WO2015083840A1 - 磁性ハイドロタルサイト類複合体およびその製造方法 - Google Patents

磁性ハイドロタルサイト類複合体およびその製造方法 Download PDF

Info

Publication number
WO2015083840A1
WO2015083840A1 PCT/JP2014/082352 JP2014082352W WO2015083840A1 WO 2015083840 A1 WO2015083840 A1 WO 2015083840A1 JP 2014082352 W JP2014082352 W JP 2014082352W WO 2015083840 A1 WO2015083840 A1 WO 2015083840A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrotalcite
compound
mol
inner layer
magnetic
Prior art date
Application number
PCT/JP2014/082352
Other languages
English (en)
French (fr)
Inventor
興東 王
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Priority to EP14867453.4A priority Critical patent/EP3078636A1/en
Priority to CA2919827A priority patent/CA2919827A1/en
Priority to CN201480045940.0A priority patent/CN105473503A/zh
Priority to AU2014358120A priority patent/AU2014358120A1/en
Priority to US14/911,313 priority patent/US10037839B2/en
Priority to RU2016106405A priority patent/RU2016106405A/ru
Priority to KR1020167002107A priority patent/KR20160094363A/ko
Priority to MX2016002819A priority patent/MX2016002819A/es
Priority to JP2015551590A priority patent/JP6370309B2/ja
Publication of WO2015083840A1 publication Critical patent/WO2015083840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0009Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the present invention relates to a magnetic hydrotalcite complex useful as an adsorbent, an electromagnetic wave absorber and an ultraviolet absorber, and a method for producing the same.
  • Patent Document 1 describes a method of synthesizing a hydrotalcite compound that can be used as an anion adsorbent or the like by reusing steel slag, which is industrial waste.
  • the general formula of the hydrotalcite compound synthesized by this method is represented by [Ca 2 + ax MxAlO 3 + b ] A y .
  • Non-Patent Document 1 describes a method for treating selenium by Green Rust (GR) and a method for producing hydrotalcite compounds using MgO as a neutralizing agent.
  • GR Green Rust
  • Patent Document 2 describes a method for synthesizing a purification treatment in which a hydrotalcite compound compound is combined on the surface of magnesium oxide, and a method for treating harmful substances using the treatment agent. Hydrotalcite compounds synthesized by this method have the same disadvantages as described above.
  • Non-Patent Document 2 describes the synthesis of Fe-based hydrotalcite compounds and their applications.
  • Patent Document 3 describes a method for synthesizing Co (II) Fe (III) -LDH low coercivity particles.
  • the particles synthesized by this method are Co (II) Fe (III) -LDH particles, which are precursors of CoFe-based ferrite materials. Since it does not have the structure of CoFe ferrite, the physical properties as a magnetic material cannot be sufficiently exhibited.
  • Patent Document 4 discloses a method in which 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (abbreviation BP) anion ion is introduced between layers of Mg—Al—NO 3 type hydrotalcite to impart an ultraviolet absorption function.
  • BP 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid
  • Patent Document 5 describes a method of preparing a vinyl chloride resin composition for transparent products by blending a resin with zinc-modified hydrotalcite, 2,4-dihydroxybenzophenone, or the like.
  • This method is a method of imparting an ultraviolet absorbing function to a resin by mixing zinc-modified hydrotalcite and 2,4-dihydroxybenzophenone having an ultraviolet absorbing function. Over time in this method, there is a drawback that the ultraviolet absorbing function is lowered by gradually decomposing an organic substance having an ultraviolet absorbing function such as 2,4-dihydroxybenzophenone.
  • International Publication Number WO2011 / 108195A1 Japanese Patent Application No. 2011-188651 Japanese Patent Application No. 2008-144212 Japanese Patent Application No. 2007-299039 PCT / JP2011 / 063597 Harmful element water treatment technology utilizing on-site generation of layered double hydroxides, Soc. Powder Technology, Japan, 50, 342-347 (2013) Synthesis and application of Fe-based layered double hydroxides, clay science, Vol. 49, No. 3, 99-107, 2010
  • An object of the present invention is to provide a magnetic hydrotalcite complex useful in fields such as wastewater treatment, ultraviolet absorption, electromagnetic wave absorption, and acid gas absorption, and a method for producing the same.
  • Hydrotalcite-type compounds have the disadvantage that they aggregate when fired and their activity decreases. Further, since conventional hydrotalcite compounds have only a single hydrotalcite structure, there is a drawback that the types of ions that can be adsorbed are limited. The present inventors have found that when a hydrotalcite compound is combined with a ferrite compound, aggregation of the hydrotalcite compound can be prevented even if calcination is performed. In addition, a plurality of ions can be adsorbed by adding a plurality of metal ions to the hydrotalcite compound.
  • the present invention includes the following inventions.
  • a magnetic hydrotalcite complex comprising an inner layer and an outer layer, wherein the inner layer is a hydrotalcite compound and the outer layer is a ferrite compound.
  • 2. The magnetic hydrotalcite complex according to item 1, wherein the content of the ferrite compound in the outer layer is 0.5 to 95% by weight.
  • the inner layer is a hydrotalcite compound represented by the following formula (1) and the outer layer is a ferrite compound represented by the following formula (2-1), (2-2) or (2-3)
  • M 2+ is at least one selected from the group consisting of Mg 2+ , Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Sr 2+ , Cd 2+, and Pb 2+.
  • Valent metal ions, M 3+ is at least one trivalent metal ion selected from the group consisting of La 3+ , Al 3+ , Ga 3+ , Mn 3+ , Co 3+ , Y 3+ , Ce 3+ , Fe 3+ Cr 3+ and In 3+
  • a n- is, CO 3 2-, SO 4 2- , Cl -, SiO 3 2-, PO 4 3-, NO 3 -, OH -, CH 3 PO 4 2-, C 2 O 4 2-, HCOO -, CH 3 COO - is at least one n-valent anion selected from the group consisting of, - and CH 3 SO 3 x satisfies 0.15 ⁇ x ⁇ 0.5, y satisfies 0 ⁇ y ⁇ 5, and n is an integer of 1 or more.
  • A is at least one selected from the group consisting of Ni, Zn, Cu, Mn, Co, and Mg.
  • XFe 12 O 19 (2-2)
  • X is at least one selected from the group consisting of Sr, Ba and Pb.)
  • RFe 5 O 12 (2-3) (In the formula, R is a rare earth element from the 4th period to the 6th period excluding group 3 actinides in the periodic table). 4).
  • the magnetic hydrotalcite complex according to item 3 wherein the atomic ratio of M 2+ and M 3+ of the inner layer hydrotalcite compound is 1.0: 1.0 to 6.0: 1.0. 5.
  • the outer layer further carries 0.2 to 5.0 wt% of a noble metal element salt selected from the group consisting of Au, Ag, Ru, Pt, Rh, Ir, Rb, Os and Pd. 4.
  • a noble metal element salt selected from the group consisting of Au, Ag, Ru, Pt, Rh, Ir, Rb, Os and Pd. 4.
  • the magnetic hydrotalcite complex according to item 3 above. 6). 6.
  • An electromagnetic wave absorber comprising the magnetic hydrotalcite according to any one of items 1 to 5. 8).
  • An ultraviolet absorber comprising the magnetic hydrotalcite complex according to any one of 1 to 5 above. 9.
  • a metal salt containing an element constituting the inner layer hydrotalcite compound and an alkaline solution are mixed, the pH value of the solution is controlled to 7 to 11, and the inner layer hydrotalc at a temperature of 20 to 270 ° C.
  • a step (1) of producing a site compound (2) An acidic solution of a metal salt containing an element constituting the outer ferrite compound and an alkaline solution are added to the resulting slurry containing the hydrotalcite compound, and the solution has a pH value of 7 to 11
  • a method for producing a magnetic hydrotalcite complex according to item 1 above. 10.
  • the divalent metal ion salt constituting the hydrotalcite compound of the inner layer is at least one selected from the group consisting of MgCl 2 , CaCl 2 , ZnCl 2 and FeCl 2 .
  • the trivalent metal ion salt constituting the hydrotalcite compound of the inner layer is AlCl 3 .
  • the anionic salt constituting the hydrotalcite compound of the inner layer is Na 2 CO 3 . 13.
  • the metal salt containing an element constituting the ferrite compound of the outer layer is at least one selected from the group consisting of FeCl 3 , MgCl 2 , Ni (NO 3 ), and ZnCl 2 .
  • FIG. 1 is an SEM photograph after composite processing in Example 9 (before firing processing).
  • FIG. 2 is a SEM photograph after baking at 550 ° C. for 2 hours in an air atmosphere in Example 9.
  • Example 9 - is an SEM photograph after solution exchange.
  • FIG. 4 is an XRD of particles before and after the composite treatment of Example 9.
  • FIG. 5 is an XRD of KW-300S and KW-500SH manufactured by Kyowa Chemical Industry Co., Ltd.
  • FIG. 6 is an XRD after firing at 550 ° C. for 2 hours in Comparative Example 5.
  • FIG. 7 is an XRD after firing the composite particles of Example 9 at 550 ° C. for 2 hours.
  • MnO 4 of particles of Comparative Example 9 - is an XRD after solution exchange.
  • FIG. 9 shows the light absorption effect of the powder after the molding process.
  • FIG. 10 shows the electromagnetic wave absorption effect by the free space method.
  • FIG. 11 shows the measurement results of the magnetic moment of the particles of Example 22 using a vibration magnetometer.
  • FIG. 12 is a magnetic confirmation photograph of Example 22 particles.
  • the magnetic hydrotalcite complex of the present invention (hereinafter sometimes abbreviated as “magnetic complex”) is an inorganic-inorganic complex composed of two or more kinds of inorganic particles.
  • the magnetic composite includes an inner layer and an outer layer, the inner layer is a hydrotalcite compound, and the outer layer is a ferrite compound.
  • the compound whose inner layer is hydrotalcite is a layered double hydroxide.
  • the content of the hydrotalcite compound in the inner layer is preferably 5 to 99.5% by weight.
  • the lower limit of the content of the inner layer is preferably 10% by weight, more preferably 15% by weight.
  • the upper limit of the content of the inner layer is preferably 90% by weight, more preferably 85% by weight.
  • the content of the ferrite compound in the outer layer is preferably 0.5 to 95% by weight.
  • the lower limit of the content of the outer layer is preferably 10% by weight, more preferably 15% by weight.
  • the upper limit of the content of the outer layer is preferably 90% by weight, more preferably 85% by weight.
  • the inner layer is preferably a hydrotalcite compound (layered double hydroxide) having an anion exchange ability represented by the following formula (1). [M 2+ 1-x M 3+ x (OH) 2] [A n- x / n ⁇ yH 2 O] (1) M 2+ and M 3+ are each divalent and trivalent metal ions, A n-is the n-valent anion.
  • Hydrotalcite compounds containing M 2+ and M 3+ have a crystal structure of a hydroxide layer (host layer) similar to brucite [Mg (OH) 2 ] as a basic skeleton, and a part of the divalent metal is 3 Since the host layer is positively charged by being replaced with a valent metal, an anion and water molecules are inserted between the layers (guest layers).
  • M 2+ is at least one divalent metal ion selected from the group consisting of Mg 2+ , Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Sr 2+ , Cd 2+ and Pb 2+. is there.
  • M 2+ is preferably at least one divalent metal ion selected from the group consisting of Mg 2+ , Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+, Cu 2+ and Zn 2+ .
  • M 3+ is at least one trivalent metal ion selected from the group consisting of La 3+ , Al 3+ , Ga 3+ , Mn 3+ , Co 3+ , Y 3+ , Ce 3+ , Fe 3+ Cr 3+ and In 3+ .
  • M 3+ is preferably at least one trivalent metal ion selected from the group consisting of Al 3+ , Cr 3+ , Fe 3+ , Co 3+ , In 3+ , Y 3+ , Ce 3+ and La 3+ .
  • the atomic ratio of M 2+ and M 3+ of the hydrotalcite compound in the inner layer is preferably 1.0: 1.0 to 6.0: 1.0, more preferably 1.3: 1.0 to 5 5.0: 1.0, more preferably 1.5: 1.0 to 5.0: 1.0.
  • An- is an anion inserted between the layers of the inner hydrotalcite compound.
  • a n- is, CO 3 2-, SO 4 2- , Cl -, SiO 3 2-, PO 4 3-, NO 3 -, OH -, CH 3 PO 4 2-, C 2 O 4 2-, HCOO -, CH 3 COO - and CH 3 SO 3 - is preferably at least one n-valent anion selected from the group consisting of.
  • x satisfies 0.1 ⁇ x ⁇ 0.6.
  • the lower limit of x is preferably 0.15, more preferably 0.2.
  • the upper limit of x is preferably 0.5, more preferably 0.4.
  • y satisfies 0 ⁇ y ⁇ 5.
  • the upper limit of y is preferably 4, more preferably 3.
  • the outer layer is preferably composed of a ferrite compound represented by the following composition formula (2-1), (2-2) or (2-3).
  • the ferrite compound is a precursor particle or crystal particle of at least one ferrite substance selected from the group consisting of spinel ferrite, hexagonal ferrite and garnet ferrite.
  • the spinel ferrite is represented by the following composition formula (2-1).
  • AFe 2 O 4 (2-1) (In the formula, A is at least one selected from the group consisting of Ni, Zn, Cu, Mn, Co, and Mg.)
  • Hexagonal ferrite is represented by the following composition formula (2-2).
  • XFe 12 O 19 (2-2) (In the formula, X is at least one selected from the group consisting of Sr, Ba and Pb.) Garnet ferrite is represented by the following composition formula (2-3).
  • RFe 5 O 12 (2-3) (In the formula, R is a rare earth element from the 4th period to the 6th period excluding group 3 actinides in the periodic table).
  • the outer layer further carries 0.2 to 5.0 wt% of a noble metal element salt selected from the group consisting of Au, Ag, Ru, Pt, Rh, Ir, Rb, Os and Pd. It is preferable to make it.
  • an inner layer hydrotalcite compound is prepared (step (1)), and a ferrite compound is precipitated on the obtained hydrotalcite compound to produce a precursor (step (2)), followed by firing. (Step (3)).
  • a metal salt containing an element constituting the hydrotalcite compound of the inner layer and an alkaline solution are mixed, the pH value of the solution is controlled to 7 to 11, and the hydrolyzate is hydrolyzed at a temperature of 20 to 270 ° C.
  • a soluble metal salt can be used as a divalent metal ion (M 2+ ) source constituting the hydrotalcite compound of the inner layer.
  • Soluble metal salts include chlorides, nitrates, sulfates and the like.
  • MgCl 2 , CaCl 2 , ZnCl 2 , FeCl 2 , Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , Zn (NO 3 ) 2 , Fe (NO 3 ) 2 , MgSO 4 , ZnSO 4 , FeSO 4, etc. Is mentioned.
  • hydroxides, oxides and metal powders can also be used.
  • MgO, ZnO, Mg (OH) 2 , Al (OH) 3 , Al 2 O 3 , metal Zn powder, metal Al, Mg powder, and the like can be used.
  • a soluble metal salt can be used as a trivalent metal ion (M 3+ ) source constituting the hydrotalcite compound in the inner layer.
  • Soluble metal salts include chlorides, nitrates, sulfates and the like. For example AlCl 3, Al (NO 3) 3, Al 2 (SO 4) 3 and the like.
  • oxides, metals, and hydroxide substances can also be used.
  • metal Al powder, Al (OH) 3 , Al 2 O 3 powder, Fe 2 O 3 powder, metal Fe powder and the like can be used.
  • n-valent anion source constituting the hydrotalcite compound in the inner layer carbonate ions (CO 3 2 ⁇ ), sulfate ions (SO 4 2 ⁇ ), chloride ions (Cl ⁇ ), silicate ions (SiO 3 2- ), inorganic anions such as phosphate ions (PO 4 3 ⁇ ), nitrate ions (NO 3 ⁇ ), hydroxide ions (OH ⁇ ), salts of organic phosphates such as methyl phosphate (CH 3 PO 4 2 ⁇ ), oxalate ion (C 2 O 4 2-), formate ions (HCOO -), acetate ion (CH 3 COO -) salts of organic carboxylic acids, such as, metal sulfonic acid (CH 3 SO 3 -), such as salts of organic sulfonic acid Is mentioned.
  • CO 3 2 ⁇ carbonate ions
  • SO 4 2 ⁇ chloride ions
  • SiO 3 2- silicate ions
  • inorganic anions such as
  • Examples of the salt include sodium salt, potassium salt, ammonium salt and the like.
  • Examples of the alkaline solution include NaOH, KOH, and NH 3 .H 2 O.
  • the reaction is carried out by controlling the pH value of the solution to 6-12.
  • the lower limit of the pH value is preferably 6.5, more preferably 7.
  • the upper limit of the pH value is preferably 11.5, more preferably 11.
  • the ratio of the soluble salt of the divalent metal (M 2+ ) to the soluble salt of the trivalent metal (M 3+ ) is such that the atomic ratio of M 2+ and M 3+ of the resulting hydrotalcite compound is 1.0: 1.0. It is preferable to be set to ⁇ 6.0: 1.0.
  • the reaction can be performed by a wet process, and among them, a method such as a coprecipitation method, a hydrothermal method, or a uniform precipitation method can be suitably used. Also, hydrotalcite compounds can be obtained as powder particles by these methods.
  • the reaction temperature is preferably 20 to 270 ° C, more preferably 40 to 200 ° C, still more preferably 60 to 180 ° C.
  • Process (2) In the step (2), an acidic solution of a metal salt containing an element constituting the outer ferrite compound and an alkaline solution are added to the obtained slurry containing the hydrotalcite compound, and the pH value of the solution is increased.
  • a soluble metal salt can be used as a metal salt containing an element constituting the ferrite compound of the outer layer.
  • Soluble metal salts include chlorides and oxides. Examples thereof include FeCl 3 , MgCl 2 , Ni (NO 3 ), ZnCl 2 , MgO, ZnO, Fe (NO 3 ) 3 , Zn (NO 3 ) 2 , Mg (NO 3 ) 2 and the like.
  • Examples of the alkaline solution include NaOH, KOH, NH 3 H 2 O, Na 2 CO 3 and the like. The reaction is carried out by controlling the pH value of the solution to 7-12.
  • the lower limit of the pH value is preferably 8, and more preferably 9.
  • the upper limit of the pH value is preferably 11.
  • the reaction temperature is preferably 20 to 250 ° C, more preferably 40 to 200 ° C, still more preferably 60 to 180 ° C.
  • the outer layer ferrite compound precursor or crystallized particles are combined with the inner layer hydrotalcite compound precursor or crystallized particles by a method such as complex polymerization, coprecipitation, hydrothermal method or uniform precipitation method. By performing the treatment, a precursor of the magnetic composite particles can be obtained.
  • Step (3) is a step of firing the precursor in a temperature range of 200 to 800 ° C.
  • the firing temperature is 200 to 1500 ° C., preferably 250 to 1300 ° C., more preferably 300 to 1100 ° C.
  • the firing time is 1 to 30 hours, preferably 1.5 to 20 hours, and more preferably 2 to 15 hours.
  • the magnetic composite of the present invention can be used as an adsorbent for harmful substances in soil, groundwater or wastewater. Moreover, it can use as an electromagnetic wave absorber or a ultraviolet absorber.
  • the precursor or crystallized particle of the hydrotalcite compound in the inner layer preferably contains Al 3+ .
  • the precursor or crystallized particle of the hydrotalcite compound in the inner layer preferably contains Fe 3+ .
  • Examples 1 to 13 describe magnetic composites suitable for adsorbents.
  • Example 1 [MgFe 2 O 4 -Mg 3 Al (OH) 8 Preparation of Cl composite particles (5.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> MgCl 3 ⁇ 6H 2 O-91.5 g (0.45 mol) and AlCl 3 ⁇ 6H 2
  • An aqueous solution containing Mg and Al was prepared by adding 366.22 g (0.15 mol) of O-3 to 400 ml of deionized water. Next, after this aqueous solution was kept at 40 ° C.
  • the obtained powder was 44.47% by weight in terms of MgO, Al 2 O 3 18.7 wt% in terms of conversion, 13.25 wt% in terms of chlorine, composition formula Mg 5.99 Al 2 (OH) 15.95 (Cl) 2.00 It was the Mg-Al type Cl type hydrotalcite compound represented by these.
  • MgCl 2 ⁇ 6H 2 O-1.02 g (0.005 mol) and FeCl 3 ⁇ 6H 2 250 ml of an aqueous solution containing O-2.70 g (0.01 mol) and 11.43 ml (0.04 mol) of a 3.5 mol / L NaOH solution were simultaneously added to the Mg-Al Cl-type hydrotalcite suspension.
  • the mixture was added to the suspension with a handling pump with stirring over 10 minutes. Further, after heat treatment at 85 ° C. for 1 hour with stirring at 350 rpm, the precipitate is filtered off and washed with water, dried at 105 ° C., and Mg-based magnetic / Mg—Al-based Cl-type hydrotalcite precursor powder.
  • Example 3 [MgFe 2 O 4 -Mg 3 Al (OH) 8 Preparation of Cl composite particles (100.0 wt% composite)]
  • ⁇ Synthesis of inner layer hydrotalcite> Same as Example 1.
  • MgCl 2 ⁇ 6H 2 O-20.33 g (0.1 mol) and FeCl 3 ⁇ 6H 2 300 ml of an aqueous solution containing O-54.06 g (0.2 mol) and 228.57 ml (0.8 mol) of a 3.5 mol / L NaOH solution were simultaneously added to the Mg—Al-based Cl-type hydrotalcite suspension. It added to the suspension liquid with the handling pump over 50 minutes. After heat treatment at 85 ° C. for 1 hour, the precipitate was filtered off, washed with water, and dried at 185 ° C. to obtain 43.0 g of Mg-based magnetic / Mg—Al-based Cl-type hydrotalcite precursor powder. It was.
  • Example 4 [MgFe 2 O 4 -Mg 3 Al (OH) 8 Preparation of Cl composite particles (30.0 wt% composite)]
  • sample 4 was obtained in the same manner as in Example 2 except that the hydrothermal treatment condition was changed to 120 ° C. for 8 hours.
  • Example 5 [MgFe 2 O 4 -Mg 3 Al (OH) 8 Preparation of Cl composite particles (30.0 wt% composite)]
  • Sample 5 was obtained in the same manner as in Example 2 except that the hydrothermal treatment condition was changed to 150 ° C. for 8 hours.
  • Example 6 [MgFe 2 O 4 -Mg 3 Fe (OH) 8 Preparation of Cl composite particles (5.0 wt% composite)] In the synthesis of the inner layer hydrotalcite, it was carried out in the same manner as in Example 5. 20 g of the obtained powder was added to 400 ml of deionized water and dispersed at 40 ° C.
  • MgCl 2 ⁇ 6H 2 O-1.02 g (0.005 mol) and FeCl 3 ⁇ 6H 2 50 ml of an aqueous solution containing O-2.70 g (0.01 mol) and 11.43 ml (0.04 mol) of a 3.5 mol / L NaOH solution were simultaneously added to the Mg-Al Cl-type hydrotalcite suspension. It was added to the suspension with a handling pump over 30 minutes. After heat treatment at 85 ° C. for 1 hour, the precipitate was filtered and washed with water, and dried at 185 ° C. to obtain 21.25 g of Mg-based magnetic / Mg—Al-based Cl-type hydrotalcite precursor powder. It was.
  • Example 8 [Ni 0.6 Zn 0.4 Fe 2 O 4 -Mg 3 Al (OH) 8 (CO 3 ) 0.5 Preparation of composite particles (5.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> MgCl 2 ⁇ 6H 2 O-91.5 g (0.45 mol) and AlCl 3 ⁇ 6H 2 An aqueous solution containing Mg and Al was prepared by adding O-36.22 g (0.15 mol) to 400 ml of deionized water. The aqueous solution was then held at 40 ° C. for 0.5 hour before 8.0 g Na.
  • hydrotalcite was analyzed by fluorescent X-ray, and as a result, it was 45.33 wt% in terms of MgO, Al 2 O 3 19.14% by weight in terms of CO 3 2- 11.49% in terms of conversion, composition formula Mg 5.99 Al 2 (OH) 15.98 (CO 3 ) 1.02 Mg—Al-based CO represented by 3 Type hydrotalcite compound.
  • ⁇ Ni for inner layer hydrotalcite 0.6 Zn 0.4 Fe 2 O 4 Compound processing> The above Mg-Al CO 3 After adding 20 g of hydrotalcite powder to 400 ml of deionized water and dispersing at 40 ° C.
  • FIGS. KMnO 4 1.0 g of KMnO as an exchange treatment method 4 was dispersed in 350 ml of deionized water, 20 g of Sample 10 was added, stirred at room temperature for 2 hours, and further subjected to an exchange treatment at 85 ° C. for 15 hours.
  • Example 10 [Ni 0.6 Zn 0.4 Fe 2 O 4 -Mg 3 Al (OH) 8 (CO 3 ) 0.5 Preparation of composite particles (100.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Same as Example 8.
  • Ni—Zn-based magnetic / Mg—Al-based CO. 3 43.0 g of type hydrotalcite precursor powder was obtained.
  • the surface component was analyzed by a field emission scanning electron microscope (JEOL Ltd. JSM 7800F; FE-SEM). The atomic ratio of Ni + Zn was 2.02: 1.
  • Example 11 Ni 0.6 Zn 0.4 Fe 2 O 4 -Mg 3 Al (OH) 8 (CO 3 ) 0.5 Preparation of composite particles (30.0 wt% composite)]
  • Sample 11 was obtained in the same manner as in Example 9 except that the hydrothermal treatment condition was changed to 120 ° C. for 8 hours.
  • Example 12 [MgFe 2 O 4 -Ca 2 Al (OH) 6 Preparation of Cl composite particles (10.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> CaCl 2 ⁇ 2H 2 O-58.80 g (0.40 mol), AlCl 3 ⁇ 6H 2 O-48.29 g (0.20 mol) was added to 480 ml of deionized water to prepare an aqueous solution containing Ca and Al. Next, after this aqueous solution was kept at 40 ° C. for 0.5 hour, 342.86 ml (1.20 mol) of a 3.50 mol / L NaOH solution was added dropwise over 30 minutes. The liquid containing the precipitate was stirred at 40 ° C.
  • MgCl 2 ⁇ 6H 2 O-2.04 g (0.01 mol) and FeCl 3 ⁇ 6H 2 300 ml of an aqueous solution containing 5.40 g (0.02 mol) of O and 22.86 ml (0.08 mol) of a 3.5 mol / L NaOH solution were simultaneously added to the above-mentioned Ca—Al-based Cl-type hydrotalcite suspension. It added in the suspension liquid over 20 minutes with the handling pump. After further heat treatment at 85 ° C. for 1 hour, the precipitate was filtered off and washed with water, and dried at 105 ° C. to obtain 22.5 g of Mg-based magnetic / Ca—Al-based Cl-type hydrotalcite precursor powder.
  • the Mg-based magnetic / Ca—Al-based Cl-type hydrotalcite precursor powder 15 g was calcined at 500 ° C. for 2 hours in an air atmosphere, and after natural cooling, 11.5 g of Mg-based magnetic / Ca—Al-based Cl Composite hydrotalcite compound particles-sample 12 was obtained.
  • Example 13 [(Mg 0.6 Ca 0.4 ) Fe 2 O 4 -Zn 1.50 Fe (II) 1.58 Fe (III) (OH) 8.16 Preparation of Cl composite particles (15.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> ZnCl 2 -62.6 g (0.43 mol; 98% Wako special grade reagent), FeCl 2 ⁇ 4H 2 An aqueous solution containing Zn and Fe was prepared by adding O-153.88 g (0.774 mol; 97% Wako Special Grade Reagent) to 1000 ml of deionized water. Next, this aqueous solution was kept at 40 ° C.
  • the obtained Zn, Fe—Fe-based Cl-type hydrotalcite powder was 29.33 wt% in terms of ZnO, 27.26 wt% in terms of FeO, Fe 2 O 3 19.17 wt% in terms of conversion, 8.51 wt% chlorine, the atomic ratio of [Zn + Fe (II)] to Fe (III) is 3.08: 1, and the composition formula Zn 3.00 Fe (II) 3.16 Fe (III) 2 (OH) 16.32 (Cl) 2.00 It was a Zn, Fe-Fe type Cl type hydrotalcite compound represented by these.
  • MgCl 2 ⁇ 6H 2 O-1.83 g (0.009 mol), CaCl 2 ⁇ 2H 2 O-0.88 g (0.006 mol) and FeCl 3 ⁇ 6H 2 300 ml of an aqueous solution containing 8.11 g (0.03 mol) of O-8 and 34.29 ml (0.12 mol) of a 3.5 mol / L NaOH solution were simultaneously poured into the hydrotalcite suspension for 20 minutes. It was added with a handling pump. After further heat treatment at 85 ° C. for 1 hour, the precipitate was filtered off and washed with water, and dried at 105 ° C.
  • Comparative Example 2 MgFe 2 O 4 -Mg 3 Al (OH) Cl MgFe 2 O 4
  • the particles of Mg—Al-based Cl-type hydrotalcite compound were prepared in the same manner as in Example 4 except that the composite treatment and firing were not performed.
  • Comparative Example 3 MgFe 2 O 4 -Mg 3 Al (OH) Cl MgFe 2 O 4
  • Particles of Mg—Al-based Cl-type hydrotalcite compound were prepared in the same manner as in Example 5 except that the composite treatment and firing were not performed.
  • Comparative Example 4 Mg 3 Fe (OH) Cl Executed in the same manner as in Example 6 except that the baking treatment was not performed for 2 hours at 400 ° C.
  • Comparative Example 7 MgFe 2 O 4 Ca-Al-based Cl-type hydrotalcite compound particles were prepared in the same manner as in Example 12 except that the composite treatment of the system particles and the baking treatment at 500 ° C. for 2 hours were not performed in an air atmosphere. .
  • Comparative Example 8 (Mg 0.6 Ca 0.4 ) Fe 2 O 4 This was carried out in the same manner as in Example 13 except that the composite treatment of the system particles and the baking treatment at 400 ° C. for 2 hours in an air atmosphere were carried out to prepare particles of Zn, Fe—Fe Cl type hydrotalcite compounds.
  • ⁇ Adsorption test> Next, adsorption of each composite particle obtained as described above with respect to various ions was measured.
  • the concentration of each element contained in the Wako Multi-Element Standard Solution is 100 mg / L (in 1 mol / L HNO 3
  • Removal rate (%) (ion concentration before adsorption ⁇ ion concentration after adsorption) / ion concentration before adsorption * 100 (3)
  • FE-SEM analysis was performed, and 0.48 wt% and 0.41 wt% Cr were detected from the surface of Example 2 and Example 9 composite particles.
  • ⁇ Adsorption test 2> To 200 ml of the prepared multi-element standard aqueous solution, 1.0 g of the powders of Samples 1 to 13 and Comparative Examples 1 to 8 were added and held at 28 ° C. for 6 hours while stirring. Then, it was filtered and various ion concentrations were measured using filtrate ICP (HITACHI SPS3500-DD). From the result, the removal rate calculated by the equation (3) is calculated and listed in Table 2.
  • ⁇ Dissolution test 1> 1 g of each sample after adsorption was added to 100 ml of deionized water and kept at 28 ° C. for 2 hours while stirring. Thereafter, it was filtered off, and the filtrate was measured for various ion concentrations using ICP.
  • KW-300S and KW-500SH are 1.25Mg-Al based CO 3 Type and 2Mg-Al CO 3 Type hydrotalcite.
  • 6 and 7 show the results of X-ray diffraction analysis after firing treatment at 550 ° C. for 2 hours for the particles before and after the composite post-treatment.
  • the result of the X-ray diffraction analysis after exchange with the liquid is shown in FIG.
  • the peak of hydrotalcite and the peak of ferrite substances were detected from the exchanged particles.
  • the magnetic hydrotalcite composite particles of the present invention are particles having excellent adsorption ability.
  • the pH value of the particle suspension is 10 or more, and it is considered that heavy metal ions may react with the particle surface or be ion-exchanged between the layers of the inner hydrotalcite.
  • the outer layer ferrite particles have a positive charge, ions with poor reaction at a predetermined pH, such as Cr 2 O 7 2- (Or CrO 4 2- ) And the like may be adsorbed by the outer layer ferrite particles or ion exchanged between the inner hydrotalcite layers.
  • Example 14 [NiF 2 O 4 -Ni 8 Al 2 (OH) 20 CO 3 Preparation of composite particles (10.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Ni (NO 3 ) 2 ⁇ 6H 2 O-474.76 g (1.60 mol, Wako reagent with 98% content), Al (NO 3 ) 3 ⁇ 9H 2 O-154.69 g (0.40 mol, Wako reagent having a content of 97%) was added to deionized water to prepare 2000 ml of an acidic aqueous solution containing Ni and Al.
  • hydrotalcite was analyzed by fluorescent X-ray, and as a result, it was 64.99% by weight in terms of NiO, Al 2 O 3 11.04 wt% in conversion, CO 3 2- 6.50% by weight in terms of composition, Ni 8.10 Al 2 (OH) 20.2 (CO 3 ) 2 Mg—Al-based CO represented by 3 Type hydrotalcite compound.
  • NiFe excessive NiFe in inner layer hydrotalcite 2 O 4 Combined treatment of system particles> The above Mg-Al CO 3 After adding 23 g of hydrotalcite-type powder to 400 ml of deionized water and dispersing at 40 ° C.
  • Ni (NO 3 ) 2 ⁇ 6H 2 O-4.45 g (0.015 mol, 98% Wako Reagent) and Fe (NO 3 ) 3 ⁇ 9H 2 200 ml of an aqueous solution containing O-8.16 g (0.02 mol, 99% Wako Reagent) and 28.57 ml (0.10 mol) of a 3.5 mol / L NaOH solution were simultaneously added to the above hydrotalcite suspension. It added with the handling pump in the suspension over 10 minutes. After further heat treatment at 85 ° C. for 1 hour, the precipitate was filtered off and washed with water, dried at 105 ° C., and Ni-based magnetic / Mg—Al-based CO.
  • Example 15 [CuFe 2 O 4 -Cu 4 Fe 2 (OH) 12 CO 3 Preparation of composite particles (10.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Cu (NO 3 ) 2 ⁇ 3H 2 O-48.36 g (0.20 mol, 99.9% Wako special grade reagent) and Fe (NO 3 ) 3 ⁇ 9H 2 O-41.22g (0.10 mol, Wako special grade reagent with a content of 99%) was added to deionized water to prepare 600 ml of an acidic aqueous solution containing Cu and Fe. Next, 18.00 g of Na in 600 ml of the acidic aqueous solution at 40 ° C.
  • hydrotalcite was analyzed by fluorescent X-ray, and as a result, 50.51% by weight in terms of CuO, Fe 2 O 3 25.35% by weight, CO 3 2- 9.53% by weight in terms of conversion, composition formula Cu 4 Fe 2 (OH) 12 CO 3 Cu—Fe-based CO represented by 3 Type hydrotalcite compound.
  • Example 16 [CuFe 2 O 4 -Cu 4 Cr 2 (OH) 12 CO 3 Preparation of composite particles (10.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Cu (NO 3 ) 2 ⁇ 3H 2 O-48.36 g (0.20 mol, 99.9% Wako special grade reagent), Cr (NO 3 ) 3 ⁇ 9H 2 O-40.62 g (0.10 mol, 98.5% Wako special grade reagent) was added to deionized water to prepare 500 ml of an acidic aqueous solution containing Cu and Cr. Next, 18.00 g Na in the above-mentioned 500 ml acidic solution at 40 ° C.
  • Type hydrotalcite precursor powder 15g was fired at 300 ° C for 2 hours in an air atmosphere, and after natural cooling, 11.5g of Cu-Fe magnetic / Cu-Cr CO 3 Type composite particles of hydrotalcite-sample 16 were obtained.
  • Example 17 [Ni 0.5 Co 0.5 Fe 2 O 4 -Ni 0.7 Co 0.1 Mg 5.2 Al 2 (OH) 16 CO 3 Preparation of composite particles (10.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Co (NO 3 ) 2 ⁇ 6H 2 O-1.19 g (0.004 mol, 98.0% Wako special grade reagent), Ni (NO 3 ) 2 ⁇ 6H 2 O-8.31 g (0.028 mol, Wako special grade reagent with a content of 98.0%), Mg (NO 3 ) 2 ⁇ 6H 2 O-54.42 g (0.208 mol, 98.0% Wako Reagent), Al (NO 3 ) 3 ⁇ 9H 2 O-30.94 g (0.08 mol, 97% Wako Reagent) was added to deionized water to prepare 500 ml of an acidic aqueous solution containing Ni, Co, Mg and Al.
  • the obtained powder had a hydrotalcite structure. Further, the obtained hydrotalcite was analyzed by fluorescent X-ray. As a result, it was 9.34% by weight in terms of NiO, 1.34% by weight in terms of CoO, 37.46% by weight in terms of MgO, Al 2 O 3 18.22% by weight in terms of CO 3 2- 10.73 wt% in terms of composition, Ni 0.70 Co 0.10 Mg 5.22 Al 2 (OH) 16.04 CO 3 Ni, Co, Mg-Al based CO represented by 3 Type hydrotalcite compound.
  • Ni—Co magnetic / Ni, Co, Mg—Al CO 3 -Type hydrotalcite precursor powder 26g was obtained.
  • the obtained powder had a hydrotalcite structure. Furthermore, as a result of X-ray diffraction analysis using copper K ⁇ rays, it was confirmed that the obtained powder had a hydrotalcite structure.
  • the obtained hydrotalcite was analyzed by fluorescent X-ray, and as a result, it was found to be 12.15% by weight in terms of NiO, 42.65% by weight in terms of MgO, Al 2 O 3 20.75% by weight, CO 3 2- 12.21% by weight in terms of composition, Ni 0.80 Mg 5.21 Al 2 (OH) 16.02 CO 3 Ni, Mg-Al CO represented by 3 Type hydrotalcite compound.
  • Type hydrotalcite compound particles-sample 18 was obtained.
  • Example 19 [Ru (1 wt%)-Ni 0.5 Co 0.5 Fe 2 O 4 (10% by weight) -Ni 0.7 Co 0.1 Mg 5.2 Al 2 (OH) 16 CO 3 ⁇ 4H 2 Preparation of O composite particles] ⁇ Composite treatment of inner hydrotalcite> Ni 0.5 C 0.5 Fe 2 O 4 -Ni 0.7 Co 0.1 Mg 5.2 Al 2 (OH) 16 CO 3 ⁇ 4H 2
  • the O composite particle treatment is the same as in Example 17.
  • Example 20 [Ni 0.6 Zn 0.4 Fe 2 O 4 -Mg 3 Al (OH) 8 (CO 3 ) 0.5 And KMnO 4 Exchange treatment with aqueous solution]
  • the particle preparation method before exchange is the same as in Example 10 (Sample 10).
  • 1.0g KMnO 4 was dispersed in 350 ml of deionized water, 20 g of Sample 10 was added, stirred at room temperature for 2 hours, and further subjected to an exchange treatment at 85 ° C. for 15 hours.
  • Example 21 [Ni 0.5 Co 0.5 Fe 2 O 4 -Cu 4 Fe 2 (OH) 12 (CO 3 ) Preparation of composite particles (100.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> The synthesis of the inner hydrotalcite is the same as in Example 16.
  • Ni—Co magnetic / Cu—Fe CO 3 69.5 g of a precursor of composite particles of the type hydrotalcite compound was obtained.
  • Example 22 [SrFe 12 O 19 -Mg 6 Fe 2 (OH) 16 (Cl) 2.0 Preparation of composite particles (100.0 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> The synthesis of the inner hydrotalcite is the same as in Example 6. ⁇ Mg 6 Fe 2 (OH) 16 (Cl) 2.0 SrFe on the particles 12 O 19 100% by weight combined treatment> Mg obtained by the method of Example 6 6 Fe 2 (OH) 16 (Cl) 2.0 After adding 53 g of particles to 300 ml deionized water and dispersing at 40 ° C.
  • Example 23 [Ni 0.7 Mn 0.3 Fe 2 O 4 -Zn 6 Fe 2 (OH) 16 CO 3 Preparation of composite particles (150 wt% composite)] ⁇ Synthesis of inner layer hydrotalcite> Zn (NO 3 ) 2 ⁇ 6H 2 O-180.30 g (0.60 mol, 99% Wako special grade reagent), Fe (NO 3 ) 3 ⁇ 9H 2 O-81.62 g (0.20 mol, Wako special grade reagent with a content of 99%) was added to deionized water to prepare 800 ml of an acidic aqueous solution containing Zn and Fe.
  • the obtained hydrotalcite was analyzed by fluorescent X-ray, and as a result, 58.40% by weight in terms of ZnO 2 O 3 19.10% by weight, CO 3 2- 7.18 wt% in terms of composition, composition formula Zn 6.02 Fe 2 (OH) 16.04 CO 3 Zn—Fe-based CO represented by 3 Type hydrotalcite compound.
  • Type hydrotalcite powder (40 g) is added to 500 ml of deionized water, dispersed at 40 ° C.
  • Ni (NO 3 ) 2 ⁇ 6H 2 O-54.0 g 0.182 mol, Wako Reagent, 98% by weight
  • MnSO 4 ⁇ H 2 O-13.59 g 0.078 mol, Wako Reagent, 97% by weight
  • Comparative Example 10 Executed in the same manner as in Example 15 and Cu-Fe-based CO 3 Type hydrotalcite particles were prepared. However, CuFe 2 O 4 The composite treatment of the system particles was not performed.
  • Comparative Example 11 Executed in the same manner as in Example 16, and Cu—Cr-based CO 3 Type hydrotalcite particles were prepared. However, CuFe 2 O 4 The combined processing was not performed.
  • Comparative Example 12 Executed in the same manner as in Example 17, Ni, Co, Mg-Al based CO 3 Type hydrotalcite particles were prepared. However, Ni 0.5 C 0.5 Fe 2 O 4 The combined processing was not performed.
  • Comparative Example 13 Executed in the same manner as in Example 18, and Ni, Mg-Al CO 3 Type hydrotalcite particles were prepared.
  • Fig. 9 shows the results of light absorption obtained by molding the powder into a diameter of 3 cm and a thickness of 3 mm and measuring with a spectrophotometer (HITACHI U-4100 Spectrophotometer).
  • the composite particles of Example 14 and Example 23 showed strong reflection characteristics with respect to infrared rays of 1395 to 1700 nm.
  • Example 14 and Example 23 are UV-A waves (315 to 380 nm), UV-B waves (280 to 315 nm), and UV-C waves (up to 280 nm). ) was strongly absorbed. [Electromagnetic wave absorption effect] The particles of Examples 14 to 23 showed strong magnetism. Table 5 shows the results of confirming the presence or absence of magnetism in the particles before and after the composite treatment with a magnet.
  • Example 21 and Comparative Example 10 particles were mixed and kneaded in 40 wt% linear low density polyethylene, respectively, and molded into 10 cm ⁇ 14 cm ⁇ 0.2 cm, and then the electromagnetic wave absorption effect was measured by the free space method. did. As a result, as shown in FIG. 10, it was confirmed that there was an electromagnetic wave absorption effect. Example 21 showed stronger absorption than Comparative Example 10.
  • Example 22 The measurement results of the magnetic moment of the composite particles by the vibration magnetometer are shown in FIG. Magnetization was exhibited under magnetic field application.
  • FIG. 12 shows a photograph in which 5 g of Example 22 particles were placed in a 5 ⁇ 7 ⁇ 0.04 cm plastic bag with a chuck and the presence or absence of magnetic force was confirmed using a magnet.
  • Removal rate% (gas concentration ppm before absorption-gas concentration ppm after absorption) / gas concentration ppm before absorption x 100 (4)
  • the particles of the present invention can be expected to be used for applications other than electromagnetic wave absorbers, such as ultraviolet absorbers and odor gas absorbers.
  • electromagnetic wave absorbers such as ultraviolet absorbers and odor gas absorbers.
  • NH 3 And H 2 Effective against acidic gases such as S. KMnO 4
  • the composite particles after the exchange treatment with, for example, the composite particles of Example 20 are CH 2 CH 2 There is also an absorption effect for such gases.
  • the particles of the present invention also have the property of exchanging with anions, new functions can be added to the composite particles of the present invention by performing an exchange treatment with anions.
  • KBrO 3 If you replace it with BrO, 3 ⁇ Anions can be introduced and BrO 3 ⁇ Since anions have strong reducing properties, H 2 O 2 , N, N-dimethyl-4- (phenyldiazenyl) benzenamine (C 14 H 15 N 3 ), 4-dimethylaminoazobenzene-4-sulfonicacid sodium salt (C 14 H 14 N 3 NaO 3 S, methyl orange) and other wastewater treatment agents.
  • the magnetic hydrotalcite complex of the present invention has the advantages that there is little aggregation due to firing, high dispersibility, and high activity. Moreover, the reusability when used as a catalyst is high.
  • the magnetic hydrotalcite complex of the present invention can adsorb a plurality of types of ions with high efficiency.
  • a ferrite substance is precipitated on the surface of a hydrotalcite compound, thereby suppressing aggregation due to the firing step and hydrotalcite after the firing treatment.
  • the surface activity of the compound can be improved, and further, the reusability when used as a catalyst can be improved.
  • the magnetic hydrotalcite complex of the present invention can be used as an adsorbent for harmful substances in soil, groundwater or wastewater, an electromagnetic wave absorber, an ultraviolet absorber, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 本発明の目的は、排水処理、紫外線吸収、電磁波吸収または酸性ガス吸収などの分野において有用な磁性ハイドロタルサイト類複合体とその製造方法を提供することにある。 本発明は、内層と外層を含み、内層がハイドロタルサイト類化合物であり、外層がフェライト類化合物である磁性ハイドロタルサイト類複合体である。

Description

磁性ハイドロタルサイト類複合体およびその製造方法
 本発明は、吸着剤、電磁波吸収剤および紫外線吸収剤として有用な、磁性ハイドロタルサイト類複合体およびその製造方法に関する。
 特許文献1には、産業廃棄物である鋼鉄スラグを再利用した、陰イオン吸着剤などとして利用可能なハイドロタルサイト類化合物を合成する方法が記載されている。この方法で合成したハイドロタルサイト類化合物の一般式は[Ca2+a−xMxAlO3+b]Aで表される。この構造を有するハイドロタルサイト類化合物は単独で焼成処理をすると、生成される酸化物が凝集して、活性が落ちるという欠点がある。また、単一なハイドロタルサイト構造しか持たないので、吸着できるイオンの種類が限られるという欠点がある。
 非特許文献1には、Green Rust(GR)によるセレンの処理方法およびMgOを中和剤とするハイドロタルサイト類化合物の生成法が記載されている。この方法でセレンとフッ素イオンを処理するためには、それぞれの処理に適した2種類のハイドロタルサイト粒子が必要である。
 特許文献2には、酸化マグネシウムの表面にハイドロタルサイト類化合物を複合処理した浄化処理剤の合成方法、該処理剤を用いた有害物質の処理方法が記載されている。この方法で合成したハイドロタルサイト類化合物は前述と同様の欠点がある。
 非特許文献2には、Fe系ハイドロタルサイト類化合物の合成とその応用が記載されている。この方法で合成した粒子は単一層のFe系ハイドロタルサイト類化合物であるので、前述と同様の欠点がある。
 特許文献3には、Co(II)Fe(III)−LDHの低い保磁力粒子の合成方法が記載されている。この方法で合成した粒子は、Co(II)Fe(III)−LDH粒子であり、CoFe系フェライト類物質の前駆体である。CoFeフェライトの構造になっていないので、磁性体としての物性を十分発揮することができない。
 特許文献4には、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸(略称BP)アニオンイオンをMg−Al−NO型ハイドロタルサイトの層間に導入し、紫外線吸収機能を付与する方法が記載されている。このような方法は交換後の廃液は濃い黄色に着色され、処理に対する環境への負担が大きいという欠点がある。また交換後の粒子も濃い黄色を帯びてしまい、使用が制限される欠点もある。
 特許文献5には、亜鉛変性ハイドロタルサイト、2,4−ジヒドロキシベンゾフェノンなどを樹脂に配合し、透明製品用塩化ビニル系樹脂組成物を調製する方法が記載されている。この方法は亜鉛変性ハイドロタルサイトと紫外線吸収機能を持つ2,4−ジヒドロキシベンゾフェノンなどを混合することで樹脂に紫外線吸収機能を付与する方法である。この方法で時間が経つと、2,4−ジヒドロキシベンゾフェノンなど紫外線吸収機能を持つ有機物質を徐々に分解することによって、紫外線吸収機能が低下するという欠点がある。
国際公開番号WO2011/108195A1 特願2011−188651 特願2008−144412 特願2007−299039 PCT/JP2011/063597 層状複水酸化物のオンサイト生成法を活用した有害元素の水処理技術,J.Soc.Powder Technol,Japan,50,342−347(2013) Fe系層状複水酸化物の合成とその応用,粘土科学,第49巻,第3号,99~107,2010
 本発明の目的は、排水処理、紫外線吸収、電磁波吸収、酸性ガス吸収などの分野において有用な磁性ハイドロタルサイト類複合体とその製造方法を提供することにある。
 ハイドロタルサイト類化合物は、焼成すると凝集し活性が落ちるという欠点がある。また、従来のハイドロタルサイト類化合物は、単一なハイドロタルサイト構造しか持たないので、吸着できるイオンの種類が限られるという欠点がある。
 本発明者らは、ハイドロタルサイト類化合物をフェライト類化合物により複合処理すると、焼成してもハイドロタルサイト類化合物の凝集を防ぐことができることを見出した。またハイドロタルサイト類化合物に複数の金属イオンを含有させることにより、複数のイオンを吸着できるようにした。
 すなわち本発明は、以下の発明を包含する。
1. 内層と外層を含み、内層がハイドロタルサイト類化合物であり、外層がフェライト類化合物である磁性ハイドロタルサイト類複合体。
2. 外層のフェライト類化合物の含有量は、0.5~95重量%である前項1に記載の磁性ハイドロタルサイト類複合体。
3. 内層が下記式(1)で示されるハイドロタルサイト類化合物であり、外層が下記式(2−1)、(2−2)または(2−3)で示されるフェライト類化合物である前項1に記載の磁性ハイドロタルサイト類複合体。
 [M2+ 1−x3+ (OH)][An− x/n・yHO]    (1)
(式中、M2+は、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+、Sr2+、Cd2+およびPb2+からなる群より選ばれる少なくとも一種の二価金属イオンであり、
3+は、La3+、Al3+、Ga3+、Mn3+、Co3+、Y3+、Ce3+、Fe3+Cr3+およびIn3+からなる群より選ばれる少なくとも一種の三価金属イオンであり、
n−は、CO 2−、SO 2−、Cl、SiO 2−、PO 3−、NO 、OH、CHPO 2−、C 2−、HCOO、CHCOOおよびCHSO からなる群より選ばれる少なくとも一種のn価の陰イオンであり、
xは、0.15≦x≦0.5を満足し、yは、0≦y<5を満足し、nは1以上の整数である。)
 AFe     (2−1)
(式中Aは、Ni、Zn、Cu、Mn、CoおよびMgからなる群より選ばれる少なくとも一種である。)
 XFe1219   (2−2)
(式中Xは、Sr、BaおよびPbからなる群より選ばれる少なくとも一種である。)
 RFe12    (2−3)
(式中Rは元素周期表において、第3族アクチノイドを除く第4周期から第6周期までの希土類元素である。)
4. 内層のハイドロタルサイト類化合物のM2+とM3+の原子比率は1.0:1.0~6.0:1.0である前項3に記載の磁性ハイドロタルサイト類複合体。
5. 外層に、更にAu、Ag、Ru、Pt、Rh、Ir、Rb、OsおよびPdからなる群より選ばれる少なくとも一種の貴金属元素の塩を、貴金属元素として0.2~5.0重量%を担持させた前項3に記載の磁性ハイドロタルサイト類複合体。
6. 前項1~5のいずれか一項に記載の磁性ハイドロタルサイト類複合体からなる、土壌、地下水または廃水中の有害物質の吸着剤。
7. 前項1~5のいずれか一項に記載の磁性ハイドロタルサイト類からなる電磁波吸収剤。
8. 前項1~5のいずれか一項に記載の磁性ハイドロタルサイト類複合体からなる紫外線吸収剤。
9. (1)内層のハイドロタルサイト類化合物を構成する元素を含む金属塩と、アルカリ性溶液とを混合し、溶液のpH値を7~11に制御し、20~270℃の温度で内層のハイドロタルサイト類化合物を製造する工程(1)、
(2)得られたハイドロタルサイト類化合物を含有するスラリーに、外層のフェライト類化合物を構成する元素を含む金属塩の酸性溶液と、アルカリ性溶液とを添加し、溶液のpH値が7~11に制御し、40~250℃以下の温度で外層を形成し、前駆体を製造する工程(2)、並びに
(3)前駆体を200℃~800℃の温度範囲において焼成する工程(3)、を含む前項1に記載の磁性ハイドロタルサイト類複合体の製造方法。
10. 内層のハイドロタルサイト類化合物を構成する2価金属イオン塩が、MgCl、CaCl、ZnClおよびFeClからなる群より選ばれる少なくとも一種である前項9に記載の製造方法。
11. 内層のハイドロタルサイト類化合物を構成する3価金属イオン塩が、AlClである前項9に記載の製造方法。
12. 内層のハイドロタルサイト類化合物を構成する陰イオン塩が、NaCOである前項9に記載の製造方法。
13. 外層のフェライト類化合物を構成する元素を含む金属塩が、FeCl、MgCl、Ni(NO)およびZnClからなる群より選ばれる少なくとも一種である前項9に記載の製造方法。
 図1は、実施例9における複合処理後のSEM写真(焼成処理前)である。
 図2は、実施例9における空気雰囲気中550℃2時間焼成後のSEM写真である。
 図3は、実施例9のMNO 水溶液交換処理後のSEM写真である。
 図4は、実施例9の複合処理前後の粒子のXRDである。
 図5は、協和化学工業(株)製KW−300SおよびKW−500SHのXRDである。
 図6は、比較例5の550℃2時間焼成処理後のXRDである。
 図7は、実施例9の複合粒子550℃2時間焼成後のXRDである。
 図8は、比較例9の粒子のMnO 水溶液交換処理後のXRDである。
 図9は、成型処理後の粉末の光吸収効果である。
 図10は、自由空間法による電磁波吸収効果である。
 図11は、実施例22粒子の振動式磁力計による磁気モーメントの測定結果である。
 図12は、実施例22粒子の磁性確認写真である。
<磁性ハイドロタルサイト類複合体>
 本発明の磁性ハイドロタルサイト類複合体(以下、磁性複合体と略すことがある)は2種類以上の無機粒子で構成される無機−無機複合体である。
 磁性複合体は、内層と外層を含み、内層がハイドロタルサイト類化合物であり、外層がフェライト類化合物である。内層がハイドロタルサイト類化合物は、層状複水酸化物である。
 内層のハイドロタルサイト類化合物の含有量は、好ましくは5~99.5重量%である。内層の含有量の下限は、好ましくは10重量%、より好ましくは15重量%である。内層の含有量上限は、好ましくは90重量%、より好ましくは85重量%である。
 外層のフェライト類化合物の含有量は、好ましくは0.5~95重量%である。外層の含有量の下限は、好ましくは10重量%、より好ましくは15重量%である。外層の含有量上限は、好ましくは90重量%、より好ましくは85重量%である。
(内層)
 本発明において、内層は下記式(1)で示される陰イオン交換能をもつハイドロタルサイト類化合物(層状複水酸化物)であることが好ましい。
 [M2+ 1−x3+ (OH)][An− x/n・yHO]    (1)
 M2+およびM3+はそれぞれ2価および3価の金属イオン、An−はn価の陰イオンである。M2+およびM3+を含むハイドロタルサイト類化合物は基本骨格として、ブルサイト[Mg(OH)]類似の水酸化層(ホスト層)の結晶構造を有し、2価金属の一部が3価金属に置換されることによって、ホスト層が正に電荷するため、層間(ゲスト層)に陰イオンおよび水分子が挿入されてなる。
 M2+は、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+、Sr2+、Cd2+およびPb2+からなる群より選ばれる少なくとも一種の二価金属イオンである。M2+は、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Ni2+およびCu2+、Zn2+からなる群より選ばれる少なくとも一種の二価金属イオンが好ましい。
 M3+は、La3+、Al3+、Ga3+、Mn3+、Co3+、Y3+、Ce3+、Fe3+Cr3+およびIn3+からなる群より選ばれる少なくとも一種の三価金属イオンである。M3+は、Al3+、Cr3+、Fe3+、Co3+、In3+、Y3+、Ce3+およびLa3+、からなる群より選ばれる少なくとも一種の三価金属イオンが好ましい。
 内層のハイドロタルサイト類化合物のM2+とM3+の原子比率は1.0:1.0~6.0:1.0であることが好ましく、より好ましくは1.3:1.0~5.5.0:1.0であり、更に好ましくは1.5:1.0~5.0:1.0である。
 An−は、内層のハイドロタルサイト類化合物の層間に挿入されるアニオンである。An−として、炭酸イオン(CO 2−)、硫酸イオン(SO 2−)、塩化物イオン(Cl)、ケイ酸イオン(SiO 2−)、燐酸イオン(PO 3−)、硝酸イオン(NO )、水酸物イオン(OH)等の無機アニオン、メチル燐酸(CHPO 2−)など有機燐酸、蓚酸イオン(C 2−)、ギ酸イオン(HCOO)、酢酸イオン(CHCOO)などの有機カルボン酸、メタルスルホン酸(CHSO )など有機スルホン酸が挙げられる。An−は、CO 2−、SO 2−、Cl、SiO 2−、PO 3−、NO 、OH、CHPO 2−、C 2−、HCOO、CHCOOおよびCHSO からなる群より選ばれる少なくとも一種のn価の陰イオンであることが好ましい。
 xは、0.1≦x≦0.6を満足する。xの下限は、好ましくは0.15、より好ましくは0.2である。xの上限は、好ましくは0.5、より好ましくは0.4である。
 yは、0≦y<5を満足する。yの上限は、好ましくは4、より好ましくは3である。
(外層)
 外層は、下記組成式(2−1)、(2−2)または(2−3)で示されるフェライト類化合物で構成されることが好ましい。
 フェライト類化合物は、スピネルフェライト、六方晶系フェライトおよびガーネットフェライトからなる群より選ばれる少なくとも一種のフェライト類物質の前駆体粒子或いは結晶粒子である。
 スピネルフェライトは下記組成式(2−1)で表される。
 AFe     (2−1)
(式中Aは、Ni、Zn、Cu、Mn、CoおよびMgからなる群より選ばれる少なくとも一種である。)
 六方晶系フェライトは下記組成式(2−2)で表される。
 XFe1219   (2−2)
(式中Xは、Sr、BaおよびPbからなる群より選ばれる少なくとも一種である。)
 ガーネットフェライトは下記組成式(2−3)で表される。
 RFe12    (2−3)
(式中Rは元素周期表において、第3族アクチノイドを除く第4周期から第6周期までの希土類元素である。)
(貴金属元素の担持)
 外層に、更にAu、Ag、Ru、Pt、Rh、Ir、Rb、OsおよびPdからなる群より選ばれる少なくとも一種の貴金属元素の塩を、貴金属元素として0.2~5.0重量%を担持させることが好ましい。
<磁性複合体の製造方法>
 磁性複合体は、内層のハイドロタルサイト類化合物を調製し(工程(1))、得られたハイドロタルサイト類化合物にフェライト類化合物を析出させ前駆体を製造し(工程(2))、焼成させて(工程(3))製造することができる。
(工程(1))
 工程(1)は、内層のハイドロタルサイト類化合物を構成する元素を含む金属塩と、アルカリ性溶液とを混合し、溶液のpH値を7~11に制御し、20~270℃の温度でハイドロタルサイト類化合物を製造する工程である。
 内層のハイドロタルサイト類化合物を構成する2価金属イオン(M2+)源として、可溶性金属塩を用いることができる。可溶性金属塩として、塩化物、硝酸塩、硫酸塩などが挙げられる。例えばMgCl、CaCl、ZnCl、FeCl、Mg(NO、Ca(NO、Zn(NO、Fe(NO、MgSO、ZnSO、FeSOなどが挙げられる。可溶性金属塩類化合物以外には、水酸化物、酸化物および金属粉末も利用が可能である。例えば、MgO、ZnO、Mg(OH)、Al(OH)、Al、金属Zn粉末、金属Al、Mg粉末なども利用できる。
 内層のハイドロタルサイト類化合物を構成する3価金属イオン(M3+)源として、可溶性金属塩を用いることができる。可溶性金属塩として、塩化物、硝酸塩、硫酸塩などが挙げられる。例えばAlCl、Al(NO、Al(SOなどが挙げられる。可溶性金属塩類化合物以外には酸化物、金属、水酸物質も利用が出来る。例えば、金属Al粉末、Al(OH)、Al粉末、Fe粉末、金属Fe粉末などが利用できる。
 内層のハイドロタルサイト類化合物を構成するn価の陰イオン源として、炭酸イオン(CO 2−)、硫酸イオン(SO 2−)、塩化物イオン(Cl)、ケイ酸イオン(SiO 2−)、燐酸イオン(PO 3−)、硝酸イオン(NO )、水酸物イオン(OH)等の無機アニオン、メチル燐酸(CHPO 2−)など有機燐酸の塩、蓚酸イオン(C 2−)、ギ酸イオン(HCOO)、酢酸イオン(CHCOO)などの有機カルボン酸の塩、メタルスルホン酸(CHSO )など有機スルホン酸の塩が挙げられる。塩として、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。
 アルカリ性溶液として、NaOH、KOH、NH・HOなどが挙げられる。溶液のpH値を6~12に制御して反応を行う。pH値の下限は、好ましくは6.5、より好ましくは7である。pH値の上限は、好ましくは11.5、より好ましくは11である。
 2価金属(M2+)の可溶性塩と3価金属(M3+)の可溶性塩との比率は、得られるハイドロタルサイト類化合物のM2+とM3+の原子比率が1.0:1.0~6.0:1.0となるようにすることが好ましい。
 反応は、湿式プロセスで行うことができ、中でも、共沈法、水熱法または均一沈降法等の方法が好適に利用することができる。またこれらの方法より、ハイドロタルサイト類化合物を粉末状の粒子として得ることができる。
 反応温度は20~270℃が好ましい、より好ましくは40~200℃であり、更に好ましくは60~180℃である。
(工程(2))
 工程(2)は、得られたハイドロタルサイト類化合物を含有するスラリーに、外層のフェライト類化合物を構成する元素を含む金属塩の酸性溶液と、アルカリ性溶液とを添加し、溶液のpH値が7~11に制御し、40~250℃の温度で外層を形成し、前駆体を製造する工程である。
 外層のフェライト類化合物を構成する元素を含む金属塩として、可溶性金属塩を用いることができる。可溶性金属塩として、塩化物、酸化物などが挙げられる。例えばFeCl、MgCl、Ni(NO)、ZnCl、MgO、ZnO、Fe(NO、Zn(NO、Mg(NOなどが挙げられる。
 アルカリ性溶液として、NaOH、KOH、NHO、NaCOなどが挙げられる。溶液のpH値を7~12に制御して反応を行う。pH値の下限は、好ましくは8、より好ましくは9である。pH値の上限は、好ましくは11である。
 反応温度は20~250℃が好ましい、より好ましくは40~200℃であり、更に好ましくは60~180℃である。
 外層のフェライト類化合物の前駆体または結晶化粒子は、内層のハイドロタルサイト類化合物の前駆体または結晶化粒子に、錯体重合法、共沈法、水熱法または均一沈降法等の方法で複合処理させることより、磁性複合体粒子の前駆体を得ることができる。
<貴金属元素の担持>
 前駆体の外層に、更にAu、Ag、Ru、Pt、Rh、Ir、Rb、OsおよびPdからなる群より選ばれる少なくとも一種の貴金属元素の塩を、貴金属元素として0.2~5.0重量%を担持させることもできる。
(工程(3))
 工程(3)は、前駆体を200~800℃の温度範囲において焼成する工程である。焼成温度は200~1500℃、好ましくは250~1300℃であり、更に好ましくは300~1100℃である。焼成時間は1~30時間、好ましくは1.5~20時間、更に好ましくは2~15時間である。その焼成雰囲気は、空気、窒素ガス、アルゴンガス、水素ガス等が用いられるが、通常は空気が用いられる。
<用途>
 本発明の磁性複合体は、土壌、地下水または廃水の有害物質の吸着剤として用いることができる。また電磁波吸収剤や紫外線吸収剤として用いることができる。
 吸着剤は、内層のハイドロタルサイト類化合物の前駆体または結晶化粒子が、Al3+を含有することが好ましい。
 電磁波吸収剤は、内層のハイドロタルサイト類化合物の前駆体または結晶化粒子が、Fe3+を含有することが好ましい。
 次に、本発明を実施例により更に詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。吸着剤に適した磁性複合体について実施例1~13で説明する。
実施例1
[MgFe−MgAl(OH)Cl複合粒子の調製(5.0重量%複合)]
<内層ハイドロタルサイトの合成>
 MgCl・6HO−91.5g(0.45モル)およびAlCl・6HO−36.22g(0.15モル)を400mlの脱イオン水に加えて、MgおよびAlを含む水溶液を調製した。次にこの水溶液を40℃で0.5時間保持した後、3.50モル/LのNaOH液357.2ml(1.25モル)を20分かけて滴下した。この沈殿を含む液を40℃に保って1.0時間撹拌した後、1.0L容量のオートクレーブにて170℃で8時間の水熱処理を行った後、その沈殿を濾別し、水洗し、185℃で乾燥して、ハイドロタルサイト類化合物粉末45gを得た。
 銅Kα線によるX線回折装置(Rigaku X−RAY DIFFRACTOMETER RINT2200)による分析の結果、得られた粉末はハイドロタルサイト構造を持つことが確認できた。さらに、蛍光X線測定装置(Rigaku X−RAY SPECTROMETER RIX2000)による分析の結果、得られた粉末はMgO換算で44.47重量%、Al換算で18.7重量%、塩素換算で13.25重量%、組成式Mg5.99Al(OH)15.95(Cl)2.00で表されるMg−Al系Cl型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにMgFe系粒子の複合処理>
 上記のMg−Al系Cl型ハイドロタルサイト類化合物の粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、MgCl・6HO−1.02g(0.005モル)およびFeCl・6HO−2.70g(0.01モル)を含有する250mlの水溶液と3.5モル/LのNaOH溶液11.43ml(0.04モル)を同時に前記のMg−Al系Cl型ハイドロタルサイト懸濁液中に撹拌下で10分かけて扱きポンプで添加した。さらに350rpmで撹拌しつつ85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末21.5gを得た。
<焼成>
 前記のMg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、11.2gのMg系磁性/Mg−Al系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル1を得た。
実施例2
[MgFe−MgAl(OH)Cl複合粒子の調製(30.0重量%複合)]
<内層ハイドロタルサイトの合成>
 実施例1と同じ。
<内層ハイドロタルサイトにMgFe系粒子の複合処理>
 前記のMg−Al系Cl型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、MgCl・6HO−6.1g(0.03モル)およびFeCl・6HO−16.22g(0.06モル)を含有する250mlの水溶液と3.5モル/LのNaOH溶液68.57ml(0.24モル)を同時に前記のMg−Al系Cl型ハイドロタルサイト懸濁液中に30分かけて扱きポンプで添加した。その後85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末27.5gを得た。銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。
<焼成>
 前記の、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末20gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、14.9gのMg系磁性/Mg−Al系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル2を得た。
実施例3
[MgFe−MgAl(OH)Cl複合粒子の調製(100.0重量%複合)]
<内層ハイドロタルサイトの合成>
 実施例1と同じ。
<内層ハイドロタルサイトにMgFe系粒子の複合処理>
 前記のMg−Al系Cl型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、MgCl・6HO−20.33g(0.1モル)およびFeCl・6HO−54.06g(0.2モル)を含有する300mlの水溶液と3.5モル/LのNaOH溶液228.57ml(0.8モル)を同時に前記のMg−Al系Cl型ハイドロタルサイト懸濁液中に50分かけて扱きポンプで添加した。その後85℃で1時間の加熱処理をした後、その沈殿を濾別・水洗し、185℃で乾燥して、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉43.0gを得た。銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。
<焼成>
 前記の、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末20gを空気雰囲気下において500℃で2時間焼成し、自然冷却後、15.8gのMg系磁性/Mg−Al系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル3を得た。
実施例4
[MgFe−MgAl(OH)Cl複合粒子の調製(30.0重量%複合)]
 内層ハイドロタルサイトの合成において、水熱処理条件を120℃で8時間に変更したこと以外は実施例2と同様に実施し、サンプル4を得た。
実施例5
[MgFe−MgAl(OH)Cl複合粒子の調製(30.0重量%複合)]
・内層ハイドロタルサイトの合成において、水熱処理条件を150℃で8時間に変更したこと以外は実施例2と同様に実施し、サンプル5を得た。
実施例6
[MgFe−MgFe(OH)Cl複合粒子の調製(5.0重量%複合)]
・内層ハイドロタルサイトの合成において、実施例5と同様に実施し、得た粉末20gを400mlの脱イオン水に加えて、40℃で1時間分散した後、MgCl・6HO−1.02g(0.005モル)およびFeCl・6HO−2.70g(0.01モル)を含有する50mlの水溶液と3.5モル/LのNaOH溶液11.43ml(0.04モル)を同時に前記のMg−Al系Cl型ハイドロタルサイト懸濁液中に30分かけて扱きポンプで添加した。その後85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末21.25gを得た。銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。
<焼成>
 前記の、Mg系磁性/Mg−Al系Cl型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、11.8gのMg系磁性/Mg−Al系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル6を得た。
実施例7
[MgFe(OH)Cl系ハイドロタルサイトにNi0.6Zn0.4Feの複合処理(10.0重量%複合処理)]
<内層ハイドロタルサイトの合成>
 実施例6と同じ。
<内層ハイドロタルサイトにNi0.6Zn0.4Fe粒子の複合処理>
 前記のMg−Al系Cl型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、ZnCl−0.15g(0.0033モル)、Ni(NO・6HO−1.45g(0.005モル)およびFeCl・6HO−4.51g(0.017モル)を含有する150mlの水溶液と3.5モル/LのNaOH溶液18.10ml(0.063モル)を同時に前記のハイドロタルサイト懸濁液中に10分かけて扱きポンプで添加した。さらに350rpmの撹拌をしつつ85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Ni−Zn系磁性/Mg−Fe系Cl型ハイドロタルサイト前駆体粉末22.6gを得た。銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。
<焼成>
 前記の粉末15gを空気雰囲気下において400℃で2時間焼成し、11.6g磁性複合粒子−サンプル7を得た。
実施例8
[Ni0.6Zn0.4Fe−MgAl(OH)(CO0.5複合粒子の調製(5.0重量%複合)]
<内層ハイドロタルサイトの合成>
 MgCl・6HO−91.5g(0.45モル)およびAlCl・6HO−36.22g(0.15モル)を400mlの脱イオン水に加えて、MgおよびAlを含む水溶液を調整した。次にこの水溶液を40℃に0.5時間保持した後、8.0gのNaCO(0.075モル)を含有した3.50モル/LのNaOH溶液357.2ml(1.25モル)を20分かけて滴下した。この沈殿を含む液を40℃で1.0時間、350rpm撹拌処理した後、沈殿物を0.075モル/LのNaCO水溶液1.0Lで洗浄を行った。引き続き1.0L容量のオートクレーブにて150℃で8時間の水熱処理を行った後、その沈殿を濾別および水洗し、185℃で乾燥して、ハイドロタルサイト粉末42.8gを得た。
 得られたハイドロタルサイトは蛍光X線による分析をした結果、MgO換算で45.33重量%、Al換算で19.14重量%、CO 2−換算で11.49重量%、組成式Mg5.99Al(OH)15.98(CO1.02で表されるMg−Al系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにNi0.6Zn0.4Feの複合処理>
 前記のMg−Al系CO型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、ZnCl−0.23g(1.67×10−3モル)、Ni(NO・6HO−0.73g(2.5×10−3モル)およびFeCl・6HO−2.25g(8.33×10−3モル)を含有する50mlの水溶液と3.5モル/LのNaOH溶液9.05ml(0.032モル)を同時に前記のハイドロタルサイト懸濁液中に5分かけて扱きポンプで添加した。さらに85℃で1hrの加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Ni−Zn系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末21.5gを得た。銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。
<焼成>
 前記の、Ni−Zn系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、550℃で2時間焼成し、自然冷却後、11.4gのNi−Zn系磁性/Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル8を得た。
実施例9
[Ni0.6Zn0.4Fe−MgAl(OH)(CO0.5複合粒子の調製(30.0重量%複合)]
<内層ハイドロタルサイトの合成>
 実施例8と同じ。
<内層ハイドロタルサイトにNi0.6Zn0.4Feの複合処理>
 上記のMg−Al系CO型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、ZnCl−1.36g(0.01モル)、Ni(NO・6HO−4.36g(0.015モル)およびFeCl・6HO−13.52g(0.05モル)を含有する250mlの水溶液と3.5モル/LのNaOH溶液54.30ml(0.19モル)を同時に前記のハイドロタルサイト懸濁液中に30分かけて扱きポンプで添加した。さらに85℃で1hrの加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Ni−Zn系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末27.0gを得た。
<焼成>
 前記の粉末20gを空気雰囲気下において、550℃で2時間焼成し、自然冷却後、15.2gのNi−Zn系磁性/Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル9を得た。
<図1~3>
 サンプル9の粒子形状については走査型電子顕微鏡(HITACHI S−3000N;SEM)により、焼成処理前、焼成処理後およびKMnO液との交換処理後にそれぞれ撮影した。SEM写真を図1~3に示す。
 KMnOとの交換処理方法として、1.0gのKMnOを350mlの脱イオン水に分散させた後、サンプル10を20g入れ、室温2時間撹拌処理し、更に85℃15時間交換処理を行った。
実施例10
[Ni0.6Zn0.4Fe−MgAl(OH)(CO0.5複合粒子の調製(100.0重量%複合)]
<内層ハイドロタルサイトの合成>
 実施例8と同じ。
<内層ハイドロタルサイトにNi0.6Zn0.4Feの複合処理>
 前記のMg−Al系CO型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、ZnCl−4.53g(0.033モル)、Ni(NO・6HO−14.52g(0.05モル)およびFeCl・6HO−45.02g(0.167モル)を含有する400mlの水溶液と3.5モル/LのNaOH溶液180.82ml(0.633モル)を同時に前記のハイドロタルサイト懸濁液中に50分かけて扱きポンプで添加した。さらに350rpmで撹拌しつつ85℃で1hrの加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Ni−Zn系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末43.0gを得た。
 表面成分を電界放出形走査電子顕微鏡(日本電子(株)JSM 7800F;FE−SEM)により分析した結果、10回の平均値で、NiとZnの原子比率は1.51:1、Feと(Ni+Zn)の原子比率は2.02:1であった。
<焼成>
 前記の粉末20gを空気雰囲気下において、500℃で2時間焼成処理し、自然冷却後、15.8gのNi−Zn系磁性/Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル10を得た。
実施例11
[Ni0.6Zn0.4Fe−MgAl(OH)(CO0.5複合粒子の調製(30.0重量%複合)]
・内層ハイドロタルサイトの合成において、水熱処理条件を120℃で8時間に変更したこと以外は実施例9と同様に実施し、サンプル11を得た。
実施例12
[MgFe−CaAl(OH)Cl複合粒子の調製(10.0重量%複合)]
<内層ハイドロタルサイトの合成>
 CaCl・2HO−58.80g(0.40モル)、AlCl・6HO−48.29g(0.20モル)を480mlの脱イオン水に加えて、CaおよびAlを含む水溶液を調製した。次にこの水溶液を40℃で0.5時間保持した後、3.50モル/LのNaOH液342.86ml(1.20モル)を30分かけて滴下した。この沈殿を含む液を40℃で1.0時間撹拌処理した後、1.0L容量のオートクレーブにて120℃で8時間の水熱処理を行った。その沈殿を濾別および水洗し、185℃で乾燥して、Ca−Al系Cl型ハイドロタルサイト粉末56gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に得られたCa−Al系Cl型ハイドロタルサイトを蛍光X線による分析をした結果、CaO換算で45.75重量%、Al換算で20.90重量%、塩素換算で14.53重量%、組成式Ca3.98Al(OH)11.96(Cl)2.00で表されるCa−Al系Cl型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにMgFe系粒子の複合処理>
 前記のCa−Al系Cl型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、MgCl・6HO−2.04g(0.01モル)およびFeCl・6HO−5.40g(0.02モル)を含有する300mlの水溶液と3.5モル/LのNaOH溶液22.86ml(0.08モル)を同時に前記のCa−Al系Cl型ハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Mg系磁性/Ca−Al系Cl型ハイドロタルサイト前駆体粉末22.5gを得た。
<焼成>
 前記のMg系磁性/Ca−Al系Cl型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、11.5gのMg系磁性/Ca−Al系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル12を得た。
実施例13
[(Mg0.6Ca0.4)Fe−Zn1.50Fe(II)1.58Fe(III)(OH)8.16Cl複合粒子の調製(15.0重量%複合)]
<内層ハイドロタルサイトの合成>
 ZnCl−62.6g(0.43モル;98%和光特級試薬)、FeCl・4HO−153.88g(0.774モル;97%和光特級試薬)を1000mlの脱イオン水に加えて、ZnおよびFeを含む水溶液を調製した。次にこの水溶液を40℃で0.5時間保持した後、pHが7.0になるように3.50モル/LのNaOH液613.70ml(2.148モル)を30分かけて滴下した。この沈殿を含む液を37℃に保って24時間撹拌処理した後、160℃で真空乾燥して、Zn,Fe−Fe系Cl型ハイドロタルサイト粉末133.58gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。得られた、Zn,Fe−Fe系Cl型ハイドロタルサイト粉末は化学分析の結果、ZnO換算で29.33重量%、FeO換算で27.26重量%、Fe換算で19.17重量%、塩素8.51重量%、[Zn+Fe(II)]とFe(III)との原子比率は3.08:1であり、組成式Zn3.00Fe(II)3.16Fe(III)(OH)16.32(Cl)2.00で表されるZn,Fe−Fe系Cl型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトに(Mg0.6Ca0.4)Fe系粒子の複合処理>
 前記のZn,Fe−Fe系Cl型ハイドロタルサイト粉末20gを400mlの脱イオン水に加え、40℃で1時間分散した後、MgCl・6HO−1.83g(0.009モル)、CaCl・2HO−0.88g(0.006モル)およびFeCl・6HO−8.11g(0.03モル)を含有する300mlの水溶液と3.5モル/LのNaOH溶液34.29ml(0.12モル)を同時に前記のハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Mg−Ca系磁性/Zn,Fe−Fe系Cl型ハイドロタルサイト粉末23.5gを得た。
<焼成>
 前記のMg−Ca系磁性/Zn,Fe−Fe系Cl型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、11.5gのMg−Ca系磁性/Zn,Fe−Fe系Cl型ハイドロタルサイト類化合物の複合粒子−サンプル13を得た。
比較例1~8
比較例1
 MgFe系粒子の複合処理および焼成を行わない以外は、実施例1と同様にMg−Al系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例2 MgFe−MgAl(OH)Cl
 MgFe系粒子の複合処理および焼成を行わない以外は、実施例4と同様にMg−Al系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例3 MgFe−MgAl(OH)Cl
 MgFe系粒子の複合処理および焼成を行わない以外は、実施例5と同様にMg−Al系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例4 MgFe(OH)Cl
 空気雰囲気下に400℃で2時間焼成処理を行わない以外は実施例6と同様に実施して、Mg−Fe系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例5
 Ni0.6Zn0.4Fe系粒子の複合処理および空気雰囲気下に、550℃で2時間焼成処理を行わない以外は、実施例8と同様に実施して、Mg−Al系CO型ハイドロタルサイト類化合物の粒子を調製した。
比較例6
 水熱処理条件を120℃で8時間に変更し、Ni0.6Zn0.4Fe系粒子の複合処理および空気雰囲気下に、550℃で2時間焼成処理を行わない以外は、実施例8と同様に実施して、Ca−Al系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例7
 MgFe系粒子の複合処理および空気雰囲気下に、500℃で2時間焼成処理を行わない以外は、実施例12と同様に実施して、Ca−Al系Cl型ハイドロタルサイト類化合物の粒子を調製した。
比較例8
 (Mg0.6Ca0.4)Fe系粒子の複合処理および空気雰囲気において400℃で2時間焼成処理を行わない以外は、実施例13と同様に実施し、Zn,Fe−Fe系Cl型ハイドロタルサイト類化合物の粒子を調製した。
<吸着試験>
 次いで、上述のようにして得た各複合粒子の各種イオンに対する吸着を測定した。以下に吸着用試料の調整方法、吸着試験条件およびその結果を示す。
<各種の吸着試験用水溶液の調製>
 85mg/L−Cr 2−を含有した水溶液:0.1158g和光容量分析用標準物質KCrを含有した水溶液1000mlを調製した。
 85mg/Lセレン酸イオン(SeO 2−)を含有した水溶液:和光試薬NaSeO(97%)0.1158gを含有した水溶液1000mlを調製した。
 65mg/L燐酸イオンを含有した水溶液:和光試薬NaHPO・HO、0.095gを含有した水溶液1000mlを調製した。
 100mg/Lフッ素イオンを含有した水溶液:和光試薬NaF(97%)0.2228gを含有した水溶液1000mlを調製した。
 200mg/L−マンガン酸イオン(MnO 2−)を含有した水溶液:和光特級試薬KMnO、0.3315gを含有した水溶液1000mlを調製した。
 20mg/L−HAsO 2−イオンを含有した水溶液:和光試薬NaHAsO(99%)0.0475gを含有した水溶液1000mlを調製した。
 75mg/L−ストロンチウム(Sr2+)イオンを含有した水溶液:和光特級試薬Sr(NO(無水98.0%)0.1850gを含有した水溶液1000mlを調製した。
 200mg/L−セシウム(Cs)イオンを含有した水溶液:和光特級試薬CsNO(99.9%)0.2936gを含有した水溶液1000mlを調製した。
 200mg/L−セリウム(Ce3+)イオンを含有した水溶液:和光特級試薬Ce(NO・6HO(98%)0.6324gを含有した水溶液1000mlを調製した。
 総金属濃度120mg/L混合酸性溶液:和光多元素標準試液20mlを含有した200ml水溶液を調製した。和光多元素標準試液中の含有各元素の濃度は100mg/L(in 1mol/L HNO)であり、含有元素の種類はAl、B、Cd、Cr、Cu、Fe、Mo、Mn、Na、PbおよびZn合計12種類である。
<吸着試験1>
 Cr 2−イオン、セレン酸イオン(SeO 2−)、燐酸イオン、フッ素イオン、過マンガン酸イオン、二砒酸イオン(HAsO 2−)、ストロンチウム(Sr2+)イオン、セシウムイオン、およびセリウムイオンをそれぞれの調整した水溶液100mlに対し、サンプル1~13および比較例1~8の粉末0.5gを加え、撹拌しつつ、28℃で1時間保持した。その後濾別し、濾液の各種イオン濃度は誘導結合プラズマ発光分光分析装置(HITACHI SPS3500−DD;ICP)を用いて測定した。その結果より、下記式(3)で求められる除去率を算出し、表1に記載する。
除去率(%)=(吸着前のイオン濃度−吸着後のイオン濃度)/吸着前のイオン濃度*100          (3)
 吸着後の粒子表面成分分析の一例として、FE−SEMによる分析を行ったところ、実施例2および実施例9複合粒子表面から0.48重量%および0.41重量%のCrを検出した。
Figure JPOXMLDOC01-appb-T000001
<吸着試験2>
 調整した多元素標準水溶液200mlに対し、サンプル1~13および比較例1~8の粉末1.0gを加え、撹拌しつつ28℃で6時間保持した。その後濾別し、濾液ICP(HITACHI SPS3500−DD)を用いて各種イオン濃度を測定した。その結果より、式(3)で求められる除去率を算出し、表2に記載する。
Figure JPOXMLDOC01-appb-T000002
<溶出試験1>
 吸着後の各サンプル1gを100mlの脱イオン水に加え、撹拌しつつ、28℃で2時間保持した。その後濾別し、濾液はICPを用いて各種イオン濃度を測定した。その結果を表3に記載する。
Figure JPOXMLDOC01-appb-T000003
<再吸着試験1>
 吸着試験1後の各サンプルを0.05モル/LのNaCO溶液500mlに加え、撹拌しつつ28℃で0.5時間保持した。その後、濾過、水洗および乾燥し、作成時と同条件の焼成処理を行い、再生サンプルを得た。各種再生サンプルを吸着試験1と同条件で燐酸イオンについて試験を実施した。また、さらにその吸着試験後に上記方法でもう一度再生サンプルを作成し、吸着試験1と同様の試験を実施した。その結果を表4に記載する。
Figure JPOXMLDOC01-appb-T000004
 ハイドロタルサイト類粒子の複合処理前後のX線回折分析の結果を図4に示す。処理後の複合粒子のピーク強度が元の強度の6.6%に落ちた。
 比較対象として吸着試験の表2に示した協和化学工業(株)製KW—300SおよびKW−500SHのX線回折分析の結果は図5に示す。KW−300SおよびKW−500SHは1.25Mg−Al系CO型および2Mg−Al系CO型ハイドロタルサイトである。
 複合後処理前後の粒子の550℃2時間で焼成処理後のX線回折分析の結果を図6および図7に示す。KMnO液との交換後のX線回折分析の結果を図8に示す。交換後の粒子からハイドロタルサイトのピークとフェライト類物質のピークを検出した。
 本発明の磁性ハイドロタルサイト類複合粒子は優れた吸着能力を持つ粒子である。粒子の懸濁液のpH値は10以上であり、重金属イオンは粒子表面と反応を起こしたり、内層のハイドロタルサイトの層間でイオン交換されたりすることが考えられる。また、外層のフェライト粒子はプラス電荷をもつので、所定のpHにおいて反応に乏しいイオン、例えばCr 2−(或いはCrO 2−)のようなイオンなどは、外層のフェライト粒子により吸着されたり、内層のハイドロタルサイトの層間でイオン交換されたりすることが考えられる。ハイドロタルサイト粒子のみの場合はCr 2−(或いはCrO 2−)のようなイオンを吸着後に再水和処理すると、Cr6+を5ppm再溶出するという欠点があり、磁性ハイドロタルサイト類複合粒子はCr6+イオンを溶出しない。
 表1に示したように、比較例に比べて複合処処理の各種粒子の吸着能力は高くなった。多元素金属イオン吸着試験において、表2に示したように複合処理後の粒子の吸着能力が高いという結果を得た。一方、協和製品KW−300SおよびKW−500SHの吸着能力が低く、AlおよびMgの多量溶出が見られた。
 電磁波吸収剤、紫外線吸収剤に適した磁性ハイドロタルサイト類複合粒子の調製について実施例14~23にて説明する。
実施例14
[NiF−NiAl(OH)20CO複合粒子の調製(10.0重量%複合)]
<内層ハイドロタルサイトの合成>
 Ni(NO・6HO−474.76g(1.60モル、含量98%の和光試薬)、Al(NO・9HO−154.69g(0.40モル、含量97%の和光試薬)を脱イオン水に加えて、NiおよびAlを含む酸性水溶液2000mlを調製した。
 次に、40℃の500ml脱イオン水に前記の2000ml酸性水溶液および21.20gNaCO(0.2モル)を含有した3.50モル/LのNaOH溶液1142.86ml(4.0モル)を、pH10に維持しながら180分かけて同時に滴下した。この沈殿を含む液を65℃に保って18時間撹拌処理した後、その沈殿を濾別し、水洗し、185℃で乾燥して、ハイドロタルサイト粉末195gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に得られたハイドロタルサイトは蛍光X線による分析をした結果、NiO換算で64.99重量%、Al換算で11.04重量%、CO 2−換算で6.50重量%、組成式Ni8.10Al(OH)20.2(COで表されるMg−Al系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにNi過量のNiFe系粒子の複合処理>
 前記のMg−Al系CO型ハイドロタルサイト粉末23gを400mlの脱イオン水に加え40℃で1時間分散した後、Ni(NO・6HO−4.45g(0.015モル、98%の和光試薬)およびFe(NO・9HO−8.16g(0.02モル、99%の和光試薬)を含有する200mlの水溶液と3.5モル/LのNaOH溶液28.57ml(0.10モル)を同時に前記のハイドロタルサイト懸濁液中に10分かけて扱きポンプで添加した。さらに85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Ni系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末27.5gを得た。
<焼成>
 前記のNi系磁性/Mg−Al系CO型ハイドロタルサイト前駆体粉末15gを水素気雰囲気下において、600℃で2時間焼成し、自然冷却後、11.5gのNi系磁性/Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル14を得た。
実施例15
[CuFe−CuFe(OH)12CO複合粒子の調製(10.0重量%複合)]
<内層ハイドロタルサイトの合成>
 Cu(NO・3HO−48.36g(0.20モル、99.9%の和光特級試薬)およびFe(NO・9HO−41.22g(0.10モル、含量99%の和光特級試薬)を脱イオン水に加えて、CuおよびFeを含む酸性水溶液600ml調製した。
 次に40℃の600mlの前記酸性水溶液に18.00gのNaCO(0.17モル)を含有した水溶液100mlと3.50モル/LのNaOH溶液85ml(0.30モル)を、撹拌し、pH5に維持しながら30分かけて同時に滴下した。この沈殿を含む液を40℃に保って1.0時間撹拌処理した後、1.0L容量のオートクレーブを用いて115℃で5時間の水熱処理を行った。その沈殿を濾別し、水洗し、185℃で乾燥して、Cu−Fe系CO型ハイドロタルサイト粉末34.5gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に得られたハイドロタルサイトは蛍光X線による分析をした結果、CuO換算で50.51重量%、Fe換算で25.35重量%、CO 2−換算で9.53重量%、組成式CuFe(OH)12COで表されるCu−Fe系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにCuFe系粒子の複合処理>
 前記のCu−Fe系CO型ハイドロタルサイト粉末24gを500mlの脱イオン水に加え、40℃で1時間分散した後、Cu(NO・3HO−2.42g(0.01モル)およびFe(NO・9HO−8.16g(0.02モル)を含有する250mlの水溶液と3.5モル/LのNaOH溶液22.86ml(0.08モル)を同時に前記のハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Cu−Fe系磁性/Cu−Fe系CO型ハイドロタルサイト前駆体粉末27gを得た。
<焼成>
 前記のCu−Fe系磁性/Cu−Fe系CO型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、300℃で2時間焼成し、自然冷却後、11.7gのCu−Fe系磁性/Cu−Fe系CO型ハイドロタルサイト類化合物の複合粒子−サンプル15を得た。
実施例16
[CuFe−CuCr(OH)12CO複合粒子の調製(10.0重量%複合)]
<内層ハイドロタルサイトの合成>
 Cu(NO・3HO−48.36g(0.20モル、99.9%の和光特級試薬)、Cr(NO・9HO−40.62g(0.10モル、含量98.5%の和光特級試薬)を脱イオン水に加えて、Cu及Crを含む酸性水溶液500ml調製した。
 次に前記の40℃の500ml酸性水溶液に18.00gNaCO(0.17モル)を含有した水溶液100mlと3.50モル/LのNaOH 85ml(0.30モル)を、撹拌し、pH4.4に維持しながら30分かけて同時に滴下した。この沈殿を含む水溶液を40℃に保って1.0時間撹拌処理した後、1.0L容量のオートクレーブを用いて125℃で8時間の水熱処理を行った。その沈殿を濾別し、水洗し、185℃で乾燥して、Cu−Cr系CO型ハイドロタルサイト粉末34.0gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に得られたハイドロタルサイトは蛍光X線による分析をした結果、CuO換算で51.14、Cr換算で24.42、CO 2−換算で9.64、組成式CuCr(OH)12COで表されるCu−Cr系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにCuFe系粒子の複合処理>
 前記のCu−Cr系CO型ハイドロタルサイト粉末24gを500mlの脱イオン水に加え、40℃で1時間分散した後、Cu(NO・3HO−2.42g(0.01モル)およびFe(NO・9HO−8.16g(0.02モル)を含有する250mlの水溶液と3.5モル/LのNaOH溶液22.86ml(0.08モル)を同時に前記のハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Cu−Fe系磁性/Cu−Cr系CO型ハイドロタルサイト前駆体粉27gを得た。
<焼成>
 前記のCu−Fe系磁性/Cu−Cr系CO型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、300℃で2時間焼成し、自然冷却後、11.5gのCu−Fe系磁性/Cu−Cr系CO型ハイドロタルサイト類化合物の複合粒子−サンプル16を得た。
実施例17
[Ni0.5Co0.5Fe−Ni0.7Co0.1Mg5.2Al(OH)16CO複合粒子の調製(10.0重量%複合)]
<内層ハイドロタルサイトの合成>
 Co(NO・6HO−1.19g(0.004モル、98.0%の和光特級試薬)、Ni(NO・6HO−8.31g(0.028モル、含量98.0%の和光特級試薬)、Mg(NO・6HO−54.42g(0.208モル、98.0%の和光試薬)、Al(NO・9HO−30.94g(0.08モル、97%の和光試薬)、を脱イオン水に加えて、Ni、Co、Mg及Alを含む酸性水溶液500ml調製した。
 次いで、前記の40℃の500ml酸性水溶液に11.31gNaCO(0.105モル)を含有した水溶液3.20モル/LのNaOH 200.0ml(0.64モル)を、撹拌し、pH10に維持しながら30分かけて滴下した。この沈殿を含む液を40℃に保って1.0時間撹拌処理した後、1.0L容量のオートクレーブを用いて150℃で8時間の水熱処理を行った。その沈殿を濾別し、水洗し、185℃で乾燥して、Ni,Co,Mg−Al系CO型ハイドロタルサイト粉末25.6gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に得られたハイドロタルサイトは蛍光X線による分析をした結果、NiO換算で9.34重量%、CoO換算で1.34重量%、MgO換算で37.46重量%、Al換算で18.22重量%、CO 2−換算で10.73重量%、組成式Ni0.70Co0.10Mg5.22Al(OH)16.04COで表されるNi,Co,Mg−Al系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにNi0.5Co0.5Fe系粒子の複合処理>
 前記のNi,Co,Mg−Al系CO型ハイドロタルサイト粉末23gを500mlの脱イオン水に加え、40℃で1時間分散した後、Ni(NO・6HO−1.48g(0.005モル、含量98.0%の和光特級試薬)、Co(NO・6HO−1.49g(0.005モル、98.0%の和光特級試薬)およびFe(NO・9HO−8.16g(0.02モル、含量99.0%の和光特級試薬)を含有する250mlの水溶液と3.5モル/LのNaOH溶液22.86ml(0.08モル)を同時に前記のハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、110℃で乾燥して、Ni−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト前駆体粉末26gを得た。
<焼成>
 前記のNi−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト前駆体粉末15gを空気雰囲気下において、450℃で2時間焼成し、自然冷却後、11.5gのNi−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子を得た。
<浸漬>
 更に前記の粒子を同体積の0.01モル/LのKCO水溶液、室温で浸漬処理し、110℃で15時間乾燥処理した後、カリウム(K)改性のNi−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル17を得た。
実施例18
[Au(1.0重量%)−Mn0.7Cu0.3Fe(10.0重量%)−Ni0.8Mg5.2Al(OH)16CO複合粒子の調製]
<内層ハイドロタルサイトの合成>
 Ni(NO・6HO−9.50g(0.032モル、含量98.0%の和光特級試薬)、Mg(NO・6HO−54.42g(0.208モル、98.0%の和光試薬)、Al(NO・9HO−30.94g(0.08モル、97%の和光試薬)、を脱イオン水に加えて、Ni、Co、Mg及Alを含む酸性水溶液500ml調製した。
 次いで、前記の40℃の500ml酸性水溶液に11.31gNaCO(0.105モル)を含有した水溶液3.20モル/LのNaOH 200.0ml(0.64モル)を、撹拌し、pH10に維持しながら30分かけて滴下した。この沈殿を含む液を40℃に保って1.0時間撹拌処理した後、1.0L容量のオートクレーブを用いて150℃で8時間の水熱処理を行った。その沈殿を濾別し、水洗し、185℃で乾燥して、Ni,Mg−Al系CO型ハイドロタルサイト粉末26.0gを得た。
 銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。更に銅Kα線によるX線回折分析の結果、得られた粉末がハイドロタルサイト構造を持つことが確認できた。得られたハイドロタルサイトは蛍光X線による分析をした結果、NiO換算で12.15重量%、MgO換算で42.65重量%、Al換算で20.75重量%、CO 2−換算で12.21重量%、組成式Ni0.80Mg5.21Al(OH)16.02COで表されるNi,Mg−Al系CO型ハイドロタルサイト類化合物であった。
<内層ハイドロタルサイトにMn0.7Cu0.3Fe系粒子の10.0重量%の複合処理>
 前記のNi,Mg−Al系CO型ハイドロタルサイト粉末23gを500mlの脱イオン水に加え、40℃で1時間分散した後、MnSO・HO−1.22g(0.007モル和光試薬、97%)、Cu(NO・3HO−0.73g(0.003モル、99.9%の和光特級試薬)およびFe(NO・9HO−8.16g(0.02モル、含量99.0%の和光特級試薬)を含有する250mlの水溶液と3.5モル/LのNaOH溶液22.86ml(0.08モル)を同時に前記のハイドロタルサイト懸濁液中に20分かけて扱きポンプで添加した。さらに85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、Mn−Cu−Fe系磁性/Ni,Mg−Al系CO型ハイドロタルサイト前駆体粉末26gを得た。
<Mn−Cu−Fe系磁性/Ni,Mg−Al系CO型ハイドロタルサイト前駆体にAuの1.0重量%の複合処理>
 前記のMn−Cu−Fe系磁性/Ni,Mg−Al系CO型ハイドロタルサイト前駆体粉末20gを500mlの脱イオン水に加え、40℃で1時間分散した後、350rpmの撹拌速度を維持しながら、0.404gNa[AuCl]・2HOを含有した水溶液200mlを20分掛けて、扱きポンプで添加した。更に40℃で1時間の条件で熟成した後、その沈殿を濾別および水洗し、105℃で乾燥して、Au−[Mn−Cu−Fe]系磁性/Ni,Mg−Al系CO型ハイドロタルサイト前駆体粉末を得た。ICPによる分析の結果、Auの含量は1.0重量%であった。
<焼成>
 前記の粉末15gを空気雰囲気下において、400℃で2時間焼成し、自然冷却後、11.5gの、Au−[Mn−Cu−Fe]系磁性/Ni,Mg−Al系CO型ハイドロタルサイト類化合物の複合粒子−サンプル18を得た。
実施例19
[Ru(1重量%)−Ni0.5Co0.5Fe(10重量%)−Ni0.7Co0.1Mg5.2Al(OH)16CO・4HO複合粒子の調製]
<内層ハイドロタルサイトの複合処理>
 Ni0.50.5Fe−Ni0.7Co0.1Mg5.2Al(OH)16CO・4HO複合粒子処理は実施例17と同じ。
<Ni−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト前駆体にRuの1.0重量%の複合処理>
 濃度11.09重量%のRu(NOの5.123gを脱イオン水250mlに分散さて、撹拌しながらNi−Co系磁性/Ni,Co,Mg−Al系CO型ハイドロタルサイト前駆体粉末20gを入れ、28.0℃で1時間分散した後、撹拌しながら85℃で濃縮・乾燥し、Ruを含有した複合粒子−サンプル19を得た。分析の結果、Niは7.05重量%、Coは2.00重量%、Feは4.32重量%、Mgは18.2重量%、Alは7.77重量%、Ruは1.00重量%であった。
実施例20
[Ni0.6Zn0.4Fe−MgAl(OH)(CO0.5とKMnO水溶液との交換処理]
 交換前の粒子調製方法は実施例10(サンプル10)と同じ。
 1.0gのKMnOを350mlの脱イオン水に分散させた後、サンプル10を20g入れ、室温2時間撹拌処理し、更に85℃15時間交換処理を行った。交換後の水溶液は透明なった。その沈殿を濾別および水洗し、80℃真空条件で10時間乾燥して、サンプル20を得た。
実施例21
[Ni0.5Co0.5Fe−CuFe(OH)12(CO)複合粒子の調製(100.0重量%複合)]
<内層ハイドロタルサイトの合成>
 内層ハイドロタルサイトの合成は実施例16と同じ。
<CuFe(OH)12(CO)粒子にNi0.5Co0.5Feを100重量%複合処理>
 実施例16の方法で得たCuFe(OH)12(CO)粒子34gを400mlの脱イオン水に加え、40℃で1時間分散した後、Ni(NO・6HO−21.51g(0.0725モル、和光試薬、98重量%)、Co(NO・6HO−21.53g(0.0725モル、和光試薬、98重量%)およびFe(NO・9HO−117.28g(0.29モル、和光試薬、99.9重量%)を含有する600mlの水溶液と3.5モル/LのNaOH溶液331.43ml(1.16モル)を同時に前記のハイドロタルサイト懸濁液中に80分かけて扱きポンプで添加した。さらに撹拌しつつ、85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、185℃で乾燥して、Ni−Co系磁性/Cu−Fe系CO型ハイドロタルサイト類化合物の複合粒子の前駆体69.5gを得た。
<焼成>
 前記のNi−Co系磁性/Cu−Fe系CO型ハイドロタルサイト複合前駆体粉末50gを空気雰囲気下において、500℃で2時間焼成し、自然冷却後、38gのNi−Co系磁性/Cu−Fe系CO型ハイドロタルサイト類化合物粒子−サンプル21を得た。
実施例22
[SrFe1219−MgFe(OH)16(Cl)2.0複合粒子の調製(100.0重量%複合)]
<内層ハイドロタルサイトの合成>
 内層ハイドロタルサイトの合成は実施例6と同じ。
<MgFe(OH)16(Cl)2.0粒子にSrFe1219を100重量%複合処理>
 実施例6の方法で得たMgFe(OH)16(Cl)2.0粒子53gを300ml脱イオン水に加え、40℃で1時間分散した後、Sr(NO−10.80g(0.05モル、和光試薬、98重量%)、Fe(NO・9HO−244.85g(0.60モル、和光試薬、99.9重量%)およびクエン酸C・HO−74g(0.35モル、和光試薬、99.9重量%)を含有する500mlの水溶液を前記のハイドロタルサイト懸濁液中に80分かけて扱きポンプで添加した。さらに撹拌しつつ、85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、105℃で乾燥して、SrFe1219−MgFe(OH)16(Cl)2.0複合粒子の前駆体107.5gを得た。
<焼成>
 前記のハイドロタルサイト複合前駆体粒子を空気雰囲気下において200℃で乾燥し、引き続き空気雰囲気下において700℃で2時間焼成し、サンプル22を得た。
実施例23
[Ni0.7Mn0.3Fe−ZnFe(OH)16CO複合粒子の調製(150重量%複合)]
<内層のハイドロタルサイトの合成>
 Zn(NO・6HO−180.30g(0.60モル、99%の和光特級試薬)、Fe(NO・9HO−81.62g(0.20モル、含量99%の和光特級試薬)を脱イオン水に加えて、ZnおよびFeを含む酸性水溶液800mlを調製した。37℃の脱イオン水300mlに前記の酸性水溶液と16gのNaCOを含む3.5モル/LのNaOH水溶液445mlを同時に扱きポンプでpH値7に維持しながら、90分かけて添加した。さらに撹拌しつつ、37℃で30時間熟成処理した後、その沈殿を濾別し、水洗し、185℃で乾燥して、Zn−Fe系CO型ハイドロタルサイト粉末90gを得た。
 得られたハイドロタルサイトは蛍光X線による分析をした結果、ZnO換算で58.40重量%、Fe換算で19.10重量%、CO 2−換算で7.18重量%、組成式Zn6.02Fe(OH)16.04COで表されるZn−Fe系CO型ハイドロタルサイト類化合物であった。
<内層のハイドロタルサイトにNi0.7Mn0.3Feを150重量%複合処理>
 前記のZn−Fe系CO型ハイドロタルサイト粉末40gを500mlの脱イオン水に加え、40℃で1時間分散した後、Ni(NO・6HO−54.0g(0.182モル、和光試薬、98重量%)、MnSO・HO−13.59g(0.078モル、和光試薬、97重量%)、Fe(NO・9HO−212.2g(0.52モル、和光試薬、99.9重量%)を含有する1000mlの水溶液と2.08モルのNaOH水溶液(3.5モル/L液)594.3mlを前記のハイドロタルサイト懸濁液中に120分かけて扱きポンプで同時添加した。さらに350rpmで撹拌しつつ、85℃で1時間の加熱処理をした後、その沈殿を濾別および水洗し、110℃で乾燥して、Ni−Mn系磁性/Zn−Fe系CO型ハイドロタルサイト前駆体粉末101gを得た。
<焼成>
 前記のNi−Mn系磁性/Zn−Fe系CO型ハイドロタルサイト前駆体を空気雰囲気下において、500℃で2時間の焼成し、自然冷却した後、サンプル23を得た。
比較例9~14
比較例9
 実施例14と同様に実施しMg−Al系CO型ハイドロタルサイト粒子を調製した。ただし、Ni過量のNiFe系粒子の複合処理を行わなかった。
比較例10
 実施例15と同様に実施し、Cu−Fe系CO型ハイドロタルサイト粒子を調製した。ただし、CuFe系粒子の複合処理を行わなかった。
比較例11
 実施例16と同様に実施し、Cu−Cr系CO型ハイドロタルサイト粒子を調製した。ただし、CuFeの複合処理を行わなかった。
比較例12
 実施例17と同様に実施し、Ni,Co,Mg−Al系CO型ハイドロタルサイト粒子を調製した。ただし、Ni0.50.5Feの複合処理を行わなかった。
比較例13
 実施例18と同様に実施し、Ni,Mg−Al系CO型ハイドロタルサイト粒子を調製した。ただし、Mn0.7Cu0.3Fe(10.0重量%)の複合処理を行わなかった。
比較例14
 実施例19と同様に実施し、粒子を調製した。ただし、Ni0.50.5Fe(10重量%)の複合処理を行わなかった。
[紫外線吸収効果]
 粉を直径3cm×厚み3mmに成型処理し、分光光度計(HITACHI U−4100 Spectrophotometer)で測定した光吸収結果を図−9に示す。実施例14および実施例23の複合粒子は1395~1700nmの赤外線に対して、強い反射の特徴を示した。またMa−Al系CO型ハイドロタルサイトである協和製品DHT6に比べ、実施例14および実施例23の複合粒子はUV−A波(315~380nm)、UV−B波(280~315nm)、UV−C波(~280nm)に対して、強い吸収を示した。
[電磁波吸収効果]
 実施例14~23の粒子は強い磁性を示した。磁石で複合処理前後粒子の磁性有無の確認結果は表5に示す。
Figure JPOXMLDOC01-appb-T000005
 40重量%直鎖状低密度ポリエチレンに、実施例21および比較例10粒子をそれぞれ60重量%部配合混練し、10cm×14cm×0.2cmに成型した後、自由空間法で電磁波吸収効果を測定した。その結果、図10に示すように、電磁波吸収の効果があることが確認された。比較例10より実施例21のほうが強い吸収を示した。
 実施例22複合粒子の振動式磁力計による磁気モーメントの測定結果は図11に示す。磁場印加下で磁化を示した。
 5×7×0.04cmのチャック付ポリ袋に5gの実施例22粒子を入れ、磁石を用いて磁力の有無を確認した写真を図12に示す。
[有害ガス吸着効果]
 フッ素樹脂材質での1L容量のテドラ−バッグ[呼称1、サイズ(mm)150×250、商品コードWEB0427]に複合粒子の粉末30mgおよび測定用の匂いガスHS、COS、CHSHまたはCHCH、100ppmを入れ、それぞれ室温(26℃)、5分間放置した。その後ガスクロマトグラフィー(島津製作所GC−14B)により、テドラ−バッグ内の有するガスの濃度を分析した。その結果により、下記式(4)で求められる除去率を算出し、表6に記載する。
除去率%=(吸収前のガス濃度ppm−吸収後のガス濃度ppm)/吸収前のガス濃度ppm×100          (4)
Figure JPOXMLDOC01-appb-T000006
 本発明の粒子は電磁波吸収剤以外の用途として、紫外線吸収剤や匂いガスの吸収剤等としても期待できる。例えば、NHおよびHSなど酸性ガスに対して、有効である。KMnOで交換処理した後の複合粒子、例えば実施例20の複合粒子はCHCHのようなガスに対して、吸収効果もある。
 さらに、本件の粒子は陰イオンとの交換性質も持つので、陰イオンと交換処理すれば、本件の複合粒子に新しい機能を付加できる。例えば、KBrOと交換すれば、ハイドロタルサイト層間にBrO 陰イオンを導入でき、BrO 陰イオンは強い還元性をもつので、H、N,N−dimethyl−4−(phenyldiazenyl)benzenamine(C1415)、4−dimethylaminoazobenzene−4−sulfonicacid sodium salt(C1414NaOS、メチルオレンジ)等を含有する排水の処理剤としても期待出来る。
発明の効果
 本発明の磁性ハイドロタルサイト類複合体は、焼成に伴う凝集が少なく分散性が高く、活性が高いという利点を有する。また触媒として用いた場合の再利用性が高い。また本発明の磁性ハイドロタルサイト類複合体は、複数の種類のイオンを高効率で吸着することができる。
 本発明の磁性ハイドロタルサイト類複合体の製造方法によれば、ハイドロタルサイト類化合物の表面にフェライト類物質を析出させることにより、焼成工程による凝集を抑制し、焼成処理後のハイドロタルサイト類化合物の表面活性を改良し、さらには触媒として用いた場合の再利用性を向上させることができる。
 本発明の磁性ハイドロタルサイト類複合体は、土壌、地下水または廃水の有害物質の吸着剤、電磁波吸収剤、紫外線吸収剤などに用いることができる。

Claims (13)

  1.  内層と外層を含み、内層がハイドロタルサイト類化合物であり、外層がフェライト類化合物である磁性ハイドロタルサイト類複合体。
  2.  外層のフェライト類化合物の含有量は、0.5~95重量%である請求項1に記載の磁性ハイドロタルサイト類複合体。
  3.  内層が下記式(1)で示されるハイドロタルサイト類化合物であり、外層が下記式(2−1)、(2−2)または(2−3)で示されるフェライト類化合物である請求項1に記載の磁性ハイドロタルサイト類複合体。
     [M2+ 1−x3+ (OH)][An− x/n・yHO]    (1)
    (式中、M2+は、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+、Sr2+、Cd2+およびPb2+からなる群より選ばれる少なくとも一種の二価金属イオンであり、
    3+は、La3+、Al3+、Ga3+、Mn3+、Co3+、Y3+、Ce3+、Fe3+Cr3+およびIn3+からなる群より選ばれる少なくとも一種の三価金属イオンであり、
    n−は、CO 2−、SO 2−、Cl、SiO 2−、PO 3−、NO 、OH、CHPO 2−、C 2−、HCOO、CHCOOおよびCHSO からなる群より選ばれる少なくとも一種のn価の陰イオンであり、
    xは、0.15≦x≦0.5を満足し、yは、0≦y<5を満足し、nは1以上の整数である。)
     AFe     (2−1)
    (式中Aは、Ni、Zn、Cu、Mn、CoおよびMgからなる群より選ばれる少なくとも一種である。)
     XFe1219   (2−2)
    (式中Xは、Sr、BaおよびPbからなる群より選ばれる少なくとも一種である。)
     RFe12    (2−3)
    (式中Rは元素周期表において、第3族アクチノイドを除く第4周期から第6周期までの希土類元素である。)
  4.  内層のハイドロタルサイト類化合物のM2+とM3+の原子比率は1.0:1.0~6.0:1.0である請求項3に記載の磁性ハイドロタルサイト類複合体。
  5.  外層に、更にAu、Ag、Ru、Pt、Rh、Ir、Rb、OsおよびPdからなる群より選ばれる少なくとも一種の貴金属元素の塩を、貴金属元素として0.2~5.0重量%を担持させた請求項3に記載の磁性ハイドロタルサイト類複合体。
  6.  請求項1~5のいずれか一項に記載の磁性ハイドロタルサイト類複合体からなる、土壌、地下水または廃水中の有害物質の吸着剤。
  7.  請求項1~5のいずれか一項に記載の磁性ハイドロタルサイト類からなる電磁波吸収剤。
  8.  請求項1~5のいずれか一項に記載の磁性ハイドロタルサイト類複合体からなる紫外線吸収剤。
  9.  (1)内層のハイドロタルサイト類化合物を構成する元素を含む金属塩と、アルカリ性溶液とを混合し、溶液のpH値を7~11に制御し、20~270℃の温度で内層のハイドロタルサイト類化合物を製造する工程(1)、
    (2)得られたハイドロタルサイト類化合物を含有するスラリーに、外層のフェライト類化合物を構成する元素を含む金属塩の酸性溶液と、アルカリ性溶液とを添加し、溶液のpH値が7~11に制御し、40~250℃以下の温度で外層を形成し、前駆体を製造する工程(2)、並びに
    (3)前駆体を200℃~800℃の温度範囲において焼成する工程(3)、を含む請求項1に記載の磁性ハイドロタルサイト類複合体の製造方法。
  10.  内層のハイドロタルサイト類化合物を構成する2価金属イオン塩が、MgCl、CaCl、ZnClおよびFeClからなる群より選ばれる少なくとも一種である請求項9に記載の製造方法。
  11. 内層のハイドロタルサイト類化合物を構成する3価金属イオン塩が、AlClである請求項9に記載の製造方法。
  12. 内層のハイドロタルサイト類化合物を構成する陰イオン塩が、NaCOである請求項9に記載の製造方法。
  13. 外層のフェライト類化合物を構成する元素を含む金属塩が、FeCl、MgCl2、Ni(NO)およびZnClからなる群より選ばれる少なくとも一種である請求項9に記載の製造方法。
PCT/JP2014/082352 2013-12-03 2014-12-02 磁性ハイドロタルサイト類複合体およびその製造方法 WO2015083840A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP14867453.4A EP3078636A1 (en) 2013-12-03 2014-12-02 Magnetic hydrotalcite composite and process for manufacturing same
CA2919827A CA2919827A1 (en) 2013-12-03 2014-12-02 Magnetic hydrotalcite composite and production method thereof
CN201480045940.0A CN105473503A (zh) 2013-12-03 2014-12-02 磁性水滑石类复合材料及其制造方法
AU2014358120A AU2014358120A1 (en) 2013-12-03 2014-12-02 Magnetic hydrotalcite composite and process for manufacturing same
US14/911,313 US10037839B2 (en) 2013-12-03 2014-12-02 Magnetic hydrotalcite composite and production method thereof
RU2016106405A RU2016106405A (ru) 2013-12-03 2014-12-02 Магнитный композит на основе гидроталцита и способ его получения
KR1020167002107A KR20160094363A (ko) 2013-12-03 2014-12-02 자성 하이드로탈사이트류 복합체 및 그 제조 방법
MX2016002819A MX2016002819A (es) 2013-12-03 2014-12-02 Hidrotalcita magnetica compuesta y metodo de produccion de la misma.
JP2015551590A JP6370309B2 (ja) 2013-12-03 2014-12-02 磁性ハイドロタルサイト類複合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-249807 2013-12-03
JP2013249807 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015083840A1 true WO2015083840A1 (ja) 2015-06-11

