WO2015014090A1 - 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法 - Google Patents

一种常压水相合成纳米无结晶水磷酸亚铁锂的方法 Download PDF

Info

Publication number
WO2015014090A1
WO2015014090A1 PCT/CN2014/000199 CN2014000199W WO2015014090A1 WO 2015014090 A1 WO2015014090 A1 WO 2015014090A1 CN 2014000199 W CN2014000199 W CN 2014000199W WO 2015014090 A1 WO2015014090 A1 WO 2015014090A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
phosphate
iron phosphate
acid
lithium iron
Prior art date
Application number
PCT/CN2014/000199
Other languages
English (en)
French (fr)
Inventor
李南平
何国端
张勤
蒋燕锋
Original Assignee
海门容汇通用锂业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海门容汇通用锂业有限公司 filed Critical 海门容汇通用锂业有限公司
Priority to JP2016522190A priority Critical patent/JP6177434B2/ja
Priority to US14/898,207 priority patent/US9840416B2/en
Priority to EP14831587.2A priority patent/EP3029762B1/en
Publication of WO2015014090A1 publication Critical patent/WO2015014090A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a cathode material for a lithium ion battery, in particular to a method for preparing a nanometer crystal water lithium iron phosphate by a normal pressure aqueous phase.
  • Lithium iron phosphate is a kind of cathode material for lithium ion batteries, and lithium iron phosphate with olivine structure (L i Fe POJ product has lower price, less pollution and higher capacity than other lithium ion battery cathode materials).
  • the charging and discharging process has the advantages of stable structure, small capacity attenuation and high safety performance. Therefore, since it was discovered by G ooden ou gh et al in 1997 that it has lithium-intercalation performance, lithium iron phosphate is considered to be a lithium-ion battery.
  • One of the ideal cathode materials One of the ideal cathode materials.
  • the main methods for synthesizing lithium iron phosphate include high temperature solid phase method, hydrothermal method, solvothermal method, solution coprecipitation method, sol gel method and the like.
  • the main problem of the solid phase method is that the stability of the product batch is poor, which directly leads to the short plate reaction of the assembled battery; the precursor obtained by the solution coprecipitation method and the sol-gel method is not lithium iron phosphate, but a plurality of substances.
  • the mixture, the components of the mixture are difficult to be consistent, and the obtained precursor needs to be calcined again to obtain the lithium iron hydride crystal, which results in long process, poor product consistency, and large equipment investment; hydrothermal method Although the solvothermal method can directly obtain lithium iron phosphate crystals, it requires high temperature and high pressure reaction equipment, and the investment is huge, which is not suitable for large-scale industrial production.
  • the present invention provides a method for bonding nano-crystal-free water lithium iron phosphate in a normal state in an aqueous phase.
  • the invention converts the commercially available lithium source into lithium phosphate and then introduces it into the aqueous phase as a lithium source and a phosphorus source to carry out the atmospheric pressure synthesis of lithium iron phosphate reaction, and the normal pressure aqueous phase synthesizes the nanometer non-crystalline lithium iron phosphate.
  • the preparation process is as follows: a. Preparation of lithium phosphate: After adding phosphoric acid to a lithium salt solution containing 0.2-4 mol/L of lithium, the temperature is raised to 30-8 CTC, and the molar amount of phosphoric acid added is one-third of the molar amount of lithium in the solution, and then stirred. Adding sodium hydroxide aqueous solution to adjust the pH value to 9-11, and then performing solid-liquid separation and washing to obtain a lithium phosphate solid;
  • aqueous lithium phosphate suspension Dissolve the obtained lithium phosphate in water to a lithium phosphate suspension having a lithium phosphate concentration of 0. 1 mol/L;
  • ferrous salt solution preparation the ferrous salt is dissolved in water to prepare a ferrous salt solution with an iron content of 0.5-3 mol / L, the pH is adjusted to 1 - 3 with acid;
  • the lithium salt in the step a is a mixture of lithium sulfate, lithium carbonate, lithium chloride, lithium hydroxide, lithium nitrate, lithium acetate, lithium citrate or a mixture of any of them in any ratio.
  • the ferrous salt in the step c is a mixture of any one or a plurality of ferrous sulfate, ferrous chloride, ferrous nitrate and ferrous acetate mixed in any ratio, and the acid for adjusting the pH of the solution is sulfuric acid, hydrochloric acid, Any one or a mixture of nitric acid, acetic acid, and citric acid mixed in any ratio.
  • the solid-liquid separation and washing in the step d may be any one of suction filtration, pressure filtration and centrifugation, and the drying may be any one of spraying and drying, the spray drying temperature is 120 320 ° C, and the drying is dried.
  • hK im is 40-200 ⁇
  • drying and drying time is 0.5-48 hours.
  • the invention has the advantages of mild reaction condition, low time period, low energy consumption, lithium recovery in the mother liquor and recycling, which can reduce cost, good product performance, stable batch, uniform and controllable particle size, and favorable industrial production.
  • m 1 is a scanning electron micrograph of a non-crystalline water lithium iron phosphate directly synthesized under normal pressure in an aqueous phase
  • Fig. 2 is an X-ray diffraction spectrum of a non-crystalline water lithium iron phosphate directly synthesized under normal pressure in an aqueous phase.
  • the lithium phosphate suspension having a concentration of 0.1 mol/L was prepared by dispersing the obtained lithium phosphate in water.
  • 582L of iron oxide solution containing 0.5 mol/L of iron was placed, and its pH was adjusted to 1 with sulfuric acid.
  • 582L of iron oxide solution containing 0.5mol/L of iron is disposed, and the time used is controlled to be about 1 hour.
  • ferrous sulfate solution continue to stir and return.
  • the reaction was carried out for 8 hours in a flowing state, followed by solid-liquid separation, washing, and drying to obtain a nano-crystalline lithium iron phosphate and a corresponding lithium iron phosphate mother liquor.
  • the d 5 trolley of the prepared nano-crystalline water lithium iron phosphate was 400 nm.
  • the obtained lithium phosphate was dispersed in water to prepare a lithium phosphate suspension having a concentration of 0.2 mol/L.
  • An appropriate amount of ferrous acetate and ferrous chloride was used to prepare a mixture of 582 L of iron oxide and ferrous chloride containing 1 mol / L of iron, and the pH was adjusted to 1 with nitric acid.
  • a previously prepared 0.2 mol/L lithium phosphate suspension 3000 L was added, stirring was started, and the lithium phosphate float was heated to a reflux state, and slowly added under reflux.
  • the obtained lithium iron phosphate mother liquor was transferred to a 5000 L lithium recovery reactor, and 46 kg of 85% phosphoric acid was added under stirring, the temperature was raised to 70 ° C, and then the pH was adjusted to 11 by adding sodium hydroxide solution. Next, solid-liquid separation and washing are carried out to obtain recovered lithium phosphate, and the obtained lithium phosphate is returned to the step of preparing a lithium phosphate suspension for recycling.
  • the prepared nano-free crystalline lithium iron phosphate lithium d 5 It is 320 nm.
  • the obtained lithium phosphate was dispersed in water to prepare a lithium phosphate suspension having a concentration of 1. Omo 1 /L.
  • An appropriate amount of ferrous chloride was used to dispose 1000 L of a ferrous chloride solution containing 3 mol/L of iron, and the pH was adjusted to 3 with hydrochloric acid.
  • Into a 5000 L reactor equipped with a reflux device 3000 L of a suspension of 1. Omol/L of lithium phosphate prepared previously was added, stirring was started, and the lithium phosphate suspension was heated to a reflux state, and slowly added under reflux.
  • the 1000 L of 3 mol/L ferrous chloride solution is set to be controlled for about 3 hours, then reacted under stirring and reflux for 2 hours, and then subjected to solid-liquid separation, washing and drying to obtain nano-crystal water. Lithium iron phosphate and the corresponding lithium iron phosphate mother liquor.
  • the obtained lithium iron phosphate mother liquor was transferred to a 5000 L lithium recovery reactor, and 230.6 kg of 85/ was added under stirring. Phosphoric acid, the temperature is raised to 30 ° C, and then the pH is adjusted to 9 by adding sodium hydroxide solution, followed by solid-liquid separation and washing to obtain recovered lithium phosphate, and the recovered lithium phosphate is returned to the preparation of lithium phosphate suspension. The liquid is recycled in the process.
  • the obtained nano-crystal-free water lithium iron phosphate is d., « is 50 nm.
  • the obtained lithium phosphate was dispersed in water to prepare a lithium phosphate suspension having a concentration of 0.5 mol/L. Liquid. An appropriate amount of ferrous chloride and ferrous sulfate was used to prepare a mixed solution of 990 L of iron chloride and ferrous sulfate of 1.5 mol/L, and the pH was adjusted to 2 with sulfuric acid. Adding 3000 L of a 0.5 mol/L lithium phosphate suspension prepared beforely to a 5000 L reactor equipped with a reflux device, stirring was started, and the lithium phosphate suspension was heated to a reflux state, and slowly added under reflux.
  • the obtained lithium iron phosphate mother liquor was transferred to a 5000 L lithium recovery reactor, and 115.3 kg of 85% phosphoric acid was added under stirring, the temperature was raised to 60 ° C, and then the pH was adjusted to 10 by adding sodium hydroxide solution. Next, solid-liquid separation and washing are carried out to obtain recovered lithium phosphate, and the obtained lithium phosphate is returned to the step of preparing a lithium phosphate suspension for recycling.
  • the nano-crystal-free water lithium iron phosphate prepared was 185 nm.
  • the solution was stirred, 115.3 kg of 85% phosphoric acid was added and the temperature was raised to 60 ° C, and the pH of the aqueous solution was adjusted to 10 by adding an aqueous sodium hydroxide solution to the reaction vessel, followed by solid-liquid separation and washing to obtain a lithium phosphate solid.
  • the obtained lithium phosphate was dispersed in water to prepare a lithium phosphate suspension having a concentration of 0.25 mol/L.
  • An appropriate amount of ferrous nitrate was used to prepare 735 L of a ferrous nitrate solution containing 1 mol/L of iron, and the pH was adjusted to 2 with acetic acid.
  • the obtained 735L of 1 mol/L ferrous nitrate solution was used for about 2 hours, and then reacted under stirring and reflux for 6 hours, and then subjected to solid-liquid separation, washing and drying to obtain nano-nodated water phosphate.
  • Ferrous lithium and Corresponding lithium iron phosphate mother liquor were used for about 2 hours, and then reacted under stirring and reflux for 6 hours, and then subjected to solid-liquid separation, washing and drying to obtain nano-nodated water phosphate.
  • the obtained lithium iron phosphate mother liquor was transferred to a 5000 L lithium recovery reactor, and 57.7 kg of 85% phosphoric acid was added under stirring, the temperature was raised to 70 ° C, and then sodium hydroxide solution was added to adjust the pH and pH. Up to 10, solid-liquid separation and washing are carried out to obtain recovered lithium phosphate, and the obtained lithium phosphate is returned to the step of preparing a lithium phosphate suspension for recycling.
  • the obtained lithium phosphate was dispersed in water to prepare a lithium phosphate float having a concentration of 0.75 mol/L.
  • An appropriate amount of ferrous acetate was used to prepare 750 L of a ferrous acetate solution containing 3 mol/L of iron, and the pH was adjusted to 3 with citric acid.
  • 3000 L of a 0.95 mol/L lithium phosphate suspension prepared previously was added, stirred, and the lithium liquid lithium suspension was heated to reflux state, and slowly refluxed.
  • the obtained lithium iron phosphate mother liquor was transferred to a 5000 L lithium recovery reactor, and 172.9 kg of 85% phosphoric acid was added under stirring, the temperature was raised to 50 ° C, and then the pH was adjusted to 9 by adding sodium hydroxide solution. Next, solid-liquid separation and washing are carried out to obtain recovered lithium phosphate, and the obtained lithium phosphate is returned to the step of preparing a lithium phosphate suspension for recycling.
  • the prepared nano-nodated water lithium iron phosphate lithium d 5 It is 80 nm.
  • the preparation method has mild reaction conditions, low time period and low energy consumption, and lithium recovery and recycling in the mother liquor can reduce cost, low equipment cost, good product performance, stable batch, uniform and controllable force, and favorable industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种常压水相合成纳米无结晶水磷酸亚铁锂的方法,属于锂离子正极材料的制备方法,该制备过程包括以下步骤:磷酸锂制备、磷酸锂水相悬浮液制备、亚铁盐溶液配制、纳米无结晶水磷酸亚铁锂制备和磷酸亚铁锂母液中锂的回收及循环利用,该发明的有益效果是:反应条件温和、时间短、能耗低、母液中锂回收并循环利用可降低成本、批次稳定、力度均匀可控、有利于工业化生产。

