WO2006080467A1 - ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用 - Google Patents

ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用 Download PDF

Info

Publication number
WO2006080467A1
WO2006080467A1 PCT/JP2006/301368 JP2006301368W WO2006080467A1 WO 2006080467 A1 WO2006080467 A1 WO 2006080467A1 JP 2006301368 W JP2006301368 W JP 2006301368W WO 2006080467 A1 WO2006080467 A1 WO 2006080467A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
talcite
bromide
bromide ion
ion exchanger
Prior art date
Application number
PCT/JP2006/301368
Other languages
English (en)
French (fr)
Inventor
Shinya Echigo
Sadahiko Itoh
Takeshi Miura
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2007500614A priority Critical patent/JPWO2006080467A1/ja
Publication of WO2006080467A1 publication Critical patent/WO2006080467A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a hydrated talcite-like compound, a bromide ion exchanger, and use thereof, and more specifically, suitable for exchanging bromide ions with other ions.
  • the present invention relates to a hydrotalcite-like compound and a bromide ion exchanger, and a method for producing purified brine using the bromide ion exchanger.
  • Water purification treatment in waterworks is performed through three processes: a solid-liquid separation process, an individual treatment process, and a disinfection process. Of these processes, the solid-liquid separation process
  • Chlorine disinfection is performed by injecting sodium hypochlorite and Z or chlorine gas into the raw water.
  • the advantage of chlorine disinfection is that it can be expected to have a strong disinfection effect against a large amount of raw water that is not only cheap, and further, the disinfection effect can be sustained even after treatment due to free residual chlorine.
  • DBP disinfection by-product
  • Disinfection by-products such as trihalomethanes are known to cause chromosomal abnormalities.
  • Organic disinfection by-products containing halogen can be broadly classified into organic chlorine compounds containing chlorine atoms and organic bromine compounds containing bromine atoms. The latter is the result of exposure experiments using Chinese hamster lung cells. Is known to be more toxic (see Reference 1). Therefore, a technology that can effectively suppress the generation of organic bromine compounds is desired.
  • ozone treatment is also frequently used! With ozone treatment In this method, disinfection and analysis of trace pollutants are performed using ozone acid deca that has been generated by discharge. Similar to the chlorine disinfection described above, it is known that toxic disinfection by-products such as bromate ions are generated in this ozone treatment. In Japan, the regulation of bromate ion has been started as a tap water quality standard item since FY2004, and the development of technology to suppress bromate ion is urgently needed.
  • the bromine-based disinfection by-products such as the organic bromine compounds and bromate ions described above all have bromide ions in water as precursors. Therefore, in order to remove bromide ions in water, removal of bromide ions by ion exchange resin and Z or reverse osmosis membrane has been studied.
  • ion exchange resin is an organic substance, there is a concern that substances that adversely affect health may be desorbed and eluted in water from which bromide ions are removed. , Ru Therefore, when removing bromide ions in tap water by ion exchange resin, sufficient consideration must be given to safety. However, in the case of removing bromide ions by ion exchange resin, it is difficult to selectively remove bromide ions by competition with other anions. /! The same applies to reverse osmosis membranes.
  • Document 3 describes a hydrated talcite-like compound in which the metal atom is composed of Mg "and A1" 1 and a method for producing the same.
  • the composite derived from the hydrated talcite-like compound described in Document 2 is close to room temperature and contains nitrogen oxides with hydrogen as a reducing agent in the presence of oxygen or water vapor at temperature. It is an efficient reduction and there is no description of exchanging bromide ions.
  • the present invention has been made in view of the above problems, and an object of the present invention is an inorganic compound suitable for exchanging bromide ions with other ions, a bromide ion exchanger using the same, and the same.
  • the purpose of the present invention is to provide a method for producing purified water with reduced bromide ions.
  • the bromide ion exchanger according to the present invention includes a hydrated talcite-like compound in order to solve the above-described problems.
  • the above-mentioned hydrated talcite-like compound includes a layered double hydroxide and a double oxide obtained by firing the same.
  • the above-mentioned hydrated talcite-like compound includes Mg which is a divalent metal and A1 which is a trivalent metal. Furthermore, it is more preferable that it contains Fe which is a trivalent metal.
  • the bromide ion exchanger according to the present invention may include Ni, which is the above-mentioned nodular talcite-like compound, and Ti, which is a trivalent metal, and Fe, which is a trivalent metal.
  • the bromide ion exchanger according to the present invention may contain Co, which is a hydrated talcite-like compound, a potent metal, and Fe, which is a trivalent metal.
  • the bromide ion exchanger according to the present invention preferably has a selection coefficient of bromide ions relative to sulfate ions of 0.18 or more.
  • the “selection coefficient of bromide ions with respect to sulfate ions” is calculated by the method described in (Ion-exchangeability test) section of Examples described later.
  • the above-mentioned Hyde mouth talcite-like compound is represented by the following general formula (1):
  • M 1 is a divalent metal atom
  • M 2 and M 3 are different trivalent metal atoms
  • A is an ionization Then, it is an atom or group that generates an m-valent anion
  • M 1 in the general formula (1) is Mg
  • M 2 is A1
  • M 3 is Fe
  • X in the general formula (1) is such that 0 ⁇ x ⁇
  • a in the general formula (1) is C1 or More preferably, it is NO.
  • the method for producing purified water according to the present invention includes a bromide ion removal process for removing bromide ions by the bromide ion exchanger described above.
  • the method for producing purified purified water further includes a sterilization process for performing chlorination and Z or ozone treatment, and the bromide ion removal process is performed before the sterilization process. There may be.
  • the Hyde mouth talcite-like compound according to the present invention has the following general formula (2):
  • X in the general formula (2) is 0.
  • y is y force ⁇ 0.5, A is C1, and m is 1.
  • FIG. 1 is a diagram showing the molecular structure of a hydrated talcite-like compound.
  • FIG. 2 shows an embodiment of the present invention and is a process diagram showing a method for producing purified water.
  • Fig. 3 shows an example of the present invention, and is a diagram showing a comparison result of time in which the exchange ability of bromide ions can be maintained.
  • Id mouth talcite is the name of a natural mineral represented by Mg Al (OH)-CO ⁇ ⁇ O.
  • M 1 is a divalent metal atom
  • M 2 is a trivalent metal atom
  • M 1 and M 2 may each be two or more kinds of metal atoms.
  • A is an atom or group that ionizes to generate an m-valent anion (a-on).
  • This nodular talcite-like compound is sometimes referred to as a hydrated talcite compound, a layered double hydroxide, or LDH (Layered Double Hydroxide).
  • the Ido mouth talcite-like compound is represented by [M 1 M 2 (OH)].
  • Min to form a plurality of host layer, between its host layer and the host layer, A m - or, and HO molecules
  • the nodular talcite-like compound has a structure in which host layers and guest layers are alternately laminated.
  • the host layer has a positive charge as a whole by substituting the divalent metal ion for the divalent metal ion, and the anion in the guest layer compensates for this positive charge! /
  • a hydrated talcite- like compound has a property of exchanging anions (A m_ ) between host layers with other anions by intercalation. Therefore, due to this characteristic, the Hyde mouth talcite-like compound can function as an anion exchanger.
  • the hydrated talcite-like compound can function as an anion exchanger even in the state of a fired double oxide.
  • a double acid compound obtained by firing only a layered double hydroxide is also referred to as a hydrated talcite-like compound.
  • the selectivity of the anion to be exchanged in the hydrated talcite-like compound depends on the divalent metal atom (M 1 ) and trivalent metal atom (M 2 ) in the above general formula. Depending on the combination of these, and their molar ratio. Furthermore, the selectivity is thought to change depending on the type of anion (A m_ ) due to the molecular sieving effect. [0038] [Hide mouth talcite-like compound and bromide ion exchanger]
  • the bromide ion exchanger according to the present embodiment includes a hydrated talcite-like compound!
  • the nodular talcite-like compound can be used as a bromide ion exchanger for exchanging bromide ions with other ions.
  • the bromide ion exchanger may contain, for example, an additive for making a tablet in addition to the nano-id, talcite-like compound!
  • the metal atom contained in the above-mentioned hydrated talcite-like compound is not particularly limited, but as shown in the examples described later, Mg which is a divalent metal and A1 which is a trivalent metal. Further, it is preferable to contain Fe, which is more preferable to contain Fe which is a trivalent metal.
  • the above-mentioned nodular talcite-like compound may contain Ni which is a divalent metal and Fe which is a trivalent metal.
  • the above-mentioned hydrated talcite-like compound may contain Co which is a divalent metal and Fe which is a trivalent metal! /, .
  • the bromide ion exchanger preferably has a selectivity factor of bromide ion with respect to sulfate ions of 0.18 or more.
  • the method for calculating the bromide ion selection coefficient relative to the sulfate ion is the method described in the section of (Ion Exchange Test) in the Examples described later.
  • bromide ions are exchanged using conventional ion-exchange resins, there is a problem in that bromide ions cannot be exchanged efficiently due to competition with other anions, particularly sulfate ions.
  • the above “selectivity coefficient of bromide ion relative to sulfate ion” is an index showing how selectively bromide ion can be exchanged compared to sulfate ion in the presence of other anions containing sulfate ion. From the background described above, it is a suitable index for showing the usefulness of bromide ion exchangers.
  • the "selectivity coefficient of bromide ion relative to sulfate ion" is preferably as high as possible. Specifically, it is more preferably 0.4 or more, and even more preferably 1 or more. Particularly preferred is 5 or more.
  • Hyde mouth talcite-like compound has the following general formula (1):
  • M 1 is a divalent metal atom
  • M 2 and M 3 are different trivalent metal atoms
  • A is an ionization Then, it is an atom or group that generates an m-valent anion
  • the divalent metal atom M 1 is not limited to only one type, and may be a combination of two or more types. M 1 is not particularly limited as long as it is a divalent metal atom. For example, any one or combination of Mg, Mn, Fe, Co, Ni, Cu, and Zn can be used. It is preferably any one of Mn and Ni or a combination thereof.
  • the trivalent metal atoms are not limited to only two types, but may be a combination of three or more types.
  • M 2 and M 3 are not particularly limited as long as they are trivalent metal atoms, and examples thereof include any one or a combination of Al, Cr, Mn, Fe, Co, and Ga. Of these, each of M 2 and M 3 is preferably any one or combination of Al, Fe, and Mn.
  • M 1 is Mg
  • M 2 and M 3 is A1 and the other force Fe.
  • A that is, an anion or group that becomes an anion is not particularly limited.
  • a chlorine atom (C1) a nitrate group (NO), a sulfate group (SO) , Carbonate group (CO 2), cate group (SiO 2), phosphate group (PO 2), perchlorate group (CIO)
  • a chlorine atom (C1) Since these atoms or groups are stable even under temperature conditions of a few hundred degrees, a stable hydrated talcite-like compound can be synthesized.
  • the composition ratio between the divalent metal atom and the two trivalent metal atoms is not particularly limited, but X in the above general formula (1) is 0.
  • a force S satisfying ⁇ x ⁇ 0.3 is preferable, a force S satisfying 0.15 ⁇ x ⁇ 0.25 is more preferable than S, and a relationship 0.15 ⁇ x ⁇ 0.22 is more preferable. This is because when X is larger than the above range, the selectivity of bromide ions is reduced, and when X is smaller than the above range, it is difficult to synthesize talcite-like compounds. .
  • the composition ratio of two trivalent metal atoms is not particularly limited, but y in the above general formula (1) is 0.2 ⁇ y ⁇ 0. 8 is preferred.
  • the above-described hydrated talcite-like compound is in the form of a layered double hydroxide, but may be in the form of a double acid oxide obtained by firing the same.
  • the atom or group (A) that becomes an anion in the above general formula (1) and the H 2 O molecule are eliminated, so
  • a in the above general formula (1) may be any that can synthesize a hydrated talcite-like compound.
  • the firing conditions will be described later.
  • the hide-mouthed talcite-like compound and bromide ion exchanger according to the present embodiment can selectively exchange bromide ions.
  • aqueous solution power containing various anions When exchanging bromide ions, when using normal ion-exchanged resin, for example, with other anions such as sulfate ions. Due to competition, bromide ions cannot be selectively exchanged.
  • the use of the nodular talcite-like compound or bromide ion exchanger according to this embodiment suppresses competition with other anions such as sulfate ions and selectively exchanges bromide ions. be able to.
  • a basic aqueous solution such as aqueous ammonia or aqueous sodium hydroxide solution is slowly dropped into the mixed solution using a microtube pump or the like.
  • the speed at which the basic aqueous solution is dropped is not particularly limited, but is preferably less than lOmlZ.
  • the basic aqueous solution is dropped until the pH of the mixed solution is sufficiently basic.
  • the final pH of the mixed solution is not particularly limited, it is preferably 8 or more and 12 or less, more preferably 9 or more and 11 or less, more preferably 9.5 or more and 10.5 or less. More preferably it is.
  • the mixed solution in which the basic aqueous solution is dropped is transferred to a hydrothermal synthesizer and stirred while heating.
  • the heating temperature is not particularly limited, but is preferably 80 ° C or higher and 180 ° C or lower, more preferably 100 ° C or higher and 140 ° C or lower.
  • the stirring speed is not particularly limited, but can be 120 rpm, for example.
  • the heating and stirring time is not particularly limited, but is preferably 12 hours or longer and 96 hours or shorter, more preferably 24 hours or longer and 48 hours or shorter.
  • the solution heated and stirred in the hydrothermal synthesizer is then allowed to stand at room temperature.
  • the standing time is not particularly limited, but is preferably 24 hours or longer.
  • the washed precipitate is dried in an electric furnace.
  • the temperature for drying in an electric furnace is not particularly limited, but is preferably 80 ° C or lower. Also when drying The interval is not particularly limited, for example, even 24 hours.
  • the precipitate after drying can be used as a hydrated talcite-like compound according to the present invention.
  • the nodular talcite-like compound obtained by the above operations is in the form of a layered double hydroxide compound, and the double-hydrated talcite-like compound is in a double acid compound state. In order to obtain a further firing process.
  • the precipitate after drying is fired in an electric furnace or the like.
  • the firing temperature is not particularly limited, but is preferably 350 ° C or higher and 550 ° C or lower.
  • the firing time is not particularly limited, but is preferably 1 hour or more and 3 hours or less, more preferably about 2 hours.
  • the hydrated talcite-like compound after firing is pulverized in a mortar or the like to obtain a powder of hydrated talcite-like compound in the form of a double acid compound.
  • the obtained powder of Ido mouth talcite-like compound is stored in a desiccator.
  • the above bromide ion exchanger is mixed or suspended in an aqueous solution containing bromide ions to obtain a mixed solution or suspension.
  • the anions (A m —) in the hydrated talcite-like compound contained in the bromide ion exchanger are exchanged with bromide ions in the aqueous solution, and the ionic talcite-like compound is obtained.
  • As bromide ions are adsorbed on the solution, the bromide ion concentration in the aqueous solution decreases.
  • the contact time between the bromide ion exchanger and the aqueous solution is not particularly limited, and may be, for example, 24 hours. At this time, the mixed solution or suspension may be agitated in order to suitably bring the bromide ion exchanger into contact with the fluoride ions in the aqueous solution.
  • the mixed solution or suspension is filtered with a filter or the like in order to remove the hydrated talcite-like compound. This traps the bromide ions adsorbed on the filter, the iodo-talcite-like compound and the unreacted hyde-talcite-like compound.
  • the mixture or suspension may be allowed to stand to sufficiently precipitate the hydrated talcite-like compound, and then only the supernatant may be collected. As mentioned above, smell An aqueous solution with reduced fluoride ions can be obtained.
  • bromide ion exchangers can selectively exchange bromide ions
  • the ion exchange method in this section is an aqueous solution containing other anions such as sulfate ions in addition to bromide ions.
  • bromide ions can be selectively removed.
  • the method for producing purified water in the present embodiment mainly includes a bromide ion removal process, a solid-liquid separation process, an individual treatment process, and a disinfection process.
  • a bromide ion removal process is performed on the raw water taken from the water source (Step S Do).
  • This process is a process for removing bromide ions from the raw water by the bromide ion exchanger described above. Is performed by adding the bromide ion exchanger described above into water, whereby bromide ions in the water are exchanged with anions contained in the hydrated talcite-like compound, and bromide ions in the raw water. After this, the iodo-talcite-like compound may be removed by filtration using a filter, etc., and the hyd-mouth talcite-like compound may be removed in the subsequent solid-liquid separation process. You may remove things
  • This solid-liquid separation process is a process for removing suspended solids from water by combining precipitation, flotation separation, and Z or filtration. Also remove bacteria and some of the Z or dissolved components along with the suspended solids.
  • a known method can be used as the solid-liquid separation process. For example, any of a slow filtration system, a rapid filtration system, and a membrane filtration system may be used.
  • This individual treatment process is a process for removing foreign matters that could not be removed by the solid-liquid separation process in step S2.
  • a known method can be used. For example, any one or a combination of activated carbon treatment, ozone treatment, aeration treatment, biological treatment, and seawater desalination treatment.
  • Etc In activated carbon treatment, trace organic substances are removed from raw water by adsorbing to activated carbon.
  • ozone treatment organic substances are decomposed using ozone acidica.
  • volatile substances dissolved in water are volatilized, or foreign substances are oxidized using oxygen in the air.
  • seawater desalination treatment desalination is performed from raw water such as seawater by the reverse osmosis membrane method using a reverse osmosis membrane.
  • a disinfection process is performed (step S4).
  • the disinfection process is a process for removing pathogens from raw water.
  • at least one of chlorine disinfection and ozone treatment is performed in the disinfection process.
  • the chlorination treatment and the ozone treatment are not particularly limited, and known treatment methods can be used.
  • hypochlorous acid and Z or chlorine gas are injected into raw water.
  • ozone treatment ozone generated by an ozone generator or the like is blown into raw water.
  • these chlorination treatments and ozone treatments can inactivate pathogens by the acidity of chlorate or ozone.
  • any one or combination of chlorine dioxide disinfection, ultraviolet disinfection, and film treatment may be performed. Purified water is obtained from the treated powder in steps S1 to S4.
  • the method for producing purified purified water according to the present embodiment includes a bromide ion removal process for removing bromide ions by a bromide ion exchanger! /. Therefore, bromide ions are efficiently removed from raw water. Can be removed. Accordingly, it is possible to obtain purified brine with reduced bromide ions.
  • bromide ion removal process is performed before the disinfection process such as chlorine disinfection and Z or ozone treatment. Prior to this, bromide ions can be reduced. As a result, in the disinfection process, bromine-based disinfection by-products such as organic bromine compounds and bromate ions are removed. Generation of purified water with less bromine disinfection by-products can be obtained
  • the bromide ion removal process by the bromide ion exchanger has been described before the solid-liquid separation process and the individual treatment process.
  • the production of purified water according to the present invention is described above.
  • the method is not limited to this.
  • the bromide ion removal process may be performed immediately before the disinfection process.
  • the raw hydropower may be any one that reduces bromide ions.
  • a no-id-mouth talcite-like compound was synthesized as follows.
  • the salt was mixed at a molar ratio equal to the composition ratio in the desired compound, iodo-talcite-like compound, and dissolved in 100 ml of distilled water to prepare a mixed solution.
  • a salt M containing M 1 and A, a salt M 2 A containing M 2 and A, M 3 and A salt M 3 A containing A was mixed at a molar ratio of (l-x): xy: x (l-y) and dissolved in 100 ml of distilled water to prepare a mixed solution.
  • the total amount of metal ions dissolved in 100 ml of the mixed solution was 0.25 mol.
  • a solution in which ammonia water was dropped was added to a hydrothermal synthesizer (Pressure Glass Industrial Co., Ltd., TEM
  • the dried solid was calcined at 400 ° C for 2 hours using the above electric furnace.
  • Example 1 the removal rate of bromide ions was measured for the dried hydrated talcite-like compound before firing and the hydrotalcite-like compound after firing.
  • V used in Example 1 and all the hydrated talcite-like compounds contain C1 as an atom or group that ionizes to become an anion! /.
  • the target talcite-like compound was removed from the target solution after stirring by filtration using a filter having a pore size of 0.20 ⁇ m, and an ion chromatograph (manufactured by Shimadzu Corporation, LC-VP system) was used to quantify the residual ion concentration of Br-.
  • the addition concentration of Hyde mouth talcite-like compound or the initial ion-added caro concentration is different, so in order to compare these, ⁇ (Initial addition ion concentration After reaction ion concentration) z Hyde mouth talcite addition concentration was determined.
  • This ion exchange capacity is an index indicating the ability to remove bromide ions per unit amount of nodular talcite-like compounds.
  • Table 1 shows the results of conducting this experiment on a hydrated talcite-like compound of each composition.
  • the removal rate was 2% and the ion exchange capacity was 0.020 (mol / g).
  • Hyde mouth talcite-like compounds can efficiently remove bromide ions, and bromide ion exchangers containing Hyde mouth talcite-like compounds are effective. It has been shown.
  • an inorganic ion solution simulating natural water was passed through a column, and continuous treatment for removing bromide ions was performed using various compounds.
  • the sample solution was passed through the column at this flow rate.
  • the treated solution flowing out of the column was received in a beaker and sampled every 30 minutes to 1 hour. Sampling was performed by measuring the ion concentration by ion chromatography as in Example 1 above. The time required for maintaining the bromide ion removal rate of 60% was obtained.
  • Mg, Al, and Fe are contained at a molar ratio of 8: 1: 1, and a hydrated talcite-like compound in which A in the above general formula (1) is C1 is synthesized and fired. did.
  • the time during which the removal rate of 60% was maintained was determined to be 14.30 hours.
  • Diaion (registered trademark) SA10 a strongly basic anion exchange resin manufactured by Mitsubishi Chemical
  • the time during which the removal rate of 60% was maintained was determined to be 4.70 hours.
  • the Hyde mouth talcite-like compound can maintain the ability to remove bromide ions for a long time.
  • the Hyde mouth talcite-like compound can sufficiently remove bromide ions contained in natural water even in a short treatment.
  • the bromide ion exchanger containing the hydrated talcite-like compound after firing synthesized by the method described above or the conventional ion exchange resin was subjected to an ion exchange test using the following method. . In this example, whether or not bromide ions can be selectively removed in the presence of various ions was evaluated.
  • This target solution lOmL was brought into contact with 0. lg of bromide ion exchangers containing 0.1 g of aldose talcite-like compound or 0. lg of normal ion exchangers for 24 hours.
  • the talcite-like compound was removed by filtering using a filter with a pore size of 0.45 ⁇ m, and an ion chromatograph (manufactured by Shimadzu Corporation, The residual ion concentration of Br— and SO 2 was quantified using an LC VP system.
  • Mg: Al 2: 1
  • A was C1
  • a talcite-like compound was synthesized.
  • Co is a divalent metal atom
  • Fe is a trivalent metal atom
  • the hydock talcite-like compound having a specific composition has a high selectivity for bromide ions and the ion content of fluoride ions in the presence of sulfate ions. It turned out to be particularly suitable for exchange.
  • the bromide ion exchanger according to the present invention contains a hydrated talcite-like compound, it can be suitably used for exchanging bromide ions with other ions. There is an effect.
  • the method for producing purified water according to the present invention removes bromide ions by the above-described ion exchanger, and therefore produces purified water with reduced bromide ions. .
  • the hyde mouth talcite-like compound according to the present invention can be obtained by calcining the compound represented by the above general formula (2) or the compound, other bromide ions can be used. To the ion of If it can be suitably used for exchanging, there will be an effect.
  • the bromide ion exchanger according to the present invention can selectively exchange bromide ions. Therefore, it can be suitably used for a water purification apparatus for removing bromide ions, water purification treatment in tap water, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 臭化物イオンを他のイオンに交換するのに好適な臭化物イオン交換体、及びこれを利用して臭化物イオンを減少させた浄化水の製造方法を提供する。本発明に係る臭化物イオン交換体は、ハイドロタルサイト様化合物を含んでいる。このハイドロタルサイト様化合物に含まれる陰イオンが水中の臭化物イオンと選択的に交換されることにより、原水中から臭化物イオンを効果的に除去することができる。

Description

明 細 書
ノ、イド口タルサイト様ィ匕合物、臭化物イオン交換体、及びその利用 技術分野
[0001] 本発明は、ハイド口タルサイト様ィ匕合物、臭化物イオン交換体、及びその利用に関 するものであり、より詳細には、臭化物イオンを他のイオンに交換するのに好適なハイ ドロタルサイト様ィヒ合物及び臭化物イオン交換体、並びにこの臭化物イオン交換体を 用いた浄ィ匕水の製造方法に関するものである。
背景技術
[0002] 水道における浄水処理は、固液分離プロセス、個別処理プロセス、及び消毒プロセ スの 3つのプロセスを経て行われる。これらのプロセスのうち、固液分離プロセスでは
、濾過及び Z又は沈殿等により水中から懸濁物の除去を行う。そして個別処理プロ セスでは、上記の固液分離プロセスでは除去できな!/、混入物の除去を個別に行う。 これら 2つのプロセスにより水中力 異物を除去した後、病原体を排除するために消 毒プロセスを行う。
[0003] 上記の消毒プロセスとして、 日本では塩素消毒が法的に義務付けられている。塩素 消毒は、次亜塩素酸ナトリウム及び Z又は塩素ガスを原水に注入することによって行 われる。塩素消毒の利点は、用いる薬剤が安価であるだけでなぐ大量の原水に対 して強力な消毒効果を期待でき、さらには、遊離残留塩素により処理後も消毒効果 が持続するところにある。しかしながら一方で、毒性のあるトリハロメタン類等の消毒副 生成物(DBP; disinfection by-product)が発生すると!/ヽぅ問題を有して!/ヽる。
[0004] このトリハロメタン類等の消毒副生成物は、染色体異常の原因となることが知られて いる。ハロゲンを含む有機消毒副生成物としては、大別して、塩素原子を含む有機 塩素化合物と、臭素原子を含む有機臭素化合物とがあるが、チャイニーズハムスター の肺細胞を用いた曝露実験等により、後者の方が毒性の高いことが知られている(文 献 1参照)。従って、有機臭素化合物の発生を効果的に抑制できる技術が望まれて いる。
[0005] また、他の消毒プロセスとして、オゾン処理も頻繁に利用されて!、る。オゾン処理と は、放電等により発生させたオゾンの酸ィ匕カを利用して、消毒や微量汚染物質の分 解を行うものである。上述した塩素消毒と同様に、このオゾン処理においても、臭素 酸イオンを始めとする毒性のある消毒副生成物が発生することが知られている。 日本 国内では、平成 16年度から水道水質基準項目として臭素酸イオンの規制が開始さ れており、臭素酸イオンを抑制する技術の開発が急務となっている。
[0006] 臭素酸イオンを抑制するための方法としては、オゾンの注入量制御、 pH制御、及 び中間体捕捉のための薬剤添加等が検討されている。
[0007] また、上述した有機臭素化合物及び臭素酸イオン等の臭素系消毒副生成物は、何 れも水中の臭化物イオンを前駆体としている。従って、水中の臭化物イオンを除去す るために、イオン交換榭脂及び Z又は逆浸透膜による臭化物イオンの除去について 検討がなされている。
[0008] し力しながら、臭素系消毒副生成物の発生を効果的に抑制する技術は未だ確立さ れていない。特に、無機化合物を用いて臭素系消毒副生成物の発生を効果的に抑 制する技術が確立されて 、な 、。
[0009] 例えば、上述したオゾンの注入量制御、 pH制御、及び中間体捕捉のための薬剤 添カロについては、他の有機臭素系副生成物が生成するという問題、及び充分なォゾ ン濃度を維持できな 、と 、う問題を有して 、る。
[0010] また、周知のようにイオン交換榭脂は有機物質カゝらなるので、健康に悪影響を及ぼ す物質が臭化物イオンの除去の対象となる水に脱離 '溶出することが懸念されて 、る 。従って、イオン交換榭脂によって水道水の臭化物イオンを除去する場合、安全性に ついて充分な検討を行わなければならない。し力も、イオン交換榭脂による臭化物ィ オンの除去の場合、通常のものでは、他の陰イオンとの競合により臭化物イオンを選 択的に除去することができな 、と 、う問題を有して!/、る。これは逆浸透膜にっ ヽても 同様である。
[0011] ところで、陰イオンを交換する無機化合物として、ハイド口タルサイト様ィ匕合物 (層状 複水酸化物)が知られている。例えば、文献 2には、 M1 M2 (N03) (OH) ·Η Οか
(1 2 2 らなる層状複合酸ィ匕物の層間に貴金属の微粒子を導入した多孔質複合体について 記載されており、この多孔質複合体は、窒素酸化物を還元する触媒として機能するこ とが開示されている。
[0012] また、文献 3には、金属原子が、 Mg"、 及び A1"1からなるハイド口タルサイト様 化合物及びその製造方法にっ 、て記載されて 、る。
[0013] しかし、文献 2に記載されているハイド口タルサイト様ィ匕合物由来の複合体は、常温 に近 、温度で酸素や水蒸気の存在下に、水素を還元剤として窒素酸化物を効率的 に還元するものであり、臭化物イオンを交換することについては何ら記載されていな い。
[0014] また、文献 3に記載されているハイド口タルサイト様ィ匕合物については、化学的性質 に関する知見がない。
[0015] 他方、陰イオンを交換する別の無機化合物として、アルミノケィ酸塩水和物であるァ 口フェンが知られている。し力しながら、ァロフェンによる臭化物イオンの交換率(除去 率)は低く、実用レベルには至っていない。
(文献 1)
Echigo S, Itoh ¾, Natsui T, Ara i Γ, Ando R. Contribution of brominated organic d isinfection by-products to the mutagenicity of drinking water. Water Science and Te chnology. 2004;50(5):321-328.
(文献 2)
日本国公開特許公報である特開 2004— 217444号公報(2004年 8月 5日公開) (文献 3)
Fernandez JM, Ulibarn MA, Labajos FM, Rives V. The effect of iron on the crystal line phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites. J Mater Chem. 1998;8(11):2507-2514.
発明の開示
[0016] 本発明は上記の問題点に鑑みてなされたものであり、その目的は、臭化物イオンを 他のイオンに交換するのに好適な無機化合物及びこれを用いた臭化物イオン交換 体、並びにこれを利用して臭化物イオンを減少させた浄化水の製造方法を提供する ことにある。
[0017] 本発明者らは、上記課題に鑑みて鋭意検討した結果、ノ、イド口タルサイト様ィ匕合物 が臭化物イオンの交換に好適なことを見出し、本発明を完成させるに至った。
[0018] すなわち、本発明に係る臭化物イオン交換体は、上記の課題を解決するために、 ハイド口タルサイト様ィ匕合物を含んでいることを特徴とする。なお、上記のハイド口タル サイト様化合物としては、層状複水酸化物、及びこれを焼成して得られうる複酸化物 を含む。
[0019] そして、本発明に係る臭化物イオン交換体は、上記ハイド口タルサイト様ィ匕合物が 2 価金属である Mg及び 3価金属である A1を含んだものであることが好ましぐさらに 3 価金属である Feを含んだものであることがより好ましい。
[0020] あるいは、本発明に係る臭化物イオン交換体は、上記ノ、イド口タルサイト様ィ匕合物 力 価金属である Ni及び 3価金属である Feを含んだものであってもよい。
[0021] さらには、本発明に係る臭化物イオン交換体は、上記ハイド口タルサイト様ィ匕合物 力 価金属である Co及び 3価金属である Feを含んだものであってもよい。
[0022] また、本発明に係る臭化物イオン交換体は、硫酸イオンに対する臭化物イオンの選 択係数が 0. 18以上であることが好ましい。なお、上記"硫酸イオンに対する臭化物ィ オンの選択係数"とは、後述する実施例の (イオン交換性試験)の項にお!、て記載さ れている方法によって算出されるものである。
[0023] また、本発明に係る臭化物イオン交換体は、上記ハイド口タルサイト様ィ匕合物が、次 の一般式(1)
[M1 M2 M3 (OH) ][Α] ·ηΗ Ο …ひ)
(1-x) xy x(l-y) 2 x/m 2
(式中、 0<χ< 1であり、 0<y< lであり、 M1は 2価金属原子であり、 M2及び M3は互 いに異なる 3価金属原子であり、 Aは電離すると m価の陰イオンを生じる原子又は基 である)
で表される化合物、又はこれを焼成して得られうる化合物であることが好まし 、。
[0024] また、本発明に係る臭化物イオン交換体は、上記一般式(1)における M1が Mgであ り、 M2が A1であり、 M3が Feであることが好ましい。
[0025] また、本発明に係る臭化物イオン交換体は、上記一般式(1)における Xが、 0< x<
0. 3を満たすことが好ましい。
[0026] また、本発明に係る臭化物イオン交換体は、上記一般式(1)における Aが、 C1又は NOであることがより好ましい。
3
[0027] 本発明に係る浄化水の製造方法は、上記の課題を解決するために、上述した臭化 物イオン交換体によって臭化物イオンを除去する臭化物イオン除去プロセスを含む ことを特徴とする。
[0028] また、上記の浄ィ匕水の製造方法は、塩素消毒及び Z又はオゾン処理を行う消毒プ 口セスをさらに含み、上記消毒プロセスの前に、上記臭化物イオン除去プロセスを行 うものであってもよい。
[0029] 本発明に係るハイド口タルサイト様ィ匕合物は、上記課題を解決するために、次の一 般式 (2)
[Mg Al Fe (OH) ][Α] · ηΗ O · ' · (2)
(1-x) xy x(l-y) 2 x/m 2
(式中、 0< x< 0. 2であり、 0< y< lであり、 Aは電離すると m価の陰イオンを生じる 原子又は基である)
で表される化合物を焼成して得られうるものであることを特徴とする。
[0030] また、本発明に係るハイド口タルサイト様ィ匕合物は、上記一般式(2)における Xが 0.
2であり、 y力 ^0. 5であり、 Aが C1であり、 mが 1であることが好ましい。
[0031] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0032] [図 1]図 1は、ハイド口タルサイト様ィ匕合物の分子構造を示す図である。
[図 2]図 2は、本発明の一実施形態を示すものであり、浄化水の製造方法を示す工程 図である。
[図 3]図 3は、本発明の一実施例を示すものであり、臭化物イオンの交換能を維持で きる時間の比較結果を示した図である。
発明を実施するための最良の形態
[0033] 〔ハイド口タルサイト様ィ匕合物〕
まず、一般的なハイド口タルサイト様ィ匕合物について説明する。ノ、イド口タルサイトと は、 Mg Al (OH) - CO · ηΗ Oで表される天然鉱物の名称であり、これに類似の化 合物で、一般式 [M1 M2 (OH) ][Α] ·ηΗ Oで表される化合物をノ、イド口タルサイ
(1-x) X 2 x/m 2
ト様化合物という。なお、上記一般式において、 M1は 2価金属原子であり、 M2は 3価 金属原子である。なお、 M1及び M2は、それぞれ 2種類以上の金属原子であってもよ い。また、 Aは、電離して m価の陰イオン (ァ-オン)を生じる原子又は基である。この ノ、イド口タルサイト様ィ匕合物は、別名として、ハイド口タルサイト系化合物、層状複水 酸化物、又は LDH (Layered Double Hydroxide)と呼ばれることもある。
[0034] ノ、イド口タルサイト様ィ匕合物は、図 1に示すように、 [M1 M2 (OH) ]で表される部
(1- X) κ 2
分が複数のホスト層を形成し、そのホスト層とホスト層との間に、 Am—及び H O分子か
2 らなるゲスト層が挟まれた構造となっている。すなわち、ノ、イド口タルサイト様ィ匕合物は 、ホスト層とゲスト層とが交互に積層した構造となっている。ホスト層は、 2価の金属ィ オンを 3価の金属イオンが置換することにより全体として正の電荷を帯びており、この 正の電荷をゲスト層の陰イオンが補償して!/、る。
[0035] ハイド口タルサイト様化合物は、インターカレーシヨンによって、ホスト層間の陰ィォ ン (Am_)を他の陰イオンに交換する特性を有していることが知られている。従って、こ の特性により、ハイド口タルサイト様ィ匕合物は陰イオン交換体として機能することがで きる。
[0036] また、ハイド口タルサイト様ィ匕合物を焼成すると、ゲスト層の陰イオン及び H O分子
2 が脱離して、層状複水酸化物から複酸化物へと変化する。しカゝしながら、この複酸ィ匕 物となったハイド口タルサイト様ィ匕合物を水溶液中に戻すと、ハイド口タルサイト様ィ匕 合物は水溶液中の陰イオン及び H O分子を取り込んで層状複水酸化物に再生する
2
。つまり、ハイド口タルサイト様ィ匕合物は、焼成した複酸化物の状態であっても、陰ィ オン交換体として機能することができる。なお本明細書では、層状複水酸化物だけで なぐこれを焼成して得られる複酸ィ匕物についてもハイド口タルサイト様ィ匕合物と称す る。
[0037] なお、ハイド口タルサイト様ィ匕合物において、交換する対象となる陰イオンの選択性 は、上記一般式中の 2価金属原子 (M1)及び 3価金属原子 (M2)の組み合わせ、並 びにそれらのモル比によって変化する。さらに、上記選択性は、分子ふるい効果によ り、陰イオン (Am_)の種類によっても変化すると考えられて 、る。 [0038] 〔ハイド口タルサイト様ィ匕合物及び臭化物イオン交換体〕
本発明に係るハイド口タルサイト様ィ匕合物及び臭化物イオン交換体の一実施形態 につ 、て説明すると以下の通りである。
[0039] 本実施形態に係る臭化物イオン交換体はハイド口タルサイト様ィ匕合物を含んで!/、る
。後述する実施例に示すように、ノ、イド口タルサイト様ィ匕合物は、臭化物イオンを他の イオンに交換するための臭化物イオン交換体として用いることができる。
[0040] なお、臭化物イオン交換体は、ノ、イド口タルサイト様ィ匕合物以外に、例えば錠剤に するための添加剤などを含んで 、てもよ!/、。
[0041] そして、上記ハイド口タルサイト様ィ匕合物が含む金属原子としては特に限定されな いが、後述する実施例に示すように、 2価金属である Mg及び 3価金属である A1を含 んだものであることが好ましぐさらに 3価金属である Feを含んだものであることがより 好ましい。
[0042] あるいは、後述する実施例に示すように、上記ノ、イド口タルサイト様ィ匕合物は、 2価 金属である Ni及び 3価金属である Feを含んだものであってもよい。さらには、後述す る実施例に示すように、上記ハイド口タルサイト様ィ匕合物は、 2価金属である Co及び 3 価金属である Feを含んだものであってもよ!/、。
[0043] さらに、本実施形態に係る臭化物イオン交換体は、硫酸イオンに対する臭化物ィォ ンの選択係数が 0. 18以上であることが好ましい。なお、硫酸イオンに対する臭化物 イオンの選択係数の算出方法は、後述する実施例における (イオン交換試験)の項 に記載された方法によるものとする。
[0044] 従来のイオン交換榭脂を用いて臭化物イオンを交換する際、他の陰イオン、特に硫 酸イオンが競合することにより、臭化物イオンを効率的に交換できない点が問題とな つていた。上記の"硫酸イオンに対する臭化物イオンの選択係数"は、硫酸イオンを 含む他の陰イオンの存在下で、硫酸イオンと比較して臭化物イオンをどの程度選択 的に交換できるかを示す指標であり、上述した背景から、臭化物イオン交換体の有 用性を示すのに好適な指標である。
[0045] これまで実用化されているイオン交換榭脂は、有機物であることに加えて、後述す る実施例に示すように、 "硫酸イオンに対する臭化物イオンの選択係数"が 0. 06であ り、このように選択係数が低いために、水溶液中の硫酸イオン等の他の陰イオンが競 合して、臭化物イオンを効率的に除去できないと考えられる。これに対して、例えば" 硫酸イオンに対する臭化物イオンの選択係数"が 0. 18以上であれば、水溶液中に 硫酸イオン等の他の陰イオンが存在しても、臭化物イオンを選択的に除去することが できる。
[0046] なお、 "硫酸イオンに対する臭化物イオンの選択係数"は高ければ高いほど好ましく 、具体的には、 0. 4以上であることがより好ましぐ 1以上であることがさらに好ましぐ 1. 5以上であることが特に好ましい。
[0047] また、ハイド口タルサイト様ィ匕合物は、次の一般式(1)
[M1 M2 M3 (OH) ][Α] ·ηΗ Ο …ひ)
(1-x) xy x(l-y) 2 x/m 2
(式中、 0<χ< 1であり、 0<y< lであり、 M1は 2価金属原子であり、 M2及び M3は互 いに異なる 3価金属原子であり、 Aは電離すると m価の陰イオンを生じる原子又は基 である)
で表されることが好ましい。
[0048] 上記の一般式(1)において、 2価金属原子 M1は 1種類のみに限定されるものでは なぐ 2種類以上の組み合わせであってもよい。なお、 M1としては 2価金属原子であ れば特に限定されるものではないが、例えば、 Mg、 Mn、 Fe、 Co、 Ni、 Cu、 Znの何 れか又は組み合わせが挙げられ、 Mg、 Mn、 Niの何れか又は組み合わせであること が好ましい。
[0049] また、上記の一般式(1)において、 3価金属原子 (M2及び M3)は 2種類のみに限定 されるものではなぐ 3種類以上の組み合わせであってもよい。なお、 M2及び M3とし ては、 3価金属原子であれば特に限定されるものではないが、例えば、 Al、 Cr、 Mn 、 Fe、 Co、 Gaの何れか又は組み合わせが挙げられる。これらのうち、 M2及び M3のそ れぞれとしては、 Al、 Fe、 Mnの何れか又は組み合わせであることが好ましい。
[0050] なお、臭化物イオンに対する選択性の観点から、 M1が Mgであり、 M2及び M3の一 方が A1で他方力Feであることがより好ま U、。
[0051] また、上記の一般式(1)において、 A、すなわち陰イオンとなる原子又は基は特に 限定されるものではないが、例えば、塩素原子 (C1)、硝酸基 (NO )、硫酸基 (SO ) 、炭酸基 (CO )、ケィ酸基 (SiO )、リン酸基 (PO )、過塩素酸基 (CIO )の何れか又
3 3 4 4
は組み合わせが好ましぐ中でも、塩素原子(C1)であることがより好ましい。これらの 原子又は基は、百数十度の温度条件下でも安定なため、安定なハイド口タルサイト様 化合物を合成することができる。
[0052] また、上記の一般式(1)において、 2価金属原子と 2つの 3価金属原子との組成比 は特に限定されるものではないが、上記一般式(1)における Xが、 0< x< 0. 3を満た すこと力 S好ましく、 0. 15<x< 0. 25を満たすこと力 Sより好ましく、 0. 15<x< 0. 22を 満たすことがさらに好ましい。これは、 Xが上記範囲よりも大きい場合、臭化物イオン の選択性力 、さくなり、 Xが上記範囲よりも小さい場合、ノ、イド口タルサイト様ィ匕合物の 合成が難しくなるためである。
[0053] また、上記の一般式(1)において、 2つの 3価金属原子の組成比は特に限定される ものではないが、上記一般式(1)における yが、 0. 2<y< 0. 8を満たすことが好まし い。
[0054] また、上述したハイド口タルサイト様ィ匕合物は、層状複水酸化物の状態であるが、こ れを焼成して得られうる複酸ィ匕物の状態であってもよい。この場合、上記の一般式(1 )における陰イオンとなる原子又は基 (A)、及び H O分子が脱離するため、 Aの種類
2
は選択係数に殆ど影響を与えないと考えられる。従って、上記の一般式(1)における Aはハイド口タルサイト様ィ匕合物を合成できるものであればよい。なお、焼成の条件に ついては後述する。
[0055] 本実施形態に係るハイド口タルサイト様化合物及び臭化物イオン交換体は、臭化物 イオンを選択的に交換することができる。後述する実施例において説明するように、 様々な陰イオンが含まれる水溶液力 臭化物イオンを交換する際、通常のイオン交 換榭脂を用いた場合では、例えば硫酸イオン等の他の陰イオンとの競合により、臭化 物イオンを選択的に交換することができない。しかしながら、本実施形態に係るノ、イド 口タルサイト様ィ匕合物又は臭化物イオン交換体を用いれば、硫酸イオン等の他の陰 イオンとの競合を抑制し、臭化物イオンを選択的に交換することができる。
[0056] 〔臭化物イオン交換体に含まれるハイド口タルサイト様ィ匕合物の製造方法〕
上述したハイド口タルサイト様ィ匕合物の製造方法の一実施形態について説明すると 以下の通りである。本実施形態では、上述した一般式(1)で表されるノ、イド口タルサイ ト様化合物を製造するものとする。
[0057] まず、一般式(1)における金属原子のイオン
Figure imgf000012_0001
又は Ms)のそれぞれと、陰 イオン Am—とを含む塩、すなわち M 、M2A 、及び M3A を、各塩のモル比が
2/m 3/m 3/m
一般式(1)における金属原子の組成比となるような比で混合する。すなわち、 M'A
2/m
、 M2A 、 M3A を、
3/m 3/m
(M1のモル数):(M2のモル数):(M3のモル数) = (1 X) :xy:x(l -y) となるように混合して、この混合物を蒸留水に溶解して混合溶液を調製する。なお、 M3を含まな ヽハイド口タルサイト様ィ匕合物を合成する場合は、上記の式にぉ 、て y = 1とすればよい。
[0058] そして、混合溶液に対して、マイクロチューブポンプ等を用いてアンモニア水又は 水酸ィ匕ナトリウム水溶液等の塩基性水溶液をゆっくり滴下する。この塩基性水溶液を 滴下する速度は特に限定されるものではないが、 lOmlZ分以下であることが好まし い。この塩基性水溶液の滴下は、混合溶液の pHが充分に塩基性になるまで行う。な お、混合溶液の最終 pHは特に限定されるものではないが、 8以上 12以下であること が好ましぐ 9以上 11以下であることがより好ましぐ 9. 5以上 10. 5以下であることが さらに好ましい。
[0059] 次に、塩基性水溶液を滴下した混合溶液を水熱合成装置に移して加熱しながら攪 拌する。なお、加熱する温度としては特に限定されるものではないが、 80°C以上 180 °C以下であることが好ましぐ 100°C以上 140°C以下であることがより好ましい。また、 攪拌速度も特に限定されるものではないが、例えば 120rpmとすることができる。また 、加熱及び攪拌の時間は特に限定されるものではないが、 12時間以上 96時間以下 であることが好ましぐ 24時間以上 48時間以下であることがより好ましい。水熱合成 装置にて加熱'攪拌した溶液は、その後、常温にて静置する。静置する時間としては 特に限定されるものではないが、 24時間以上であることが好ましい。
[0060] 静置した溶液力 沈殿物が得られるので、この沈殿物を吸引濾過した後洗浄する。
そして、洗浄後の沈殿物を電気炉で乾燥させる。電気炉で乾燥させる際の温度は特 に限定されるものではないが、 80°C以下であることが好ましい。また、乾燥させる時 間も特に限定されるものではな 、が、例えば 24時間でもよ 、。
[0061] 乾燥後の沈殿物は、本発明に係るハイド口タルサイト様ィ匕合物として用いることがで きる。また、ここまでの操作によって得られるノ、イド口タルサイト様ィ匕合物は層状複水 酸ィ匕物の状態であり、複酸ィ匕物の状態のハイド口タルサイト様ィ匕合物を得るためには 、さらに焼成プロセスを行う。
[0062] 焼成プロセスでは、乾燥後の沈殿物を電気炉等により焼成する。焼成する温度とし ては特に限定されるものではないが、 350°C以上 550°C以下であることが好ましい。 また、焼成する時間も特に限定されるものではないが、 1時間以上 3時間以下である ことが好ましぐ 2時間程度であることがより好ましい。そして、焼成後のハイド口タルサ イト様ィ匕合物を乳鉢等で粉砕することによって、複酸ィ匕物の状態のハイド口タルサイト 様ィ匕合物の粉末が得られる。得られたノ、イド口タルサイト様ィ匕合物の粉末は、デシケ ータ中にて保存する。
[0063] 〔臭化物イオン交換体の利用方法〕
上記の〔臭化物イオン交換体〕の項で述べた臭化物イオン交換体を用いて、水溶液 中の臭化物イオンを交換する方法について説明すると以下の通りである。
[0064] まず、臭化物イオンを含む水溶液に対して、上述した臭化物イオン交換体を混合 又は懸濁させ、混合液又は懸濁液にする。これにより、臭化物イオン交換体に含まれ るハイド口タルサイト様ィ匕合物における陰イオン (Am— )が、水溶液中の臭化物イオンと 交換され、ノ、イド口タルサイト様ィ匕合物に臭化物イオンが吸着されるとともに水溶液中 の臭化物イオン濃度が減少する。
[0065] なお、臭化物イオン交換体と水溶液との接触時間は特に限定されるものではない 力 例えば 24時間としてもよい。また、このとき、臭化物イオン交換体を水溶液中の臭 化物イオンと好適に接触させるために、混合液又は懸濁液を攪拌してもよい。
[0066] 臭化物イオン交換体と水溶液との接触後、ハイド口タルサイト様ィ匕合物を除去する ために、混合液又は懸濁液をフィルタ一等で濾過する。これにより、臭化物イオンを 吸着したノ、イド口タルサイト様ィ匕合物及び未反応のハイド口タルサイト様ィ匕合物がフィ ルター上にトラップされる。あるいは、混合液又は懸濁液を静置し、ハイド口タルサイト 様ィ匕合物を充分に沈殿させた後、上清のみを回収してもよい。以上のようにして、臭 化物イオンの減少した水溶液を得ることができる。
[0067] 臭化物イオン交換体は臭化物イオンを選択的に交換することができるので、本項に おけるイオン交換方法によれば、臭化物イオンの他に硫酸イオン等の他の陰イオン を含む水溶液であっても、臭化物イオンを選択的に除去することができる。
[0068] 〔浄化水の製造方法〕
本発明に係る浄ィ匕水の製造方法の一実施形態について説明すると以下の通りで ある。本実施形態では一例として水道における浄水処理について説明する。
[0069] 本実施形態における浄化水の製造方法は、図 2に示すように、主として臭化物ィォ ン除去プロセス、固液分離プロセス、個別処理プロセス、及び消毒プロセスを含んで いる。
[0070] まず、水源から取水した原水に対して、臭化物イオン除去プロセスを行う(ステップ S Doこのプロセスは、上述した臭化物イオン交換体によって原水から臭化物イオンを 除去するためのプロセスであり、具体的には、上述した臭化物イオン交換体を水中に 添加することによって行われる。これにより、水中の臭化物イオンがハイド口タルサイト 様ィ匕合物に含まれる陰イオンと交換され、原水中の臭化物イオンが減少する。なお、 この後、フィルターによる濾過処理等によってノ、イド口タルサイト様ィ匕合物を除去して もよいし、後続の固液分離プロセスにてハイド口タルサイト様ィ匕合物を除去してもよい
[0071] 次に、固液分離プロセスを行う(ステップ S2)。この固液分離プロセスは、沈殿、浮 上分離、及び Z又は濾過等を組み合わせることによって、水中から懸濁質を除去す るプロセスである。また、懸濁質とともに、細菌類及び Z又は溶解成分の一部も除去 する。なお、固液分離プロセスとしては公知の方法を用いることができ、例えば、緩速 濾過システム、急速濾過システム、膜濾過システムの何れかのシステムを用いてもよ い。
[0072] 次に、個別処理プロセスを行う(ステップ S3)。この個別処理プロセスは、ステップ S 2における固液分離プロセスでは除去できなかった異物を除去するためのプロセスで ある。個別処理プロセスとしては公知の方法を用いることができ、例えば、活性炭処 理、オゾン処理、曝気処理、生物処理、海水淡水化処理の何れか又は組み合わせ 等が挙げられる。活性炭処理では、活性炭に吸着させることにより、原水中から微量 有機物等の除去を行う。また、オゾン処理では、オゾンの酸ィ匕カを利用して有機物を 分解する。また、曝気処理では、水に溶存している揮発性物質を揮発させたり、空気 中の酸素を利用して異物を酸化させたりする。また、生物処理では、微生物等を利用 することにより、微生物の代謝の対象となる各種塩、有機物質、及び金属を原水中か ら除去する。海水淡水化処理では、逆浸透膜を利用する逆浸透膜法等により、海水 等の原水から脱塩を行う。
[0073] 個別処理プロセスの後には、消毒プロセスを行う(ステップ S4)。消毒プロセスは、 原水から病原体を除去するためのプロセスである。本実施形態では、消毒プロセスに おいて、塩素消毒及びオゾン処理の少なくとも何れかを行うものとする。塩素処理及 びオゾン処理としては特に限定されるものではなぐ公知の処理方法を用いることが できる。例えば、塩素処理では、次亜塩素酸及び Z又は塩素ガスを原水に注入する 。また、例えば、オゾン処理では、オゾン発生装置等で発生させたオゾンを原水に吹 き込む。これらの塩素処理及びオゾン処理は、塩素酸ィ匕物又はオゾンの酸ィ匕力によ り病原体を不活ィ匕することができる。また、消毒プロセスにおいて、さらに、二酸化塩 素消毒、紫外線消毒、膜処理の何れか又は組み合わせを行ってもよい。ステップ S1 〜S4の処理〖こより、浄化水が得られる。
[0074] 本実施形態に係る浄ィ匕水の製造方法は、臭化物イオン交換体によって臭化物ィォ ンを除去する臭化物イオン除去プロセスを含んで!/、るので、原水から臭化物イオンを 効率的に除去することができる。従って、臭化物イオンを減少させた浄ィ匕水を得ること ができる。
[0075] また、塩素消毒では、原水中の臭化物イオンを前駆体として、トリノ、ロメタン等の有 機臭素化合物が発生することが知られている。また、オゾン処理では、同様に原水中 の臭化物イオンを前駆体として、臭素酸イオンが発生することが知られている。しかし ながら、本実施形態に係る浄化水の製造方法によれば、塩素消毒及び Z又はォゾ ン処理等の消毒プロセスの前に臭化物イオン除去プロセスを行う構成となっているの で、消毒プロセスに先立って臭化物イオンを減少させることができる。これにより、消 毒プロセスにおいて有機臭素化合物及び臭素酸イオン等の臭素系消毒副生成物の 発生を抑制することができ、臭素系消毒副生成物の少ない浄ィ匕水を得ることができる
[0076] なお、本実施形態では臭化物イオン交換体による臭化物イオン除去プロセスを固 液分離プロセス及び個別処理プロセスの前に行う形態にっ 、て説明したが、本発明 に係る浄ィヒ水の製造方法はこれに限定されるものではなぐ例えば、臭化物イオン除 去プロセスを消毒プロセスの直前に行ってもよい。
[0077] また、本実施形態では水道における浄水処理方法を例にとって説明した力 本発 明に係る浄ィヒ水の製造方法はこれに限定されるものではなぐ上記の臭化物イオン 交換体を用いて原水力も臭化物イオンを減少させるものであればよい。なお、浄ィ匕水 の製造方法の他の例としては、臭化物イオンの除去を目的とした、より小規模な水精 製装置等に用いられる水精製方法等が挙げられる。
実施例
[0078] 〔ハイド口タルサイト様ィ匕合物の合成方法〕
以下の実施例及び比較例において、ノ、イド口タルサイト様ィ匕合物を次のようにして 合成した。
[0079] まず、ハイド口タルサイト様ィ匕合物に含まれる各金属と、ノ、イド口タルサイト様ィ匕合物 に含まれ、電離して陰イオンになる原子又は基とを含む各塩を、目的のノ、イド口タル サイト様ィ匕合物における組成比と等しいモル比で混合し、蒸留水 100mlに溶解させ 、混合溶液を調製した。例えば、一般式(1)で表されるハイド口タルサイト様ィ匕合物の 場合、 M1及び Aが含まれる塩 M と、 M2及び Aが含まれる塩 M2Aと、 M3及び Aが含 まれる塩 M3Aとを、(l—x) :xy:x (l—y)のモル比で混合し、蒸留水 100mlに溶解 させ、混合溶液を調製した。なお、混合溶液 100ml中に溶解している金属イオンの 総量は、 0. 25molとした。
[0080] この混合液に対して、マイクロチューブポンプ (東京理科機器株式会社製、 MP— 3 )を用いて、 pHが 9. 8になるまでアンモニア水を lmlZ秒で滴下した。
[0081] アンモニア水を滴下した溶液を水熱合成装置 (耐圧硝子工業株式会社製、 TEM
-D1000M)に注入し、 120°C、 120rpmの条件下で 24時間加熱し、その後常温で 24時間静置した。 [0082] 静置した溶液カゝら得られた乳白色の沈殿物を吸引濾過した後、洗浄した。洗浄した 沈殿物を電気炉(日東化学株式会社製、 SH— OMT)を用いて、 80°Cにて 24時間 乾燥させた。
[0083] 乾燥させた固体は、上記の電気炉を用いて 400°Cにて 2時間焼成した。
[0084] 焼成後のハイド口タルサイト様ィ匕合物を乳鉢で粉砕し、これを臭化物イオン交換体 の試料とした。
[0085] 〔実施例 1:臭化物イオン除去率の評価〕
(実施例 1—1 〜 1— 14)
実施例 1では、焼成前の乾燥ハイド口タルサイト様ィ匕合物、及び焼成後のハイドロタ ルサイト様ィ匕合物について、臭化物イオンの除去率を測定した。なお、実施例 1で用 V、た全てのハイド口タルサイト様ィ匕合物は、電離して陰イオンになる原子又は基として C1を含有して!/、るものである。
[0086] 臭化物イオンを交換する対象となる対象溶液として、各種陰イオン (Br―、 Cl—、 NO―
3
、 SO 2 )を 0. ImMずつ含む水溶液を調製した。この対象溶液 lOOmLと、焼成前の
4
乾燥ハイド口タルサイト様ィ匕合物 0. 100g、又は焼成後のハイド口タルサイト様ィ匕合物
0. 050gを加え、 24時間攪拌した。
[0087] ただし、実施例 1— 13 · 1 - 14では、各種イオンの濃度を ImMとし、ハイド口タルサ イト様ィ匕合物の量を 1. OOOgとした。
[0088] 攪拌後の対象溶液から、ポアサイズが 0. 20 μ mのフィルターを用いて濾過するこ とによりハイド口タルサイト様ィ匕合物を除去し、イオンクロマトグラフ(島津製作所株式 会社製、 LC VPシステム)を用いて、 Br—の残存イオン濃度を定量した。
[0089] そして、臭化物イオンの除去率につ 、て評価を行うために、臭化物イオンの初期添 加濃度とイオン交換反応終了後の濃度から除去率を算出した。臭化物イオンの除去 率(%)は、
(初期添加イオン濃度 反応後イオン濃度) Z初期添加イオン濃度 X 100 として求めた。
[0090] また、本実施例ではハイド口タルサイト様ィ匕合物の添加濃度、又は初期イオン添カロ 濃度が異なるものがあるので、これらを比較するために各々のノ、イド口タルサイト様ィ匕 (初期添加イオン濃度 反応後イオン濃度) zハイド口タルサイト添加濃度 として求めた。このイオン交換容量は、ノ、イド口タルサイト様ィ匕合物の単位量あたりの 臭化物イオン除去能力を示す指標となる。
[0091] この実験を、各組成のハイド口タルサイト様ィ匕合物について行った結果を表 1に示 す。
[0092] [表 1]
Figure imgf000018_0001
なお、表 1において、焼成前の乾燥ノヽイド口タルサイト様ィ匕合物は「d」、焼成後のハ イド口タルサイト様ィ匕合物は「c」で表した。また、 Mg及び Niは 2価金属原子であり、 A 1及び Feは 3価金属原子であり、このことは以下の実施例においても同様である。
(比較例 1 1) ノ、イド口タルサイト様ィ匕合物以外の陰イオン交換能を有する無機物質であるァロフ ェンについても同様の試験を行った。
[0094] 本比較例で用いたァロフェンの合成は、公知の文献 (大橋文彦ら「急速混合法によ る中空球状非晶質アルミノケィ酸塩クラスターの合成」、名古屋工業技術研究所報告 、 Vol.46, No.8、 pp.397-404, 1997)に記載された方法に従って行った。その概略は 次の通りである。 lOOmMオルトケィ酸ナトリウム lOOmLと 150mM塩化アルミニウム 水溶液 lOOmLとを混合し、室内で 1時間攪拌した。その後、 0. 25 /z mのろ紙でろ過 •洗浄を行った。この際に回収された固形物を 300mLの純水に分散させ、 80°Cで 5 日間攪拌した後、ろ過 ·乾燥を経て最終的な生成物、すなわちァロフェンを得た。こ のァロフェンは、 Si/Al=0. 75である。合成して得たァロフェンの X線回折図形の 概略形状は文献のものと一致しており、ァロフェンの合成に成功していることが示唆 された。
[0095] そして、 Br―、 NO―、 SO 2_をそれぞれ ImM含む水溶液に、上記のァロフェンを 1
3 4
gZLとなるように添加した。その後は、上記のハイド口タルサイト様ィ匕合物と同様にし て、除去率及びイオン交換容量を測定した。
[0096] その結果、除去率は 2%で、イオン交換容量は 0. 020 (mol/g)であった。
[0097] (考察)
以上の結果から、ハイド口タルサイト様ィ匕合物が臭化物イオンを効率的に除去でき ることが明らかになり、ハイド口タルサイト様ィ匕合物を含む臭化物イオン交換体が有効 であることが示された。
[0098] 〔実施例 2:臭化物イオン連続交換能の評価〕
上述した方法にて合成した焼成前又は焼成後のハイド口タルサイト様ィ匕合物を含 む臭化物イオン交換体、並びに従来のイオン交換榭脂について、以下の方法を用い てイオン交換性試験を行った。本実施例では、各化合物が臭化物イオンの交換能を どの程度の期間維持できるかについて評価を行った。
[0099] 本実施例では、自然水を模した無機イオン溶液をカラムに流し、各種ィ匕合物を用い て臭化物イオン除去の連続処理を行った。
[0100] 試料溶液には、 C厂、 Br", NO―、 SO 2_の 4つの陰イオンを Milli—Q水に溶解さ せたものを用いた。各種イオンの濃度については、実際の自然水を参考にして、順 に 10mg/L、 200 gZL、 850 gZL、 10mg/Lに設定した。なお、本溶液のィ オン等量濃度は 0. 506meqZLである。
[0101] カラムには、 Millipore製の Chromatography Column Vantage (登録商標) L (内 径 1. 1cm)を用いた。このカラムの中央におよそ 10cmの隙間を作り、イオン交換体 の流出を防ぐためにグラスファイバーろ紙を適当な形状に切り取り詰めた後にハイド 口タルサイト様化合物などの試料化合物を入れ、上部カゝらも同様にグラスファイバー ろ紙を詰め、固定した。連続的に処理させるため、加圧型定流量ポンプ (Waters製、 Sep— Pakコンセントレーター Plus)を用いて上向流の処理フローを組んだ。なお、 本実験においてハイド口タルサイト様ィ匕合物をカラムに詰め込み余分な空間を与え ず、完全なパッキングをしな力つたのはハイド口タルサイト様ィ匕合物の粒径が小さぐ カラムのフィルターを目詰まりさせてしまうことから十分な滞留スペースを必要としたた めである。このとき、試料ィ匕合物の試料溶液への理論的接触時間は 30秒〜 1分程度 である。
[0102] ノ、イド口タルサイト様ィ匕合物がオーバーフローせずにカラム実験を行える流量は lm LZmin程度であるためこの流量で試料溶液をカラムに通水した。そしてカラムから 流出される処理後の溶液をビーカーに受け、 30分ないし 1時間ごとにサンプリングを 行った。サンプリングは、上述の実施例 1と同様にイオンクロマトグラフによってイオン 濃度を測定して行った。そして、 60%の臭化物イオン除去率が維持される時間を求 めた。
[0103] (実施例 2— 1)
上述した合成方法に従って、 Mg、 Al、及び Feが 8 : 1: 1のモル比で含まれ、上記 一般式(1)における Aが C1のハイド口タルサイト様ィ匕合物を合成した。
[0104] 焼成前のこのハイド口タルサイト様化合物 0. 2gについて、 60%の除去率が維持さ れる時間を求めたところ、 14. 20時間であった。
[0105] (実施例 2— 2)
上述した合成方法に従って、 Mg、 Al、及び Feが 8 : 1: 1のモル比で含まれ、上記 一般式(1)における Aが C1のハイド口タルサイト様ィ匕合物を合成し、焼成した。 [0106] 焼成後のこのハイド口タルサイト様化合物 0. 2gについて、 60%の除去率が維持さ れる時間を求めたところ、 14. 30時間であった。
[0107] (実施例 2— 3)
上述した合成方法に従って、 Mg及び A1が 3 : 1のモル比で含まれ、上記一般式(1
)における Aが C1のハイド口タルサイト様ィ匕合物を合成した。
[0108] 焼成前のこのハイド口タルサイト様化合物 0. 2gについて、 60%の除去率が維持さ れる時間を求めたところ、 5. 28時間であった。
[0109] (比較例 2— 1)
三菱ィ匕学製の強塩基性陰イオン交換榭脂であるダイヤイオン (登録商標) SA10
Aのスラリー 0. 2gについて、 60%の除去率が維持される時間を求めたところ、 4. 70 時間であった。
[0110] (比較例 2— 2)
Orica Watercare社製、 MIEX (登録商標)のスラリー 0. 2gについて、 60%の除 去率が維持される時間を求めたところ、 0時間であった。すなわち、このイオン交換榭 脂では、上記の条件で 60%の臭化物イオン除去率を達成できな力つた。
[0111] これらの結果をまとめて図 3に示す。
[0112] (考察)
以上の結果から、ハイド口タルサイト様ィ匕合物は臭化物イオンの除去能を長時間に わたって持続できることが示された。また、ハイド口タルサイト様ィ匕合物は、短時間の 処理であっても、自然水の中に含まれる臭化物イオンを充分に除去できることが明ら カゝとなった。
[0113] 〔実施例 3:臭化物イオン選択性の評価 1〕
上述した方法にて合成した焼成後のハイド口タルサイト様ィ匕合物を含む臭化物ィォ ン交換体、又は従来のイオン交換榭脂について、以下の方法を用いてイオン交換性 試験を行った。本実施例では、各種イオンの共存下で臭化物イオンを選択的に除去 できるか否かについて、評価を行った。
[0114] 臭化物イオンを交換する対象となる対象溶液として、各種陰イオン (Br―、 Cl—、 NO―
3
、 SO 2—、 HPO 2、及び CO 2 )を ImMずつ含む水溶液を調製した。 [0115] この対象溶液 lOmLと、 0. lgのノ、イド口タルサイト様ィ匕合物を含む臭化物イオン交 換体又は 0. lgの通常のイオン交換体とを 24時間接触させた。
[0116] 接触後の対象溶液から、ポアサイズが 0. 45 μ mのフィルターを用いて濾過するこ とによりハイド口タルサイト様ィ匕合物を除去し、イオンクロマトグラフ(島津製作所株式 会社製、 LC VPシステム)を用いて、 Br—及び SO 2の残存イオン濃度を定量した。
4
[0117] そして、残存イオン濃度と初期濃度との差を計算することにより、交換された (吸着し た) Br—及び SO 2のイオン濃度を求めた。
4
[0118] 次に、臭化物イオンの分配係数を、
(交換された Br—濃度) Z (水中に残存して 、る Br—濃度)
によって算出し、同様に、硫酸イオンの分配係数を、
(交換された SO 2濃度)
4 Z (水中に残存している SO 2濃度)
4
によって算出した。そして、
(臭化物イオンの分配係数) / (硫酸イオンの分配係数)
を、硫酸イオンに対する臭化物イオンの選択係数として評価に用 ヽた。
[0119] (実施例 3— 1)
本実施例では、上述した合成方法に従って、 MgCl、 A1C1、及び FeCl · 6Η Οを
2 3 3 2
、 8 : l : lのモル比で混合することにょり、Mg :Al:Fe = 8 : l : lで、上記一般式(1)に おける Αが C1のハイド口タルサイト様ィ匕合物を合成した。
[0120] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 1. 75であった。
[0121] (実施例 3— 2)
Mg: A1: Fe = 6: 1: 1で、上記一般式(1)における Aが C1のハイド口タルサイト様化 合物を合成した。
[0122] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 43であった。
[0123] (実施例 3— 3)
Mg :Al:Ni= 3 : l : lで、上記一般式(1)における Aが C1のハイド口タルサイト様化 合物を合成した。 [0124] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 22であった。
[0125] (実施例 3— 4)
Mg :Fe = 8. 5 : 1. 5で、上記一般式(1)における Aが C1のハイド口タルサイト様化 合物を合成した。
[0126] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 29であった。
[0127] (実施例 3— 5)
Ni:Fe = 3 : 1で、上記一般式(1)における Aが C1のハイド口タルサイト様化合物を 合成した。
[0128] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 19であった。
[0129] (実施例 3— 6)
Mg: A1: Fe = 4: 1: 1で、上記一般式(1)における Aが C1のハイド口タルサイト様化 合物を合成した。
[0130] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 02であった。
[0131] (実施例 3— 7)
Mg :Al= 3 : 1で、上記一般式(1)における Aが C1のノ、イド口タルサイト様ィ匕合物を 合成した。
[0132] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 02以下であった。
[0133] (実施例 3— 8)
Mg :Al= 2 : 1で、上記一般式(1)における Aが C1のノ、イド口タルサイト様ィ匕合物を 合成した。
[0134] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 02以下であった。
[0135] (実施例 3— 9) Mg :Al= 3 : lで、上記一般式(1)における Aが NOのハイド口タルサイト様化合物
3
を合成した。
[0136] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 2に示すように、選択係数は 0. 02以下であった。
[0137] [表 2]
Figure imgf000024_0001
(比較例 3— 1)
市販のイオン交換体(Orica Watercare社製、 MIEX (登録商標))について、上述し たイオン交換性試験を行ったところ、選択係数は 0. 06であった。
[0138] 〔実施例 4:臭化物イオン選択性の評価 2〕
上述した方法にて合成したノ、イド口タルサイト様ィ匕合物を含む臭化物イオン交換体 につ 、て、以下の方法を用いてイオン交換性試験を行った。
[0139] 臭化物イオンを交換する対象となる対象溶液として、臭化物イオンを lmM、硫酸ィ オンを 0. 5mM含む水溶液を調製した。
[0140] この対象溶液 10mLと、 0. 2gのノ、イド口タルサイト様ィ匕合物を含む臭化物イオン交 換体とを 24時間接触させた。
[0141] 接触後の対象溶液から、上述したイオン交換性試験 1と同様の方法で Br—及び SO
4
2一の残存イオン濃度を定量し、硫酸イオンに対する臭化物イオンの選択係数を求め た。 [0142] (実施例 4 1)
Co :Fe = 3 : 1で、上記一般式(1)における Aが C1のハイド口タルサイト様化合物を 合成した。
[0143] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 3に示すように、選択係数は 0. 0200であった。
[0144] (実施例 4 2)
Co :Fe=4 : 1で、上記一般式(1)における Aが C1のハイド口タルサイト様化合物を 合成した。
[0145] このハイド口タルサイト様ィ匕合物について、上述したイオン交換性試験を行ったとこ ろ、表 3に示すように、選択係数 ίま 0. 0286であった。
[0146] [表 3]
Figure imgf000025_0001
なお、表 3において、 Coは 2価金属原子であり、 Feは 3価金属原子である。
[0147] (考察)
以上の臭化物イオン選択性の評価 1, 2の結果から、特定の組成を有するハイド口 タルサイト様ィ匕合物は、臭化物イオンの選択係数が高ぐ硫酸イオンの共存下での臭 化物イオンの交換に特に適していることが明らかになった。
[0148] 以上のように、本発明に係る臭化物イオン交換体は、ハイド口タルサイト様ィ匕合物を 含んでいるので、臭化物イオンを他のイオンに交換するために好適に利用できるとい う効果を奏する。
[0149] また、本発明に係る浄化水の製造方法は、上述したイオン交換体によって臭化物ィ オンを除去するので、臭化物イオンを減少させた浄ィ匕水を製造できると 、う効果を奏 する。
[0150] また、本発明に係るハイド口タルサイト様ィ匕合物は、上述した一般式 (2)で表される 化合物又はこれを焼成して得られうるものであるので、臭化物イオンを他のイオンに 交換するために好適に利用できると 、う効果を奏する。
[0151] 本発明は上述した実施形態及び実施例のみに限定されるものではなぐ請求項に 示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更 した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲 に含まれる。また、本明細書で示した数値範囲以外であっても、本発明の趣旨に反し な 、合理的な範囲であれば、本発明に含まれることは 、うまでもな!/、。
産業上の利用の可能性
[0152] 本発明に係る臭化物イオン交換体は、臭化物イオンを選択的に交換することができ る。従って、臭化物イオンを除去する水精製装置や水道における浄水処理等に好適 に利用することができる。

Claims

請求の範囲
[I] ノ、イド口タルサイト様ィ匕合物を含んでいることを特徴とする臭化物イオン交換体。
[2] 上記ノ、イド口タルサイト様ィ匕合物が 2価金属である Mg及び 3価金属である A1を含ん だものであることを特徴とする請求項 1に記載の臭化物イオン交換体。
[3] 上記ハイド口タルサイト様ィ匕合物がさらに 3価金属である Feを含んだものであることを 特徴とする請求項 2に記載の臭化物イオン交換体。
[4] 上記ノ、イド口タルサイト様ィ匕合物が 2価金属である Mg及び 3価金属である Feを含 んだものであることを特徴とする請求項 1に記載の臭化物イオン交換体。
[5] 上記ノ、イド口タルサイト様ィ匕合物が 2価金属である Ni及び 3価金属である Feを含ん だものであることを特徴とする請求項 1に記載の臭化物イオン交換体。
[6] 上記ノ、イド口タルサイト様ィ匕合物が 2価金属である Co及び 3価金属である Feを含ん だものであることを特徴とする請求項 1に記載の臭化物イオン交換体。
[7] 上記ノ、イド口タルサイト様ィ匕合物の硫酸イオンに対する臭化物イオンの選択係数が
0. 18以上であることを特徴とする請求項 1に記載の臭化物イオン交換体。
[8] 上記ハイド口タルサイト様ィ匕合物が、次の一般式(1)
[M1 M2 M3 (OH) ][Α] ·ηΗ Ο …ひ)
(1-x) xy x(l-y) 2 x/m 2
(式中、 0<x< 1であり、 0<y< 1であり、 M1は 2価金属原子であり、 M2及び M3は 互いに異なる 3価金属原子であり、 Aは電離すると m価の陰イオンを生じる原子又は 基である)
で表される化合物、又はこれを焼成して得られうる化合物であることを特徴とする請求 項 1に記載の臭化物イオン交換体。
[9] 上記一般式(1)における M1が Mgであり、 M2が A1であり、 M3が Feであることを特徴 とする請求項 8に記載の臭化物イオン交換体。
[10] 上記一般式(1)における Xが、 0< x< 0. 3を満たすことを特徴とする請求項 9に記 載の臭化物イオン交換体。
[II] 上記一般式(1)における Aが、 C1であることを特徴とする請求項 10に記載の臭化 物イオン交換体。
[12] ノ、イド口タルサイト様ィ匕合物によって浄ィ匕対象の水から臭化物イオンを除去する臭 化物イオン除去プロセスを含むことを特徴とする浄ィ匕水の製造方法。
[13] 上記臭化物イオン除去プロセスによって臭化物イオンが除去された浄化対象の水 に対して塩素消毒及び Z又はオゾン処理を行う消毒プロセスをさらに含むことを特徴 とする請求項 12に記載の浄化水の製造方法。
[14] 次の一般式 (2)
[Mg Al Fe (OH) ][Α] · ηΗ O · ' · (2)
(1-x) xy x(l-y) 2 x/m 2
(式中、 0< x< 0. 3であり、 0< y< 1であり、 Aは電離すると m価の陰イオンを生じ る原子又は基である)
で表される化合物を焼成して得られうるものであることを特徴とするハイド口タルサイト 様化合物。
[15] 上記一般式(2)における X力 SO. 2であり、 y力 . 5であり、 Aが C1であり、 mが 1であ ることを特徴とする請求項 14に記載のノ、イド口タルサイト様ィ匕合物。
PCT/JP2006/301368 2005-01-28 2006-01-27 ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用 WO2006080467A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500614A JPWO2006080467A1 (ja) 2005-01-28 2006-01-27 ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005022246 2005-01-28
JP2005-022246 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006080467A1 true WO2006080467A1 (ja) 2006-08-03

Family

ID=36740489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301368 WO2006080467A1 (ja) 2005-01-28 2006-01-27 ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用

Country Status (2)

Country Link
JP (1) JPWO2006080467A1 (ja)
WO (1) WO2006080467A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222474A (ja) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料及びその製造方法
JP2015039684A (ja) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 過酸化水素及びオゾンの分解触媒及びその製造方法、ならびに過酸化水素及びオゾンの分解方法
WO2015083840A1 (ja) * 2013-12-03 2015-06-11 協和化学工業株式会社 磁性ハイドロタルサイト類複合体およびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161744A (ja) * 1984-01-30 1985-08-23 Kyowa Chem Ind Co Ltd 原子炉冷却水用浄化剤及び浄化方法
JPS63252451A (ja) * 1987-04-08 1988-10-19 Nitto Electric Ind Co Ltd 半導体装置
JPH07328431A (ja) * 1994-06-15 1995-12-19 Toagosei Co Ltd ハロゲン化水素ガス吸着剤
JPH09225476A (ja) * 1996-02-21 1997-09-02 Chisso Corp 亜塩素酸イオンの除去法
JPH11327198A (ja) * 1998-05-13 1999-11-26 Canon Inc 画像形成方法及びこれを用いた画像形成装置
JP2000233188A (ja) * 1999-02-15 2000-08-29 Kaisui Kagaku Kenkyusho:Kk セレンイオン及びヒ素イオンの除去剤とその使用
JP2000512895A (ja) * 1996-06-20 2000-10-03 コントラクト マテリアルズ プロセッシング、インコーポレーテッド ハイドロタルサイト硫黄酸化物の収着
JP2001252648A (ja) * 2000-03-13 2001-09-18 Nippon Chem Ind Co Ltd アニオン捕捉剤及び排水中から無機アニオン体を回収する方法
JP2002371368A (ja) * 2001-06-14 2002-12-26 Nihon Kagaku Sangyo Co Ltd 無電解ニッケルめっき老化液の処理方法
JP2005001902A (ja) * 2003-06-09 2005-01-06 Toagosei Co Ltd 無機陰イオン交換体およびそれを用いた電子部品封止用エポキシ樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292534A (ja) * 1997-11-21 1999-10-26 Sakai Chem Ind Co Ltd 金属錯体含有ハイドロタルサイト類化合物、抗菌剤、抗菌性樹脂組成物および抗菌性塗料組成物
WO2000077851A1 (en) * 1999-06-15 2000-12-21 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device
JP2001234035A (ja) * 2000-02-24 2001-08-28 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161744A (ja) * 1984-01-30 1985-08-23 Kyowa Chem Ind Co Ltd 原子炉冷却水用浄化剤及び浄化方法
JPS63252451A (ja) * 1987-04-08 1988-10-19 Nitto Electric Ind Co Ltd 半導体装置
JPH07328431A (ja) * 1994-06-15 1995-12-19 Toagosei Co Ltd ハロゲン化水素ガス吸着剤
JPH09225476A (ja) * 1996-02-21 1997-09-02 Chisso Corp 亜塩素酸イオンの除去法
JP2000512895A (ja) * 1996-06-20 2000-10-03 コントラクト マテリアルズ プロセッシング、インコーポレーテッド ハイドロタルサイト硫黄酸化物の収着
JPH11327198A (ja) * 1998-05-13 1999-11-26 Canon Inc 画像形成方法及びこれを用いた画像形成装置
JP2000233188A (ja) * 1999-02-15 2000-08-29 Kaisui Kagaku Kenkyusho:Kk セレンイオン及びヒ素イオンの除去剤とその使用
JP2001252648A (ja) * 2000-03-13 2001-09-18 Nippon Chem Ind Co Ltd アニオン捕捉剤及び排水中から無機アニオン体を回収する方法
JP2002371368A (ja) * 2001-06-14 2002-12-26 Nihon Kagaku Sangyo Co Ltd 無電解ニッケルめっき老化液の処理方法
JP2005001902A (ja) * 2003-06-09 2005-01-06 Toagosei Co Ltd 無機陰イオン交換体およびそれを用いた電子部品封止用エポキシ樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222474A (ja) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料及びその製造方法
JP2015039684A (ja) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 過酸化水素及びオゾンの分解触媒及びその製造方法、ならびに過酸化水素及びオゾンの分解方法
WO2015083840A1 (ja) * 2013-12-03 2015-06-11 協和化学工業株式会社 磁性ハイドロタルサイト類複合体およびその製造方法
JPWO2015083840A1 (ja) * 2013-12-03 2017-03-16 協和化学工業株式会社 磁性ハイドロタルサイト類複合体およびその製造方法
US10037839B2 (en) 2013-12-03 2018-07-31 Kyowa Chemical Industry Co., Ltd. Magnetic hydrotalcite composite and production method thereof

Also Published As

Publication number Publication date
JPWO2006080467A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
Shahid et al. Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors
Abdelrahman et al. Facile fabrication of novel analcime/sodium aluminum silicate hydrate and zeolite Y/faujasite mesoporous nanocomposites for efficient removal of Cu (II) and Pb (II) ions from aqueous media
Zelmanov et al. Boron removal from water and its recovery using iron (Fe+ 3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent
Awual et al. A weak-base fibrous anion exchanger effective for rapid phosphate removal from water
EP2509696B1 (en) Water purification cartridge using zirconium ion-exchange sorbents
US8715612B2 (en) Process for preparing zinc peroxide nanoparticles
JP4958293B2 (ja) 臭素酸イオン用吸着剤
JP6180235B2 (ja) 過酸化水素及びオゾンの分解触媒、過酸化水素及びオゾンの分解方法
JP5671437B2 (ja) 吸着材の製造方法
Chen et al. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation
JP5352853B1 (ja) 放射性Cs汚染水の処理方法
JP5336932B2 (ja) 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法
Ni et al. Complexation-based selectivity of organic phosphonates adsorption from high-salinity water by neodymium-doped nanocomposite
JP5110463B2 (ja) アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料の製造方法
Rivera-Utrilla et al. New technologies to remove halides from water: an overview
WO2006080467A1 (ja) ハイドロタルサイト様化合物、臭化物イオン交換体、及びその利用
JP2005193167A (ja) 排水浄化方法及び浄化方法
JP4576560B2 (ja) リン吸着剤
WO2008001442A1 (fr) Adsorbant d&#39;anions, agent de nettoyage d&#39;eau ou d&#39;eaux usées et processus de production de celui-ci
US8133838B2 (en) Water purification material
JP2004066161A (ja) 水の処理法
KR101336824B1 (ko) 칼슘 알루미늄 황산염을 유효성분으로 하는 중금속 처리제
JP4863192B2 (ja) 高い陰イオン交換能を有する炭酸汚染し難い安定性に優れた層状複水酸化物とその合成方法
RU2725315C1 (ru) Способ очистки воды от соединений мышьяка
Khan et al. An overview of conventional and advanced water defluoridation techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007500614

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712534

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712534

Country of ref document: EP