Family

ID=53273585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082352 WO2015083840A1 (ja) 2013-12-03 2014-12-02 磁性ハイドロタルサイト類複合体およびその製造方法

Country Status (12)

Country Link
US (1) US10037839B2 (ja)
EP (1) EP3078636A1 (ja)
JP (1) JP6370309B2 (ja)
KR (1) KR20160094363A (ja)
CN (1) CN105473503A (ja)
AU (1) AU2014358120A1 (ja)
CA (1) CA2919827A1 (ja)
CL (1) CL2016000404A1 (ja)
MX (1) MX2016002819A (ja)
RU (1) RU2016106405A (ja)
TW (1) TW201545810A (ja)
WO (1) WO2015083840A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940185A (zh) * 2018-07-31 2018-12-07 南京林业大学 一种磁性四元Zn-Al-Fe-La类水滑石及其制备方法和应用
US10933400B1 (en) * 2020-08-24 2021-03-02 King Abdulaziz University Synthesis of 3D-porous Sr(II)/Ir(III) layered hydroxide balls composed of hexagonal sheets for water purification
WO2021128809A1 (zh) * 2019-12-25 2021-07-01 福州大学 一种环保型耐磨阻燃eva泡沫复合材料
CN115845792A (zh) * 2022-10-21 2023-03-28 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335964A (zh) * 2016-10-11 2017-01-18 浙江工业大学 一种利用Mn2+强化紫外光降解酚类有机污染废水的方法
CN106380044B (zh) * 2016-11-15 2019-11-08 江南大学 一种生态安全的污水处理厂脱氮除磷的方法
TWI635900B (zh) * 2017-07-11 2018-09-21 羅英維 以淨水污泥為原物料作為砷及氟吸附劑的方法
CN108435191B (zh) * 2018-04-26 2023-08-18 济南大学 一种SnNb2O6/CoFe-LDH片片复合磁性异质结构催化剂及其制备方法和应用
CN109174952A (zh) * 2018-07-27 2019-01-11 江苏隆昌化工有限公司 一种镉铅污染农田钝化加低积累植物修复方法
CN110394185A (zh) * 2018-10-26 2019-11-01 榆林学院 一种三维多孔磁性的可控制备方法及其光催化应用
CN109939683B (zh) * 2019-04-09 2022-03-04 江苏新沃催化剂有限公司 一种催化燃烧VOCs的三元复合氧化物型催化剂及其制备方法
CN110171839A (zh) * 2019-05-14 2019-08-27 南京科津新材料研究院有限公司 一种光消磁材料及其制备方法和应用
CN112441658A (zh) * 2019-08-27 2021-03-05 暨南大学 一种氧化铝负载铁锰氧化物复合材料及其制备方法与应用
CN112745084A (zh) * 2021-02-08 2021-05-04 大连理工大学 一种NiFe-LDH水泥基复合吸波材料及其制备方法
CN114620920A (zh) * 2022-03-15 2022-06-14 中国科学院生态环境研究中心 一种活化过硫酸盐调理污泥的磁性材料制备方法
CN115155543B (zh) * 2022-05-19 2023-10-20 浙江科技学院 一步制备磁性镁铁ldh-生物炭复合材料的方法及应用
CN114873623B (zh) * 2022-05-25 2023-02-03 四川农业大学 具有还原性和吸附性的可回收水滑石及其制备方法和应用
CN115090254A (zh) * 2022-07-19 2022-09-23 中国计量大学 一种过渡金属硫化物/NiCr LDHs复合材料及其制备方法与用途

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337768A (ja) * 1995-04-10 1996-12-24 Kyowa Chem Ind Co Ltd 紫外線防御剤およびその利用
JPH09227127A (ja) * 1996-02-16 1997-09-02 Toda Kogyo Corp 鉄系ハイドロタルサイト型微粒子粉末及びその製造法
JPH09245339A (ja) * 1996-03-07 1997-09-19 Hitachi Maxell Ltd 磁気記録媒体
JP2004121890A (ja) * 2002-09-30 2004-04-22 Futaba Shoji Kk 磁性吸着剤およびその製造方法並びに水処理方法
JP2006056829A (ja) * 2004-08-20 2006-03-02 Hokkaido Univ アニオン交換性磁性材料とその製造方法
WO2006080467A1 (ja) * 2005-01-28 2006-08-03 Kyoto University ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用
JP2007299039A (ja) 2006-04-27 2007-11-15 Kanebo Cosmetics Inc 遺伝子情報の探索方法
JP2008144412A (ja) 2006-12-07 2008-06-26 Bridgestone Corp 雨水貯留槽、及び雨水貯留槽の施工方法
JP2008222474A (ja) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料及びその製造方法
JP2009120783A (ja) * 2007-11-19 2009-06-04 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤
JP2011105573A (ja) * 2009-11-20 2011-06-02 Toda Kogyo Corp ハイドロタルサイト型粒子粉末及びMg−Al系複合酸化物粒子粉末、並びに該ハイドロタルサイト型粒子粉末を含有する樹脂組成物
WO2011108195A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ハイドロタルサイト様化合物の製造法ならびにハイドロタルサイト様化合物もしくは複合酸化物、陰イオン吸着剤および固体塩基触媒
JP2011188651A (ja) 2010-03-09 2011-09-22 Mitsui High Tec Inc 積層鉄心の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT983076E (pt) 1997-05-23 2010-01-05 Oxthera Inc Microrganismos de degradação de oxalato ou enzimas de degradação de oxalato para prevenir doenças relacionadas com oxalato
JP2009290176A (ja) 2008-06-02 2009-12-10 Toto Ltd 軟磁性材料
US20130131227A1 (en) 2010-07-29 2013-05-23 Adeka Corporation Vinyl-chloride-based resin composition for transparent product
JP5915834B2 (ja) 2010-10-29 2016-05-11 三菱マテリアル株式会社 浄化処理材の製造方法
CN102430411B (zh) * 2011-09-13 2013-03-27 浙江省地质矿产研究所 一种类水滑石-尖晶石型铁氧体复合材料及其制备方法
CN102553660B (zh) * 2012-01-17 2014-03-19 山东大学 一种层状双金属氢氧化物与磁性基质的复合物及其制备
CN102580663A (zh) * 2012-02-21 2012-07-18 上海大学 一种高磁性复合材料的制备方法及其应用
CN102945717A (zh) * 2012-10-11 2013-02-27 上海大学 复合型磁性材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337768A (ja) * 1995-04-10 1996-12-24 Kyowa Chem Ind Co Ltd 紫外線防御剤およびその利用
JPH09227127A (ja) * 1996-02-16 1997-09-02 Toda Kogyo Corp 鉄系ハイドロタルサイト型微粒子粉末及びその製造法
JPH09245339A (ja) * 1996-03-07 1997-09-19 Hitachi Maxell Ltd 磁気記録媒体
JP2004121890A (ja) * 2002-09-30 2004-04-22 Futaba Shoji Kk 磁性吸着剤およびその製造方法並びに水処理方法
JP2006056829A (ja) * 2004-08-20 2006-03-02 Hokkaido Univ アニオン交換性磁性材料とその製造方法
WO2006080467A1 (ja) * 2005-01-28 2006-08-03 Kyoto University ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用
JP2007299039A (ja) 2006-04-27 2007-11-15 Kanebo Cosmetics Inc 遺伝子情報の探索方法
JP2008144412A (ja) 2006-12-07 2008-06-26 Bridgestone Corp 雨水貯留槽、及び雨水貯留槽の施工方法
JP2008222474A (ja) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料及びその製造方法
JP2009120783A (ja) * 2007-11-19 2009-06-04 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤
JP2011105573A (ja) * 2009-11-20 2011-06-02 Toda Kogyo Corp ハイドロタルサイト型粒子粉末及びMg−Al系複合酸化物粒子粉末、並びに該ハイドロタルサイト型粒子粉末を含有する樹脂組成物
WO2011108195A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ハイドロタルサイト様化合物の製造法ならびにハイドロタルサイト様化合物もしくは複合酸化物、陰イオン吸着剤および固体塩基触媒
JP2011188651A (ja) 2010-03-09 2011-09-22 Mitsui High Tec Inc 積層鉄心の製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Synthesis and application of a Fe-based layered double hydroxide", CLAY SCIENCE, vol. 49, no. 3, 2010, pages 99 - 107
"Water treatment technique for a harmful element using an on-site forming method of a layered double hydroxide", J. SOC. POWDER TECHNOL. JAPAN, vol. 50, 2013, pages 342 - 347

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940185A (zh) * 2018-07-31 2018-12-07 南京林业大学 一种磁性四元Zn-Al-Fe-La类水滑石及其制备方法和应用
CN108940185B (zh) * 2018-07-31 2021-05-07 南京林业大学 一种磁性四元Zn-Al-Fe-La类水滑石及其制备方法和应用
WO2021128809A1 (zh) * 2019-12-25 2021-07-01 福州大学 一种环保型耐磨阻燃eva泡沫复合材料
US10933400B1 (en) * 2020-08-24 2021-03-02 King Abdulaziz University Synthesis of 3D-porous Sr(II)/Ir(III) layered hydroxide balls composed of hexagonal sheets for water purification
CN115845792A (zh) * 2022-10-21 2023-03-28 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用
CN115845792B (zh) * 2022-10-21 2024-02-23 黑龙江省科学院高技术研究院 一种过渡金属掺杂镁铝层状双金属氢氧化物材料的制备方法及应用

Also Published As

Publication number Publication date
US20160203893A1 (en) 2016-07-14
RU2016106405A (ru) 2018-01-10
MX2016002819A (es) 2016-06-22
CN105473503A (zh) 2016-04-06
AU2014358120A1 (en) 2016-03-03
TW201545810A (zh) 2015-12-16
CL2016000404A1 (es) 2016-08-19
KR20160094363A (ko) 2016-08-09
JP6370309B2 (ja) 2018-08-08
JPWO2015083840A1 (ja) 2017-03-16
CA2919827A1 (en) 2015-06-11
EP3078636A1 (en) 2016-10-12
US10037839B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2015083840A1 (ja) 磁性ハイドロタルサイト類複合体およびその製造方法
Kuang et al. FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism
Chen et al. Application of metal oxide heterostructures in arsenic removal from contaminated water
Ashraf et al. Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation
JP5463525B2 (ja) 選択吸着剤およびその製造方法
Vu et al. Photocatalytic degradation of methylene blue (MB) over α-Fe2O3 nanospindles prepared by a hydrothermal route
JP6671343B2 (ja) 水溶液中のルテニウム吸着剤、及び水溶液中のルテニウムの吸着処理方法
Liu et al. Novel hybrid Sr-doped TiO 2/magnetic Ni 0.6 Zn 0.4 Fe 2 O 4 for enhanced separation and photodegradation of organics under visible light
Wu et al. Remarkable phosphate recovery from wastewater by a novel Ca/Fe composite: Synergistic effects of crystal structure and abundant oxygen-vacancies
Waheed et al. Degradation of methylene blue using a novel magnetic CuNiFe2O4/g-C3N4 nanocomposite as heterojunction photocatalyst
Amin et al. Zinc ferrite nanoparticles from industrial waste for Se (IV) elimination from wastewater
Uddin et al. Application of magnesium ferrite nanomaterials for adsorptive removal of arsenic from water: Effects of Mg and Fe ratio
Uddin et al. Adsorptive removal of pollutants from water using magnesium ferrite nanoadsorbent: a promising future material for water purification
CN111298758B (zh) 镧掺杂镁铁氧体复合材料及其制备方法与应用
JP2023106421A (ja) 層状複水酸化物結晶およびアニオン吸着剤
Yenial et al. Recovery of nanoferrites from metal bearing wastes: Synthesis, characterization and adsorption study
JP2017171547A (ja) 階層構造を有する新規ハイドロタルサイト粒子
JP6957077B2 (ja) 層状複水酸化物結晶、アニオン吸着剤および該層状複水酸化物結晶の製造方法
JP6976629B2 (ja) 層状複水酸化物結晶の製造方法
JP2004298810A (ja) 吸着剤
Liu et al. Magnetic field-assisted adsorption of phosphate on biochar loading amorphous Zr–Ce (carbonate) oxide composite
Srinivas et al. The Enhanced Photocatalytic Activity of MnxCo1-x Fe2O4 Over the ZnxCo1-xFe2O4 Under the Visible Light Irradiation: A Comparative Study
Qina et al. Insight into phosphate adsorption on lanthanum hydroxide nanopar-ticle: influence of lanthanum/hydroxide molar ratio, performance, and mechanism study
Zhang et al. Magnetic core–shell Fe3O4@ SiO2@ ZnO hybrids for visible light photocatalysis of methylene blue
JP3473655B2 (ja) 鉄系ハイドロタルサイト型微粒子粉末及びその製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045940.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002107

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2919827

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015551590

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P139/2016

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 14911313

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014867453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201601263

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014358120

Country of ref document: AU

Date of ref document: 20141202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002819

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016003924

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016106405

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016003924

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160223