WO2021128809A1 - 一种环保型耐磨阻燃eva泡沫复合材料 - Google Patents

一种环保型耐磨阻燃eva泡沫复合材料 Download PDF

Info

Publication number
WO2021128809A1
WO2021128809A1 PCT/CN2020/101180 CN2020101180W WO2021128809A1 WO 2021128809 A1 WO2021128809 A1 WO 2021128809A1 CN 2020101180 W CN2020101180 W CN 2020101180W WO 2021128809 A1 WO2021128809 A1 WO 2021128809A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
composite material
steel slag
hydrotalcite
flame
Prior art date
Application number
PCT/CN2020/101180
Other languages
English (en)
French (fr)
Inventor
郑玉婴
马帅
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2021128809A1 publication Critical patent/WO2021128809A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the invention belongs to the field of polymer composite foam materials, and specifically relates to an environmentally friendly wear-resistant and flame-retardant EVA foam composite material and a preparation method thereof.
  • EVA is a rubber-like thermoplastic. Compared with polyethylene, due to the presence of vinyl acetate, the regularity and crystallinity of the molecular chain are reduced, and the flexibility of the molecular chain is improved. It has excellent comprehensive physical and mechanical properties and good processing. performance.
  • EVA foam material is a non-toxic, low-density, high-elasticity, and high-strength foam material with good load-absorbing capacity, so it is widely used as various shoe sole materials.
  • EVA foam materials tend to have poor wear resistance and short service life, and EVA is very easy to burn, accompanied by dense smoke and pungent odors during combustion. Therefore, expand the application range of EVA materials and explore new environmentally friendly EVA composites. Materials have become a research hotspot.
  • Steel slag is a waste slag produced in the metallurgical industry, which contains a large amount of available components such as slag steel, calcium oxide, iron, and magnesium oxide. According to requirements, the comprehensive utilization rate of steel slag should reach over 86%, basically achieving "zero emission". However, the current status of comprehensive utilization of steel slag is far from this requirement, especially the utilization rate of converter steel slag, which is known as "inferior cement clinker", is only 10%-20%. The steel slag produced by iron and steel enterprises cannot be processed in time, causing a large amount of steel slag to occupy the land and pollute the environment. However, steel slag is not an unusable solid waste.
  • steel slag as an alternative reinforcing material for environmentally friendly materials can reduce environmental pollution, save resources, and realize the recycling of industrial waste, which is in line with the current industrial development requirements for energy conservation and emission reduction.
  • Hydrotalcite materials belong to layered double metal hydroxides.
  • hydrotalcite When hydrotalcite is heated, the hydroxyl groups and interlayer ions of the structural hydrated laminate are released in the form of water and CO 2 , which can reduce the concentration of combustion gas and block O 2 as a flame retardant; the structural water of hydrotalcite, the hydroxyl group of laminates And the interlayer ions are released from the laminate at different temperatures, which can release flame-retardant substances in a lower range (200 ⁇ 800°C). Therefore, it can be used as a halogen-free high-smoke flame retardant and is widely used in plastics, In rubber, coatings and other fields, it also has the advantages of improving mechanical properties and improving thermal stability.
  • White corundum is a kind of artificial abrasive, the main component is aluminum oxide, and contains a small amount of iron oxide, silicon oxide and other components. It has the characteristics of high purity, acid resistance, alkali resistance, corrosion resistance, high temperature resistance, and good thermal stability. Adding to the polymer can effectively improve the wear resistance of the material.
  • the purpose of the present invention is to provide an environmentally friendly wear-resistant flame-retardant EVA foam composite material and a preparation method thereof in view of the deficiencies of the prior art.
  • the environment-friendly wear-resistant and flame-retardant EVA foam composite material prepared by the present invention achieves a better dispersion effect under the condition of adding less fillers, and improves the performance of the EVA foam composite material.
  • Wear resistance and flame retardant properties provide better mechanical properties, reduce environmental pollution, and expand the application range of EVA foam materials.
  • An environmentally friendly wear-resistant and flame-retardant EVA foam composite material Its raw material composition is calculated in parts by weight: 95-100 parts of ethylene-vinyl acetate copolymer, 10-15 parts of maleic anhydride grafted EVA, and modified steel slag/hydrotalcite 10-40 parts of composite material, 5 parts of white corundum, 2-4 parts of naphthenic oil, 2-3 parts of blowing agent AC, 1 part of accelerator, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide Parts, 2 parts of dicumyl peroxide, 1-2 parts of antioxidant.
  • the accelerator is tetramethylthiuram disulfide
  • the antioxidant is 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method of the modified steel slag/hydrotalcite composite material is as follows:
  • step 1) The modified steel slag of step 1) is added to the hydrotalcite emulsion obtained in step 2), and the reaction is stirred at 90°C for 4 hours, and the precipitate obtained is suction filtered, washed, dried, and ground to obtain the modified steel slag/hydrotalcite Composite materials.
  • the preparation method of the environmentally friendly wear-resistant and flame-retardant EVA foam composite material includes the following steps:
  • step 2) Place the mixed material prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixed material into 3-5mm flakes;
  • Step 2) Weigh a certain quality according to the size of the mold. Step 2) Place the sheet prepared in the preheated plate vulcanizer cavity and mold and foam at 10-15 MPa and 170-180°C for 8-10 minutes to obtain The environmentally-friendly wear-resistant and flame-retardant EVA foam composite material.
  • Steel slag is a waste slag produced in the metallurgical industry.
  • the present invention uses steel slag as a reinforcing matrix material for EVA foaming, which can reduce environmental pollution, save resources, and realize the recycling of industrial waste.
  • steel slag is rarely used as EVA.
  • Such as the filler of organic composite foaming materials this is due to the existence of excessive impurities in steel slag, different particle sizes, and poor compatibility with EVA polymers.
  • the present invention adopts stearic acid modified steel slag to improve the surface structure of the steel slag, so that the grain size of the steel slag is more uniform, the dispersibility is better, and the agglomeration is reduced.
  • White corundum has high hardness, good chemical stability, and strong resistance to external loads, which can improve the wear resistance of the material.
  • Maleic anhydride grafted EVA as a compatibilizer for inorganic fillers and EVA polymer systems can further improve the compatibility of modified steel slag/hydrotalcite composites and white corundum in polymer systems and help improve EVA composites The wear resistance performance.
  • Hydrotalcite as a halogen-free high-smoke-suppressing inorganic flame retardant, modified with organic maleic acid, can improve the compatibility of hydrotalcite with EVA matrix.
  • adding naphthenic oil to the matrix can improve the fluidity of the matrix, and further make the modified steel slag/hydrotalcite composite filler disperse better in the EVA matrix.
  • the environmentally friendly wear-resistant and flame-retardant EVA foam composite material prepared by the present invention has enhanced the wear resistance and flame-retardant properties of the material, provided better mechanical properties, and reduced whiteness.
  • the use of carbon black, calcium carbonate, etc., and the use of scrap steel slag from the metallurgical industry into the EVA polymer system can reduce pollution, save energy and environmental protection, expand the application range of EVA foam materials, and provide a functional EVA composite foam material.
  • Figure 1 is a SEM comparison of the surface morphology of unmodified desulfurized steel slag (A) and stearic acid modified steel slag (B).
  • FIG. 2 is an SEM image of the morphology of the burning carbon residue of the EVA composite foam material prepared in Example 4.
  • FIG. 2 is an SEM image of the morphology of the burning carbon residue of the EVA composite foam material prepared in Example 4.
  • Fig. 3 is a SEM image of the surface morphology of the burning carbon residue of the EVA composite foam material prepared in Comparative Example 4.
  • the preparation method of the modified steel slag/hydrotalcite composite material used is:
  • step 1) The modified steel slag of step 1) is added to the hydrotalcite emulsion obtained in step 2), and the reaction is stirred at 90°C for 4 hours, and the precipitate obtained is suction filtered, washed, dried, and ground to obtain the modified steel slag/hydrotalcite Composite materials.
  • Figure 1 is a SEM comparison of the surface morphology of unmodified desulfurized steel slag (A) and stearic acid modified steel slag (B).
  • A unmodified desulfurized steel slag
  • B stearic acid modified steel slag
  • the size of the steel slag particles before modification is different, and the agglomeration phenomenon is obvious; the particle size of the steel slag after modification is more uniform and evenly dispersed, and there is no obvious agglomeration and agglomeration.
  • An environmentally friendly wear-resistant and flame-retardant EVA foam composite material whose raw material composition is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, and 10 parts of modified steel slag/hydrotalcite composite material , 5 parts of white corundum, 3 parts of naphthenic oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide, 1 part of antioxidant 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method is:
  • step 2) Place the mixed material prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixed material into 3-5mm flakes;
  • Step 2) Place the prepared sheet in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain environmentally friendly wear-resistant and flame-retardant EVA foam composite material.
  • An environmentally friendly wear-resistant and flame-retardant EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, and 20 parts of modified steel slag/hydrotalcite composite material , 5 parts of white corundum, 3 parts of naphthenic oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide, 1 part of antioxidant 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method is:
  • step 2) Place the mixed material prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixed material into 3-5mm flakes;
  • Step 2) Place the prepared sheet in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain environmentally friendly wear-resistant and flame-retardant EVA foam composite material.
  • An environmentally friendly wear-resistant and flame-retardant EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, and 30 parts of modified steel slag/hydrotalcite composite material , 5 parts of white corundum, 3 parts of naphthenic oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide, 1 part of antioxidant 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method is:
  • step 2) Place the mixed material prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixed material into 3-5mm flakes;
  • Step 2) Place the prepared sheet in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain environmentally friendly wear-resistant and flame-retardant EVA foam composite material.
  • An environmentally friendly wear-resistant and flame-retardant EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, and 40 parts of modified steel slag/hydrotalcite composite material , 5 parts of white corundum, 3 parts of naphthenic oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide, 1 part of antioxidant 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method is:
  • step 2) Place the mixed material prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixed material into 3-5mm flakes;
  • Step 2) Place the prepared sheet in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain environmentally friendly wear-resistant and flame-retardant EVA foam composite material.
  • An EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, 3 parts of naphthenic oil, 2 parts of foaming agent AC, and two parts of accelerator 1 part of tetramethylthiuram sulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide, antioxidant 2,6-di-tert-butyl-4- 1 part of methyl phenol.
  • the preparation method is:
  • step 2) Place the mixture prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixture into 3-5mm flakes;
  • Step 2) Place the sheet prepared in step 2) in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain an EVA foam composite material.
  • An EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, 40 parts of unmodified desulfurized steel slag powder, 5 parts of white corundum, naphthenic 3 parts of oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl peroxide , Antioxidant 2,6-di-tert-butyl-4-methylphenol 1 part.
  • the preparation method is:
  • step 2) Place the mixture prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixture into 3-5mm flakes;
  • Step 2) Place the sheet prepared in step 2) in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain an EVA foam composite material.
  • An EVA foam composite material whose raw material composition is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, 40 parts of magnesium aluminum hydrotalcite, 5 parts of white corundum, and 3 parts of naphthenic oil. Parts, foaming agent AC 2 parts, accelerator 1 part tetramethylthiuram disulfide, 1 part stearic acid, 1.5 parts zinc stearate, 5 parts zinc oxide, 2 parts dicumyl peroxide, antiseptic Oxidizing agent 2,6-di-tert-butyl-4-methylphenol 1 part.
  • the preparation method is:
  • step 2) Place the mixture prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixture into 3-5mm flakes;
  • Step 2) Place the sheet prepared in step 2) in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain an EVA foam composite material.
  • An EVA foam composite material the raw material composition of which is calculated in parts by weight: 100 parts of ethylene-vinyl acetate copolymer, 10 parts of maleic anhydride grafted EVA, 33 parts of unmodified desulfurized steel slag powder, 7 parts of magnesium aluminum hydrotalcite, 5 parts of white corundum, 3 parts of naphthenic oil, 2 parts of blowing agent AC, 1 part of accelerator tetramethylthiuram disulfide, 1 part of stearic acid, 1.5 parts of zinc stearate, 5 parts of zinc oxide, 2 parts of dicumyl oxide, 1 part of antioxidant 2,6-di-tert-butyl-4-methylphenol.
  • the preparation method is:
  • step 2) Place the mixture prepared in step 1) for 24 hours, then put it in an open mill for mixing for 20 minutes, and then press the mixture into 3-5mm flakes;
  • Step 2) Place the sheet prepared in step 2) in the preheated plate vulcanizer cavity, and mold and foam at 10MPa and 175°C for 10 minutes to obtain an EVA foam composite material.
  • Figures 2 and 3 are respectively SEM images of the morphology of the carbon residue in combustion of the EVA composite foam material prepared in Example 4 and Comparative Example 4. It can be seen from the figure that compared with Comparative Example 4, the surface morphology of the carbon residue obtained in Example 4 tends to be a denser overall structure, with reduced pores, and the carbon layer structure remains continuous, which helps to isolate oxygen and heat. This proves that The composite of modified steel slag and hydrotalcite can achieve the effect of improving the flame retardant performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种环保型耐磨阻燃EVA泡沫复合材料,其是以乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、改性钢渣/水滑石复合材料、白刚玉、环烷油、发泡剂AC、促进剂、硬脂酸、硬脂酸锌、氧化锌、过氧化二异丙苯、抗氧化剂为原料制成,其中,所述促进剂为二硫化四甲基秋兰姆。该环保型耐磨阻燃EVA泡沫复合材料与传统EVA泡沫材料相比,功能填料添加量少,在EVA基体中易分散,耐磨效果更好,并具有较好的阻燃效果、加工性能和力学性能,且其制造工艺操作简单,节能环保,在实际应用中具有广阔的应用前景和市场需求。

Description

一种环保型耐磨阻燃EVA泡沫复合材料 技术领域
本发明属于高分子复合泡沫材料领域,具体涉及一种环保型耐磨阻燃EVA泡沫复合材料及其制备方法。
背景技术
EVA是一种类似橡胶的热塑性塑料,与聚乙烯相比,由于醋酸乙烯的存在,分子链的规整度和结晶性下降,分子链的柔顺性提高,具有优异的综合物理机械性能和良好的加工性能。EVA发泡材料是一种无毒、低密度、高弹性、高比强度的发泡材料,具有良好的吸收载荷能力,因此被广泛地用作各类鞋底材料。但EVA发泡材料往往耐磨性较差,使用寿命较短,且EVA极易燃烧并在燃烧时伴有浓烟及刺激性气味,因此,拓展EVA材料的应用范围,探索新型环保型EVA复合材料已成为研究热点。
技术问题
钢渣是冶金工业中产生的废渣,其中含有大量的渣钢、氧化钙、铁以及氧化镁等可利用组分。按要求,钢渣的综合利用率应达86%以上,基本实现“零排放”。然而,目前钢渣综合利用的现状与这一要求相差甚远,尤其是素有“劣质水泥熟料”之称的转炉钢渣的利用率仅为10%-20%。钢铁企业产生的钢渣不能及时处理,致使大量钢渣占用土地,污染环境。然而钢渣并非不可用固体废弃物,选择合适的处理工艺和利用途径来开发钢渣的再利用价值是十分必要和迫切的。将钢渣作为环保型材料的替代补强材料,能够降低环境污染,节约资源,实现工业废料的循环利用,符合当前节能减排的产业发展要求。
水滑石材料属于层状双金属氢氧化物。水滑石在受热时,其结构水合层板羟基及层间离子以水和CO 2的形式脱出,可起到降低燃烧气体浓度、阻隔O 2的阻燃作用;水滑石的结构水、层板羟基以及层间离子在不同的温度内脱离层板,从而可在较低的范围内(200~800℃)释放阻燃物质,因此其可以作为无卤高抑烟阻燃剂,广泛应用于塑料、橡胶、涂料等领域,并兼具改善力学性能、提高热稳定性能等优势。
白刚玉是人造磨料的一种,主要成分为三氧化二铝,并含有少量氧化铁、氧化硅等成分,具有纯度高、耐酸、耐碱、耐腐蚀、耐高温、热稳定性好等特点,加入到聚合物中可以有效提高材料耐磨性能。
技术解决方案
本发明的目的在于针对现有技术的不足,提供一种环保型耐磨阻燃EVA泡沫复合材料及其制备方法。本发明制得的环保型耐磨阻燃EVA泡沫复合材料与传统的EVA泡沫材料相比,在添加较少添加填料的情况下,达到了更好的分散效果,并提高了EVA泡沫复合材料的耐磨性、阻燃性能,提供了更好的力学性能,降低了污染环境,扩展了EVA泡沫材料的应用范围。
为实现上述目的,本发明采用如下技术方案:
一种环保型耐磨阻燃EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物95-100份、马来酸酐接枝EVA 10-15份,改性钢渣/水滑石复合材料10-40份、白刚玉5份、环烷油2-4份、发泡剂AC 2-3份、促进剂1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂1-2份。
所述的促进剂为二硫化四甲基秋兰姆,所述的抗氧化剂为2,6-二叔丁基-4-甲基苯酚。
所述的改性钢渣/水滑石复合材料,其制备方法为:
1)取5g硬脂酸于三口烧瓶中,加入150ml无水乙醇,超声分散60min,然后加入10g脱硫钢渣粉,50℃下搅拌反应12h,抽滤、洗涤、干燥,研磨,得改性钢渣;
2)取2g镁铝水滑石溶于100ml乙醇中,80℃下剧烈搅拌2h使水滑石充分溶胀后,加入马来酸调节体系pH=10,搅拌反应12h,得水滑石乳液;
3)将步骤1)的改性钢渣加入到步骤2)所得水滑石乳液中,90℃下搅拌反应4h,将得到的沉淀抽滤、洗涤、干燥、研磨,得到所述改性钢渣/水滑石复合材料。
所述环保型耐磨阻燃EVA泡沫复合材料的制备方法包括以下步骤:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10-15MPa、170-180℃下模压发泡8-10min,得到所述环保型耐磨阻燃EVA泡沫复合材料。
有益效果
本发明的有益效果在于:
(1)钢渣是冶金工业中产生的废渣,本发明采用钢渣作为EVA发泡的补强基体材料,能够降低环境污染,节约资源,实现了工业废料的循环利用,而目前少有以钢渣作为EVA等有机复合发泡材料的填料,这是由于钢渣存在杂质过多,颗粒尺寸大小不一,与EVA聚合物的相容性较差等问题。为此,本发明采用硬脂酸改性钢渣,以改善钢渣的表面结构,使得钢渣粒径更加均一,分散性更好,团聚减少。白刚玉硬度大、化学稳定性好,抵抗外来载荷能力强,可以提高材料的耐磨损性能。马来酸酐接枝EVA作为无机填料与EVA聚合物体系的相容剂,可进一步改善改性钢渣/水滑石复合材料以及白刚玉在聚合物体系中的相容性,有助于提高EVA复合材料的耐磨损性能。
(2)水滑石作为无卤高抑烟无机阻燃剂,用有机马来酸改性后,可使水滑石与EVA基体相容性提高。同时在基体中添加环烷油,可提高基体的流动性,进一步使得改性钢渣/水滑石复合填料在EVA基体中分散更良好。
(3)钢渣中的氧化钙等金属氧化物与水滑石协同作用下可达到更好的耐磨阻燃效果。在EVA复合发泡材料受热燃烧时,体系中的水滑石在分解吸热、释放水蒸气CO 2的同时,残留的镁铝氧化物与钢渣中的金属氧化物共同组成致密的隔热层。相比于单纯添加水滑石材料,添加改性钢渣/水滑石复合材料制得的EVA复合发泡材料的燃烧残炭形貌更为致密,孔洞更小,更有利于隔热隔氧,进而提升阻燃性能。
(4)本发明制得的环保型耐磨阻燃EVA泡沫复合材料与传统EVA泡沫材料相比,增强了材料的耐磨性、阻燃性能,提供了更好的力学性能,同时减少了白炭黑、碳酸钙等的使用,而通过将冶金工业的废料钢渣利用到EVA聚合物体系中,可降低污染,节能环保,扩展EVA泡沫材料的应用范围,为功能EVA复合发泡材料提供了一种新的思路。
附图说明
图1为未改性脱硫钢渣(A)与硬脂酸改性钢渣(B)的表面形貌SEM对比图。
图2为实施例4制得的EVA复合发泡材料的燃烧残炭形貌SEM图。
图3为对比例4制得的EVA复合发泡材料的燃烧残炭表面形貌SEM图。
本发明的实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用改性钢渣/水滑石复合材料的制备方法为:
1)取5g硬脂酸于三口烧瓶中,加入150ml无水乙醇,超声分散60min,然后加入10g脱硫钢渣粉,50℃下搅拌反应12h,抽滤、洗涤、干燥、研磨,得改性钢渣;
2)取2g镁铝水滑石溶于100ml乙醇中,80℃下剧烈搅拌2h使水滑石充分溶胀后,加入马来酸调节体系pH=10,搅拌反应12h,得水滑石乳液;
3)将步骤1)的改性钢渣加入到步骤2)所得水滑石乳液中,90℃下搅拌反应4h,将得到的沉淀抽滤、洗涤、干燥、研磨,得到所述改性钢渣/水滑石复合材料。
图1为未改性脱硫钢渣(A)与硬脂酸改性钢渣(B)的表面形貌SEM对比图。改性前的钢渣颗粒大小不一,团聚现象明显;改性后的钢渣粒径更为均一、分散均匀,无明显结块团聚现象。
实施例 1
一种环保型耐磨阻燃EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、改性钢渣/水滑石复合材料10份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到环保型耐磨阻燃EVA泡沫复合材料。
实施例 2
一种环保型耐磨阻燃EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、改性钢渣/水滑石复合材料20份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到环保型耐磨阻燃EVA泡沫复合材料。
实施例 3
一种环保型耐磨阻燃EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、改性钢渣/水滑石复合材料30份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到环保型耐磨阻燃EVA泡沫复合材料。
实施例 4
一种环保型耐磨阻燃EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、改性钢渣/水滑石复合材料40份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到环保型耐磨阻燃EVA泡沫复合材料。
对比例 1
一种EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混合料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到EVA泡沫复合材料。
对比例 2
一种EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、未改性脱硫钢渣粉40份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、未改性脱硫钢渣放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混合料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到EVA泡沫复合材料。
对比例 3
一种EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、镁铝水滑石40份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、镁铝水滑石放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混合料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到EVA泡沫复合材料。
对比例 4
一种EVA泡沫复合材料,其原料组成按重量份计为:乙烯-醋酸乙烯共聚物100份、马来酸酐接枝EVA 10份、未改性脱硫钢渣粉33份、镁铝水滑石7份、白刚玉5份、环烷油3份、发泡剂AC 2份、促进剂二硫化四甲基秋兰姆1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂2,6-二叔丁基-4-甲基苯酚1份。
其制备方法为:
1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、未改性脱硫钢渣、镁铝水滑石放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
2)将步骤1)制得的混合料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10MPa、175℃下模压发泡10min,得到EVA泡沫复合材料。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
将实施例与对比例所得EVA泡沫复合材料进行性能对比测试,结果见表1。
表1 性能对比测试
Figure 14721dest_path_image001
图2、3分别为实施例4和对比例4制得的EVA复合发泡材料的燃烧残炭形貌SEM图。从图中可见,相比对比例4,实施例4所得残炭表面形貌趋于致密的整体结构,孔隙减少,炭层结构保持连续,有利于起到隔离氧气和热量的作用,这证明将改性钢渣与水滑石复合可达到提升阻燃性能的效果。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

  1. 一种环保型耐磨阻燃EVA泡沫复合材料,其特征在于:其原料组成按重量份计为:乙烯-醋酸乙烯共聚物95-100份、马来酸酐接枝EVA 10-15份,改性钢渣/水滑石复合材料10-40份、白刚玉5份、环烷油2-4份、发泡剂AC 2-3份、促进剂1份、硬脂酸1份、硬脂酸锌1.5份、氧化锌5份、过氧化二异丙苯2份、抗氧化剂1-2份。
  2. 根据权利要求1所述的环保型耐磨阻燃EVA泡沫复合材料,其特征在于:所述的促进剂为二硫化四甲基秋兰姆,所述的抗氧化剂为2,6-二叔丁基-4-甲基苯酚。
  3. 根据权利要求1所述的环保型耐磨阻燃EVA泡沫复合材料,其特征在于:所述的改性钢渣/水滑石复合材料的制备方法为:
    1)取5g硬脂酸于三口烧瓶中,加入150ml无水乙醇,超声分散60min,然后加入10g脱硫钢渣粉,50℃下搅拌反应12h,抽滤、洗涤、干燥,研磨,得改性钢渣;
    2)取2g镁铝水滑石溶于100ml乙醇中,80℃下剧烈搅拌2h使水滑石充分溶胀后,加入马来酸调节体系pH=10,搅拌反应12h,得水滑石乳液;
    3)将步骤1)的改性钢渣加入到步骤2)所得水滑石乳液中,90℃下搅拌反应4h,将得到的沉淀抽滤、洗涤、干燥、研磨,得到所述改性钢渣/水滑石复合材料。
  4. 一种制备如权利要求1-3任一项所述的环保型耐磨阻燃EVA泡沫复合材料的方法,其特征在于:包括以下步骤:
    1)将乙烯-醋酸乙烯共聚物、马来酸酐接枝EVA、白刚玉、改性钢渣/水滑石复合材料放入转矩流变仪熔融混炼10min,然后依次加入硬脂酸、硬脂酸锌、氧化锌、促进剂、过氧化二异丙苯、抗氧化剂、环烷油、发泡剂AC,混炼20-30min;
    2)将步骤1)制得的混炼料放置24h后,再放入开炼机中混炼20min,然后将混合物料压制成3-5mm的薄片;
    3)根据模具的体积大小称取一定质量步骤2)制得的薄片,置于预热好的平板硫化机模腔内,在10-15MPa、170-180℃下模压发泡8-10min,得到所述环保型耐磨阻燃EVA泡沫复合材料。
PCT/CN2020/101180 2019-12-25 2020-07-10 一种环保型耐磨阻燃eva泡沫复合材料 WO2021128809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911358683.7 2019-12-25
CN201911358683.7A CN110964239B (zh) 2019-12-25 2019-12-25 一种环保型耐磨阻燃eva泡沫复合材料

Publications (1)

Publication Number Publication Date
WO2021128809A1 true WO2021128809A1 (zh) 2021-07-01

Family

ID=70036543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101180 WO2021128809A1 (zh) 2019-12-25 2020-07-10 一种环保型耐磨阻燃eva泡沫复合材料

Country Status (2)

Country Link
CN (1) CN110964239B (zh)
WO (1) WO2021128809A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964239B (zh) * 2019-12-25 2021-08-31 福州大学 一种环保型耐磨阻燃eva泡沫复合材料
CN111333950B (zh) * 2020-04-23 2022-04-12 福州大学 一种高力学强度耐磨eva复合泡沫材料及其制备方法
CN111944228B (zh) * 2020-08-18 2022-12-09 温州金鸿远鞋业有限公司 一种耐磨鞋底及其制备工艺
CN114133658A (zh) * 2021-12-30 2022-03-04 胡亮 一种高浮力耐高温遇冲击自动膨胀的eva材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070176155A1 (en) * 2005-11-28 2007-08-02 Martin Marietta Materials, Inc. Flame-Retardant Magnesium Hydroxide Compositions and Associated Methods of Manufacture and Use
WO2015083840A1 (ja) * 2013-12-03 2015-06-11 協和化学工業株式会社 磁性ハイドロタルサイト類複合体およびその製造方法
CN105174781A (zh) * 2015-06-29 2015-12-23 马鞍山金晟工业设计有限公司 一种耐火阻燃淤泥砖用淤泥固化剂
CN105440420A (zh) * 2014-08-07 2016-03-30 中国石油化工股份有限公司 纳米级镁铝水滑石阻燃eva发泡材料及其制备方法
CN108727679A (zh) * 2018-05-21 2018-11-02 福州大学 一种改性聚磷酸铵/石墨烯阻燃eva泡沫复合材料
CN109897273A (zh) * 2019-03-18 2019-06-18 福州大学 一种复合阻燃剂接枝改性的eva泡沫材料及其制备方法
CN109971223A (zh) * 2019-01-04 2019-07-05 庄明星 一种以钢铁工业固体废弃物为原料制备的环保型防火涂料
CN110183771A (zh) * 2019-06-20 2019-08-30 福州大学 一种鞋用高力学性能泡沫复合材料及其制备方法
CN110964239A (zh) * 2019-12-25 2020-04-07 福州大学 一种环保型耐磨阻燃eva泡沫复合材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070176155A1 (en) * 2005-11-28 2007-08-02 Martin Marietta Materials, Inc. Flame-Retardant Magnesium Hydroxide Compositions and Associated Methods of Manufacture and Use
WO2015083840A1 (ja) * 2013-12-03 2015-06-11 協和化学工業株式会社 磁性ハイドロタルサイト類複合体およびその製造方法
CN105440420A (zh) * 2014-08-07 2016-03-30 中国石油化工股份有限公司 纳米级镁铝水滑石阻燃eva发泡材料及其制备方法
CN105174781A (zh) * 2015-06-29 2015-12-23 马鞍山金晟工业设计有限公司 一种耐火阻燃淤泥砖用淤泥固化剂
CN108727679A (zh) * 2018-05-21 2018-11-02 福州大学 一种改性聚磷酸铵/石墨烯阻燃eva泡沫复合材料
CN109971223A (zh) * 2019-01-04 2019-07-05 庄明星 一种以钢铁工业固体废弃物为原料制备的环保型防火涂料
CN109897273A (zh) * 2019-03-18 2019-06-18 福州大学 一种复合阻燃剂接枝改性的eva泡沫材料及其制备方法
CN110183771A (zh) * 2019-06-20 2019-08-30 福州大学 一种鞋用高力学性能泡沫复合材料及其制备方法
CN110964239A (zh) * 2019-12-25 2020-04-07 福州大学 一种环保型耐磨阻燃eva泡沫复合材料

Also Published As

Publication number Publication date
CN110964239A (zh) 2020-04-07
CN110964239B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021128809A1 (zh) 一种环保型耐磨阻燃eva泡沫复合材料
CN107189236B (zh) 一种耐热老化、低压变的硫磺硫化三元乙丙橡胶组合物、制备方法、用途及其应用产品
CN111004434B (zh) 一种高耐磨止滑eva复合泡沫材料及其制备方法
CN102964696B (zh) 一种三元乙丙橡胶阻燃电缆料及其制备方法
CN101531885B (zh) 环保型阻燃、抑烟定形相变储能材料及其制备方法
CN110964240B (zh) 一种鞋用耐磨阻燃泡沫材料及其制备方法
CN109161110A (zh) 一种添加石墨烯/炭黑复合材料的轮胎气密层胶及其制备方法
CN112228483B (zh) 摩擦材料用改性有机填充材料及其制备工艺
CN109054127A (zh) 一种耐磨耐老化电力电缆护套材料及其制备方法
CN114591545A (zh) 水相协同聚沉工艺制备石墨烯母胶及长寿命重型车辆负重轮轮胎的成型方法
CN102863643B (zh) 用无机废料生产发泡软瓷轻质保温饰面材料的工艺
CN105037655A (zh) 一种碳金复合地板及其制备方法
CN111187448B (zh) 一种油页岩半焦基复合阻燃剂及其制备方法和在高分子材料中的应用
CN109517229B (zh) 一种低温低压硫化橡胶衬里组合物及其应用方法
CN110669357A (zh) 一种用于橡胶填料的改性钢渣的制备方法
CN106589776A (zh) 一种高韧性可回收的橡胶密封件
CN103849076A (zh) 纳米级阻燃增强ps/pe合金材料及其制备方法
CN110204803B (zh) 一种轻比重橡胶制品及其制备方法
CN113801429B (zh) 一种抗冲耐热阻燃abs树脂及其制备方法
CN114317885B (zh) 一种生物质电炉发泡剂及其制作方法和应用方法
CN105440525A (zh) 一种防火阻燃塑料板材及其制备方法
CN108250632A (zh) 一种高硬度阻燃电缆料及其制备方法
CN114907590A (zh) 一种合成橡胶湿法母炼胶及其制备方法和应用
CN113174114A (zh) 一种利用煤矸石制备聚氯乙烯碳塑制品的方法
CN103131066A (zh) 活性硅酸钙/橡胶复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907314

Country of ref document: EP

Kind code of ref document: A1