Description

一种常压水相合成纳米无结晶水憐酸亚铁锂的方法 技术领域
本发明涉及一种锂离子电池正极材料的制备方法,具体是一种常压水相 合成纳米无结晶水磷酸亚铁锂的制备方法。
背景技术
磷酸亚铁锂属于锂离子电池正极材料的一种,具有橄榄石结构的磷酸亚 铁锂 ( L i Fe POJ 品体与其它的锂离子电池正极材料相比具有价格低廉、 污 染小、 容量高、 充放电过程结构稳定、 容量衰减小、 安全性能高的优点。 因此, 自 1 997 年被 G o o d e n ou gh等人发现其具有嵌脱锂性能以来, 磷酸亚 铁锂就被认为是锂离子电池的理想正极材料之一。
合成磷酸亚铁锂的主要方法有高温固相法、 水热法、 溶剂热法、 溶液共 沉淀法、 溶胶凝胶法等。 其中固相法存在的主要问题是产品批次稳定性差, 直接导致成组电池的短板反应; 溶液共沉淀法和溶胶凝胶法得到的前驱体 并非是磷酸亚铁锂, 而是多种物质的混合物, 混合物的各组分很难做到一 致, 对获得的前驱体需要进行再次 温煅烧才能得到憐酸亚铁锂晶体 , 这 样就使得工序长, 产品一致性差 , 设备投入大 ; 水热法和溶剂热法虽然能 直接得到磷酸亚铁锂晶体, 但需 冋温高压的反应设备, 投资巨大, 不适 合大规模的工业化生产。
针对上述现有技术的不足,本发明提供一种在水相中常压状态 接合 成出纳米无结晶水磷酸亚铁锂的方法
发明内容
本发明把市售锂源先转化为磷酸锂后再作为锂源和磷源引入水相中 进行常压合成磷酸亚铁锂反应, 一种常压水相合成纳米无结晶水磷酸亚铁 锂的制备过程具体如下: a、 磷酸锂制备: 在含锂 0.2-4 mol/L 的锂盐水溶液中加入磷酸后升温 到 30-8CTC, 磷酸的加入摩尔量为溶液中锂摩尔量的三分之一, 然后在搅 拌状态下加入氢氧化钠水溶液调节其 pH 值至 9-11, 再进行固液分离和洗 涤, 得到磷酸锂固体;
b、 磷酸锂水相悬浮液制备: 将得到的磷酸锂用水分散成磷酸锂浓度为 0.卜1 mol/L 的磷酸锂悬浮液;
c、 亚铁盐溶液制备: 将亚铁盐溶于水配制成铁含量为 0.5-3 mol/L 的亚铁盐溶液, 用酸将其 pH值调节至 1 - 3;
d、 纳米无结晶水磷酸亚铁锂制备: 将 b过程中制得的磷酸锂悬浮液置 于反应釜中, 常压下搅拌加热至沸腾, 对汽化的蒸汽进行冷却回流, 回流 状态下慢慢加入 c 过程中所配制的亚铁盐溶液, 加入的亚铁盐的摩尔鼋为 反应釜中磷酸锂摩尔量的 0.97- 1.0倍, 加入的时间控制在 1 3 小时间, 加 完后, 继续保持搅拌并在回流状态下反应 2- 8 小时, 然后进行固液分离、 洗涤、 干燥, 得到纳米无结晶水磷酸亚铁锂固体及相应的磷酸亚铁锂母液; e、 磷酸亚铁锂母液中锂的回收及循环利用: 将上一歩制得的纳米无结 品水磷酸亚铁锂固体分离后所剩磷酸亚铁锂母液转入反应釜中, 在搅拌状 态下加入磷酸, 加入的磷酸摩尔量为母液中锂的摩尔量的三分之一, 然后 加热至 30- 80°C, 加入氢氧化钠溶液将其 pH值调至 9-11, 再进行固液分离 和洗涤得到磷酸锂, 该磷酸锂回到歩骤 b 中循环利用。
歩骤 a 中的锂盐为硫酸锂、 碳酸锂、 氯化锂、 氢氧化锂、 硝酸锂、 醋 酸锂、 柠檬酸锂中任意一种或几种以任意比例混合的混合物。
骤 c 中的亚铁盐为硫酸亚铁、 氯化亚铁、 硝酸亚铁、 醋酸亚铁中的 任意一种或几种以任意比例混合的混合物, 调节溶液 pH值的酸为硫酸、 盐 酸、 硝酸、 醋酸、 柠檬酸中的任意一种或几种以任意比例混合的混合物。 歩骤 d 中的固液分离和洗涤可以是抽滤、 压滤、 离心的任意一种方法, 干燥可以是喷雾、 烘干的任意一种方式, 喷雾干燥温度为 120 320°C, 烘 千干 hK im 为 40- 200Γ, 烘干干燥时间为 0.5-48 小时。
本发明的有益效果: 反应条件温和、 时间段、 能耗低、 母液中锂回收 并循环利用可降低成本、 产品性能好、 批次稳定、 粒度均匀可控、 有利于 工业化生产
附 说明
m 1 为水相中常压状态下直接合成的无结晶水纳米磷酸亚铁锂的扫描电子 显微镜图谱;
图 2为水相中常压状态下直接合成的无结晶水纳米磷酸亚铁锂的 X-射线衍 射图谱。
具体实施方式
下面通过实施例进一歩说明本发明
实施例 1
在 6300L 的搪瓷反应釜中加入 4800L含锂 0.2mol/L 的硫酸锂溶液, 开 启搅拌, 加入 36.9kg85%的磷酸并升温到 80Ό, 接下来向反应釜中加入氢 氧化钠水溶液将其 pH 值调至 11, 最后进行固液分离和洗涤得到磷酸锂固 体。
将所得到的磷酸锂分散在水中, 制备出浓度为 0. lmol/L 的磷酸锂悬浮 液。 同时, 配置 582L含铁 0.5mol/L 的硫酸亚铁溶液, 并用硫酸调节其 pH 值至 1。 在装有回流装置的 5000L的反应釜中加入之前得到的 0. lmol/L 的 磷酸锂悬浮液 3000L, 丌启搅拌, 将磷酸锂悬浮液加热至回流状态, 在回 流状态下慢慢加入之前所配置的含铁 0.5mol/L 的硫酸亚铁溶液 582L, 所 用的时间控制在 1 小时左右, 加完硫酸亚铁溶液后, 继续保持搅拌并在回 流状态下反应 8h, 然后进行固液分离、 洗涤、 干燥, 得到纳米无结晶水磷 酸亚铁锂和相应的磷酸亚铁锂母液。
将磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中, 搅拌状态下加入 23kg85%的磷酸后, 将温度升至 80°C, 然后加入氢氧化钠溶液将其 pH值调 至 11, 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所得的磷酸锂 返回到制备磷酸锂悬浮液的工序中进行循环利用。
所制得的纳米无结晶水磷酸亚铁锂的 d5„为 400nm。
实施例 2
在 6300L 的搪瓷反应釜中加入 4800L含锂 0. 4mol/L 的氢氧化锂溶液, 开启搅拌, 加入 73. 8 的 85%的磷酸并升温到 70V, 接下来向反应釜中加入 氢氧化钠水溶液将其 pH 值调至 11, 最后进行固液分离和洗涤得到磷酸锂 固体。
将所得到的磷酸锂分散在水中,制备出浓度为 0. 2mol/L 的磷酸锂悬浮 液 。 取适量的醋酸亚铁和氯化亚铁配制出 582L 含铁 1 mo 1 /L 的醋酸亚铁和 氯化亚铁的混合溶液 , 用硝酸将其 pH值调至 1。 在装有回流装置的 5000L 的反应釜中加入之前所制备的 0. 2mol/L的磷酸锂悬浮液 3000L,开启搅拌, 并将磷酸锂 浮液升温至回流状态, 在回流状态下慢慢加入之前所配置得 到的 582L 的 lmol/L 的醋酸亚铁和氯化亚铁的混合溶液, 所用的时间控制 在 1 小时左右, 然后在搅拌和回流状态下反应 7h, 再进行固液分离、 洗涤、 干燥, 得到纳米无结晶水憐酸亚铁锂和相应的磷酸亚铁锂母液。
所得的磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中, 搅拌状态下 加入 46kg 的 85%的磷酸, 将温度升至 70°C, 然后加入氢氧化钠溶液将其 pH值调至 11, 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所得的 磷酸锂返回到制备磷酸锂悬浮液的工序中进行循环利用。 所制得的纳米无结晶水磷酸亚铁锂的 d5。为 320nm。
实施例 3
在 5000L 的搪瓷反应釜中加入 3000L含锂 4mol/L 的氯化锂溶液, 开启 搅拌, 加入 461kg 的 85%的磷酸并升温到 20Ό, 接下来向反应釜中加入氢 氧化钠水溶液将其 pH值调至 9,最后进行固液分离和洗涤得到磷酸锂固体。
将所得到的磷酸锂分散在水中, 制备出浓度为 1. Omo 1 /L 的磷酸锂悬浮 液。 取适量的氯化亚铁配置出 1000L含铁 3mol /L 的氯化亚铁溶液, 用盐酸 将其 pH值调至 3。 在装有回流装置的 5000L 的反应釜中加入之前所制备的 1. Omol/L 的磷酸锂悬浮液 3000L, 开启搅拌, 并将磷酸锂悬浮液升温至回 流状态,在回流状态下慢慢加入之前所配置得到的 1000L 的 3mol/L 的氯化 亚铁溶液, 所用的时间控制在 3 小时左右, 然后在搅拌和回流状态下反应 2h, 再进行固液分离、 洗涤、 干燥, 得到纳米无结晶水磷酸亚铁锂和相应 的磷酸亚铁锂母液。
所得的磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中,搅拌状态下加 入 230.6kg 的 85/。的磷酸, 将温度升至 30°C, 然后加入氢氧化钠溶液将其 pH 值调至 9, 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所得的 磷酸锂返回到制备磷酸锂悬浮液的工序中进行循环利用。
所制得的纳米无结晶水磷酸亚铁锂的 d.,«为 50nm。
实施例 4
在 5000L的搪瓷反应釜中加入 3000L含锂 2mol/L的氯化锂和硫酸锂混 合溶液, 开启搅拌, 加入 230.5kg85%的磷酸并升温到 50°C , 接下来向 应 釜中加入氢氧化钠水溶液将其 pH 值调至 10, 最后进行固液分离和洗涤得 到磷酸锂固体。
