WO2023040286A1 - 含铁矿物综合利用的方法 - Google Patents

含铁矿物综合利用的方法 Download PDF

Info

Publication number
WO2023040286A1
WO2023040286A1 PCT/CN2022/090534 CN2022090534W WO2023040286A1 WO 2023040286 A1 WO2023040286 A1 WO 2023040286A1 CN 2022090534 W CN2022090534 W CN 2022090534W WO 2023040286 A1 WO2023040286 A1 WO 2023040286A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
filtrate
iron phosphate
phosphate
leaching
Prior art date
Application number
PCT/CN2022/090534
Other languages
English (en)
French (fr)
Inventor
秦存鹏
李长东
阮丁山
唐盛贺
时振栓
蔡勇
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023040286A1 publication Critical patent/WO2023040286A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of battery materials, and in particular relates to a method for comprehensive utilization of iron-containing minerals.
  • LiFePO 4 with olivine structure has excellent safety and low cost, and with technological breakthroughs, the energy density of the system continues to increase, and lithium iron phosphate with better cost and safety performance is more popular in the market favor.
  • the current technical methods mainly focus on the preparation of methods such as hydrothermal method, precipitation method, sol-gel method, and template method.
  • the conventional preparation method generally consists of two stages of reaction and aging, and the time required for preparation is relatively long, and the heat utilization rate of the equipment is relatively high. Low, high energy consumption, limited capacity. Therefore, it is necessary to develop a new process to improve production capacity and heat utilization rate, which can have the potential of mass production, and the product performance index meets the production requirements of lithium iron phosphate battery.
  • iron-bearing ores such as ferromanganese ore, cobalt-iron ore, nickel-iron ore and aluminum-iron ore.
  • iron-bearing ores such as ferromanganese ore, cobalt-iron ore, nickel-iron ore and aluminum-iron ore.
  • the treatment process of most ores is wet ammonia leaching and fire treatment.
  • the fire method has high requirements, and the production process of wet ammonia leaching is complicated.
  • the environment has a greater impact.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for the comprehensive utilization of iron-containing minerals, which can realize the comprehensive utilization of resources of iron-containing minerals.
  • the anhydrous iron phosphate produced by the method has less impurities, fine particles, uniform distribution, and high tap density. Large, spherical porous particles are formed, which can be used as the precursor of lithium iron phosphate; after the iron phosphate is precipitated, the filtrate is adjusted to remove impurities by pH adjustment, and then cooled and crystallized to obtain MSO 4 ⁇ nH 2 O crystals with qualified impurity content, which can be used as a multi-component precursor Body preparation or doping.
  • S3 adding a pH regulator to the first filtrate, adjusting the pH to remove impurities, raising the temperature to react, and filtering to obtain a second filtrate, which is concentrated by evaporation, crystallized by cooling, and centrifuged to dry to obtain sulfate crystals.
  • the iron-containing mineral is one of cobaltite, manganite, delafossite or nickel-ironite. Further preferably, the iron-containing mineral is one of cobaltite, manganite or nickel-ironite.
  • step S1 the contents of Fe and M in the iron-containing minerals are 25-50% and 30-50% respectively, and M can be one of Co, Mn, Ni or Cu kind.
  • the iron-containing minerals are finely ground before acid leaching, and the particle size of the iron-containing minerals after fine grinding is D50 ⁇ 5um; more preferably, D50 ⁇ 0.5um.
  • the concentration of the sulfuric acid is 2-4 mol/L, and the solid-liquid ratio of the iron-containing mineral to the acid solution is 100-200 g/L. Further preferably, the concentration of the acid solution is 2.5-3.5 mol/L, and the solid-liquid ratio of the iron-containing minerals to the acid solution is 130-180 g/L.
  • the temperature of the acid leaching is 50-100° C., and the time of acid leaching is 3-20 h. Further preferably, the temperature of the acid leaching is 70-90° C., and the time of acid leaching is 3-8 hours.
  • the oxidant is one or more of hydrogen peroxide, oxygen or sodium persulfate. Further preferably, the oxidizing agent is hydrogen peroxide or oxygen.
  • the phosphorus source is at least one of phosphoric acid, ammonium dihydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate or sodium phosphate. Further preferably, the phosphorus source is at least one of phosphoric acid or ammonium dihydrogen phosphate.
  • step S2 the molar ratio of Fe, P and foaming agent in the mixed liquid is 1:(1.10-1.25):(0.10-0.25).
  • the blowing agent is at least one of sodium bicarbonate, urea, potassium bicarbonate, carbon black or sodium dodecylsulfonate.
  • the whipping agent is at least one of sodium bicarbonate or urea.
  • step S2 the mixed solution is stirred and ultrasonicated before microwave treatment, the stirring speed is 300-800rpm, the ultrasonic frequency is 30-50KHz, and the ultrasonic time is 5-30min ; Further preferably, the stirring speed is 300-500rpm, the ultrasonic frequency is 50KHz, and the ultrasonic time is 20-30min.
  • the microwave treatment uses one of a modified household microwave oven or a MARS-5 microwave digestion reactor.
  • the microwave treatment conditions are: microwave power 100-500w, temperature 90-150°C, reaction time 5-30min. Further preferably, the microwave power is 300-500w, the temperature is 90-150°C, and the reaction time is 5-15min.
  • the sintering atmosphere is one or both of air or nitrogen, first sintering at 200-350°C for 1-3h, and then heating up to 500-650°C for sintering 2-3h.
  • the pH regulator is at least one of sodium hydroxide, ammonia water or ammonium chloride; the pH adjustment is to adjust the pH to 5-8.
  • the concentration of the pH regulator is 0.5-3mol/L.
  • the heating temperature is 60-80°C, and the reaction time is 2-4h.
  • step S3 the temperature of the evaporative concentration is 80-130°C, and the time is 3-7h.
  • step S3 the cooling crystallization temperature is 20-50°C, and the cooling crystallization time is 5-8h.
  • the impurity content of the anhydrous iron phosphate is ⁇ 0.15%; more preferably, the impurity content of the anhydrous iron phosphate is ⁇ 0.05%.
  • Anhydrous iron phosphate can be used to prepare battery materials.
  • the particle size D50 of the anhydrous ferric phosphate is 2-5um
  • the tap density is 0.80-1.10g/cm 3
  • the specific surface area is 1-10m 2 /g.
  • the sulfate crystal is one of CoSO 4 .7H 2 O, MnSO 4 .H 2 O, NiSO 4 .7H 2 O, and can be used as a multi-component precursor Whole raw materials, improve economic efficiency.
  • the present invention uses iron-containing minerals as raw materials, and prepares ferric phosphate with qualified impurity content after leaching, and obtains sulfate crystals by high-temperature concentration and cooling crystallization after the filtrate is initially impurity-removed.
  • the equipment required for this process is simple, easy to operate, and the cost of raw materials is low, which can improve the economic benefits of the enterprise.
  • the invention adopts microwave-assisted treatment, the heating speed is fast, and no conventional heat conduction process is required; uniform heating, microwave heating penetrates into the liquid through electromagnetic waves for heating, and the conductivity of the heating medium is relatively low; the utilization rate of thermal efficiency is high , Microwave heating is a closed space, less heat energy leaks, and can only be absorbed by internal substances. Using the internal heating characteristics of the microwave, the inside of the slurry is heated up rapidly, and the foaming agent is heated and a large number of tiny bubbles rush out to form countless tiny pores, so that the ferric phosphate synthetic tissue expands and loosens. The synergistic effect of microwave and foaming agent increases the probability of collision and contact between molecules, and promotes the growth and growth of iron phosphate crystal nuclei.
  • the foaming agent used in the present invention can form porous iron phosphate without stirring, and after being prepared into lithium iron phosphate, the migration distance of lithium ions can be effectively reduced.
  • the foaming agent is easy to decompose into the vapor phase, and in the vapor-liquid interface, the microwave strengthens and promotes the crystallization of ferric orthophosphate, shortening the crystallization time.
  • the foaming agent has a rapid decomposition effect at high temperature, generates gas and can reduce the acidity of the reaction solution, promotes the nucleation of ferric phosphate, and the foaming agent is also a precipitant; adjusting the microwave power can quickly heat up and promote the growth of crystal nuclei , and the foaming agent can prevent the further growth of the crystal nucleus, and can effectively control the particle size of the product.
  • the traditional iron phosphate synthesis usually takes more than 5 hours, but the preparation of iron phosphate by this scheme takes less than 1 hour, which can effectively reduce energy consumption costs, high energy utilization rate, and the overall cost is lower than conventional heating.
  • the present invention is designed to remove iron by precipitation after leaching metal elements in iron-containing minerals, and the pH does not increase significantly during the preparation process.
  • the microwave-assisted method can effectively combine Co, Mn, Ni, Al, Zn and other elements The effective separation avoids the introduction of impurities during the synthesis of iron phosphate.
  • Fig. 1 is the XRD figure of the anhydrous ferric phosphate that the embodiment of the present invention 1 makes;
  • Fig. 2 is the SEM figure of the anhydrous ferric phosphate that the embodiment of the present invention 1 makes;
  • Fig. 3 is the XRD figure of the manganese sulfate that the embodiment of the present invention 1 makes;
  • Fig. 4 is the SEM figure of the manganese sulfate that the embodiment of the present invention 1 makes;
  • Example 5 is a charge-discharge curve at 0.1C of lithium iron phosphate synthesized from the anhydrous iron phosphate precursor prepared in Example 1 of the present invention.
  • This embodiment utilizes manganese iron ore to prepare a kind of ferric phosphate and manganese sulfate, and concrete process is:
  • step (3) Treat the mixed liquid in step (2) by microwave-assisted method, the microwave condition is 300w, the temperature is 130°C, and the treatment time is 10min, then cool down and cool down, and the solid-liquid separation obtains white iron phosphate dihydrate filter cake B and filtrate C , the filter cake B was dried at 100°C for 15 hours, and 245g of the obtained powder was roasted and dehydrated to obtain anhydrous ferric phosphate with an impurity content of ⁇ 0.3%;
  • Fig. 1 and Fig. 2 are respectively the XRD pattern and the SEM pattern of the anhydrous ferric phosphate prepared in Example 1. It can be seen from Fig. 1 that the anhydrous ferric phosphate prepared in Example 1 has high phase purity, good crystallinity, and no other impurity phases are found; it can be seen from Fig. 2 that the anhydrous ferric phosphate prepared has a porous structure, particle size distribution and dispersibility better.
  • Figure 3 and Figure 4 are the XRD pattern and SEM pattern of MnSO 4 ⁇ H 2 O prepared in Example 1, respectively. It can be seen from Figure 3 that the crystallinity of MnSO 4 ⁇ H 2 O prepared in Example 1 is relatively high, and no other impurity phases are found; it can be seen from Figure 4 that the prepared manganese sulfate primary particles are in the form of flakes, which are agglomerated into secondary particles, which meet the requirements of battery-grade sulfuric acid. Manganese requirements can be used in the synthesis process of ternary precursors.
  • FIG. 5 is a charge-discharge curve at 0.1C of lithium iron phosphate synthesized from the anhydrous iron phosphate precursor prepared in Example 1. It can be seen from Figure 5 that the first charge and discharge capacities of lithium iron phosphate synthesized with the anhydrous iron phosphate in Example 1 as the precursor are 160.4mAh/g and 157.5mAh/g respectively, and the electrical performance results are similar to those of commercially available products, indicating that The iron phosphate prepared by this process is suitable as the precursor material of lithium iron phosphate.
  • This embodiment utilizes manganese iron ore to prepare a kind of ferric phosphate and manganese sulfate, and concrete process is:
  • step (3) Treat the mixed liquid in step (2) with microwave-assisted method, the microwave condition is 500w, the temperature is 150°C, the treatment time is 3min, then cool down, and the solid-liquid separation is obtained white ferric phosphate dihydrate filter cake B and filtrate C , the filter cake B was dried at 120° C. for 10 h, and 355 g of the obtained powder was roasted and dehydrated to obtain anhydrous ferric phosphate with the impurity content ⁇ 0.3%;
  • This embodiment utilizes cobalt iron ore to prepare a kind of iron phosphate and cobalt sulfate, and specific process is:
  • step (3) Treat the mixed liquid in step (2) with microwave-assisted method, the microwave condition is 150w, the temperature is 130°C, the treatment time is 20min, then cool down, and the solid-liquid separation is obtained white ferric phosphate dihydrate filter cake B and filtrate C , the filter cake B was dried at 100°C for 15 hours, and the obtained powder was roasted and dehydrated to obtain anhydrous ferric phosphate with the impurity content ⁇ 0.3%;
  • the compacted density and electrical properties of lithium iron phosphate powder obtained from the anhydrous iron phosphate synthesized in Examples 1-3 of the present invention are close to those of commercially available iron phosphate, indicating that the iron phosphate synthesized by the present invention has reached the battery level for lithium iron phosphate Standard for anhydrous iron phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种含铁矿物综合利用的方法,包括将含铁矿物与硫酸、氧化剂混合进行酸浸,得到浸出液,将浸出液、磷源、发泡剂混合均匀后得到混合液,将混合液进行微波处理,冷却后固液分离得到二水磷酸铁滤饼和第一滤液,二水磷酸铁滤饼经干燥和焙烧制得无水磷酸铁,向第一滤液中加入pH调节剂,调节pH除杂,升温反应,过滤得第二滤液,第二滤液经蒸发浓缩,冷却结晶,离心干燥,得到硫酸盐晶体。本发明用含铁矿物作原料,浸出后通过微波处理制备杂质含量合格的磷酸铁,滤液初步除杂后通过高温浓缩、冷却结晶得硫酸盐晶体。此工艺所需设备简单、容易操作、原料成本低廉,可以提高企业的经济效益。

Description

含铁矿物综合利用的方法 技术领域
本发明属于电池材料技术领域,具体涉及一种含铁矿物综合利用的方法。
背景技术
与三元材料相比,橄榄石结构的LiFePO 4具有极好的安全性和较低的成本,并且随着技术突破,系统能量密度不断提升,成本和安全性能更优的磷酸铁锂更受市场青睐。磷酸铁作为磷酸铁锂正极材料的前驱体,其品质和成本将对磷酸铁锂电池性能及成本产生直接的影响。目前的技术方法主要集中在水热法、沉淀法、溶胶凝胶法、模板法等方法制备,常规制备方法一般为反应和陈化两个阶段,制备所需时间较长,并且设备热利用率较低,能耗较高,产能有限。因而需要开发新工艺提高产能及热利用率,能够具有大批量制备的潜力,并且产品性能指标满足磷酸铁锂电池制备要求。
我国作为一个矿产资源丰富的国家,具有储量丰富的含铁矿石,例如锰铁矿、钴铁矿、镍铁矿和铝铁矿等。目前矿石中金属元素的有效分离和提取具有一定的难度,大部分矿石的处理流程为湿法氨浸和火法处理,火法要求较高,湿法氨浸的生产工艺复杂,氨气排放对环境影响较大。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种含铁矿物综合利用的方法,能够实现含铁矿物的资源综合应用,该方法制得的无水磷酸铁杂质较少,颗粒细小、分布均匀、振实密度大,形成类球形多孔颗粒,能够作为磷酸铁锂的前驱体;磷酸铁沉淀后滤液通过pH调节除杂后,经冷却结晶得到杂质含量合格的MSO 4·nH 2O晶体,可以用于多元前驱体的制备或掺杂。
根据本发明的一个方面,提出了一种含铁矿物综合利用的方法,包括以下步骤:
S1:将含铁矿物与硫酸、氧化剂混合进行酸浸,得到浸出液;
S2:将所述浸出液、磷源、发泡剂混合均匀后得到混合液,将所述混合液进行微波 处理,冷却后固液分离得到二水磷酸铁滤饼和第一滤液,所述二水磷酸铁滤饼经干燥和焙烧制得无水磷酸铁;
S3:向所述第一滤液中加入pH调节剂,调节pH除杂,升温反应,过滤得第二滤液,所述第二滤液经蒸发浓缩,冷却结晶,离心干燥,得到硫酸盐晶体。
在本发明的一些实施方式中,步骤S1中,所述含铁矿物为钴铁矿、锰铁矿、铜铁矿或镍铁矿中的一种。进一步优选的,所述含铁矿物为钴铁矿、锰铁矿或镍铁矿中的一种。
在本发明的一些实施方式中,步骤S1中,所述含铁矿物中Fe、M的含量分别为25-50%和30-50%,M可以为Co、Mn、Ni或Cu中的一种。
在本发明的一些实施方式中,步骤S1中,所述含铁矿物在酸浸前经过细磨,细磨后含铁矿物的粒径D50≤5um;进一步优选的,D50≤0.5um。
在本发明的一些实施方式中,步骤S1中,所述硫酸的浓度为2-4mol/L,所述含铁矿物与酸液的固液比为100-200g/L。进一步优选的,所述酸液的浓度2.5-3.5mol/L,所述含铁矿物与酸液的固液比为130-180g/L。
在本发明的一些实施方式中,步骤S1中,所述酸浸的温度为50-100℃,酸浸的时间为3-20h。进一步优选的,所述酸浸的温度为70-90℃,酸浸的时间为3-8h。
在本发明的一些实施方式中,步骤S1中,所述氧化剂为双氧水、氧气或过硫酸钠中的一种或几种。进一步优选的,所述氧化剂为双氧水或氧气。
在本发明的一些实施方式中,步骤S2中,所述磷源为磷酸、磷酸二氢铵、磷酸二氢钾、磷酸二氢钠或磷酸钠中的至少一种。进一步优选的,所述磷源为磷酸或磷酸二氢铵中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述混合液中Fe、P和发泡剂的摩尔比为1:(1.10-1.25):(0.10-0.25)。
在本发明的一些实施方式中,步骤S2中,所述发泡剂为碳酸氢钠、尿素、碳酸氢钾、碳黑或十二烷基磺酸钠中的至少一种。进一步优选的,所述发泡剂为碳酸氢钠或尿 素中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述混合液在微波处理前经过搅拌和超声,所述搅拌的速度为300-800rpm,超声的频率为30-50KHz,超声的时间5-30min;进一步优选的,所述搅拌的速度为300-500rpm,超声的频率为50KHz,超声的时间20-30min。
在本发明的一些实施方式中,步骤S2中,所述微波处理使用改装的家用微波炉或MARS-5微波消解反应器中的一种。
在本发明的一些实施方式中,步骤S2中,所述微波处理的条件为:微波功率100-500w,温度90-150℃,反应时间5-30min。进一步优选的,微波功率300-500w,温度90-150℃,反应时间5-15min。
在本发明的一些实施方式中,步骤S2中,所述烧结的气氛为空气或氮气中的一种或两种,先在200-350℃下烧结1-3h,然后升温至500-650℃烧结2-3h。
在本发明的一些实施方式中,步骤S3中,所述pH调节剂为氢氧化钠、氨水或氯化铵中的至少一种;所述调节pH为将pH调节至5-8。所述pH调节剂的浓度为0.5-3mol/L。所述升温的温度为60-80℃,所述反应的时间为2-4h。
在本发明的一些实施方式中,步骤S3中,所述蒸发浓缩的温度为80-130℃,时间为3-7h。
在本发明的一些实施方式中,步骤S3中,所述冷却结晶的温度为20-50℃,冷却结晶的时间为5-8h。
在本发明的一些实施方式中,步骤S2中,所述无水磷酸铁的杂质含量≤0.15%;进一步优选的,所述无水磷酸铁的杂质含量≤0.05%。无水磷酸铁可用于制备电池材料。
在本发明的一些实施方式中,步骤S2中,所述无水磷酸铁的粒径D50为2-5um,振实密度为0.80-1.10g/cm 3,比表面积为1-10m 2/g。
在本发明的一些实施方式中,步骤S3中,所述硫酸盐晶体为CoSO 4·7H 2O、MnSO 4·H 2O、NiSO 4·7H 2O中的一种,可以用作制备多元前驱体的原料,提高经济效益。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明用含铁矿物作原料,浸出后制备杂质含量合格的磷酸铁,滤液初步除杂后通过高温浓缩、冷却结晶得硫酸盐晶体。此工艺所需设备简单、容易操作、原料成本低廉,可以提高企业的经济效益。
2、本发明采用微波辅助处理,加热速度快,不需要常规的热传导过程;均匀加热,微波加热时通过电磁波渗透到液体内部进行加热,对加热介质的传导性要求相对较低;热效率利用率高,微波加热为密闭空间,热能外泄少,只能被内部物质吸收。利用微波的内部加热特性,使得浆料内部迅速受热升温,发泡剂受热大量微小气泡往外冲出,形成无数的微小孔道,使磷酸铁合成组织膨胀、疏松。微波与发泡剂的协同作用增加了分子间的碰撞与接触几率,促进磷酸铁晶核的生长和成大。
3、本发明使用发泡剂,可以无需搅拌的情况下形成多孔磷酸铁,制备成磷酸铁锂后有效减少锂离子的迁移距离。发泡剂易分解成汽相,在汽-液界面中,微波强化并促使正磷酸铁结晶,缩短结晶时间。
4、所述发泡剂在高温下具有迅速分解效应,产生气体并可以降低反应液酸度,促使磷酸铁成核,发泡剂也是沉淀剂;调节微波功率,可以快速升温,促使晶核长大,并且发泡剂可以阻止晶核的进一步生长,可以有效控制产品粒度。
5、传统的磷酸铁合成所需时间一般超过5h,而本方案制备磷酸铁仅耗时不到1h,能够有效降低能耗成本,能耗利用率高,整体成本相较于常规加热较低。
6、本发明通过设计可以对含铁矿物中的金属元素浸出后沉淀除铁,制备过程中pH未有明显提升,通过微波辅助法能有效的与Co、Mn、Ni、Al、Zn等元素的有效分离,避免了在磷酸铁合成过程中杂质引入。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制得的无水磷酸铁的XRD图;
图2为本发明实施例1制得的无水磷酸铁的SEM图;
图3为本发明实施例1制得的硫酸锰的XRD图;
图4为本发明实施例1制得的硫酸锰的SEM图;
图5为本发明实施例1制得的无水磷酸铁前驱体合成的磷酸铁锂在0.1C的充放电曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例利用锰铁矿制备了一种磷酸铁和硫酸锰,具体过程为:
(1)将1kg的锰铁矿(主含量Fe:30-35%,Mn:40-45%)细磨至D50接近0.5um,细磨后的微粉投入7.5L、2.75mol/L稀硫酸、1.5L、27.5%的双氧水混合液中,在300rpm搅拌条件下80℃高温溶解3h,过滤取浸出滤液,得到浸出液A,测试浸出液Fe、Mn含量分别为37.52g/L、43.11g/L;
(2)取2L浸出液A倒入反应容器中,浸出液A(以Fe摩尔比计量)、磷酸、尿素以1:1.25:0.15摩尔比均匀混合后,300rpm搅拌5min后在40Hz超声20min,混合均匀后,置于改装家用微波炉中;
(3)将步骤(2)中的混合液采用微波辅助方法处理,微波条件为300w、温度为130℃、处理时间10min后冷却降温,固液分离得白色二水磷酸铁滤饼B和滤液C,滤饼B在100℃下干燥15h,将所得245g粉末进行焙烧脱水,即得杂质含量≤0.3%的无水磷酸铁;
(4)收集滤液C,在80℃将0.59L、10%NaOH溶液加入到滤液C中调节pH至6.9以Fe(OH) 3、Al(OH) 3的形式去除Fe、Al等少量杂质,反应2.5h后过滤得杂质沉淀D和滤液E,经蒸发器升温至100℃将滤液E高温浓缩至原体积的30%,降温至40℃以下冷却结晶,离心干燥,得到255g杂质含量低于0.5%的MnSO 4·H 2O晶体,锰铁矿中Fe、Mn的有效利用率均可达95%以上。
图1和图2分别为实施例1制备的无水磷酸铁的XRD图和SEM图。由图1可知实施例1制备的无水磷酸铁物相纯度较高,结晶度好,未发现其它杂相;由图2可知制备的无水磷酸铁呈多孔结构,颗粒颗粒粒度分布及分散性较好。
图3和图4分别为实施例1制备的MnSO 4·H 2O的XRD图和SEM图。由图3可知实施例1制备的MnSO 4·H 2O结晶度较高,未发现其它杂相;由图4可知制备的硫酸锰一次粒子呈片状,团聚成为二次颗粒,满足电池级硫酸锰的要求,能够用于三元前驱体的合成过程。
图5为实施例1制得的无水磷酸铁前驱体合成的磷酸铁锂在0.1C的充放电曲线图。由图5可知以实施例1的无水磷酸铁为前驱体所合成的磷酸铁锂的首次充、放电容量分别为160.4mAh/g、157.5mAh/g,电性能结果与市售产品相近,表明本工艺制备的磷酸铁适合作为磷酸铁锂前驱体材料。
实施例2
本实施例利用锰铁矿制备了一种磷酸铁和硫酸锰,具体过程为:
(1)将0.5kg的锰铁矿(主含量Fe:40%,Mn:30%)细磨至D50接近1um,细磨后的微粉投入3.5L、3mol/L稀硫酸、2L、15%的双氧水混合液中,在300rpm搅拌条件下70℃高温溶解5h,过滤取浸出滤液,得到浸出液A,测试浸出液Fe、Mn含量分别为54.15g/L、39.24g/L;
(2)取2L浸出液A倒入反应容器中,浸出液A(以Fe摩尔比计量)、磷酸、尿素以1:1.15:0.30摩尔比均匀混合后,250rpm搅拌10min后在40Hz超声20min,混合均匀后,置于改装家用微波炉中;
(3)将步骤(2)中的混合液采用微波辅助方法处理,微波条件为500w、温度为150℃、处理时间3min后冷却降温,固液分离得白色二水磷酸铁滤饼B和滤液C,滤饼B在120℃下干燥10h,将所得355g粉末进行焙烧脱水,即得所述杂质含量≤0.3%的无水磷酸铁;
(4)收集除铁后滤液C,在75℃下将68g、纯度99%的KOH粉末加入到滤液C中调节pH至7.3以Fe(OH) 3、Al(OH) 3的形式去除Fe、Al等少量杂质,反应3h后过滤得杂质沉淀D和滤液E,经蒸发器升温至120℃将滤液E高温浓缩至原体积的35%,降温至 40℃以下冷却结晶,离心干燥,得到231g杂质含量低于0.5%的MnSO 4·H 2O晶体,含铁矿石中Fe、Mn的有效利用率均可达95%以上。
实施例3
本实施例利用钴铁矿制备了一种磷酸铁和硫酸钴,具体过程为:
(1)将1kg的钴铁矿(主含量Fe:25%,Co:35%)细磨至D50接近2um,细磨后的微粉投入5L、3mol/L稀硫酸、1L、15%的双氧水混合液中,在400rpm搅拌条件下85℃高温溶解4h,过滤取浸出滤液,得到浸出液A,测试浸出液Fe、Co含量分别为32.55g/L、65.34g/L;
(2)取2L浸出液A倒入反应容器中,浸出液A(以Fe摩尔比计量)、磷酸、尿素以1:1.25:0.25摩尔比均匀混合后,350rpm搅拌10min后在50Hz超声15min,混合均匀后,置于改装家用微波炉中;
(3)将步骤(2)中的混合液采用微波辅助方法处理,微波条件为150w、温度为130℃、处理时间20min后冷却降温,固液分离得白色二水磷酸铁滤饼B和滤液C,滤饼B在100℃下干燥15h,将所得粉末进行焙烧脱水,即得所述杂质含量≤0.3%的无水磷酸铁;
(4)收集除铁后滤液C,在70℃下将78g、纯度99%的碳酸钠加入到滤液C中调节pH至7.8以Fe(OH) 3、Al(OH) 3的形式去除Fe、Al等少量杂质,反应4h后过滤得杂质沉淀D和滤液E,经蒸发器升温至140℃将滤液E高温浓缩至原体积的40%,降温至40℃以下冷却结晶3h,离心干燥,得到617g杂质含量低于0.5%的CoSO 4·7H 2O晶体,含铁矿石中Fe、Co的有效利用率均可达95%以上。
试验例
将上述实施例1-3制得的无水磷酸铁与市购的磷酸铁按照常规方法在同等条件下制备成磷酸铁锂,对制得的磷酸铁锂的压实密度及其他电性能进行检测,结果如下表1所示:
表1
  压实密度 0.1C的首次放电 0.1C的首次放电 放电效率(%)
  (g/cm 3) 容量(mAh/g) 容量(mAh/g)  
实施例1 2.40 160.4 157.5 98.12
实施例2 2.36 160.1 157.3 98.25
实施例3 2.37 159.9 157.3 98.30
市售 2.36 159.5 157.2 98.55
本发明实施例1-3中合成的无水磷酸铁制得的磷酸铁锂粉末压实密度及电性能与市售的磷酸铁接近,表明本发明合成的磷酸铁达到了磷酸铁锂用电池级无水磷酸铁的标准。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种含铁矿物综合利用的方法,其特征在于,包括以下步骤:
    S1:将含铁矿物与硫酸、氧化剂混合进行酸浸,得到浸出液;
    S2:将所述浸出液、磷源、发泡剂混合均匀后得到混合液,将所述混合液进行微波处理,冷却后固液分离得到二水磷酸铁滤饼和第一滤液,所述二水磷酸铁滤饼经干燥和焙烧制得无水磷酸铁;
    S3:向所述第一滤液中加入pH调节剂,调节pH除杂,升温反应,过滤得第二滤液,所述第二滤液经蒸发浓缩,冷却结晶,离心干燥,得到硫酸盐晶体。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述含铁矿物为钴铁矿、锰铁矿、铜铁矿或镍铁矿中的一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述硫酸的浓度为2-4mol/L,所述含铁矿物与酸液的固液比为100-200g/L。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述磷源为磷酸、磷酸二氢铵、磷酸二氢钾、磷酸二氢钠或磷酸钠中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述混合液中Fe、P和发泡剂的摩尔比为1:(1.10-1.25):(0.10-0.25)。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述发泡剂为碳酸氢钠、尿素、碳酸氢钾、碳黑或十二烷基磺酸钠中的至少一种。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述微波处理的条件为:微波功率100-500w,温度90-150℃,反应时间5-30min。
  8. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述烧结的气氛为空气或氮气中的一种或两种,先在200-350℃下烧结1-3h,然后升温至500-650℃烧结2-3h。
  9. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述pH调节剂为氢氧化钠、氨水或氯化铵中的至少一种;所述调节pH为将pH调节至5-8。
  10. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述蒸发浓缩的温度为 80-130℃,时间为3-7h。
PCT/CN2022/090534 2021-09-15 2022-04-29 含铁矿物综合利用的方法 WO2023040286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111082298.1 2021-09-15
CN202111082298.1A CN113753872A (zh) 2021-09-15 2021-09-15 含铁矿物综合利用的方法

Publications (1)

Publication Number Publication Date
WO2023040286A1 true WO2023040286A1 (zh) 2023-03-23

Family

ID=78795895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090534 WO2023040286A1 (zh) 2021-09-15 2022-04-29 含铁矿物综合利用的方法

Country Status (2)

Country Link
CN (1) CN113753872A (zh)
WO (1) WO2023040286A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753872A (zh) * 2021-09-15 2021-12-07 广东邦普循环科技有限公司 含铁矿物综合利用的方法
CN116409762A (zh) * 2021-12-29 2023-07-11 荆门市格林美新材料有限公司 一种利用镍铁合金制备电池材料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367102A (en) * 1970-11-11 1974-09-18 Australian Mineral Dev Lab Process for the reduction of the phosphorus content of iron ores
CN101264875A (zh) * 2008-04-15 2008-09-17 中南大学 一种综合利用钛铁矿制备磷酸铁锂前驱体的方法
CN101264876A (zh) * 2008-04-21 2008-09-17 中南大学 综合利用钛铁矿制备磷酸铁锂前驱体的方法
CN112456461A (zh) * 2020-12-11 2021-03-09 衢州华友钴新材料有限公司 一种利用钴铁浸出液制备电池级片状磷酸铁的方法
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN113753872A (zh) * 2021-09-15 2021-12-07 广东邦普循环科技有限公司 含铁矿物综合利用的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498918B (zh) * 2020-06-01 2022-05-20 中国恩菲工程技术有限公司 一种镍铁材料的湿法处理工艺
CN113025822B (zh) * 2021-02-04 2022-08-16 湖南邦普循环科技有限公司 从含镍铁粉中提取镍并制备磷酸铁的方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367102A (en) * 1970-11-11 1974-09-18 Australian Mineral Dev Lab Process for the reduction of the phosphorus content of iron ores
CN101264875A (zh) * 2008-04-15 2008-09-17 中南大学 一种综合利用钛铁矿制备磷酸铁锂前驱体的方法
CN101264876A (zh) * 2008-04-21 2008-09-17 中南大学 综合利用钛铁矿制备磷酸铁锂前驱体的方法
CN112456461A (zh) * 2020-12-11 2021-03-09 衢州华友钴新材料有限公司 一种利用钴铁浸出液制备电池级片状磷酸铁的方法
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN113753872A (zh) * 2021-09-15 2021-12-07 广东邦普循环科技有限公司 含铁矿物综合利用的方法

Also Published As

Publication number Publication date
CN113753872A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN110048118B (zh) 一种高镍型镍钴锰酸锂单晶前驱体及其制备方法和高镍型镍钴锰酸锂单晶正极材料
EP4286325A1 (en) Method for resource recycling of nickel-iron alloy and use thereof
WO2023040286A1 (zh) 含铁矿物综合利用的方法
CN110534719B (zh) 一种掺铝镁镍锰球形四氧化三钴的制备方法
CN111348637B (zh) 一种纳米磷酸铁锂及其制备方法
WO2022227669A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN106564867B (zh) 一种添加还原性有机物制备磷酸铁材料的方法
WO2024000844A1 (zh) 磷酸锰铁锂的制备方法及其应用
GB2621949A (en) Ferric phosphate, preparation method thereof and application thereof
WO2024060549A1 (zh) 一种连续化制备磷酸铁的方法和应用
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
CN115043387B (zh) 磷酸锰铁铵的制备方法、磷酸锰铁锂及其应用
CN101973592A (zh) 一种高比重球型碳酸钴的制备方法
WO2023142672A1 (zh) 高纯磷酸铁的制备方法及其应用
CN113603159A (zh) 一种多层铝掺杂的镍钴锰前驱体及其制备方法
WO2023142677A1 (zh) 掺杂型磷酸铁及其制备方法和应用
CN109950514A (zh) 一种铁酸锂包覆磷酸铁锂的制备方法
CN111009645A (zh) 一种石墨烯基/AlPO4复合包覆改性高镍三元正极材料的方法
CN113651303A (zh) 一种纳米片状磷酸铁的制备方法及应用其制得的LiFePO4/C正极活性材料
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN101759172A (zh) 一种制备高性能磷酸铁锂的微波烧结方法
CN105060266A (zh) 一种纳米磷酸铁锂的水热合成方法
WO2023207247A1 (zh) 一种多孔隙球形钴氧化物颗粒及其制备方法
CN114933292B (zh) 一种磷酸铁锂的制备方法及其应用
CN115084484B (zh) 一种钠离子电池正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE