WO2023000849A1 - 磷酸铁及其制备方法和应用 - Google Patents

磷酸铁及其制备方法和应用 Download PDF

Info

Publication number
WO2023000849A1
WO2023000849A1 PCT/CN2022/097185 CN2022097185W WO2023000849A1 WO 2023000849 A1 WO2023000849 A1 WO 2023000849A1 CN 2022097185 W CN2022097185 W CN 2022097185W WO 2023000849 A1 WO2023000849 A1 WO 2023000849A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
ferric phosphate
iron
preparation
seed crystal
Prior art date
Application number
PCT/CN2022/097185
Other languages
English (en)
French (fr)
Inventor
秦存鹏
李长东
阮丁山
唐盛贺
时振栓
李玲
殷磊
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to ES202390263A priority Critical patent/ES2981449A2/es
Priority to DE112022002261.2T priority patent/DE112022002261T5/de
Priority to GB2318251.2A priority patent/GB2621949A/en
Publication of WO2023000849A1 publication Critical patent/WO2023000849A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of battery materials, and in particular relates to iron phosphate and its preparation method and application.
  • Lithium iron phosphate batteries are widely used by lithium battery companies because of their low cost, low toxicity, high safety, long cycle life, and no rare elements such as Ni and Co.
  • As the precursor of lithium iron phosphate cathode material the quality of iron phosphate will have a direct impact on the performance of lithium iron phosphate battery.
  • the current technology mainly uses ferrous salt as the iron source, and adds hydrogen peroxide and other oxidants to oxidize ferrous iron to ferric iron, which needs to consume more hydrogen peroxide as the oxidant, which increases the cost. Compared with the ternary and other materials The benefit is obviously not high.
  • ammonia water and NaOH are mostly used as lye in the market, and phosphoric acid is used as aging agent to prepare ferric phosphate dihydrate by two-step co-precipitation method.
  • the slurry prepared by this method has high viscosity and poor batch stability. The large-scale use of lye increases the production cost and easily increases the difficulty of water treatment.
  • Battery-grade iron phosphate has low impurity content and stable quality.
  • the synthesized lithium iron phosphate battery has stable performance and high capacity.
  • the skeleton effect of battery-grade iron phosphate on the performance of lithium iron phosphate is more obvious; ceramic-grade and food-grade iron phosphate
  • Synthetic lithium iron phosphate has a low capacity and is only suitable for raw materials and nutritional supplements for the production of high-grade ceramics.
  • the main problems faced by the preparation of ferric phosphate are: 1.
  • the use of divalent iron sources requires consumption of oxidants, which cannot guarantee uniform oxidation and oxidation time, and the production cost is high; 2.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of ferric phosphate and its preparation method and application, the anhydrous ferric phosphate particle size particle that the present invention prepares is controllable and uniformly distributed, tap density is big, the crystal form and the spherical particle with controllable appearance, It can be used as a precursor material for high-pressure compacted lithium iron phosphate, and also has good application prospects in ceramics and catalysts.
  • propose a kind of preparation method of ferric phosphate comprise the following steps:
  • the surfactant with the first liquid metal containing iron and phosphorus, adding seed crystals, aging under heating and stirring, filtering, drying and sintering the resulting filter residue, to obtain the ferric phosphate; the seed crystals It is ferric phosphate dihydrate or basic ammonium ferric phosphate.
  • the preparation method of the seed crystal is as follows: adding the first alkali solution to the second metal liquid containing iron and phosphorus elements, adjusting the pH, and performing crystal transformation and aging under heating and stirring , to obtain the seed crystal; preferably, in the second liquid metal, the molar ratio of iron and phosphorus is 1:(1.10-1.50).
  • the first molten metal and/or the second molten metal is a filtrate obtained by acid-dissolving and filtering ferric phosphate waste; preferably, the ferric phosphate waste is anhydrous phosphoric acid At least one of iron, iron phosphate dihydrate, amorphous iron phosphate or waste lithium iron phosphate positive electrode powder extraction lithium slag.
  • the recovered ferrophosphorus waste as raw material can realize the recycling of waste resources with extremely low cost, which can not only improve the economic benefits of enterprises, but also protect the environment.
  • the ferric phosphate waste when ferric phosphate dihydrate, it also undergoes a roasting process before acid dissolution, the roasting temperature is 250°C-450°C, and the roasting time is 1-5h; Further, the calcination temperature is 300-400° C., and the calcination time is 2-4 hours.
  • the purpose of roasting is to dehydrate ferric phosphate dihydrate into anhydrous ferric phosphate so that it can be dissolved in the acid solution.
  • the acid solution used for acid dissolution is at least one of sulfuric acid, hydrochloric acid or phosphoric acid, and the concentration of the acid solution is 0.8-3 mol/L. Further, the acid solution is sulfuric acid with a concentration of 1.2-2.0 mol/L. Further, the mass concentration of the phosphoric acid is 80-90%, more preferably 85%.
  • the acid-dissolving temperature is 25-90°C, and the acid-dissolving time is 1-10h; further, the acid-dissolving temperature is 40-70°C, and the acid-dissolving time is 2-10 hours. 5h.
  • the molar ratio of iron and phosphorus is 1:(1.10-1.50), preferably 1:(1.15-1.30).
  • the stirring speed is 150-450rpm, preferably 200-350rpm;
  • the heating temperature is 60°C-95°C.
  • the aging time is 1-10 h, preferably 2-5 h.
  • a step of adding a second lye to adjust the pH is also included, and the pH is controlled at 0.5-4, preferably 2-3.
  • the second lye is at least one of ammonium bicarbonate, ammonium carbonate, ammonium chloride, ammonia water, ammonium dihydrogen phosphate or diammonium hydrogen phosphate.
  • the second lye is one of ammonium chloride or ammonia water.
  • the adjusting the pH is adjusting the pH to 1.5-3.5, preferably 1.5-2.5.
  • the first lye is at least one of sodium hydroxide, potassium hydroxide, sodium bicarbonate, ammonium bicarbonate, sodium carbonate, ammonia water or potassium carbonate.
  • the mass concentration of the first lye is 10-30%; further preferably, the first lye is sodium hydroxide or ammonia water, and the concentration is 20-25%.
  • the surfactant is at least one of cetyltrimethylammonium bromide, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate or polyvinylpyrrolidone species; further, the mass of the surfactant is 0.1-2% of the mass of iron in the first molten metal.
  • the surfactant is one of cetyltrimethylammonium bromide, sodium dodecylsulfonate or polyvinylpyrrolidone; further, the surfactant The mass is 0.5-1% of the mass of iron in the first molten metal.
  • the drying temperature is 90-190°C, and the time is 6-24h; further, the drying temperature is 100°C-140°C, and the time is 12-15h.
  • the process of washing the filter residue with water is also included before the drying, until the conductivity is below 500 us/cm; preferably, washing is until the conductivity is below 200 us/cm.
  • the sintering atmosphere is one or more of air, nitrogen or argon
  • the heating rate of the sintering is 2-15°C/min
  • the sintering is performed at 200-350°C for 1 -3h, then heat up to 500-650°C for sintering for 2-6h.
  • the preparation method of described iron phosphate is carried out according to the following steps:
  • ferric phosphate waste material is roasted, then add acid solution to dissolve, filter, get filtrate, obtain iron, phosphorus Metal liquid, and test the content of Fe, P;
  • step (4) Roasting the powder obtained after drying in step (4) to obtain the iron phosphate.
  • the volume of the first reaction tank is 50-500L, preferably 300-500L.
  • the paddles used for the stirring are four-blade spiral type, four straight blade open turbine type, six inclined blade open turbine type 1.
  • the volume of the bottom liquid is 1/5-1/3 of the volume of the first reaction tank, preferably 1/5.
  • step (2) the ratio of the feeding speed of the metal liquid to the first alkaline liquid is (10-3):1, preferably (10-8):1.
  • the heating temperature is 70-95°C, and the aging time is 3-10h; further, the heating temperature is 80-95°C, and the aging The time is 3-5h.
  • the volume of the second reaction tank is 500-10000L, preferably 1000-5000L.
  • the molten metal in the second reaction kettle is 50-90% of the volume of the kettle, preferably 60-80%.
  • the ratio of the feed rate of the second lye to the slurry containing the seed crystal is (0-1):(1.5-3.5), preferably (0 -0.5): (1.5-2.5).
  • the powder obtained after drying in step (4) is ferric phosphate dihydrate or basic ammonium ferric phosphate.
  • the heating temperature is 60-95°C, and the aging time is 1-6h; further, the heating temperature is 80-90°C, and the aging The time is 2-4h.
  • the present invention also provides a ferric phosphate, which is prepared by the method for preparing ferric phosphate, the D50 of the ferric phosphate is 2-15um, preferably 5-10um, and the tap density is 0.80-1.50g/cm 3 , The specific surface area is 1-10m 2 /g, and the impurity content is ⁇ 200ppm.
  • the invention also provides the application of the iron phosphate in preparing batteries, ceramics or catalysts.
  • the present invention adds a small amount of pre-synthesized ferric phosphate dihydrate or basic ammonium ferric phosphate as a seed crystal into the total reaction system of ferric phosphate, and the seed crystal can reduce the thermodynamic barrier of crystal nucleation in the reaction system, without In the case of lye, a pure phase of ferric phosphate dihydrate or basic ferric phosphate phase is obtained, which accelerates the formation of a well-crystallized product, and generates ferric phosphate dihydrate or basic ammonium ferric phosphate in a shorter period of time, avoiding the need for The multi-morphological mixed product generated during the ferric phosphate synthesis process during the seed crystal; what plays a driving force in the present invention is the seed crystal instead of phosphoric acid in the conventional aging process to drive the amorphous product to crystallization, the formed product morphology and The particle size is highly consistent.
  • the present invention modifies the seed crystal with a surfactant to improve the activity of the seed crystal surface, and then induces Fe 3+ and PO 4 3- to grow epitaxially on the seed crystal surface to generate secondary crystal nuclei and induce the basic skeleton of product particles
  • a surfactant to improve the activity of the seed crystal surface
  • Fe 3+ and PO 4 3- to grow epitaxially on the seed crystal surface to generate secondary crystal nuclei and induce the basic skeleton of product particles
  • the deposition of crystal nuclei on the surface of the seed crystals makes the skeleton of the crystal grains more complete, making the arrangement of primary particles more compact and orderly, and tends to form spherical particles; finally, the particle size of anhydrous ferric phosphate is obtained D50 is about 2-30um, the particles are controllable, easy to wash, less water, easy to dry, the secondary particle shape is uniform, and the tap density is large, which is suitable for the preparation of high-pressure lithium iron phosphate batteries.
  • the equipment required by the present invention is simple and easy to operate. Since the production process does not require multiple washings, less waste water is produced and the cost of water treatment is lower; the ferric phosphate prepared by the semi-continuous method solves the problem of consistent production of different batches of products. In the case of poor performance, the batch stability of the product is guaranteed.
  • the present invention can selectively prepare ferric phosphate dihydrate and basic ammonium ferric phosphate, and then obtain anhydrous ferric phosphate by roasting. Compared with the pure batch alkali precipitation process, the consumption of phosphoric acid and lye is less, and the cost lower.
  • Fig. 1 is the process flow diagram of the embodiment of the present invention 2;
  • Fig. 2 is the schematic diagram of the microscopic reaction process of embodiment 1 of the present invention.
  • Fig. 3 is the XRD figure of the ferric phosphate dihydrate that the embodiment of the present invention 1 makes;
  • Fig. 4 is the SEM figure of the ferric phosphate dihydrate that the embodiment of the present invention 1 makes;
  • Fig. 5 is the XRD pattern of the anhydrous ferric phosphate that the embodiment of the present invention 1 makes;
  • Fig. 6 is the SEM picture of the anhydrous ferric phosphate that the embodiment of the present invention 1 makes;
  • Example 7 is a charge-discharge curve at 0.1C for synthesizing lithium iron phosphate from anhydrous iron phosphate in Example 1 of the present invention.
  • the present embodiment has prepared a kind of ferric phosphate, and concrete process is:
  • the roasted material is about 80kg. Put 80kg of the roasted material into the sulfuric acid solution tank containing 666L and 1.2mol/L at a speed of 300rpm. Stir in medium, heat to 60°C and dissolve for about 6 hours, then let it stand still, filter the filter residue with a precision filter and transfer it to a storage tank to obtain molten metal A containing Fe 3+ and PO4 3- , and detect the
  • Table 1 shows that the content of iron and phosphorus of ferric phosphate dihydrate and anhydrous ferric phosphate and the content of each element meet the national standard of anhydrous ferric phosphate, the dispersion of particle size distribution is small, the particle size distribution is narrow, and the tap density before and after sintering is uniform. Higher, moderate specific surface area, suitable as a precursor material for the preparation of high-pressure lithium iron phosphate.
  • ferric phosphate dihydrate By pre-synthesizing a small amount of ferric phosphate dihydrate in reactor P1 as a seed crystal and adding it to reactor P2 of the second reaction system, ferric phosphate dihydrate can reduce the thermodynamic barrier of crystal nucleation in the reaction system.
  • reactor P2 Obtain a pure phase of ferric phosphate dihydrate without lye, accelerate the formation of well-crystallized products, and generate ferric phosphate dihydrate in a shorter time, avoiding the formation of ferric phosphate during the synthesis of ferric phosphate without seed crystals Mixed products with multiple shapes.
  • the basic function of the seed crystal is to provide crystal nuclei, which play a role in inducing crystallization.
  • the crystallization process is synthesized along the route shown in Figure 2.
  • the driving force is the seed crystal instead of phosphoric acid in the conventional aging process to drive the crystallization of the amorphous product, so
  • the shape and particle size of the formed product are highly consistent.
  • the surfactant modifies the seed crystal in the kettle to increase the activity of the seed crystal surface, and then induces Fe 3+ and PO4 3- to grow epitaxially on the seed crystal surface to generate secondary crystal nuclei and induce the formation of the basic skeleton of product particles.
  • the deposition of crystal nuclei on the surface of the seed crystal makes the skeleton of the crystal grains more complete, making the arrangement of primary particles more compact and orderly, and tends to form spherical particles.
  • the primary particles always grow along the shearing direction, so the primary particles form a sheet-like structure.
  • the required pH of this process is not high, and it can be synthesized and prepared under strong acidic conditions without phosphoric acid solution to provide crystallization driving force, which reduces the reaction time from amorphous to crystalline state. Aging for a short time makes the crystal form more complete and the precipitation rate is high, the consumption of lye is small, and the yield is high.
  • Fig. 3 and Fig. 4 are respectively the XRD pattern and the SEM pattern of the ferric phosphate dihydrate prepared in embodiment 1; As can be seen from Fig. 3, the ferric phosphate dihydrate prepared in embodiment 1 has higher phase purity, good crystallinity, and no other impurities have been found. It can be seen from Figure 4 that the prepared ferric phosphate dihydrate particle size distribution is uniform, the secondary particle consistency is good, and the particle dispersibility is good.
  • Fig. 5 and Fig. 6 are respectively the XRD pattern and the SEM pattern of the anhydrous ferric phosphate prepared in embodiment 1; As can be seen from Fig. 5, the crystallinity of the anhydrous ferric phosphate prepared in embodiment 1 is very good, and no other impurity phases are found; by Fig. 6 It can be seen that the prepared anhydrous iron phosphate secondary particle structure, after annealing, the particle size is slightly larger, the specific surface area is reduced, and the particle dispersibility is better.
  • Fig. 7 is the charge-discharge curve of lithium iron phosphate synthesized by the anhydrous iron phosphate precursor in Example 1 at 0.1C. It can be seen that the initial charge and discharge capacities of the lithium iron phosphate prepared by using Example 1 as the precursor are 161.4mAh/ g, 158.4mAh/g, the electrical performance results are similar to those of commercially available products.
  • the present embodiment has prepared a kind of ferric phosphate, with reference to Fig. 1, concrete process is:
  • the roasted material is about 80kg.
  • At 200rpm put 72kg of the roasted material into a sulfuric acid solution tank containing 600L and 1.2mol/L Stir in medium temperature, heat to 45°C and dissolve for about 8 hours, then let it stand still, filter out the filter residue with a precision filter and transfer it to a storage tank to obtain molten metal A.
  • ( 3 ) Inject 400L of molten metal A into the reactor P2 with a volume of 0.5m3, set the stirring to 300rpm, add 85g of sodium dodecylsulfonate as a surfactant, and the ferric phosphate dihydrate slurry C is produced from the reactor P1 Pumped into the reactor P2 at a speed of 100L/h, the speed of the second lye ammonia water is 10L/h;
  • Example 2 A small amount of ferric phosphate dihydrate seed crystals were synthesized in the reactor P1 in advance and added to the reactor P2.
  • the ferric phosphate dihydrate seed crystals can reduce the thermodynamic barrier of crystal nucleation under the condition of supersaturation and induce NH 4 + , Fe 3+ and PO4 3- grow epitaxially on the surface of the seed crystal, and a new basic ferric ammonium phosphate secondary crystal nucleus is generated on the surface of the seed crystal, which accelerates the formation of a new crystal nucleus with good crystallization, without adding excessive phosphoric acid for aging, The consumption of phosphoric acid is reduced, the aging time is shortened, and the energy consumption is reduced.
  • the phase purity of basic ammonium ferric phosphate prepared in Example 2 is higher, and the particle dispersion is better; the crystallinity of anhydrous ferric phosphate after roasting is very good; the iron content of basic ammonium ferric phosphate and anhydrous ferric phosphate
  • the phosphorus content and the content of each element meet the national standards.
  • the anhydrous iron phosphate has a tap density of 1.40g/cm 3 and a specific surface area of 2.31m 2 /g, which is suitable as a precursor material for the preparation of high-pressure lithium iron phosphate.
  • the present embodiment has prepared a kind of ferric phosphate, and concrete process is:
  • the roasted material is about 80kg.
  • Example 3 A small amount of basic ferric ammonium phosphate seed crystals were synthesized in the reactor P1 in advance and added to the second reaction system reactor P2.
  • the basic ferric ammonium phosphate seed crystals can reduce the thermodynamics of crystal nucleation under the condition of supersaturation Potential barrier to induce Fe 3+ and PO4 3- to grow epitaxially on the surface of the seed crystal, but because no ammonium-containing lye was added as a raw material to increase the pH in this process, the pH in the system is too low, and the basic iron ammonium phosphate complex NH 4 + escapes from the product, while the iron phosphate skeleton structure in basic ferric phosphate remains stable, and because sodium dodecylsulfonate acts as a surfactant, the activity of the surface layer of the iron phosphate skeleton structure is improved, and the surface of the seed crystal Generate new secondary crystal nuclei of ferric phosphate dihydrate, accelerate the formation of new crystal nuclei with good crystallization, without
  • Basic ferric ammonium phosphate is used as the seed crystal in the process of ferric phosphate dihydrate synthesis.
  • basic ferric ammonium phosphate (NH 4 Fe 2 (OH)(PO 4 ) 2 ⁇ nH 2 O) basically The structural units NH 4 + and OH - dissolve and escape, but its basic framework structure FePO 4 2H 2 O is still retained, so the framework of basic ammonium iron phosphate is porous, and new nuclei are induced to epitaxially grow porous on the surface of the seed crystal.
  • the formed iron phosphate dihydrate structure is porous, which is beneficial to the migration of lithium ions after the preparation of lithium iron phosphate materials, and the tap density and specific capacity are both high.
  • the ferric ammonium phosphate dihydrate prepared in Example 3 has higher phase purity, better particle dispersion, and a porous structure; the anhydrous ferric phosphate crystallinity after roasting is very good; dihydrate ferric phosphate and anhydrous phosphoric acid
  • the content of iron, phosphorus and various elements of iron meet the national standards.
  • the tap density of anhydrous iron phosphate is 1.21g/cm 3 , and the specific surface area is 4.05m 2 /g. It is suitable as a precursor material for preparing high-pressure lithium iron phosphate.
  • the present embodiment has prepared a kind of ferric phosphate, and concrete process is:
  • the roasted material is about 200kg, and the 200kg roasted material is put into the storage tank at 400rpm. 1000L, 1.5mol/L Stir in a sulfuric acid solution kettle, heat to 60°C to dissolve for about 3 hours, then let it stand still, filter out the filter residue with a precision filter, and then transfer it to a storage tank to obtain molten metal A.
  • the ferric phosphate dihydrate and ferric phosphate anhydrous prepared in Example 4 have better crystallinity; the content of iron and phosphorus and the contents of each element meet the national standard, and the tap density of ferric phosphate anhydrous is 1.23g/cm 3 , The specific surface area is 4.63m 2 /g, which is suitable as a precursor material for preparing high-pressure lithium iron phosphate.
  • the iron phosphate prepared in the above-mentioned Examples 1-4 and the commercially available iron phosphate were prepared into lithium iron phosphate according to conventional methods under the same conditions, and the compaction density and other electrical properties of the prepared lithium iron phosphate were detected, and the results were as follows Table 5 shows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种磷酸铁的制备方法,包括以下步骤:将表面活性剂与含铁、磷元素的第一金属液混合,加入种晶,在加热及搅拌下进行陈化,过滤,所得滤渣进行干燥、烧结,即得所述磷酸铁;所述种晶为二水磷酸铁或碱式磷酸铁铵。本发明通过表面活性剂对种晶进行修饰,提高了种晶表面的活性,再诱导Fe 3+与PO4 3-在种晶表面外延生长,产生次级晶核,诱导产品颗粒基本骨架的形成,通过陈化过程,晶核在种晶表面的沉积使晶粒的骨架更为完整,使得一次粒子排列更加紧密有序化,倾向于形成球形颗粒;最终制得无水磷酸铁的粒度D50为2-30um、颗粒可控,容易洗涤,水分较少,容易烘干,二次颗粒形貌均匀、振实密度较大,适合用于制备高压实磷酸铁锂电池。

Description

磷酸铁及其制备方法和应用 技术领域
本发明属于电池材料领域,具体涉及磷酸铁及其制备方法和应用。
背景技术
磷酸铁锂电池因其成本低廉、低毒性、安全性高、循环寿命长,不含Ni、Co等稀有元素而被锂电企业广泛采用。作为磷酸铁锂正极材料的前驱体,磷酸铁的品质将对磷酸铁锂电池性能产生直接的影响。目前的技术主要以亚铁盐作为铁源,并加双氧水等氧化剂将二价铁氧化为三价铁,需要消耗较多的过氧化氢作为氧化剂,增加了成本,相比于三元等材料的效益显然不高。目前市场技术上多采用氨水、NaOH做碱液,磷酸做陈化剂采用两步共沉淀法制备二水磷酸铁,此法制备的浆料粘度较大,批次稳定性较差。碱液的大批量使用提高了生产成本,并且容易提高水处理难度。
电池级磷酸铁杂质含量少、质量稳定,合成的磷酸铁锂电池性能稳定,容量较高,电池级磷酸铁的骨架作用对磷酸铁锂的性能体现得更为明显;陶瓷级及食品级磷酸铁合成磷酸铁锂容量不高,仅适合用于生产高档陶瓷的原料和营养增补剂。目前磷酸铁制备所面临的的主要问题是:1、使用二价铁源制备需要消耗氧化剂,无法保证氧化均匀及氧化时间,生产成本较高;2、粒度较小的磷酸铁中的SO 4 2-难以洗涤,容易团聚,需要多次洗涤制备杂质含量合格的产品;3、批次稳定性差,由于市场技术多采用间歇法,批次间的理化指标波动较大,无法保证批次性。因此,亟需开发一种成本低、无团聚、易洗涤,既可以提高企业的经济效益,又能保护环境的制备磷酸铁的方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种磷酸铁及其制备方法和应用,本发明制得的无水磷酸铁粒度颗粒可控且分布均匀、振实密度大,晶型及形貌可控的球形颗粒,能够用作高压实磷酸铁锂的前驱体材料,并且在陶瓷及催化剂中也有较好的应用前景。
根据本发明的一个方面,提出一种磷酸铁的制备方法,包括以下步骤:
将表面活性剂与含铁、磷元素的第一金属液混合,加入种晶,在加热及搅拌下进行陈化,过滤,所得滤渣进行干燥、烧结,即得所述磷酸铁;所述种晶为二水磷酸铁或碱式磷酸铁铵。
在本发明的一些实施方式中,所述种晶的制备方法如下:向含铁、磷元素的第二金属液中加入第一碱液,调节pH,在加热及搅拌下进行转晶和陈化,即得所述种晶;优选的,所述第二金属液中,铁和磷的摩尔比为1:(1.10-1.50)。
在本发明的一些实施方式中,所述第一金属液和/或所述第二金属液是由磷酸铁废料经过酸溶,过滤所得的滤液;优选的,所述磷酸铁废料为无水磷酸铁、二水磷酸铁、无定型磷酸铁或废旧磷酸铁锂正极粉提锂渣中的至少一种。用回收的磷铁废料作原料,可以实现废旧资源的循环利用,具有极低的成本,既可以提高企业的经济效益,又能够保护环境。
在本发明的一些实施方式中,当磷酸铁废料为二水磷酸铁时,在酸溶前还经过焙烧的工序,所述焙烧的温度为250℃-450℃,焙烧的时间为1-5h;进一步地,所述焙烧温度为300-400℃,焙烧时间为2-4h。焙烧目的是为了将二水磷酸铁脱水成无水磷酸铁,使其溶于酸液中。
在本发明的一些实施方式中,所述酸溶使用的酸液为硫酸、盐酸或磷酸中的至少一种,酸液的浓度为0.8-3mol/L。进一步地,所述酸液为硫酸,浓度为1.2-2.0mol/L。进一步地,所述磷酸的质量浓度为80-90%,进一步优选为85%。
在本发明的一些实施方式中,所述酸溶的温度为25-90℃,酸溶的时间为1-10h;进一步地,酸溶的温度为40-70℃,酸溶的时间为2-5h。
在本发明的一些实施方式中,所述第一金属液中,铁和磷的摩尔比为1:(1.10-1.50),优选为1:(1.15-1.30)。
在本发明的一些实施方式中,所述搅拌的速度为150-450rpm,优选为200-350rpm;
在本发明的一些实施方式中,所述加热的温度为60℃-95℃。
在本发明的一些实施方式中,所述陈化的时间为1-10h,优选为2-5h。
在本发明的一些实施方式中,在加入种晶后还包括加入第二碱液调节pH的工序,pH控制在0.5-4,优选为2-3。
在本发明的一些实施方式中,所述第二碱液为碳酸氢铵、碳酸铵、氯化铵、氨水、磷酸二氢铵或磷酸氢二铵中的至少一种。优选的,第二碱液为氯化铵或氨水中的一种。
在本发明的一些实施方式中,在种晶的制备方法中,所述调节pH为调节pH至1.5-3.5,优选为1.5-2.5。
在本发明的一些实施方式中,所述第一碱液为氢氧化钠、氢氧化钾、碳酸氢钠、碳酸氢铵、碳酸钠、氨水或碳酸钾中的至少一种。优选的,第一碱液的质量浓度为10-30%;进一步优选的,第一碱液为氢氧化钠或氨水,浓度为20-25%。
在本发明的一些实施方式中,所述表面活性剂为十六烷基三甲基溴化铵、十二烷基苯磺酸钠、十二烷基磺酸钠或聚乙烯吡咯烷酮中的至少一种;进一步地,所述表面活性剂的质量为所述第一金属液中铁的质量的0.1-2%。
在本发明的一些优选的实施方式中,所述表面活性剂为十六烷基三甲基溴化铵、十二烷基磺酸钠或聚乙烯吡咯烷酮中的一种;进一步地,表面活性剂的质量为第一金属液中铁的质量的0.5-1%。
在本发明的一些实施方式中,所述干燥的温度为90-190℃,时间为6-24h;进一步地,干燥的温度为100℃-140℃,时间为12-15h。
在本发明的一些实施方式中,在所述干燥前还包括将滤渣进行水洗的工序,水洗至电导率在500us/cm以下;优选的,水洗至电导率在200us/cm以下。
在本发明的一些实施方式中,所述烧结的气氛为空气、氮气或氩气中的一种或几种,焙烧的升温速率为2-15℃/min,先在200-350℃下烧结1-3h,然后升温至500-650℃烧结2-6h。
在本发明的一些优选的实施方式中,所述的磷酸铁的制备方法按以下步骤进行:
(1)将磷酸铁废料进行焙烧,再加入酸液溶解,过滤,取滤液,得到含铁、磷的 金属液,并测试Fe、P的含量;
(2)所述金属液注入第一反应釜做底液,开启搅拌,金属液与第一碱液并流,调节pH,并根据金属液Fe、P含量和金属液总体积补磷或铁,加热进行转晶和陈化,得到含种晶浆料;
(3)将表面活性剂加入到含所述金属液的第二反应釜,所述含种晶浆料泵入第二反应釜中,搅拌状态下第二碱液与含种晶浆料并流;
(4)控制含种晶浆料完全加入后的pH,加热进行陈化,洗涤过滤,取滤渣,干燥;
(5)将步骤(4)干燥后所得粉末进行焙烧,即得所述磷酸铁。
在本发明的一些实施方式中,所述第一反应釜的体积为50-500L,优选为300-500L。
在本发明的一些实施方式中,步骤(2)和步骤(3)中,所述搅拌所使用的桨叶为四叶螺旋式、四片平直叶开启涡轮式、六片斜叶开启涡轮式、六片平直叶圆盘涡轮式或六片斜叶圆盘涡轮式;进一步地,桨叶选用四片平直叶开启涡轮式或六片平直叶圆盘涡轮式。
在本发明的一些实施方式中,步骤(2)中,所述底液的体积为第一反应釜容积的1/5-1/3,优选为1/5。
在本发明的一些实施方式中,步骤(2)中,所述金属液与第一碱液的进液速度之比为(10-3):1,优选为(10-8):1。
在本发明的一些实施方式中,步骤(2)中,所述加热的温度为70-95℃,陈化的时间为3-10h;进一步地,加热的温度为80-95℃,陈化的时间为3-5h。
在本发明的一些实施方式中,步骤(3)中,所述第二反应釜的体积为500-10000L,优选为1000-5000L。
在本发明的一些实施方式中,步骤(3)中,所述第二反应釜中金属液为釜容积的50-90%,优选为60-80%。
在本发明的一些实施方式中,步骤(3)中,所述第二碱液与含种晶浆料的进液速度之比为(0-1):(1.5-3.5),优选为(0-0.5):(1.5-2.5)。
在本发明的一些实施方式中,步骤(4)干燥后所得粉末为二水磷酸铁或碱式磷酸铁铵。
在本发明的一些实施方式中,步骤(4)中,所述加热的温度为60-95℃,陈化的时间为1-6h;进一步地,加热的温度为80-90℃,陈化的时间为2-4h。
本发明还提供一种磷酸铁,由所述的磷酸铁的制备方法制得,所述磷酸铁的D50为2-15um,优选为5-10um,振实密度为0.80-1.50g/cm 3,比表面积为1-10m 2/g,杂质含量≤200ppm。
本发明还提供所述的磷酸铁在制备电池、陶瓷或催化剂中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明通过将预先合成少量的二水磷酸铁或碱式磷酸铁铵作为种晶加入到磷酸铁的总反应体系中,种晶可以降低反应体系中晶体形核的热力学势垒,在无需碱液的情况下得到纯相的二水磷酸铁或碱式磷酸铁物相,加速形成结晶良好的产品,在更短的时间内生成二水磷酸铁或碱式磷酸铁铵,避免了在没有种晶时磷酸铁合成过程中生成的多形貌混合的产品;本发明中起到推动力的是种晶而不是常规陈化过程中磷酸驱动非晶产品转晶,所形成的产品形貌和粒度具有高度一致性。
2、本发明通过表面活性剂对种晶进行修饰,提高了种晶表面的活性,再诱导Fe 3+与PO 4 3-在种晶表面外延生长,产生次级晶核,诱导产品颗粒基本骨架的形成,通过陈化过程,晶核在种晶表面的沉积使晶粒的骨架更为完整,使得一次粒子排列更加紧密有序化,倾向于形成球形颗粒;最终制得无水磷酸铁的粒度D50约2-30um、颗粒可控,容易洗涤,水分较少,容易烘干,二次颗粒形貌均匀、振实密度较大,适合用于制备高压实磷酸铁锂电池。
2、本发明所需设备简单、容易操作,生产过程由于不需要多次洗涤,产生的废水较少,水处理成本较低;通过半连续法制备得到的磷酸铁,解决了不同批次产品一致性差的情况,保证了产品的批次稳定性。
3、本发明可以选择性制备二水磷酸铁、碱式磷酸铁铵,之后通过焙烧得到无水磷酸铁,相比于纯间歇法碱沉工艺,所需磷酸和碱液消耗量较少,成本较低。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例2的工艺流程图;
图2为本发明实施例1的微观反应过程示意图;
图3为本发明实施例1制得的二水磷酸铁的XRD图;
图4为本发明实施例1制得的二水磷酸铁的SEM图;
图5为本发明实施例1制得的无水磷酸铁的XRD图;
图6为本发明实施例1制得的无水磷酸铁的SEM图;
图7为本发明实施例1的无水磷酸铁合成磷酸铁锂在0.1C的充放电曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种磷酸铁,具体过程为:
(1)将100kg的二水磷酸铁废料于300℃焙烧4h除去结晶水,焙烧后的物料约80kg,在300rpm转速下将80kg焙烧后物料投入到储有666L、1.2mol/L的硫酸溶液釜中搅拌,加热至60℃溶解约6h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得到含有Fe 3+和PO4 3-的金属液A,检测金属液A中的铁磷含量分别为40.51g/L、22.96g/L,Fe:P摩尔比=1:1.022;
(2)将20L金属液A注入到100L反应釜P1中做底液,以300rpm的搅拌,将金属液A和NaOH分别以50L/h、7.5L/h进液速度并流注入到反应釜P1中,通过pH实时反馈系统微调NaOH的进料速度,设置温度为40℃,调节终点pH=1.8使非晶态磷酸铁沉淀,釜中总金属液A为80L(包括底液和并流流入金属液),加入0.435L磷酸补磷至 Fe:P=1:1.20,得到浆料B,升温至93℃并保温2.5h后浆料转晶,陈化5h后得浆料C,取浆料的母液测试残留Fe含量为35mg/L;
(3)注入600L金属液A到容积为1m 3的反应釜P2中,搅拌设为250rpm,加入24g聚乙烯吡咯烷酮作为表面活性剂,浆料C由反应釜P1以100L/h速度泵入反应釜P2中;
(4)二水磷酸铁浆料C完全加入后,pH为0.8,反应釜P2加热至85℃,陈化3h,洗涤过滤至电导率低于400us/cm,取滤渣,得二水磷酸铁滤饼D,在100℃干燥15h,即得二水磷酸铁粉末E;
(5)将干燥后的二水磷酸铁粉末E置于马弗炉中以10℃/min升温速率升温至350℃保温3h,然后10℃/min升温至550℃烧结3h,自然降温至室温后即得所述合格的无水FePO 4,最后将所得产物进行物相和性能的检测和分析,无水磷酸铁的杂质含量为0.0057wt%。
本实施例得到的二水磷酸铁及无水磷酸铁的各理化性能指标如表1所示。
表1二水磷酸铁及无水磷酸铁的各项理化指标结果
Figure PCTCN2022097185-appb-000001
表1表明二水磷酸铁及无水磷酸铁的铁磷含量及各元素的含量符合无水磷酸铁的国家标准,粒度分布的离散度较小,粒度分布较窄,烧结前后的振实密度均较高,比表面积适中,适合作为制备高压实磷酸铁锂的前驱体材料。
通过预先在反应釜P1中合成少量的二水磷酸铁作为种晶加入到第二反应体系反应釜P2中,二水磷酸铁可以降低反应体系中晶体形核的热力学势垒,在反应釜P2中无需碱液的情况下得到纯相的二水磷酸铁物相,加速形成结晶良好的产品,在更短的时间内生成二水磷酸铁,避免了在没有种晶时磷酸铁合成过程中生成的多形貌混合的产品。种晶的基本作用是提供晶核,起到了诱导结晶的作用,结晶过程沿着图2路线合成,起到推动力的是种晶而不是常规陈化过程中磷酸驱动非晶产品转晶,所形成的产品形貌和粒度具有高度一致性。表面活性剂在釜中对种晶进行修饰,提高了种晶表面的活性,再诱导Fe 3+与PO4 3-在种晶表面外延生长,产生次级晶核,诱导产品颗粒基本骨架的形成,通过陈化过程,晶核在种晶表面的沉积使晶粒的骨架更为完整,使得一次粒子排列更加紧密有序化,倾向于形成球形颗粒。并且在外延生长过程中,由于搅拌器切向流的剪切作用,一次粒子总是沿着剪切的方向生长,因而一次粒子形成片状结构。与完全使用碱液沉淀加磷酸陈化相比,本工艺所需pH不高,可以在强酸性条件下合成制备,无需磷酸溶液提供结晶驱动力,减少了非晶到结晶态反应时间,只需短时间陈化使其晶型更为完整并且沉淀率高,碱液消耗量少,产量高。
图3和图4分别为实施例1制备的二水磷酸铁的XRD图及SEM图;由图3可知实施例1制备的二水磷酸铁物相纯度较高,结晶度好,未发现其它杂相;由图4可知制备的二水磷酸铁颗粒粒度分布均匀,二次颗粒一致性好,颗粒分散性较好。
图5和图6分别为实施例1制备的无水磷酸铁的XRD图及SEM图;由图5可知实施例1制备的无水磷酸铁结晶度非常好,未发现其它杂相;由图6可知制备的无水磷酸铁二次颗粒结构,退火后粒径稍大,比表面积减小,颗粒分散性较好。
图7为实施例1无水磷酸铁前驱体合成磷酸铁锂在0.1C的充放电曲线图,可知以实施例1为前驱体所制备的磷酸铁锂的首次充、放电容量分别为161.4mAh/g、158.4mAh/g,电性能结果与市售产品相近。
实施例2
本实施例制备了一种磷酸铁,参照图1,具体过程为:
(1)将100kg的二水磷酸铁废料于400℃焙烧3h除去结晶水,焙烧后的物料约80kg,在200rpm转速下将72kg焙烧后物料投入到储有600L、1.2mol/L的硫酸溶液釜中搅拌,加热至45℃溶解约8h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得金属液A,检测金属液A中的铁磷含量分别为42.51g/L、24.35g/L,Fe:P摩尔比=1:1.033;
(2)将10L金属液A注入到50L反应釜P1中做底液,以350rpm的搅拌,将金属液A和NaOH分别以40L/h、6L/h进液速度并流注入到反应釜P1中,通过pH实时反馈系统微调NaOH的进料速度,设置温度为45℃,调节终点pH=2.1使非晶态磷酸铁沉淀,釜中总金属液A为45L(包括底液和并流流入金属液),加入0.687L磷酸补磷至Fe:P=1:1.30,得到二水磷酸铁浆料B,升温至90℃并保温3h后浆料转晶,陈化3h后得二水磷酸铁浆料C,取浆料的母液测试残留Fe含量为1.05mg/L;
(3)注入400L金属液A到容积为0.5m 3的反应釜P2中,搅拌设为300rpm,加入85g十二烷基磺酸钠作为表面活性剂,二水磷酸铁浆料C由反应釜P1以100L/h速度泵入反应釜P2中,第二碱液氨水速度为10L/h;
(4)二水磷酸铁浆料C完全加入后,pH为3,反应釜P2加热至85℃,陈化3h,洗涤过滤至电导率低于500us/cm,取滤渣,得滤饼D,在120℃干燥12h,即得碱式磷酸铁铵粉末E;
(5)将干燥后的碱式磷酸铁铵粉末E置于马弗炉中以10℃/min升温速率升温至400℃保温2h,然后5℃/min升温至600℃烧结2h,自然降温至室温后即得所述合格的无水FePO 4,最后将所得产物进行物相和性能的检测和分析,所述磷酸铁的杂质含量为0.0152wt%。
本实施例得到的碱式磷酸铁铵及无水磷酸铁的各理化性能指标如表2所示。
表2碱式磷酸铁铵及无水磷酸铁的各项理化指标结果
Figure PCTCN2022097185-appb-000002
Figure PCTCN2022097185-appb-000003
实施例2预先在反应釜P1中合成少量的二水磷酸铁种晶加入到反应釜P2中,二水磷酸铁种晶在过饱和的情况下可以降低晶体形核的热力学势垒,诱导NH 4 +、Fe 3+与PO4 3-在种晶表面外延生长,种晶表面产生新的碱式磷酸铁铵次级晶核,加速形成结晶良好的新的晶核,无需加入过量的磷酸陈化,减少了磷酸的用量,缩短了陈化时间,降低了能耗。由表2可知,实施例2制备的碱式磷酸铁铵相纯度较高,颗粒分散性较好;焙烧后的无水磷酸铁结晶度非常好;碱式磷酸铁铵及无水磷酸铁的铁磷含量及各元素的含量符合国家标准,无水磷酸铁的振实密度1.40g/cm 3,比表面积2.31m 2/g,适合作为制备高压实磷酸铁锂的前驱体材料。
实施例3
本实施例制备了一种磷酸铁,具体过程为:
(1)将100kg的二水磷酸铁废料于300℃焙烧3h除去结晶水,焙烧后的物料约80kg,在250rpm转速下将72kg焙烧后物料投入到储有600L、1.2mol/L的硫酸溶液釜中搅拌,加热至60℃溶解约2h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得金属液A,检测金属液A中的铁磷含量分别为42.01g/L、24.10g/L,Fe:P摩尔比=1:1.035;
(2)将20L金属液A注入到100L反应釜P1中做底液,以250rpm的搅拌,将金 属液A和氨水分别以40L/h、6L/h进液速度并流注入到反应釜P1中,通过pH实时反馈系统微调氨水的进料速度,设置温度为40℃,调节终点pH=2.1使非晶态磷酸铁沉淀,釜中总金属液A为45L(包括底液和并流流入金属液),加入0.68L磷酸补磷至Fe:P=1:1.30,得到浆料B,升温至90℃并保温3h后浆料转晶,陈化3h后得碱式磷酸铁铵浆料C,取浆料的母液测试残留Fe含量为1.05mg/L;
(3)注入400L金属液A到容积为0.5m 3的反应釜P2中,搅拌设为300rpm,加入85g十二烷基磺酸钠作为表面活性剂,碱式磷酸铁铵浆料C由反应釜P1以100L/h速度泵入反应釜P2中;
(4)碱式磷酸铁铵浆料C完全加入后,pH为0.95,反应釜P2加热至85℃,陈化3h,洗涤过滤至电导率低于500us/cm,取滤渣,得二水磷酸铁滤饼D,在120℃干燥12h,即得二水磷酸铁粉末E;
(5)将干燥后的二水磷酸铁粉末E置于马弗炉中以10℃/min升温速率升温至400℃保温1h,然后5℃/min升温至550℃烧结2h,自然降温至室温后即得所述合格的无水FePO 4,最后将所得产物进行物相和性能的检测和分析,所述磷酸铁的杂质含量为0.0042wt%。
本实施例得到的二水磷酸铁及无水磷酸铁的各理化性能指标如表3所示。
表3二水磷酸铁及无水磷酸铁的各项理化指标结果
Figure PCTCN2022097185-appb-000004
Figure PCTCN2022097185-appb-000005
实施例3预先在反应釜P1中合成少量的碱式磷酸铁铵种晶加入到第二反应体系反应釜P2中,碱式磷酸铁铵种晶在过饱和的情况下可以降低晶体形核的热力学势垒,诱导Fe 3+与PO4 3-在种晶表面外延生长,但又由于此过程未加入含铵碱液做原料提升pH,体系中pH过低,碱式磷酸铁铵络合物中的NH 4 +由产品中逸出,而碱式磷酸铁中的磷酸铁骨架结构仍然保持稳定,并且由于十二烷基磺酸钠作为表面活性剂,提高了磷酸铁骨架结构表层活性,种晶表面产生新的二水磷酸铁次级晶核,加速形成结晶良好的新的晶核,无需加入过量的磷酸陈化,减少了磷酸的用量,缩短了陈化时间,降低了能耗。碱式磷酸铁铵作为种晶合成的二水磷酸铁过程中,开始加入时,在高酸度下由于碱式磷酸铁铵(NH 4Fe 2(OH)(PO 4) 2·nH 2O)基本结构单元NH 4 +和OH -溶解逸出,但其基本的骨架结构FePO 4·2H 2O仍然被保留下来,因而碱式磷酸铁铵骨架呈多孔结构,诱导新核在种晶表面外延生长多孔结构,所形成的二水磷酸铁结构呈多孔状,有利于制备磷酸铁锂材料后锂离子的迁移,振实密度和比容量均较高。从表3可知,实施例3制备的二水磷酸铁铵相纯度较高,颗粒分散性较好,呈多孔结构;焙烧后的无水磷酸铁结晶度非常好;二水磷酸铁及无水磷酸铁的铁磷含量及各元素的含量符合国家标准,无水磷酸铁的振实密度1.21g/cm 3,比表面积4.05m 2/g,适合作为制备高压实磷酸铁锂的前驱体材料。
实施例4
本实施例制备了一种磷酸铁,具体过程为:
(1)将200kg的废旧磷酸铁锂正极粉提锂渣于350℃焙烧3h除去结晶水,焙烧后的物料约200kg,在400rpm转速下将200kg焙烧后物料投入到储有1000L、1.5mol/L的硫酸溶液釜中搅拌,加热至60℃溶解约3h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得金属液A,检测金属液A中的铁磷含量分别为48.12g/L、27.52g/L,Fe:P摩尔比=1:1.031;
(2)将25L金属液A注入到100L反应釜P1中做底液,以300rpm的搅拌,将金 属液A和氢氧化钠分别以100L/h、14L/h进液速度并流注入到反应釜P1中,通过pH实时反馈系统微调NaOH的进料速度,设置温度为室温,调节终点pH=2.5使非晶态磷酸铁沉淀,釜中总金属液A为80L(包括底液和并流流入金属液),加入0.548L磷酸补磷至Fe:P=1:1.15,得到磷酸铁浆料B,升温至95℃并保温3.5h后浆料转晶,陈化6h后得浆料C,取浆料的母液测试残留Fe含量为0.95mg/L;
(3)注入800L金属液A到容积为1m 3的反应釜P2中,搅拌设为250rpm,加入345g十六烷基三甲基溴化铵作为表面活性剂,浆料C由反应釜P1以100L/h速度泵入反应釜P2中;
(4)浆料C完全加入后,pH为0.85,反应釜P2加热至80℃,陈化4h,洗涤过滤至电导率低于200us/cm,取滤渣,得滤饼D,在140℃干燥10h,即得二水磷酸铁粉末E;
(5)将干燥后的二水磷酸铁粉末E置于马弗炉中以5℃/min升温速率升温至400℃保温2h,然后10℃/min升温至550℃烧结3h,自然降温至室温后即得所述合格的无水FePO 4,最后将所得产物进行物相和性能的检测和分析,所述磷酸铁的杂质含量为0.0163wt%。
本实施例得到的二水磷酸铁及无水磷酸铁的各理化性能指标如表4所示。
表4二水磷酸铁及无水磷酸铁的各项理化指标结果
Figure PCTCN2022097185-appb-000006
Figure PCTCN2022097185-appb-000007
由表4可知,实施例4制备的二水磷酸铁和无水磷酸铁结晶度较好;铁磷含量及各元素的含量符合国家标准,无水磷酸铁的振实密度1.23g/cm 3,比表面积4.63m 2/g,适合作为制备高压实磷酸铁锂的前驱体材料。
试验例
上述实施例1-4制得的磷酸铁与市购的磷酸铁按照常规方法在同等条件下制备成磷酸铁锂,对制得的磷酸铁锂的压实密度及其他电性能进行检测,结果如下表5所示。
表5
Figure PCTCN2022097185-appb-000008
由表5可以看出,本发明实施例1-4中合成的无水磷酸铁制得的磷酸铁锂粉末压实密度及电性能与市售的磷酸铁接近,表明本发明合成的磷酸铁达到了磷酸铁锂用电池级无水磷酸铁的标准。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种磷酸铁的制备方法,其特征在于,包括以下步骤:
    将表面活性剂与含铁、磷元素的第一金属液混合,加入种晶,在加热及搅拌下进行陈化,过滤,所得滤渣进行干燥、烧结,即得所述磷酸铁;所述种晶为二水磷酸铁或碱式磷酸铁铵。
  2. 根据权利要求1所述的制备方法,其特征在于,所述种晶的制备方法如下:向含铁、磷元素的第二金属液中加入第一碱液,调节pH,在加热及搅拌下进行转晶和陈化,即得所述种晶;优选的,所述第二金属液中,铁和磷的摩尔比为1:(1.10-1.50)。
  3. 根据权利要求2所述的制备方法,其特征在于,所述第一金属液和/或所述第二金属液是由磷酸铁废料经过酸溶,过滤所得的滤液;优选的,所述磷酸铁废料为无水磷酸铁、二水磷酸铁、无定型磷酸铁或废旧磷酸铁锂正极粉提锂渣中的至少一种。
  4. 根据权利要求1所述的制备方法,其特征在于,所述第一金属液中,铁和磷的摩尔比为1:(1.10-1.50)。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述搅拌的速度为150-450rpm;优选的,所述加热的温度为60℃-95℃。
  6. 根据权利要求1所述的制备方法,其特征在于,在加入种晶后还包括加入第二碱液调节pH的工序,pH控制在0.5-4;优选的,所述第二碱液为碳酸氢铵、碳酸铵、氯化铵、氨水、磷酸二氢铵或磷酸氢二铵中的至少一种。
  7. 根据权利要求2所述的制备方法,其特征在于,所述调节pH为调节pH至1.5-3.5;优选的,所述第一碱液为氢氧化钠、氢氧化钾、碳酸氢钠、碳酸氢铵、碳酸钠、氨水或碳酸钾中的至少一种。
  8. 根据权利要求1所述的制备方法,其特征在于,所述表面活性剂为十六烷基三甲基溴化铵、十二烷基苯磺酸钠、十二烷基磺酸钠或聚乙烯吡咯烷酮中的至少一种;优选的,所述表面活性剂的质量为所述金属液中铁的质量的0.1-2%。
  9. 一种磷酸铁,其特征在于,由权利要求1所述的制备方法制得,所述磷酸铁的 D50为2-30um,振实密度为0.80-1.50g/cm 3,比表面积为1-10m 2/g,杂质含量≤200ppm。
  10. 权利要求9所述的磷酸铁在制备电池、陶瓷或催化剂中的应用。
PCT/CN2022/097185 2021-07-19 2022-06-06 磷酸铁及其制备方法和应用 WO2023000849A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES202390263A ES2981449A2 (es) 2021-07-19 2022-06-06 Fosfato férrico, método de preparación y aplicación del mismo
DE112022002261.2T DE112022002261T5 (de) 2021-07-19 2022-06-06 Eisen(iii)-phosphat, verfahren zu seiner herstellung und seine verwendung
GB2318251.2A GB2621949A (en) 2021-07-19 2022-06-06 Ferric phosphate, preparation method thereof and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110815191.7A CN113562711B (zh) 2021-07-19 2021-07-19 磷酸铁及其制备方法和应用
CN202110815191.7 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000849A1 true WO2023000849A1 (zh) 2023-01-26

Family

ID=78165525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097185 WO2023000849A1 (zh) 2021-07-19 2022-06-06 磷酸铁及其制备方法和应用

Country Status (6)

Country Link
CN (1) CN113562711B (zh)
DE (1) DE112022002261T5 (zh)
ES (1) ES2981449A2 (zh)
GB (1) GB2621949A (zh)
HU (1) HUP2400058A1 (zh)
WO (1) WO2023000849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263154A (zh) * 2023-10-13 2023-12-22 金驰能源材料有限公司 磷酸铁及其连续式生产方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113562711B (zh) * 2021-07-19 2023-12-12 广东邦普循环科技有限公司 磷酸铁及其制备方法和应用
CN114162798B (zh) * 2021-12-31 2023-04-04 常州锂源新能源科技有限公司 一种提高磷酸铁比表面积的制备方法
CN115043383B (zh) * 2022-08-16 2022-11-01 矿冶科技集团有限公司 一种高振实密度电池级磷酸铁及其制备方法
CN115571865B (zh) * 2022-10-28 2023-09-08 湖北虹润高科新材料有限公司 一种高品质磷酸铁的制备方法、高品质磷酸铁、电极
CN116534820B (zh) * 2023-03-30 2023-11-24 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法
CN117263153B (zh) * 2023-10-12 2024-08-23 金驰能源材料有限公司 一种多孔球形磷酸铁及其制备方法、金属磷酸盐

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624077A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种电池级磷酸铁及其制备方法和应用
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用
CN113415793A (zh) * 2021-05-10 2021-09-21 北京科技大学 一种磷酸铁锂电池废料制备高纯磷酸铁的方法
CN113562711A (zh) * 2021-07-19 2021-10-29 广东邦普循环科技有限公司 磷酸铁及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032411B2 (ja) * 2012-10-30 2016-11-30 燐化学工業株式会社 リン酸第二鉄含水和物粒子粉末の製造方法
CN110482514B (zh) * 2019-08-28 2021-12-03 安徽昶源新材料股份有限公司 一种电池级无水磷酸铁的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624077A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种电池级磷酸铁及其制备方法和应用
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用
CN113415793A (zh) * 2021-05-10 2021-09-21 北京科技大学 一种磷酸铁锂电池废料制备高纯磷酸铁的方法
CN113562711A (zh) * 2021-07-19 2021-10-29 广东邦普循环科技有限公司 磷酸铁及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUO JU, JIA SHUANGZHU: "Study of the Method for the Preparation of Spherical-Like and Low Sulfur FePO4", WUJIYAN-GONGYE = INORGANIC CHEMICALS INDUSTRY, TIANJIN HUAGONG YANJIUSUO, CN, vol. 52, no. 5, 31 May 2020 (2020-05-31), CN , pages 31 - 34, XP093027298, ISSN: 1006-4990, DOI: 10.11962/1006-4990.2019-0367 *
LASRI KARIMA; SAADOUNE ISMAEL; EDSTRöM KRISTINA: "Electrode Based on Oxyphosphates as Anode Materials for High Energy Density Lithium-ion Batteries", PROCEDIA ENGINEERING, ELSEVIER BV, NL, vol. 138, 23 March 2016 (2016-03-23), NL , pages 281 - 290, XP029470893, ISSN: 1877-7058, DOI: 10.1016/j.proeng.2016.02.086 *
LIU WANFENG, XIAO RENGUI; LIN QIAN; LIU FEI; PENG XIN: "Amplification experiments of preparing battery-grade ferric phosphate by ferrophosphorus ", WUJIYAN-GONGYE = INORGANIC CHEMICALS INDUSTRY, TIANJIN HUAGONG YANJIUSUO, CN, vol. 47, no. 5, 31 May 2015 (2015-05-31), CN , pages 75 - 78, XP093027295, ISSN: 1006-4990 *
WAN, QINGKE: "Study on the Process of Preparing Iron Phosphate from Spent Lithium Iron Phosphate Cathode Powder by Phosphoric Acid Method", KOREAN SOCIETY FOR PRECISION ENGINEERING, 1 July 2020 (2020-07-01), XP093005102, [retrieved on 20221205] *
WU CHAOJIN: "Study of Preparation of Iron Phosphate by Coprecipitation and the Synthesis of LiFePO4/C Composites as Cathode Materials", SCIENCE-ENGINEERING (I), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 4, 15 April 2019 (2019-04-15), XP093027293 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263154A (zh) * 2023-10-13 2023-12-22 金驰能源材料有限公司 磷酸铁及其连续式生产方法和应用
CN117263154B (zh) * 2023-10-13 2024-04-19 金驰能源材料有限公司 磷酸铁及其连续式生产方法和应用

Also Published As

Publication number Publication date
GB202318251D0 (en) 2024-01-10
GB2621949A8 (en) 2024-04-17
HUP2400058A1 (hu) 2024-04-28
CN113562711B (zh) 2023-12-12
GB2621949A (en) 2024-02-28
DE112022002261T5 (de) 2024-02-15
ES2981449A2 (es) 2024-10-08
CN113562711A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023000849A1 (zh) 磷酸铁及其制备方法和应用
CN110048118B (zh) 一种高镍型镍钴锰酸锂单晶前驱体及其制备方法和高镍型镍钴锰酸锂单晶正极材料
CN112624076B (zh) 一种磷酸铁的制备方法及其应用
CN110534719B (zh) 一种掺铝镁镍锰球形四氧化三钴的制备方法
EP3029762B1 (en) Method for synthesizing nano-lithium iron phosphate without water of crystallization in aqueous phase at normal pressure
CN101913659B (zh) 电池级四氧化三钴的制备方法
WO2022179291A1 (zh) 从红土镍矿浸出液中分离镍铁并制备磷酸铁的方法和应用
WO2022227668A1 (zh) 一种磷酸铁锂废料的回收方法及应用
CN101269849A (zh) 一种高密度球形锂镍钴锰氧及其制备方法
WO2023142672A1 (zh) 高纯磷酸铁的制备方法及其应用
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
CN112661199B (zh) 一种高振实密度氧化铝包覆镁锰共掺杂四氧化三钴的制备方法
CN110436427A (zh) 高容量高压实磷酸铁锂用复合结构正磷酸铁的制备方法
CN101982422B (zh) 大晶粒度高安全性四氧化三钴的制备方法
CN101580464A (zh) 钛白粉副产物硫酸亚铁生产电池级草酸亚铁的方法
WO2024045566A1 (zh) 一种掺杂型磷酸铁锂及其制备方法和应用
CN109950514A (zh) 一种铁酸锂包覆磷酸铁锂的制备方法
CN111471856A (zh) 红土镍矿一步酸浸并联产磷酸铁锂正极活性材料的方法
WO2023040286A1 (zh) 含铁矿物综合利用的方法
CN108565455A (zh) 一种非含氮络合剂辅助制备球形镍钴锰三元前驱体的方法
CN116354409A (zh) 一种超高bet高镍三元前驱体及其连续制备方法
CN114180651A (zh) 宽粒径分布三元前驱体材料造峰的方法
CN110713197B (zh) 一种从水热法制备磷酸铁锂产生的母液中回收锂盐的方法
CN115974036A (zh) 一种球形磷酸铁锰锂纳米颗粒及其制备方法
CN102874881B (zh) 一种四氧化三钴的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318251

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220606

WWE Wipo information: entry into national phase

Ref document number: 112022002261

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P202390263

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: P2400058

Country of ref document: HU

122 Ep: pct application non-entry in european phase

Ref document number: 22845016

Country of ref document: EP

Kind code of ref document: A1