WO2015139482A1 - 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法 - Google Patents

一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2015139482A1
WO2015139482A1 PCT/CN2014/092980 CN2014092980W WO2015139482A1 WO 2015139482 A1 WO2015139482 A1 WO 2015139482A1 CN 2014092980 W CN2014092980 W CN 2014092980W WO 2015139482 A1 WO2015139482 A1 WO 2015139482A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
spinel structure
nickel
salt
ion battery
Prior art date
Application number
PCT/CN2014/092980
Other languages
English (en)
French (fr)
Inventor
廖世军
柳祖善
肖冠
任婉
杜丽
曾建皇
宋慧宇
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2015139482A1 publication Critical patent/WO2015139482A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of a cathode material, in particular to a cathode material of a high voltage lithium ion battery having a spinel structure and a preparation method thereof.
  • Lithium-ion batteries are regarded as one of the most probable large-scale secondary batteries for electric vehicles because of their unique advantages.
  • the research of new lithium-ion batteries has become the most important research topic in related fields.
  • the positive electrode materials constituting the battery are the most critical factors affecting the performance of the secondary battery and its application.
  • high temperature solid phase method sol - Methods such as gel method and coprecipitation method are several common synthetic methods reported in the literature and patents.
  • the high temperature solid phase method is the most commonly used method.
  • the method directly mixes the required lithium source, nickel source, manganese source and doped metal raw materials by ball milling, and then calcins at a high temperature to obtain a product.
  • the biggest feature of this method is that it is easy to operate and easy to achieve mass production.
  • the mixing of the raw materials is not uniform, the particle size deviation is large, and the phenomenon of agglomeration is obvious, and the electrochemical properties of the obtained material are not very satisfactory.
  • the biggest feature of the gel method is that the raw materials can be mixed at the molecular level.
  • the temperature required for preparation is also lower than that of the solid phase method.
  • the prepared materials have high purity, some special morphology, high discharge capacity and cycle performance. It is better, but the organic reagent is generally used in the synthesis process, the cost is high, and it is not green enough, and the mass production has certain difficulties.
  • the precursor material with uniform mixing of raw materials is prepared by co-precipitation method, and the precursor precipitate is obtained after solid-liquid separation, and the pre-treated precursor material is mixed with an appropriate amount of lithium source, and subjected to high-temperature heat treatment to finally obtain a spinel structure.
  • Voltage lithium ion battery cathode material By using the synthetic material of the invention, the loss of precipitation of each metal oxalate can be reduced to a large extent, and again, compared with the conventional solid phase method, the amount of lithium carried away by the precursor during initial decomposition can be reduced, thereby ensuring In the final high temperature roasting, there is a sufficient amount of lithium, and the material synthesized by this method has high purity and good performance.
  • the object of the present invention is to provide a high-voltage lithium ion battery cathode material LiM x+y Ni 0.5-x Mn 1.5-y having a spinel structure by coprecipitation-high temperature solid phase reaction using inexpensive oxalic acid as a precipitating agent.
  • a preparation method of O 4 (M Co, Cr, Fe, Ce, Al, Zn, Mg, etc.; 0 ⁇ x ⁇ 0.25 , 0 ⁇ y ⁇ 0.25).
  • a precipitating substance precipitate is prepared by using a precipitating agent in the solution, and then left to stand for aging, separated and dried, and calcined to obtain a multi-oxide precursor having a spinel structure; and then the multi-oxide precursor is obtained.
  • Mixing and grinding with lithium salt; calcining to obtain a positive electrode material LiM x+y Ni 0.5-x Mn 1.5-y O 4 having a spinel structure; wherein M Co, Cr, Fe, Ce, Al, Zn or Mg 0 ⁇ x ⁇ 0.25 , 0 ⁇ y ⁇ 0.25; wherein the method of separating and drying comprises directly evaporating the liquid, spray drying or filtering and drying one or more of the three methods.
  • Step 1 Mix the nickel salt, the manganese salt and the doped metal M salt in deionized water to form a total concentration of metal ions.
  • 0.3-0.6mol/L mixed salt solution a wherein manganese salt : nickel salt: M salt molar ratio is 1.5-y : 0.5-x : x+y ( 0 ⁇ x ⁇ 0.25 , 0 ⁇ y ⁇ 0.25 );
  • Step 2 preparing a volume equal concentration of the precipitant solution b with the mixed salt solution
  • Step 3 Add solution b to solution a, continue stirring to make the precipitation reaction sufficient, and control the reaction temperature 20-60 °C And the reaction time is 1-12h, and a suspension containing nickel, manganese and metal M precipitate is obtained;
  • Step 4 The suspension containing nickel, manganese and metal M precipitate obtained in step 3 is allowed to stand for aging, and then separated and dried. A precipitate of nickel, manganese and metal M is obtained, that is, a precursor substance precipitates;
  • Step 5 Place the precipitates of nickel, manganese and metal M obtained in step 4 in a muffle furnace at an air atmosphere of 550 - 600 °C. Baked for 3-5 h to obtain a multi-oxide precursor containing nickel, manganese and metal M;
  • Step 6 The ratio of the metal ion to the lithium ion substance is 2: (1.05-1.2), and the multi-oxide precursor containing nickel, manganese and metal M prepared in the step 5 is mixed with the lithium salt and fully ground. After calcination at 700-950 °C for 5-24 h, it is naturally cooled to room temperature, and after grinding, a lithium ion battery cathode material LiM x+y Ni 0.5-x Mn 1.5-y O 4 having a spinel structure is obtained.
  • step 4 The method of separating and drying described herein comprises one or more of three methods of directly evaporating the liquid, spray drying or filtering drying.
  • step 6 In the above method, step 6 In the polishing described above, one or more of methanol, ethanol, isopropanol or acetone is used as a grinding aid and a dispersing agent.
  • the manganese salt includes one or a mixture of one of manganese acetate, manganese nitrate, manganese chloride, manganese oxalate, manganese sulfate or manganese carbonate.
  • the nickel salt in the step 1 comprises one or more mixed salts of nickel acetate, nickel nitrate, nickel chloride, nickel oxalate, nickel sulfate or nickel carbonate;
  • the metal M salt is one or a mixture of one or more of an acetate, a nitrate, a hydrochloride, an oxalate, a sulfate or a carbonate of M.
  • the precipitating agent is sodium carbonate, sodium hydroxide, ammonium carbonate, ammonium oxalate, oxalic acid or urea.
  • the lithium salt in the step 6 is lithium carbonate, lithium nitrate, lithium hydroxide or lithium acetate.
  • the solvent is deionized water or a mixture of deionized water and ethanol.
  • the solvent used in the present invention is green, non-polluting and inexpensive deionized water.
  • the lithium salt used in the present invention is one of lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium acetate or the like or a mixed salt thereof.
  • the coprecipitation step is added in the process, so that the raw material ions can be uniformly mixed at the molecular level, and the oxalate coprecipitation precursor is obtained without direct filtration, which can reduce the loss of metal ions and form a uniformity for the late high temperature reaction.
  • the material provides a good basis; after the addition of the lithium source is placed in the pretreatment precursor precipitation, the loss of lithium volatilization in the material at the time of decomposition of the precursor material can be avoided.
  • the whole synthesis process is simple, the solvent is green and non-polluting deionized water; there is no special requirement for the experimental environment; the synthesized material has high purity, and the synthesized material has stable performance and is easy to be industrialized.
  • Figure 1 is an XRD chart of a material prepared in Example 1 of the present invention.
  • Example 2 is a scanning electron micrograph of a material prepared in Example 1 of the present invention.
  • Figure 3 is a graph showing the discharge capacity of a battery prepared in Example 1 of the present invention.
  • Example 4 is a cycle capacity curve of a battery prepared in Example 1 of the present invention.
  • Figure 5 is a graph showing the cycle capacity of a battery prepared in Example 4 of the present invention.
  • Figure 6 is a graph showing the cycle capacity of batteries prepared in Examples 5 and 6 of the present invention.
  • the stoichiometric ratio of lithium carbonate is mixed with the obtained nickel-manganese oxide powder (10% excess of lithium carbonate), and ethanol is added as a grinding aid, fully ground, and then calcined at 750-950 ° C for 15 h, and naturally cooled to At room temperature, it was finally ground to obtain a positive electrode material LiNi 0.5 Mn 1.5 O 4 .
  • the LiNi 0.5 Mn 1.5 O 4 material prepared by this method was characterized by XRD (see Figure 1). The results show that the final materials obtained by calcination at different temperatures are single spinel structure with good crystallinity. . From the scanning electron micrograph (see Figure 2), the material has a polyhedral structure with a sharp angular surface, and the particle size distribution of the material is relatively uniform, with an average size of 1-1.5 ⁇ m. The material was assembled into a CR 2016 button cell to test its electrochemical performance. At a 0.1 C rate, the discharge specific capacity is 136 mAh/g, and after 60 cycles, the discharge specific capacity is 130 mAh/g, and the capacity retention rate is 95.6 % (see Figures 3 and 4).
  • the stoichiometric ratio of nickel nitrate hexahydrate and manganese nitrate solution was dissolved in deionized water to prepare a solution a with a concentration of 0.5 mol/L, and an appropriate amount of oxalic acid was weighed to prepare a solution b having a concentration of 0.5 mol/L.
  • the solution b was gradually added to the solution a under continuous stirring at 40 ° C for 3 h, and then the precipitate was evaporated to dryness together with the mother liquid at 110 ° C to obtain a nickel-manganese oxalate precursor powder.
  • the nickel-manganese oxalate precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black powder.
  • the stoichiometric ratio of lithium carbonate and the obtained black powder are thoroughly mixed (10% excess of lithium carbonate), isopropanol is added as a grinding aid, fully ground, and then calcined at 900 ° C for 15 h, and naturally cooled to room temperature. It is ground into a powder to obtain a positive electrode material LiNi 0.5 Mn 1.5 O 4 .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface.
  • the particle size distribution of the material particles is relatively uniform, and the average size is 1- 1.5 ⁇ m (refer to Figures 1 and 2).
  • the stoichiometric ratio of manganese acetate and nickel acetate was dissolved in deionized water to prepare a solution a with a concentration of 0.5 mol/L, and an appropriate amount of oxalic acid was also weighed to prepare a solution b with a concentration of 0.5 mol/L.
  • the solution b was slowly added to the solution a under continuous stirring at 40 ° C water bath. After the addition, the reaction was continued for 3 h, and then the precipitate was filtered, washed several times, and dried to obtain a nickel-manganese oxalate precursor powder.
  • the precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black powder.
  • the nickel-manganese oxalate precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black nickel-manganese oxide powder.
  • the stoichiometric ratio of lithium carbonate and the obtained black powder are thoroughly mixed (10% excess of lithium carbonate), fully added with methanol as a grinding aid, and then calcined at 900 ° C for 15 h, naturally cooled to room temperature, and finally ground. That is, a positive electrode material LiNi 0.45 Mn 1.45 Co 0.1 O 4 was obtained .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface, and the material particle size distribution is relatively uniform, and the average size is 1-1.5 ⁇ m (refer to FIGS. 1 and 2).
  • the material obtained in this example has an initial specific capacity of 125 mAh/g, and has a mass specific capacity of 126 mAh/g after 85 cycles, and the retention rate is 100% (see Fig. 5).
  • the stoichiometric ratio of manganese acetate, nickel acetate and cobalt acetate was added to deionized water to prepare a solution a with a concentration of 0.5 mol/L, and an appropriate amount of oxalic acid was also weighed to prepare a solution b with a concentration of 0.5 mol/L.
  • the solution b was gradually added to the solution a under continuous stirring at 40 ° C water bath, and the reaction was continued for 3 h after the addition, and then the precipitate was evaporated together with the mother liquid at 110 ° C to obtain an oxalate precursor powder.
  • the nickel-manganese oxalate precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black nickel-manganese oxide powder.
  • the stoichiometric ratio of lithium carbonate and the obtained black powder are thoroughly mixed (10% excess of lithium carbonate), and a mixture of ethanol and isopropyl alcohol is added as a grinding aid, fully ground, and then calcined at 900 ° C for 15 h, and naturally cooled. At room temperature, it was finally ground to obtain a positive electrode material LiNi 0.4 Mn 1.5 Co 0.1 O 4 .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface, and the material particle size distribution is relatively uniform, and the average size is 1-1.5 ⁇ m (refer to FIGS. 1 and 2).
  • the material obtained in this example had a retention rate of 100% after a cycle of 60 weeks (see Figure 6).
  • the stoichiometric ratios of manganese acetate, nickel acetate and chromium nitrate were dissolved in deionized water to prepare a solution a with a concentration of 0.5 mol/L, and the appropriate amount of oxalic acid was also weighed to prepare a solution b with a concentration of 0.5 mol/L.
  • the solution b was gradually added to the solution a under continuous stirring at 40 ° C water bath, and the reaction was continued for 3 h after the addition, and then the precipitate was evaporated together with the mother liquid at 110 ° C to obtain an oxalate precursor powder.
  • the precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black powder.
  • the stoichiometric ratio of lithium carbonate and the obtained black powder are thoroughly mixed (10% excess of lithium carbonate), a mixture of ethanol and acetone is added as a grinding aid, and fully ground; then calcined at 900 ° C for 15 h, and naturally cooled to room temperature. Finally, it was ground to obtain a positive electrode material LiNi 0.42 Mn 1.42 Cr 0.16 O 4 .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface, and the material particle size distribution is relatively uniform, and the average size is 1-1.5 ⁇ m (refer to FIGS. 1 and 2).
  • the material obtained in this example had a retention rate of 98.8% after 60 cycles (see Figure 6).
  • the stoichiometric ratio of manganese acetate, nickel acetate and lanthanum nitrate was dissolved in deionized water to prepare a solution a with a concentration of 0.5 mol/L, and the appropriate amount of oxalic acid was also weighed to prepare a solution b with a concentration of 0.5 mol/L.
  • the solution b was gradually added to the solution a under continuous stirring at 40 ° C water bath, and the reaction was continued for 3 h after the addition, and then the precipitate was evaporated together with the mother liquid at 110 ° C to obtain an oxalate precursor powder.
  • the precursor powder was pretreated in a muffle furnace at 550 ° C for 5 h to obtain a black powder.
  • the stoichiometric ratio of lithium carbonate is mixed with the obtained black powder (10% excess of lithium carbonate), and the mixture of methanol and acetone is added as the most grinding aid, fully ground, and then calcined at 900 ° C for 15 h, and naturally cooled to room temperature. Finally, it was ground to obtain a positive electrode material LiNi 0.47 Mn 1.47 Ce 0.06 O 4 .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface, and the material particle size distribution is relatively uniform, and the average size is 1-1.5 ⁇ m (refer to FIGS. 1 and 2).
  • the stoichiometric ratio of lithium carbonate is mixed with the obtained black powder (10% excess of lithium carbonate), and a mixture of ethanol and methanol is added as a grinding aid, fully ground, and then calcined at 900 ° C for 15 h, and naturally cooled to room temperature. Finally, it was ground to obtain a positive electrode material LiNi 0.42 Mn 1.42 Fe 0.16 O 4 .
  • the obtained positive electrode material has a single spinel structure and has a polyhedral structure with a sharp angular surface, and the material particle size distribution is relatively uniform, and the average size is 1-1.5 ⁇ m (refer to FIGS. 1 and 2).

