WO2022127322A1 - 一种磷酸铁的制备方法及其应用 - Google Patents

一种磷酸铁的制备方法及其应用 Download PDF

Info

Publication number
WO2022127322A1
WO2022127322A1 PCT/CN2021/123724 CN2021123724W WO2022127322A1 WO 2022127322 A1 WO2022127322 A1 WO 2022127322A1 CN 2021123724 W CN2021123724 W CN 2021123724W WO 2022127322 A1 WO2022127322 A1 WO 2022127322A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
phosphate
preparation
iron
solution
Prior art date
Application number
PCT/CN2021/123724
Other languages
English (en)
French (fr)
Inventor
秦存鹏
韦吉
刘更好
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to EP21905251.1A priority Critical patent/EP4265566A1/en
Priority to GB2310080.3A priority patent/GB2617725A/en
Publication of WO2022127322A1 publication Critical patent/WO2022127322A1/zh
Priority to US18/210,223 priority patent/US20230322558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • C01B25/451Phosphates containing plural metal, or metal and ammonium containing metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the field of battery materials, and in particular relates to a preparation method and application of iron phosphate.
  • lithium-ion batteries have gradually become widely used power storage devices.
  • Lithium iron phosphate batteries have gradually become the first choice in the field of rechargeable batteries for new energy vehicles due to their good safety performance, long cycle life and low price, and because they do not contain precious metals and rare elements, the raw material reserves are abundant and will not cause environmental damage. Too much pollution, lithium iron phosphate batteries gradually glow with new vitality, and many new energy battery companies currently use them as mainstream energy storage batteries.
  • Iron phosphate is an important precursor material in the production of cathode materials for lithium iron phosphate batteries, and its quality will directly affect the performance of lithium iron phosphate batteries. It is recorded in the prior art that ferrous salt is used as the iron source, and hydrogen peroxide is added as an oxidant to oxidize ferrous iron to ferric iron to obtain ferric phosphate. This method needs to consume more expensive hydrogen peroxide as an oxidant, which increases Cost of production. The prior art also discloses a method for preparing a high-density basic ferric ammonium phosphate.
  • the embodiments of the present disclosure aim to solve the shortcomings of the above-mentioned technologies at least to a certain extent, and provide a preparation method and application of iron phosphate.
  • the morphology is controllable and can be used as a precursor material for high-performance lithium iron phosphate.
  • the embodiments of the present disclosure provide:
  • a preparation method of iron phosphate comprising the following steps:
  • ferric phosphate waste material is roasted, then add in acid solution to dissolve, filter, get filtrate, obtain the solution A containing iron and phosphorus element;
  • step (2) the solution A prepared in step (1) and the alkali solution are stirred, then the pH is adjusted to an acidic reaction, washed, filtered, and the filter residue is obtained to obtain an amorphous iron phosphate yellow filter cake;
  • the iron phosphate waste material is at least one of iron phosphate anhydrous and iron phosphate dihydrate.
  • the roasting temperature is 250° C.-450° C.
  • the roasting time is 1-5 h.
  • Roasting is to make it into anhydrous ferric phosphate, which is dissolved in dilute sulfuric acid.
  • the acid solution is one of sulfuric acid, hydrochloric acid and phosphoric acid.
  • the concentration of the sulfuric acid is 1-3 mol/L. In still other embodiments, the concentration of the sulfuric acid is 1.5-3 mol/L.
  • the molar ratio of SO 4 2- in the sulfuric acid to Fe 3+ in the iron phosphate waste is (1.3-1.8):1.
  • the temperature for stirring and dissolving is 25° C.-60° C., and the time for stirring and dissolving is 3-10 h. Dissolving at 25°C-60°C is related to roasting. Ferric phosphate dihydrate is insoluble in acid solution. After roasting, the crystal water in the iron phosphate waste will be removed to form anhydrous ferric phosphate. Anhydrous ferric phosphate is dissolved in dilute sulfuric acid.
  • step (1) the molar ratio of Fe and P in the solution A is 1:(0.90-1.05).
  • step (1) further includes detecting the iron-to-phosphorus ratio of the solution A containing iron and phosphorus elements. If Fe:P is between 1:(0.90-1.05), no supplementation is required. Add iron salt solution or phosphate solution, if Fe:P is less than 1:0.90 or greater than 1:1.05, then add iron salt solution or phosphate solution.
  • the added phosphate is diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate and one or more of sodium phosphate; the phosphate concentration is 0.2-1.5mol/L.
  • the added iron salt solution is one or more of iron sulfate, iron nitrate, iron chloride anhydrate or hydrate; iron salt concentration is 0.2-1.5mol/L .
  • the lye is at least one of ammonia water, urea, ammonium chloride and ammonium bicarbonate.
  • the dosage ratio of the solution A containing iron and phosphorus elements to the alkaline solution is (10-3):1.
  • the pH fluctuation range of the system can be reduced, and the pH will not fluctuate due to different concentrations, and the pH will not be too low or too high. Too high is easy to produce Fe(OH) 3 , too low is easy to cause incomplete precipitation of molten metal, and the product batch stability is strong.
  • the alkali liquor concentration of the alkali liquor is 10-30 wt%.
  • the adjusting pH to acidity is adjusting pH to 1.5-2.5.
  • the reaction temperature is 30°C-50°C, and the reaction time is 0.1-0.5 h.
  • the stirring speed is 200-500 rpm.
  • step (2) the washing is performed to a conductivity of 2000-5000 us/cm.
  • the heating temperature is 80°C-100°C
  • the stirring speed is 100-200rpm.
  • step (3) a slurry and a supernatant are generated during the reaction; the Fe content in the supernatant of the slurry is less than 20 mg/L, and the solid content of the slurry is 50 mg/L. -200g/L.
  • the mass concentration of the phosphoric acid is 80-90%.
  • the adjusting pH to acidity is adjusting pH to 1.5-4.5.
  • step (3) after the phosphoric acid is added, the molar ratio of total iron to total phosphorus in the system is 1:(1.1-1.4).
  • step (3) the washing is performed to a conductivity of 200-500 us/cm.
  • the ageing temperature is 50°C-100°C
  • the ageing time is 0.5-10 h
  • the ageing stirring speed is 100-500 rpm.
  • the lye solution is at least one of ammonia water, urea, ammonium chloride and ammonium bicarbonate.
  • the molecular formula of the ammonium ferric phosphate basic is NH 4 Fe 2 (OH)(PO 4 ) 2 ⁇ 2H 2 O, which contains two crystal waters, ammonium ferric phosphate basic
  • the D50 is 1.5-10 ⁇ m
  • the tap density is 0.7-1.3 g/cm 3
  • the specific surface area is 40-60 m 2 /g.
  • P content is close to Fe
  • P content in iron orthophosphate FePO 4 ⁇ 2H 2 O and it becomes anhydrous FePO 4 by releasing NH 3 and H 2 O during sintering.
  • the drying temperature is 100°C-180°C, and the time is 12-24 h.
  • the roasting and dehydration is two-stage heating and dehydration
  • the heating rate of the first stage is 2-5 °C/min
  • the temperature of heating is 250-350 °C
  • the time of roasting and dehydration is 3-5h
  • the heating rate of the first stage is 5-10°C/min
  • the temperature of the roasting and dehydration is 500°C-600°C
  • the time of roasting and dehydration is 5-7h.
  • the embodiments of the present disclosure also provide an iron phosphate prepared by the method of the above-mentioned embodiment, the D50 of the iron phosphate is 1-10 ⁇ m, the tap density is 0.80-1.30 g/cm 3 , and the specific surface area is 5-10 m 2 /g.
  • the embodiments of the present disclosure also provide applications of the iron phosphates of the above embodiments in preparing batteries.
  • the anhydrous ferric phosphate prepared by the curing process after high temperature sintering has stable performance, controllable morphology, high tap density, very few impurity elements, small particle size and uniform particle size distribution, which is a later stage. It provides a basis for the preparation of high-performance lithium iron phosphate cathode materials.
  • the raw material iron phosphate waste materials used in the embodiments of the present disclosure are all recycled or produced unqualified iron phosphate, iron phosphate dihydrate waste materials or mixtures between the waste and old lithium iron phosphate batteries, and are a kind of recyclable
  • the iron-phosphorus compound used can effectively reduce the harm to the environment of waste lithium iron phosphate batteries and the cost of raw materials, has considerable economic benefits, and is in line with the basic national policy of protecting the environment; the embodiment of the present disclosure is obtained by dissolving waste iron phosphate in dilute sulfuric acid
  • a certain concentration of iron-phosphorus solution, by controlling the iron-phosphorus content in the iron-phosphorus solution can maintain the consistency of iron-phosphorus in different batches in the system, at least to a certain extent, solve the situation of poor consistency of iron-phosphorus ratio of different batches of products, Keep the product performance stable and ensure the batch stability of the product.
  • the particle size D50 of the iron phosphate prepared by this method is 1-10 ⁇ m, the particles are small, the secondary particle morphology is uniform, the tap density is large, and the crystallinity is high, which is suitable for preparing lithium iron phosphate batteries.
  • Fig. 1 is the XRD pattern of the basic ferric ammonium phosphate prepared by the disclosed embodiment 1;
  • Fig. 2 is the SEM image of the basic ferric ammonium phosphate prepared in the disclosed embodiment 1;
  • Fig. 3 is the XRD pattern of the iron phosphate prepared in the disclosed embodiment 1;
  • Example 4 is a SEM image of the iron phosphate prepared in Example 1 of the present disclosure.
  • the conventional conditions or the conditions suggested by the manufacturer are used.
  • the raw materials, reagents, etc., which are not specified by the manufacturer, are all conventional products that can be purchased from the market.
