WO2023142677A1 - 掺杂型磷酸铁及其制备方法和应用 - Google Patents

掺杂型磷酸铁及其制备方法和应用 Download PDF

Info

Publication number
WO2023142677A1
WO2023142677A1 PCT/CN2022/135884 CN2022135884W WO2023142677A1 WO 2023142677 A1 WO2023142677 A1 WO 2023142677A1 CN 2022135884 W CN2022135884 W CN 2022135884W WO 2023142677 A1 WO2023142677 A1 WO 2023142677A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
iron
doped
preparation
iron phosphate
Prior art date
Application number
PCT/CN2022/135884
Other languages
English (en)
French (fr)
Inventor
李玲
李长东
阮丁山
陈若葵
时振栓
Original Assignee
宜昌邦普循环科技有限公司
宜昌邦普宜化新材料有限公司
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜昌邦普循环科技有限公司, 宜昌邦普宜化新材料有限公司, 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 宜昌邦普循环科技有限公司
Priority to GB2314854.7A priority Critical patent/GB2619869A/en
Priority to DE112022004680.5T priority patent/DE112022004680T5/de
Publication of WO2023142677A1 publication Critical patent/WO2023142677A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of battery materials, and in particular relates to doped iron phosphate and its preparation method and application.
  • lithium iron phosphate Due to its own structural defects, lithium iron phosphate has low ionic conductivity and electronic conductivity. In addition, lithium iron phosphate has poor electrical properties under low temperature conditions. In response to these existing problems, researchers proposed improved methods mainly including metal ion doping, conductive layer coating on the surface of lithium iron phosphate, and reducing the size of the material.
  • the method for preparing lithium iron phosphate in the prior art mainly uses iron phosphate as a precursor, lithium carbonate as a lithium source, and undergoes processes such as grinding, spray drying, and sintering.
  • the iron phosphate precursor is produced by precipitation method, that is, adding a precipitating agent or a certain complexing agent to chemically react with ions in the solution to form precipitates and crystals.
  • This method can prepare products with uniform particle size distribution, but it has high requirements on the pH of the solution system (alkali needs to be added to adjust the pH), while increasing the difficulty of actual operation, it also needs to deal with lye wastewater, and the prepared lithium iron phosphate can be processed at low temperature. The electrochemical performance still needs to be improved.
  • This application proposes a doped iron phosphate and its preparation method and application.
  • the manganese-doped iron phosphate can improve the electrochemical performance of LiFePO 4 /C prepared subsequently, and the discharge specific capacity of LiFePO 4 /C at room temperature 0.1C is 165mAh /g; 1C cycle 1000 discharge capacity retention rate exceeds 96%.
  • a doped iron phosphate its chemical formula is (Mn x Fe 1-x )@FePO 4 ⁇ 2H 2 O, where 0 ⁇ x ⁇ 1.
  • the value range of x is 0.5 ⁇ x ⁇ 0.8.
  • the specific surface area of the doped iron phosphate is 1.4-3.2m 2 /g, and the Dv50 is 6.4-7.6 ⁇ m.
  • the doping amount of Mn is 0.1-2%.
  • the doping amount of Mn is 0.4-1.1%.
  • a preparation method of doped iron phosphate comprising the following steps:
  • the iron-containing solution is prepared by mixing an iron source and an acid solution.
  • the iron source is simple iron, ferrous chloride, ferric chloride, ferrous sulfate, ferric nitrate, ferrous acetate, waste ferric phosphate, ferrous phosphate, ferrophosphate slag, ferric phosphide slag, sulfur At least one of iron ore or phosphate iron ore.
  • the iron source is at least one of iron element, ferrous sulfate, waste ferric phosphate, and ferrophosphorus slag.
  • the iron source is at least one of iron element, ferrous chloride, ferrous sulfate or ferrous acetate
  • an oxidizing agent needs to be added, and the oxidizing agent is At least one of hydrogen peroxide, sodium peroxide or ammonium persulfate.
  • the oxidizing agent is hydrogen peroxide.
  • the phosphorus source is at least one of phosphoric acid, phosphorous acid, sodium hypophosphite, waste iron phosphate, ammonium dihydrogen phosphate or ammonium phosphate.
  • the iron-to-phosphorus ratio in the mixed liquid is 0.92-1.03, and more preferably, the iron-to-phosphorus ratio is 0.97-1.
  • the chemical formula of the ferromanganese phosphate is Mn x Fe 1-x PO 4 , where 0 ⁇ x ⁇ 1.
  • the value range of x is 0.5 ⁇ x ⁇ 0.8.
  • the reaction temperature is 70-100°C; more preferably, the reaction temperature is 80-95°C.
  • the reaction time is 2-10 h; further preferably, the reaction time is 4-8 h.
  • the liquid-solid ratio of the pulping is 1:(2-3) L/g.
  • the electrical conductivity of the washed filtrate is ⁇ 500 ⁇ s/cm; further preferably, the electrical conductivity of the washed filtrate is ⁇ 200 ⁇ s/cm.
  • step (2) further includes calcining manganese-doped iron phosphate dihydrate to obtain anhydrous iron phosphate.
  • the calcination temperature is 300-650°C; more preferably, the calcination temperature is 450-550°C.
  • the solubility product equilibrium constant of ferric phosphate at room temperature is as small as 1.3*10 -22 , and it is difficult to spontaneously form ferric phosphate precipitation in a homogeneous system. Therefore, the reaction is generally promoted by adding alkali or ammonia to increase the pH of the solution, while This application does not need to add lye or ammonia to regulate the pH of the solution.
  • ferromanganese phosphate additives By adding ferromanganese phosphate additives, on the one hand, it induces the precipitation of ferric phosphate on the ferromanganese phosphate lattice;
  • the energy barrier generated by the new precipitation promotes the rapid reaction to form manganese-doped iron phosphate dihydrate with a similar core-shell structure.
  • a method for preparing carbon-coated manganese-doped lithium iron phosphate comprising the following steps:
  • the lithium source is at least one of lithium carbonate, lithium hydroxide, and lithium dihydrogen phosphate; more preferably, the lithium source is lithium carbonate.
  • the carbon source is at least one of glucose, sucrose, soluble starch, carbon black, and graphene; further preferably, the carbon source is sucrose.
  • the temperature of the first calcination is 650-800° C., and the time of the first calcination is 6-16 hours.
  • the temperature of the second calcination is 650-700° C., and the time of the second calcination is 6-10 hours.
  • the atmosphere for the second calcination is an inert atmosphere, preferably a nitrogen atmosphere.
  • the present application also provides the application of the above-mentioned doped iron phosphate in the preparation of positive electrode materials for lithium batteries.
  • a battery comprising the carbon-coated manganese-doped lithium iron phosphate prepared by the above preparation method.
  • This application uses the template agent ferromanganese phosphate to prepare doped iron phosphate.
  • the doped iron phosphate has regular shape and good fluidity, which is beneficial to washing and transportation, and improves the electrochemical performance of LiFePO 4 /C prepared subsequently.
  • Performance when the Mn doping amount is 11000ppm, the discharge specific capacity of LiFePO 4 /C at room temperature 0.1C can reach 165mAh/g; at 45°C, the discharge capacity retention rate of 1000 cycles of 1C can reach 97.4%; -15°C low temperature 0.1C The discharge specific capacity is still 134mAh/g.
  • Fig. 1 is the SEM picture of the manganese-doped ferric phosphate dihydrate that the embodiment 1 of the present application makes;
  • Fig. 2 is the SEM image of the carbon-coated manganese-doped lithium iron phosphate prepared in Example 1 of the present application;
  • Fig. 3 is the XRD pattern of the manganese-doped ferric phosphate dihydrate obtained in Example 1 of the present application;
  • FIG. 4 is an XRD pattern of the carbon-coated manganese-doped lithium iron phosphate prepared in Example 1 of the present application.
  • step (3) Put the filter cake obtained in step (2) into the pulping tank, add deionized water to stir evenly, filter, then repeatedly wash with deionized water until the conductivity of the washing water is less than 500 ⁇ s/cm, stop washing, and obtain manganese Doped ferric phosphate dihydrate solid, (Mn 0.8 Fe 0.2 )@FePO 4 ⁇ 2H 2 O.
  • Fig. 1 and Fig. 3 are respectively the XRD pattern and the SEM pattern of the ferric phosphate dihydrate prepared in Example 1;
  • Fig. 2 and Fig. 5 are respectively the XRD pattern and the SEM pattern of the anhydrous ferric phosphate prepared in Example 1. It can be seen from Fig. 1 that the preparation is composed of irregular block particles; by the XRD figure of the ferric phosphate dihydrate prepared in Fig. 3 embodiment 1, it can be seen from the figure that the product obtained in embodiment 1 is ferric phosphate, and the manganese doping is not Will affect the structure of iron phosphate.
  • Fig. 2 is the SEM figure of embodiment 1 lithium iron phosphate, is made up of irregular particle size;
  • Fig. 4 is the XRD pattern of embodiment 1 lithium iron phosphate, it can be seen from the figure that the product obtained in the embodiment is a pure-phase olivine type Lithium iron phosphate.
  • step (3) Put the filter cake obtained in step (2) into the pulping tank, add deionized water to stir evenly, filter, then repeatedly wash with deionized water until the conductivity of the washing water is less than 500 ⁇ s/cm, stop washing, and obtain manganese Doped ferric phosphate dihydrate solid, (Mn 0.6 Fe 0.4 )@FePO 4 ⁇ 2H 2 O.
  • step (3) Put the filter cake obtained in step (2) into the pulping tank, add deionized water to stir evenly, filter, then repeatedly wash with deionized water until the conductivity of the washing water is less than 500 ⁇ s/cm, stop washing, and obtain manganese Doped ferric phosphate dihydrate solid, (Mn 0.5 Fe 0.5 )@FePO 4 ⁇ 2H 2 O.
  • the preparation method of the ferric phosphate of this comparative example specifically comprises the following steps:
  • step (3) Put the filter cake obtained in step (2) into the pulping tank, add deionized water to stir evenly, filter, then repeatedly wash with deionized water until the conductivity of the washing water is less than 500 ⁇ s/cm, stop washing, and obtain two Water iron phosphate solid FePO 4 ⁇ 2H 2 O.
  • the preparation method of the carbon-coated lithium iron phosphate of this comparative example specifically comprises the following steps:
  • the preparation method of the ferric phosphate of this comparative example specifically comprises the following steps:
  • step (3) Put the filter cake obtained in step (2) into the pulping tank, add deionized water to stir evenly, filter, then repeatedly wash with deionized water until the conductivity of the washing water is less than 500 ⁇ s/cm, stop washing, and obtain two Water iron phosphate solid FePO 4 ⁇ 2H 2 O.
  • the preparation method of the carbon-coated manganese-doped lithium iron phosphate of this comparative example specifically comprises the following steps:
  • Embodiment 1-3 and comparative example 1-2 analyze:
  • Table 1 shows the physical and chemical result data of the ferric phosphate dihydrate products prepared in Examples 1, 2, 3, Comparative Example 1 and Comparative Example 2, and the specific data are obtained by testing with ICP-AES equipment. It can be seen from Table 1 that the prepared ferric phosphate dihydrate product has a large particle size and a small specific surface area.
  • Example 1 Example 2
  • Example 3 Comparative example 1 Comparative example 2 Fe/% 28.89 28.87 29 29.21 29.05 P/% 16.47 16.3 16.46 16.51 16.41 Fe/P 0.973 0.974 0.977 0.981 0.981
  • the ferric phosphate dihydrate particle size prepared by Examples 1-3 of the present application is large, the specific surface area is small, and the appearance is regular, so that the fluidity is large, good washing, and good follow-up processing performance. 1 and 2, the particle size obtained by this process is small, the BET is large, the material is difficult to wash, the fluidity is not good, the viscosity is large, and the subsequent processability will be relatively poor. It can be seen from Table 2 that, with the same iron source and phosphorus source (Example 1 and Comparative Example 1/Comparative Example 2), the present application does not need to add alkali or ammonia to adjust the pH, and the cost will be lower.
  • Table 2 prepares the cost data of ferric phosphate dihydrate product
  • the electrical properties of the lithium iron phosphate powder prepared from the ferric phosphate dihydrate synthesized in Examples 1-3 of the present application are significantly better than the electrochemical properties of undoped manganese (Comparative Example 1), which is better than that of preparing the precursor before doping
  • the electrochemical performance is also relatively good, especially the discharge specific capacity and discharge capacity retention rate at low temperature are much higher than those of Comparative Example 1 and Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)

Abstract

本申请属于电池材料技术领域,公开了一种掺杂型磷酸铁及其制备方法及应用,该掺杂型磷酸铁的化学式为(Mn xFe 1-x)@FePO 4·2H 2O,其中,0<x<1。本申请利用模板剂磷酸锰铁制备出掺杂型磷酸铁,该掺杂型磷酸铁形貌规整,流动性好,有利于洗涤和输送,并提高后续制备的LiFePO 4/C电化学性能,当Mn掺杂量为11000ppm时,LiFePO 4/C常温0.1C下放电比容量可达165mAh/g;45℃,1C循环1000次放电容量保持率可达97.4%;-15℃低温0.1C放电比容量仍有134mAh/g。

Description

掺杂型磷酸铁及其制备方法和应用 技术领域
本申请属于电池材料技术领域,具体涉及掺杂型磷酸铁及其制备方法和应用。
背景技术
受新能源市场爆发和储能市场崛起带动,锂离子电池出货量激增。磷酸铁锂由于自身结构缺陷,导致其离子电导率和电子电导率低,此外磷酸铁锂在低温条件下电性能差。针对存在的这些问题,研发人员提出改善的方法主要有金属离子掺杂、磷酸铁锂表面进行导电层包覆和减小材料的尺寸。
现有技术中制备磷酸铁锂的方法主要是以磷酸铁为前驱体,碳酸锂为锂源,经过研磨、喷雾干燥、烧结等工序。而磷酸铁前驱体是通过沉淀法,即加入沉淀剂或某种络合剂,与溶液中离子发生化学反应生成沉淀结晶出来。该方法能够制备得到粒度分布均匀的产品,但是对溶液体系pH要求高(需要加碱调pH),增加实际操作难度的同时,还需要处理碱液废水,而且制备出来的磷酸铁锂在低温条件下的电化学性能还有待提高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提出一种掺杂型磷酸铁及其制备方法和应用,该锰掺杂型磷酸铁可以提高后续制备的LiFePO 4/C电化学性能,LiFePO 4/C常温0.1C下放电比容量为165mAh/g;1C循环1000次放电容量保持率超过96%。
为实现上述目的,本申请采用以下技术方案:
一种掺杂型磷酸铁,其化学式为(Mn xFe 1-x)@FePO 4·2H 2O,其中,0<x<1。
优选地,所述x的取值范围为0.5≤x≤0.8。
优选地,所述掺杂型磷酸铁的比表面积为1.4-3.2m 2/g,Dv50为6.4-7.6μm。
优选地,所述Mn的掺杂量为0.1-2%。
进一步优选地,所述Mn的掺杂量为0.4-1.1%。
一种掺杂型磷酸铁的制备方法,包括以下步骤:
(1)向含铁溶液中加入磷源,混合,加入磷酸锰铁,加热,反应,得到混合液;
(2)将所述混合液进行固液分离,取固相,制浆,再进行固液分离,洗涤,得到锰掺杂的二水磷酸铁。
优选地,步骤(1)中,所述含铁溶液是由铁源和酸液混合制得。
进一步优选地,所述铁源为铁单质、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁、醋酸亚铁、废磷酸铁、磷酸亚铁、磷铁渣、磷化铁渣、硫铁矿或磷铁矿中的至少一种。
更优选地,所述铁源为铁单质、硫酸亚铁、废磷酸铁、磷铁渣中的至少一种。
更优选地,当所述铁源为铁单质、氯化亚铁、硫酸亚铁或醋酸亚铁中的至少一种时,所述含铁溶液和磷源混合后需添加氧化剂,所述氧化剂为双氧水、过氧化钠或过硫酸铵中的至少一种。
进一步优选地,所述氧化剂为双氧水。
优选地,步骤(1)中,所述磷源为磷酸、亚磷酸、次磷酸钠、废磷酸铁、磷酸二氢铵或磷酸铵中的至少一种。
优选地,步骤(1)中,所述混合液中的铁磷比为0.92~1.03,进一步优选地,所述铁磷比为0.97-1。
优选地,步骤(1)中,所述磷酸锰铁的化学式为Mn xFe 1-xPO 4,其中0<x<1。
进一步优选地,所述x的取值范围为0.5<x<0.8。
优选地,步骤(1)中,所述反应的温度为70-100℃;进一步优选地,所述反应的温度为80-95℃。
优选地,所述反应的时间为2-10h;进一步优选地,所述反应的时间为4-8h。
优选地,步骤(2)中,所述制浆的液固比为1:(2-3)L/g。
优选地,步骤(2)中,所述洗涤后的滤液的电导率≤500μs/cm;进一步优选地,所述洗涤后的滤液的电导率≤200μs/cm。
优选地,步骤(2)中,还包括将锰掺杂的二水磷酸铁进行煅烧,得到无水磷酸铁。
进一步优选地,所述煅烧的温度为300-650℃;更优选地,所述煅烧的温度为为450-550℃。
原理:常温下磷酸铁的溶度积平衡常数较小为1.3*10 -22,在均相体系中较难自发形成磷酸铁沉淀,因此一般是通过加入碱或氨提高溶液pH促进反应进行,而本申请不用添加碱液或者氨调控溶液pH,通过加入磷酸锰铁添加剂,一方面诱导磷酸铁在磷酸铁锰晶格上沉淀析出,另一方面溶液中加入固体(磷酸锰铁)存在新界面降低新沉淀生成的能量势垒从而促进反应快速进行,从而形成类似核壳结构的锰掺杂的二水磷酸铁。
一种碳包覆锰掺杂的磷酸铁锂的制备方法,包括以下步骤:
将所述锰掺杂的二水磷酸铁进行第一次煅烧,加入锂源和碳源混合、喷雾制粒,再进行第二次煅烧,得到碳包覆锰掺杂的磷酸铁锂。
优选地,所述锂源为碳酸锂、氢氧化锂、磷酸二氢锂中的至少一种;进一步优选地,所述锂源为碳酸锂。
优选地,所述碳源为葡萄糖、蔗糖、可溶性淀粉、碳黑、石墨烯中的至少一种;进一优选地,所述碳源为蔗糖。
优选地,所述第一次煅烧的温度为650-800℃,第一次煅烧的时间为6-16h。
进一步优选地,所述第二次煅烧的温度为650-700℃,第二次煅烧的时间为6-10h。
优选地,所述第二次煅烧的气氛为惰性气氛,优选为氮气气氛。
本申请还提供上述的掺杂型磷酸铁在制备锂电池正极材料中的应用。
一种电池,包括上述制备方法制得的碳包覆锰掺杂的磷酸铁锂。
相对于现有技术,本申请的有益效果如下:
(1)本申请利用模板剂磷酸锰铁制备出掺杂型磷酸铁,该掺杂型磷酸铁形貌规整,流动性好,有利于洗涤和输送,并提高后续制备的LiFePO 4/C电化学性能,当Mn掺杂量为11000ppm时,LiFePO 4/C常温0.1C下放电比容量可达165mAh/g;45℃,1C循环1000次放电容量保持率可达97.4%;-15℃低温0.1C放电比容量仍有134mAh/g。
(2)本申请将磷源加入含铁溶液后,通过加入磷酸锰铁模板剂,一方面诱导磷酸铁在磷酸铁锰晶格上沉淀析出,另一方面溶液中加入固体(磷酸锰铁)存在新界面降低新沉淀生成的能量势垒从而促进反应快速进行,并得到类似核壳结构的前驱体。上述反应不用添加碱液或者氨调控溶液pH,不需要处理碱液废水,环保同时容易实现量产。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请实施例1制得的锰掺杂的二水磷酸铁的SEM图;
图2为本申请实施例1制得的碳包覆锰掺杂磷酸铁锂的SEM图;
图3为本申请实施例1制得的锰掺杂的二水磷酸铁的XRD图;
图4为本申请实施例1制得的碳包覆锰掺杂磷酸铁锂的XRD图。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
实施例1
本实施例的锰掺杂磷酸铁的制备方法,具体包括以下步骤:
(1)配制混合金属液:将100L浓度为1.2mol/L的硫酸加入带搅拌的槽内,接着加入23.54kg磷化铁废料,搅拌溶解、配制得到含铁、磷的混合金属液。
(2)将配制好的含铁、磷混合金属液倒入反应容器中,将搅拌开启调到450rpm,并加入500g磷酸锰铁(Mn 0.8Fe 0.2PO 4),加热升温到90℃,90℃保温4h后停止升温,反应结束后,用离心机将反应浆料进行固体与滤液分离,得到固体滤饼。
(3)将步骤(2)所得滤饼放入制浆槽中,加入去离子水搅拌均匀,过滤,再用去离子水反复清洗至洗涤水电导率<500μs/cm,停止洗涤,即得锰掺杂的二水磷酸铁固体,(Mn 0.8Fe 0.2)@FePO 4·2H 2O。
本实施例的碳包覆锰掺杂磷酸铁锂的制备方法,具体包括以下步骤:
(1)将洗涤后的上述二水磷酸铁固体铺散放入100℃烘箱内烘干,之后在空气气氛、550℃下进行第一次煅烧3h得到无水磷酸铁;
(2)称量15.08kg无水磷酸铁、3.77kg碳酸锂和合适蔗糖混合,砂磨、喷雾得到粉末,之后将其放入箱式炉内、氮气气氛下,进行第二次煅烧720℃保温6h,得到碳包覆锰掺杂磷酸铁锂。
图1和图3分别为实施例1制备的二水磷酸铁的XRD图及SEM图;图2和图5分别为实施例1制备的无水磷酸铁的XRD图及SEM图。由图1可知制备的由不规则的块状颗粒组成;由图3实施例1制备的二水磷酸铁的XRD图,从图中可以看出实施例1所得产品为磷酸铁,锰掺杂不会影响磷酸铁的结构。
图2为实施例1磷酸铁锂的SEM图,由不规则的大小颗粒组成;图4为实施例1磷酸铁锂的XRD图,从图中可以看出实施例所得产品为纯相橄榄石型磷酸铁锂。
实施例2
本实施例的锰掺杂磷酸铁的制备方法,具体包括以下步骤:
(1)配制混合金属液:称取22.36kg硫酸亚铁加入到搅拌槽中,并加入90L去离子水,搅拌溶解,配制得到含铁金属液,再加入9.27kg的磷酸和4.5kg双氧水,充分搅拌之后得到含铁、磷混合金属液。
(2)将配制好的含铁、磷混合金属液倒入反应容器中,将搅拌开启调到450rpm,并加入325g磷酸锰铁(Mn 0.6Fe 0.4PO 4),加热升温到90℃,90℃保温4h后停止升温,反应结束后,用离心机将反应浆料进行固体与滤液分离,得到固体滤饼。
(3)将步骤(2)所得滤饼放入制浆槽中,加入去离子水搅拌均匀,过滤,再用去离子水反复清洗至洗涤水电导率<500μs/cm,停止洗涤,即得锰掺杂的二水磷酸铁固体,(Mn 0.6Fe 0.4)@FePO 4·2H 2O。
本实施例的碳包覆锰掺杂磷酸铁锂的制备方法,具体包括以下步骤:
(1)将洗涤后的上述二水磷酸铁固体铺散放入100℃烘箱内烘干,之后在空气气氛、550℃下进行第一次煅烧3h得到无水磷酸铁;
(2)称量15.08kg无水磷酸铁、3.77kg碳酸锂和合适蔗糖混合,砂磨、喷雾得到粉末,之后将其放入箱式炉内、氮气气氛下,进行第二次煅烧720℃保温6h,得到锰掺杂磷酸铁锂/碳复合材料。
实施例3
本实施例的锰掺杂磷酸铁的制备方法,具体包括以下步骤:
(1)配制混合金属液:将4.4kg废旧铁粉加入到含有8.5kg磷酸的储槽中,搅拌溶解后,配制得到含铁、磷的混合金属液。
(2)将配制好的含铁、磷混合金属液倒入反应容器中,将搅拌开启调到450rpm,并加入358g磷酸锰铁(Mn 0.5Fe 0.5PO 4),加热升温到90℃,90℃保温4h后停止升温,反应结束后,用离心机将反应浆料进行固体与滤液分离,得到固体滤饼。
(3)将步骤(2)所得滤饼放入制浆槽中,加入去离子水搅拌均匀,过滤,再用去离子水反复清洗至洗涤水电导率<500μs/cm,停止洗涤,即得锰掺杂的二 水磷酸铁固体,(Mn 0.5Fe 0.5)@FePO 4·2H 2O。
本实施例的碳包覆锰掺杂磷酸铁锂的制备方法,具体包括以下步骤:
(1)将洗涤后的上述二水磷酸铁固体铺散放入100℃烘箱内烘干,之后在空气气氛、550℃下进行第一次煅烧3h得到无水磷酸铁;
(2)称量15.08kg无水磷酸铁、3.77kg碳酸锂和合适蔗糖混合,砂磨、喷雾得到粉末,之后将其放入箱式炉内、氮气气氛下,进行第二次煅烧720℃保温6h,得到锰掺杂磷酸铁锂/碳复合材料。
对比例1(不掺杂锰)
本对比例的磷酸铁的制备方法,具体包括以下步骤:
(1)配制混合金属液:将100L浓度为1.2mol/L的硫酸加入带搅拌的槽内,接着加入23.54kg磷化铁废料,搅拌溶解、配制得到含铁、磷的混合金属液。
(2)将配制好的含铁、磷混合金属液倒入反应容器中,将搅拌开启调到450rpm,反应过程中不断加入氢氧化钠溶液控制体系pH为2.0,加热升温到90℃,90℃保温4h后停止升温,反应结束后,用离心机将反应浆料进行固体与滤液分离,得到固体滤饼。
(3)将步骤(2)所得滤饼放入制浆槽中,加入去离子水搅拌均匀,过滤,再用去离子水反复清洗至洗涤水电导率<500μs/cm,停止洗涤,即得二水磷酸铁固体FePO 4·2H 2O。
本对比例的碳包覆磷酸铁锂的制备方法,具体包括以下步骤:
(1)将洗涤后的上述二水磷酸铁固体铺散放入100℃烘箱内烘干,之后在空气气氛、550℃下煅烧3h得到无水磷酸铁;
(2)称量15.08kg无水磷酸铁、3.77kg碳酸锂和合适蔗糖混合,砂磨、喷雾得到粉末,之后将其放入箱式炉内、氮气气氛下,煅烧720℃保温6h,得到碳包覆磷酸铁锂。
对比例2(先生成前驱体,再掺杂锰)
本对比例的磷酸铁的制备方法,具体包括以下步骤:
(1)配制混合金属液:将100L浓度为1.2mol/L的硫酸加入带搅拌的槽内,接着加入23.54kg磷化铁废料,搅拌溶解、配制得到含铁、磷的混合金属液。
(2)将配制好的含铁、磷混合金属液倒入反应容器中,将搅拌开启调到450rpm,并加入氢氧化钠溶液(将20kg氢氧化钠加入到装有去离子水的搅拌槽内,搅拌溶解,配制成氢氧化钠溶液)控制体系pH为2.0,加热升温到90℃,90℃保温4h后停止升温,反应结束后,用离心机将反应浆料进行固体与滤液分离,得到固体滤饼。
(3)将步骤(2)所得滤饼放入制浆槽中,加入去离子水搅拌均匀,过滤,再用去离子水反复清洗至洗涤水电导率<500μs/cm,停止洗涤,即得二水磷酸铁固体FePO 4·2H 2O。
本对比例的碳包覆锰掺杂磷酸铁锂的制备方法,具体包括以下步骤:
(1)将洗涤后的二水磷酸铁固体铺散放入100℃烘箱内烘干,之后在空气气氛、550℃下煅烧3h得到无水磷酸铁;
(2)称量15.08kg无水磷酸铁、3.77kg碳酸锂、255g纳米二氧化锰MnO 2和蔗糖混合,砂磨、喷雾得到粉末,之后将其放入箱式炉内、氮气气氛下,煅烧720℃保温6h,得到碳包覆锰掺杂磷酸铁锂。
实施例1-3与对比例1-2分析:
表1为实施例1、2、3、对比例1和对比例2制备的二水磷酸铁产品的理化结果数据,具体数据是由ICP-AES设备测试得到。由表1可知,制备得到二水磷酸铁产品粒径大,比表面积小。
表1二水磷酸铁产品中的理化结果
  实施例1 实施例2 实施例3 对比例1 对比例2
Fe/% 28.89 28.87 29 29.21 29.05
P/% 16.47 16.3 16.46 16.51 16.41
Fe/P 0.973 0.974 0.977 0.981 0.981
Mn/% 1.024 0.4985 0.5037 0 0
Dv50 7.43 6.5 6.9 3.85 3.68
BET 1.45 3 2.6 51.8 49.7
由表1可得,本申请的实施例1-3制备的二水磷酸铁粒径大,比表面积小,形貌规整,从而流动性就大、好洗涤、后续加工性能好,而对比例的1和2,该工艺所得粒度小,BET大,物料很难洗涤、流动性不好、黏性大、后续的加工性会比较差。由表2可得,相同铁源和磷源(实施例1与对比例1/对比例2),本申请不用添加碱或氨调pH,成本会更低。
表2制备二水磷酸铁产品的成本数据
Figure PCTCN2022135884-appb-000001
试验例
上述实施例1~3制得的二水磷酸铁与对比例1-2的二水磷酸铁按照常规方法在同等条件下制备成磷酸铁锂,对制得的磷酸铁锂的电性能进行检测,结果如下表3所示:
表3
Figure PCTCN2022135884-appb-000002
本申请实施例1-3中合成的二水磷酸铁制得的磷酸铁锂粉末的电性能比未掺杂锰(对比例1)的电化学性能明显比要好,比先制备前驱体再掺杂的电化学 性能也相对要好,尤其是在低温下的放电比容量和放电容量保持率远高于对比例1和对比例2。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (12)

  1. 一种掺杂型磷酸铁,其中,所述掺杂型磷酸铁的化学式为(Mn xFe 1-x)@FePO 4·2H 2O,其中,0<x<1。
  2. 根据权利要求1所述的掺杂型磷酸铁,其中,所述x的取值范围为0.5≤x≤0.8。
  3. 根据权利要求1所述的掺杂型磷酸铁,其中,所述掺杂型磷酸铁的比表面积为1.4-3.2m 2/g,Dv50为6.4-7.6μm。
  4. 根据权利要求1所述的掺杂型磷酸铁,其中,所述Mn的掺杂量为0.1-2%。
  5. 权利要求1-4任一项所述的掺杂型磷酸铁的制备方法,其中,包括以下步骤:
    (1)向含铁溶液中加入磷源,混合,加入磷酸锰铁,加热,反应,得到混合液;
    (2)将所述混合液进行固液分离,取固相,制浆,再进行固液分离,洗涤,得到锰掺杂的二水磷酸铁。
  6. 根据权利要求5所述的制备方法,其中,步骤(1)中,所述含铁溶液是由铁源和酸液混合制得;所述铁源为铁单质、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁、醋酸亚铁、废磷酸铁、磷酸亚铁、磷铁渣、磷化铁渣、硫铁矿或磷铁矿中的至少一种;当所述铁源为铁单质、氯化亚铁、硫酸亚铁或醋酸亚铁中的至少一种时,所述含铁溶液和磷源混合后需添加氧化剂,所述氧化剂为双氧水、过氧化钠或过硫酸铵中的至少一种。
  7. 根据权利要求5所述的制备方法,其中,步骤(1)中,所述磷源为磷酸、亚磷酸、次磷酸钠、废磷酸铁、磷酸二氢铵或磷酸铵中的至少一种。
  8. 根据权利要求5所述的制备方法,其中,步骤(1)中,所述磷酸锰铁的化学式为Mn xFe 1-xPO 4,其中0<x<1。
  9. 根据权利要求5所述的制备方法,其中,步骤(1)中,所述混合液中的铁磷比为0.92~1.03。
  10. 根据权利要求5所述的制备方法,其中,步骤(2)中,所述制浆的液固比为1:(2-3)L/g,所述洗涤后的滤液的电导率≤500μs/cm。11.一种碳包覆锰掺杂的磷酸铁锂的制备方法,其中,包括以下步骤:
    将权利要求1-4任一项所述的掺杂型磷酸铁进行第一次煅烧,加入锂源和碳源混合、喷雾制粒,再进行第二次煅烧,得到碳包覆锰掺杂的磷酸铁锂。
  11. 权利要求1-4任一项所述的掺杂型磷酸铁在制备锂电池正极材料中的应用。
  12. 一种电池,其中,包括权利要求11所述的制备方法制得的碳包覆锰掺杂的磷酸铁锂。
PCT/CN2022/135884 2022-01-28 2022-12-01 掺杂型磷酸铁及其制备方法和应用 WO2023142677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2314854.7A GB2619869A (en) 2022-01-28 2022-12-01 Doped iron(III) phosphate, method for preparing same, and use thereof
DE112022004680.5T DE112022004680T5 (de) 2022-01-28 2022-12-01 Dotiertes eisen(iii)-phosphat, verfahren zur herstellung und verwendung desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210108742.0 2022-01-28
CN202210108742.0A CN114572951B (zh) 2022-01-28 2022-01-28 掺杂型磷酸铁及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023142677A1 true WO2023142677A1 (zh) 2023-08-03

Family

ID=81769387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135884 WO2023142677A1 (zh) 2022-01-28 2022-12-01 掺杂型磷酸铁及其制备方法和应用

Country Status (4)

Country Link
CN (1) CN114572951B (zh)
DE (1) DE112022004680T5 (zh)
GB (1) GB2619869A (zh)
WO (1) WO2023142677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572951B (zh) * 2022-01-28 2023-09-12 宜昌邦普循环科技有限公司 掺杂型磷酸铁及其制备方法和应用
CN115504695B (zh) * 2022-09-06 2023-12-12 宜昌邦普循环科技有限公司 一种磷石膏的回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428782A (zh) * 2008-12-15 2009-05-13 中国海洋石油总公司 一种锂电池正极材料磷酸铁锂的共沉淀制备方法
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
US20160002040A1 (en) * 2013-06-14 2016-01-07 Samsung Fine Chemicals Co., Ltd Method for manufacturing lithium metal phosphate
CN111908442A (zh) * 2020-08-07 2020-11-10 上海华谊(集团)公司 磷酸锰铁、磷酸锰铁锂及其制备方法
CN112736226A (zh) * 2020-12-28 2021-04-30 大连博融新材料有限公司 钒掺杂碳包覆磷酸铁锂、其制备方法及用途
CN114572951A (zh) * 2022-01-28 2022-06-03 宜昌邦普循环科技有限公司 掺杂型磷酸铁及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692488A (zh) * 2009-09-11 2010-04-07 河南新飞科隆电源有限公司 掺杂金属元素磷酸铁的合成方法
CN105185993B (zh) * 2015-10-21 2017-12-19 山东精工电子科技有限公司 一种高纯磷酸铁及其掺杂金属元素的合成方法
CN108557792B (zh) * 2018-01-29 2019-10-25 蒋央芳 一种包覆型磷酸锰铁的制备方法
CN111613786B (zh) * 2020-05-29 2023-03-28 东莞东阳光科研发有限公司 一种复合材料及其制备方法
CN111792635A (zh) * 2020-06-23 2020-10-20 湖南邦普循环科技有限公司 无水磷酸铁的制备方法
CN113460987A (zh) * 2021-05-17 2021-10-01 广东邦普循环科技有限公司 一种掺杂磷酸铁及其制备方法和应用
CN113942990B (zh) * 2021-08-25 2023-06-20 北京当升材料科技股份有限公司 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428782A (zh) * 2008-12-15 2009-05-13 中国海洋石油总公司 一种锂电池正极材料磷酸铁锂的共沉淀制备方法
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
US20160002040A1 (en) * 2013-06-14 2016-01-07 Samsung Fine Chemicals Co., Ltd Method for manufacturing lithium metal phosphate
CN111908442A (zh) * 2020-08-07 2020-11-10 上海华谊(集团)公司 磷酸锰铁、磷酸锰铁锂及其制备方法
CN112736226A (zh) * 2020-12-28 2021-04-30 大连博融新材料有限公司 钒掺杂碳包覆磷酸铁锂、其制备方法及用途
CN114572951A (zh) * 2022-01-28 2022-06-03 宜昌邦普循环科技有限公司 掺杂型磷酸铁及其制备方法和应用

Also Published As

Publication number Publication date
CN114572951B (zh) 2023-09-12
GB202314854D0 (en) 2023-11-08
DE112022004680T5 (de) 2024-07-18
GB2619869A (en) 2023-12-20
CN114572951A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023142677A1 (zh) 掺杂型磷酸铁及其制备方法和应用
WO2022242186A1 (zh) 利用磷铁废料制备高纯度磷酸铁的方法
EP4265566A1 (en) Preparation method and application of iron phosphate
CN113044824B (zh) 磷酸铁废料循环再生的方法及其应用
WO2022227669A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN102745662B (zh) 一种非晶态磷酸铁的制备方法
CN101327922A (zh) 一种LiFePO4的制备方法
WO2023179046A1 (zh) 磷酸铁锂/碳复合材料的制备方法及其应用
WO2024060549A1 (zh) 一种连续化制备磷酸铁的方法和应用
CN106564867A (zh) 一种添加还原性有机物制备磷酸铁材料的方法
CN110436427A (zh) 高容量高压实磷酸铁锂用复合结构正磷酸铁的制备方法
CN113428848A (zh) 一种电池级磷酸铁的循环制备工艺
CN103708434A (zh) 磷酸铁锂材料及其制备方法
WO2023207247A1 (zh) 一种多孔隙球形钴氧化物颗粒及其制备方法
WO2023040286A1 (zh) 含铁矿物综合利用的方法
CN115520846A (zh) 一种磷酸锰铁锂的制备方法及其应用
CN113213545B (zh) 一种球形碳酸铁锰及其制备方法
CN110422884A (zh) 一种掺杂型铁酸锂的制备方法
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用
CN102623695A (zh) 一种锂离子电池磷酸盐系正极材料及其制备方法
CN102874788A (zh) 共沉淀法制备磷酸铁锂材料的工艺
CN113955735B (zh) 一种空气氧化制备羟基磷酸盐及含锂磷酸盐的方法
CN115974036A (zh) 一种球形磷酸铁锰锂纳米颗粒及其制备方法
CN102556999B (zh) 一种合成磷酸铁锂材料的还原工艺方法
CN115285962A (zh) 一种低成本磷酸系正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202314854

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20221201

WWE Wipo information: entry into national phase

Ref document number: P202390259

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022004680

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P2400295

Country of ref document: HU