WO2023001213A1 - 一种SiO@Mg/C复合材料及其制备方法和应用 - Google Patents

一种SiO@Mg/C复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023001213A1
WO2023001213A1 PCT/CN2022/106925 CN2022106925W WO2023001213A1 WO 2023001213 A1 WO2023001213 A1 WO 2023001213A1 CN 2022106925 W CN2022106925 W CN 2022106925W WO 2023001213 A1 WO2023001213 A1 WO 2023001213A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
composite material
mof
preparation
material according
Prior art date
Application number
PCT/CN2022/106925
Other languages
English (en)
French (fr)
Inventor
易旭
廖寄乔
Original Assignee
湖南金硅科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南金硅科技有限公司 filed Critical 湖南金硅科技有限公司
Publication of WO2023001213A1 publication Critical patent/WO2023001213A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery negative electrode material.
  • a lithium ion battery negative electrode material relates to a SiO@Mg/C composite negative electrode material, and also relates to a preparation method of the SiO@Mg/C composite material and its application as a lithium ion battery negative electrode material, belonging to the technical field of lithium batteries.
  • Silicon is currently known as the anode material with the highest specific capacity (4200mAh) for lithium-ion batteries, but its electrochemical performance will deteriorate sharply due to its huge volume effect (>300%). Therefore, the oxide of silicon with smaller volume effect becomes an ideal choice. Among them, silicon oxide (SiO) has a small volume effect (150%) and a high theoretical capacity (>1500mAh), which has become a hot spot in the research of lithium-ion battery anode materials in recent years.
  • SiO silicon oxide
  • the material acts as an expansion buffer layer, and the pre-lithiation treatment of the silicon oxide (SiO) material can greatly improve its cycle performance and first Coulombic efficiency.
  • Chinese patent (CN112820863 A) provides a modified carbon-coated pre-lithiation method, and its first Coulombic efficiency reaches 88%.
  • Chinese patent (CN201710838388.6) provides an electrochemical pre-lithium technology. By prefabricating the negative pole piece of silicon-oxygen material, it is assembled into a half-cell model with a metal lithium sheet, and the pre-lithiation is carried out by discharging the battery. The first-week efficiency of the oxidized silicon-oxygen material can reach more than 90%. "Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high energy dDensity Lithium ⁇ ion batteries” adopts the liquid phase method to pre-lithium.
  • the efficiency can be achieved for the first time. up to 90%.
  • the above methods have the problems of high cost and difficult industrialization.
  • the first purpose of the present invention is to provide a SiO@ Mg/C composite material, the composite material is composed of Mg/C composite evenly coated on the surface of silicon oxide particles, and the Mg/C composite is composed of porous carbon framework and elemental magnesium uniformly distributed in the porous carbon framework, not only It can effectively inhibit the expansion of silicon oxide particles (SiO) during charging, and can continuously and effectively slow down the consumption of lithium source by the SEI film, while reducing the formation of lithium dendrites and increasing the service life of battery materials.
  • SiO silicon oxide particles
  • the second object of the present invention is to provide a method for preparing SiO@Mg/C composite material, which is simple to operate, low in cost, and conducive to large-scale production.
  • the third object of the present invention is to provide a SiO@
  • the application of Mg/C composite materials as anode materials for lithium-ion batteries can effectively improve the first Coulombic efficiency and cycle performance of lithium-ion batteries.
  • the present invention provides a method for preparing a SiO@Mg/C composite material, which includes the following steps:
  • the technical solution of the present invention first uses polyaryl carboxylic acid and magnesium salt as raw materials to form Mg-MOF metal organic framework material through solvothermal method, and polyaryl carboxylic acid and divalent magnesium ions pass special coordination
  • the Mg-MOF metal-organic framework material with regular shape and three-dimensional porous structure is formed by this method, and the Mg-MOF metal-organic framework material is mixed with SiO evenly and then calcined, and the Mg-MOF metal-organic framework material forms a uniform package on the SiO surface.
  • the Mg-MOF metal-organic framework material is pyrolyzed at high temperature to form a regular porous carbon framework, and metal magnesium is uniformly distributed in the porous carbon framework in an atomic state.
  • the porous carbon framework can effectively suppress the volume change of SiO during charge and discharge, and increase the stability of the negative electrode SEI film.
  • Silicon oxide material also has intrinsic defects as the negative electrode material of the battery, mainly due to the presence of oxygen in the material.
  • a large amount of Li source is consumed due to the formation of SEI film and lithium silicate material, resulting in the failure of this type of material.
  • the first Coulombic efficiency is low. Magnesium evenly distributed in the porous carbon framework can preferentially react to form SEI film and magnesium silicate species, reduce the consumption of lithium source, and improve the first Coulombic efficiency of the material.
  • the molar ratio of the polyaryl carboxylic acid to the magnesium salt is 2:8-4:6.
  • the magnesium salt can be a common water-soluble magnesium salt, and the common one can be magnesium nitrate or the like.
  • the molar ratio of polyaryl carboxylic acid to magnesium salt is further preferably 3:7.
  • the polyaryl carboxylic acid includes benzene dicarboxylic acid, biphenyl dicarboxylic acid, mellitic acid, 2,5-dihydroxy terephthalic acid, trimesicarboxylic acid, and benzene tetracarboxylic acid. at least one. Most preferred is 2,5-dihydroxyterephthalic acid.
  • These polyaryl carboxylic acids can form Mg-MOF metal-organic framework materials with magnesium ions, and the preferred 2,5-dihydroxyterephthalic acid is relatively common, cheap, and the prepared Mg-MOF metal-organic framework The material has a stable three-dimensional honeycomb structure.
  • the pH of the mixed solution containing polyaryl carboxylic acid and magnesium salt is adjusted to 2-5.
  • the pH value mainly affects the growth rate of crystals, as well as the morphology of crystals. If the pH value is too low, the crystal growth will be inhibited, and the crystal growth rate will be too slow, while if the pH value is too high, it will be difficult to form crystals.
  • common alkaline reagents are used to adjust pH, such as at least one of sodium hydroxide, potassium hydroxide, lithium hydroxide, and triethylamine.
  • alkaline reagents can neutralize the acidity of the reaction system, adjust the pH of the reaction system to 2-5, accelerate the growth rate of Mg-MOF crystals and control the crystal morphology.
  • the conditions of the solvothermal reaction are as follows: the temperature is 100° C. to 200° C., and the time is 12h to 72h.
  • the temperature of the solvothermal reaction is more preferably 125°C-200°C; the time is more preferably 14-20 hours.
  • the mass percentage composition of Mg-MOF metal organic framework material and SiO is 5% ⁇ 20%:80% ⁇ 95%. It is further preferred that the proportion of Mg-MOF metal organic framework material is 5% ⁇ 10%; the proportion of SiO material is 90% ⁇ 95%.
  • the conditions for the calcination are: the temperature is 500°C-1200°C, and the time is 1h-4h. If the calcination temperature is too low, the carbonization of the Mg-MOF metal-organic framework material will be incomplete, and if the temperature is too high, the disproportionation reaction of SiO will occur. During the calcination process, the heating rate is 3-8°C. Controlling the lower heating rate is beneficial to maintain the skeleton morphology of the Mg-MOF metal-organic framework during the carbonization process. A more preferable calcination temperature is 600 to 900°C. A further preferred calcination time is 2 to 3 hours.
  • the ball milling mixing time is 1 to 6 hours.
  • the present invention also provides a SiO@Mg/C composite material obtained by the preparation method.
  • the SiO@Mg/C composite material is composed of a Mg/C composite material uniformly coated on the surface of silicon oxide; the Mg/C composite material is composed of metal magnesium uniformly distributed in a porous carbon framework.
  • the invention also provides an application of the SiO@Mg/C composite material, which is used as the negative electrode material of the lithium ion battery.
  • the SiO@Mg/C composite material of the present invention is used for lithium ion batteries: the SiO@Mg/C composite material is composed according to mass percentage: SiO@Mg/C composite material (80 ⁇ 95%): conductive agent SP (2 ⁇ 10%): Binder SBR (2 ⁇ 5.5%): Thickener CMC (1 ⁇ 4.5%) is mixed in proportion, add deionized water and stir evenly, make a slurry with a viscosity of 2500 ⁇ 3500CPS, and then put it in the glove box A button battery is assembled with a lithium sheet.
  • the SiO@Mg/C composite material provided by the present invention can not only effectively inhibit the expansion of silicon oxide particles during the charging process, but also continuously and effectively slow down the consumption of the lithium source by the SEI film, reduce the formation of lithium dendrites, and increase the use of battery materials life.
  • the preparation method of the SiO@Mg/C composite material provided by the present invention is simple in operation and low in cost, and is favorable for large-scale production.
  • the application of the SiO@Mg/C composite material provided by the present invention as the negative electrode material of the lithium ion battery can effectively improve the first coulombic efficiency and cycle performance of the lithium ion battery.
  • Fig. 1 is the SiO@Mg/C composite material scanning electron micrograph that embodiment 1 prepares;
  • Fig. 2 ⁇ Fig. 5 are SiO@ of embodiment 1 ⁇ 4 respectively Charge-discharge curves of button cells made of Mg/C composites.
  • This embodiment provides a method for preparing a composite silicon oxide (SiO@Mg/C) negative electrode material, including the following steps:
  • the materials obtained in the above four examples were respectively made into button batteries, and the electrochemical performance test was carried out: the materials obtained in the above examples 1, 2 and 3 were all according to SiO@Mg/C (85%): Conductive Agent SP (10%): binder SBR (3.5%): thickener CMC (1.5%) are mixed separately, coated, sliced, and assembled into a 2025 button lithium-ion battery in a glove box.
  • the electrolyte is 1mol/L LiPF6/(EC+DMC), and the diaphragm is Celgard2400 membrane.
  • Figure 1 is the SEM characterization image of SiO@Mg/C material.
  • Figures 2 to 5 are respectively the charging and discharging curves of button batteries made of SiO@Mg/C composite materials prepared in Examples 1 to 4 at a rate of 0.1C at 25°C.
  • the SiO@Mg/C composite material of Example 1 is made into a button battery with an initial discharge specific capacity of 1666.7mAh/g, a reversible specific capacity of 1525.5mAh/g, and an initial Coulombic efficiency of 91.5%.
  • the SiO@Mg/C composite material of Example 2 is made into a button battery with an initial discharge specific capacity of 1888.1mAh/g, a reversible specific capacity of 1717.4mAh/g, and an initial Coulombic efficiency of 90.95%.
  • the SiO@Mg/C composite material of Example 3 is made into a button battery with an initial discharge specific capacity of 1734.9mAh/g, a reversible specific capacity of 1544.5mAh/g, and an initial Coulombic efficiency of 89.02%.
  • the SiO@Mg/C composite material of Example 4 is made into a button battery with an initial discharge specific capacity of 1655.9mAh/g, a reversible specific capacity of 1236.6mAh/g, and an initial Coulombic efficiency of 74.68%.
  • Example 4 when the calcination temperature was too high, part of the active material silicon oxide was lost, resulting in a decrease in electrochemical performance.
  • Table 1 shows the capacity retention data of SiO@Mg/C material button batteries at 25°C and 0.5C current density for 200 cycles of the above-mentioned first three examples. It can be seen from Table 1 that examples 1 ⁇ 3 In the embodiment, the battery capacity fading made of SiO@Mg/C material is very small. That is, the application of the SiO@Mg/C material lithium battery negative electrode material provided by the present invention to the battery can improve the cycle stability of the battery and prolong the service life of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种SiO@Mg/C复合材料及其制备方法和应用。将含有多元芳基羧酸与镁盐的混合溶液的pH调节至酸性后,转入高压反应釜内,进行溶剂热反应,得到Mg-MOF金属有机框架材料;将Mg-MOF金属有机框架材料与SiO通过球磨混合,得到Mg-MOF/SiO混合料;将Mg-MOF/SiO混合料置于保护气氛下,进行煅烧处理,即得SiO@Mg/C复合材料。该SiO@Mg/C复合材料可有效抑制SiO体积膨胀,减少锂离子的消耗和锂枝晶的生成,从而有效提高锂离子电池的首次库伦效率和循环性能。

Description

一种SiO@Mg/C复合材料及其制备方法和应用 技术领域
本发明涉及一种锂离子电池负极材料。特别涉及一种SiO@Mg/C复合负极材料,还涉及一种SiO@Mg/C复合材料的制备方法和作为锂离子电池负极材料的应用,属于锂电池技术领域。
背景技术
随着便携式电子设备、无人机、电动工具和电动车的迅速发展,高能量密度、高功率密度、高安全性和长寿命的可充电电池备受关注。尽管基于传统的石墨负极材料锂离子电池取得了广泛应用,但其相对较低的理论能量密度限制了其进一步的发展。寻找石墨负极的替代材料成为当前二次电池研究的关键。
技术问题
硅是目前已知比容量(4200mAh)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%)会导致电化学性能急剧恶化。因此,体积效应较小的硅的氧化物成为了比较理想的选择。其中,氧化亚硅(SiO)体积效应(150%)较小,同时拥有较高的理论容量(>1500mAh),成为近年来锂离子电池负极材料研究的热点。
虽然氧化亚硅(SiO)体积效应较硅要小,但其循环性能和首次库仑效率较差,为改善其循环性能和提高其首次库仑效率,研究发现在氧化亚硅(SiO)表面包覆碳材料作为膨胀缓冲层,对氧化亚硅(SiO)材料进行预锂化处理能极大提高其循环性能和首次库仑效率。
如:中国专利(CN112820863 A)提供了一种改性碳包覆预锂化的方法,其首次库伦效率达到88%。中国专利(CN201710838388.6)提供了一种电化学预锂的技术,通过预制硅氧材料负极极片,与金属锂片组装成半电池模型,通过电池对外放电的方式进行预锂化,预锂化后的硅氧材料的首周效率可达90%以上。Ming‑Yan Yan等发表的《Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre‑lithiation strategy for high energy dDensity lithium‑ion batteries》中采用液相的方式进行预锂,通过预先将锂片溶解在有机溶剂中,然后加入硅氧材料进行预锂反应,最后煅烧得到预锂化的硅氧材料,首次效率可达90%。但是以上这些方法存在成本高,产业化较难的问题。
技术解决方案
针对现有技术存在的缺陷,本发明的第一个目的是在于提供一种SiO@ Mg/C复合材料,该复合材料由Mg/C复合物均匀包覆在氧化亚硅颗粒表面构成,且Mg/C复合物由多孔碳框架和均匀分布在多孔碳框架中的单质镁构成,不但能够有效抑制充电过程中氧化亚硅颗粒(SiO)的膨胀,而且能够持续而有效减缓SEI膜对于锂源的消耗,同时减少锂晶枝生成,增加电池材料的使用寿命。
本发明的第二个目的是在于提供一种SiO@Mg/C复合材料的制备方法,该制备方法操作简单、成本低,有利于大规模生产。
本发明的第三个目的是在于提供一种SiO@ Mg/C复合材料作为锂离子电池负极材料的应用,将其应用在锂离子电池中可以有效提高锂离子电池的首次库伦效率和循环性能。
为了实现上述技术目的,本发明提供了一种SiO@Mg/C复合材料的制备方法,其包括以下步骤:
1)将含有多元芳基羧酸与镁盐的混合溶液的pH调节至酸性后,转入高压反应釜内,进行溶剂热反应,得到Mg-MOF金属有机框架材料;
2)将Mg-MOF金属有机框架材料与SiO通过球磨混合,得到Mg-MOF/SiO混合料;
3)将Mg-MOF/SiO混合料置于保护气氛下,进行煅烧处理,即得。
本发明技术方案先以多元芳基羧酸与镁盐为原料通过溶剂热法形成Mg- MOF金属有机框架材料,在溶剂热法过程中多元芳基羧酸与二价镁离子通过特殊的配位方式形成形貌规整,且具有三维多孔结构的Mg-MOF金属有机框架材料,而将Mg-MOF金属有机框架材料与SiO混合均匀后煅烧,Mg-MOF金属有机框架材料在SiO表面形成均匀的包覆层,同时Mg-MOF金属有机框架材料通过高温热解,形成规则的多孔碳框架,而金属镁以原子态均匀分布在多孔碳骨架中。多孔碳框架可有效抑制SiO在充、放电时的体积变化,增加负极SEI膜的稳定性。氧化亚硅材料作为电池负极材料也存在本征的缺陷,主要是由于材料中存在氧的成分,在化成过程中由于形成SEI膜和锂硅酸盐物质消耗了大量Li源,导致此类材料的首次库仑效率偏低。均匀分布在多孔碳骨架中的镁可优先反应形成SEI膜和镁硅酸盐物质,减少锂源的消耗,提高材料的首次库仑效率。
作为一个优选的方案,多元芳基羧酸与镁盐的摩尔比例为2:8~4:6所述镁盐可以为常见的水溶性镁盐,常见的可以为硝酸镁等。多元芳基羧酸与镁盐摩尔比例进一步优选为3:7。
作为一个优选的方案,所述多元芳基羧酸包括苯二羧酸、联苯二甲酸、苯六甲酸、2,5‑二羟基对苯二甲酸、均苯三羧酸、苯四羧酸中至少一种。最优选为2,5‑二羟基对苯二甲酸。这些多元芳基羧酸都能与镁离子形成Mg-MOF金属有机框架材料,而优选采用的2,5‑二羟基对苯二甲酸是比较常见,价格便宜,且制备的Mg-MOF金属有机框架材料具有稳定的三维蜂窝状结构。
作为一个优选的方案,含有多元芳基羧酸与镁盐的混合溶液的pH调节至2~5。pH值主要影响晶体的生长速度,还有晶体的形貌,pH值过低会抑制晶体生长,晶体生长速率过慢,而pH值过高则很难形成晶体。本发明调节pH采用常见的碱试剂,如氢氧化钠、氢氧化钾、氢氧化锂、三乙胺中的至少一种。碱试剂的加入能够中和反应体系的酸性,将反应体系的pH调节为2~5,能够加快Mg-MOF晶体的生长速度和控制晶体的形貌。在pH=2~5范围内生长速度和晶体形貌的平衡点在这个pH值范围是最佳的;进一步优选pH值调节为2.5~4.5。
作为一个优选的方案,所述溶剂热反应的条件为:温度为100℃~200℃,时间为12h~72h。所述溶剂热反应的温度进一步优选为125℃~200℃;时间进一步优选为14~20小时。
作为一个优选的方案,Mg-MOF金属有机框架材料与SiO的质量百分比组成为5%~20%:80%~95%。进一步优选Mg-MOF金属有机框架材料占比为5%~10%;SiO材料占比为90%~95%。
作为一个优选的方案,所述煅烧的条件为:温度为500℃~1200℃,时间为1h~4h。如果煅烧温度过低会导致Mg-MOF金属有机框架材料碳化会不完全,如果温度过高会使得SiO发生歧化反应。煅烧过程中升温速率为3~8℃,控制较低的升温速率有利于Mg-MOF金属有机框架材料碳化过程中仍然保持其骨架形貌。进一步优选的煅烧温度为600~900℃。进一步优选的煅烧时间为2~3小时。
作为一个优选的方案,球磨混合时间为1~6小时。
本发明还提供了一种SiO@Mg/C复合材料,其由所述的制备方法得到。
作为一个优选的方案,所述SiO@Mg/C复合材料由Mg/C复合材料均匀包覆在氧化亚硅表面构成;所述Mg/C复合材料由金属镁均匀分布在多孔碳框架中构成。
本发明还提供了一种SiO@Mg/C复合材料的应用,其作为锂离子电池负极材料应用。
本发明的SiO@Mg/C复合材料用于锂离子电池:将SiO@Mg/C复合材料,按质量百分比组成:SiO@Mg/C复合材料(80~95%): 导电剂SP(2~10%): 粘结剂SBR(2~5.5%): 增稠剂CMC(1~4.5%)的比例混合,加入去离子水搅拌均匀,配成粘度2500~3500CPS的浆料,然后在手套箱中与锂片组装成扣式电池。
有益效果
本发明提供的SiO@ Mg/C复合材料不但能够有效抑制充电过程中氧化亚硅颗粒的膨胀,而且能够持续而有效减缓SEI膜对于锂源的消耗,同时减少锂晶枝生成,增加电池材料的使用寿命。
本发明的提供的SiO@Mg/C复合材料的制备方法操作简单、成本低,有利于大规模生产。
本发明的提供的SiO@ Mg/C复合材料作为锂离子电池负极材料的应用,可以有效提高锂离子电池的首次库伦效率和循环性能。
附图说明
图1为实施例1制备的SiO@ Mg/C复合材料扫描电镜图;
图2~图5分别为实施例1~4的SiO@ Mg/C复合材料制成扣式电池的充放电曲线。
本发明的实施方式
下面结合具体实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如无特别说明,以下实施例中所有原料和试剂均为市购常规的原料和试剂。
实施例 1
本实施例提供一种复合氧化亚硅(SiO@Mg/C)负极材料的制备方法,包括如下步骤:
1)0.111g 2,5‑二羟基对苯二甲酸和0.456g Mg(NO 3) 2·6H 2O溶 于100mL的N ,N‑二甲基二酰胺、乙醇、水(15:1:1)混合溶液中,加入0 .12mL三乙胺。将混合溶液封装到水热反应釜中,在125℃的反应20h。反应后自然冷却到室温,所得产物用DMF洗涤三次,再用去离子水洗涤三次,在100℃烘箱中干燥一晚,得到Mg‑MOF晶体。
2)将上述Mg‑MOF晶体研磨粉碎,按质量比Mg‑MOF:SiO=1:9的比例分别称取0.1gMg‑MOF晶体和0.9gSiO,混合均匀,机械球磨1h,得到Mg‑MOF/SiO混合材料。
3)将上述Mg‑MOF/SiO混合材料装入坩埚中,在氮气气氛保护下的管式炉中600℃高温碳化2h,升温速率为5℃/min,然后自然冷却到室温,得到产品复合氧化亚硅(SiO@Mg/C)负极材料。
实施例 2
1)0.111g 2,5‑二羟基对苯二甲酸和0.456g Mg(NO 3) 2·6H 2O溶 于100mL的N,N‑二甲基二酰胺、乙醇、水(15:1:1)混合溶液中,加入0.12mL三乙胺。将混合溶液封装到水热反应釜中,在150℃的条件下反应20h。反应后自然冷却到室温,所得产物用DMF洗涤,再用去离子水洗涤,在100℃烘箱中 干燥一晚,得到Mg‑MOF晶体。
2)将上述Mg‑MOF晶体研磨粉碎,按质量比Mg‑MOF:SiO=1:9的比例分别称取0.1gMg‑MOF晶体和0.9gSiO,混合均匀,机械球磨2h,得到Mg‑MOF/SiO混合材料。
3)将上述Mg‑MOF/SiO混合材料装入坩埚中,在氮气气氛保护下的管式炉中900℃高温碳化1h,升温速率为5℃/min,然后自然冷却到室温,得到产品复合氧化亚硅(SiO@Mg/C)负极材料。
实施例 3
1)0.111g 2,5‑二羟基对苯二甲酸和0.456g Mg(NO 3) 2·6H 2O溶 于100mL的N ,N‑二甲基二酰胺、乙醇、水(15:1:1)混合溶液中,加入0.12mL三乙胺。将混合溶液封装到水热反应釜中,在200℃的条件下反应20h。反应后自然冷却到室温,所得产物用DMF洗涤,再用去离子水洗涤,在100℃烘箱中干燥一晚,得到Mg‑MOF晶体。
2)将上述Mg‑MOF晶体研磨粉碎,按质量比Mg‑MOF:SiO=1:9的比例分别称取0.1gMg‑MOF晶体和0.9gSiO,混合均匀,机械球磨3h,得到Mg‑MOF/SiO混合材料。
3)将合成的Mg‑MOF/SiO混合材料装入坩埚中,在氮气气氛保护下的管式炉中900℃高温碳化4h,升温速率为5℃/min,然后自然冷却到室温,得到产品复合氧化亚硅(SiO@Mg/C)负极材料。
实施例 4
1)0.111g 2,5‑二羟基对苯二甲酸和0.456g Mg(NO 3) 2·6H 2O溶 于100mL的N,N‑二甲基二酰胺、乙醇、水(15:1:1)混合溶液中,加入0.12mL三乙胺。将混合溶液封装到水热反应釜中,在200℃的条件下反应20h。反应后自然冷却到室温,所得产物用DMF洗涤,再用去离子水洗涤,在100℃烘箱中 干燥一晚,得到Mg‑MOF晶体。
2)将上述Mg‑MOF晶体研磨粉碎,按质量比Mg‑MOF:SiO=1:9的比例分别称取0.1gMg‑MOF晶体和0.9gSiO,混合均匀,机械球磨3h,得到Mg‑MOF/SiO混合材料。
3)将合成的Mg‑MOF/SiO混合材料装入坩埚中,在氮气气氛保护下的管式炉中1200℃高温碳化2h,升温速率为5℃/min,然后自然冷却到室温,得到产品复合氧化亚硅(SiO@Mg/C)负极材料。
将上述四个实施例所得材料分别做成扣式电池,进行电化学性能测试:将上述实施例1、实施例2、实施例3所得材料都按按SiO@Mg/C(85%): 导电剂SP(10%): 粘结剂SBR(3.5%): 增稠剂CMC(1.5%)的比例分别混合,涂膜,切片,在手套箱中组装成2025扣式锂离子电池。电解液为1mol/L的LiPF6/(EC+DMC) ,隔膜为Celgard2400膜。
采用武汉蓝电电子公司LANHE电池程控测试仪对组装的电池进行了恒电流充放电实验。
图1为SiO@Mg/C材料的SEM表征图。图2~图5分别为实施例1~4制备的SiO@Mg/C复合材料做成材料扣式电池在25℃条件下,0.1C倍率下的充放电曲线图。
实施例1的SiO@Mg/C复合材料做成扣式电池首次放电比容量可达到1666.7mAh/g,可逆比容量也高达1525.5mAh/g,首次库伦效率为91.5%。
实施例2的SiO@Mg/C复合材料做成扣式电池首次放电比容量可达到1888.1mAh/g,可逆比容量也高达1717.4mAh/g,首次库伦效率为90.95%。
实施例3的SiO@Mg/C复合材料做成扣式电池首次放电比容量可达到1734.9mAh/g,可逆比容量也高达1544.5mAh/g,首次库伦效率为89.02%。
实施例4的SiO@Mg/C复合材料做成扣式电池首次放电比容量为1655.9mAh/g,可逆比容量1236.6mAh/g,首次库伦效率为74.68%。实施例4中煅烧温度过高活性物质氧化亚硅部分损失,导致电化学性能下降。
表1为SiO@Mg/C材料扣式电池在25℃条件下,0.5C电流密度下,上述前三个实施例200圈循环的容量保持数据,从表1中可以看出,实施例1~3实施例中SiO@Mg/C材料做成的电池容量衰减很小。即本发明提供的SiO@Mg/C材料锂电池负极材料应用于电池中可提高电池的循环稳定性,延长电池的使用寿命。
Figure 730644dest_path_image001

Claims (10)

  1. 一种SiO@Mg/C复合材料的制备方法,其特征在于:包括以下步骤:
    1)将含有多元芳基羧酸与镁盐的混合溶液的pH调节至酸性后,转入高压反应釜内,进行溶剂热反应,得到Mg-MOF金属有机框架材料;
    2)将Mg-MOF金属有机框架材料与SiO通过球磨混合,得到Mg-MOF/SiO混合料;
    3)将Mg-MOF/SiO混合料置于保护气氛下,进行煅烧处理,即得。
  2. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:多元芳基羧酸与镁盐的摩尔比例为2:8~4:6;
    所述镁盐为硝酸镁;
    所述多元芳基羧酸包括苯二羧酸、联苯二甲酸、苯六甲酸、2,5‑二羟基对苯二甲酸、均苯三羧酸、苯四羧酸中至少一种。
  3. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:所述含有多元芳基羧酸与镁盐的混合溶液中溶剂为N,N‑二甲基甲酰胺、乙醇和水的混合溶剂;其中,N,N‑二甲基甲酰胺、乙醇和水的体积比为10~20:1:1。
  4. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:含有多元芳基羧酸与镁盐的混合溶液的pH调节至2~5。
  5. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:所述溶剂热反应的条件为:温度为100℃~200℃,时间为12h~72h。
  6. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:
    Mg-MOF金属有机框架材料与SiO的质量百分比组成为5%~20%:80%~95%。
  7. 根据权利要求1所述的一种SiO@Mg/C复合材料的制备方法,其特征在于:所述煅烧的条件为:温度为500℃~1200℃,时间为1h~4h。
  8. 一种SiO@Mg/C复合材料,其特征在于:由权利要求1~7任一项所述的制备方法得到。
  9. 根据权利要求8所述的一种SiO@Mg/C复合材料,其特征在于:由Mg/C复合材料均匀包覆在氧化亚硅表面构成;所述Mg/C复合材料由金属镁均匀分布在多孔碳框架中构成。
  10. 权利要求8或9所述的一种SiO@Mg/C复合材料的应用,其特征在于:作为锂离子电池负极材料应用。
PCT/CN2022/106925 2021-07-23 2022-07-21 一种SiO@Mg/C复合材料及其制备方法和应用 WO2023001213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839970.0A CN113659141B (zh) 2021-07-23 2021-07-23 一种SiO@Mg/C复合材料及其制备方法和应用
CN202110839970.0 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023001213A1 true WO2023001213A1 (zh) 2023-01-26

Family

ID=78490065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106925 WO2023001213A1 (zh) 2021-07-23 2022-07-21 一种SiO@Mg/C复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113659141B (zh)
WO (1) WO2023001213A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083927A (zh) * 2023-02-10 2023-05-09 江西理工大学 一种用于氧化亚硅负极材料均匀预镁化方法及其在锂离子电池中的应用
CN116553516A (zh) * 2023-05-14 2023-08-08 江苏天合储能有限公司 一种锂离子电池生物质基硬碳负极材料及其制备方法
CN117174836A (zh) * 2023-11-03 2023-12-05 陕西晶泰新能源科技有限公司 一种锂离子电池氧化亚硅负极的预镁化中间缓冲层

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659141B (zh) * 2021-07-23 2023-11-24 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用
CN114373907A (zh) * 2021-12-21 2022-04-19 广东邦普循环科技有限公司 一种硅碳材料及其制备方法和应用
CN116979037A (zh) * 2022-04-22 2023-10-31 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012277A1 (en) * 2014-02-04 2017-01-12 Nivo Systems, Inc. Open framework composites, methods for producing and using such composites
CN109742335A (zh) * 2018-12-06 2019-05-10 深圳市德方纳米科技股份有限公司 锂离子电池用硅基复合负极材料及其制备方法和锂离子电池
CN111029548A (zh) * 2019-12-16 2020-04-17 上海纳米技术及应用国家工程研究中心有限公司 硅@金属有机框架复合材料的制备方法及其产品和应用
CN112397690A (zh) * 2019-08-12 2021-02-23 中国科学院化学研究所 一种基于金属-有机骨架材料原位构筑表面包覆层的方法
CN112844323A (zh) * 2021-01-11 2021-05-28 潍坊学院 一种m-mof-74/氧化硅复合材料及其制备方法与应用
CN113659141A (zh) * 2021-07-23 2021-11-16 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130034513A (ko) * 2011-09-28 2013-04-05 공주대학교 산학협력단 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법
EP2813468B1 (en) * 2013-06-14 2016-03-30 CIC Energigune New high capacity materials based on transition metals of oxinitrides
WO2018148138A1 (en) * 2017-02-07 2018-08-16 University Of California, Los Angeles Composite electrolyte membrane, fabrication methods and applications of same
CN113330608A (zh) * 2019-02-11 2021-08-31 福特切尔国际有限公司 用于高性能电池的具有电极添加剂的电极及其应用
CN110556529B (zh) * 2019-10-15 2023-03-14 溧阳天目先导电池材料科技有限公司 具有多层核壳结构的负极复合材料及其制备方法和应用
CN111180717A (zh) * 2020-03-23 2020-05-19 福建翔丰华新能源材料有限公司 一种新型硅碳复合负极材料及其制备方法
CN112186145B (zh) * 2020-09-08 2022-06-07 合肥国轩高科动力能源有限公司 一种镁还原碳包覆氧化亚硅材料及其制备方法、应用
CN112661163B (zh) * 2020-12-25 2022-10-21 广东工业大学 一种氧化亚硅基复合负极材料及其制备方法、以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012277A1 (en) * 2014-02-04 2017-01-12 Nivo Systems, Inc. Open framework composites, methods for producing and using such composites
CN109742335A (zh) * 2018-12-06 2019-05-10 深圳市德方纳米科技股份有限公司 锂离子电池用硅基复合负极材料及其制备方法和锂离子电池
CN112397690A (zh) * 2019-08-12 2021-02-23 中国科学院化学研究所 一种基于金属-有机骨架材料原位构筑表面包覆层的方法
CN111029548A (zh) * 2019-12-16 2020-04-17 上海纳米技术及应用国家工程研究中心有限公司 硅@金属有机框架复合材料的制备方法及其产品和应用
CN112844323A (zh) * 2021-01-11 2021-05-28 潍坊学院 一种m-mof-74/氧化硅复合材料及其制备方法与应用
CN113659141A (zh) * 2021-07-23 2021-11-16 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG LI, HAN XUE, SU XIAORU, PANG BAOCHENG, LUO YULIN, HU FANG, ZHOU MINGJIONG, TAO KAI, XIA YONGYAO: "Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 765, 1 October 2018 (2018-10-01), CH , pages 512 - 519, XP093027210, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2018.04.014 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083927A (zh) * 2023-02-10 2023-05-09 江西理工大学 一种用于氧化亚硅负极材料均匀预镁化方法及其在锂离子电池中的应用
CN116083927B (zh) * 2023-02-10 2023-08-29 江西理工大学 一种用于氧化亚硅负极材料均匀预镁化方法及其在锂离子电池中的应用
CN116553516A (zh) * 2023-05-14 2023-08-08 江苏天合储能有限公司 一种锂离子电池生物质基硬碳负极材料及其制备方法
CN117174836A (zh) * 2023-11-03 2023-12-05 陕西晶泰新能源科技有限公司 一种锂离子电池氧化亚硅负极的预镁化中间缓冲层

Also Published As

Publication number Publication date
CN113659141B (zh) 2023-11-24
CN113659141A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN111244422B (zh) 一种水系锌离子电池用有机离子掺杂钒氧化物正极材料及其制备方法与应用
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
WO2020098087A1 (zh) 一种锂离子电池氧化亚硅复合负极材料及制法
CN104577066B (zh) 锂离子二次电池硅氧化物复合负极材料及其制备方法
CN105355908B (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
CN109037552B (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN109775726B (zh) 一种普鲁士蓝类材料的制备方法
WO2020151094A1 (zh) 锂离子二次电池硅氧化物复合负极材料及制法
CN109888247B (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
CN111115713A (zh) 一种LaMnO3包覆富锂锰基正极材料及其制备方法
CN110615480A (zh) 一种动态水热法制备层状锰酸锂材料的方法
CN110589791A (zh) 一种锡掺杂焦磷酸钛的制备方法
CN102070187B (zh) 锂离子电池负极材料尖晶石钛酸锂的制备方法
CN106450179A (zh) 一种钛掺杂的氟化铁正极材料的制备方法
CN108832106A (zh) 一种还原氧化石墨烯-氧化镍钴铝锂复合正极材料、其制备方法及其应用
CN117525391A (zh) 一种钠离子电池聚阴离子正极材料及其制备方法
CN110137472B (zh) 一种复合正极材料的制备方法
CN108417824B (zh) 一种高性能锂电池负极材料碳包覆钛酸锂的制备方法
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
CN115490272A (zh) 钴酸锂材料及其制备工艺
WO2016192382A1 (zh) 一种钛酸锂/锡复合负极材料的制备方法
CN113104899B (zh) K2Fe2(MoO4)3在锂离子电池负极中的应用
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN113104898B (zh) Li2Fe3(MoO4)4在锂离子电池负极中的应用
CN113948687A (zh) 一种MOF基ZnO/ZnCo2O4/C复合材料的制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22845378

Country of ref document: EP

Kind code of ref document: A1