  • the preparation method of the iron phosphate of the present embodiment comprises the following steps:
  • the waste iron phosphate dihydrate of 50kg is roasted at 350 DEG C for 3h to remove crystal water, the material after roasting is about 40kg, and the material is dropped into the sulfuric acid solution kettle storing 270L, 1.5mol/L and stirred at 200rpm rotating speed, Heated to 50°C to dissolve for about 5 hours and then left to stand.
  • the filter residue was filtered out by a precision filter and then transferred to the storage tank to obtain a solution containing Fe 3+ and PO4 3- .
  • Fig. 1 and Fig. 2 are respectively the XRD pattern and SEM picture of basic ferric ammonium phosphate prepared by embodiment 1;
  • Fig. 3 and Fig. 4 are respectively the XRD pattern and SEM picture of basic ferric ammonium phosphate prepared by embodiment 1;
  • Table 1 The physical and chemical index results of basic ammonium ferric phosphate and ferric phosphate prepared in the examples.
  • the dispersion of particle size distribution is small and the particle size distribution is narrow.
  • the particle size distribution after sintering is wider than that before sintering.
  • the tap density before and after sintering Both are relatively high, and the specific surface area is moderate, which is suitable as a precursor material for the preparation of lithium iron phosphate batteries.
  • the preparation method of the iron phosphate of the present embodiment comprises the following steps:
  • the ferric phosphate waste material of 10kg is roasted at 400 DEG C for 5h to remove crystal water, the material after roasting is about 8kg, and the material is dropped into the sulfuric acid solution kettle that stores 34L, 2.4mol/L under 200rpm rotating speed and stirred, heated to After dissolving at 50°C for about 5 hours, let it stand, filter the filter residue with a precision filter and transfer it to a storage tank to obtain a solution containing Fe 3+ and PO4 3- .
  • the ammonium ferric phosphate prepared in Example 2 has a higher phase purity, no other impurity phases are found, and the particle dispersibility is better; the ferric phosphate crystallinity after roasting is very good, and no other impurity phases are found; ammonium ferric phosphate and
  • the iron and phosphorus content of iron phosphate and the content of each element conform to the national standard.
  • the tap density of iron phosphate is 1.21g/cm 3 and the specific surface area is 7.60m 2 /g, which is suitable as a precursor material for preparing lithium iron phosphate battery.
  • the ferric phosphate waste material of 4kg is roasted at 300 DEG C for 3h to remove crystal water, the material after roasting is about 4kg, and the material is dropped into the sulfuric acid solution kettle that stores 27L, 1.5mol/L under 200rpm rotating speed and stirred, heated to After dissolving at 50°C for about 5 hours, let it stand, filter the filter residue with a precision filter and transfer it to a storage tank to obtain a solution containing Fe 3+ and PO4 3- .
  • the basic ammonium ferric phosphate and ferric phosphate prepared in Example 3 have good crystallinity, and no other impurities are found; the content of iron and phosphorus and the content of each element meet the national standard, and the tap density of ferric phosphate is 0.80 g/cm 3 , which is higher than The surface area is 5.50m 2 /g, which is suitable as a precursor material for preparing lithium iron phosphate batteries.
  • the iron phosphate that above-mentioned embodiment 1-3 makes and commercially available iron phosphate are prepared into lithium iron phosphate under the same conditions according to conventional methods, and the compaction density and other electrical properties of the obtained lithium iron phosphate are detected, and the results are as follows Table 4 shows:
  • the compacted density and electrical properties of the lithium iron phosphate powder obtained from the iron phosphate synthesized in the embodiment of the present disclosure are close to those of commercially available iron phosphate, indicating that the iron phosphate synthesized in the embodiment of the present disclosure has reached the level of battery-grade iron phosphate for lithium iron phosphate. standard.
  • the preparation method and application of iron phosphate provided by the present disclosure have been introduced in detail above. The principles and implementations of the present disclosure are described with specific examples. The descriptions of the above examples are only used to help understand the present disclosure.
  • the disclosed methods and their core ideas, including the embodiments also enable any person skilled in the art to practice the present disclosure, including making and using any devices or systems, and performing any incorporated methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种磷酸铁的制备方法及其应用,该制备方法包括如下步骤:将磷酸铁废料进行焙烧,再加入酸液中溶解,过滤,取滤液,得到含铁和磷元素的溶液A;将溶液A和碱液搅拌,调节pH至酸性反应,洗涤,过滤,取滤渣,得到非晶磷酸铁黄色滤饼;将磷酸铁黄色滤饼进行陈化,制浆,加热,再加入磷酸和碱液,洗涤,过滤,取滤渣,得碱式磷酸铁铵滤饼,干燥,即得碱式磷酸铁铵晶体粉末;将碱式磷酸铁铵晶体粉末进行焙烧脱水,降温,即得磷酸铁。本公开实施例通过用回收的磷铁废料作原料,采用碱液沉淀非晶磷酸铁,并用氨水与磷酸在高温搅拌条件下做陈化剂,以达到碱式磷酸铁铵可控结晶的目的。

Description

一种磷酸铁的制备方法及其应用 技术领域
本公开属于电池材料领域,具体涉及一种磷酸铁的制备方法及其应用。
背景技术
随着国家在新能源汽车领域的大力支持及公众环保意识的增强,锂离子电池逐渐成为广泛使用的电力存储设备。磷酸铁锂电池因其安全性能好、循环寿命长和价格低廉等优势而逐步成为新能源汽车可充电电池领域的首选,并且由于其不含贵金属及稀有元素,原材料储量丰富且不会对环境造成太大污染,磷酸铁锂电池逐渐焕发出新的生命力,目前许多新能源电池企业都将其作为主流的储能电池生产。
磷酸铁属于磷酸铁锂电池正极材料生产中重要的前驱体材料,其品质将直接对磷酸铁锂电池性能产生直接的影响。现有技术中记载了以亚铁盐作为铁源,并加双氧水做氧化剂将二价铁氧化为三价铁,制得磷酸铁,该方法需要消耗价格较贵的过氧化氢作为氧化剂,增加了生产成本。现有技术还公开了一种高密度的碱式磷酸铁铵的制备方法,由于原料中二价铁的存在,也需要消耗大量的过氧化氢作为氧化剂将二价铁氧化为三价铁,提高了生产成本;并且尽管其生产的碱式磷酸铁铵振实密度较高,达到了1.3-1.6g/cm 3,但其粒径D50较大,易造成破碎困难,因而对高性能磷酸铁锂的制备有一定的劣势。
目前尚缺乏利用三价铁源制备粒度较小并可控的碱式磷酸铁铵路径制备电池级磷酸铁的报道。
发明内容
本公开实施例旨在至少在一定程度上解决上述技术中存在的缺点,提供一种磷酸铁的制备方法和应用,该方法制得的磷酸铁粒度较小且分布均匀、振实密度大、形貌可控,能够用作高性能磷酸铁锂的前驱体材料。
为实现上述目的,本公开实施例提供:
一种磷酸铁的制备方法,包括以下步骤:
(1)将磷酸铁废料进行焙烧,然后加入酸液中溶解,过滤,取滤液,得到含铁和磷元素的溶液A;
(2)将步骤(1)制得的所述溶液A和碱液搅拌,然后调节pH至酸性反应,洗涤, 过滤,取滤渣,得到非晶磷酸铁黄色滤饼;
(3)将磷酸铁黄色滤饼进行陈化,制浆,加热,再加入磷酸和碱液反应,洗涤,过滤,取滤渣,得碱式磷酸铁铵滤饼,干燥,得到碱式磷酸铁铵晶体粉末;
(4)将碱式磷酸铁铵晶体粉末进行焙烧脱水,降温,得到磷酸铁。
在一些实施例中,步骤(1)中,所述磷酸铁废料为无水磷酸铁和二水磷酸铁中的至少一种。
在一些实施例中,步骤(1)中,所述焙烧的温度为250℃-450℃,焙烧的时间为1-5h。
焙烧是为了使其变为无水磷酸铁,无水磷酸铁溶于稀硫酸。
在一些实施例中,步骤(1)中,所述酸液为硫酸、盐酸和磷酸中的一种。
在一些实施例中,当所述酸液为硫酸时,所述硫酸的浓度为1-3mol/L。在又一些实施例中,所述硫酸的浓度为1.5-3mol/L。
在一些实施例中,所述硫酸中SO 4 2-与磷酸铁废料中Fe 3+的摩尔量之比为(1.3-1.8):1。
在一些实施例中,步骤(1)中,所述搅拌溶解的温度为25℃-60℃,搅拌溶解的时间为3-10h。在25℃-60℃溶解与焙烧有关,二水磷酸铁在酸溶液中不溶,焙烧后会把磷酸铁废料中的结晶水脱去形成无水磷酸铁,无水磷酸铁溶于稀硫酸。
在一些实施例中,步骤(1)中,所述溶液A的Fe和P的摩尔比为1:(0.90-1.05)。
在一些实施例中,步骤(1)中,还包括对所述含铁和磷元素的溶液A的铁磷比进行检测,若Fe:P处于1:(0.90-1.05)之间,则无需补加铁盐溶液或磷酸盐溶液,若Fe:P小于1:0.90或大于1:1.05,则需补加铁盐溶液或磷酸盐溶液。
在又一些实施例中,所述补加的磷酸盐为磷酸氢二铵、磷酸二氢铵、磷酸铵、磷酸氢二钾、磷酸二氢钾、磷酸钾、磷酸氢二钠、磷酸二氢钠和磷酸钠中的一种或多种;磷酸盐浓度为0.2-1.5mol/L。
在又一些实施例中,所述补加的铁盐溶液为硫酸铁、硝酸铁、氯化铁的无水物或水合物中的一种或多种;铁盐浓度为0.2-1.5mol/L。
在一些实施例中,步骤(2)中,所述碱液为氨水、尿素、氯化铵和碳酸氢铵中的至少一种。
在一些实施例中,步骤(2)中,所述含铁和磷元素的溶液A与碱液的用量比为(10-3):1。根据本公开实施例,溶液A与碱液用量在一定范围内,可使体系pH波动范围减小,不会因浓度不同而造成pH忽高忽低,并且不会造成pH过低或过高,过高容易产生Fe(OH) 3,过低容易造成金属液沉淀不完全,产品批次稳定性强。
在又一些实施例中,所述碱液的碱液浓度为10-30wt%。
在一些实施例中,步骤(2)中,所述调节pH至酸性是将pH调节至1.5-2.5。
在一些实施例中,步骤(2)中,所述反应的温度为30℃-50℃,反应的时间为0.1-0.5h。
在一些实施例中,步骤(2)中,所述搅拌速度为200-500rpm。
在一些实施例中,步骤(2)中,所述洗涤至电导率2000-5000us/cm。
在一些实施例中,步骤(3)中,所述加热的温度为80℃-100℃,搅拌的速度为100-200rpm。
在一些实施例中,步骤(3)中,所述反应的过程中有浆料和清液产生;所述反应至浆料上清液中Fe含量小于20mg/L,浆料的固含量为50-200g/L。
在一些实施例中,步骤(3)中,所述磷酸的质量浓度为80-90%。
在一些实施例中,步骤(3)中,所述调节pH至酸性是将pH调节至1.5-4.5。
在一些实施例中,步骤(3)中,所述磷酸加入后使体系中的总铁与总磷摩尔之比为1:(1.1-1.4)。
在一些实施例中,步骤(3)中,所述洗涤至电导率200-500us/cm。
在一些实施例中,步骤(3)中,所述陈化的温度为50℃-100℃,陈化的时间为0.5-10h,陈化的搅拌速度为100-500rpm。
在一些实施例中,步骤(3)中,所述碱液为氨水、尿素、氯化铵和碳酸氢铵中的至少一种。
在一些实施例中,步骤(3)中,所述碱式磷酸铁铵的分子式为NH 4Fe 2(OH)(PO 4) 2·2H 2O,含有两个结晶水,碱式磷酸铁铵的D50为1.5-10μm,振实密度为0.7-1.3g/cm 3,比表面积为40-60m 2/g。并且其Fe、P含量与正磷酸铁FePO 4·2H 2O中Fe、P含量较为接近,烧结过程通过释放出NH 3、H 2O而成为无水FePO 4
在一些实施例中,步骤(3)中,所述干燥的温度为100℃-180℃,时间为12-24h。
在一些实施例中,步骤(4)中,所述焙烧脱水为两段升温脱水,第一段的升温速率为2-5℃/min,升温的温度为250-350℃,焙烧脱水的时间为3-5h;第一段的升温速率为5-10℃/min,所述焙烧脱水的温度为500℃-600℃,焙烧脱水的时间为5-7h。
本公开实施例还提供一种磷酸铁,其由上述实施例的方法制得,所述磷酸铁的D50为1-10μm,振实密度为0.80-1.30g/cm 3,比表面积为5-10m 2/g。
本公开实施例还提供上述实施例的磷酸铁在制备电池中的应用。
本公开实施例的优点:
(1)本公开实施例通过用回收的磷铁废料作原料,采用碱液沉淀非晶磷酸铁,并用碱液(氨水)与磷酸在高温搅拌条件下做陈化剂,以达到碱式磷酸铁铵可控结晶的目的。本公开实施例的工艺不仅能大大提高磷酸铁铵结晶的可控性,而且所需设备简单、容易操作、原料成本低廉、批次性能稳定,陈化所需时间短,大大提高生产效率,使该方法成为大量制备合格的电池级磷酸铁的有效途径。
(2)固化工艺制备的碱式磷酸铁铵高温烧结后的无水磷酸铁性能稳定,形貌可控、振实密度高、杂质元素极少、粒径较小且粒径分布均匀,为后期制备高性能磷酸铁锂正极材料提供了基础。
(3)本公开实施例所使用的原料磷酸铁废料均为由废旧磷酸铁锂电池中回收或生产不合格的磷酸铁、二水磷酸铁废料或多者之间的混合物,是一种可循环使用的铁磷合物,能够有效减少废旧磷酸铁锂电池对环境的危害及原材料的成本,具有可观的经济效益,又符合保护环境的基本国策;本公开实施例通过稀硫酸溶解磷酸铁废料得到一定浓度的铁磷溶液,通过控制铁磷液中的铁磷含量,能够保持体系中不同批次的铁磷一致性,至少在一定程度上解决了不同批次产品铁磷比一致性差的情况,使产品性能保持稳定,保证了产品的批次稳定性。
(4)该方法制备的磷酸铁的粒度D50为1-10μm、颗粒较小,二次颗粒形貌均匀、振实密度较大、结晶度较高,适合用于制备磷酸铁锂电池。
附图说明
图1为本公开实施例1制得的碱式磷酸铁铵的XRD图;
图2为本公开实施例1制得的碱式磷酸铁铵的SEM图;
图3为本公开实施例1制得的磷酸铁的XRD图;
图4为本公开实施例1制得的磷酸铁的SEM图。
具体实施方式
为了对本公开进行深入的理解,下面结合实例对本公开若干实验方案进行描述,以进一步地说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
本公开实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
实施例1
本实施例的磷酸铁的制备方法,包括以下步骤:
(1)将50kg的二水磷酸铁废料于350℃焙烧3h除去结晶水,焙烧后的物料约40kg,在200rpm转速下将物料投入到储有270L、1.5mol/L的硫酸溶液釜中搅拌,加热至50℃溶解约5h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得到含有Fe 3+和PO4 3-的溶液,检测溶液中的铁磷含量分别为43.28g/L、24.78g/L,Fe:P的摩尔比=1:1.03;
(2)50L去离子水为底液,将含有Fe 3+和PO4 3-的溶液和氨水以6:1进液速度由反应釜底部并流注入到反应釜中,通过pH实时反馈系统调节碱液的微调进料速度,调节pH=2使非晶态磷酸铁沉淀,在30℃温度下反应0.5h后固液分离,取上清液测试残留Fe、P含量分别为10mg/L、153mg/L,Fe离子已近乎完全沉淀,水洗至电导率3500us/cm,得到非晶态磷酸铁黄色滤饼;
(3)将非晶态磷酸铁滤饼取出后投入到陈化釜中,控制浆料固含量为100g/L,以300rpm的搅拌速度充分搅拌制浆2h,将反应釜加热到95℃,采用蠕动泵将2L磷酸(85wt%)和5L氨水(15wt%)并流泵入陈化釜浆料中,pH保持2,以一定的搅拌速度陈化5h,水洗至电导率400us/cm,固液分离得到碱式磷酸铁铵NH 4Fe 2(OH)(PO 4) 2·2H 2O滤饼,将滤饼在180℃干燥约15h制得碱式磷酸铁铵晶体粉末,取一定量的磷酸铁铵进行基本性能的检测;
(4)将干燥后的碱式磷酸铁铵晶体于马弗炉中以5℃/min升温至350℃并保温3h,再以10℃/min的升温速率升温至550℃保温6h,自然降温至室温后得到约3.85kg合格的电池级磷酸铁FePO 4,产率大于96%,将所得产物进行物相和性能的检测和分析。
本实施例得到的二水磷酸铁及磷酸铁的各理化性能指标如下表1:
表1
Figure PCTCN2021123724-appb-000001
Figure PCTCN2021123724-appb-000002
图1和图2分别为实施例1制备的碱式磷酸铁铵的XRD图及SEM图;图3和图4分别为实施例1制备的碱式磷酸铁铵的XRD图及SEM图;表1为实施例去制备的碱式磷酸铁铵及磷酸铁的各理化指标结果。由图1可知实施例1制备的碱式磷酸铁铵物相纯度较高,结晶度好,未发现其它杂相;由图2可知制备的碱式磷酸铁铵一次颗粒的长径比较大,二次颗粒呈鸟巢状类球形结构,颗粒分散性较好;由图3可知实施例1制备的磷酸铁结晶度非常好,未发现其它杂相;由图4可知制备的磷酸铁二次颗粒仍呈鸟巢状类球形结构,退火前后变化较小,退火仅引起一次颗粒熔融,粒径稍大,比表面积减小,颗粒分散性仍比较好;表1表明实施例1的碱式磷酸铁铵及磷酸铁的铁磷含量及各元素的含量符合无水磷酸铁的国家标准,粒度分布的离散度较小,粒度分布较窄,烧结后的粒度分布相对于烧结前较宽,烧结前后的振实密度均较高,比表面积适中,适合作为制备磷酸铁锂电池的前驱体材料。
实施例2
本实施例的磷酸铁的制备方法,包括以下步骤:
(1)将10kg的磷酸铁废料于400℃焙烧5h除去结晶水,焙烧后的物料约8kg,在200rpm转速下将物料投入到储有34L、2.4mol/L的硫酸溶液釜中搅拌,加热至50℃溶解约5h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得到含有Fe 3+和PO4 3-的溶液,检测溶液中的铁磷含量分别为83.20g/L、47.9g/L,Fe:P摩尔比=1:1.04;
(2)50L去离子水为底液,将含有Fe 3+和PO4 3-的溶液和氨水以3:1进液速度由反应釜底部并流注入到反应釜中,通过pH实时反馈系统调节碱液的微调进料速度,调节pH=2.5使非晶态磷酸铁沉淀,在50℃温度下反应0.5h后固液分离,取上清液测试残留Fe、P含量分别为19mg/L、230mg/L,Fe离子已近乎完全沉淀,水洗至电导率4500us/cm,得到非晶态磷酸铁黄色滤饼;
(3)将非晶态磷酸铁滤饼取出后投入到陈化釜中,控制浆料固含量为200g/L,以300rpm的搅拌速度充分搅拌制浆2h,将反应釜加热到95℃,采用蠕动泵将1.5L磷酸(85wt%)和4L氨水(25wt%)并流泵入陈化釜浆料中,PH保持2.5,以一定的搅拌速度陈化8h,水洗涤至电导率300us/cm,固液分离得到碱式磷酸铁铵NH 4Fe 2(OH)(PO 4) 2·2H 2O滤饼,将滤饼在150℃干燥约20h制得碱式磷酸铁铵晶体粉末,取一定量的磷酸铁铵进行基本性能的检测;
(4)将干燥后的碱式磷酸铁铵晶体于马弗炉中以3℃/min升温至300℃并保温4h,再 以5℃/min的升温速率升温至500℃保温7h,自然降温至室温后得到约7.8kg合格的电池级磷酸铁FePO 4,产率大于97%,将所得产物进行物相和性能的检测和分析。
本实施例得到的碱式磷酸铁铵及磷酸铁的各理化性能指标如下表2:
表2
Figure PCTCN2021123724-appb-000003
实施例2制备的碱式磷酸铁铵物相纯度较高,未发现其它杂相,颗粒分散性较好;焙烧后的磷酸铁结晶度非常好,未发现其它杂相;碱式磷酸铁铵及磷酸铁的铁磷含量及各元素的含量符合国家标准,磷酸铁的振实密度1.21g/cm 3,比表面积7.60m 2/g,适合作为制备磷酸铁锂电池的前驱体材料。
实施例3
本实施例的电池级磷酸铁的制备方法,包括以下步骤:
(1)将4kg的磷酸铁废料于300℃焙烧3h除去结晶水,焙烧后的物料约4kg,在200rpm转速下将物料投入到储有27L、1.5mol/L的硫酸溶液釜中搅拌,加热至50℃溶解约5h后静置,利用精密过滤器过滤掉其中的滤渣后转移到储槽中,得到含有Fe 3+和PO4 3-的溶液,检测溶液中的铁磷含量分别为63.42g/L、37.17g/L,Fe:P摩尔比=1:1.05;
(2)20L去离子水为底液,将含有Fe 3+和PO4 3-的溶液和氨水以8:1进液速度由反应釜底部并流注入到反应釜中,通过pH实时反馈系统调节碱液的微调进料速度,调节pH=1.5使非晶态磷酸铁沉淀,在50℃温度下反应0.5h后固液分离,取上清液测试残留Fe、P含量分别为20mg/L、310mg/L,Fe离子已近乎完全沉淀,水洗至电导率2500us/cm,得到非晶 态磷酸铁黄色滤饼;
(3)将非晶态磷酸铁滤饼取出后投入到陈化釜中,控制浆料固含量为50g/L,以300rpm的搅拌速度充分搅拌制浆1h,将反应釜加热到80℃,采用蠕动泵将1.5L磷酸(85wt%)和4L氨水(25wt%)并流泵入陈化釜浆料中,pH保持2.5,以一定的搅拌速度陈化10h,水洗涤至电导率300us/cm,固液分离得到碱式磷酸铁铵NH 4Fe 2(OH)(PO 4) 2·2H 2O滤饼,将滤饼在120℃干燥约24h制得碱式磷酸铁铵晶体粉末,取一定量的磷酸铁铵进行基本性能的检测;
(4)将干燥后的碱式磷酸铁铵晶体于马弗炉中以5℃/min升温至350℃并保温4h,再以10℃/min的升温速率升温至600℃保温5h,自然降温至室温后得到约3.8kg合格的电池级磷酸铁FePO 4,产率大于95%,将所得产物进行物相和性能的检测和分析。
本实施例得到的碱式磷酸铁铵及磷酸铁的各理化性能指标如下表3:
表3
Figure PCTCN2021123724-appb-000004
实施例3制备的碱式磷酸铁铵物和磷酸铁结晶度较好,未发现其它杂相;铁磷含量及各元素的含量符合国家标准,磷酸铁的振实密度0.80g/cm 3,比表面积5.50m 2/g,适合作为制备磷酸铁锂电池的前驱体材料。
上述实施例1-3制得的磷酸铁与市购的磷酸铁按照常规方法在同等条件下制备成磷酸铁锂,对制得的磷酸铁锂的压实密度及其他电性能进行检测,结果如下表4所示:
表4
Figure PCTCN2021123724-appb-000005
本公开实施例中合成的磷酸铁制得的磷酸铁锂粉末压实密度及电性能与市售的磷酸铁接近,表明本公开实施例合成的磷酸铁达到了磷酸铁锂用电池级磷酸铁的标准。以上对本公开提供的一种磷酸铁的制备方法及其应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括实施方式,并且也使得本领域的任何技术人员都能够实践本公开,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种磷酸铁的制备方法,包括以下步骤:
    (1)将磷酸铁废料进行焙烧,然后加入酸液中溶解,过滤,取滤液,得到含铁和磷元素的溶液A;
    (2)将步骤(1)制得的所述溶液A和碱液搅拌,然后调节pH至酸性反应,洗涤,过滤,取滤渣,得到非晶磷酸铁黄色滤饼;
    (3)将磷酸铁黄色滤饼进行陈化,制浆,加热,再加入磷酸和碱液反应,洗涤,过滤,取滤渣,得碱式磷酸铁铵滤饼,干燥,得到碱式磷酸铁铵晶体粉末;
    (4)将碱式磷酸铁铵晶体粉末进行焙烧脱水,降温,得到磷酸铁。
  2. 根据权利要求1所述的制备方法,其中步骤(1)中,所述焙烧的温度为250℃-450℃,焙烧的时间为1-5h;步骤(1)中,所述溶解的温度为25℃-60℃,溶解的时间为3-10h。
  3. 根据权利要求1所述的制备方法,其中步骤(1)中,所述酸液为硫酸、盐酸和磷酸中的一种;当所述酸液为硫酸时,所述硫酸的浓度为1-3mol/L;所述硫酸中SO 4 2-与磷酸铁废料中Fe 3+的摩尔量之比为(1.3-1.8):1。
  4. 根据权利要求1所述的制备方法,其中步骤(2)中,所述含铁和磷元素的溶液A与碱液的用量比为(10-3):1。
  5. 根据权利要求1所述的制备方法,其中步骤(2)和步骤(3)中,所述碱液为氨水、尿素、氯化铵和碳酸氢铵中的至少一种;所述碱液的浓度为10-30wt%。
  6. 根据权利要求1所述的制备方法,其中步骤(2)中,所述反应的温度为30℃-50℃,所述反应的时间为0.1-0.5h;步骤(2)中,所述调节pH至酸性是将pH调节至1.5-2.5。
  7. 根据权利要求1所述的制备方法,其中步骤(3)中,所述磷酸的质量浓度为80-90%,所述磷酸加入后使体系中的总铁与总磷摩尔之比为1:(1.1-1.4)。
  8. 根据权利要求1所述的制备方法,其中步骤(3)中,所述碱式磷酸铁铵的分子式为NH 4Fe 2(OH)(PO 4) 2·2H 2O,碱式磷酸铁铵的D50为1.5-10μm,振实密度为0.70-1.30g/cm 3,比表面积为40-60m 2/g。
  9. 一种磷酸铁,由权利要求1-8中任一项所述的制备方法制得,所述磷酸铁的D50为1-10μm,振实密度为0.80-1.30g/cm 3,比表面积为5-10m 2/g。
  10. 权利要求9所述的磷酸铁在制备电池中的应用。
PCT/CN2021/123724 2020-12-15 2021-10-14 一种磷酸铁的制备方法及其应用 WO2022127322A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21905251.1A EP4265566A1 (en) 2020-12-15 2021-10-14 Preparation method and application of iron phosphate
GB2310080.3A GB2617725A (en) 2020-12-15 2021-10-14 Preparation method and application of iron phosphate
US18/210,223 US20230322558A1 (en) 2020-12-15 2023-06-15 Preparation method and application of iron phosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011471547.1A CN112624076B (zh) 2020-12-15 2020-12-15 一种磷酸铁的制备方法及其应用
CN202011471547.1 2020-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/210,223 Continuation US20230322558A1 (en) 2020-12-15 2023-06-15 Preparation method and application of iron phosphate

Publications (1)

Publication Number Publication Date
WO2022127322A1 true WO2022127322A1 (zh) 2022-06-23

Family

ID=75313029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123724 WO2022127322A1 (zh) 2020-12-15 2021-10-14 一种磷酸铁的制备方法及其应用

Country Status (5)

Country Link
US (1) US20230322558A1 (zh)
EP (1) EP4265566A1 (zh)
CN (1) CN112624076B (zh)
GB (1) GB2617725A (zh)
WO (1) WO2022127322A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124012A (zh) * 2022-07-28 2022-09-30 四川龙蟒磷化工有限公司 一种高振实密度低硫高铁磷比磷酸铁的制备方法
CN115385316A (zh) * 2022-09-23 2022-11-25 清华四川能源互联网研究院 一种磷酸铁锂的回收工艺
CN115571865A (zh) * 2022-10-28 2023-01-06 湖北虹润高科新材料有限公司 一种高品质磷酸铁的制备方法、高品质磷酸铁、电极
CN115571864A (zh) * 2022-09-05 2023-01-06 六盘水师范学院 一种以高铁型粉煤灰为原料制备电池级磷酸铁方法
CN115818604A (zh) * 2022-12-12 2023-03-21 湖北虹润高科新材料有限公司 一种亚硫酸盐还原赤泥提铁溶液以制备电池级无水磷酸铁的方法
CN116101990A (zh) * 2022-09-07 2023-05-12 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624076B (zh) * 2020-12-15 2022-12-13 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用
CN113562711B (zh) * 2021-07-19 2023-12-12 广东邦普循环科技有限公司 磷酸铁及其制备方法和应用
CN114572950B (zh) * 2022-01-28 2023-07-07 宜昌邦普宜化新材料有限公司 高纯磷酸铁的制备方法及其应用
CN114956027B (zh) * 2022-05-20 2023-12-12 广东邦普循环科技有限公司 一种多孔磷酸铁及其制备方法
CN117263154B (zh) * 2023-10-13 2024-04-19 金驰能源材料有限公司 磷酸铁及其连续式生产方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244813A (zh) * 2007-02-15 2008-08-20 比亚迪股份有限公司 碱式磷酸铁铵及制备方法、磷酸铁的制备方法及磷酸亚铁锂的制备方法
CN108117055A (zh) * 2017-12-30 2018-06-05 彩客化学(东光)有限公司 一种电池级磷酸铁的制备方法和生产装置
CN110482514A (zh) * 2019-08-28 2019-11-22 安徽昶源新材料股份有限公司 一种电池级无水磷酸铁的制备方法
CN111115605A (zh) * 2020-01-09 2020-05-08 乳源东阳光磁性材料有限公司 一种无水磷酸铁的制备方法及生产装置
CN111348638A (zh) * 2020-05-11 2020-06-30 蒋达金 一种碱式磷酸铁铵的制备方法
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881960B (zh) * 2012-10-22 2014-06-25 四川天齐锂业股份有限公司 从磷酸亚铁锂废料中回收氢氧化锂的方法
CN103825024B (zh) * 2014-02-24 2016-04-20 宁波工程学院 一种电池级磷酸铁及其制备方法
CN109721043B (zh) * 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN110683528B (zh) * 2019-10-17 2021-03-23 湖南雅城新材料有限公司 一种磷酸铁废料的再生方法
CN111285341A (zh) * 2020-02-21 2020-06-16 北京蒙京石墨新材料科技研究院有限公司 一种从废弃磷酸铁锂电池中提取电池级磷酸铁的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244813A (zh) * 2007-02-15 2008-08-20 比亚迪股份有限公司 碱式磷酸铁铵及制备方法、磷酸铁的制备方法及磷酸亚铁锂的制备方法
CN108117055A (zh) * 2017-12-30 2018-06-05 彩客化学(东光)有限公司 一种电池级磷酸铁的制备方法和生产装置
CN110482514A (zh) * 2019-08-28 2019-11-22 安徽昶源新材料股份有限公司 一种电池级无水磷酸铁的制备方法
CN111115605A (zh) * 2020-01-09 2020-05-08 乳源东阳光磁性材料有限公司 一种无水磷酸铁的制备方法及生产装置
CN111348638A (zh) * 2020-05-11 2020-06-30 蒋达金 一种碱式磷酸铁铵的制备方法
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124012A (zh) * 2022-07-28 2022-09-30 四川龙蟒磷化工有限公司 一种高振实密度低硫高铁磷比磷酸铁的制备方法
CN115124012B (zh) * 2022-07-28 2023-09-05 四川龙蟒磷化工有限公司 一种高振实密度低硫高铁磷比磷酸铁的制备方法
CN115571864A (zh) * 2022-09-05 2023-01-06 六盘水师范学院 一种以高铁型粉煤灰为原料制备电池级磷酸铁方法
CN116101990A (zh) * 2022-09-07 2023-05-12 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池
CN116101990B (zh) * 2022-09-07 2024-05-10 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池
CN115385316A (zh) * 2022-09-23 2022-11-25 清华四川能源互联网研究院 一种磷酸铁锂的回收工艺
CN115571865A (zh) * 2022-10-28 2023-01-06 湖北虹润高科新材料有限公司 一种高品质磷酸铁的制备方法、高品质磷酸铁、电极
CN115571865B (zh) * 2022-10-28 2023-09-08 湖北虹润高科新材料有限公司 一种高品质磷酸铁的制备方法、高品质磷酸铁、电极
CN115818604A (zh) * 2022-12-12 2023-03-21 湖北虹润高科新材料有限公司 一种亚硫酸盐还原赤泥提铁溶液以制备电池级无水磷酸铁的方法

Also Published As

Publication number Publication date
CN112624076A (zh) 2021-04-09
GB202310080D0 (en) 2023-08-16
EP4265566A1 (en) 2023-10-25
GB2617725A (en) 2023-10-18
US20230322558A1 (en) 2023-10-12
CN112624076B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2022127322A1 (zh) 一种磷酸铁的制备方法及其应用
WO2022127323A1 (zh) 一种电池级磷酸铁及其制备方法和应用
WO2022116702A1 (zh) 一种磷酸铁的制备方法和应用
WO2022116692A1 (zh) 利用废磷酸铁锂正极粉提锂渣制备磷酸铁的方法和应用
CN110482514B (zh) 一种电池级无水磷酸铁的制备方法
CN110098406B (zh) 一种具有高压实密度高容量磷酸铁锂的制备方法
WO2023000849A1 (zh) 磷酸铁及其制备方法和应用
US20240021904A1 (en) Recycling method and use of lithium iron phosphate (lfp) waste
CN111377426B (zh) 一种无水磷酸铁纳米颗粒的制备方法
WO2023142672A1 (zh) 高纯磷酸铁的制备方法及其应用
CN112266020B (zh) 钠化钒液制备五氧化二钒正极材料的方法
CN113213545B (zh) 一种球形碳酸铁锰及其制备方法
CN108529666B (zh) 由无机钛源制备钛酸锂的方法、产品及应用
CN105060266B (zh) 一种纳米磷酸铁锂的水热合成方法
CN110713197B (zh) 一种从水热法制备磷酸铁锂产生的母液中回收锂盐的方法
CN112342383A (zh) 三元废料中镍钴锰与锂的分离回收方法
CN114865129A (zh) 一种湿法回收退役磷酸铁锂电池粉提锂制备碳酸锂的方法
CN115701828A (zh) 一种用硫酸亚铁制备电池级无水磷酸铁的准连续式方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN114899392A (zh) 一种锂离子电池磷酸铁锂或锰铁锂正极材料的制备方法
CN110615453B (zh) 一种直接制备电池级碳酸锂的方法
CN115535985B (zh) 一种氧化沉淀一体工艺合成电池级磷酸铁方法
WO2024016469A1 (zh) 一种锰掺杂四氧化三钴及其制备方法与应用
CN116177511A (zh) 一种磷酸铁次品重造的方法
CN116654889A (zh) 一种草甘膦生产废水回收制备磷酸铁的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310080

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211014

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021905251

Country of ref document: EP

Effective date: 20230717