WO2022116702A1 - 一种磷酸铁的制备方法和应用 - Google Patents
一种磷酸铁的制备方法和应用 Download PDFInfo
- Publication number
- WO2022116702A1 WO2022116702A1 PCT/CN2021/123722 CN2021123722W WO2022116702A1 WO 2022116702 A1 WO2022116702 A1 WO 2022116702A1 CN 2021123722 W CN2021123722 W CN 2021123722W WO 2022116702 A1 WO2022116702 A1 WO 2022116702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- phosphate
- iron phosphate
- phosphorus
- solution
- Prior art date
Links
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 title claims abstract description 132
- 229910000398 iron phosphate Inorganic materials 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title abstract description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 79
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000002253 acid Substances 0.000 claims abstract description 43
- 238000001556 precipitation Methods 0.000 claims abstract description 43
- 238000003756 stirring Methods 0.000 claims abstract description 43
- 230000002378 acidificating effect Effects 0.000 claims abstract description 39
- 239000002002 slurry Substances 0.000 claims abstract description 32
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052742 iron Inorganic materials 0.000 claims abstract description 31
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 31
- 239000011574 phosphorus Substances 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000007787 solid Substances 0.000 claims abstract description 27
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims abstract description 23
- 238000005406 washing Methods 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 8
- 239000000706 filtrate Substances 0.000 claims abstract description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 58
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 40
- 239000005955 Ferric phosphate Substances 0.000 claims description 38
- 229940032958 ferric phosphate Drugs 0.000 claims description 38
- 229910000399 iron(III) phosphate Inorganic materials 0.000 claims description 38
- 238000002360 preparation method Methods 0.000 claims description 32
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 29
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000012452 mother liquor Substances 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000003570 air Substances 0.000 claims description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000010406 cathode material Substances 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 5
- 239000011790 ferrous sulphate Substances 0.000 claims description 5
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 5
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 5
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 claims description 3
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 claims description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 3
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 claims description 2
- 229960002089 ferrous chloride Drugs 0.000 claims description 2
- 229940116007 ferrous phosphate Drugs 0.000 claims description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 2
- 229910000155 iron(II) phosphate Inorganic materials 0.000 claims description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 2
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims description 2
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 100
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000007774 positive electrode material Substances 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000010413 mother solution Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 239000002699 waste material Substances 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- BMTOKWDUYJKSCN-UHFFFAOYSA-K iron(3+);phosphate;dihydrate Chemical compound O.O.[Fe+3].[O-]P([O-])([O-])=O BMTOKWDUYJKSCN-UHFFFAOYSA-K 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910001448 ferrous ion Inorganic materials 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- LEAMSPPOALICQN-UHFFFAOYSA-H iron(2+);diphosphate;octahydrate Chemical compound O.O.O.O.O.O.O.O.[Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEAMSPPOALICQN-UHFFFAOYSA-H 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002367 phosphate rock Substances 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- RQKNQWUJROKKEQ-UHFFFAOYSA-K iron(3+);phosphate;hydrate Chemical compound [OH-].[Fe+3].OP([O-])([O-])=O RQKNQWUJROKKEQ-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/37—Phosphates of heavy metals
- C01B25/375—Phosphates of heavy metals of iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the technical field of lithium battery new energy materials, in particular to a preparation method and application of iron phosphate.
- Lithium iron phosphate battery is the mainstream power battery in the early stage of my country's new energy vehicle industry. It has outstanding advantages such as good safety performance, long cycle life and low cost. It has always been the preferred power source for electric commercial vehicles, special vehicles and energy storage. Although the energy density of lithium iron phosphate batteries is not as good as that of ternary lithium batteries, lithium iron phosphate batteries have a great cost advantage in cathode materials compared with ternary lithium batteries. With the decline of national subsidies, lithium iron phosphate batteries have a cost advantage. highlighted.
- Iron phosphate is the core precursor for the preparation of lithium iron phosphate cathode material, and its preparation process generally includes two-step method and two-step method.
- the one-step method is to mix the iron source and the phosphorus source in one reaction tank to prepare iron phosphate.
- the preparation process has only one step of washing operation.
- the prepared iron phosphate is difficult to be used as a precursor of battery materials due to high impurities.
- the two-step method is typified by the technology disclosed by A123Systems LLC.
- the one-step synthesis is changed to two steps, aiming to improve the quality of iron phosphate.
- the two-step method includes two synthesis modes.
- the first synthesis mode is to adjust the pH value of ferrous source (such as FeSO 4 ⁇ 7H 2 O) and phosphorus source (such as (NH 4 ) 2 HPO 4 ) to 4 with ammonia water. After -5 precipitation to obtain ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 ⁇ 8H 2 O), after the ferrous phosphate octahydrate is washed, it is stirred and beaten with an aqueous solution, and phosphoric acid and hydrogen peroxide are added to the slurry, The slurry is heated to below 100 °C to obtain iron phosphate dihydrate crystals (FePO 4 ⁇ 2H 2 O), which will be washed again to improve the purity; the second synthesis mode is to first make a ferrous source (FePO 4 ⁇ 2H 2 O) Such as FeSO 4 ⁇ 7H 2 O) and phosphorus source (such as (NH 4 ) 2 HPO 4 ) react in an aqueous environment in the
- iron phosphate used as a cathode material for lithium iron phosphate batteries is generally prepared by a two-step method using iron sources and phosphorus sources with higher purity.
- the embodiments of the present disclosure provide a preparation method and application of ferric phosphate. Dissolving a phosphorus source in an acid solution, obtaining an acidic iron-phosphorus solution from the iron source, heating the acidic iron-phosphorus solution, stirring the heated acidic iron-phosphorus solution to precipitate iron phosphate precipitate, and then The ferric phosphate precipitation is processed to obtain a finished product of ferric phosphate.
- the method has low energy consumption, low cost and simple process.
- the embodiments of the present disclosure provide:
- a preparation method of iron phosphate comprising the steps:
- the phosphorus source is one or more of phosphoric acid, dihydrogen phosphate, hydrogen phosphate and orthophosphate.
- the iron source is ferrophosphorus, ferrous phosphate, ferric phosphate, ferrophosphorus slag, phosphorite, lithium iron phosphate, elemental iron, ferric chloride, ferrous chloride , one or more of ferric sulfate, ferrous sulfate and ferric nitrate.
- the acid solution is one or more of sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid, wherein non-limiting combinations include: the combination of sulfuric acid and hydrochloric acid, the combination of sulfuric acid and phosphoric acid Combination, the combination of hydrochloric acid and phosphoric acid, the combination of hydrochloric acid and nitric acid, the combination of sulfuric acid, hydrochloric acid and phosphoric acid.
- the temperature at which the acid solution is added is 20°C to 90°C. In still other embodiments, the temperature at which the acid solution is added is 20°C to 80°C. In other embodiments, the temperature at which the acid solution is added is 20°C to 70°C.
- the concentration of H + in the acid solution is 0.1-12 mol/L. In still other embodiments, the concentration of H + in the acid solution is 0.7-10 mol/L. In other embodiments, the concentration of H + in the acid solution is 0.7-6 mol/L.
- the liquid-solid ratio of the phosphorus source and the iron source to the acid solution is (1-100): 1 mL/g. In still other embodiments, the liquid-solid ratio of the phosphorus source and the iron source to the acid solution is (1-50): 1 mL/g. In other embodiments, the liquid-solid ratio of the phosphorus source and the iron source to the acid solution is (1-30): 1 mL/g.
- step (1) after the phosphorus source and the iron source are mixed, heat treatment is performed first, and then added to the acid solution; the temperature of the heat treatment is 200°C to 600°C, and the time of the heat treatment is 0.5 ⁇ 9h; the atmosphere of the heat treatment is one or more of air, oxygen, nitrogen, argon and helium, wherein non-limiting combinations include: the combination of oxygen and nitrogen, the combination of oxygen and argon, A combination of nitrogen and argon, a combination of argon and helium, a combination of oxygen, nitrogen and argon. Since some iron sources are in a low valence state, and some iron sources and phosphorus sources have a low dissolution rate during dissolution, in order to improve the acid solubility, heat treatment is performed before dissolution.
- the heating temperature in step (2), is 40°C to 250°C. In yet other embodiments, the heating temperature is 80°C to 200°C. In other embodiments, the heating temperature ranges from 95°C to 160°C.
- the function curve heating has the
- the concentration of H + in the acidic iron-phosphorus solution is 0.1-10 mol/L. In still other embodiments, the concentration of H + in the acidic iron-phosphorus solution is 0.1-8.0 mol/L. In other embodiments, the concentration of H + in the acidic iron-phosphorus solution is 0.1-6.0 mol/L.
- the concentration of phosphorus element in the acidic iron-phosphorus solution is 0.05-2.5 mol/L.
- the concentration of iron element in the acidic iron-phosphorus solution is 0.05-2.5 mol/L.
- an oxidant is added to the acidic iron-phosphorus solution before heating, so that Fe 2+ in the acidic iron-phosphorus solution is oxidized to Fe 3+ ;
- the oxidant is hydrogen peroxide, oxygen, air , one or more of ozone, peroxymonosulfuric acid, peroxodisulfuric acid, ammonium persulfate, sodium persulfate, potassium persulfate, sodium hypochlorite and sodium perchlorate, wherein non-limiting combinations include: the combination of hydrogen peroxide and oxygen , the combination of hydrogen peroxide and peroxymonosulfuric acid, the combination of peroxodisulfuric acid and ammonium persulfate, the combination of hydrogen peroxide, air and sodium hypochlorite.
- the iron in the acidic iron-phosphorus solution is sometimes all ferrous ions, sometimes partly ferrous ions, because the iron of iron phosphate is trivalent, and in order to make the Fe/P ratio in the precipitated product meet the requirements for preparing battery cathode materials, Therefore, before heating up the acidic iron-phosphorus solution, it is oxidized first, so that Fe 2+ in the iron-phosphorus solution is oxidized to Fe 3+ .
- the stirring method is any one of conventional stirring paddle stirring, solution rotation along with the precipitation reactor, or self-aspirating stirring.
- the stirring method can affect the particle size and morphology of the precipitate.
- Some The special stirring form also has the dual functions of oxidizing Fe 2+ and stirring due to the continuous inhalation of air or oxygen to generate micro-bubbles.
- the stirring time is 0.1-72 h. In still other embodiments, the stirring time is 0.5-48 h. In other embodiments, the stirring time is 1-24 h.
- the linear velocity of the end of the stirring paddle is 1-20 m/s.
- step (2) before the heating, it also includes adding a precipitation aid to the acidic iron-phosphorus solution, because a certain energy barrier needs to be overcome microscopically when iron phosphate is precipitated in the acidic iron-phosphorus solution , in order to overcome this energy barrier, a precipitation aid can be added to the acidic iron-phosphorus solution before stirring the solution; in addition, some special elements need to be doped during the preparation of the lithium iron phosphate cathode material. Appropriate addition of oxides of these doping elements as additives can not only promote the precipitation, but also ensure the uniformity of doping. In addition, the oxides of these doping elements have anisotropic adsorption characteristics and can control the morphology of precipitated products. The role of features.
- the precipitation aid is one or more of metatitanic acid, titanium dioxide, aluminum oxide, aluminum hydroxide, iron phosphate (including iron phosphate anhydrous, iron phosphate dihydrate) and iron phosphorus.
- Non-limiting combinations thereof include: a combination of metatitanic acid and ferric phosphate dihydrate, titanium dioxide and ferric phosphate anhydrous, a combination of aluminum hydroxide and ferric phosphate dihydrate, a combination of anhydrous ferric phosphate and ferric phosphate dihydrate, no The combination of ferric phosphate hydrate and ferric phosphorus, the combination of ferric phosphate dihydrate and ferrophosphorus, the combination of metatitanic acid, aluminum hydroxide and ferric phosphate anhydrous, the combination of ferric phosphate anhydrous, ferric phosphate dihydrate and ferrophosphorus anhydrous The combination.
- the added amount of the precipitation aid is 0.01-1000 g/L. In still other embodiments, the added amount of the precipitation aid is 1-250 g/L.
- step (4) the selection of the washing method is based on the size of the iron phosphate particles obtained by precipitation, so as to meet the requirements for the particle size of iron phosphate in the preparation of the lithium iron phosphate positive electrode material.
- the washing is one of conventional agitation washing or ball milling.
- step (4) in order to make the Fe/P ratio of the obtained iron phosphate meet the requirements of the Fe/P ratio of the lithium iron phosphate positive electrode material, between the washing and drying, the solid iron phosphate is also included.
- the process of soaking and filtering the phosphoric acid solution is carried out.
- the concentration of the phosphoric acid solution is 0.01-5 mol/L.
- the embodiments of the present disclosure also provide applications of the preparation methods of the above embodiments in the preparation of battery cathode materials.
- the acid solution dissolves the phosphorus source
- the iron source obtains the acid iron phosphorus solution
- the acid iron phosphorus solution is heated up
- the acid iron phosphorus solution after stirring is heated to separate out the iron phosphate precipitation
- the iron phosphate precipitation is further processed to obtain Iron phosphate finished product
- the method has low energy consumption, low cost and simple operation
- the prepared iron phosphate can be used as a raw material for preparing lithium iron phosphate positive electrode material, and can also be used for manufacturing ceramics, coatings and the like.
- the embodiment of the present disclosure realizes high-efficiency and high-quality precipitation of iron phosphate in a high-acid system, and improves the purity of iron phosphate by suppressing the co-precipitation of impurity ions or suppressing the lattice substitution of impurities and iron in the iron phosphate lattice.
- Fig. 1 is the SEM image of the 5000-fold magnification of the finished iron phosphate product obtained in Example 1 of the present disclosure
- Fig. 2 is the SEM image of 50,000 times magnification of the finished iron phosphate product obtained in Example 1 of the present disclosure
- Example 3 is an XRD pattern of the finished iron phosphate product obtained in Example 1 of the present disclosure.
- a preparation method of iron phosphate comprising the following steps:
- Fig. 1 and Fig. 2 are SEM images under different magnifications of the finished ferric phosphate obtained in Example 1.
- the particle size distribution of the synthesized ferric phosphate is relatively uniform. 3 ⁇ 6 ⁇ m wool-like particles.
- Fig. 3 is the XRD pattern of the finished iron phosphate obtained in Example 1. It can be seen from Fig. 3 that the prepared iron phosphate XRD pattern is compared with the standard card (50-1635) spectrum, and the characteristic peaks are consistent one by one, and the diffraction peaks are sharp and characteristic The peak is obvious, indicating that the product has good crystallinity.
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- a preparation method of iron phosphate comprising the following steps:
- (2) acid iron phosphorus solution is transferred in the precipitation reactor of conventional stirring paddle, and is ferric iron with the ferrous iron in the ammonium persulfate oxidation solution, adds ferric phosphate dihydrate according to the amount of 600g/L, and the temperature of the solution is heated up. to 40°C and synchronously stirring, when the temperature reaches 40°C, start timing, and continue stirring for 72 hours to obtain a slurry containing iron phosphate precipitation;
- a traditional method for preparing iron phosphate adding reduced iron powder and H 3 PO 4 in a reaction kettle according to a certain amount of material ratio, dissolving the iron powder under the conditions of a certain temperature and stirring rate, and after the reaction is completed, the reaction solution is pumped.
- the compaction density and electrical properties of the lithium iron phosphate powder synthesized by the iron phosphate of the embodiment of the present disclosure are comparable to those of the comparative example, indicating that the iron phosphate of the embodiment of the present disclosure has reached the level of iron phosphate used for lithium iron phosphate. Using the standard, it can be directly used as a precursor for lithium iron phosphate production.
- Table 3 is a comparison of raw materials and auxiliary materials of Example 1 and Comparative Example.
- the method of the embodiment of the present disclosure has lower raw material cost and water treatment cost, produces less waste water, is more environmentally friendly, and is suitable for large-scale promotion and use.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种磷酸铁的制备方法和应用,包括将磷源、铁源混合,加入酸液中,再过滤,收集滤液,得到酸性铁磷溶液,对酸性铁磷溶液进行加热,搅拌,得到含磷酸铁的料浆;将料浆进行过滤,得到磷酸铁固体和沉淀母液;将磷酸铁固体进行洗涤,过滤,干燥,即得磷酸铁。该方法能耗低,成本低,操作简单,所制得的磷酸铁可用作磷酸铁锂正极材料制备的原料,也可用作制造陶瓷、涂料等。
Description
本公开涉及锂电池新能源材料技术领域,特别是涉及一种磷酸铁的制备方法和应用。
磷酸铁锂电池是我国新能源汽车产业发展初期的主流动力电池,具有安全性能好、循环寿命长、成本低等突出优点,一直是电动商用车、专用车和储能领域的首选电源。虽然磷酸铁锂电池能量密度不及三元锂电池,但磷酸铁锂电池相比于三元锂电池在正极材料上具有很大的成本优势,随着国家补贴退坡,磷酸铁锂电池的成本优势突显。
磷酸铁是磷酸铁锂正极材料制备的核心前驱体,其制备工艺大体上包括一步法和两步法两种。一步法是将铁源和磷源在一个反应罐中一步混合反应制得磷酸铁,制备过程只有一步洗涤操作,所制得的磷酸铁因杂质高而难以用作电池材料的前驱体。两步法以A123Systems LLC公开的技术为典型,将一步合成改为两步,旨在提高磷酸铁的质量。两步法包括两种合成模式,第一种合成模式为,先使亚铁源(如FeSO
4·7H
2O)和磷源(如(NH
4)
2HPO
4)经氨水调节pH值至4-5后沉淀制得八水磷酸亚铁(Fe
3(PO
4)
2·8H
2O),八水磷酸亚铁经洗涤后,再用水溶液搅拌打浆,并往浆料中加入磷酸和双氧水、升温浆料至100℃以下,制得二水磷酸铁晶体(FePO
4·2H
2O),该二水磷酸铁晶体会再次洗涤以提高纯度;第二种合成模式为,先使亚铁源(如FeSO
4·7H
2O)和磷源(如(NH
4)
2HPO
4)在氧化剂(如双氧水)存在的水溶液环境中反应生成无定形磷酸铁沉淀,并洗涤所获得的无定形磷酸铁沉淀,再将洗后的无定形磷酸铁沉淀加入至磷酸溶液中、于85-100℃下转晶,制得二水磷酸铁晶体,该二水磷酸铁晶体也会再次洗涤去除夹带的游离离子。现阶段,磷酸铁锂电池正极材料用磷酸铁一般采用纯度较高的铁源和磷源经两步法制得。
此外,目前已经有公开报道了一种在盐酸介质中合成磷酸铁的方法,该法先将高纯铁粉溶解至适当浓度的盐酸中,再加入双氧水和磷酸,搅拌均匀后进入喷雾干燥回收盐酸、并制备磷酸铁。还有公开报道了一种利用硫酸法钛白行业产生的硫酸亚铁废渣为原料制备磷酸铁的方法,该法先用由氟化铵和还原铁粉组成的复合沉淀剂提纯硫酸亚铁,再将硫酸亚铁和磷酸溶液混合制成溶液、用双氧水氧化亚铁离子、用氨水和磷酸调节pH值至2.2-2.6,然后在120℃-180℃的水热条件反应6-10小时制得片状磷酸铁。
采用传统工艺合成磷酸铁,存在所需原料纯度要求高,酸碱耗量大,能耗高等缺点。发明内容
本公开实施例提供一种磷酸铁的制备方法和应用,通过酸液溶解磷源、铁源得酸性铁磷溶液、升温酸性铁磷溶液、搅拌升温后的酸性铁磷溶液析出磷酸铁沉淀、再处理所述的磷酸铁沉淀,得到磷酸铁成品,该方法能耗低,成本低,工艺简单。
为实现上述目的,本公开实施例提供:
一种磷酸铁的制备方法,包括如下步骤:
(1)将磷源、铁源混合,加入酸液中,再过滤,收集滤液,得到酸性铁磷溶液;
(2)对所述酸性铁磷溶液进行加热,搅拌,得到含磷酸铁的料浆;
(3)将所述料浆进行过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体进行洗涤,过滤,干燥,得到磷酸铁成品。
在一些实施例中,步骤(1)中,所述磷源为磷酸、磷酸二氢盐、磷酸氢盐和正磷酸盐中的一种或几种。
在一些实施例中,步骤(1)中,所述铁源为磷铁、磷酸亚铁、磷酸铁、磷铁渣、磷铁矿、磷酸铁锂、单质铁、氯化铁、氯化亚铁、硫酸铁、硫酸亚铁和硝酸铁中的一种或几种。
在一些实施例中,步骤(1)中,所述酸液为硫酸、盐酸、磷酸和硝酸中的一种或几种,其中非限制性的组合包括:硫酸和盐酸的组合,硫酸和磷酸的组合,盐酸和磷酸的组合,盐酸和硝酸的组合,硫酸、盐酸和磷酸三者的组合。
在一些实施例中,步骤(1)中,加入酸液的温度为20℃~90℃。在又一些实施例中,加入酸液的温度为20℃~80℃。在另一些实施例中,加入酸液的温度为20℃~70℃。
在一些实施例中,步骤(1)中,所述酸液中H
+的浓度为0.1~12mol/L。在又一些实施例中,所述酸液中H
+的浓度为0.7~10mol/L。在另一些实施例中,所述酸液中H
+的浓度为0.7~6mol/L。
在一些实施例中,步骤(1)中,所述磷源和铁源与酸液的液固比为(1~100):1mL/g。在又一些实施例中,所述磷源和铁源与酸液的液固比为(1~50):1mL/g。在另一些实施例中,所述磷源和铁源与酸液的液固比为(1~30):1mL/g。
在一些实施例中,步骤(1)中,所述磷源、铁源混合后,先进行热处理,再加入酸液中;所述热处理的温度为200℃~600℃,所述热处理的时间为0.5~9h;所述热处理的气氛为空气、氧气、氮气、氩气和氦气中的一种或几种,其中非限制性的组合包括:氧气和氮气的组合,氧气和氩气的组合,氮气和氩气的组合,氩气和氦气的组合,氧气、氮气和氩 气三者的组合。由于部分铁源处于低化合价态、亦有部分铁源、磷源在溶解时存在溶解率低的现象,为提高酸溶性能,故在溶解前先进行热处理。
在一些实施例中,步骤(2)中,所述加热的温度为40℃~250℃。在又一些实施例中,所述加热的温度为80℃~200℃。在另一些实施例中,所述加热的温度为95℃~160℃。
在一些实施例中,步骤(2)中,所述加热的方式为函数曲线升温、多段函数曲线升温中的一种,例如可以是T(℃)=25+120t(h)、T(℃)=25+200t(h)、T(℃)=25+80t(h)、T(℃)=25+120t
2(h)、T(℃)=25+20t+120t
2(h)、T(℃)=[①25+80t;②105+200t(h)](t<1时,T=①;t≥1时,T=②)、T(℃)=[①25+200t;②125+200t(h)](t<0.5时,T=①;t≥0.5时,T=②)、T(℃)=[①25+80t;②65+60t(h);③125+100t(h)](t<0.5时,T=①;0.5≤t<1时,T=②;t≥1时,T=③)。函数曲线升温具有调控成核过程的作用,进而影响沉淀产物的粒度、形貌等物理特征。
在一些实施例中,步骤(2)中,所述酸性铁磷溶液中H
+的浓度为0.1~10mol/L。在又一些实施例中,所述酸性铁磷溶液中H
+的浓度为0.1~8.0mol/L。在另一些实施例中,所述酸性铁磷溶液中H
+的浓度为0.1~6.0mol/L。
在一些实施例中,步骤(2)中,所述酸性铁磷溶液中磷元素的浓度为0.05~2.5mol/L。
在一些实施例中,步骤(2)中,所述酸性铁磷溶液中铁元素的浓度为0.05~2.5mol/L。
在一些实施例中,步骤(2)中,所述酸性铁磷溶液在加热前先加入氧化剂,使酸性铁磷溶液中的Fe
2+氧化为Fe
3+;所述氧化剂为双氧水、氧气、空气、臭氧、过一硫酸、过二硫酸、过硫酸铵、过硫酸钠、过硫酸钾、次氯酸钠和高氯酸钠中的一种或几种,其中非限制性的组合包括:双氧水和氧气的组合,双氧水和过一硫酸的组合,过二硫酸和过硫酸铵的组合,双氧水、空气和次氯酸钠三者的组合。酸性铁磷溶液中的铁有时全部为亚铁离子、有时部分为亚铁离子,因磷酸铁的铁为三价,且为使沉淀产物中的Fe/P配比满足制备电池正极材料用要求,故在升温所述酸性铁磷溶液前先氧化,使铁磷溶液中的Fe
2+氧化为Fe
3+。
在一些实施例中,所述搅拌的方式为常规搅拌桨搅动、溶液随沉淀反应器一起回转或自吸气搅动中的任意一种,搅拌的形式可影响沉淀的颗粒大小及形貌特征,一些特殊的搅动形式还因持续地吸入空气或氧气产生微气泡而具有氧化Fe
2+及搅拌的双重作用。
在一些实施例中,步骤(2)中,所述搅拌的时间为0.1~72h。在又一些实施例中,所述搅拌的时间为0.5~48h。在另一些实施例中,所述搅拌的时间为1~24h。
在一些实施例中,当所述搅拌的方式为搅拌桨搅动时,搅拌桨叶端线速度为1-20m/s。
在一些实施例中,在步骤(2)中,所述加热前,还包括往酸性铁磷溶液中添加沉淀助 剂,由于酸性铁磷溶液中析出磷酸铁时在微观上需要克服一定的能垒,为克服该能量障碍,可以在搅动溶液前,往酸性铁磷溶液中添加沉淀助剂;并且,磷酸铁锂正极材料制备过程中还需掺杂某些特种元素,为使掺杂均匀,可适量加入这些掺杂元素的氧化物作为助剂,不仅能促进沉淀,还能保证掺杂的均匀性,此外,这些掺杂元素的氧化物因具有各向异性吸附特性而具有调控沉淀产物形貌特征的作用。
在一些实施例中,所述沉淀助剂为偏钛酸、二氧化钛、氧化铝、氢氧化铝、磷酸铁(包括无水磷酸铁、二水磷酸铁)和磷铁中的一种或几种。其中非限制性的组合包括:偏钛酸和二水磷酸铁的组合,二氧化钛和无水磷酸铁,氢氧化铝和二水磷酸铁的组合,无水磷酸铁和二水磷酸铁的组合,无水磷酸铁和磷铁的组合,二水磷酸铁和磷铁的组合,偏钛酸、氢氧化铝和无水磷酸铁三者的组合,无水磷酸铁、二水磷酸铁和磷铁三者的组合。
在一些实施例中,所述沉淀助剂的添加量为0.01~1000g/L。在又一些实施例中,所述沉淀助剂的添加量为1~250g/L。
在一些实施例中,步骤(4)中,在洗涤方式上的选择依据为沉淀获得的磷酸铁颗粒尺寸大小,以满足磷酸铁锂正极材料制备时对磷酸铁粒度的要求。
在一些实施例中,所述洗涤为常规搅拌洗涤或边球磨边洗涤中的一种。
在一些实施例中,步骤(4)中,为使获得的磷酸铁的Fe/P比满足磷酸铁锂正极材料Fe/P比的要求,在所述洗涤和干燥之间还包括对磷酸铁固体进行磷酸溶液浸泡和过滤的工序。
在一些实施例中,所述磷酸溶液的浓度为0.01~5mol/L。
本公开实施例还提供上述实施例的制备方法在制备电池正极材料中的应用。
本公开实施例的优点:
1、本公开实施例通过酸液溶解磷源、铁源得酸性铁磷溶液、升温酸性铁磷溶液、搅拌升温后的酸性铁磷溶液析出磷酸铁沉淀、进一步处理所述的磷酸铁沉淀,得到磷酸铁成品,该方法能耗低,成本低,操作简单,所制得的磷酸铁可用作磷酸铁锂正极材料制备的原料,也可用作制造陶瓷、涂料等。
2、本公开实施例实现了磷酸铁在高酸体系下的高效高质沉淀,通过抑制杂质离子的共沉淀或抑制杂质与磷酸铁晶格中铁的晶格替代以提高磷酸铁纯度。
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例1制得磷酸铁成品放大5000倍的SEM图;
图2为本公开实施例1制得磷酸铁成品放大50000倍的SEM图;
图3为本公开实施例1制得磷酸铁成品的XRD图。
为了对本公开进行深入的理解,下面结合实例对本公开若干实施方案进行描述,以进一步地说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
实施例1
一种磷酸铁的制备方法,包括以下步骤:
(1)称取80g磷铁,在350℃的氧气气氛中先煅烧3h,配置H
+浓度10mol/L的盐酸溶液,量取120mL配置好的盐酸溶液,将称好的磷铁在20℃下溶解至盐酸溶液中,过滤,获得酸性铁磷溶液;
(2)往获得的酸性铁磷溶液中加入适量的去离子水,将铁和磷浓度控制在1.0mol/L,将稀释后的酸性铁磷溶液倒入至配备了自吸式搅拌桨的沉淀反应器中,按照100g/L的量加入无水磷酸铁,沉淀反应器配备冷凝回流装置,按T(℃)=25+120t(h)的升温曲线,升温溶液温度至90℃并同步搅拌,待温度达到90℃后开始计时,并持续搅拌12h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,倒入耐酸的反应罐完成边磨边洗、过滤,再用2mol/L H
3PO
4的磷酸溶液浸泡、过滤,干燥后得到磷酸铁成品。
图1和图2为实施例1制得磷酸铁成品不同放大倍数下的SEM图,合成的磷酸铁的颗粒大小分布较为均匀,主要是由片状一次粒子彼此靠近结合成团,形成粒径为3~6μm的类毛线状颗粒。
图3为实施例1制得磷酸铁成品的XRD图,由图3可知制备的磷酸铁XRD图与标准卡片(50-1635)谱图相比,特征峰一一吻合,其衍射峰尖锐,特征峰明显,表明产品结晶度好。
实施例2
一种磷酸铁的制备方法,包括以下步骤:
(1)称取30g铁粉、80g磷酸氢二铵;配置H
+浓度1mol/L的硫酸溶液,量取1000mL配置好的硫酸溶液,将铁粉和磷酸氢二铵在60℃下溶解至硫酸溶液中,过滤,获得酸性铁 磷溶液,其中铁和磷的浓度大约在0.5mol/L;
(2)将酸性铁磷溶液倒入至配备了常规搅拌桨的沉淀反应器中,控制搅拌叶端线速度为3.5m/s,按照300g/L的量加入偏钛酸和二水磷酸铁,按T(℃)=25+200t(h)的升温曲线,升温溶液温度至100℃并同步搅拌,待温度达到100℃后开始计时,并持续搅拌4h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,完成洗涤、过滤,再用5mol/L H
3PO
4的磷酸溶液浸泡、过滤,干燥后得到磷酸铁成品。
实施例3
一种磷酸铁的制备方法,包括以下步骤:
(1)称取10g废磷酸铁锂正极粉,在200℃的氮气中先煅烧3h,配置H
+浓度2.5mol/L的硫酸溶液,量取100mL配置好的硫酸溶液,将煅烧后的废磷酸铁锂正极粉在40℃下溶解至硫酸溶液中,过滤,获得酸性铁磷溶液,其中铁和磷的浓度大约在0.5mol/L;
(2)将酸性铁磷溶液倒入至均相反应器中,控制叶端线速度8m/s,不添加沉淀助剂,将盛有溶液的均相反应器安置在均相反应釜中,按升温曲线T(℃)=[①25+80t;②105+200t(h)](t<1时,T=①;t≥1时,T=②),升温反应釜温度至180℃,待温度达到180℃后开始计时,并持续转动6h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,完成洗涤、过滤,干燥后得到磷酸铁成品。
实施例4
一种磷酸铁的制备方法,包括以下步骤:
(1)称取100g磷酸铁废料,配置H
+浓度8mol/L的盐酸和硫酸的混合溶液,量取200mL配置好的混合酸溶液,将磷酸铁废料在90℃下溶解至混合酸溶液中,过滤,获得酸性铁磷溶液;
(2)往获得的酸性铁磷溶液中加入适量的去离子水,将铁和磷浓度控制在1.5mol/L,往稀释后的酸性铁磷溶液中加入双氧水,实现Fe
2+的氧化,然后将氧化后的酸性铁磷溶液倒入至耐酸耐压的搅拌沉淀釜中,不需添加沉淀助剂,按T(℃)=25+200t(h)的升温曲线,升温搅拌沉淀釜中溶液的温度至250℃;待温度达到250℃后开始计时,并持续搅拌0.1h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,完成洗涤、过滤,干燥后得到磷酸铁成品。
实施例5
一种磷酸铁的制备方法,包括以下步骤:
(1)称取50g硫酸亚铁和50g磷酸,在600℃的空气中先煅烧0.5h,配置H
+浓度0.7mol/L的硫酸溶液,量取5L配置好的硫酸溶液,将煅烧后的物料在70℃下溶解至硫酸溶液中,过滤,获得酸性铁磷溶液,其中铁和磷浓度约为0.054mol/L;
(2)将酸性铁磷溶液倒入至耐酸耐压的搅拌沉淀釜中,按照500g/L的量加入二水磷酸铁,按T(℃)=25+300t(h)的升温曲线,升温搅拌沉淀釜中溶液的温度至220℃,待温度达到220℃后开始计时,并持续搅拌3h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,倒入耐酸的反应罐完成边磨边洗、过滤,再用0.01mol/L H
3PO
4的磷酸溶液浸泡、过滤,干燥后得到磷酸铁成品。
实施例6
一种磷酸铁的制备方法,包括以下步骤:
(1)称取50g氯化铁和80g磷酸三钠,配置H
+浓度0.7mol/L的盐酸溶液,量取5L配置好的硫酸溶液,将磷源、铁源在80℃下溶解至硫酸溶液中,过滤,获得酸性铁磷溶液,其中铁和磷浓度约为0.054mol/L;
(2)将酸性铁磷溶液倒入至耐酸耐压的搅拌沉淀釜中,控制叶端线速度19m/s,按照1000g/L的量加入偏钛酸、氢氧化铝和二水磷酸铁,按T(℃)=25+100t(h)的升温曲线,升温搅拌沉淀釜中溶液的温度至160℃,待温度达到160℃后开始计时,并持续搅拌5h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,倒入耐酸的反应罐完成边磨边洗、过滤,再用1mol/L H
3PO
4的磷酸溶液浸泡、过滤,干燥后得到磷酸铁成品。
实施例7
一种磷酸铁的制备方法,包括以下步骤:
(1)称取100g硝酸铁和80g磷酸铵,在600℃的空气中先煅烧0.5h,配置H
+浓度5mol/L的磷酸溶液,量取200mL配置好的磷酸溶液,将煅烧后物料在65℃下溶解至磷酸溶液中,过滤,获得酸性铁磷溶液;
(2)往获得的酸性铁磷溶液中加入适量的去离子水,将铁和磷浓度控制在2.0mol/L, 将稀释后的酸性铁磷溶液转移至配备了自吸式搅拌桨的沉淀反应器中,按照300g/L的量加入无水磷酸铁和磷铁,按T(℃)=25+700t(h)的升温曲线,升温溶液温度至80℃并同步搅拌,待温度达到80℃后开始计时,并持续搅拌48h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,完成洗涤、过滤,干燥后得到磷酸铁成品。
实施例8
一种磷酸铁的制备方法,包括以下步骤:
(1)称取100g废磷酸铁锂正极粉提锂渣(磷酸铁),配置H
+浓度0.7mol/L的磷酸溶液,量取4.5L配置好的硫酸、磷酸混合溶液,将称好的废磷酸铁锂正极粉提锂渣在75℃下溶解至硫酸、磷酸混合溶液中,过滤,获得酸性铁磷溶液,其中铁和磷浓度约为0.13mol/L;
(2)将酸性铁磷溶液转移至常规搅拌桨的沉淀反应器中,并用过硫酸铵氧化溶液中的二价铁为三价铁,按照600g/L的量加入二水磷酸铁,升温溶液温度至40℃并同步搅拌,待温度达到40℃后开始计时,并持续搅拌72h,得到含磷酸铁沉淀的料浆;
(3)将获得的料浆过滤,得到磷酸铁固体和沉淀母液;
(4)将磷酸铁固体用水浆化,完成洗涤、过滤,干燥后得到磷酸铁成品。
对比例:(采用传统方法制备的磷酸铁)
一种制备磷酸铁的传统方法,按一定物质的量比加入还原铁粉、H
3PO
4于反应釜中,在一定温度和搅拌速率条件下溶解铁粉,待反应结束后,将反应液抽滤,得到澄清的滤液;将滤液倒入反应釜,水浴加热,搅拌速度为350r/min,控制体系pH=2.0;反应过程中缓慢滴加一定量的H
2O
2(过量10%)溶液,直到有白色沉淀产生;反应结束后,陈化4h,将产物抽滤分离,用去离子水洗涤沉淀直至最后一次抽滤后滤液的pH=7.0,将得到的产物在80℃下干燥12h。
取上述实施例1~3制得的磷酸铁成品进行理化指标检测,结果如下表1所示:
表1本公开实施例1-3制备的磷酸铁理化指标检测结果
从表1可以看出,采用本公开实施例的制备方法得到的磷酸铁的各项理化指标均符合磷酸铁锂正极材料的标准。
取上述实施例1-3制得的磷酸铁与对比例制备的磷酸铁按照常规方法在同等条件下制备成磷酸铁锂,对制得的磷酸铁锂的压实密度及其他电性能进行检测,结果如下表2所示:
表2实施例1-3的磷酸铁与对比例磷酸铁合成磷酸铁锂粉末压实密度及电性能检测结果对比表
从表2可以看出,本公开实施例的磷酸铁合成的磷酸铁锂粉末的压实密度及电性能与对比例的相当,表明本公开实施例的磷酸铁达到了磷酸铁锂用磷酸铁的使用标准,可以直接作为磷酸铁锂生产的前驱体。
表3为实施例1与对比例的原辅料对比。
表3
原料 | 辅料 | |
实施例1 | 磷铁矿:价格便宜 | 无水磷酸铁:一次加入可循环使用 |
对比例 | 还原铁粉、磷酸:成本较高 | 双氧水:增加水处理成本 |
从表3可以看出,本公开实施例方法的原料成本和水处理成本更低,产生的废水量更少,对环境更加友好,适合大规模推广使用。
以上对本公开实施例提供的磷酸铁的制备方法及其应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括实施方式,并且也使得本领域的任何技术人员都能够实践本公开,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求 的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。
Claims (10)
- 一种磷酸铁的制备方法,包括如下步骤:(1)将磷源、铁源混合,加入酸液中,再过滤,收集滤液,得到酸性铁磷溶液;(2)对所述酸性铁磷溶液进行加热,搅拌,得到含磷酸铁的料浆;(3)将所述料浆进行过滤,得到磷酸铁固体和沉淀母液;(4)将磷酸铁固体进行洗涤,过滤,干燥,得到所述磷酸铁。
- 根据权利要求1所述的制备方法,其中步骤(1)中,所述磷源为磷酸、磷酸二氢盐、磷酸氢盐和正磷酸盐中的一种或几种。
- 根据权利要求1所述的制备方法,其中步骤(1)中,所述铁源为磷铁、磷酸亚铁、磷酸铁、磷酸铁锂、单质铁、氯化铁、氯化亚铁、硫酸铁、硫酸亚铁和硝酸铁中的一种或几种。
- 根据权利要求1所述的制备方法,其中步骤(1)中,所述酸液为硫酸、盐酸、磷酸和硝酸中的一种或几种;所述酸液中H +的浓度为0.1~12mol/L。
- 根据权利要求1所述的制备方法,其中步骤(1)中,所述磷源、铁源混合后,先进行热处理,再加入酸液中;所述热处理的温度为200℃~600℃,所述热处理的时间为0.5~9h;所述热处理的气氛为空气、氧气、氮气、氩气和氦气中的一种或几种。
- 根据权利要求1所述的制备方法,其中步骤(2)中,所述酸性铁磷溶液在加热前先加入氧化剂;所述氧化剂为双氧水、氧气、空气、臭氧、过一硫酸、过二硫酸、过硫酸铵、过硫酸钠、过硫酸钾、次氯酸钠和高氯酸钠中的一种或几种。
- 根据权利要求1所述的制备方法,其中步骤(2)中,所述加热的温度为40℃~250℃。
- 根据权利要求1所述的制备方法,其中步骤(2)中,在所述加热前,还包括往酸性铁磷溶液中添加沉淀助剂;所述沉淀助剂为偏钛酸、二氧化钛、氧化铝、氢氧化铝、磷酸铁和磷铁中的一种或几种。
- 根据权利要求1所述的制备方法,其中步骤(4)中,在所述洗涤和干燥之间还包括对磷酸铁固体进行磷酸溶液浸泡和过滤的步骤;所述磷酸溶液的浓度为0.01~5mol/L。
- 权利要求1-9中任一项所述制备方法在制备电池正极材料中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011393310.6A CN112645299A (zh) | 2020-12-03 | 2020-12-03 | 一种磷酸铁的制备方法和应用 |
CN202011393310.6 | 2020-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022116702A1 true WO2022116702A1 (zh) | 2022-06-09 |
Family
ID=75351140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/123722 WO2022116702A1 (zh) | 2020-12-03 | 2021-10-14 | 一种磷酸铁的制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112645299A (zh) |
WO (1) | WO2022116702A1 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114906830A (zh) * | 2022-07-19 | 2022-08-16 | 昆明川金诺化工股份有限公司 | 一种由硫铁矿烧渣可控制备电池级磷酸铁的方法 |
CN114988383A (zh) * | 2022-07-12 | 2022-09-02 | 国环电池科技(苏州)有限公司 | 一种电池级的磷酸铁高效制备方法 |
CN115231539A (zh) * | 2022-07-12 | 2022-10-25 | 国环电池科技(苏州)有限公司 | 一种高纯度磷酸铁的制备方法 |
CN115360478A (zh) * | 2022-07-13 | 2022-11-18 | 南昌大学 | 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池 |
CN115448276A (zh) * | 2022-08-16 | 2022-12-09 | 四川龙蟒磷化工有限公司 | 一种电池正极材料前驱体及其制备方法 |
CN115477292A (zh) * | 2022-10-10 | 2022-12-16 | 唐山亨坤新能源材料有限公司 | 一种铁矿粉制备磷酸铁的方法 |
CN115477291A (zh) * | 2022-09-29 | 2022-12-16 | 四川龙蟒磷化工有限公司 | 一种湿法磷酸和钛白副产物制电池级无水磷酸亚铁的方法 |
CN115490219A (zh) * | 2022-09-02 | 2022-12-20 | 广东邦普循环科技有限公司 | 磷酸铁及其合成工艺、系统以及应用 |
CN115520845A (zh) * | 2022-09-02 | 2022-12-27 | 衢州华友钴新材料有限公司 | 正八面体磷酸铁及其制备方法、磷酸铁锂正极材料和磷酸铁锂电池 |
CN115531954A (zh) * | 2022-09-27 | 2022-12-30 | 湖北融通高科先进材料有限公司 | 一种自动收集压滤硫酸亚铁提纯中悬浮絮状物的装置 |
CN115744854A (zh) * | 2022-12-16 | 2023-03-07 | 宜宾天原科创设计有限公司 | 氯化钛白副产氯化亚铁制备磷酸亚铁的方法 |
CN115818604A (zh) * | 2022-12-12 | 2023-03-21 | 湖北虹润高科新材料有限公司 | 一种亚硫酸盐还原赤泥提铁溶液以制备电池级无水磷酸铁的方法 |
CN115924870A (zh) * | 2022-12-09 | 2023-04-07 | 山东鲁北企业集团总公司 | 一种利用人造金红石废液制备磷酸铁联产白石膏的方法与装置 |
CN115959643A (zh) * | 2022-12-05 | 2023-04-14 | 上海安赐环保科技股份有限公司 | 副产磷盐与钢铁酸洗副产铁盐的资源化利用方法 |
CN115974027A (zh) * | 2022-12-28 | 2023-04-18 | 唐山亨坤新能源材料有限公司 | 一种低成本调节磷酸铁铁磷比的制备方法 |
CN116281917A (zh) * | 2023-03-01 | 2023-06-23 | 湖北宇浩高科新材料有限公司 | 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法 |
CN116534821A (zh) * | 2023-05-10 | 2023-08-04 | 东华理工大学 | 一种以硫酸亚铁为原料联产纳米磷酸铁和硫酸钙晶须的方法 |
CN116902946A (zh) * | 2023-09-14 | 2023-10-20 | 北京林立新能源有限公司 | 一种用铁黑制备磷酸铁的方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112645299A (zh) * | 2020-12-03 | 2021-04-13 | 广东邦普循环科技有限公司 | 一种磷酸铁的制备方法和应用 |
CN112645298A (zh) * | 2020-12-03 | 2021-04-13 | 广东邦普循环科技有限公司 | 一种金属磷酸盐的制备方法及应用 |
CN113353907A (zh) * | 2021-06-22 | 2021-09-07 | 广东邦普循环科技有限公司 | 一种磷酸铁前驱体及其制备方法和应用 |