将所得到的磷酸锂分散在水中,制备出浓度为 0.5mol/L 的磷酸锂悬浮 液。 取适量的氯化亚铁和硫酸亚铁配制出 990L 含铁 1.5mol/L 的氯化亚铁 和硫酸亚铁的混合溶液,用硫酸将其 pH值调至 2。在装有回流装置的 5000L 的反应釜中加入之前所制备的 0.5mol/L的磷酸锂悬浮液 3000L,开启搅拌, 并将磷酸锂悬浮液升温至回流状态, 在回流状态下慢慢加入之前所配臂得 到的 990L 的 1.5mol/L 的氯化亚铁和硫酸亚铁的 /比 溶液, 所用的时间控 制在 2小时左右, 然后在搅拌和回流状态下反应 5h, 再进行固液分离 、 洗 、 干燥, 得到纳米无结晶水磷酸亚铁锂和相应的磷酸亚铁锂母液
所得的磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中, 搅拌状态下 加入 115.3kg 的 85%的磷酸, 将温度升至 60°C, 然后加入氢氧化钠溶液将 其 pH 值调至 10, 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所 得的磷酸锂返回到制备磷酸锂悬浮液的工序中进行循环利用。
所制得的纳米无结晶水磷酸亚铁锂的 „为 185nm。
实施例 5
在在 5000L的搪瓷反应釜中加入 3000L含锂 lmol/L的碳酸锂和硝酸锂 的混入
溶液, 开启搅拌, 加入 115.3kg 的 85%的磷酸并升温到 60 °C, 下 来向反应釜中加入氢氧化钠水溶液将其 pH 值调至 10, 最后进行固液分离 和洗涤得到磷酸锂固体。
将所得到的磷酸锂分散在水中, 制备出浓度为 0.25mol/L 的磷酸锂悬 浮液。 取适量的硝酸亚铁配制出 735L含铁 lmol/L 的硝酸亚铁溶液, 用醋 酸将其 pH值调至 2。 在装有回流装置的 5000L 的反应釜中加入之前所制备 的 0.25mol/L 的磷酸锂悬浮液 3000L, 开启搅拌, 并将磷酸锂悬浮液升温 至回流状态, 在回流状态下慢慢加入之前所配置得到的 735L 的 lmol/L 的 硝酸亚铁溶液, 所用的时间控制在 2 小时左右, 然后在搅拌和回流状态下 反应 6h, 再进行固液分离、 洗涤、 干燥, 得到纳米无结品水磷酸亚铁锂和 相应的磷酸亚铁锂母液。
所得的磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中, 搅拌状太下 加入 57.7kg 的 85%的磷酸, 将温度升至 70°C, 然后加入氢氧化钠溶液将苴、 pH值调至 10, 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所得的 磷酸锂返回到制备磷酸锂悬浮液的工序中进行循环利用。
所制得的纳米无结晶水磷酸亚铁锂的 d5„为 280nm
实施例 6
在 5000L的搪瓷反应釜中加入 3000L含锂 3mol/L的醋酸锂和柠檬敗锂. 的混合溶液, 开启搅拌, 加入 345.8kg 的 85%的磷酸并升温到 40 °C , 接下 来向反应釜中加入氢氧化钠水溶液将其 pH值调至 9, 最后迸行固液分离和 洗涤得到磷酸锂固体。
将所得到的磷酸锂分散在水中, 制备出浓度为 0. 75mol/L 的磷酸锂 浮液。 取适量的醋酸亚铁配制出 750L 含铁 3mol/L 的醋酸亚铁溶液, 用柠 檬酸将其 pH值调至 3。 在装有回流装置的 5000L的反应釜中加入之前所制 备的 0. 75mol/L 的磷酸锂悬浮液 3000L, 丌启搅拌, 并将憐酸锂悬浮液升 温至回流状态, 在回流状态下慢慢加入之前所配置得到的 750L 的 3mol/L 的氯化亚铁和硫酸亚铁的混合溶液, 所用的时间控制在 3 小时左右, 然后 在搅拌和回流状态下反应 4h, 再进行固液分离、 洗涤、 干燥, 得到纳米无 结品水磷酸亚铁锂和相应的磷酸亚铁锂母液。
所得的磷酸亚铁锂母液转移至 5000L 的锂回收反应釜中, 搅拌状态下 加入 172.9kg 的 85%的磷酸, 将温度升至 50°C, 然后加入氢氧化钠溶液将 其 pH值调至 9 , 接下来进行固液分离和洗涤得到回收的磷酸锂, 回收所得 的磷酸锂返回到制备磷酸锂悬浮液的工序中进行循环利用。
所制得的纳米无结品水磷酸亚铁锂的 d5。为 80nm。 该制备方法反应条件温和、 时间段、 能耗低、 母液中锂回收并循环利 用可降低成本、 设备造价低、 产品性能好、 批次稳定、 力度均匀可控、 有 利于工业化生产。

Claims

权 利 要 求 书
一种常压水相合成纳米无结晶水磷酸亚铁锂的方法, 其特征在于, 包 括以下步骤:
磷酸锂制备: 在含锂 0.2-4 mol/L 的锂盐水溶液中加入磷酸后升温 到 30-80°C, 磷酸的加入摩尔量为溶液中锂摩尔量的三分之一, 然后 在搅拌状态下加入氢氧化钠水溶液调节其 pH值至 9 11, 再进行固液 分离和洗涤, 得到磷酸锂固体;
磷酸锂水相悬浮液制备: 将得到的磷酸锂用水分散成磷酸锂浓度为 0.1-lmol/L的磷酸锂悬浮液;
亚铁盐溶液制备: 将亚铁盐溶于水配制成铁含量为 0.5-3 mol/L 的 亚铁盐溶液, 用酸将其 pH值调节至 1 - 3;
纳米无结晶水磷酸亚铁锂制备: 将 b 过程中制得的憐酸锂悬浮液置 于反应釜中, 常压下搅拌加热至沸腾, 对汽化的蒸汽进行冷却回流, 回流状态下慢慢加入 c过程中所配制的亚铁盐溶液, 加入的亚铁盐的 摩尔量为反应釜中磷酸锂摩尔量的 0.97- 1.0 倍, 加入的时间控制在 1 3 小时间, 加完后, 继续保持搅拌并在回流状态下反应 2- 8小时, 然后进行固液分离、 洗涤、 干燥, 得到纳米无结晶水磷酸亚铁锂固体 及相应的磷酸亚铁锂母液;
磷酸亚铁锂母液中锂的回收及循环利用: 将上一歩制得的纳米无结 晶水磷酸亚铁锂固体分离后所剩磷酸亚铁锂母液转入反应釜中, 在搅 拌状态下加入磷酸, 加入的瞵酸摩尔量为母液中锂的摩尔量的三分之 一, 然后加热至 30- 8CTC, 加入氢氧化钠溶液将其 pH 值调至 9- 11, 再进行固液分离和洗涤得到磷酸锂, 该磷酸锂回到歩骤 b 中循环利 用。
根据权利要求 1 所述的一种常压水相合成纳米无结晶水憐酸亚铁锂 的方法, 其特征在于: 歩骤 a 中的锂盐为硫酸锂、 碳酸锂、 氯化锂、 氢氧化锂、 硝酸锂、 醋酸锂、 柠檬酸锂中任意一种或几种以任意比例 混合的混合物。
、 根据权利要求 1 所述的一种常压水相合成纳米无结晶水磷酸亚铁锂 的方法, 其特征在于: 歩骤 c 中的亚铁盐为硫酸亚铁、 氯化亚铁、 硝 酸亚铁、 醋酸亚铁中的任意一种或几种以任意比例混合的混合物, 调 节溶液 pH 值的酸为硫酸、 盐酸、 硝酸、 醋酸、 柠檬酸中的任意一种 或几种以任意比例混合的混合物。
、 根据权利要求 1 所述的一种常压水相合成纳米无结晶水磷酸亚铁锂 的方法, 其特征在于: 歩骤 d 中的固液分离和洗涤可以是抽滤、 压滤、 离心的任意一种方法, 干燥可以是喷雾、 烘干的任意一种方式, 喷雾 干燥温度为 120- 320°C, 烘干干燥温度为 40-200Ό, 烘干干燥时间为 0.5-48 小时。
PCT/CN2014/000199 2013-07-29 2014-03-05 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法 WO2015014090A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016522190A JP6177434B2 (ja) 2013-07-29 2014-03-05 常圧で結晶水無しのナノリン酸鉄リチウムの水相合成法
US14/898,207 US9840416B2 (en) 2013-07-29 2014-03-05 Method for synthesizing nano-lithium iron phosphate without water of crystallization in aqueous phase at normal pressure
EP14831587.2A EP3029762B1 (en) 2013-07-29 2014-03-05 Method for synthesizing nano-lithium iron phosphate without water of crystallization in aqueous phase at normal pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310320379.X 2013-07-29
CN201310320379.XA CN103400983B (zh) 2013-07-29 2013-07-29 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法

Publications (1)

Publication Number Publication Date
WO2015014090A1 true WO2015014090A1 (zh) 2015-02-05

Family

ID=49564564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000199 WO2015014090A1 (zh) 2013-07-29 2014-03-05 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法

Country Status (5)

Country Link
US (1) US9840416B2 (zh)
EP (1) EP3029762B1 (zh)
JP (1) JP6177434B2 (zh)
CN (1) CN103400983B (zh)
WO (1) WO2015014090A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041683A (ja) * 2016-09-09 2018-03-15 太平洋セメント株式会社 オリビン型リン酸リチウム系正極材料の製造方法
CN110734046A (zh) * 2019-11-19 2020-01-31 甘肃睿思科新材料有限公司 一种强碱性含锂母液制备磷酸锂的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400983B (zh) 2013-07-29 2015-07-08 海门容汇通用锂业有限公司 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法
CN103956464B (zh) * 2014-05-19 2016-06-08 江苏容汇通用锂业股份有限公司 一种常压水相合成掺石墨烯纳米富锰磷酸亚铁锂的方法
CN104925837B (zh) * 2015-03-18 2017-05-03 江西赣锋锂业股份有限公司 一种回收电池级碳酸锂沉锂母液制备锂盐的方法
KR101753092B1 (ko) * 2016-12-14 2017-07-04 성일하이텍(주) 리튬 함유 폐액으로부터 인산리튬 제조방법
US10850989B2 (en) 2016-12-20 2020-12-01 Sungeel Hitech Co., Ltd. Method for preparing solid lithium salt from lithium solution
CN106957049B (zh) * 2017-05-09 2019-01-29 东北大学 一种制备纳米级磷酸锰锂的方法
CN109585811A (zh) * 2018-11-09 2019-04-05 西藏容汇锂业科技有限公司 一种高倍率循环锂离子电池正极材料的制备方法
CN110620278B (zh) * 2019-09-25 2021-07-02 深圳清华大学研究院 一种废旧磷酸铁锂电池正极材料的回收方法
CN111847417B (zh) * 2020-07-24 2021-12-14 中南大学 一种电池级水合磷酸铁的制备方法
CN112142029B (zh) * 2020-08-17 2023-01-10 北京赛德美资源再利用研究院有限公司 废旧磷酸铁锂电池正极材料的修复再生方法
JP7490513B2 (ja) 2020-09-18 2024-05-27 太平洋セメント株式会社 オリビン型リン酸リチウム系正極材料を得るためのLi3PO4粒子の製造方法
CN112938916B (zh) * 2021-03-05 2023-09-19 四川优源新能源有限公司 一种控制结晶制备高性价比磷酸铁锂前驱体的合成方法
CN114933291A (zh) * 2022-04-08 2022-08-23 四川顺应动力电池材料有限公司 一种利用镍铁合金制备高纯磷酸铁锂的方法
CN115367776B (zh) * 2022-09-27 2024-01-09 广东邦普循环科技有限公司 一种磷酸铁锂电池的回收方法
CN115448285B (zh) * 2022-10-26 2024-02-06 华鼎国联四川电池材料有限公司 一种以循环再利用的磷酸锂为原料制备磷酸铁锂方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175767A (ja) * 2010-02-23 2011-09-08 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及びリン酸リチウムの回収方法
CN102842716A (zh) * 2012-08-03 2012-12-26 江苏力天新能源科技有限公司 一种纳米级磷酸铁锂的制备方法
CN103400983A (zh) * 2013-07-29 2013-11-20 海门容汇通用锂业有限公司 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949543B2 (ja) * 1999-04-06 2012-06-13 ソニー株式会社 LiFePO4の合成方法及び非水電解質電池の製造方法
CA2270771A1 (fr) * 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
US7390472B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
CN1332909C (zh) * 2004-12-07 2007-08-22 清华大学 LiFePO4/Li-Ti-O纳米纤维复合材料制备方法
CN103326019A (zh) * 2005-06-29 2013-09-25 尤米科尔公司 无碳结晶LiFePO4粉末及其用途
CN100480178C (zh) * 2007-01-16 2009-04-22 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
KR101502184B1 (ko) * 2007-03-19 2015-03-12 유미코르 Li계 배터리에 사용하기 위한 상온 단상 Li 삽입/추출 물질
EP2142473B1 (en) * 2007-07-31 2014-04-02 Byd Company Limited Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
US9139429B2 (en) * 2010-03-02 2015-09-22 Guiqing Huang High performance cathode material LiFePO4, its precursors and methods of making thereof
JP5544934B2 (ja) * 2010-03-03 2014-07-09 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法
CN102583295A (zh) * 2011-01-06 2012-07-18 河南师范大学 一种液相制备无碳球形纳米磷酸铁锂的方法
CN102649546B (zh) * 2011-02-24 2014-10-22 中国科学院金属研究所 一种大幅度提高低温水热合成LiFePO4电化学性能的方法
CN102683699B (zh) * 2012-05-21 2014-07-30 海门容汇通用锂业有限公司 一种一水磷酸亚铁锂的制备方法
CN103259015B (zh) * 2013-05-10 2015-08-05 西安工业大学 水热法制备磷酸铁锂正极材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175767A (ja) * 2010-02-23 2011-09-08 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及びリン酸リチウムの回収方法
CN102842716A (zh) * 2012-08-03 2012-12-26 江苏力天新能源科技有限公司 一种纳米级磷酸铁锂的制备方法
CN103400983A (zh) * 2013-07-29 2013-11-20 海门容汇通用锂业有限公司 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041683A (ja) * 2016-09-09 2018-03-15 太平洋セメント株式会社 オリビン型リン酸リチウム系正極材料の製造方法
CN110734046A (zh) * 2019-11-19 2020-01-31 甘肃睿思科新材料有限公司 一种强碱性含锂母液制备磷酸锂的方法
CN110734046B (zh) * 2019-11-19 2023-02-28 甘肃睿思科新材料有限公司 一种强碱性含锂母液制备磷酸锂的方法

Also Published As

Publication number Publication date
CN103400983A (zh) 2013-11-20
US9840416B2 (en) 2017-12-12
EP3029762A1 (en) 2016-06-08
JP2016528140A (ja) 2016-09-15
CN103400983B (zh) 2015-07-08
EP3029762A4 (en) 2016-08-10
EP3029762B1 (en) 2017-06-28
JP6177434B2 (ja) 2017-08-09
US20160145103A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2015014090A1 (zh) 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法
WO2022127322A1 (zh) 一种磷酸铁的制备方法及其应用
WO2023000849A1 (zh) 磷酸铁及其制备方法和应用
JP2016528140A5 (zh)
CN110098406B (zh) 一种具有高压实密度高容量磷酸铁锂的制备方法
WO2022237102A1 (zh) 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
CN109830663B (zh) 一种核壳结构三元前驱体的制备方法
CN113871596B (zh) 锂复合材料、锂离子电池正极材料制备方法及锂离子电池
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN104692465B (zh) 锂离子电池正极材料α-LiFeO2纳米粉体的制备方法
CN105118995A (zh) 一种电池级磷酸铁的生产方法
CN105826524B (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN112266020B (zh) 钠化钒液制备五氧化二钒正极材料的方法
WO2023142672A1 (zh) 高纯磷酸铁的制备方法及其应用
CN108511724B (zh) 一种溶胶凝胶辅助超临界co2干燥制备磷酸锰铁锂方法
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN104649336A (zh) 一种球形镍钴铝氢氧化物前驱体的制备方法
CN109950514A (zh) 一种铁酸锂包覆磷酸铁锂的制备方法
CN109264691A (zh) 一种由磷酸铁锂制备磷酸锰铁锂的方法
CN107785570B (zh) 一种提高橄榄石结构电极材料水热法产量的制备方法
CN110735038A (zh) 一种从废旧钛酸锂电池中循环回收利用电极金属材料的方法
CN103956464B (zh) 一种常压水相合成掺石墨烯纳米富锰磷酸亚铁锂的方法
CN101481145A (zh) 一种制备锂离子电池正极材料LiMn2O4的新方法
CN114899392A (zh) 一种锂离子电池磷酸铁锂或锰铁锂正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898207

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014831587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014831587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016522190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE