコンゴム等の耐衝撃性付与剤、酸化チタン、炭酸カルシウム、タルク等の無機充填剤を含有させてもよい。
 クッション層3を形成する方法としては、例えば、空冷または水冷インフレーション押出法、Tダイ押出法等の公知の方法が挙げられる。
・離型フィルム10全体
 離型フィルム10の全体の厚みは、好ましくは30μm以上180μm以下であり、より好ましくは30μm以上150μm以下である。また、製造コストを低減する観点から、離型フィルム10の全体の厚みは、好ましくは30μm以上100μm以下であり、より好ましくは40μm以上90μm以下であり、さらに好ましくは50μm以上80μm以下である。
 離型フィルム10の厚さを上記下限値以上とすることにより、高温・高圧条件下でも粗化FPCに対する離型性が得られやすくなる。さらに、離型フィルム10のクッション性が得られ、加熱プレス時に使用される後述の資材などの網目がFPC表面に転写するのを抑制し良好な外観が得られるとともに、追従性が良好になる。一方、離型フィルム10の厚さを上記上限値以下とすることにより、離型性を良好に維持できる。
 また、離型フィルム10の全体の厚みを上記の数値範囲内にすることで、成型品の作製時にプレス圧を離型フィルム10に対してムラなく均一に印加することが可能となる。
 次に、本実施形態の離型フィルム10の効果について説明する。
 離型フィルム10は、離型層1およびクッション層3を備え、第1の離型面の算術平均高さSaが0.6μm以上2.3μm以下であり、かつ、第1の離型面の任意の領域において、当該領域の面積をA(mm)、当該領域の表面積をS(mm)としたとき、S/Aが1.005以上1.025以下である。
 すなわち、第1の離型面の表面状態を高度に制御することで、離型フィルム10の粗化FPCとの離型性と追従性とのバランスを向上させるものである。かかる理由の詳細は明らかではないが以下のように推測される。
 まず、算術平均高さSaとは、平均面に対する山と谷の高さ(凹凸の高さ)の平均を表すパラメータであり、離型面と対象物との接点の状態に着目し離型性を制御するものと推測されるのに対し、S/Aとは、表面積が大きいほどクッション性が得られやすくなると考えられ、追従性を制御しやすくなるものと推測される。そこで、これらを組み合わせることで離型面全体の表面形状が適切に制御され、その結果、離型フィルム10全体として、表面粗化したFPCに対しても、良好な離型性が得られるとともに、離型性と追従性のバランスを向上できると考えられる。
 なお、表面粗化されたFPCとは、例えば、Arガス下でプラズマ処理が施されたもの、算術平均粗さSaが(0.18μm)以上であるものを意図するが、上記以外の様々なプラズマ処理条件を採用する事もできる。
 本実施形態において、離型フィルム10は、離型層1と、クッション層3と、離型層2とが厚み方向にこの順で積層してなる積層構造を有したものについて説明したが、これに限られない。
 例えば、離型フィルムは、接着層、ガスバリア層等を有する4層、5層等の4層以上の構成であってもよい。この場合、接着層、ガスバリア層としては、特に限定されず、公知のものを用いることができる。
<離型フィルム10の製造方法>
 離型フィルム10は、共押出法、押出ラミネート法、ドライラミネート法、インフレーション法等公知の方法を用いて作製することができる。また、離型フィルム10は、離型層1と、クッション層3と、離型層2との各層を、別々に製造してからラミネーター等により接合してもよいが、空冷式または水冷式共押出インフレーション法、共押出Tダイ法で成膜することが好ましい。なかでも、共押出Tダイ法で成膜する方法が各層の厚さ制御に優れる点で特に好ましい。また、離型層1と、クッション層3と、離型層2とをそのまま接合してもよいし、接着層を介して接合してもよい。
<成型品の製造方法>
 次に、本実施形態の成型品の製造方法について説明する。
 本実施形態の成型品の製造方法は、上述した離型フィルム10を使用するものである。そして、本実施形態の成型品の製造方法は、たとえば、フレキシブルプリント回路基板を作製する際に使用してもよい。この場合、離型フィルム10は、フレキシブルフィルム上に形成された回路を保護するため、当該回路に対してカバーレイフィルムを加熱プレスして密着させる際に、カバーレイとプレス機との間に介在させて使用する。
 具体的には、離型フィルム10は、例えば、フレキシブルプリント配線基板の製造工程の一つであるカバーレイプレスラミネート工程において用いられる。より詳細には、離型フィルム10は、回路露出フィルムへのカバーレイフィルム接着時にカバーレイフィルムを回路パターンの凹凸部に密着させるためにカバーレイフィルムを包むように配置され、回路露出フィルム及びカバーレイフィルムと共にプレス機により加熱加圧される。この時、クッション性の向上のために、紙、ゴム、フッ素樹脂シート、ガラスペーパー等、またはこれらを組合せた資材を離型フィルムとプレス機の間に挿入した上で加熱加圧することもできる。
 また、本実施形態の離型フィルム10は、上述した成型品を作製するために以下の方法で使用してもよい。
 まず、熱硬化性樹脂を含む材料によって形成されている対象物の表面に対して、上記本実施形態に係る離型フィルム10の離型層1における第1の離型面を配置する。次に、離型フィルム10の離型層2における第2の離型面上に、紙、ゴム、フッ素樹脂シート、ガラスペーパー等、またはこれらを組合せた資材を配置する。その後、離型フィルム10を配置した対象物に対し、金型内でプレス処理を行う。ここで、上述した熱硬化性樹脂は、半硬化状態であっても、硬化状態であってもよいが、半硬化状態であると、当該離型フィルム10の作用効果が一層顕著なものとなる。特に、熱硬化性樹脂がエポキシ樹脂を含む樹脂組成物である場合には、当該エポキシ樹脂が、硬化反応の中間の段階にあること、すなわち、Bステージ状態にあることが好ましい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
<実施例1>
 第1の離型層を形成する熱可塑性樹脂組成物として、ポリメチルペンテン樹脂(TPX(登録商標))(三井化学社製、RT31)90重量部と、平均粒径d50が、11.7μmの球状の無機粒子である溶融シリカ(新日鉄住金マテリアルズ社製、SC10-32F)10重量部を用いた。
 クッション層として、変性ポリエチレン樹脂(エチレン―メチルメタクリレート共重合体(EMMA)樹脂)(住友化学社製、WD106)40重量部、ポリプロピレン樹脂(プライムポリマー社製、E111G)30重量部、ポリメチルペンテン樹脂(TPX(登録商標))(三井化学社製、RT31)30重量部を含む樹脂組成物を用いた。
 第2の離型層を形成する熱可塑性樹脂組成物として、ポリメチルペンテン樹脂(TPX(登録商標))(三井化学社製、RT31)98重量部と、球状の無機粒子である溶融シリカ(新日鉄住金マテリアルズ社製、SC10-32F)2重量部を用いた。
 それぞれの材料を用いて、第1の離型層、クッション層、第2の離型層を、押出Tダイ法によって、厚み方向にこの順で積層し、それぞれの厚さが20μm、30μm、20μmとなるように成形する成形工程を行った。
<実施例2>
 第1の離型層全量に対する溶融シリカの含有量が20重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを10μm、クッション層の厚みを40μm、第2の離型層の厚みを10μmとした点以外は、実施例1と同様の方法にて実施例2の離型フィルムを得た。
<実施例3>
 溶融シリカSC10-32Fに代えて、平均粒径d50が17.1μmである溶融シリカ(新日鉄住金マテリアルズ社製、SC70F)を用い、溶融シリカの含有量が5重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを30μm、クッション層の厚みを40μm、第2の離型層の厚みを30μmとした点以外は、実施例1と同様の方法にて実施例3の離型フィルムを得た。
<実施例4>
 第1の離型層全量に対する溶融シリカの含有量が10重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを15μm、クッション層の厚みを30μm、第2の離型層の厚みを15μmとした点以外は、実施例3と同様の方法にて実施例4の離型フィルムを得た。
<実施例5>
 第1の離型層全量に対する溶融シリカの含有量が15重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを10μm、クッション層の厚みを30μm、第2の離型層の厚みを10μmとした点以外は、実施例3と同様の方法にて実施例5の離型フィルムを得た。
<実施例6>
 溶融シリカSC10-32Fに代えて、平均粒径d50が23.9μmである溶融シリカ(新日鉄住金マテリアルズ社製、SC80-53F)を用い、溶融シリカの含有量が5重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを20μm、クッション層の厚みを40μm、第2の離型層の厚みを20μmとした点以外は、実施例1と同様の方法にて実施例6の離型フィルムを得た。
<実施例7>
 第1の離型層全量に対する溶融シリカの含有量が10重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを15μm、クッション層の厚みを30μm、第2の離型層の厚みを15μmとした点以外は、実施例6と同様の方法にて実施例7の離型フィルムを得た。
<実施例8>
 第1の離型層の厚みを25μm、クッション層の厚みを60μm、第2の離型層の厚みを25μmとした点以外は、実施例1と同様の方法にて実施例8の離型フィルムを得た。
<実施例9>
 第1の離型層の厚みを30μm、クッション層の厚みを70μm、第2の離型層の厚みを30μmとした点以外は、実施例1と同様の方法にて実施例9の離型フィルムを得た。
<実施例10>
 第1の離型層の厚みを35μm、クッション層の厚みを80μm、第2の離型層の厚みを35μmとした点以外は、実施例1と同様の方法にて実施例10の離型フィルムを得た。
<比較例1>
 溶融シリカSC10-32Fに代えて、平均粒径d50が2.2μmである溶融シリカ(新日鉄住金マテリアルズ社製、SP60)を用い、溶融シリカの含有量が10重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを30μm、クッション層の厚みを40μm、第2の離型層の厚みを30μmとした点以外は、実施例1と同様の方法にて比較例1の離型フィルムを得た。
<比較例2>
 第1の離型層全量に対する溶融シリカの含有量が20重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを20μm、クッション層の厚みを30μm、第2の離型層の厚みを20μmとした点以外は、比較例1と同様の方法にて比較例2の離型フィルムを得た。
<比較例3>
 第1の離型層全量に対する溶融シリカの含有量が2重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを20μm、クッション層の厚みを30μm、第2の離型層の厚みを20μmとした点以外は、実施例1と同様の方法にて比較例3の離型フィルムを得た。
<比較例4>
 第1の離型層全量に対する溶融シリカの含有量が20重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを10μm、クッション層の厚みを40μm、第2の離型層の厚みを10μmとした点以外は、実施例3と同様の方法にて比較例4の離型フィルムを得た。
<比較例5>
 溶融シリカSC10-32Fに代えて、平均粒径d50が35.6μmである溶融シリカ(新日鉄住金マテリアルズ社製、SC30F)を用い、溶融シリカの含有量が5重量部となるように上記TPXと配合してなる熱可塑性樹脂材料を用いて第1の離型層を作製した点、第1の離型層の厚みを15μm、クッション層の厚みを30μm、第2の離型層の厚みを15μmとした点以外は、実施例1と同様の方法にて比較例5の離型フィルムを得た。
<比較例6>
 溶融シリカSP60を抜き、上記TPX100重量部からなる熱可塑性樹脂材料を用いて第1の離型層を作製した点以外は、比較例1と同様の方法にて比較例6の離型フィルムを得た。
 実施例1~10および比較例1~6の各離型フィルムを用いて、以下の評価を行った。結果を表1に示す。
<評価方法>
・粒子(溶融シリカ)の平均粒径d50:レーザー回折式粒度分布測定装置(Malvern社製、マスターサイザー2000)を用い、溶媒を水として粒子を分散させて粒度測定を行って得られた結果より、累積頻度が50%となる粒子径の値を平均粒径d50として算出した。なお、単位は、μmである。
・第1の離型層の第1の離型面の算術平均高さ(Sa):得られた離型フィルムにおける第1の離型層の第1の離型面の表面について、ISO25178に準じ、菱化システム社製VertScan R3300Hを用いて、測定した。なお、単位は、μmである。
・第1の離型層の第1の離型面の面積(A)および表面積(S):得られた離型フィルムにおける第1の離型層の第1の離型面の表面について、菱化システム社製VertScan R3300Hを用いて、測定した。
・離型性(第1の離型層の第1の離型面の離型性):
 まず、カバーレイフィルムをラミネートした回路基板に対し、Arプラズマ処理を施す事で表面粗化した回路基板を得た。このArプラズマ処理は、Arガスを用い、150sccmの流量でチャンバー内に供給し、チャンバー内の圧力を25Paにして、マイクロ波(電力300W、周波数:13.56MHz)の印加によりArプラズマを生成することにより行った。
 粗化した回路基板に対して、離型フィルム10における第1の離型面が、上述した回路基板と対向するように上下に貼り合わせ、真空プレス機を用い、175℃、2MPaの圧力で、1分間の熱プレスを行うことにより、試験片を作製する。その後、得られた試験片をプレス機から取り出し、60秒間大気下で冷却した後、引張試験機(エーアンドデイ社製Force gauge AD-4932A-50N)を用いて、180°方向に約1000mm/分の速度で応力を加えて離型フィルムを剥離することにより、第1の離型面の剥離強度を測定した。
 剥離強度の測定は、以下の基準に基づいて離型性を評価した。
○:剥離強度が0.1N/50mm以下で、試験片がFPCから自然剥離する。
×:剥離強度が0.1N/50mmより大きく、試験片がFPCから自然剥離しない。
・離型性2(第1の離型層の第1の離型面の離型性):
 上記の離型性評価と同一の粗化処理を施した回路基板に対して、離型フィルム10における第1の離型面が、上述した回路基板と対向するように上下に貼り合わせ、真空プレス機を用い、185℃、2MPaの圧力で、1分間の熱プレスを行うことにより、試験片を作製した。その後、得られた試験片をプレス機から取り出し、60秒間大気下で冷却した後、引張試験機(エーアンドデイ社製Force gauge AD-4932A-50N)を用いて、180°方向に約1000mm/分の速度で応力を加えて離型フィルムを剥離することにより、第1の離型面の剥離強度を測定した。
 剥離強度の測定は、以下の基準に基づいて離型性を評価した。
○:剥離強度が0.1N/50mm以下で、試験片がFPCから自然剥離した。
△:剥離強度が0.1N/50mmより大きく、3N/50mm以下。
×:剥離強度が3N/50mmより大きい。
・追従性(接着剤のしみだし形状):
 まず、有沢製作所製のカバーレイ(CMタイプ)に1mm角の開口部を作成した。次に、フレキシブル配線板用銅張積板の表面に対して、接着剤がコーティングされている側の面が接触するように上記開口部を有するカバーレイを仮止めした試験片を作製した。次いで、離型フィルムにおける第1の離型層の第1の離型面が、上記試験片のカバーレイを有する側の面と対向するように、上記離型フィルムと、上記試験片とを重ねあわせた後、175℃、2MPaの条件で2分間の熱プレス処理を施し、成型品を得た。このようにして得られた成型品について、カバーレイに形成した開口部内に、該カバーテープの表面にコーティングされている接着剤が上記開口部の外縁部からしみ出した形状(接着剤のしみだし形状)を観察し、以下の基準に基づいて追従性を評価した。
○:接着剤のしみだし形状の凹凸差が、80μm未満であった。
×:接着剤のしみだし形状の凹凸差が、80μm以上であった。
・成形性(ボイド):
 幅100μm、深さ50μmの溝が形成された回路露出フィルムの表面に対し、有沢製作所社製のCL(CMタイプ、厚み40um)を重ね、次いで、離型フィルムを更に回路基板と対向するように上下に貼り合わせ、真空プレス機を用い、185℃、2MPaで1分間加熱圧縮して成形した。すなわち、金型、離型フィルム、成形材料、離型フィルム、金型の順で、積層し、加熱圧縮成形を行った。その後、得られた成形品をプレス機から取り出し、60秒間大気下で冷却した後、この成形品の外観を光学顕微鏡で観察し、以下の基準に基づいて成形性(ボイド)を評価した。
○:ボイドの数が0個
△:長さ0.3mm以上のボイドの数が0個、かつ0.3mm未満のボイドの数が1個以上
×:長さ0.3mm以上のボイドの数が1個以上
・成形性(成型品のシワ):
 フレキシブル配線板用銅張積板の表面に対して、有沢製作所製のカバーレイ(CMタイプ)の接着剤がコーティングされている側の面が接触するように上記カバーレイを仮止めした試験片を作製した。次いで、離型フィルムにおける第1の離型層の第1の離型面が、上記試験片のカバーレイを有する側の面と対向するように、上記離型フィルムと、上記試験片とを重ねあわせた後、175℃、2MPaの条件で2分間の熱プレス処理を施し、成型品を得た。FPCの外観について、JPCA規格の「7.5.7.2項しわ」に準拠した方法で単位面積当たりのシワ発生率を測定した。得られた測定値については、以下の基準で評価した。
○:シワ発生率が1.5%未満であった。
×:シワ発生率が1.5%以上であった。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2018年8月24日に出願された日本出願特願2018-156933号、および、2019年6月7日に出願された日本出願特願2019-106729号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  一方の離型面に、熱可塑性樹脂を含む第1の離型層を有する離型フィルムであって、
     前記一方の離型面の算術平均高さSaが0.6μm以上2.3μm以下であり、
     前記一方の離型面の任意の領域において、当該領域の面積をA(mm)、当該領域の表面積をS(mm)としたとき、S/Aが1.005以上1.025以下である、離型フィルム。
  2.  前記第1の離型層が、平均粒径d50が3μm以上35μm以下である粒子を含有する、請求項1に記載の離型フィルム。
  3.  前記離型フィルムの他方の離型面に、熱可塑性樹脂を含む第2の離型層をさらに有し、当該離型フィルム全体の厚みが180μm以下である、請求項1または2に記載の離型フィルム。
  4.  前記第1の離型層全量に対する前記粒子の含有量が3重量%以上30重量%以下である、請求項2に記載の離型フィルム。
  5.  前記第1の離型層が、ポリ4-メチル1-ペンテン樹脂、ポリブチレンテレフタレート樹脂、シンジオタクチックポリスチレン樹脂およびポリプロピレン樹脂からなる群より選択される1種または2種以上を含む、請求項1乃至4いずれか一項に記載の離型フィルム。
  6.  前記粒子が無機粒子である、請求項2または4に記載の離型フィルム。
  7.  前記無機粒子が、炭酸カルシウム、酸化亜鉛、アルミナ、結晶性シリカ、非晶性シリカ、溶融シリカ、およびゼオライトからなる群から得られる1種または2種以上を用いてなる粒子である、請求項6に記載の離型フィルム。
  8.  前記第1の離型層が、ポリ4-メチル1-ペンテン樹脂を含む、請求項1乃至7のいずれか一項に記載の離型フィルム。
  9.  前記第1の離型層と、前記第2の離型層とが、クッション層を介して、積層されている、請求項3に記載の離型フィルム。
  10.  請求項1乃至9のいずれか一項に記載の離型フィルムの前記一方の離型面が対象物側になるように、前記対象物上に前記離型フィルムを配置する工程と、
     前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、
     を含み、
     前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される面が、熱硬化性樹脂を含む材料によって形成されている、成型品の製造方法。
