WO2016006578A1 - ポリプロピレンフィルムおよび離型用フィルム - Google Patents
ポリプロピレンフィルムおよび離型用フィルム Download PDFInfo
- Publication number
- WO2016006578A1 WO2016006578A1 PCT/JP2015/069428 JP2015069428W WO2016006578A1 WO 2016006578 A1 WO2016006578 A1 WO 2016006578A1 JP 2015069428 W JP2015069428 W JP 2015069428W WO 2016006578 A1 WO2016006578 A1 WO 2016006578A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polypropylene
- layer
- surface layer
- polypropylene film
- Prior art date
Links
- -1 Polypropylene Polymers 0.000 title claims abstract description 221
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 215
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 206
- 239000002344 surface layer Substances 0.000 claims abstract description 87
- 239000010410 layer Substances 0.000 claims abstract description 81
- 239000000463 material Substances 0.000 claims description 62
- 239000002245 particle Substances 0.000 claims description 27
- 239000003733 fiber-reinforced composite Substances 0.000 claims description 22
- 230000003746 surface roughness Effects 0.000 abstract description 17
- 230000003578 releasing effect Effects 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 250
- 239000002994 raw material Substances 0.000 description 73
- 238000000034 method Methods 0.000 description 57
- 229920005989 resin Polymers 0.000 description 40
- 239000011347 resin Substances 0.000 description 40
- 239000000203 mixture Substances 0.000 description 31
- 239000002585 base Substances 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 230000000704 physical effect Effects 0.000 description 16
- 230000001681 protective effect Effects 0.000 description 13
- 238000003825 pressing Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 229910000019 calcium carbonate Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 6
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229920000306 polymethylpentene Polymers 0.000 description 6
- 239000011116 polymethylpentene Substances 0.000 description 6
- 229920005629 polypropylene homopolymer Polymers 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000013039 cover film Substances 0.000 description 5
- 239000003484 crystal nucleating agent Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011146 organic particle Substances 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000008570 general process Effects 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 229930015698 phenylpropene Natural products 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical class CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 1
- LENQNCFDLSESTC-UHFFFAOYSA-N N-cyclohexyl-2-[6-[2-(cyclohexylamino)-2-oxoethyl]naphthalen-2-yl]acetamide Chemical class C1(CCCCC1)NC(=O)CC1=CC2=CC=C(C=C2C=C1)CC(=O)NC1CCCCC1 LENQNCFDLSESTC-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- JOKYEDJSHIKSBI-UHFFFAOYSA-N n-cyclohexyl-4-[3-[4-(cyclohexylcarbamoyl)phenyl]-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]benzamide Chemical compound C=1C=C(C2OCC3(CO2)COC(OC3)C=2C=CC(=CC=2)C(=O)NC2CCCCC2)C=CC=1C(=O)NC1CCCCC1 JOKYEDJSHIKSBI-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- OKUCEQDKBKYEJY-UHFFFAOYSA-N tert-butyl 3-(methylamino)pyrrolidine-1-carboxylate Chemical class CNC1CCN(C(=O)OC(C)(C)C)C1 OKUCEQDKBKYEJY-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/56—Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
- B29C33/68—Release sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2823/00—Use of polyalkenes or derivatives thereof as mould material
- B29K2823/10—Polymers of propylene
- B29K2823/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0077—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/242—All polymers belonging to those covered by group B32B27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
- B32B2264/0228—Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
- B32B2264/0235—Aromatic vinyl resin, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
- B32B2264/025—Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
- B32B2264/0278—Polyester particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
- B32B2264/0292—Polyurethane particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
Definitions
- the present invention relates to a polypropylene film that is excellent in releasability, surface roughness uniformity, and productivity and can be suitably used as a release film.
- Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, mold release, tape, cable wrapping and electrical applications such as capacitors.
- a polypropylene film is excellent in surface releasability and mechanical properties, it is suitably used as a release film or process film for various members such as plastic products, building materials and optical members.
- a polypropylene film may be used as a cover film for a resin layer having adhesiveness such as a photosensitive resin.
- a resin layer having adhesiveness such as a photosensitive resin.
- Patent Document 5 describes an example of a film in which polymethylpentene or the like is blended with a base resin such as polypropylene. If polymethylpentene, fluorine resin, or silicon resin is used, the releasability can be improved (that is, the surface free energy expressed by the critical surface tension can be lowered), but these resins are expensive, It may be difficult to use with a cover film that is used disposable. In addition, when these resins are kneaded with polypropylene, the surface free energy is slightly reduced, but the compatibility with polypropylene is poor, so fish eyes may occur.
- Patent Document 6 describes an example in which the surface free energy is lowered by surface irregularities, but the releasability is insufficient. Moreover, in patent document 6, since the unevenness
- JP 2013-226410 A JP 2011-152733 A JP 2007-126644 A JP-A-2-284929 JP 2011-140594 A JP 2000-117900 A
- the object of the present invention is to solve the above-mentioned problems. That is, an object is to provide a polypropylene film and a release film that are excellent in releasability, surface roughness uniformity, and productivity.
- the polypropylene film of the present invention has a surface layer (I) mainly composed of polypropylene on at least one surface of a base material layer, and the surface of the surface layer (I) is free.
- the energy is 15 mN / m or more and less than 28 mN / m.
- the polypropylene film of the present invention is excellent in releasability, uniformity of surface roughness, and productivity, it can be suitably used as a release film.
- the polypropylene film of the present invention has a surface layer (I) mainly composed of polypropylene on at least one surface of the base material layer, and the surface free energy of the surface layer (I) is 15 mN / m or more and less than 28 mN / m.
- the “main component” in the present application means that the proportion of the specific component in all the components is 50% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, Most preferably, it is 99 mass% or more.
- the surface free energy of the surface layer (I) is more preferably 15 mN / m or more and less than 27 mN / m, still more preferably 15 mN / m or more and less than 26 mN / m.
- the surface free energy is 28 mN / m or more
- when used as a release film for surface protection when the protective surface has high adhesiveness, it cannot be peeled cleanly, and the shape of the protective surface changes or is protected. There may be a peeling mark on the surface.
- the surface free energy of a film is determined by the type of polymer constituting the film, and in the case of a polypropylene film, the surface free energy is about 29 to 31 mN / m.
- the present invention provides a polypropylene film having excellent releasability while having polypropylene as a main component by finely controlling the surface state. In order to make the surface free energy of the surface layer (I) within the above range, it can be achieved by finely controlling the surface state based on the first form or the second form described later.
- the content of polymethylpentene, fluorine resin or silicon resin in the surface layer (I) is preferably less than 10% by mass. More preferably, it is less than 1 mass%, More preferably, it is less than 0.1 mass%, and it is most preferable not to contain substantially.
- Polymethylpentene, fluorine resin and silicon resin are known as members with low surface free energy and excellent releasability, and improved releasability by using the above materials for the surface layer (I)
- the above materials have poor compatibility with polypropylene, for example, when used by adding to the surface layer (I) of the film, it does not disperse neatly, and the uniformity of the surface roughness decreases. The quality may deteriorate.
- the said raw material is more expensive than a polypropylene, raw material cost becomes high and productivity may fall.
- the polypropylene film of the present invention preferably has a Young's modulus E MD in the longitudinal direction and a Young's modulus E TD in the width direction of 2.0 GPa or more.
- E MD is more preferably 2.1GPa or more, more preferably at least 2.2 GPa.
- E TD is more preferably 2.5 GPa or more, still more preferably 3.0 GPa or more, and most preferably 4.0 GPa or more.
- E MD and E TD is less than 2.0 GPa, when used as a release film for surface protection, if is highly adherent protective surface, torn the film stretches with a release tension, the protected surface Peeling marks may remain.
- E MD and E TD are preferably as large as possible, but the upper limit is substantially about 7 GPa.
- the raw material composition of the base layer and the surface layer (I) is set to a range described later
- the film forming conditions are set to a range described later, and the film is formed at a high magnification. It is preferable to obtain a polypropylene film by axial stretching.
- a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction, and a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction.
- the polypropylene film of the present invention preferably has an E MD / E TD value of 0.2 to 1.5. More preferably, it is 0.3 to 1.4, and still more preferably 0.4 to 1.3.
- E MD / E TD exceeds 1.5, the orientation in the longitudinal direction is extremely strong, and the film may tear in the longitudinal direction during handling.
- E MD / E TD is less than 0.2, the orientation in the width direction is extremely strong, and the film may be torn in the width direction.
- the raw material composition of the base layer and the surface layer (I) is set to a range described later, and the film forming conditions are set to a range described later, and the film is biaxial at a high magnification. It is preferable to obtain a polypropylene film by stretching.
- the polypropylene film of the present invention preferably has a heat shrinkage at 120 ° C. in the width direction of 1% or less. More preferably, it is 0.5% or less, still more preferably 0.3% or less. If the thermal shrinkage at 120 ° C in the width direction exceeds 1%, the polypropylene film may be deformed and peeled off when passing through a drying process where heat is applied after bonding with other materials. I may enter.
- the lower limit of the heat shrinkage rate is not particularly limited, but the polypropylene film may expand, and the lower limit is substantially about ⁇ 2.0%.
- the raw material composition of the base layer and the surface layer (I) is set in the range described later, and the film forming conditions are set in the range described later. Is effective within the range described below.
- the polypropylene film of the present invention preferably has a thermal shrinkage at 150 ° C. of 0.1 to 20% in both the longitudinal direction and the width direction. More preferably, it is 0.5 to 18%, and still more preferably 0.8 to 15%.
- the thermal shrinkage at 150 ° C. exceeds 20%, for example, when used as a release film for press molding, the polypropylene film may be deformed and wrinkled by heat during press molding. If the heat shrinkage at 150 ° C. is less than 0.1%, the polypropylene film may locally expand due to heat during press molding, and the remaining polypropylene film may break and become wrinkled.
- the raw material composition of the film is set in a range described later, and the film forming conditions are set in a range described below. Is effective.
- the thickness of the polypropylene film of the present invention is appropriately adjusted depending on the application and is not particularly limited, but is preferably 0.5 ⁇ m or more and 100 ⁇ m or less. When the thickness is less than 0.5 ⁇ m, handling may be difficult, and when it exceeds 100 ⁇ m, the amount of resin may increase and productivity may decrease. Since the polypropylene film of the present invention is excellent in tensile rigidity even when the thickness is reduced, the handling property can be maintained. In order to make use of such characteristics, the thickness is more preferably 1 ⁇ m or more and 40 ⁇ m or less, further preferably 1 ⁇ m or more and 30 ⁇ m or less, and most preferably 1 ⁇ m or more and 15 ⁇ m or less. The thickness can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
- the polypropylene film of the present invention can be achieved by the first and second modes described later. First, the first embodiment will be described.
- a dense network structure made of polypropylene fibrils is formed on the surface of the surface layer (I).
- a method of providing irregularities on the surface but by forming a dense network structure composed of fibrils, both high surface smoothness and releasability can be achieved. Can do.
- the center line average roughness Ra of the surface layer (I) is preferably 10 to 150 nm. More preferably, it is 10 to 100 nm, and still more preferably 10 to 60 nm.
- Ra exceeds 150 nm for example, when used as a release film for an optical member, surface irregularities of the release film may be transferred to the optical member and affect the visibility of the product.
- Ra is so preferable that it is low, in the 1st form of the polypropylene film of this invention, about 10 nm is a minimum.
- the laminated structure of the film and the raw material composition of the surface layer (I) are set in the ranges described later, the film forming conditions are set in the ranges described below, and the extrusion conditions and stretching conditions are set in the ranges described below. Is effective.
- the base material layer is not particularly limited, and the material is polyamide, aramid, polyimide, polyamideimide, cellulose, polypropylene, polyethylene, polymethylpentene, nylon, polyethylene terephthalate, etc., or a mixture of two or more known materials.
- the material is polyamide, aramid, polyimide, polyamideimide, cellulose, polypropylene, polyethylene, polymethylpentene, nylon, polyethylene terephthalate, etc., or a mixture of two or more known materials.
- the surface layer (I) is a layer in which a dense network structure composed of polypropylene fibrils is formed in order to impart releasability.
- the reason why the releasability is improved by forming the network structure is that air exists in minute gaps between the fibrils forming the network structure, and when used as a protective film, contact with the adherend This is probably because the area can be reduced.
- the polypropylene raw material A preferably used for the base material layer of the first embodiment of the present invention will be described.
- the polypropylene raw material A is preferably a polypropylene having a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more. If these are not satisfied, the film-forming stability may be inferior or the tensile rigidity of the film may be reduced.
- CXS cold xylene soluble part
- the cold xylene-soluble part refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that it corresponds to a component that is difficult to crystallize due to a low molecular weight. If many such components are contained in the resin, the tensile rigidity of the film may be inferior. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. CXS is preferably as low as possible, but about 0.1% by mass is the lower limit. In order to obtain polypropylene having such CXS, a method of increasing the catalytic activity in obtaining a resin, a method of washing the obtained resin with a solvent or propylene monomer itself, and the like can be used.
- the mesopentad fraction of the polypropylene raw material A is preferably 0.95 or more, more preferably 0.97 or more.
- the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. It is preferable because it is suitable for use.
- the upper limit of the mesopentad fraction is not particularly specified.
- a method of washing resin powder obtained with a solvent such as n-heptane there are a method of appropriately selecting a catalyst and / or a promoter, and a composition. Preferably employed.
- melt flow rate is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kgf.
- the melt flow rate (MFR) is particularly preferably in the range of 2 to 5 g / 10 minutes. In order to set the MFR to the above value, a method of controlling the average molecular weight or the molecular weight distribution is employed.
- the polypropylene raw material A is mainly composed of a homopolymer of propylene, but may contain other unsaturated hydrocarbon copolymerization components and the like in a range not impairing the object of the present invention, or a polymer in which propylene is not a single polymer. May be blended.
- the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10 mass% in terms of blend amount.
- the polypropylene raw material B preferably has ⁇ -crystal forming ability in order to form a dense network structure composed of polypropylene fibrils.
- the ⁇ -crystal forming ability is preferably 30 to 100%.
- the ⁇ crystal forming ability is less than 30%, it is difficult to form a fibril network structure during film production, and an excellent releasability may not be obtained.
- the ⁇ -crystal forming ability is more preferably 35 to 100%, particularly preferably 40 to 100%.
- ⁇ crystal nucleating agents examples include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide.
- Amide compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid
- aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments.
- amides disclosed in JP-A-5-310665 are preferred.
- Compound can be preferably used .
- the content of the ⁇ crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the entire polypropylene composition. . If it is less than 0.05% by mass, the formation of ⁇ crystals becomes insufficient, it is difficult to form a fibril network structure, and an excellent releasability may not be obtained. If it exceeds 0.5% by mass, an excessively added ⁇ crystal nucleating agent may be the starting point and cause defects.
- the polypropylene raw material B it is preferable to use an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 min (230 ° C., 2.16 Kgf) with uniform extrudability and pores. It is preferable from the viewpoint of formation.
- MFR melt flow rate
- the isotactic index of the polypropylene raw material B is preferably in the range of 90 to 99.9%. More preferably, it is 95 to 99%. When the isotactic index of the polypropylene raw material B is less than 90%, the crystallinity of the resin is lowered, and the film-forming property may be lowered, or the film strength may be insufficient.
- the polypropylene raw material B of the present invention it is possible to use homopolypropylene as well as from the viewpoint of stability in the film-forming process, film-forming property, and uniformity of physical properties, polypropylene with an ethylene component, butene, and hexene. Further, a resin obtained by copolymerizing an ⁇ -olefin component such as octene in the range of 5% by mass or less, more preferably 2.5% by mass or less can also be used. Further, the polypropylene raw material B may be a combination of homopolypropylene and / or polypropylene copolymer and high molecular weight polypropylene.
- the polypropylene raw material B preferably contains high molecular weight polypropylene in the range of 0.5 to 30% by mass from the viewpoint of improving the strength.
- the high molecular weight polypropylene is a polypropylene having an MFR of 0.1 to 2 g / 10 min (230 ° C., 2.16 Kgf).
- polypropylene resin D101 manufactured by Sumitomo Chemical Co., Ltd. Etc. can be preferably used.
- an antioxidant In the polypropylene raw material A and the polypropylene raw material B of the present invention, an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and further an antiblocking agent and a filler are added within the range not impairing the effects of the present invention.
- Various additives such as an agent and an incompatible polymer may be contained.
- an antioxidant it is preferable to contain an antioxidant. It is preferable that antioxidant content shall be 2 mass parts or less with respect to 100 mass parts of polypropylene compositions, More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.
- the first form of the polypropylene film of the present invention preferably has a laminated structure in which the surface layer (I) made of the polypropylene raw material B is laminated on at least one surface of the base material layer made of the polypropylene raw material A.
- the ratio (%) of the thickness of the surface layer (I) in the total thickness of the polypropylene film is preferably 25% or less, more preferably 23% or less, and further preferably 20% or less.
- the ratio of the thickness of the surface layer (I) exceeds 25%, the strength of the polypropylene film is lowered, and when used as a release film for surface protection, when the protective surface has high adhesiveness, the film has a release tension.
- the ratio (%) of the thickness of the surface layer (I) is less than 2%, the releasability may be lowered, so that it is preferably 2% or more. In order to make the lamination thickness ratio within the above range, it may be adjusted by the screw rotation speed of each extruder used for the base material layer and the surface layer (I).
- the thickness of the surface layer (I) is preferably 10 ⁇ m or less. More preferably, it is 5 micrometers or less, More preferably, it is 3 micrometers or less.
- the lower limit is not particularly limited as long as releasability is manifested, but if the surface layer is too thin, lamination unevenness is likely to occur, and stable film formation becomes difficult, so the lower limit is substantially about 0.05 ⁇ m.
- the thickness of the surface layer (I) exceeds 10 ⁇ m, when a liquid having a low surface tension, such as an organic solvent, is dropped, the liquid drops may penetrate into the surface layer (I), and the surface free energy may not be measured.
- a mold release property may deteriorate or a film may cleave at the time of peeling.
- the thickness of the surface layer (I) it can be adjusted by the screw rotation speed of the extruder used for the surface layer (I), the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like.
- the polypropylene raw material A is supplied to the single-layer extruder for the A layer
- the polypropylene raw material B is supplied to the single-screw extruder for the B layer
- melt extrusion is performed at 200 to 260 ° C.
- a multi-manifold type B layer / A layer / B layer composite T-die for example, a stack thickness ratio of 1/8/1 And discharged onto a cast drum to obtain a laminated unstretched sheet having a layer structure of B layer / A layer / B layer.
- the surface temperature of the cast drum is preferably 80 to 130 ° C.
- any method among an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. may be used. From the viewpoint, the air knife method is preferable.
- the air temperature of the air knife is 25 to 100 ° C., preferably 30 to 80 ° C.
- the blowing air speed is preferably 130 to 150 m / s
- a double pipe structure is used to improve the width direction uniformity. Is preferred. Further, it is preferable to appropriately adjust the position of the air knife so that air flows downstream of the film formation so as not to cause vibration of the film.
- the obtained unstretched sheet is allowed to cool in the air and then introduced into the longitudinal stretching step.
- an unstretched sheet is first brought into contact with a plurality of metal rolls maintained at 100 ° C. or more and less than 150 ° C., preheated to the stretching temperature, stretched 3 to 8 times in the longitudinal direction, and then cooled to room temperature.
- the stretching temperature is 150 ° C. or higher, it is difficult to form a network structure composed of fibrils on the film surface in the subsequent transverse stretching step, and the releasability may be lowered.
- the draw ratio is less than 3 times, the releasability may similarly decrease, the orientation of the film becomes weak, and the tensile rigidity may decrease.
- the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is gripped with a clip, and the transverse stretching is stretched 7 to 13 times in the width direction at a temperature of 120 to 165 ° C. If the stretching temperature is low, the film may break, and if the stretching temperature is too high, it may be difficult to form a network structure composed of fibrils on the surface layer, and the releasability may be lowered. Further, when the magnification is high, the film may be broken, and when the magnification is low, the orientation of the film is weak and the tensile rigidity may be lowered.
- the clip is heat-set at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the clip in the width direction.
- the film is guided to the outside of the tenter through a cooling process at 100 ° C., the film end clip is released, the film edge is slit in the winder process, and the film product roll is wound up.
- irregularities controlled to have a specific surface shape are formed on the surface of the surface layer (I) whose main component is a polypropylene raw material to be described later. Thereby, the uniformity of surface roughness and mold release property can be made compatible.
- the center line average roughness Ra of the surface layer (I) is preferably 200 to 1,000 nm. More preferably, it is 200 to 800 nm, still more preferably 200 to 500 nm. If Ra is less than 200 nm, the surface becomes too smooth, and the effect of improving the releasability in the second form may not be obtained. If Ra exceeds 1,000 nm, the film may be easily broken during film formation, or Ra may be too large to lower the releasability.
- the laminated structure of the film and the raw material composition of each layer are in the ranges described below, and the film forming conditions are in the ranges described below, and in particular, the extrusion conditions and stretching conditions are in the ranges described below. Is effective.
- the maximum height Rmax of the surface layer (I) is preferably 1,000 to 15,000 nm. More preferably, it is 1,000 to 10,000 nm, and still more preferably 1,000 to 5,000 nm. If Rmax is less than 1,000 nm, the surface becomes too smooth, and the effect of improving releasability in the second form may not be obtained.
- the film may be easily broken during film formation, or Rmax may be too large and the releasability may deteriorate.
- the laminated structure of the film and the raw material composition of each layer are in the ranges described below, the film forming conditions are in the ranges described below, and in particular, the extrusion conditions and stretching conditions are in the ranges described below. Is effective.
- the center line average roughness Ra of the surface layer (I) is preferably 200 to 500 nm. More preferably, it is 200 to 400 nm, and still more preferably 200 to 350 nm. If Ra is less than 200 nm, the surface becomes too smooth, and the effect of improving the releasability in the second form may not be obtained. On the other hand, when Ra exceeds 500 nm, for example, when used as a surface protective film for a soft member, the surface irregularities of the film may be transferred to the soft member and have an adverse effect. Moreover, even if Ra is too large, the releasability may decrease.
- the laminated structure of the film and the raw material composition of each layer are set in the ranges described later, and the film-forming conditions are set in the ranges described below, particularly the extrusion conditions and the stretching conditions are set in the ranges described below. It is effective.
- the maximum height Rmax of the surface layer (I) is preferably 1,000 to 5,000 nm. More preferably, it is 1,000 to 4,500 nm, and still more preferably 1,000 to 4,000 nm. If Rmax is less than 1,000 nm, the surface becomes too smooth, and the effect of improving releasability in the second form may not be obtained. When Rmax exceeds 5,000 nm, for example, when used as a surface protective film for a soft member, the surface irregularities of the film may be transferred to the soft member and adversely affected. Moreover, even if Rmax is too large, the releasability may decrease.
- the laminated structure of the film and the raw material composition of each layer are within the ranges described below, and in particular, the surface layer is incompatible with polypropylene, such as polyethylene, polymethylpentene, fluorine-based resin, and silicon-based resin. It is effective not to use a resin or a resin that easily generates fish eye due to the formation of a cross-linking (gel) component, and to set the film forming conditions in a range to be described later, particularly the extrusion conditions and the stretching conditions in a range to be described later. It is.
- polypropylene such as polyethylene, polymethylpentene, fluorine-based resin, and silicon-based resin.
- the center line average roughness Ra of the surface layer (I) is preferably 200 to 1,000 nm. . More preferably, it is 300 to 950 nm, and still more preferably 400 to 900 nm.
- Ra is preferably 200 to 1,000 nm. . More preferably, it is 300 to 950 nm, and still more preferably 400 to 900 nm.
- Ra exceeds 1,000 nm, the film may be easily broken during film formation, or Ra may be too large to lower the releasability.
- the laminated structure of the film and the raw material composition of each layer are in the ranges described below, and the film forming conditions are in the ranges described below, and in particular, the extrusion conditions and stretching conditions are in the ranges described below. Is effective.
- the maximum height Rmax of the surface layer (I) is preferably 5,000 to 15,000 nm. More preferably, it is 8,000 to 15,000 nm, still more preferably 10,000 to 15,000 nm, and most preferably 12,000 to 15,000 nm.
- Rmax is preferably 5,000 to 15,000 nm. More preferably, it is 8,000 to 15,000 nm, still more preferably 10,000 to 15,000 nm, and most preferably 12,000 to 15,000 nm.
- the unevenness on the film surface cannot be transferred to the member and may not be used as a designable film. If Rmax exceeds 15,000 nm, the film may be easily broken during film formation, or Rmax may be too large and the releasability may deteriorate.
- the laminated structure of the film and the raw material composition of each layer are in the ranges described below, the film forming conditions are in the ranges described below, and in particular, the extrusion conditions and stretching conditions are in the ranges described below. Is effective.
- the change in surface roughness before and after press molding is small, and the maximum height after pressing is Rmax1, the maximum before pressing When the height is Rmax2, the value of Rmax1 / Rmax2 is preferably 0.5 or more. If the value of Rmax1 / Rmax2 is less than 0.5, the surface irregularities on the surface layer (I) may be reduced during press molding, and the releasability may be lowered, or the surface irregularities may not be transferred to the product.
- the laminated structure of the film and the raw material composition of each layer are set in the ranges described later, and the film-forming conditions are set in the ranges described below, particularly the extrusion conditions and the stretching conditions are set in the ranges described below. Is effective.
- the second embodiment of the polypropylene film of the present invention it is preferable to have a laminated structure in which a surface layer (I) mainly composed of polypropylene is provided on at least one surface of a base material layer containing polypropylene and particles.
- the base material layer is preferably a biaxially stretched film in order to improve handling properties such as film strength and stiffness, and further contains particles for the purpose of controlling the surface shape of the surface layer (I). It is preferable.
- the surface layer (I) is preferably a layer mainly composed of polypropylene in order to impart releasability, and more preferably has high crystallinity of polypropylene.
- the particles contained in the base material layer (inner layer) form irregularities on the surface of the base material layer (interface between the base material layer and the surface layer (I)), and the surface layer (I)
- the thickness is set to a range described later, the same unevenness as that of the surface of the base material layer can be formed on the surface of the surface layer (I), and the mold releasability can be improved.
- the surface layer (I) is substantially free from resins and particles other than polypropylene.
- the polypropylene raw material C preferably used for the base material layer of the second embodiment of the present invention will be described.
- the polypropylene raw material C preferably contains at least a polypropylene resin and particles.
- the polypropylene resin is not particularly limited, and of course, homopolypropylene can be used, and from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, the polypropylene contains an ethylene component. It is also possible to use a resin obtained by copolymerizing an ⁇ -olefin component such as, butene, hexene, octene or the like in an amount of 5% by mass or less, more preferably 2.5% by mass or less. From the viewpoint of film strength, it is preferable to use homopolypropylene having high crystallinity.
- the melt flow rate (MFR) of the polypropylene resin used for the polypropylene raw material C is 1 to 10 g / 10 min (230 ° C., 2.16 Kgf) from the viewpoint of the difference in viscosity from the resin used for the surface layer. Those having a range of 2 to 5 g / 10 min (230 ° C., 2.16 Kgf) are more preferable from the viewpoint of film forming properties and tensile rigidity of the film.
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- the polypropylene resin used for the polypropylene raw material C is mainly composed of a propylene homopolymer, but may contain other unsaturated hydrocarbon copolymerization components or the like as long as the object of the present invention is not impaired. May be blended with polymers that are not alone.
- the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10 mass% in terms of blend amount.
- the particles used for the polypropylene raw material C are not particularly limited as long as they do not lose their particle shape due to shear stress or heat in the film forming process, and inorganic particles and organic particles can be used.
- inorganic particles include metal oxides such as silica, alumina, titania, zirconia, barium sulfate, calcium carbonate, aluminum silicate, calcium phosphate, mica, kaolin, and clay.
- metal oxides such as silica, alumina, titania, zirconia, and calcium carbonate are preferable.
- Organic particles include polymethoxysilane-based compound crosslinked particles, polystyrene-based compound crosslinked particles, acrylic-based compound crosslinked particles, polyurethane-based compound crosslinked particles, polyester-based compound crosslinked particles, fluorine-based compound-crosslinked particles, or Mention may be made of these mixtures.
- the average particle size of the inorganic particles and organic particles is preferably in the range of 1 to 10 ⁇ m.
- the particle size is more preferably 2 to 10 ⁇ m, still more preferably 3 to 10 ⁇ m, and most preferably 4 to 10 ⁇ m.
- the average particle size is less than 1 ⁇ m, the surface roughness of the base material layer and the surface layer (I) becomes small, and the releasability may deteriorate. If it exceeds 10 ⁇ m, the film may be easily torn or the maximum height Rmax of the surface roughness may be too large.
- a weight average diameter obtained by image processing from a transmission electron micrograph of the particles is used and a weight average diameter is calculated and adopted.
- the amount of the particles added is preferably 2 to 20 parts by mass when the total amount of the polypropylene raw material C is 100 parts by mass.
- the addition amount is less than 2 parts by mass, the surface roughness becomes small and the releasability may deteriorate. If it exceeds 20 parts by mass, the film may be easily torn or the maximum height Rmax of the surface roughness of the surface layer (I) may be too large.
- the polypropylene raw material D is mainly composed of polypropylene, and other components such as additives are preferably not used as much as possible, and homopolypropylene having high crystallinity is preferably used. From this viewpoint, the same material as the polypropylene material A described above can be preferably used as the polypropylene material D.
- an antioxidant In the polypropylene raw material C and the polypropylene raw material D used in the second embodiment of the present invention, an antioxidant, a heat stabilizer, an antistatic agent and a lubricant composed of inorganic or organic particles, as long as the effects of the present invention are not impaired, Furthermore, you may contain various additives, such as an antiblocking agent, a filler, and an incompatible polymer.
- an antioxidant for the purpose of suppressing the oxidative deterioration due to the thermal history of the polypropylene raw material C and the polypropylene raw material D, it is preferable to contain an antioxidant. It is preferable that antioxidant content shall be 2 mass parts or less with respect to 100 mass parts of polypropylene compositions, More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.
- the second form of the polypropylene film of the present invention preferably has a laminated structure in which the surface layer (I) made of the polypropylene raw material D is laminated on at least one surface of the base material layer made of the polypropylene raw material C.
- the ratio (%) of the surface layer (I) thickness in the total thickness of the polypropylene film is preferably 25% or less, more preferably 20% or less, further preferably 15% or less, and most preferably 10% or less. It is.
- the ratio of the thickness of the surface layer (I) exceeds 25%, the surface roughness may be reduced and the releasability may be deteriorated.
- the surface layer (I) thickness ratio (%) is less than 1%, the particles contained in the base material layer may be exposed to the surface layer through the surface layer (I), and the surface free energy may increase. It is preferably 1% or more. In order to make the lamination thickness ratio within the above range, it may be adjusted by the screw rotation speed of each extruder used for the base material layer and the surface layer (I).
- the thickness of the surface layer (I) is preferably 5 ⁇ m or less. More preferably, it is 3 micrometers or less, More preferably, it is 1 micrometer or less.
- the lower limit is not particularly limited as long as releasability is manifested, but if the surface layer is too thin, lamination unevenness is likely to occur, and stable film formation becomes difficult, so the lower limit is substantially about 0.05 ⁇ m.
- the thickness of the surface layer (I) exceeds 5 ⁇ m, the surface roughness becomes small and the releasability may deteriorate.
- the thickness of the surface layer (I) In order to make the thickness of the surface layer (I) within the above range, it can be adjusted by the screw rotation speed of the extruder used for the surface layer (I), the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like.
- the polypropylene raw material C is supplied to the single screw extruder for the A layer, and the polypropylene raw material D is supplied to the single screw extruder for the B layer, and melt extrusion is performed at 200 to 260 ° C.
- a multi-manifold type B layer / A layer / B layer composite T-die for example, a stack thickness ratio of 1/8/1 And discharged onto a cast drum to obtain a laminated unstretched sheet having a layer structure of B layer / A layer / B layer.
- the cast drum preferably has a surface temperature of 30 to 130 ° C.
- any method among an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. may be used.
- the air knife method is preferable.
- the air temperature of the air knife is 25 to 100 ° C., preferably 30 to 80 ° C.
- the blowing air speed is preferably 130 to 150 m / s
- a double pipe structure is used to improve the width direction uniformity. Is preferred.
- the obtained unstretched sheet is allowed to cool in the air and then introduced into the longitudinal stretching step.
- the longitudinal stretching step an unstretched sheet is first brought into contact with a plurality of metal rolls maintained at 100 ° C. or more and less than 150 ° C., preheated to the stretching temperature, stretched 3 to 8 times in the longitudinal direction, and then cooled to room temperature. If the stretching temperature is 150 ° C. or higher, uneven stretching may occur or the film may break. On the other hand, if the stretching ratio is less than 3 times, stretching unevenness may occur, the orientation of the film becomes weak, and the tensile rigidity may decrease.
- the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is gripped with a clip, and the transverse stretching is stretched 7 to 13 times in the width direction at a temperature of 120 to 165 ° C. If the stretching temperature is low, the film may break, and if the stretching temperature is too high, the rigidity of the film may decrease. Further, when the magnification is high, the film may be broken, and when the magnification is low, the orientation of the film is weak and the tensile rigidity may be lowered.
- the clip is heat-set at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the clip in the width direction.
- the film is guided to the outside of the tenter through a cooling process at 100 ° C., the film end clip is released, the film edge is slit in the winder process, and the film product roll is wound up.
- the biaxially oriented polypropylene film of the present invention obtained as described above can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products. However, since it is particularly excellent in releasability, it can be preferably used as a release film and a process film.
- the polypropylene film according to the second embodiment of the present invention is preferably used as a process film for surface shape transfer or a release film for pressing because it is excellent in releasability and design, for example, a mold of a fiber reinforced composite material.
- a release film for pressing it is preferable because it is excellent in releasability from a product after pressing and the mat surface can be transferred to the product.
- An example of a method of forming a fiber reinforced composite material by a die press using the polypropylene film of the present invention is as follows.
- a prepreg of a fiber-reinforced composite material plate is produced by a method according to Production Example 1 described later.
- the polypropylene film of this invention is affixed on both surfaces of a prepreg.
- the mold is pressed at 140 to 155 ° C. and 0.5 to 1.0 MPa for 3 to 30 minutes to cure the prepreg, taken out from the mold and returned to room temperature, and then the mold release of the present invention.
- the fiber film is peeled to obtain a fiber reinforced composite material.
- A Each epoxy resin raw material and polyvinyl formal are stirred for 1 to 3 hours while heating to 150 to 190 ° C. to uniformly dissolve the polyvinyl formal.
- B The resin temperature is lowered to 90 ° C. to 110 ° C., a phosphorus compound is added, and the mixture is stirred for 20 to 40 minutes.
- C The resin temperature is lowered to 55 to 65 ° C., dicyandiamide and 2,4-toluenebis (dimethylurea) are added, kneaded at the temperature for 30 to 40 minutes, and then taken out from the kneader to obtain a resin composition. .
- the prepared resin composition was applied onto release paper using a reverse roll coater to prepare a resin film.
- the amount of resin per unit area of the resin film was 25 g / m 2 .
- the resin film is carbonized on a carbon fiber trading card (registered trademark) T700SC-12K-50C (manufactured by Toray Industries, Inc.) aligned in one direction in a sheet shape so that the fiber weight per unit area becomes 100 g / m 2.
- a prepreg was prepared by stacking from both sides of the fiber and heating and pressing to impregnate the resin composition.
- the raw material is supplied from the weighing hopper to the twin screw extruder so that 1 part by mass is mixed at this ratio, melt kneaded at 300 ° C., discharged from the die in a strand shape, and cooled in a 25 ° C.
- Crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) is used for the A layer as the polypropylene raw material A for the base layer (A layer)
- the polypropylene raw material B is supplied to the single-layer melt extruder for the B layer as the polypropylene raw material B for the surface layer (I) (B layer) and melt extruded at 240 ° C.
- the feed block type A / B composite T die is laminated at a thickness ratio of 8/1 and discharged onto a cast drum whose surface temperature is controlled at 90 ° C. To obtain a cast sheet.
- the polypropylene raw material B of the surface layer (I) was used as the surface that contacts the cast drum.
- the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
- the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
- Crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) as a polypropylene raw material C for the base material layer (A layer) 93.3 mass Part and a master material compounded with 80% by mass of calcium carbonate and 20% by mass of polypropylene (Sankyo Seimitsu Co., Ltd., 2480K, calcium carbonate particles: 6 ⁇ m) 6.7 parts by mass for dry blending Supply to a uniaxial melt extruder, as a polypropylene raw material D for the surface layer (I) (B layer), crystalline PP (a) (manufactured by Prime Polymer, TF850H, MFR: 2.9 g / 10 minutes, (Isotactic index: 96%) is supplied to a single-screw melt extruder for layer B, melt-extruded at 240 ° C.,
- the polypropylene material C of the base material layer was used as a surface to be grounded to the cast drum.
- the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
- the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
- heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and after that, through the cooling process at 130 ° C, the film is guided to the outside of the tenter, the film end clip is released, and the film is wound around the core.
- Table 1 shows the physical properties and evaluation results of the polypropylene film.
- a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1.
- Example 3 In Example 2, the lamination structure was changed, and the feed block type B / A / B composite T die for three-layer lamination was laminated at a thickness ratio of 1/58/1. ) 85 parts by mass of crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) as polypropylene raw material C for 80) and 80% by mass of calcium carbonate And 15 parts by mass of a master material compounded with 20% by mass of polypropylene (Sankyo Seimitsu Co., Ltd., 2480K, calcium carbonate particles: 6 ⁇ m) and fed to a uniaxial melt extruder for the A layer, Otherwise, a polypropylene film having a thickness of 30 ⁇ m was obtained in the same manner as in Example 2. Table 1 shows the physical properties and evaluation results of the polypropylene film. Here, the surface properties of the surface layer not installed on the
- Example 4 In Example 3, crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96% as a polypropylene raw material C for the base material layer (A layer) ) Dry blend of 80 parts by mass and 20 parts by mass of a master raw material (Sankyo Seimitsu Co., Ltd., 2480K, calcium carbonate particles: 6 ⁇ m) compounded with 80% by mass of calcium carbonate and 20% by mass of polypropylene, for layer A A polypropylene film having a thickness of 30 ⁇ m was obtained in the same manner as in Example 3 except for the above. Table 1 shows the physical properties and evaluation results of the polypropylene film. Here, the surface properties of the surface layer not installed on the cast drum were evaluated. Further, a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1.
- Example 5 In Example 2, the relaxation after transverse stretching was set to 0%, and a polypropylene film was obtained in the same manner as in Example 2 except that.
- Table 1 shows the physical properties and evaluation results of the polypropylene film. Further, a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1. Since the heat shrinkage rate in the width direction at 150 ° C. was large, the film was deformed during pressing and some wrinkles were generated.
- Example 2 (Comparative Example 1)
- crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) is used as the polypropylene raw material C for the base material layer ( The same material was used for the surface layer and the base material layer), and a polypropylene film was obtained in the same manner as in Example 2 except that.
- Table 1 shows the physical properties and evaluation results of the polypropylene film. Further, a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1.
- Example 2 In Example 2, as the polypropylene raw material D for the surface layer (I), crystalline PP (a) (manufactured by Prime Polymer, TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) 93 A raw material obtained by dry blending 3 parts by mass and 6.7 parts by mass of a master material (Sankyo Seimitsu Co., Ltd., 2480K, calcium carbonate particles: 6 ⁇ m) compounded with 80% by mass of calcium carbonate and 20% by mass of polypropylene. A polypropylene film was obtained in the same manner as in Example 2 except that the same raw materials were used for the surface layer and the base material layer. Table 1 shows the physical properties and evaluation results of the polypropylene film. Further, a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1.
- Example 3 (Comparative Example 3) In Example 2, the lamination thickness ratio of the A / B layer was changed to 1/1, and a polypropylene film was obtained in the same manner as in Example 2 except that. Table 1 shows the physical properties and evaluation results of the polypropylene film. Further, a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1.
- Example 4 (Comparative Example 4)
- the lamination thickness ratio of the A / B layer was changed to 1/1, and a polypropylene film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that.
- Table 1 shows the physical properties and evaluation results of the polypropylene film. Since the B layer was thick, the liquid dropped in the surface free energy measurement penetrated into the network structure of the surface B layer, and the surface free energy could not be measured.
- Example 5 In Example 3, as polypropylene raw material D for surface layer (I) (B layer), crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) 50 parts by mass of low-melting point PP (manufactured by Sumitomo Chemical Co., Ltd., S131, melting point 132 ° C., MFR: 1.5 g / 10 min) and dry blended to obtain a uniaxial for B layer A polypropylene film having a thickness of 30 ⁇ m was obtained in the same manner as in Example 3 except that it was supplied to a melt extruder.
- crystalline PP (a) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, isotactic index: 96%) 50 parts by mass of low-melting point PP (manufactured by Sumitomo
- Table 1 shows the physical properties and evaluation results of the polypropylene film.
- the surface properties of the surface layer not installed on the cast drum were evaluated.
- a fiber reinforced composite material was produced by the method described in Production Example 1. The evaluation results are shown in Table 1. Since the heat shrinkage rate in the width direction at 150 ° C. was large, the film was deformed during pressing and some wrinkles were generated.
- Table 1 shows the physical properties and evaluation results of a commercially available polypropylene mat film (YM-17 manufactured by Toray Industries, Inc.).
- Evaluation of the surface physical properties of the polypropylene films of the above examples and comparative examples was performed by evaluating the surface layer of the matte surface. Moreover, the fiber reinforced composite material was produced using the polypropylene film of said Example and a comparative example by the method of manufacture example 1. FIG. The evaluation results are shown in Table 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
尚、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。
本発明のポリプロピレンフィルムの第2の形態では、表層(I)の最大高さRmaxが1,000~15,000nmであることが好ましい。より好ましくは1,000~10,000nm、更に好ましくは1,000~5,000nmである。Rmaxが1,000nm未満では、表面が平滑になりすぎて、第2の形態における離型性向上の効果が得られない場合がある。Rmaxが15,000nmを超えると、製膜時にフィルムが破断しやすくなったり、また、Rmaxが大きすぎて離型性が低下する場合がある。Rmaxを上記範囲内とするためには、フィルムの積層構成や各層の原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に押出条件、延伸条件を後述する範囲とすることが効果的である。
マイクロ厚み計(アンリツ社製)を用いて5点測定し、平均値を求めた。
測定液として、水、エチレングリコ-ル、ホルムアミド、及びヨウ化メチレンの4種類の液体を用い、協和界面化学(株)製接触角計CA-D型を用いて、各液体のフィルム表面に対する静的接触角を求めた。なお、静的接触角は、各液体をフィルム表面に滴下後、30秒後に測定した。各々の液体について得られた接触角と測定液の表面張力の各成分を下式にそれぞれ代入し4つの式からなる連立方程式をγSd、γSp、γShについて解いた。
(γSd・γLd)1/2+(γSp・γLp)1/2+(γSh・γLh)
1/2 =γL(1+COSθ)/2
但し、γS=γSd+γSp+γSh
γL=γLd+γLp+γLh
γS、γSd、γSp、γShはそれぞれフィルム表面の表面自由エネルギー、分散力成分、極性力成分、水素結合成分を、またγL、γLd、γLp、γLhは用いた測定液のそれぞれ表面自由エネルギー、分散力成分、極性力成分、水素結合成分を表わすものとる。ここで、用いた各液体の表面張力は、Panzer(J.Panzer,J.Colloid Interface Sci.,44,142(1973)によって提案された値を用いた。
ポリプロピレンフィルムを試験方向長さ150mm×幅10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンAMF/RTA-100)を用いて、JIS-K7127(1999)に規定された方法に準じて、25℃、65%RH雰囲気で5回測定を行い、平均値を求めた。ただし、初期チャック間距離50mmとし、引張速度を300mm/分として、試験を開始してから荷重が1Nを通過した点を伸びの原点とした。
フィルムの幅方向に幅10mm、長さ200mm(測定方向)の試料を5本切り出し、両端から25mmの位置に標線として印しを付けて、万能投影機で標線間の距離を測定し試長(l0)とする。次に、試験片を紙に挟み込み荷重ゼロの状態で120℃に保温されたオーブン内で、15分間加熱後に取り出して、室温で冷却後、寸法(l1)を万能投影機で測定して下記式にて求め、5本の平均値を熱収縮率とした。
熱収縮率={(l0-l1)/l0}×100(%)
ポリプロピレンフィルムを、表面粗さ計(SURFCORDER ET4000A:(株)小坂研究所製)を用い、JIS-B-0601:2001に基づき、下記測定条件にて測定を行い、中心線平均粗さSRa(nm)および最大高さSRmax(nm)を求めた。ただし、測定は表層(I)面について3カ所測定し、平均値とした。
<測定条件>
測定速度:0.1mm/s
測定範囲:長手方向1,000μm、幅方向1,000μm
測定ピッチ:長手方向1μm、幅方向15μm
カットオフ値λc:0.2mm
触針先端半径:0.5μm
ポリプロピレンフィルムについて、セイコーインスツルメント社製TMA/SS6000を用いて、下記温度プログラムにて一定荷重下におけるフィルム長手方向および幅方向の収縮曲線をそれぞれ求めた。得られた収縮曲線から、150℃での熱収縮率を読み取った。
温度プログラム 25℃→(5℃/min)→170℃(hold 5min)
荷重 2g
サンプルサイズ サンプル長15mm×幅4mm
(測定したい方向をサンプル長側に合わせる)
本発明のポリプロピレンフィルムを10cm四方に5枚サンプリングし、5枚重ね合わせて、プレス機で0.6MPa、150℃で3分間プレスした。その後、5枚のポリプロピレンフィルムを剥がして、5枚中3枚目のフィルムについて、上記(5)と同様の方法で表面粗さを測定した。プレス後の最大高さをRmax1、プレス前の最大高さをRmax2としたとき、以下の基準で評価した。
○:Rmax1/Rmax2≧0.5
×:Rmax1/Rmax2<0.5
後述する製造例1に記載の方法でプレス成形し、繊維強化複合材料から本発明のポリプロピレンフィルムを手で剥離する際の剥離性について、以下の基準で評価した。
○:ポリプロピレンフィルムが一定速度で剥離可能。
×:剥離抵抗がやや強く、一定速度で剥離できない。または、剥離時にポリプロピレンフィルムが伸びる、または破れる。
後述する製造例1に記載の方法で作製した繊維強化複合材料について、表面のマット感を目視で観察し、以下の基準で評価した。
◎:マット感が特に強く良好である。
○:マット感が強い。
△:マット感は弱いが、繊維強化複合材料中の繊維目が確認できない。
×:目視で繊維強化複合材料中の繊維目が確認可能。
(1)エポキシ樹脂組成物の作製
エポキシ樹脂組成物として、“エピコート”(登録商標)828を20質量部、“エピコート”(登録商標)834を20質量部、“エピコート”(登録商標)1001を25質量部、(以上、ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン(株)製)、“エピコート”(登録商標)154を35質量部(フェノールノボラック型エポキシ樹脂、ジャパンエポキシレジン(株)製)、アミン系硬化剤としてDICY7(ジシアンジアミド、ジャパンエポキシレジン(株)製)を4質量部、リン系化合物として“ノーバレッド”(登録商標)120(平均粒径25μm、リン含有量85%、燐化学工業(株)製)を3質量部、硬化促進剤として“オミキュア”(登録商標)24(2,4-トルエンビス(ジメチルウレア)、ピイ・ティ・アイ・ジャパン(株)製)を5質量部、熱可塑性樹脂として“ビニレック”(登録商標)K(ポリビニルホルマール、チッソ(株)製)を5質量部、を下に示す手順でニーダーで混合し、ポリビニルホルマールが均一に溶解したエポキシ樹脂組成物を得た。
(a)各エポキシ樹脂原料とポリビニルホルマールとを150~190℃に加熱しながら1~3時間攪拌し、ポリビニルホルマールを均一に溶解する。
(b)樹脂温度を90℃~110℃まで降温し、リン系化合物を加えて20~40分間攪拌する。
(c)樹脂温度を55~65℃まで降温し、ジシアンジアミド、および2,4-トルエンビス(ジメチルウレア)を加え、該温度で30~40分間混練後、ニーダー中から取り出して樹脂組成物を得る。
続いて調製した樹脂組成物を、リバースロールコータを用いて離型紙上に塗布して樹脂フィルムを作製した。樹脂フィルムの単位面積あたりの樹脂量は、25g/m2とした。次に、単位面積あたりの繊維重量が100g/m2となるようにシート状に一方向に整列させた炭素繊維トレカ(登録商標)T700SC-12K-50C(東レ株式会社製)に樹脂フィルムを炭素繊維の両面から重ね、加熱加圧して樹脂組成物を含浸させ、プリプレグを作製した。
上記プリプレグの両面に下記実施例および比較例で作製したポリプロピレンフィルムの表層(I)の面を貼り付け、加熱プレスを用いて圧力0.6MPa、温度150℃で3分間で加熱加圧し、加圧プレス機から取り外して常温まで冷却した後、下記実施例および比較例で作製したポリプロピレンフィルムを剥離して、厚さ約0.2mmの繊維強化複合材料を得た。
まず、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX(登録商標)1010、IRGAFOS(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料Bを得た。
基材層(A層)用のポリプロピレン原料Aとして結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)をA層用の単軸の溶融押出機に供給し、表層(I)(B層)用のポリプロピレン原料Bとして、上記ポリプロピレン原料BをB層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、90℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。このとき、表層(I)のポリプロピレン原料Bをキャストドラムに接地する面とした。ついで、複数のセラミックロールを用いて125℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み15μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。
基材層(A層)用のポリプロピレン原料Cとして結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)93.3質量部と、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)6.7質量部とをドライブレンドしてA層用の単軸の溶融押出機に供給し、表層(I)(B層)用のポリプロピレン原料Dとして、結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)をB層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、30℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。このとき、基材層のポリプロピレン原料Cをキャストドラムに接地する面とした。ついで、複数のセラミックロールを用いて125℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み19μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例2において、積層構成を変更し、3層積層用のフィードブロック型のB/A/B複合Tダイにて1/58/1の厚み比で積層し、さらに、基材層(A層)用のポリプロピレン原料Cとして結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)85質量部と、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)15質量部とをドライブレンドしてA層用の単軸の溶融押出機に供給し、それ以外は実施例2と同様の方法で、厚み30μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。ここで表面物性の評価は、キャストドラムに設置していない方の表層を評価した。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例3において、基材層(A層)用のポリプロピレン原料Cとして結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)80質量部と、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)20質量部とをドライブレンドしてA層用の単軸の溶融押出機に供給し、それ以外は実施例3と同様の方法で、厚み30μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。ここで表面物性の評価は、キャストドラムに設置していない方の表層を評価した。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例2において、横延伸後の弛緩を0%として、それ以外は実施例2と同様の方法でポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。150℃の幅方向の熱収縮率が大きいため、プレス時にフィルムが変形し、シワが若干発生した。
実施例2において、基材層用のポリプロピレン原料Cとして結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)を使用(表層も基材層も同じ原料を使用)し、それ以外は実施例2と同様の方法でポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例2において、表層(I)用のポリプロピレン原料Dとして、結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)93.3質量部と、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)6.7質量部とをドライブレンドした原料を使用(表層も基材層も同じ原料を使用)し、それ以外は実施例2と同様の方法でポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例2において、A/B層の積層厚み比を1/1の厚み比に変更し、それ以外は実施例2と同様の方法でポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。
実施例1において、A/B層の積層厚み比を1/1の厚み比に変更し、それ以外は実施例1と同様の方法で厚み25μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。B層の厚みが厚いため、表面自由エネルギー測定において滴下した液体が表層B層のネットワーク構造中に浸透し、表面自由エネルギーを測定することができなかった。
実施例3において、表層(I)(B層)用のポリプロピレン原料Dとして、結晶性PP(a)((株)プライムポリマー製、TF850H、MFR:2.9g/10分、アイソタクチック指数:96%)50質量部と、低融点PP(住友化学(株)製、S131、融点132℃、MFR:1.5g/10分)50質量部とをドライブレンドしてB層用の単軸の溶融押出機に供給し、それ以外は実施例3と同様の方法で、厚み30μmのポリプロピレンフィルムを得た。ポリプロピレンフィルムの物性および評価結果を表1に示す。ここで表面物性の評価は、キャストドラムに設置していない方の表層を評価した。また、製造例1に記載の方法で繊維強化複合材料を作製した。評価結果を表1に示す。150℃の幅方向の熱収縮率が大きいため、プレス時にフィルムが変形し、シワが若干発生した。
市販のポリプロピレンマットフィルム(東レ(株)社製、YM-17)について、物性および評価結果を表1に示す。
Claims (11)
- 基材層の少なくとも片面にポリプロピレンを主成分とする表層(I)を有し、当該表層(I)の表面自由エネルギーが15mN/m以上28mN/m未満であるポリプロピレンフィルム。
- 長手方向のヤング率EMD、および幅方向のヤング率ETDが、共に2.0GPa以上である、請求項1に記載のポリプロピレンフィルム。
- 長手方向のヤング率EMDと幅方向のヤング率ETDとの比EMD/ETD値が0.2~1.5である、請求項1または2に記載のポリプロピレンフィルム。
- 幅方向の120℃の熱収縮率が1%以下である、請求項1~3のいずれかに記載のポリプロピレンフィルム。
- 150℃の熱収縮率が長手方向、幅方向共に0.1~20%である、請求項1~4のいずれかに記載のポリプロピレンフィルム。
- 前記表層(I)の中心線平均粗さRaが10~150nmである、請求項1~5のいずれかに記載のポリプロピレンフィルム。
- 前記表層(I)の中心線平均粗さRaが200~500nmであり、前記表層(I)の最大高さRmaxが1,000~5,000nmである、請求項1~5のいずれかに記載のポリプロピレンフィルム。
- 前記表層(I)の中心線平均粗さRaが200~1,000nmであり、前記表層(I)の最大高さRmaxが5,000~15,000nmである、請求項1~5のいずれかに記載のポリプロピレンフィルム。
- 前記基材層はポリプロピレンと平均粒径が1~10μmの粒子を含有してなり、ポリプロピレンフィルム全体の厚みにおける前記表層(I)の厚みの割合(%)が25%以下である、請求項1~5、7および8のいずれかに記載のポリプロピレンフィルム。
- 請求項1~9のいずれかに記載のポリプロピレンフィルムを用いてなる離型用フィルム。
- 繊維強化複合材料の金型プレス用に使用される請求項10に記載の離型用フィルム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167036126A KR102349685B1 (ko) | 2014-07-09 | 2015-07-06 | 폴리프로필렌 필름 및 이형용 필름 |
US15/320,822 US20170157803A1 (en) | 2014-07-09 | 2015-07-06 | Polypropylene film and mold release film |
CN201580035118.0A CN106470839A (zh) | 2014-07-09 | 2015-07-06 | 聚丙烯膜及脱模用膜 |
JP2015539893A JP6137328B2 (ja) | 2014-07-09 | 2015-07-06 | ポリプロピレンフィルムおよび離型用フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014141166 | 2014-07-09 | ||
JP2014-141166 | 2014-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016006578A1 true WO2016006578A1 (ja) | 2016-01-14 |
Family
ID=55064209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069428 WO2016006578A1 (ja) | 2014-07-09 | 2015-07-06 | ポリプロピレンフィルムおよび離型用フィルム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170157803A1 (ja) |
JP (1) | JP6137328B2 (ja) |
KR (1) | KR102349685B1 (ja) |
CN (1) | CN106470839A (ja) |
WO (1) | WO2016006578A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199686A (ja) * | 2015-04-10 | 2016-12-01 | 三井化学東セロ株式会社 | 二軸延伸ポリプロピレンフィルムおよびその製造方法 |
WO2017006832A1 (ja) * | 2015-07-06 | 2017-01-12 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
JP2017013456A (ja) * | 2015-07-06 | 2017-01-19 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
JP2017013455A (ja) * | 2015-07-06 | 2017-01-19 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
WO2018097161A1 (ja) * | 2016-11-25 | 2018-05-31 | 東レ株式会社 | 積層ポリプロピレンフィルム |
JP2019025290A (ja) * | 2017-07-26 | 2019-02-21 | 明安國際企業股▲分▼有限公司 | 炭素繊維プレートを具えるゴルフクラブヘッドの製造方法 |
WO2020157894A1 (ja) * | 2019-01-31 | 2020-08-06 | Pcj株式会社 | 積層複合材の製造方法、鞄の製造方法、立体成形物及び鞄 |
WO2020157895A1 (ja) * | 2019-01-31 | 2020-08-06 | 株式会社サングード | 積層複合材、および積層複合材の製造方法 |
WO2020196602A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | ポリプロピレンフィルム |
WO2020196600A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | 炭素繊維強化複合材料の成形品およびその製造方法 |
KR20210069630A (ko) | 2018-10-05 | 2021-06-11 | 도레이 카부시키가이샤 | 폴리올레핀 필름 및 이형용 필름 |
JPWO2021070671A1 (ja) * | 2019-10-10 | 2021-10-21 | 東レ株式会社 | ポリオレフィンフィルム |
JP2022140476A (ja) * | 2019-10-10 | 2022-09-26 | 東レ株式会社 | ポリオレフィンフィルム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180164A1 (ja) * | 2017-03-28 | 2018-10-04 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
CN107417887A (zh) * | 2017-09-08 | 2017-12-01 | 张家港长泰汽车饰件材料有限公司 | 箱式聚氨酯泡沫的制备方法 |
CN111491771B (zh) * | 2017-12-25 | 2022-04-01 | 东丽株式会社 | 脱模膜 |
TW202110646A (zh) * | 2019-07-10 | 2021-03-16 | 日商東洋紡股份有限公司 | 雙軸配向聚丙烯系樹脂膜及使用該雙軸配向聚丙烯系樹脂膜之包裝體 |
US20230212362A1 (en) * | 2020-06-17 | 2023-07-06 | Toyobo Co., Ltd. | Biaxially oriented polypropylene film |
WO2021256347A1 (ja) * | 2020-06-17 | 2021-12-23 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
KR20230033705A (ko) * | 2020-07-03 | 2023-03-08 | 도요보 가부시키가이샤 | 이축배향 폴리프로필렌계 필름 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06255060A (ja) * | 1993-03-08 | 1994-09-13 | Toray Ind Inc | 積層ポリエステルフィルム |
JP2005280125A (ja) * | 2004-03-30 | 2005-10-13 | Toray Ind Inc | 離型用ポリプロピレンフィルム |
JP2006077238A (ja) * | 2004-08-11 | 2006-03-23 | Toray Ind Inc | 離型用ポリプロピレンフィルム及びそれからなる積層フィルム及び積層シート |
JP2007126644A (ja) * | 2005-10-04 | 2007-05-24 | Toray Ind Inc | 離型用ポリプロピレンフイルム |
JP2014001265A (ja) * | 2012-06-15 | 2014-01-09 | Oji Holdings Corp | 二軸延伸ポリプロピレンフィルム |
WO2014061403A1 (ja) * | 2012-10-17 | 2014-04-24 | 東レ株式会社 | 積層フィルム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3631232A1 (de) * | 1986-09-13 | 1988-03-24 | Hoechst Ag | Mehrschichtfolie als trennfolie zur herstellung dekorativer schichtstoffplatten |
JP2718172B2 (ja) | 1989-04-27 | 1998-02-25 | 東レ株式会社 | 白色ポリエステルフイルム |
JP2000117900A (ja) | 1998-10-20 | 2000-04-25 | Toyobo Co Ltd | 離型フィルム |
TWI295963B (ja) | 2001-05-11 | 2008-04-21 | Toray Industries | |
JP2004083748A (ja) * | 2002-08-27 | 2004-03-18 | Toray Ind Inc | 液晶カラーフィルター製造工程用離型用ポリプロピレンフィルム |
JP5105459B2 (ja) * | 2003-06-04 | 2012-12-26 | 東レ株式会社 | 積層フィルムおよび二軸配向ポリエステルフィルム |
CA2649258C (en) * | 2006-04-19 | 2015-05-26 | Toray Industries, Inc. | Biaxially oriented polyester film for molded part |
US20080290534A1 (en) * | 2007-05-24 | 2008-11-27 | Changhong Yin | Ophthalmic lens mold surface energy differential |
CN201769424U (zh) * | 2009-10-22 | 2011-03-23 | 惠州宝柏包装有限公司 | 一种离型bopp薄膜 |
JP5489729B2 (ja) | 2010-01-08 | 2014-05-14 | 三井化学株式会社 | 樹脂組成物、およびそれを含むフィルム |
JP2011152733A (ja) | 2010-01-28 | 2011-08-11 | Toray Ind Inc | 積層フィルムおよびそれを用いた成型用シート |
KR101305370B1 (ko) * | 2010-08-26 | 2013-09-09 | 주식회사 폴리사이언텍 | 인쇄회로기판용 이형필름 |
EP2596936B1 (en) * | 2011-11-24 | 2015-09-09 | ABB Research Ltd. | Mold and method for producing shaped articles from a UV-curable composition |
JP6115716B2 (ja) | 2012-03-29 | 2017-04-19 | 株式会社ジェイ・エム・エス | ラクチド−カプロラクトン共重合体製フィルムの複合体およびその製造方法 |
-
2015
- 2015-07-06 US US15/320,822 patent/US20170157803A1/en not_active Abandoned
- 2015-07-06 JP JP2015539893A patent/JP6137328B2/ja active Active
- 2015-07-06 WO PCT/JP2015/069428 patent/WO2016006578A1/ja active Application Filing
- 2015-07-06 KR KR1020167036126A patent/KR102349685B1/ko active IP Right Grant
- 2015-07-06 CN CN201580035118.0A patent/CN106470839A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06255060A (ja) * | 1993-03-08 | 1994-09-13 | Toray Ind Inc | 積層ポリエステルフィルム |
JP2005280125A (ja) * | 2004-03-30 | 2005-10-13 | Toray Ind Inc | 離型用ポリプロピレンフィルム |
JP2006077238A (ja) * | 2004-08-11 | 2006-03-23 | Toray Ind Inc | 離型用ポリプロピレンフィルム及びそれからなる積層フィルム及び積層シート |
JP2007126644A (ja) * | 2005-10-04 | 2007-05-24 | Toray Ind Inc | 離型用ポリプロピレンフイルム |
JP2014001265A (ja) * | 2012-06-15 | 2014-01-09 | Oji Holdings Corp | 二軸延伸ポリプロピレンフィルム |
WO2014061403A1 (ja) * | 2012-10-17 | 2014-04-24 | 東レ株式会社 | 積層フィルム |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199686A (ja) * | 2015-04-10 | 2016-12-01 | 三井化学東セロ株式会社 | 二軸延伸ポリプロピレンフィルムおよびその製造方法 |
WO2017006832A1 (ja) * | 2015-07-06 | 2017-01-12 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
JP2017013456A (ja) * | 2015-07-06 | 2017-01-19 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
JP2017013455A (ja) * | 2015-07-06 | 2017-01-19 | 東レ株式会社 | 繊維強化複合材料の製造方法 |
US10583640B2 (en) | 2015-07-06 | 2020-03-10 | Toray Industries, Inc. | Method for manufacturing fiber-reinforced composite material |
WO2018097161A1 (ja) * | 2016-11-25 | 2018-05-31 | 東レ株式会社 | 積層ポリプロピレンフィルム |
KR20190082798A (ko) | 2016-11-25 | 2019-07-10 | 도레이 카부시키가이샤 | 적층 폴리프로필렌 필름 |
CN110023086A (zh) * | 2016-11-25 | 2019-07-16 | 东丽株式会社 | 叠层聚丙烯膜 |
JPWO2018097161A1 (ja) * | 2016-11-25 | 2019-10-17 | 東レ株式会社 | 積層ポリプロピレンフィルム |
JP7070426B2 (ja) | 2016-11-25 | 2022-05-18 | 東レ株式会社 | 積層ポリプロピレンフィルム |
JP2019025290A (ja) * | 2017-07-26 | 2019-02-21 | 明安國際企業股▲分▼有限公司 | 炭素繊維プレートを具えるゴルフクラブヘッドの製造方法 |
KR20210069630A (ko) | 2018-10-05 | 2021-06-11 | 도레이 카부시키가이샤 | 폴리올레핀 필름 및 이형용 필름 |
WO2020158915A1 (ja) * | 2019-01-31 | 2020-08-06 | Pcj株式会社 | 積層複合材の製造方法、鞄の製造方法、立体成形物及び鞄 |
JPWO2020158916A1 (ja) * | 2019-01-31 | 2021-12-02 | 株式会社サングード | 積層複合材、および積層複合材の製造方法 |
WO2020157894A1 (ja) * | 2019-01-31 | 2020-08-06 | Pcj株式会社 | 積層複合材の製造方法、鞄の製造方法、立体成形物及び鞄 |
WO2020158916A1 (ja) * | 2019-01-31 | 2020-08-06 | 株式会社サングード | 積層複合材、および積層複合材の製造方法 |
WO2020157895A1 (ja) * | 2019-01-31 | 2020-08-06 | 株式会社サングード | 積層複合材、および積層複合材の製造方法 |
KR20210148096A (ko) | 2019-03-28 | 2021-12-07 | 도레이 카부시키가이샤 | 폴리프로필렌 필름 |
WO2020196600A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | 炭素繊維強化複合材料の成形品およびその製造方法 |
WO2020196602A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | ポリプロピレンフィルム |
US11993688B2 (en) | 2019-03-28 | 2024-05-28 | Toray Industries, Inc. | Molded article of carbon fiber composite material and production method for molded article of carbon fiber composite material |
JPWO2021070671A1 (ja) * | 2019-10-10 | 2021-10-21 | 東レ株式会社 | ポリオレフィンフィルム |
JP7107383B2 (ja) | 2019-10-10 | 2022-07-27 | 東レ株式会社 | ポリオレフィンフィルム |
JP2022140475A (ja) * | 2019-10-10 | 2022-09-26 | 東レ株式会社 | ポリオレフィンフィルム |
JP2022140476A (ja) * | 2019-10-10 | 2022-09-26 | 東レ株式会社 | ポリオレフィンフィルム |
JP7355172B2 (ja) | 2019-10-10 | 2023-10-03 | 東レ株式会社 | ポリオレフィンフィルム |
JP7355173B2 (ja) | 2019-10-10 | 2023-10-03 | 東レ株式会社 | ポリオレフィンフィルム |
Also Published As
Publication number | Publication date |
---|---|
US20170157803A1 (en) | 2017-06-08 |
JPWO2016006578A1 (ja) | 2017-04-27 |
KR102349685B1 (ko) | 2022-01-12 |
CN106470839A (zh) | 2017-03-01 |
JP6137328B2 (ja) | 2017-05-31 |
KR20170032234A (ko) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6137328B2 (ja) | ポリプロピレンフィルムおよび離型用フィルム | |
TWI773665B (zh) | 雙軸配向聚丙烯膜 | |
KR102455837B1 (ko) | 이축 배향 폴리프로필렌 필름 | |
CN107849399B (zh) | 粘结膜和粘结膜筒 | |
KR102405861B1 (ko) | 적층 폴리프로필렌 필름 | |
JP7205611B2 (ja) | 二軸配向ポリプロピレンフィルム | |
TWI793097B (zh) | 雙軸配向聚丙烯系膜以及積層體 | |
TWI781149B (zh) | 二軸配向聚丙烯膜 | |
JP5924183B2 (ja) | 二軸延伸ポリプロピレンフィルム | |
JP2022100316A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2017125184A (ja) | ポリプロピレンフィルムおよび離型用フィルム | |
JP2015178615A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2017035884A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2018204001A (ja) | ポリオレフィンフィルムおよび離型用フィルム | |
JP6728681B2 (ja) | 積層フィルム、その製造方法および表面保護フィルム | |
JP2016064654A (ja) | 二軸配向ポリプロピレンフィルムおよび表面保護フィルム | |
TWI827693B (zh) | 聚烯烴薄膜、及離型用薄膜 | |
WO2024202887A1 (ja) | 二軸延伸ポリプロピレンフィルム | |
WO2022210693A1 (ja) | ポリプロピレンフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015539893 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15818998 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15320822 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167036126 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15818998 Country of ref document: EP Kind code of ref document: A1 |