Abstract

本发明涉及一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法。制备步骤为:配置混合盐溶液后在溶液中采用沉淀剂制备出前驱体物质沉淀,然后静置陈化,分离和干燥,焙烧,得到具有尖晶石结构的多元氧化物前驱体;然后将多元氧化物前驱体与锂盐混合、研磨;经焙烧后得到具有尖晶石结构的正极材料LiMx+yNi0.5-xMn1.5-yO4 ,其中 M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 或 Mg , 0 ≤ x ≤ 0.25 , 0 ≤ y ≤0.25 。该方法制备的 LiMx+yNi0.5-xMn1.5-yO4 正极材料纯度高、电化学性能稳定,涉及工艺过程简单易操作,而且环境友好,适合大规模的工业化生产应用。

Description

一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法
技术领域
本发明涉及正极材料技术领域,具体涉及一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法。
背景技术
随着全球能源问题和由于大量燃烧矿物燃料所导致的环境问题的日趋严峻,发展不依赖于矿物燃料和环境友好的电动汽车已成为当前世界各国的重要发展主题。锂离子电池因其自身所具有的诸多独特优点而被看作是一种最有可能大规模应用于电动汽车的二次电池,新型锂离子电池的研究已成为相关领域的最为重要的研究课题之一。在影响锂离子电池性能的诸多组成要素中,构成电池的正极材料是影响二次电池性能及其应用的最为关键的因素。
尖晶石型高电压正极材料 LiMx+yNi0.5-xMn1.5-yO 4(M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 、 Mg 等; 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25) 具有电压高、能量密度高、成本相对低廉等众多优点,既具有锰酸锂的诸多优点,同时又由于其他金属离子的掺入而具备一些新特性,有关该高压材料的研究已成为锂离子电池领域的研究热点之一。
在上述材料的合成上,高温固相法、溶胶 - 凝胶法和共沉淀法等方法是文献和专利报道较多的几类常用的合成方法。高温固相法是最常用的一种方法,该方法将所需的锂源、镍源、锰源以及掺杂金属几者原料直接通过球磨混合,再在高温下焙烧得到产物。此种方法最大的特点就是操作简单,易实现大批量生产。但是制备过程中容易出现三者原料混合不均匀,颗粒大小偏差较大,还带有明显团聚现象,得到的材料的电化学性能不是很理想。溶胶 - 凝胶法最大的特点就是能使原料在分子水平上实现混合,制备所需的温度也较固相法要低,制备的材料纯度高,具有某些特殊形貌,放电容量较高,循环性能也较好,但是合成过程中一般采用有机试剂,成本较高,也不够绿色环保,而且大批量生产有一定的困难。
目前文献报道较多的合成方法是将共沉淀法和固相反应法两者结合,即能保持固相法在此类材料合成上的优势,通过共沉淀法的结合,能够在很大程度上改进固相法的不利因素。
通过共沉淀法制备原料混合均匀的前驱体材料,固液分离后得到前驱体沉淀,再将预处理过后的前驱体材料与适量锂源混合,经过高温热处理,最终得到具有尖晶石结构的高电压锂离子电池正极材料。采用本发明合成材料,首先可以在很大程度上减少各金属草酸盐沉淀的损失,再次,与传统的固相法相比,可以减少前驱体在初步分解时对锂的带走量,保证了在最后高温焙烧时有充足的锂量,用此方法合成的材料纯度高、性能好。
发明内容
本发明的目的在于提供一种采用廉价的草酸作沉淀剂,通过共沉淀 - 高温固相反应合成具有尖晶石结构的高电压锂离子电池正极材料 LiMx+yNi0.5-xMn1.5-yO 4 (M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 、 Mg 等; 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25) 的制备方法。配置 混合盐溶液后在溶液中采用沉淀剂制备出前驱体物质沉淀,然后静置陈化,分离和干燥,焙烧,得到具有尖晶石结构的多元氧化物前驱体;然后将多元氧化物前驱体与锂盐混合、研磨;经焙烧后得到具有尖晶石结构的正极材料 LiMx+yNi0.5-xMn1.5-yO 4 ;其中 M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 或 Mg ; 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 ;其中所述 分离和干燥的方法包括直接将液体蒸干、喷雾干燥或过滤干燥三种方法中的一种以上。本发明所得正极材料具有尖晶石结构,且组成为 LiMx+yNi0.5-xMn1.5-yO 4 ,其中 M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 或 Mg , 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 。
实现上述目的的制备工艺主要步骤如下:
步骤 1 :将镍盐、锰盐 及掺杂的金属 M 盐 在去离子水中混合均匀,配制成金属离子总浓度为 0.3-0.6mol/L 的混合盐溶液 a ,其中锰盐 : 镍盐: M 盐的摩尔比为 1.5-y : 0.5-x : x+y ( 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 );
步骤 2 :配制与混合盐溶液等体积等浓度的沉淀剂溶液 b ;
步骤 3 :将溶液 b 加入到溶液 a 中,持续搅拌使沉淀反应充分,控制反应温度 20-60 ℃ 和反应时间 1-12h , 得到含镍、锰和金属 M 沉淀的悬浊液 ;
步骤 4 :将步骤 3 所得的含镍、锰和金属 M 沉淀的悬浊液静置陈化,然后分离和干燥 , 得到镍、锰和金属 M 的沉淀物,即前驱体物质沉淀 ;
步骤 5 :将步骤 4 所得的镍、锰和金属 M 的沉淀物置于马弗炉中,在 550 -600 ℃空气氛 下焙烧 3-5 h ,得到含有镍、锰和金属 M 的多元氧化物前驱体;
步骤 6 :按金属离子与锂离子物质的量比值为 2: ( 1.05-1.2 ),将步骤 5 所制得的 含有镍、锰和金属 M 的多元氧化物前驱体 与锂盐混合,充分研磨后, 在 700-950 ℃ 下锻烧 5-24 h ,自然冷却至室温,研磨后即得到具有尖晶石结构的锂离子电池正极材料 LiMx+yNi0.5-xMn1.5-yO 4
上述方法中,步骤 4 中所述分离和干燥的方法包括直接将液体蒸干、喷雾干燥或过滤干燥三种方法中的一种以上。
上述方法中 ,步骤 6 中所述研磨时,采用甲醇、乙醇、异丙醇或丙酮中的一种以上作为助磨剂及分散剂。
上述方法中,步骤 1 中所述锰盐包括乙酸锰、硝酸锰、氯化锰、草酸锰、硫酸锰或碳酸锰中一种或几种混合盐。
上述方法中 ,步骤 1 中所述镍盐包括乙酸镍、硝酸镍、氯化镍、草酸镍、硫酸镍或碳酸镍中一种或几种混合盐; 所述金属 M 盐为 M 的乙酸盐、硝酸盐、盐酸盐、草酸盐、硫酸盐或碳酸盐中一种或几种混合盐 。
上述方法中 ,沉淀剂为碳酸钠、氢氧化钠、碳酸铵、草酸铵、草酸或脲。
上述方法中 ,步骤 6 所述锂盐为碳酸锂、硝酸锂、氢氧化锂或乙酸锂。
上述方法中 ,溶剂均为去离子水或去离子水和乙醇的混合液。
本发明采用的溶剂为绿色无污染且价格便宜的去离子水。
本发明采用的锂盐为碳酸锂、氢氧化锂、硝酸锂、硫酸锂、乙酸锂等中一种或其混合盐。
本发明相对现有技术的优势和显著效果在于:
工艺中加入采用共沉淀步骤,使得原料离子能够在分子水平上均匀混合,且草酸盐共沉淀前驱体的获得不采用直接过滤的方式得到,能够减少金属离子的损失,为后期高温反应形成均匀物质提供很好的基础;将锂源的添加放于预处理前驱体沉淀之后,能够避免在前驱体物质分解时的材料中锂的挥发损失。整个合成工艺简单,溶剂为绿色无污染的去离子水;对实验环境无特殊要求;合成的材料纯度高,而且合成的材料性能稳定,易于进行工业化生产。
附图说明
图1是本发明实施例1制备的材料的XRD谱图。
图2是本发明实施例1制备的材料的扫描电镜照片。
图3是本发明实施例1制备的电池放电容量曲线。
图4是本发明实施例1制备的电池的循环容量曲线。
图5是本发明实施例4制备的电池的循环容量曲线。
图6是本发明实施例5、6制备的电池的循环容量曲线。
具体实施方式
以下为具体实施例详细介绍本发明的内容,提供实施例是为了便于理解本发明,绝不是限制本专利发明。
实施例 1:
将化学计量比的乙酸锰和 乙酸镍加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称取适量的草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到镍和锰的草酸盐前驱体沉淀粉末。再将前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色的镍 - 锰氧化物粉末。将化学计量比的碳酸锂与得到的镍 - 锰氧化物粉末混合(碳酸锂过量 10% ),加入乙醇作为助磨剂,充分研磨,再置于 750-950 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.5Mn1.5O4
该方法制备的 LiNi0.5Mn1.5O4 材料用 XRD 表征其晶体结构(见图 1 ),结果表明在不同温度下焙烧得到的最终材料均为单一的尖晶石结构,且具有很好的结晶度。从扫面电子显微镜图(见图 2 )看出,材料拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm 。将该材料组装成 CR 2016 型扣式电池测试其电化学性能。在 0.1 C 倍率下,放电比容量达 136 毫安时 / 克,循环 60 周后放电比容量还有 130 毫安时 / 克,容量保有率达 95.6 % (见图 3 、 4 )。
实施例 2:
将化学计量比的六水硝酸镍和硝酸锰溶液加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称取适量草酸配制成浓度同为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到镍 - 锰草酸盐前驱体粉末。再将镍 - 锰草酸盐前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色粉末。将化学计量比的碳酸锂与得到的黑色粉末充分混合(碳酸锂过量 10% ),加入异丙醇作为助磨剂,充分研磨,再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨成粉末即得到正极材料 LiNi0.5Mn1.5O4 ,所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。
实施例 3:
将化学计量比的乙酸锰和乙酸镍加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称取适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀过滤、洗涤多次,干燥后 得到镍 - 锰草酸盐前驱体粉末。将前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色粉末。将化学计量比的碳酸锂与得到的黑色粉末充分混合(碳酸锂过量 10% ),加入丙酮作为助磨剂,充分研磨。再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.5Mn1.5O4 ,所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。
实施例 4:
将化学计量比的乙酸锰、乙酸镍和乙酸钴加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称量适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓(逐滴)加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到草酸盐前驱体粉末。再将镍 - 锰草酸盐前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色的镍 - 锰氧化物粉末。将化学计量比的碳酸锂与得到的黑色粉末充分混合(碳酸锂过量 10% ),加入甲醇作为助磨剂充分研磨,再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.45Mn1.45Co0.1O 4 。所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。该实施例中得到的材料具有 125 毫安时 / 克的初始比容量,经过 85 周循环后有 126 毫安时 / 克的质量比容量,保有率达 100% (见图 5 )。
实施例 5:
将化学计量比的乙酸锰、乙酸镍和乙酸钴加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称取适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到草酸盐前驱体粉末。再将镍 - 锰草酸盐前驱体粉末在550℃的马弗炉中预处理 5 h , 得到黑色的镍 - 锰氧化物粉末。将化学计量比的碳酸锂与得到的黑色粉末充分混合(碳酸锂过量 10% ),加入乙醇和异丙醇的混合物作为助磨剂,充分研磨,再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.4Mn1.5Co0.1O 4 。所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。该实施例中得到的材料经过 60 周的循环后保有率达 100% (见图 6 )。
实施例 6:
将化学计量比的乙酸锰、乙酸镍和硝酸铬加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称量适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到草酸盐前驱体粉末。再将前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色粉末。将化学计量比的碳酸锂与得到的黑色粉末充分混合(碳酸锂过量 10% ),加入乙醇和丙酮的混合物作为助磨剂,充分研磨;再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.42Mn1.42Cr0.16O 4 。所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。该实施例中得到的材料经过 60 周循环后保有率达 98.8% (见图 6 )。
实施例 7:
将化学计量比的乙酸锰、乙酸镍和硝酸 铈 加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称量适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到草酸盐前驱体粉末。再将前驱体粉末在 550 ℃ 的马弗炉中预处理5 h, 得到黑色粉末。将化学计量比的碳酸锂与得到的黑色粉末混合(碳酸锂过量 10% ),加入甲醇和丙酮的混合物最为助磨剂,充分研磨,再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.47Mn1.47Ce0.06O 4 。所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。
实施例 8:
将化学计量比的乙酸锰、乙酸镍和硝酸 铁 加入到去离子水中溶解,配制成浓度为 0.5 mol/L 的溶液 a ,同时称量适量草酸也配制成浓度为 0.5 mol/L 的溶液 b 。在持续搅拌、 40 ℃水浴下, 将溶液 b 缓缓加入到溶液 a 中,加完后继续反应 3 h ,然后将沉淀连同母液一起在 110 ℃下蒸干水分,得到草酸盐前驱体粉末。再将前驱体粉末在 550 ℃ 的马弗炉中预处理 5 h , 得到黑色粉末。将化学计量比的碳酸锂与得到的黑色粉末混合(碳酸锂过量 10% ),加入乙醇与甲醇的混合物作为助磨剂,充分研磨,再置于 900 ℃下焙烧 15 h ,自然冷却至室温,最后将其研磨即得到正极材料 LiNi0.42Mn1.42Fe0.16O 4 。所得正极材料具有单一的尖晶石结构,且拥有棱角分明表面光滑的多面体结构,材料颗粒粒径分布比较均匀,平均尺寸在 1-1.5 μm (参照图 1 和图 2 )。

Claims (10)

  1. 一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于:配置 混合盐溶液后在溶液中采用沉淀剂制备出前驱体物质沉淀,然后静置陈化,分离和干燥,焙烧,得到具有尖晶石结构的多元氧化物前驱体;然后将多元氧化物前驱体与锂盐混合、研磨;经焙烧后得到具有尖晶石结构的正极材料 LiMx+yNi0.5-xMn1.5-yO 4 ;其中 M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 或 Mg ; 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 ;其中所述分离和干燥包括直接将液体蒸干、喷雾干燥或过滤干燥三种方法中的一种以上。
  2. 如权利要求 1 所述的 一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法 ,其特征在于,包括以下步骤 :
    步骤 1 :将镍盐、锰盐 及掺杂的金属 M 盐 在去离子水中混合均匀,配制成金属离子总浓度为 0.3-0.6mol/L 的混合盐溶液 a ,其中锰盐 : 镍盐: M 盐的摩尔比为 1.5-y : 0.5-x : x+y ( 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 );
    步骤 2 :配制与混合盐溶液等体积等浓度的沉淀剂溶液 b ;
    步骤 3 :将溶液 b 加入到溶液 a 中,持续搅拌使沉淀反应充分,控制反应温度 20-60 ℃ 和反应时间 1-12h , 得到含镍、锰和金属 M 沉淀的悬浊液 ;
    步骤 4 :将步骤 3 所得的含镍、锰和金属 M 沉淀的悬浊液静置陈化,然后分离和干燥 , 得到镍、锰和金属 M 的沉淀物,即前驱体物质沉淀 ;
    步骤 5 :将步骤 4 所得的镍、锰和金属 M 的沉淀物置于马弗炉中,在 550 -600 ℃空气氛 下焙烧 3-5 h ,得到含有镍、锰和金属 M 的多元氧化物前驱体;
    步骤 6 :按金属离子与锂离子物质的量比值为 2: ( 1.05-1.2 ),将步骤 5 所制得的含有镍、锰和金属 M 的多元氧化物前驱体与锂盐混合,充分研磨后,
    在700-950 ℃ 下锻烧5-24 h,自然冷却至室温,研磨后即得到具有尖晶石结构的锂离子电池正极材料 LiMx+yNi0.5-xMn1.5-yO 4
  3. 如权利要求 2 所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,步骤 4 中所述分离和干燥的方法包括直接将液体蒸干、喷雾干燥或过滤干燥三种方法中的一种以上。
  4. 如权利要求 2 所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,步骤6 中所述研磨时,采用甲醇、乙醇、异丙醇或丙酮中的一种以上作为助磨剂及分散剂。
  5. 如权利要求 2 所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,步骤 1 中所述锰盐包括乙酸锰、硝酸锰、氯化锰、草酸锰、硫酸锰或碳酸锰中一种或几种混合盐 。
  6. 如权利要求2所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,步骤1中所述镍盐包括乙酸镍、硝酸镍、氯化镍、草酸镍、硫酸镍或碳酸镍中一种或几种混合盐;所述金属M盐为M的乙酸盐、硝酸盐、盐酸盐、草酸盐、硫酸盐或碳酸盐中一种或几种混合盐。
  7. 如权利要求2所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,沉淀剂为碳酸钠、氢氧化钠、碳酸铵、草酸铵、草酸或脲。
  8. 如权利要求2所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,步骤6所述锂盐为碳酸锂、硝酸锂、氢氧化锂或乙酸锂。
  9. 如权利要求2所述的一种具有尖晶石结构的高电压锂离子电池正极材料的制备方法,其特征在于,溶剂均为去离子水或去离子水和乙醇的混合液。
  10. 由权利要求 1-9 任一所述的制备方法制备得到一种具有尖晶石结构的高电压锂离子电池正极材料,其特征在于, 所述正极材料具有尖晶石结构,且组成为 LiMx+yNi0.5-xMn1.5-yO 4 ,其中 M=Co 、 Cr 、 Fe 、 Ce 、 Al 、 Zn 或 Mg , 0 ≤ x ≤ 0.25 , 0 ≤ y ≤ 0.25 。
PCT/CN2014/092980 2014-03-17 2014-12-03 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法 WO2015139482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410095646.2A CN103904320B (zh) 2014-03-17 2014-03-17 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法
CN201410095646.2 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015139482A1 true WO2015139482A1 (zh) 2015-09-24

Family

ID=50995544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092980 WO2015139482A1 (zh) 2014-03-17 2014-12-03 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN103904320B (zh)
WO (1) WO2015139482A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921722A (zh) * 2019-12-11 2020-03-27 贵州大龙汇成新材料有限公司 一种规则形貌镍锰酸锂正极材料的制备方法
CN111333125A (zh) * 2020-03-25 2020-06-26 海安常州大学高新技术研发中心 一种以微量Zn取代Mn的尖晶石正极材料及其制备方法
CN111620378A (zh) * 2020-01-16 2020-09-04 湖北大学 一种多孔立方体锰酸锂的制备方法
CN112608228A (zh) * 2021-02-01 2021-04-06 江西汉尧富锂科技有限公司 富锂锰基正极前驱体草酸镍锰材料及其制备方法
CN113603146A (zh) * 2021-07-30 2021-11-05 蜂巢能源科技有限公司 一种铁锰基正极材料及其制备方法和应用
CN113800574A (zh) * 2021-08-05 2021-12-17 广州大学 一种镍锰铁铝锂正极材料及其制备方法
CN114162879A (zh) * 2021-07-22 2022-03-11 宁夏汉尧石墨烯储能材料科技有限公司 一种微米级锂离子电池正极材料及其制备方法
CN114477297A (zh) * 2021-12-30 2022-05-13 贵州梅岭电源有限公司 一种锰酸锂正极材料前驱体四氧化三锰的制备方法
CN114725534A (zh) * 2022-03-22 2022-07-08 桂林理工大学 金属离子掺杂Mn2V2O7的制备方法及其在水系锌离子电池的应用
CN114975985A (zh) * 2022-06-29 2022-08-30 三明市新能源产业技术研究院有限公司 Ti-Cr共掺杂的高压尖晶石正极材料及其制备方法、锂离子电池正极和锂离子电池
CN115557544A (zh) * 2022-10-28 2023-01-03 安徽格派新能源有限公司 一种高容量镍锰酸锂的制备方法
CN115572220A (zh) * 2022-09-21 2023-01-06 宁夏天元锰材料研究院(有限公司) 一种高纯草酸锰的制备方法
CN116081696A (zh) * 2023-03-28 2023-05-09 北京高能时代环境技术股份有限公司 钠离子电池前驱体材料及钠离子电池正极材料的制备方法
CN116282231A (zh) * 2023-03-28 2023-06-23 湘潭大学 一种层状-尖晶石复合相正极材料的制备方法
CN116855813A (zh) * 2023-08-22 2023-10-10 吉林省宝利科贸有限公司 一种多面体纳米高熵材料及其制备方法与应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904320B (zh) * 2014-03-17 2016-06-22 华南理工大学 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法
CN106684350B (zh) * 2016-12-21 2020-01-07 桑顿新能源科技有限公司 一种高电压正极材料镍锰酸锂的制备方法
TWI645607B (zh) * 2016-12-30 2018-12-21 財團法人工業技術研究院 鋰電池高電壓正極材料及其製備方法
CN116845217A (zh) * 2017-01-18 2023-10-03 纳诺万材料公司 用于锂离子电池阴极材料前体的一锅合成法
CN112368430B (zh) * 2018-07-23 2023-09-22 香港大学 用于制造作为空穴传输材料的尖晶石型三元金属氧化物的方法
CN109449436B (zh) * 2018-09-13 2021-03-12 厦门大学 一种阳离子空位正极材料及其制备方法
CN109671947A (zh) * 2018-09-17 2019-04-23 北京理工大学珠海学院 一种低成本锂离子电池正极材料的制备工艺
CN111640931A (zh) * 2020-04-18 2020-09-08 浙江金鹰新能源技术开发有限公司 一种富锂锰基正极材料的制备方法
CN113149610A (zh) * 2021-04-07 2021-07-23 北京高压科学研究中心 一种基于界面调控的尖晶石型锂电正极陶瓷材料制备方法
CN114804052A (zh) * 2022-03-28 2022-07-29 湖州南木纳米科技有限公司 一种磷酸钛铝前驱体材料及其制备方法和用途
CN115198342A (zh) * 2022-08-10 2022-10-18 中南大学 一种快离子导体包覆金属掺杂改性的材料富锂无钴单晶材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752553A (zh) * 2010-01-02 2010-06-23 桂林理工大学 一种5V锂离子电池正极材料LiNi0.5Mn1.5O4的合成方法
CN102163713A (zh) * 2011-03-17 2011-08-24 广州市香港科大霍英东研究院 一种锂离子二次电池高电压尖晶石正极材料的制备方法
CN102627332A (zh) * 2012-04-20 2012-08-08 湖北万润新能源科技发展有限公司 氧化物固溶体及其制备方法以及锂离子电池正极材料及其制备方法
CN102723475A (zh) * 2012-06-06 2012-10-10 株洲泰和高科技有限公司 一种三元层状锂离子电池正极材料制备方法
CN103904320A (zh) * 2014-03-17 2014-07-02 华南理工大学 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187564A (zh) * 2011-12-28 2013-07-03 上海空间电源研究所 电池正极材料LiNi0.5Mn1.5O4的制备方法
US11024845B2 (en) * 2012-04-16 2021-06-01 Lg Chem, Ltd. Moisture-limited electrode active material, moisture-limited electrode and lithium secondary battery comprising the same
CN103066271B (zh) * 2013-01-14 2015-05-06 思伊纳化学科技(北京)有限公司 一种高电压锂离子电池正极材料及其制备方法
CN103332754A (zh) * 2013-07-05 2013-10-02 北京浩运金能科技有限公司 一种高电压锂离子电池正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752553A (zh) * 2010-01-02 2010-06-23 桂林理工大学 一种5V锂离子电池正极材料LiNi0.5Mn1.5O4的合成方法
CN102163713A (zh) * 2011-03-17 2011-08-24 广州市香港科大霍英东研究院 一种锂离子二次电池高电压尖晶石正极材料的制备方法
CN102627332A (zh) * 2012-04-20 2012-08-08 湖北万润新能源科技发展有限公司 氧化物固溶体及其制备方法以及锂离子电池正极材料及其制备方法
CN102723475A (zh) * 2012-06-06 2012-10-10 株洲泰和高科技有限公司 一种三元层状锂离子电池正极材料制备方法
CN103904320A (zh) * 2014-03-17 2014-07-02 华南理工大学 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921722A (zh) * 2019-12-11 2020-03-27 贵州大龙汇成新材料有限公司 一种规则形貌镍锰酸锂正极材料的制备方法
CN111620378B (zh) * 2020-01-16 2022-10-11 太原科技大学 一种多孔立方体锰酸锂的制备方法
CN111620378A (zh) * 2020-01-16 2020-09-04 湖北大学 一种多孔立方体锰酸锂的制备方法
CN111333125A (zh) * 2020-03-25 2020-06-26 海安常州大学高新技术研发中心 一种以微量Zn取代Mn的尖晶石正极材料及其制备方法
CN112608228A (zh) * 2021-02-01 2021-04-06 江西汉尧富锂科技有限公司 富锂锰基正极前驱体草酸镍锰材料及其制备方法
CN112608228B (zh) * 2021-02-01 2023-09-22 江西汉尧富锂科技有限公司 富锂锰基正极前驱体草酸镍锰材料及其制备方法
CN114162879A (zh) * 2021-07-22 2022-03-11 宁夏汉尧石墨烯储能材料科技有限公司 一种微米级锂离子电池正极材料及其制备方法
CN113603146A (zh) * 2021-07-30 2021-11-05 蜂巢能源科技有限公司 一种铁锰基正极材料及其制备方法和应用
CN113800574A (zh) * 2021-08-05 2021-12-17 广州大学 一种镍锰铁铝锂正极材料及其制备方法
CN113800574B (zh) * 2021-08-05 2023-06-20 广州大学 一种镍锰铁铝锂正极材料及其制备方法
CN114477297A (zh) * 2021-12-30 2022-05-13 贵州梅岭电源有限公司 一种锰酸锂正极材料前驱体四氧化三锰的制备方法
CN114725534A (zh) * 2022-03-22 2022-07-08 桂林理工大学 金属离子掺杂Mn2V2O7的制备方法及其在水系锌离子电池的应用
CN114725534B (zh) * 2022-03-22 2024-04-16 桂林理工大学 金属离子掺杂Mn2V2O7的制备方法及其在水系锌离子电池的应用
CN114975985A (zh) * 2022-06-29 2022-08-30 三明市新能源产业技术研究院有限公司 Ti-Cr共掺杂的高压尖晶石正极材料及其制备方法、锂离子电池正极和锂离子电池
CN115572220A (zh) * 2022-09-21 2023-01-06 宁夏天元锰材料研究院(有限公司) 一种高纯草酸锰的制备方法
CN115557544A (zh) * 2022-10-28 2023-01-03 安徽格派新能源有限公司 一种高容量镍锰酸锂的制备方法
CN116081696A (zh) * 2023-03-28 2023-05-09 北京高能时代环境技术股份有限公司 钠离子电池前驱体材料及钠离子电池正极材料的制备方法
CN116282231A (zh) * 2023-03-28 2023-06-23 湘潭大学 一种层状-尖晶石复合相正极材料的制备方法
CN116855813A (zh) * 2023-08-22 2023-10-10 吉林省宝利科贸有限公司 一种多面体纳米高熵材料及其制备方法与应用
CN116855813B (zh) * 2023-08-22 2024-02-09 吉林省宝利科贸有限公司 一种多面体纳米高熵材料及其制备方法与应用

Also Published As

Publication number Publication date
CN103904320B (zh) 2016-06-22
CN103904320A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015139482A1 (zh) 一种具有尖晶石结构的高电压锂离子电池正极材料及其制备方法
WO2022206465A1 (zh) 一种层状无钴正极材料、其制备方法和锂离子电池
CN110518220B (zh) 一种高镍梯度镍钴锰铝四元正极材料及制备方法
KR101952210B1 (ko) 알루미늄원소 구배 분포를 갖는 니켈-코발트-알루미늄 전구재료 및 정극재료 제조방법
CN111916687B (zh) 一种正极材料及其制备方法和锂离子电池
CN108123115B (zh) O2构型锂电池正极材料及其制备方法
CN102386391B (zh) 一种制备三元复合正极材料LiNixCoyMn1-x-yO2的方法
CN107611384B (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN103779556A (zh) 掺杂与表面包覆共改性的锂离子电池正极材料及其制法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN108134064B (zh) 一种正极材料前驱体及其制备方法和正极材料
CN109301189B (zh) 一种类单晶型高镍多元材料的制备方法
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN106384813A (zh) 一种锂离子电池用正极材料的快速合成方法
CN108807967B (zh) 一种镍钴铝三元正极材料的制备方法
CN113299902A (zh) 一种浓度梯度镁掺杂富锂锰基氧化物正极材料的制备及其锂电池应用
CN106920959A (zh) 一种单晶富锂锰基多元正极材料及其制备方法
CN110534737A (zh) 一种高倍率掺杂型镍钴锰三元材料及其制备方法
CN104167533A (zh) 一种富锂/3d石墨烯复合正极材料
KR20140132830A (ko) 리튬이차전지 양극 활물질 제조방법
CN105753072A (zh) 一种镍锰酸锂、其制备方法及用途
JP6449592B2 (ja) 低アルカリ性ニッケルリチウム金属複合酸化物粉体及びその製造方法
CN108539192B (zh) 一种不同形貌锂离子电池高压正极材料的制备方法
CN113871582B (zh) 一种可用于填充导电材料的钠离子电池镍基正极材料
CN105680036A (zh) 一种合成镍钴锰酸锂正极材料的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886383

Country of ref document: EP

Kind code of ref document: A1