  11.  前記離型フィルムを配置する前記工程の後、前記離型フィルムの第2の離型層の離型面上に資材を配置する工程をさらに含む、請求項10に記載の成型品の製造方法。
  12.  請求項1乃至9のいずれか一項に記載の離型フィルムの前記一方の離型面が対象物側になるように、前記対象物上に前記離型フィルムを配置する工程と、
     前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、
    を含み、当該加熱プレス後、成型品を得るための離型フィルムの使用であって、
     前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される面が、熱硬化性樹脂を含む材料によって形成されている、離型フィルムの使用。
PCT/JP2019/032753 2018-08-24 2019-08-22 離型フィルムおよび成型品の製造方法 WO2020040240A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980055764.1A CN112601646B (zh) 2018-08-24 2019-08-22 脱模膜及成型品的制造方法
JP2020531182A JP6863523B2 (ja) 2018-08-24 2019-08-22 離型フィルムおよび成型品の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018156933 2018-08-24
JP2018-156933 2018-08-24
JP2019-106729 2019-06-07
JP2019106729 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020040240A1 true WO2020040240A1 (ja) 2020-02-27

Family

ID=69591901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032753 WO2020040240A1 (ja) 2018-08-24 2019-08-22 離型フィルムおよび成型品の製造方法

Country Status (4)

Country Link
JP (2) JP6863523B2 (ja)
CN (1) CN112601646B (ja)
TW (1) TWI784191B (ja)
WO (1) WO2020040240A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034834A1 (ja) * 2020-08-12 2022-02-17 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2022050396A1 (ja) * 2020-09-07 2022-03-10 積水化学工業株式会社 離型フィルム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231411A (ja) * 2007-02-19 2008-10-02 Kureha Corp 離型シート用樹脂組成物、離型シート及びそれを用いたフレキシブルプリント回路基板若しくはプリプレグの製造方法
JP2013215989A (ja) * 2012-04-09 2013-10-24 Kurabo Ind Ltd 離型フィルム及びこれを用いた転写フィルム
JP2016068371A (ja) * 2014-09-30 2016-05-09 住友ベークライト株式会社 離型フィルムおよび離型フィルムの使用方法
WO2016093178A1 (ja) * 2014-12-09 2016-06-16 旭硝子株式会社 離型フィルムおよび半導体パッケージの製造方法
JP2016203475A (ja) * 2015-04-22 2016-12-08 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2017169654A1 (ja) * 2016-03-30 2017-10-05 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2017200102A1 (ja) * 2016-05-20 2017-11-23 日立化成株式会社 離型フィルム
JP2018086823A (ja) * 2016-11-30 2018-06-07 東レ株式会社 積層フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447216B2 (ja) * 2015-02-17 2019-01-09 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
JP6777508B2 (ja) * 2016-11-16 2020-10-28 倉敷紡績株式会社 ポリスチレン系フィルムおよび多層フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231411A (ja) * 2007-02-19 2008-10-02 Kureha Corp 離型シート用樹脂組成物、離型シート及びそれを用いたフレキシブルプリント回路基板若しくはプリプレグの製造方法
JP2013215989A (ja) * 2012-04-09 2013-10-24 Kurabo Ind Ltd 離型フィルム及びこれを用いた転写フィルム
JP2016068371A (ja) * 2014-09-30 2016-05-09 住友ベークライト株式会社 離型フィルムおよび離型フィルムの使用方法
WO2016093178A1 (ja) * 2014-12-09 2016-06-16 旭硝子株式会社 離型フィルムおよび半導体パッケージの製造方法
JP2016203475A (ja) * 2015-04-22 2016-12-08 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2017169654A1 (ja) * 2016-03-30 2017-10-05 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2017200102A1 (ja) * 2016-05-20 2017-11-23 日立化成株式会社 離型フィルム
JP2018086823A (ja) * 2016-11-30 2018-06-07 東レ株式会社 積層フィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034834A1 (ja) * 2020-08-12 2022-02-17 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
JPWO2022034834A1 (ja) * 2020-08-12 2022-02-17
JP7283639B2 (ja) 2020-08-12 2023-05-30 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
WO2022050396A1 (ja) * 2020-09-07 2022-03-10 積水化学工業株式会社 離型フィルム

Also Published As

Publication number Publication date
TW202014287A (zh) 2020-04-16
JP2020199769A (ja) 2020-12-17
CN112601646B (zh) 2022-05-17
CN112601646A (zh) 2021-04-02
JPWO2020040240A1 (ja) 2020-09-24
JP6863523B2 (ja) 2021-04-21
TWI784191B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
JP6299933B2 (ja) プリント回路基板製造用離型フィルムおよび成型品の製造方法
JP6447216B2 (ja) 離型フィルムおよび成型品の製造方法
JP6575123B2 (ja) 離型フィルムおよび成型品の製造方法
KR101256662B1 (ko) 이형 필름 및 이를 이용한 플렉서블 인쇄 회로 기판의 제조방법
CA2012670C (en) Multilayer film and laminate for use in producing printed circuit boards
JP5245497B2 (ja) 離型フィルム
JP5992091B2 (ja) 離型フィルム
WO2020040240A1 (ja) 離型フィルムおよび成型品の製造方法
JP7298194B2 (ja) 離型フィルムおよび成型品の製造方法
CN116133848B (zh) 脱模膜及成型品的制造方法
TW202224941A (zh) 脫模薄膜及成型品之製造方法
JPH062369B2 (ja) 多層プリント配線基板製造用ポリ4―メチル―1―ペンテン製表面粗化フィルム及びシート
JP7243258B2 (ja) 離型フィルム
JP7243906B1 (ja) 離型フィルムおよび成型品の製造方法
CN114080866B (zh) 脱模膜及成型品的制造方法
JP2023046645A (ja) 成型品の製造方法
WO2022085241A1 (ja) 離型フィルムおよび成型品の製造方法
JP2024000759A (ja) 離型フィルム
JP2023101143A (ja) 離型フィルム
JP2023101380A (ja) 離型フィルム
KR20140004948A (ko) 연성인쇄회로기판공정용 일체형 이형필름 및 그 제조방법
JP2005187526A (ja) 離型フィルム及びそれを用いたフレキ製造方法
JP2008030246A (ja) 片面金属箔張り積層板およびそれを用いたプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852586

Country of ref document: EP

Kind code of ref document: A1