CN113479861B (zh) * | 2021-07-01 | 2023-02-14 | 广东邦普循环科技有限公司 | 低硫含量纳米磷酸铁的制备方法 |
CN113603071B (zh) * | 2021-07-23 | 2023-11-03 | 广东邦普循环科技有限公司 | 一种纳米片状磷酸铁及其制备方法和应用 |
CN113845100A (zh) * | 2021-11-16 | 2021-12-28 | 湖北融通高科先进材料有限公司 | 磷酸铁及其制备方法和应用 |
CN114105115B (zh) * | 2021-11-22 | 2023-09-19 | 青岛九环新越新能源科技股份有限公司 | 磷酸铁及磷酸铁锂的生产方法和应用 |
CN116675197B (zh) * | 2022-02-23 | 2024-09-03 | 中国科学院过程工程研究所 | 一种从废磷酸铁锂正极粉提锂后铁磷渣制备磷酸铁的方法 |
CN114956027B (zh) * | 2022-05-20 | 2023-12-12 | 广东邦普循环科技有限公司 | 一种多孔磷酸铁及其制备方法 |
CN115215313B (zh) * | 2022-06-10 | 2023-09-29 | 浙江华友钴业股份有限公司 | 一种高压实磷酸铁材料及其制备方法 |
CN115849319A (zh) * | 2022-12-07 | 2023-03-28 | 河南佰利新能源材料有限公司 | 一种磷酸铁的制备方法和用途 |
CN118545688A (zh) * | 2024-07-24 | 2024-08-27 | 广东邦普循环科技有限公司 | 一种磷酸铁材料及其制备方法与应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101659406A (zh) * | 2009-09-25 | 2010-03-03 | 四川大学 | 由磷铁制备磷酸铁的方法 |
CN103086341A (zh) * | 2013-02-04 | 2013-05-08 | 瓮福(集团)有限责任公司 | 用磷铁制备电池级磷酸铁的方法 |
CN104817059A (zh) * | 2015-04-29 | 2015-08-05 | 江西东华科技园有限责任公司 | 一种由铁粉和磷酸反应制备电池级磷酸铁的方法 |
CN105967161A (zh) * | 2016-06-23 | 2016-09-28 | 成都翔羽科技有限公司 | 一种利用铁屑连续制备低成本电池级正磷酸铁的方法 |
CN106876704A (zh) * | 2017-03-14 | 2017-06-20 | 中国科学院过程工程研究所 | 一种纳微结构正磷酸铁的制备方法 |
CN107032316A (zh) * | 2017-06-12 | 2017-08-11 | 百川化工(如皋)有限公司 | 一种磷酸铁的制备方法 |
CN108609595A (zh) * | 2018-05-10 | 2018-10-02 | 湖南雅城新材料有限公司 | 磷酸铁及其制备方法和应用 |
CN111377426A (zh) * | 2020-03-05 | 2020-07-07 | 黄冈林立新能源科技有限公司 | 一种无水磷酸铁纳米颗粒的制备方法 |
CN112645299A (zh) * | 2020-12-03 | 2021-04-13 | 广东邦普循环科技有限公司 | 一种磷酸铁的制备方法和应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098406B (zh) * | 2018-01-31 | 2022-01-14 | 东莞东阳光科研发有限公司 | 一种具有高压实密度高容量磷酸铁锂的制备方法 |
CN109809382B (zh) * | 2019-03-28 | 2020-12-11 | 衢州华友钴新材料有限公司 | 一种利用沉淀微量重金属产生的废磷酸盐合成磷酸铁的方法 |
CN111777049A (zh) * | 2020-07-31 | 2020-10-16 | 湖北融通高科先进材料有限公司 | 一种利用混合铁源制备磷酸铁的方法 |
-
2020
- 2020-12-03 CN CN202011393310.6A patent/CN112645299A/zh active Pending
-
2021
- 2021-10-14 WO PCT/CN2021/123722 patent/WO2022116702A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101659406A (zh) * | 2009-09-25 | 2010-03-03 | 四川大学 | 由磷铁制备磷酸铁的方法 |
CN103086341A (zh) * | 2013-02-04 | 2013-05-08 | 瓮福(集团)有限责任公司 | 用磷铁制备电池级磷酸铁的方法 |
CN104817059A (zh) * | 2015-04-29 | 2015-08-05 | 江西东华科技园有限责任公司 | 一种由铁粉和磷酸反应制备电池级磷酸铁的方法 |
CN105967161A (zh) * | 2016-06-23 | 2016-09-28 | 成都翔羽科技有限公司 | 一种利用铁屑连续制备低成本电池级正磷酸铁的方法 |
CN106876704A (zh) * | 2017-03-14 | 2017-06-20 | 中国科学院过程工程研究所 | 一种纳微结构正磷酸铁的制备方法 |
CN107032316A (zh) * | 2017-06-12 | 2017-08-11 | 百川化工(如皋)有限公司 | 一种磷酸铁的制备方法 |
CN108609595A (zh) * | 2018-05-10 | 2018-10-02 | 湖南雅城新材料有限公司 | 磷酸铁及其制备方法和应用 |
CN111377426A (zh) * | 2020-03-05 | 2020-07-07 | 黄冈林立新能源科技有限公司 | 一种无水磷酸铁纳米颗粒的制备方法 |
CN112645299A (zh) * | 2020-12-03 | 2021-04-13 | 广东邦普循环科技有限公司 | 一种磷酸铁的制备方法和应用 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115231539B (zh) * | 2022-07-12 | 2023-10-10 | 国环电池科技(苏州)有限公司 | 一种高纯度磷酸铁的制备方法 |
CN114988383A (zh) * | 2022-07-12 | 2022-09-02 | 国环电池科技(苏州)有限公司 | 一种电池级的磷酸铁高效制备方法 |
CN114988383B (zh) * | 2022-07-12 | 2023-12-15 | 华辰环保能源(广州)有限责任公司 | 一种电池级的磷酸铁高效制备方法 |
CN115231539A (zh) * | 2022-07-12 | 2022-10-25 | 国环电池科技(苏州)有限公司 | 一种高纯度磷酸铁的制备方法 |
CN115360478B (zh) * | 2022-07-13 | 2024-03-29 | 南昌大学 | 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池 |
CN115360478A (zh) * | 2022-07-13 | 2022-11-18 | 南昌大学 | 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池 |
CN114906830A (zh) * | 2022-07-19 | 2022-08-16 | 昆明川金诺化工股份有限公司 | 一种由硫铁矿烧渣可控制备电池级磷酸铁的方法 |
CN114906830B (zh) * | 2022-07-19 | 2022-10-14 | 昆明川金诺化工股份有限公司 | 一种由硫铁矿烧渣可控制备电池级磷酸铁的方法 |
CN115448276A (zh) * | 2022-08-16 | 2022-12-09 | 四川龙蟒磷化工有限公司 | 一种电池正极材料前驱体及其制备方法 |
CN115490219A (zh) * | 2022-09-02 | 2022-12-20 | 广东邦普循环科技有限公司 | 磷酸铁及其合成工艺、系统以及应用 |
CN115520845A (zh) * | 2022-09-02 | 2022-12-27 | 衢州华友钴新材料有限公司 | 正八面体磷酸铁及其制备方法、磷酸铁锂正极材料和磷酸铁锂电池 |
CN115490219B (zh) * | 2022-09-02 | 2024-03-12 | 广东邦普循环科技有限公司 | 磷酸铁及其合成工艺、系统以及应用 |
CN115520845B (zh) * | 2022-09-02 | 2023-12-26 | 衢州华友钴新材料有限公司 | 正八面体磷酸铁及其制备方法、磷酸铁锂正极材料和磷酸铁锂电池 |
CN115531954A (zh) * | 2022-09-27 | 2022-12-30 | 湖北融通高科先进材料有限公司 | 一种自动收集压滤硫酸亚铁提纯中悬浮絮状物的装置 |
CN115477291A (zh) * | 2022-09-29 | 2022-12-16 | 四川龙蟒磷化工有限公司 | 一种湿法磷酸和钛白副产物制电池级无水磷酸亚铁的方法 |
CN115477291B (zh) * | 2022-09-29 | 2024-03-26 | 四川龙蟒磷化工有限公司 | 一种湿法磷酸和钛白副产物制电池级无水磷酸亚铁的方法 |
CN115477292A (zh) * | 2022-10-10 | 2022-12-16 | 唐山亨坤新能源材料有限公司 | 一种铁矿粉制备磷酸铁的方法 |
CN115959643B (zh) * | 2022-12-05 | 2024-05-03 | 上海安赐环保科技股份有限公司 | 副产磷盐与钢铁酸洗副产铁盐的资源化利用方法 |
CN115959643A (zh) * | 2022-12-05 | 2023-04-14 | 上海安赐环保科技股份有限公司 | 副产磷盐与钢铁酸洗副产铁盐的资源化利用方法 |
CN115924870A (zh) * | 2022-12-09 | 2023-04-07 | 山东鲁北企业集团总公司 | 一种利用人造金红石废液制备磷酸铁联产白石膏的方法与装置 |
CN115818604A (zh) * | 2022-12-12 | 2023-03-21 | 湖北虹润高科新材料有限公司 | 一种亚硫酸盐还原赤泥提铁溶液以制备电池级无水磷酸铁的方法 |
CN115744854A (zh) * | 2022-12-16 | 2023-03-07 | 宜宾天原科创设计有限公司 | 氯化钛白副产氯化亚铁制备磷酸亚铁的方法 |
CN115974027A (zh) * | 2022-12-28 | 2023-04-18 | 唐山亨坤新能源材料有限公司 | 一种低成本调节磷酸铁铁磷比的制备方法 |
CN116281917B (zh) * | 2023-03-01 | 2024-02-09 | 湖北宇浩高科新材料有限公司 | 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法 |
CN116281917A (zh) * | 2023-03-01 | 2023-06-23 | 湖北宇浩高科新材料有限公司 | 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法 |
CN116534821A (zh) * | 2023-05-10 | 2023-08-04 | 东华理工大学 | 一种以硫酸亚铁为原料联产纳米磷酸铁和硫酸钙晶须的方法 |
CN116902946B (zh) * | 2023-09-14 | 2023-11-14 | 北京林立新能源有限公司 | 一种用铁黑制备磷酸铁的方法 |
CN116902946A (zh) * | 2023-09-14 | 2023-10-20 | 北京林立新能源有限公司 | 一种用铁黑制备磷酸铁的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112645299A (zh) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022116702A1 (zh) | 一种磷酸铁的制备方法和应用 | |
WO2022116692A1 (zh) | 利用废磷酸铁锂正极粉提锂渣制备磷酸铁的方法和应用 | |
WO2022242186A1 (zh) | 利用磷铁废料制备高纯度磷酸铁的方法 | |
CN112624076B (zh) | 一种磷酸铁的制备方法及其应用 | |
CN107188149B (zh) | 一种电池级高纯纳米磷酸铁的工艺 | |
WO2023092989A1 (zh) | 磷酸亚铁锰及其制备方法和应用 | |
WO2022267420A1 (zh) | 一种磷酸铁前驱体及其制备方法和应用 | |
US20240317583A1 (en) | Nano-sheet ferric phosphate, preparation method therefor and use thereof | |
CN113772650B (zh) | 一种磷酸铁锂的制备方法和用途 | |
CN111377426B (zh) | 一种无水磷酸铁纳米颗粒的制备方法 | |
CN107863530B (zh) | 一种采用菱铁矿制备高密度磷酸铁锂的方法 | |
TW201504137A (zh) | 非晶形磷酸鐵(iii) | |
CN112266020B (zh) | 钠化钒液制备五氧化二钒正极材料的方法 | |
CN115477293A (zh) | 一种低杂质高比表面积的无水磷酸铁的制备方法 | |
CN111137869A (zh) | 磷酸铁锂的制备方法 | |
CN108529666B (zh) | 由无机钛源制备钛酸锂的方法、产品及应用 | |
CN110422884A (zh) | 一种掺杂型铁酸锂的制备方法 | |
CN107863531B (zh) | 一种利用菱铁矿制备锂离子电池正极材料的方法 | |
WO2024055510A1 (zh) | 一种镍铁合金制备磷酸铁锂的方法及应用 | |
WO2023221630A1 (zh) | 一种多孔磷酸铁及其制备方法 | |
CN108598401A (zh) | 一种大粒径电池级磷酸铁复合颗粒的制备方法 | |
CN116281917B (zh) | 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法 | |
WO2024082544A1 (zh) | 废旧磷酸铁锂电池定向循环制取磷酸铁锂正极材料的方法 | |
WO2024060505A1 (zh) | 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料 | |
CN115849456B (zh) | 一种利用硫铁矿烧渣制备氧化铁的方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21899736 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21899736 Country of ref document: EP Kind code of ref document: A1 |