WO2023092989A1 - 磷酸亚铁锰及其制备方法和应用 - Google Patents
磷酸亚铁锰及其制备方法和应用 Download PDFInfo
- Publication number
- WO2023092989A1 WO2023092989A1 PCT/CN2022/097625 CN2022097625W WO2023092989A1 WO 2023092989 A1 WO2023092989 A1 WO 2023092989A1 CN 2022097625 W CN2022097625 W CN 2022097625W WO 2023092989 A1 WO2023092989 A1 WO 2023092989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphate
- ferrous
- manganese
- preparation
- manganese phosphate
- Prior art date
Links
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title claims abstract description 107
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 title claims abstract description 106
- 238000002360 preparation method Methods 0.000 title claims abstract description 41
- 239000000243 solution Substances 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000012266 salt solution Substances 0.000 claims abstract description 40
- 239000002002 slurry Substances 0.000 claims abstract description 38
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 30
- 239000011574 phosphorus Substances 0.000 claims abstract description 30
- 229910000616 Ferromanganese Inorganic materials 0.000 claims abstract description 29
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002243 precursor Substances 0.000 claims abstract description 27
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 25
- 229940116007 ferrous phosphate Drugs 0.000 claims abstract description 25
- 229910000155 iron(II) phosphate Inorganic materials 0.000 claims abstract description 25
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 claims abstract description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 25
- 239000010452 phosphate Substances 0.000 claims abstract description 25
- 150000002696 manganese Chemical class 0.000 claims abstract description 16
- 239000003513 alkali Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- 238000000975 co-precipitation Methods 0.000 claims abstract description 6
- 150000002505 iron Chemical class 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 49
- 239000011572 manganese Substances 0.000 claims description 44
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 42
- 239000001488 sodium phosphate Substances 0.000 claims description 28
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 26
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 25
- 229910000406 trisodium phosphate Inorganic materials 0.000 claims description 24
- 235000019801 trisodium phosphate Nutrition 0.000 claims description 24
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 18
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 17
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 15
- 238000001556 precipitation Methods 0.000 claims description 15
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 14
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 13
- -1 iron ions Chemical class 0.000 claims description 10
- 229910001437 manganese ion Inorganic materials 0.000 claims description 10
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 8
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000004254 Ammonium phosphate Substances 0.000 claims description 4
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 4
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 4
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 4
- 229910000160 potassium phosphate Inorganic materials 0.000 claims description 4
- 235000011009 potassium phosphates Nutrition 0.000 claims description 4
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 4
- 235000011008 sodium phosphates Nutrition 0.000 claims description 4
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 3
- 229960002089 ferrous chloride Drugs 0.000 claims description 3
- 239000011790 ferrous sulphate Substances 0.000 claims description 3
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 3
- 239000011565 manganese chloride Substances 0.000 claims description 3
- 235000002867 manganese chloride Nutrition 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- 235000011007 phosphoric acid Nutrition 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 4
- 239000002912 waste gas Substances 0.000 abstract description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 239000007774 positive electrode material Substances 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000002244 precipitate Substances 0.000 abstract 2
- JEBAUTBPSKCVJM-UHFFFAOYSA-N [P].[Mn].[Fe] Chemical compound [P].[Mn].[Fe] JEBAUTBPSKCVJM-UHFFFAOYSA-N 0.000 abstract 1
- 238000003756 stirring Methods 0.000 description 32
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 18
- 235000019838 diammonium phosphate Nutrition 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 229940099596 manganese sulfate Drugs 0.000 description 14
- 239000011702 manganese sulphate Substances 0.000 description 14
- 235000007079 manganese sulphate Nutrition 0.000 description 14
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 229940062993 ferrous oxalate Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- OWZIYWAUNZMLRT-UHFFFAOYSA-L iron(2+);oxalate Chemical compound [Fe+2].[O-]C(=O)C([O-])=O OWZIYWAUNZMLRT-UHFFFAOYSA-L 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- CHMVGFQYASQDRV-UHFFFAOYSA-M P(=O)(O)(O)[O-].[Li+].P(O)(O)(O)=O Chemical compound P(=O)(O)(O)[O-].[Li+].P(O)(O)(O)=O CHMVGFQYASQDRV-UHFFFAOYSA-M 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JLUGKDWGQPNDGX-UHFFFAOYSA-L azanium;manganese(2+);phosphate Chemical compound [NH4+].[Mn+2].[O-]P([O-])([O-])=O JLUGKDWGQPNDGX-UHFFFAOYSA-L 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- AWKHTBXFNVGFRX-UHFFFAOYSA-K iron(2+);manganese(2+);phosphate Chemical compound [Mn+2].[Fe+2].[O-]P([O-])([O-])=O AWKHTBXFNVGFRX-UHFFFAOYSA-K 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CCQLOTNQWSBPLX-UHFFFAOYSA-N manganese phosphoric acid Chemical compound [Mn].OP(O)(O)=O CCQLOTNQWSBPLX-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the technical field of battery anode material manufacturing, and in particular to a preparation method of manganese ferrous phosphate, manganese ferrous phosphate prepared by the preparation method, and the production of manganese ferrous phosphate in lithium iron manganese phosphate batteries. application.
- the power lithium-ion battery has the advantages of high specific energy, high specific power, high safety and long cycle life, and is an ideal power source for electric vehicles and various electric tools.
- lithium iron manganese phosphate (LMFP) has the same specific capacity as lithium iron phosphate (theoretical capacity is 170mAh/g), and has a higher voltage platform (about 4.1V), which can be used in phosphoric acid Based on lithium iron, the energy density is increased by about 20%. Therefore, lithium iron manganese phosphate is currently one of the most concerned and promising cathode active materials for the preparation of power lithium-ion batteries.
- the precursors used in the preparation of lithium iron manganese phosphate materials, such as ferromanganese phosphate are the key factors that determine the performance of lithium iron manganese phosphate materials.
- the methods for preparing lithium iron manganese phosphate mainly include high-temperature solid-phase method, sol-gel method and co-precipitation method.
- the high-temperature solid-phase method is widely used and is more suitable for industrial production.
- solid-phase reaction is difficult to control the nucleation rate of the resulting phase and the ion diffusion rate of the phase. Therefore, the product consistency of the synthesized lithium iron manganese phosphate is poor, the particle shape is uneven, the particle size distribution is wide, and the entire high temperature During the solid phase reaction, more waste gas pollution will be generated, mainly NH 3 , CO 2 and so on.
- the Chinese Patent Publication No. CN104752715A discloses a precursor, lithium manganese iron phosphate and its preparation method and application, adopts the oxalate precipitation method, and places the source of divalent iron, source of divalent manganese and source of phosphorus in the reactor , adjust the pH to 6.5, and synthesize ferromanganese oxalate to precipitate, and ferromanganese oxalate has a large gas production capacity, resulting in a low compaction density of the obtained lithium iron manganese phosphate, which reduces the volume energy ratio of the material.
- Chinese Patent Publication No. CN107697899B discloses a method for preparing battery-grade iron-manganese phosphate by oxidation-precipitation reaction in a single aqueous solution system. Add the prepared pH adjuster through the peristaltic pump while stirring, adjust the pH value of the reaction system to 7.5-12.0, and continue stirring after the end; then add the oxidant to the reaction kettle, and continue stirring after the end; wait until the temperature in the reaction kettle reaches After 60-165°C, use a peristaltic pump to add soluble phosphorus source solution and react for 2-8 hours.
- the ferromanganese phosphate slurry is naturally cooled to room temperature, washed with water, filtered, and dried to obtain the final product Mn x Fe 1-x PO 4 ⁇ y H 2 O.
- Mn 3+ is unstable and has strong oxidative properties, it is difficult to obtain the theoretical stoichiometric ratio of Mn 1-x Fe x PO 4 material by the synthesis method, and MnO 2 , Fe 4 ( OH) 3 (PO 4 ) 3 and other heterophases are generated.
- Control the molar ratio of ferrous oxalate to manganese phosphate in the core layer to be 1:1, stir under the protection of nitrogen, heat the reaction at 100°C for 20h, wash and dry at 80°C for 10h, and obtain the core-shell ferrous manganese phosphate precursor.
- nitrogen protection is required, and the reaction conditions are relatively harsh.
- the present application provides a method for preparing manganous ferrous phosphate and the obtained manganous ferrous phosphate, aiming to improve the problem of unstable ratio of manganese ferrous phosphate obtained by the existing method for preparing manganese ferrous phosphate .
- A dissolving divalent manganese salt and ferrous salt in water to obtain a mixed salt solution of manganese salt and iron salt;
- the divalent manganese salt is at least one selected from manganous sulfate, manganous nitrate, manganous chloride and manganous acetate.
- the ferrous salt is selected from at least one of ferrous sulfate, ferrous nitrate and ferrous chloride.
- the mass concentration of manganese ions is 3-5%, and the mass concentration of iron ions is 3-5%.
- the phosphorus source is selected from at least one of phosphoric acid, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate and ammonium phosphate.
- the ratio of the sum of the molar amounts of manganese ions and iron ions to the molar amount of phosphorus in the phosphorus source is 3:2.
- the alkali is at least one selected from sodium hydroxide, ammonia water, trisodium phosphate and diammonium monohydrogen phosphate.
- the pH of the system is 5-8.
- the co-precipitation is carried out at 30-60°C.
- the ferrous manganese phosphate is a mixture of ferrous phosphate and ferromanganese phosphate.
- the chemical formula of the ferromanganese phosphate slurry is (Mn x Fe 1-x ) 3 (PO 4 ) 2 ⁇ yH 2 O, where 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 8.
- the present application also provides a ferrous manganese phosphate, which is prepared by the above preparation method.
- the present application also provides an application of ferrous manganese phosphate prepared by the above method for preparing ferrous manganese phosphate in a lithium iron manganese phosphate battery.
- the preparation method of ferrous manganese phosphate of the present application does not need to feed nitrogen, so no nitrogen oxide waste gas will be generated, and no environmental pollution will be caused.
- the ratio of iron, phosphorus and manganese in the ferrous manganese phosphate prepared by the preparation method of ferrous manganese phosphate is stable, the element distribution is uniform, and the impurity content is low, which can meet the demand of lithium iron manganese phosphate positive electrode material for precursor raw materials .
- Fig. 1 is the preparation method flowchart of a kind of ferrous manganese phosphate that the embodiment of the application provides;
- Fig. 2 is the XRD figure of the manganese ferrous phosphate of the application embodiment 1;
- Fig. 3 is the XRD figure of the manganese ferrous phosphate of the comparative example of the present application.
- Fig. 4 is the EDS figure of the ferrous manganese phosphate of the application embodiment 1;
- Fig. 5 is the standard collection of illustrative plates of the P element distribution of ferrous manganese phosphate
- Fig. 6 is the standard collection of illustrative plates of the Mn distribution of ferrous manganese phosphate
- Fig. 7 is a standard spectrum of Fe distribution of ferrous manganese phosphate.
- the embodiment of the present application provides a kind of preparation method of battery grade ferromanganese phosphate, comprises the following steps:
- A dissolving divalent manganese salt and ferrous salt in water to obtain a mixed salt solution of manganese salt and iron salt;
- ferrous manganese phosphate slurry Washing, filtering and drying the ferrous manganese phosphate slurry to obtain ferrous manganese phosphate, and the ferrous manganese phosphate is a mixture of ferrous phosphate and ferromanganese phosphate.
- the divalent manganese salt is a water-soluble divalent manganese salt.
- the water-soluble divalent manganese salt may be selected from but not limited to at least one of manganous sulfate, manganous nitrate, manganous chloride and manganous acetate.
- the ferrous salt is a water-soluble ferrous salt.
- the water-soluble ferrous salt may be selected from but not limited to at least one of ferrous sulfate, ferrous nitrate and ferrous chloride.
- the mass concentration of manganese ions is 3-5%, and the mass concentration of iron ions is 3-5%.
- the mass concentration of described manganese ion and iron ion is lower than 3%, then the solid content of the ferrous phosphate precipitation and ferromanganese phosphate precipitation in the ferromanganese phosphate slurry that finally obtains is low, makes the productive rate of ferromanganese phosphate relatively low. Low; in addition, when the mass concentration of manganese ions and iron ions is lower than 3%, the formation rate of crystal nuclei is low, and the crystal growth is faster. Lithium electrochemical performance.
- the mass concentration of the manganese ions and iron ions is higher than 5%, the solid content of the ferrous phosphate precipitation and the ferromanganese phosphate precipitation in the obtained ferrous manganese phosphate slurry will be relatively high, and the precipitation will be more viscous, forming There are many crystal nuclei, and the crystal growth is slow, but the mass concentration of manganese ions and iron ions is too high, the particles are easy to agglomerate, and the precursor of large particles is obtained, which ultimately affects the electrochemical performance of lithium manganese iron phosphate.
- after dissolving the divalent manganese salt and the ferrous salt in water further includes: stirring at room temperature to completely dissolve the divalent manganese salt and the ferrous salt.
- the phosphorus source is a water-soluble phosphorus source.
- the water-soluble phosphorus source may be selected from but not limited to at least one of phosphoric acid, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate and ammonium phosphate.
- the phosphorus source when the phosphorus source is phosphoric acid, phosphoric acid can be directly added to the mixed salt solution.
- the phosphorus source is sodium phosphate, potassium phosphate, sodium dihydrogen phosphate and ammonium phosphate
- the phosphorus source can be dissolved in water now to obtain a solution-type phosphorus source, and then added to the mixed salt solution.
- the ratio of the molar amounts of manganese ions and iron ions to the molar amounts of phosphorus in the phosphorus source is 3:2, higher or lower than the ratio will lead to the formation of heterogeneous phases.
- the method of adding the phosphorus source to the mixed salt solution is: adding the phosphorus source while stirring. This can increase the reaction rate and obtain a uniform product.
- step C In the step C:
- the base is a water-soluble base.
- the water-soluble base may be selected from but not limited to at least one of sodium hydroxide, ammonia water, trisodium phosphate and diammonium monohydrogen phosphate.
- the pH of the reaction system obtained after adding the base to the precursor solution is 5-8.
- the pH value is less than 5
- the precipitation of ferromanganese is not complete, and if the pH is higher than 8, the ferrous iron and manganese are easily oxidized, resulting in hydroxide precipitation.
- the reaction is performed at 30-60°C. In the temperature range, the reaction rate can be increased, and the oxidation of divalent iron and divalent manganese can be avoided.
- the reaction time is 1-2 hours.
- washing, filtering and drying are methods known in the art for washing, filtering and drying the product.
- the ferrous manganese phosphate prepared by the preparation method is (Mn x Fe 1-x ) 3 (PO 4 ) 2 ⁇ yH 2 O, wherein, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 8.
- the ferrous manganese phosphate includes ferrous phosphate and ferromanganese phosphate.
- the total content of impurities Ca, Mg, Na, Ni, Zn, Cu, Pb, Co, Ti, Zr, etc. in the ferrous manganese phosphate is less than 1000ppm.
- the preparation method of the ferrous manganese phosphate is prepared by ferromanganese co-precipitation method, that is, the divalent manganese salt and the ferrous salt iron are first dissolved into an ion solution, and then a phosphorus source is added as a precipitating agent to prepare the ferrous manganese phosphate.
- the preparation process does not need to feed nitrogen, so no nitrogen oxide waste gas will be generated, and no environmental pollution will be caused.
- the ratio of iron, manganese and phosphorus in the ferrous manganese phosphate prepared by the preparation method of ferrous manganese phosphate is stable, and the P element, Mn element and Fe element of ferrous manganese phosphate are uniformly distributed, and the impurity content is low, which can
- the demand for precursor raw materials of the lithium manganese iron phosphate cathode material is met, and the lithium iron phosphate battery prepared by using the ferrous manganese phosphate prepared by the preparation method has excellent electrochemical performance.
- the embodiment of the present application also provides a ferrous manganese phosphate prepared by the method for preparing ferrous manganese phosphate.
- the embodiment of the present application also provides an application of ferrous manganese phosphate prepared by the preparation method in a lithium iron phosphate battery.
- trisodium phosphate 225.583g of trisodium phosphate (0.582mol) was dissolved in 700g of water to obtain trisodium phosphate solution, and 24g of phosphoric acid solution (0.209mol) with a concentration of 85.4% was added dropwise to the mixed salt solution while stirring, and then added dropwise The trisodium phosphate solution;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- trisodium phosphate 225.583g of trisodium phosphate (0.582mol) was dissolved in 700g of water to obtain trisodium phosphate solution, and 24g of phosphoric acid solution (0.209mol) with a concentration of 85.4% was added dropwise to the mixed salt solution while stirring, and then added dropwise The trisodium phosphate solution;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- trisodium phosphate 225.583g of trisodium phosphate (0.582mol) was dissolved in 700g of water to obtain trisodium phosphate solution, and 24g of phosphoric acid solution (0.209mol) with a concentration of 85.4% was added dropwise to the mixed salt solution while stirring, and then added dropwise The trisodium phosphate solution;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- trisodium phosphate 225.583g of trisodium phosphate (0.582mol) was dissolved in 700g of water to obtain trisodium phosphate solution, and 24g of phosphoric acid solution (0.209mol) with a concentration of 85.4% was added dropwise to the mixed salt solution while stirring, and then added dropwise The trisodium phosphate solution;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.7 Fe 0.3 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- trisodium phosphate 75.2g of trisodium phosphate (0.194mol) was dissolved in 300g of water to obtain trisodium phosphate solution, and while stirring, 8g of phosphoric acid solution (0.070mol) with a concentration of 85.4% was added dropwise to the mixed salt solution, and then added dropwise The trisodium phosphate solution;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.8 Fe 0.2 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.5 Fe 0.5 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.6 Fe 0.4 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- diammonium hydrogen phosphate (0.264mol) was dissolved in 100g of water to obtain a diammonium hydrogen phosphate solution, and the diammonium hydrogen phosphate solution was added dropwise to the mixed salt solution while stirring;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.8 Fe 0.2 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- diammonium hydrogen phosphate (0.264mol) was dissolved in 100g of water to obtain a diammonium hydrogen phosphate solution, and the diammonium hydrogen phosphate solution was added dropwise to the mixed salt solution while stirring;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.7 Fe 0.3 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- diammonium hydrogen phosphate (0.317mol) was dissolved in 100g of water to obtain a diammonium hydrogen phosphate solution, and the diammonium hydrogen phosphate solution was added dropwise to the mixed salt solution while stirring;
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate in this embodiment is (Mn 0.5 Fe 0.5 ) 3 (PO 4 ) 2 ⁇ yH 2 O.
- ferrous manganese phosphate slurry is washed with water, filtered and dried to obtain ferrous manganese phosphate.
- the ferrous manganese phosphate prepared in the embodiment 1 and the comparative example was detected by an X-ray diffractometer, and the XRD patterns shown in Fig. 2 and Fig. 3 were respectively obtained. It can be seen from the XRD pattern that the ferrous manganese phosphate prepared in Example 1 of the present application is a mixture of ferrous phosphate and manganous phosphate.
- FIG. 4 EDS detection was performed on the manganese ferrous phosphate in Example 1, and the EDS diagram shown in FIG. 4 was obtained.
- Figures 5-7 are the standard maps of the distribution of P element, Mn element, and Fe element of ferromanganese phosphate, respectively. Comparing Figure 4 with Figures 5-7, it can be seen that ferrous manganese phosphate was successfully prepared in Example 1 of the present application, and the P element, Mn element and Fe element of the product ferrous manganese phosphate are uniformly distributed.
- the iron content is measured by potassium dichromate titration oxidation method
- the phosphorus content is measured by precipitation-filtration method
- the Mn is measured by ICP. Please refer to Table 1 for test results.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请公开了一种磷酸亚铁锰及其制备方法和应用,所述制备方法包括:将二价锰盐和二价铁盐溶于水中,得到锰盐和铁盐的混合盐溶液;向所述混合盐溶液中加入磷源,得到前驱体溶液;向所述前驱体溶液中加入碱,共沉淀,得到磷酸亚铁锰浆料,所述磷酸亚铁锰浆料中包含磷酸亚铁沉淀及磷酸锰铁沉淀;对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。所述磷酸亚铁锰的制备方法不需要通入氮气,因此不会产生氮氧化物废气,而不会造成环境污染。此外,所述磷酸亚铁锰的制备方法所制得的磷酸亚铁锰中的铁、磷、锰的比例稳定,杂质含量低,可以满足磷酸锰铁锂正极材料对前驱体原材料的需求。
Description
本申请涉及电池正极材料制造技术领域,尤其涉及一种磷酸亚铁锰的制备方法、由所述制备方法制得的磷酸亚铁锰、及所述磷酸亚铁锰在磷酸铁锰锂电池中的应用。
动力型锂离子电池具有高比能量、高比功率、高安全性和长循环寿命的优点,是电动车辆和各种电动工具的理想电源。在锂离子电池的正极材料中,磷酸铁锰锂(LMFP)具有与磷酸铁锂相同的比容量(理论容量为170mAh/g),且具有更高的电压平台(约4.1V),能够在磷酸铁锂的基础上提高约20%的能量密度。因此,磷酸铁锰锂是目前最受关注和最有前途的制备动力型锂离子电池的正极活性材料之一。磷酸铁锰锂材料制备过程中所使用的前驱体如磷酸亚铁锰是决定磷酸铁锰锂材料性能好坏的关键因素。
磷酸铁锰锂电池材料及前驱体的制备方法,目前已见许多相关报道。目前制备磷酸铁锰锂的方法主要有高温固相法、溶胶凝胶法和共沉淀法。其中,高温固相法使用较为广泛,也较适合工业化生产。但固相反应很难控制生成物相的成核速率以及物相离子扩散速率,因此,合成的磷酸铁锰锂的产品一致性较差,颗粒形貌不均匀,粒度分布较宽,而且整个高温固相反应过程中会产生较多的废气污染,主要是NH
3、CO
2等。为解决上述缺点,采用共沉淀法制备磷酸铁锰前驱体成为人们研究的重点。如中国专利公开号为CN104752715A公开了一种前驱体和磷酸锰铁锂及其制备方法和应用,采用草酸盐沉淀法,将二价铁源、二价锰源、磷源置于反应釜内,调pH 6.5,合成草酸亚锰铁沉淀,而草酸锰铁又有较大的产气量,导致所得的磷酸锰铁锂的压实密度偏低,降低了材料的体积能量比。中国专利公开号CN107697899B公开了一种单一水溶液体系下氧化-沉淀反应制备电池级磷酸铁锰的方法,该方法包括:将二价锰盐和二价铁盐的混合盐加水溶解,向反应釜中边搅拌边通过蠕动泵加入已配制好的pH调整剂,调节反应体系的pH值至7.5-12.0,结束后继续搅拌;再向反应釜 中加入氧化剂,结束后继续搅拌;待反应釜中温度达到60-165℃后,用蠕动泵加入可溶性磷源溶液,反应2-8小时,反应结束后磷酸铁锰料浆自然冷却至室温,经水洗、过滤、干燥,得到终产品Mn
xFe
1-xPO
4·y H
2O。在磷酸锰铁前驱体的制备过程中,由于Mn
3+不稳定且具有强氧化性,合成方法很难得到理论计量比的Mn
1-x Fe
xPO
4材料,易有MnO
2,Fe
4(OH)
3(PO
4)
3等杂相生成。
中国专利公开号CN103794789A一种锂离子电池磷酸亚铁锰锂正极材料及其制备方法,该方法包括:将硫酸锰和磷酸二氢按照摩尔比反应合成磷酸锰,洗涤80℃干燥10h得到核层磷酸锰前驱体。核层磷酸锰前驱体分散于水中,配成溶液。将草酸亚铁溶解于水中,配成溶液。控制草酸亚铁与核层磷酸猛的摩尔比为1:1,氮气保护下搅拌,100℃加热反应20h,洗涤80℃干燥10h后,得到核壳磷酸亚铁锰前驱体。在磷酸锰铁前驱体的制备过程中,需要通氮气保护,反应条件比较苛刻。
发明内容
有鉴于此,本申请提供一种磷酸亚铁锰的制备方法及制得的磷酸亚铁锰,旨在改善现有的磷酸亚铁锰的制备方法制得的磷酸亚铁锰比例不稳定的问题。
本申请实施例是这样实现的,一种磷酸亚铁锰的制备方法,包括如下步骤:
A:将二价锰盐和二价铁盐溶于水中,得到锰盐和铁盐的混合盐溶液;
B:向所述混合盐溶液中加入磷源,得到前驱体溶液;
C:向所述前驱体溶液中加入碱,共沉淀,得到磷酸亚铁锰浆料,所述磷酸亚铁锰浆料中包含磷酸亚铁沉淀及磷酸锰铁沉淀;
D:对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
可选的,在本申请的一些实施例中,所述二价锰盐选自硫酸亚锰、硝酸亚锰、氯化亚锰及乙酸亚锰中的至少一种。
可选的,在本申请的一些实施例中,所述二价铁盐选自硫酸亚铁、硝酸亚铁及氯化亚铁中的至少一种。
可选的,在本申请的一些实施例中,所述混合盐溶液中,锰离子的质量浓度为3-5%,铁离子的质量浓度为3-5%。
可选的,在本申请的一些实施例中,所述磷源选自磷酸、磷酸钠、磷酸钾、磷酸二氢钠及磷酸铵中的至少一种。
可选的,在本申请的一些实施例中,所述前驱体溶液中,锰离子与铁离子的摩尔量的和与磷源中的磷的摩尔量的比为3:2。
可选的,在本申请的一些实施例中,所述碱选自氢氧化钠、氨水、磷酸三钠及磷酸一氢二铵中的至少一种。
可选的,在本申请的一些实施例中,向所述前驱体溶液中加入碱后,体系的pH为5-8。
可选的,在本申请的一些实施例中,所述共沉淀在30-60℃下进行。
可选的,在本申请的一些实施例中,所述磷酸亚铁锰为磷酸亚铁与磷酸锰铁的混合物。
可选的,在本申请的一些实施例中,所述磷酸亚铁锰浆料的化学式为(Mn
xFe
1-x)
3(PO
4)
2·yH
2O,其中,0<x<1,0≤y≤8。
相应的,本申请还提供一种磷酸亚铁锰,所述磷酸亚铁锰由上述制备方法制得。
相应的,本申请还提供一种由上述磷酸亚铁锰的制备方法制备得到的磷酸亚铁锰在磷酸铁锰锂电池中的应用。
本申请的磷酸亚铁锰的制备方法不需要通入氮气,因此不会产生氮氧化物废气,而不会造成环境污染。此外,所述磷酸亚铁锰的制备方法所制得的磷酸亚铁锰中的铁磷锰的比例稳定,元素分布均一,杂质含量低,可以满足磷酸锰铁锂正极材料对前驱体原材料的需求。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种磷酸亚铁锰的制备方法流程图;
图2是本申请实施例1的磷酸亚铁锰的XRD图;
图3是本申请对比例的磷酸亚铁锰的XRD图;
图4是本申请实施例1的磷酸亚铁锰的EDS图;
图5是磷酸亚铁锰的P元素分布的标准图谱;
图6是磷酸亚铁锰的Mn分布的标准图谱;
图7是磷酸亚铁锰的Fe分布的标准图谱。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。本发明的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本发明范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
请参阅图1,本申请实施例提供一种电池级磷酸亚铁锰的制备方法,包括如下步骤:
A:将二价锰盐和二价铁盐溶于水中,得到锰盐和铁盐的混合盐溶液;
B:向所述混合盐溶液中加入磷源,得到前驱体溶液;
C:向所述前驱体溶液中加入碱,共沉淀,得到磷酸亚铁锰浆料,所述磷酸亚铁锰浆料中包含磷酸亚铁沉淀及磷酸锰铁沉淀;
D:对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰,所述磷酸亚铁锰为磷酸亚铁与磷酸锰铁的混合物。
所述步骤A中:
所述二价锰盐为水溶性二价锰盐。所述水溶性二价锰盐可以选自但不限于硫酸亚锰、硝酸亚锰、氯化亚锰及乙酸亚锰中的至少一种。
所述二价铁盐为水溶性二价铁盐。所述水溶性二价铁盐可以选自但不限于硫酸亚铁、硝酸亚铁及氯化亚铁中的至少一种。
所述混合盐溶液中,锰离子的质量浓度为3-5%,铁离子的质量浓度为3-5%。所述锰离子及铁离子的质量浓度低于3%,则最终得到的磷酸亚铁锰浆料中的磷酸亚铁沉淀及磷酸锰铁沉淀的固含量低,使得磷酸亚铁锰的产率较低;此外,锰离子及铁离子的质量浓度低于3%时,晶核形成速率低,晶体生长较快,得到的磷酸亚铁沉淀及磷酸锰铁沉淀颗粒会比较大,最终影响磷酸锰铁锂电化学性能。所述锰离子及铁离子的质量浓度高于5%,则得到的磷酸亚铁锰浆料中的磷酸亚铁沉淀及磷酸锰铁沉淀的固含量会比较高,沉淀会比较粘稠,形成的晶核较多,晶体生长较缓慢,但锰离子及铁离子的质量浓度太高,颗粒之间易团聚,得到大颗粒的前驱体,最终影响磷酸锰铁锂的电化学性能。
在一些实施例中,将二价锰盐和二价铁盐溶于水中后还包括:室温下搅拌使二价锰盐和二价铁盐完全溶解。
所述步骤B中:
所述磷源为水溶性磷源。所述水溶性磷源可以选自但不限于磷酸、磷酸钠、磷酸钾、磷酸二氢钠及磷酸铵中的至少一种。
可以理解,所述磷源为磷酸时,可以直接将磷酸加入所述混合盐溶液中。当所述磷源为磷酸钠、磷酸钾、磷酸二氢钠及磷酸铵时,可以现将所述磷源溶于水中,得到溶液型磷源,然后再加入所述混合盐溶液中。
所述前驱体溶液中,锰离子与铁离子的摩尔量的和与磷源中的磷的摩尔量的比为3:2,高于或低于所述比值会导致杂相生成。
在一些实施例中,所述向所述混合盐溶液中加入磷源的方法为:边搅拌边加入磷源。如此可以提升反应速率并得到均一性产品。
所述步骤C中:
所述碱为水溶性碱。所述水溶性碱可以选自但不限于氢氧化钠、氨水、磷酸三钠及磷酸一氢二铵中的至少一种。
向所述前驱体溶液中加入碱后所得到的反应体系的pH为5-8。pH值小于5时,锰铁沉淀不完全,pH高于8则二价铁及二价锰易被氧化,而生成氢氧化物沉淀。
在一些实施例中,所述反应在30-60℃下进行。在所述温度范围内既可以提高反应速率,又可以避免二价铁及二价锰被氧化。
在一些实施例中,所述反应的时间为1-2小时。
所述步骤D中:
可以理解,所述水洗、过滤、干燥为本领域已知用于对产物进行水洗、过滤、干燥的方法。
所述制备方法制得的磷酸亚铁锰为(Mn
xFe
1-x)
3(PO
4)
2·yH
2O,其中,0<x<1,0≤y≤8。所述磷酸亚铁锰包含磷酸亚铁及磷酸锰铁。
所述磷酸亚铁锰中杂质Ca、Mg、Na、Ni、Zn、Cu、Pb、Co、Ti、Zr等的总含量小于1000ppm。
所述磷酸亚铁锰的制备方法通过锰铁共沉淀法制得,即将二价锰盐及二价铁盐铁先溶解成离子溶液,再加磷源作为沉淀剂,制备得到磷酸亚铁锰。制备过程不需要通入氮气,因此不会产生氮氧化物废气,而不会造成环境污染。此外,所述磷酸亚铁锰的制备方法所制得的磷酸亚铁锰中的铁锰磷的比例稳定,且磷酸亚铁锰的P元素、Mn元素及Fe元素分布均一,杂质含量低,可以满足磷酸锰铁锂正极材料对前驱体原材料的需求,使用所述制备方法制得的磷酸亚铁锰制得的磷酸铁锂电池具有优异的电化学性能。
本申请实施例还提供一种由所述磷酸亚铁锰的制备方法制得的磷酸亚铁锰。
本申请实施例还提供一种由所述制备方法制得的磷酸亚铁锰在磷酸铁锂电池中的应用。
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的 部分实施例,不是对本申请的限定。
实施例1
将120.000g七水硫酸亚铁(0.432mol)和110.466g电池级硫酸锰(0.648mol),溶于300g水中,得到混合盐溶液;
将225.583g磷酸三钠(0.582mol),溶于700g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加24g浓度为85.4%的磷酸溶液(0.209mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至7,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例2
将120.000g七水硫酸亚铁(0.432mol)和110.466g电池级硫酸锰(0.647mol),溶于300g水中,得到混合盐溶液;
将225.583g磷酸三钠(0.582mol),溶于700g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加24g浓度为85.4%的磷酸溶液(0.209mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至6.5,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例3
将120.000g七水硫酸亚铁(0.432mol)和110.466g电池级硫酸锰(0.648mol),溶于300g水中,得到混合盐溶液;
将225.583g磷酸三钠(0.582mol),溶于700g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加24g浓度为85.4%的磷酸溶液(0.209mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至6,然后在室温下继续搅拌2h,得到磷酸亚铁 锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例4
将120.000g七水硫酸亚铁(0.432mol)和110.466g电池级硫酸锰(0.648mol),溶于300g水中,得到混合盐溶液;
将225.583g磷酸三钠(0.582mol),溶于700g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加24g浓度为85.4%的磷酸溶液(0.209mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至7,然后继续在水浴60℃下搅拌2h,反应结束后,冷却至室温,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例5
将30.000g七水硫酸亚铁(0.108mol)和42.959g电池级硫酸锰(0.252mol),溶于300g水中,得到混合盐溶液;
将112.769g磷酸三钠(0.582mol),溶于700g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加12g浓度为85.4%的磷酸溶液(0.105mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至7,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.7Fe
0.3)
3(PO
4)
2·yH
2O。
实施例6
将20g七水硫酸亚铁(0.072mol)和49.096g电池级硫酸锰(0.288mol),溶于300g水中,得到混合盐溶液;
将75.2g磷酸三钠(0.194mol),溶于300g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加8g浓度为85.4%的磷酸溶液(0.070mol),再滴加所述 磷酸三钠溶液;
用氢氧化钠调整体系pH值至7,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.8Fe
0.2)
3(PO
4)
2·yH
2O。
实施例7
将60.000g七水硫酸亚铁(0.216mol)和36.853g电池级硫酸锰(0.216mol),溶于300g水中,得到混合盐溶液;
将140.178g磷酸三钠(0.361mol),溶于500g水中,得到磷酸三钠溶液,边搅拌边向所述混合盐溶液中滴加24g浓度为85.4%的磷酸溶液(0.209mol),再滴加所述磷酸三钠溶液;
用氢氧化钠调整体系pH值至7,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.5Fe
0.5)
3(PO
4)
2·yH
2O。
实施例8
将30.000g七水硫酸亚铁(0.108mol)和27.617g电池级硫酸锰(0.162mol),溶于200g水中,得到混合盐溶液;
将26.117g磷酸氢二铵(0.198mol),溶于100g水中,得到磷酸氢二铵溶液,边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氢氧化钠调整体系pH值至8,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例9
将30.000g七水硫酸亚铁(0.108mol)和27.617g电池级硫酸锰(0.162mol),溶于200g水中,得到混合盐溶液;
将26.117g磷酸氢二铵(0.198mol),溶于100g水中,得到磷酸氢二铵溶液, 边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氢氧化钠调整体系pH值至8,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.6Fe
0.4)
3(PO
4)
2·yH
2O。
实施例10
将20.000g七水硫酸亚铁(0.072mol)和49.096g电池级硫酸锰(0.288mol),溶于200g水中,得到混合盐溶液;
将34.822g磷酸氢二铵(0.264mol),溶于100g水中,得到磷酸氢二铵溶液,边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氢氧化钠调整体系pH值至8,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.8Fe
0.2)
3(PO
4)
2·yH
2O。
实施例11
将30.000g七水硫酸亚铁(0.108mol)和42.959g电池级硫酸锰(0.252mol),溶于200g水中,得到混合盐溶液;
将34.822g磷酸氢二铵(0.264mol),溶于100g水中,得到磷酸氢二铵溶液,边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氨水调整体系pH值至8,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.7Fe
0.3)
3(PO
4)
2·yH
2O。
实施例12
将60.000g七水硫酸亚铁(0.216mol)和36.853g电池级硫酸锰(0.216mol),溶于200g水中,得到混合盐溶液;
将41.804g磷酸氢二铵(0.317mol),溶于100g水中,得到磷酸氢二铵溶液,边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氢氧化钠调整体系pH值至8,然后在室温下继续搅拌2h,得到磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
本实施例的磷酸亚铁锰为(Mn
0.5Fe
0.5)
3(PO
4)
2·yH
2O。
对比例1
将30.000g七水硫酸亚铁(0.108mol)和27.617g电池级硫酸锰(0.162mol),溶于200g水中,得到混合盐溶液;
将26.117g磷酸氢二铵(0.198mol),溶于100g水中,得到磷酸氢二铵溶液,边搅拌边向所述混合盐溶液中滴加磷酸氢二铵溶液;
用氨水调整体系pH值至8,然后在室温下继续搅拌2h,得到含有杂相磷酸锰铵的磷酸亚铁锰浆料;
对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
使用X射线衍射仪对所述实施例1及对比例所制得的磷酸亚铁锰进行检测,分别得到图2及图3所示的XRD图。由XRD图可知,本申请实施例1制得的磷酸亚铁锰是磷酸亚铁与磷酸亚锰的混合物。
对实施例1的磷酸亚铁锰进行EDS检测,得到图4所示的EDS图。图5-7分别为磷酸亚铁锰的P元素、Mn元素、Fe元素分布的标准图谱。将图4与图5-7对比可知,本申请实施例1成功的制备得到了磷酸亚铁锰,且产物磷酸亚铁锰的P元素、Mn元素及Fe元素分布均一。
对实施例1-8及对比例所制得的磷酸亚铁锰的铁(Fe)含量、磷(P)含量、锰(Mn)含量、铁与锰的摩尔量的和与磷的摩尔量的比例(M/P)进行检测。其中,铁含量采用重铬酸钾滴定氧化的方法,磷含量用沉淀-过滤法测量,Mn用的是ICP。检测结果请参表一。
表一:
由表一可知:实施例1-12的所制得的磷酸亚铁锰中铁与锰的摩尔量的和与磷的摩尔量的比例较为稳定,均在1.5左右。
以上对本申请实施例所提供的磷酸亚铁锰及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (13)
- 一种磷酸亚铁锰的制备方法,其特征在于,包括如下步骤:A:将二价锰盐和二价铁盐溶于水中,得到锰盐和铁盐的混合盐溶液;B:向所述混合盐溶液中加入磷源,得到前驱体溶液;C:向所述前驱体溶液中加入碱,共沉淀,得到磷酸亚铁锰浆料,所述磷酸亚铁锰浆料中包含磷酸亚铁沉淀及磷酸锰铁沉淀;D:对所述磷酸亚铁锰浆料进行水洗、过滤、干燥,得到磷酸亚铁锰。
- 如权利要求1所述的制备方法,其特征在于:所述二价锰盐选自硫酸亚锰、硝酸亚锰、氯化亚锰及乙酸亚锰中的至少一种。
- 如权利要求1所述的制备方法,其特征在于:所述二价铁盐选自硫酸亚铁、硝酸亚铁及氯化亚铁中的至少一种。
- 如权利要求1所述的制备方法,其特征在于:所述混合盐溶液中,锰离子的质量浓度为3-5%,铁离子的质量浓度为3-5%。
- 如权利要求1所述的制备方法,其特征在于:所述磷源选自磷酸、磷酸钠、磷酸钾、磷酸二氢钠及磷酸铵中的至少一种。
- 如权利要求1所述的制备方法,其特征在于:所述前驱体溶液中,锰离子与铁离子的摩尔量的和与磷源中的磷的摩尔量的比为3:2。
- 如权利要求1所述的制备方法,其特征在于:所述碱选自氢氧化钠、氨水、磷酸三钠及磷酸一氢二铵中的至少一种。
- 如权利要求1所述的制备方法,其特征在于:向所述前驱体溶液中加入碱后,体系的pH为5-8。
- 如权利要求1所述的制备方法,其特征在于:所述共沉淀在30-60℃下进行。
- 如权利要求1所述的制备方法,其特征在于:所述磷酸亚铁锰为磷酸亚铁与磷酸锰铁的混合物。
- 如权利要求1所述的制备方法,其特征在于:所述磷酸亚铁锰为(Mn xFe 1-x) 3(PO 4) 2·yH 2O,其中,0<x<1,0≤y≤8。
- 一种磷酸亚铁锰,其特征在于:所述磷酸亚铁锰由权利要求1-11任意一项所述的制备方法制得。
- 一种由权利要求1-11任一项所述的磷酸亚铁锰的制备方法制备得到的磷酸亚铁锰在磷酸铁锰锂电池中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111394076.3 | 2021-11-23 | ||
CN202111394076.3A CN114057177B (zh) | 2021-11-23 | 2021-11-23 | 磷酸亚铁锰及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023092989A1 true WO2023092989A1 (zh) | 2023-06-01 |
Family
ID=80279440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097625 WO2023092989A1 (zh) | 2021-11-23 | 2022-06-08 | 磷酸亚铁锰及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114057177B (zh) |
WO (1) | WO2023092989A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114057177B (zh) * | 2021-11-23 | 2023-05-23 | 湖北融通高科先进材料集团股份有限公司 | 磷酸亚铁锰及其制备方法和应用 |
GB2624735A (en) | 2022-06-28 | 2024-05-29 | Guangdong Brunp Recycling Technology Co Ltd | Hureaulite type manganese iron phosphate and preparation method therefor and use thereof |
CN115072692A (zh) * | 2022-06-28 | 2022-09-20 | 广东邦普循环科技有限公司 | 红磷锰矿型磷酸锰铁及其制备方法和应用 |
CN115231544A (zh) * | 2022-08-09 | 2022-10-25 | 湖北万润新能源科技股份有限公司 | 一种磷酸锰铵的制备方法和锂离子电池正极材料 |
CN115385320B (zh) * | 2022-08-24 | 2023-07-07 | 广东邦普循环科技有限公司 | 水热制备磷酸锰铁的方法及其应用 |
GB2627024A (en) * | 2022-08-24 | 2024-08-14 | Guangdong Brunp Recycling Technology Co Ltd | Method for hydrothermal preparation of ferromanganese phosphate and use thereof |
CN115849324A (zh) * | 2022-11-23 | 2023-03-28 | 中国科学院深圳先进技术研究院 | 一种磷酸锰铁锂前驱体及其制备方法和应用 |
CN115924980B (zh) * | 2022-12-26 | 2024-06-11 | 江苏贝特瑞纳米科技有限公司 | 一种复合磷酸盐的铁基钠离子电池层状正极材料前驱体的制备方法 |
CN116062726A (zh) * | 2023-03-09 | 2023-05-05 | 金驰能源材料有限公司 | 磷酸铁锂及其连续式生产方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103794789A (zh) * | 2014-03-12 | 2014-05-14 | 合肥国轩高科动力能源股份公司 | 一种锂离子电池磷酸亚铁锰锂正极材料及其制备方法 |
CN104518217A (zh) * | 2015-01-20 | 2015-04-15 | 杨志宽 | 一种电池级磷酸铁锰及其制备方法 |
CN104681795A (zh) * | 2015-01-29 | 2015-06-03 | 北大先行科技产业有限公司 | 一种磷酸铁锰锂/碳复合材料的制备方法 |
US20160087277A1 (en) * | 2013-05-08 | 2016-03-24 | Advanced Lithium Electrochemistry Co., Ltd. | Preparation method of battery composite material and precursor thereof |
CN107697899A (zh) * | 2017-10-31 | 2018-02-16 | 中钢集团安徽天源科技股份有限公司 | 电池级磷酸铁锰的制备方法、磷酸铁锰锂、电池正极材料及二次电池 |
CN114057177A (zh) * | 2021-11-23 | 2022-02-18 | 湖北融通高科先进材料有限公司 | 磷酸亚铁锰及其制备方法和应用 |
-
2021
- 2021-11-23 CN CN202111394076.3A patent/CN114057177B/zh active Active
-
2022
- 2022-06-08 WO PCT/CN2022/097625 patent/WO2023092989A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160087277A1 (en) * | 2013-05-08 | 2016-03-24 | Advanced Lithium Electrochemistry Co., Ltd. | Preparation method of battery composite material and precursor thereof |
CN103794789A (zh) * | 2014-03-12 | 2014-05-14 | 合肥国轩高科动力能源股份公司 | 一种锂离子电池磷酸亚铁锰锂正极材料及其制备方法 |
CN104518217A (zh) * | 2015-01-20 | 2015-04-15 | 杨志宽 | 一种电池级磷酸铁锰及其制备方法 |
CN104681795A (zh) * | 2015-01-29 | 2015-06-03 | 北大先行科技产业有限公司 | 一种磷酸铁锰锂/碳复合材料的制备方法 |
CN107697899A (zh) * | 2017-10-31 | 2018-02-16 | 中钢集团安徽天源科技股份有限公司 | 电池级磷酸铁锰的制备方法、磷酸铁锰锂、电池正极材料及二次电池 |
CN114057177A (zh) * | 2021-11-23 | 2022-02-18 | 湖北融通高科先进材料有限公司 | 磷酸亚铁锰及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114057177B (zh) | 2023-05-23 |
CN114057177A (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023092989A1 (zh) | 磷酸亚铁锰及其制备方法和应用 | |
US6395250B2 (en) | Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery | |
KR101198489B1 (ko) | 리튬철 인산염 제조용 철 소스의 제조방법 및 리튬철 인산염의 제조방법 | |
EP1035075A1 (en) | Novel process for preparing spinel type lithium manganese composite oxide and cathode active material for rechargeable battery | |
JP5281765B2 (ja) | リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法 | |
CN112047382B (zh) | 正极材料及其制备方法和应用 | |
US9825294B2 (en) | Positive electrode active material for lithium secondary battery and method for preparing the same | |
WO2015039490A1 (zh) | 富锂正极材料及其制备方法 | |
JP2003017057A (ja) | リチウム二次電池負極活物質用リチウムバナジウム複合酸化物、その製造方法およびそれを用いたリチウム二次電池 | |
CN1255888C (zh) | 一种锂离子电池正极材料磷酸铁锂的制备方法 | |
EP4266419A1 (en) | Sodium ion battery positive electrode active substance, preparation method therefor, and use thereof | |
JP4760805B2 (ja) | リチウムニッケルコバルト複合酸化物その製法及び二次電池用正極活物質 | |
CN115536078B (zh) | 一种锂金属氧化物前驱体及其制备方法和应用 | |
CN105576236A (zh) | 锂离子电池442型三元正极改性材料及其制备方法 | |
KR20150080219A (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
JP2001332258A (ja) | 複酸化物電極材料、その製造方法及びそれを用いた電池 | |
CN114256451A (zh) | 一种钠离子电池正极材料及其制备方法和应用 | |
WO2023226556A1 (zh) | 一种磷酸铁锂的制备方法及其应用 | |
KR20060122452A (ko) | 공침법을 이용한 망간산화물, 이를 이용한 리튬이차전지스피넬형 양극 활물질 및 그 제조방법 | |
WO2024164440A1 (zh) | 一种正极材料及其制备方法与应用 | |
JP5099328B2 (ja) | リチウムニッケルコバルト複合酸化物その製法及び二次電池用正極活物質 | |
WO2012045211A1 (zh) | 一种锂亚铁磷酸复盐正极材料的制备方法以及制得的正极材料 | |
CN110474047A (zh) | 一种镍钴锰三元前驱体及其制备方法与应用 | |
CN111072003A (zh) | 一种刺球状磷酸盐电极材料及其制备方法和锂离子电池 | |
CN112811471B (zh) | 一种锂离子电池银、钴和镍掺杂锰酸锂正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22897087 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317083373 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |