WO2014185522A1 - 導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ - Google Patents

導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ Download PDF

Info

Publication number
WO2014185522A1
WO2014185522A1 PCT/JP2014/063069 JP2014063069W WO2014185522A1 WO 2014185522 A1 WO2014185522 A1 WO 2014185522A1 JP 2014063069 W JP2014063069 W JP 2014063069W WO 2014185522 A1 WO2014185522 A1 WO 2014185522A1
Authority
WO
WIPO (PCT)
Prior art keywords
basic compound
group
conductive polymer
conductive
conductive composition
Prior art date
Application number
PCT/JP2014/063069
Other languages
English (en)
French (fr)
Inventor
正志 鵜澤
明 山嵜
紘也 福田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2014525652A priority Critical patent/JP6613565B2/ja
Priority to KR1020157034988A priority patent/KR102188125B1/ko
Priority to CN201480040552.3A priority patent/CN105392846B/zh
Priority to US14/890,763 priority patent/US10049780B2/en
Publication of WO2014185522A1 publication Critical patent/WO2014185522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a conductive composition, a conductor, a laminate, a manufacturing method thereof, a conductive film, and a solid electrolytic capacitor.
  • This application is filed on May 16, 2013, Japanese Patent Application No. 2013-103649, filed in Japan, June 11, 2013, Japanese Patent Application No. 2013-122623, filed in Japan, August 29, 2013 Japanese Patent Application No. 2013-177945 filed in Japan, Japanese Patent Application No. 2013-223630 filed in Japan on October 28, 2013, and Japanese Patent Application No. 2014 filed in Japan on April 28, 2014 Claims priority based on -92260, the contents of which are incorporated herein by reference.
  • Conductive polymers having acidic groups such as sulfonic acid groups and / or carboxylic acid groups (carboxy groups) exhibit excellent solubility in water and organic solvents due to the hydrophilic action of the acidic groups. The law is being considered.
  • a conductor (conductive polymer film) containing a conductive polymer having an acidic group as a main component, a laminate including the conductor, and a method for producing the same have been reported (for example, see Patent Document 1). .
  • the conductor formed from the conductive composition containing the polymer has insufficient water resistance. .
  • the conductor has a limitation in use such that it is not suitable for a use requiring water resistance.
  • a conductive composition is overcoated on a substrate by a dipping method or the like, and a plurality of coating films are stacked to form a conductor having a desired thickness. Since the conductor has insufficient water resistance, the coating film once formed is dissolved in the conductive composition to be overcoated thereon, and it may be difficult to perform overcoating.
  • Patent Document 3 when the coating film is subjected to heat treatment as described in Patent Document 2, the acidic group is intentionally desorbed in order to improve the water resistance of the conductor, so that the conductivity tends to decrease.
  • a method in which a specific base compound is added has been proposed to suppress the elimination of acidic groups. (For example, Patent Document 3) According to this method, although the decrease in conductivity is suppressed, water resistance cannot be imparted because the elimination of acidic groups is suppressed.
  • a solid electrolytic capacitor in which a solid electrolyte layer using a conductive polymer as a solid electrolyte and a cathode are sequentially formed has been developed.
  • Such a solid electrolytic capacitor has a conductivity of 10 to 100 times higher than that of a conventional solid electrolytic capacitor using manganese dioxide as a solid electrolyte, and greatly reduces ESR (equivalent series resistance).
  • Known monomers (monomers) constituting the conductive polymer material include pyrrole, thiophene, 3,4-ethylenedioxythiophene, and aniline.
  • a method for forming a solid electrolyte layer on a dielectric layer a chemical oxidation polymerization method or an electrolytic polymerization method is generally used.
  • a method of forming a solid electrolyte layer on the dielectric layer without performing chemical oxidative polymerization or electrolytic polymerization specifically, a polymer suspension coating method is known.
  • a monomer is polymerized in advance to form a conductive polymer, and a dispersion containing the conductive polymer is coated on a dielectric layer and dried to form a solid electrolyte layer. It is a method to do.
  • a method has been proposed in which a solid electrolyte layer is formed by impregnating a dielectric layer into a solution of a conductive polymer soluble in water or an organic solvent (for example, Patent Documents 4 and 5).
  • the inside of the dielectric layer can be impregnated with the conductive polymer, and the solid electrolyte layer can be formed in the fine irregularities (pores) of the dielectric layer.
  • a basic compound to the conductive polymer solution, deterioration due to heat during the capacitor manufacturing process can be prevented, and the electric capacity expression rate of the obtained solid electrolytic capacitor can be further increased.
  • anodes made of a porous body of valve metal have been miniaturized and have various types of micropores. Therefore, the inside of the dielectric layer formed on the surface of such an anode is also finer and more complicated. For this reason, it is required to impregnate fine pores with a conductive polymer.
  • the first object of the present invention is to provide a conductive composition that can form a conductor having high conductivity and excellent water resistance, a conductor, a laminate on which the conductor is formed, and a method for producing the same, And providing a conductive film.
  • a second object of the present invention is to provide a solid electrolytic capacitor that is sufficiently impregnated with a conductive polymer up to the inside of an anode having a dielectric layer and has high durability.
  • a conductive composition containing an acidic group-containing conductive polymer and a basic compound having two or more nitrogen atoms has excellent water resistance without reducing conductivity. We found that the body was obtained. Furthermore, it has been found that the use of this conductive composition improves the impregnation of the dielectric layer into the micropores, and further improves the durability of the solid electrolyte layer against heat, thus completing the present invention. .
  • a conductive composition comprising a conductive polymer (A) having a sulfonic acid group and / or a carboxylic acid group and a basic compound (B) having two or more nitrogen atoms.
  • a conductive composition comprising a conductive polymer (A) having a sulfonic acid group and / or a carboxylic acid group and a basic compound (B) having two or more nitrogen atoms.
  • the base dissociation constant (pKb) at 25 ° C. of the basic compound (C) is smaller than the base dissociation constant (pKb) at 25 ° C. of the basic compound (B), ⁇ 3> or ⁇ 4>
  • the electroconductive composition as described in. ⁇ 6> The conductive composition according to any one of ⁇ 1> to ⁇ 5>, further comprising a water-soluble or water-dispersible polymer (D) (excluding the conductive polymer (A)). object.
  • R 1 to R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group , A hydroxy group, a nitro group, and a halogen atom, and at least one of R 1 to R 4 is an acidic group.
  • the acidic group is a sulfonic acid group or a carboxylic acid group.
  • ⁇ 10> A conductor comprising the conductive composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> One week in an environment where the film thickness is 20 to 100 nm, the surface resistance value is 1 ⁇ 10 10 ⁇ / ⁇ or less at a temperature of 25 ° C. and a humidity of 50%, and the temperature is 25 ° C. and a humidity of 50%.
  • ⁇ 12> After being immersed in water at a temperature of 25 ° C. and a surface resistance value of 1 ⁇ 10 10 ⁇ / ⁇ at a temperature of 25 ° C. and a humidity of 50% for 10 minutes and dried.
  • ⁇ 10> The conductor according to ⁇ 10>, wherein the change in the surface resistance value is 10 times or less.
  • ⁇ 13> A laminate in which the conductor according to any one of ⁇ 10> to ⁇ 12> is laminated on at least one surface of a substrate.
  • ⁇ 14> A method for producing a laminate, wherein the conductive composition according to ⁇ 3> is applied on at least one surface of a base material, and is dried by heating to form a conductor.
  • a conductive film comprising the conductor according to any one of ⁇ 10> to ⁇ 12>.
  • Solid electrolysis comprising an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the anode surface, and one or more solid electrolyte layers formed on the surface side of the dielectric layer A solid electrolytic capacitor, wherein at least one of the solid electrolyte layers is a layer formed of the conductive composition according to any one of ⁇ 1> to ⁇ 9>.
  • the particle diameter is the smallest among one or more peaks obtained by measuring the particle size distribution by a dynamic light scattering method using a conductive polymer solution containing 1% by mass of the conductive polymer (A).
  • the volume average particle size of the minimum particle size distribution including the peak is less than 26 nm.
  • the conductive composition of the present invention can form a conductor having high conductivity and excellent water resistance.
  • the solid electrolytic capacitor of the present invention is highly durable because the conductive polymer is sufficiently impregnated into the anode having the dielectric layer.
  • the solid electrolytic capacitor of the present invention is excellent in water resistance because at least one of the solid electrolyte layers is a layer formed from the conductive composition of the present invention.
  • soluble or “water-soluble” means water, water containing a base and a basic salt, water containing an acid, an organic solvent (for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, etc.), or their It means that 0.1 g or more is uniformly dissolved in any 10 g (liquid temperature 25 ° C.) of the mixture.
  • water dispersibility means having a property of being dispersed in water, and means that particles having an average particle diameter of 5 nm to 1000 nm are suspended in water or a water-containing organic solvent.
  • Conductivity means that the film has an electric conductivity of 10 ⁇ 9 S / cm or more, or a coating film having a film thickness of about 0.1 ⁇ m has a surface resistance value of 10 14 ⁇ / ⁇ or less.
  • conductive polymer refers to a conductive polymer, or a conductive polymer and a dopant thereof.
  • the “conductive polymer solution” refers to a conductive polymer or a solution in which a conductive polymer and its dopant are dissolved or dispersed.
  • impregnation means that the conductive polymer is immersed (penetrated) in the fine irregularities of the dielectric layer, or how much the conductive polymer is immersed in the fine irregularities of the dielectric layer ( It indicates whether or not it has penetrated.
  • the impregnation property can be relatively evaluated by, for example, observing the cross section of the capacitor with a scanning electron microscope or the like.
  • the “volume average particle diameter” is a value calculated by a dynamic light scattering method, and is also referred to as “hydrodynamic diameter”.
  • the conductive composition of the present invention contains a conductive polymer (A) having a sulfonic acid group and / or a carboxylic acid group, and a basic compound (B) having two or more nitrogen atoms.
  • the conductive composition preferably further contains a basic compound (C) having one nitrogen atom and a water-soluble or water-dispersible polymer (D) (excluding the conductive polymer (A)).
  • the conductive polymer (A) has a sulfonic acid group and / or a carboxylic acid group (hereinafter sometimes referred to as “carboxy group”). Water-soluble property and electroconductivity improve because a conductive polymer (A) has a sulfonic acid group and / or a carboxylic acid group.
  • the sulfonic acid group and the carboxylic acid group (carboxy group) may be collectively referred to as “acidic group”.
  • the conductive polymer (A) is preferably soluble in water or an organic solvent. If the conductive polymer (A) is soluble in water or an organic solvent, the conductive polymer (A) is dissolved in water or an organic solvent to form a conductive polymer solution, which is applied and dried on a substrate. By the method, a conductor made of the conductive composition of the present invention can be formed. In addition, as will be described in detail later, in the production of a solid electrolytic capacitor, the conductive polymer solution can be sufficiently conductive even inside the fine irregularities of the dielectric layer by a simple method of applying and drying the conductive polymer solution on the dielectric layer. A solid electrolyte layer impregnated with the conductive polymer (A) can be formed.
  • the conductive polymer (A) is not particularly limited as long as it has an acidic group, and a known conductive polymer can be used. Specifically, at least one selected from the group consisting of unsubstituted or substituted polyphenylene vinylene, polyacetylene, polythiophene, polypyrrole, polyaniline, polyisothianaphthene, polyfuran, polycarbazole, polydiaminoanthraquinone, and polyindole.
  • an acidic group preferably a sulfonic acid group and / or a carboxy group, or an alkali metal salt, an ammonium salt or a substituted ammonium salt thereof, or a sulfonic acid group and / or a carboxy group
  • a conductive polymer having an alkyl group substituted with an alkali metal salt, an ammonium salt or a substituted ammonium salt or an alkyl group containing an ether bond can be given.
  • an acidic group preferably a sulfonic acid group and / or a carboxy group, or an alkali metal salt, an ammonium salt or a substituted ammonium salt thereof, or a sulfonic acid group and a nitrogen atom in the ⁇ -conjugated conductive polymer And / or a conductive polymer having a carboxy group, or an alkyl group substituted with an alkali metal salt, ammonium salt or substituted ammonium salt thereof or an alkyl group containing an ether bond.
  • a particularly preferable conductive polymer contains at least one unit selected from the group consisting of units represented by the following general formulas (2) to (4) in an amount of 20 to 100 mol% in the total number of units of the whole polymer. It is a conductive polymer.
  • Z represents a sulfur atom or a nitrogen atom
  • R 1 to R 11 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a carbon number 1 to 24 linear or branched alkoxy group, acidic group, hydroxy group, nitro group, halogen atom, —N (R 12 ) 2 , —NHCOR 12 , —SR 12 , —OCOR 12 , —COOR 12 , —COR 12 , selected from the group consisting of —CHO and —CN, and R 12 represents a linear or branched alkyl group, aryl group or aralkyl group having 1 to 24 carbon atoms.
  • R 12 represents a linear or branched alkyl group, aryl group or aralkyl group having 1 to 24 carbon atoms.
  • the “acidic group” is a sulfonic acid group or a carboxylic acid group.
  • the sulfonic acid group may be contained in an acid state (—SO 3 H) or may be contained in an ionic state (—SO 3 ⁇ ).
  • the sulfonic acid group also includes a substituent having a sulfonic acid group (—R 13 SO 3 H), an alkali metal salt, an ammonium salt, or a substituted ammonium salt of the sulfonic acid group.
  • the carboxylic acid group may be contained in an acid state (—COOH) or an ionic state (—COO ⁇ ).
  • the carboxylic acid group also includes a substituent having a carboxylic acid group (—R 13 COOH), an alkali metal salt, an ammonium salt or a substituted ammonium salt of the carboxylic acid group.
  • R 13 represents a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group or an aralkylene group.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a dodecyl group, and a tetracosyl group. Is mentioned.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a sec-butoxy group, a tert-butoxy group, a heptoxy group, a hexoxy group, and an octoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a polymer having a unit represented by the above general formula (2) is preferable.
  • a unit represented by the following general formula (1) is particularly preferable from the viewpoint of exhibiting high conductivity. It is preferable that it is a conductive polymer having
  • R 1 to R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group , A hydroxy group, a nitro group, and a halogen atom, and at least one of R 1 to R 4 is an acidic group.
  • one of R 1 to R 4 is a linear or branched alkoxy group having 1 to 4 carbon atoms in terms of easy production, Any one of these is a sulfonic acid group, and the remainder is a hydrogen atom.
  • the unit represented by the general formula (1) is preferably contained in an amount of 20 to 100 mol% in the total number of units of the entire polymer, and among them, the following general formula (5) Is preferably contained in an amount of 20 to 100 mol% in the total number of units of the whole polymer.
  • R 14 to R 31 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a carbon number 1 to 24 linear or branched alkoxy group, acidic group, hydroxy group, nitro group, halogen atom, —N (R 12 ) 2 , —NHCOR 12 , —SR 12 , —OCOR 12 , —COOR 12 , —COR 12 , selected from the group consisting of —CHO and —CN, and R 12 represents a linear or branched alkyl group, aryl group or aralkyl group having 1 to 24 carbon atoms. However, at least one of R 14 to R 31 is an acidic group.
  • the content of units having a sulfonic acid group and / or carboxylic acid group is 50 mol% or more based on the total number of units of the whole polymer. 70 mol% or more of a conductive polymer is more preferable, 90 mol% or more of a conductive polymer is more preferable, and 100 mol% of a conductive polymer is particularly preferable.
  • a conductive polymer (A) contains 10 or more units represented by the said General formula (1) in 1 molecule from a viewpoint which is excellent in electroconductivity.
  • At least one of the substituents added to the aromatic ring is preferably an alkyl group, an alkoxy group, or a halogen atom, and particularly preferably an alkoxy group having an electron donating property.
  • the most preferable conductive polymer (A) is represented by the following general formula (6).
  • q represents an arbitrary number of 0 ⁇ q ⁇ 1
  • m represents a degree of polymerization
  • R 32 is an acidic group
  • R 33 has 1 to 24 carbon atoms. It is selected from the group consisting of a linear or branched alkyl group, a linear or branched alkoxy group having 1 to 24 carbon atoms, and a halogen atom.
  • R 32 is preferably an acidic group in which at least a part thereof does not form a salt.
  • the conductive polymer (A) is a substituted or unsubstituted aniline, thiophene, pyrrole, phenylene as a constituent unit other than the unit represented by the general formula (1) as long as it does not affect the solubility, conductivity and properties.
  • Vinylene, a divalent unsaturated group, and one or more units selected from the group consisting of a divalent saturated group may be included.
  • poly (2-sulfo-5-methoxy-1,4-iminophenylene) is particularly preferable in terms of excellent solubility.
  • the conductive polymer (A) can be obtained by various synthetic methods such as chemical polymerization and electrolytic polymerization. For example, the synthesis methods described in JP-A-07-324132, JP-A-07-196791, and JP-A-10-158395 can be applied. That is, one compound selected from an acidic group-substituted aniline represented by the following general formula (7), an alkali metal salt, an ammonium salt, and a substituted ammonium salt thereof in a solution containing a basic compound in the presence of an oxidizing agent.
  • the conductive polymer (A) can be obtained by polymerization.
  • R 34 to R 39 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, or an acidic group.
  • R 12 represents a linear or branched alkyl group, aryl group or aralkyl group having 1 to 24 carbon atoms.
  • at least one of R 34 to R 39 is an acidic group.
  • a particularly preferable conductive polymer (A) was obtained by polymerizing an alkoxy group-substituted aminobenzenesulfonic acid, or an alkali metal salt, ammonium salt, or substituted ammonium salt thereof with an oxidizing agent in a solution containing a basic compound. It is a conductive polymer.
  • the mass average molecular weight of the conductive polymer (A) is preferably from 2,000 to 3,000,000, more preferably from 3,000 to 1,000,000 from the viewpoints of solubility, conductivity, film-forming property, and film strength. It is more preferably 5,000 to 500,000, and particularly preferably 30,000 to 100,000.
  • the weight average molecular weight of the conductive polymer (A) is a weight average molecular weight in terms of sodium polystyrene sulfonate measured by gel permeation chromatography (GPC).
  • the conductive polymer (A) preferably satisfies the following condition (a).
  • the conductive polymer (A) satisfies the condition (a), that is, if the volume average particle diameter of the conductive polymer (A) is less than 26 nm, in the production of the solid electrolytic capacitor, the inside of the fine irregularities of the dielectric layer Since the conductive polymer (A) is sufficiently impregnated, it is easy to obtain a solid electrolytic capacitor having a higher electric capacity expression rate.
  • the volume average particle diameter of the conductive polymer (A) is more preferably 20 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the conductive composition containing the conductive polymer (A) that satisfies the condition (a) is particularly suitable for forming a solid electrolyte layer of a solid electrolytic capacitor.
  • the volume average particle diameter of the conductive polymer (A) is a value measured as follows. First, a conductive polymer solution having a concentration of the conductive polymer (A) of 1% by mass is prepared, and the particle distribution is measured by a dynamic light scattering method using a dynamic light scattering type particle size measuring device. Correct with viscosity. Then, among the obtained one or more peaks, the volume average particle diameter of the minimum particle distribution including the peak having the minimum particle diameter is obtained, and this is set as the volume average particle diameter of the conductive polymer (A).
  • the “minimum particle distribution” means a particle distribution measured by a dynamic light scattering method, corrected by the viscosity of pure water, and then analyzed by analyzing it.
  • the distribution with the smallest particle size. More specifically, as shown in FIG. 3, one or more peaks P 1 obtained by measuring the particle distribution, P 2, P 3, of ..., including the peak P 1 where the particle diameter is minimized This is the particle distribution (region of symbol S in FIG. 3).
  • this particle distribution is the minimum particle distribution.
  • the waveforms may be separated by a general analysis method using a Gauss function, a Lorentz function, or the like incorporated in general-purpose software.
  • the basic compound (B) is a compound having two or more nitrogen atoms.
  • the basic compound (B) forms an ionic cross-linked structure with the acidic group of the conductive polymer (A). As a result, the water resistance and durability of the obtained conductor are improved.
  • the conventional conductive composition was applied on the base material to form the conductor, and then the heat treatment was performed. Since the acidic group of the conductive polymer is eliminated, the conductivity tends to decrease.
  • the basic compound (B) forms an ionic cross-linked structure with the acidic group of the conductive polymer (A), thereby improving the water resistance of the conductor. Since this crosslinking reaction proceeds at room temperature as well as under heating, there is no need to heat-treat after forming a conductor by applying a conductive composition on a substrate. Therefore, the acidic group of the conductive polymer (A) is not easily detached, and a conductor having high conductivity can be formed.
  • the acidic group of the conductive polymer (A) and the base portion of the basic compound (B) are ionically bonded to form a salt. Even in this case, the acidic group of the conductive polymer (A) is hardly detached. Therefore, the conductive composition of the present invention can form a conductor excellent in water resistance without deteriorating conductivity even if it is left at room temperature or heat-treated.
  • the durability is improved. Therefore, even if a durability test such as heat treatment at a temperature higher than the heat during the capacitor manufacturing process is performed, the electric capacity is unlikely to decrease.
  • the reason why the durability is improved is considered as follows. The reason why the electric capacity is reduced by heat treatment or the like is because of the influence of heat of the conductive polymer (A), for example, the solid electrolyte layer is physically deteriorated (film cracking, etc.), or the acidic group of the conductive polymer (A) is It is thought that the cause is that the conductivity decreases due to desorption.
  • the side chain of the conductive polymer (A) and the two or more nitrogen atoms of the basic compound (B) can be intramolecular and intermolecular.
  • a stable network is formed on at least one side.
  • Examples of the basic compound (B) include 2-aminopyridine, 3-aminopyridine, 4-aminopyridine; 2,6-diaminopyridine, 2,3-diaminopyridine, 3,4-diaminopyridine; 4-dimethylamino.
  • Pyridine derivatives substituted with a tertiary amino group such as pyridine, 4-dimethylaminomethylpyridine, 3,4-bis (dimethylamino) pyridine; 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) ), 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), polyvinylpyridine and derivatives thereof; hydrazine, methylenediamine, ethylenediamine, diaminopropane, diaminobutane, diaminopentane, diaminohexane , Aliphatic diamines such as diaminoheptane; 2 pyridine rings in the molecule such as bipyridyl And polyvalent pyridine compounds having two or more quinoline rings in the molecule; polyvalent pyrroles having two or more pyrroles in the molecule; and polyamine compounds such as polyallylamine and polyvinyl
  • the boiling point of the basic compound (B) is preferably 120 ° C. or higher, more preferably 130 ° C. or higher. When the boiling point is 120 ° C. or higher, the heat resistance is improved. Moreover, it is preferable that the base dissociation constant (pKb) in 25 degreeC of a basic compound (B) is 4.5 or more. When the base dissociation constant (pKb) is 4.5 or more, water resistance can be imparted while maintaining high conductivity.
  • the base dissociation constant (pKb) and the acid dissociation constant (pKa) described later are values described in “Chemical Handbook Basic Edition II” (edited by the Chemical Society of Japan, Maruzen, published 41.925 in Showa).
  • the basic compound (B) preferably has a conjugated structure from the viewpoint of improving water resistance and durability, or improving performance when used as a capacitor.
  • the conjugated structure of the basic compound (B) preferably has a cyclic structure from the viewpoint of maintaining conductivity by forming a network within and between molecules. Examples of the cyclic structure include an aromatic structure and an alicyclic structure.
  • a basic compound (B) has two or more nitrogen-containing heterocyclic rings from a viewpoint of stability of an electroconductive composition.
  • the conductive composition preferably contains a basic compound (B-1) having two or more nitrogen atoms and having a conjugated structure and further having a cyclic structure. That is, the basic compound (B-1) is a basic compound having two or more nitrogen atoms, a conjugated structure, and a cyclic structure. Two basic groups having a nitrogen atom of the basic compound (B-1) are more conductive than the basic group of the basic compound (B) having no conjugated structure or cyclic structure. It is thought that water resistance, durability, and capacitor performance are improved because an ionic cross-linked structure can be formed without significantly inhibiting doping of the conductive polymer (A).
  • the basic compound (B-2) in which the cyclic structure has a conjugated structure is more preferable, and the conjugated structure is The basic compound (B-3) having one or more nitrogen atoms in the cyclic structure and one or more nitrogen atoms outside the cyclic structure is more preferable.
  • the base compounds (B) and (B-1) to (B-3) are preferably compounds having a primary, secondary, tertiary amino group and a heterocyclic group in the same molecule. More preferably, the molecule has a primary, secondary, tertiary amino group and a nitrogen-containing heterocyclic group. Specific examples of such a compound include nitrogen-containing heterocyclic derivatives in which any one of primary, secondary, and tertiary amino groups is substituted.
  • Examples of the nitrogen-containing heterocyclic derivative substituted with a primary amino group include aminopyridines such as 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 2-aminopyrimidine, 4-aminopyrimidine, 5-amino Aminopyrimidines such as pyrimidine, 2,4-diaminopyrimidine, diaminopyrimidines such as 2,5-diaminopyrimidine, triaminopyrimidines such as 2,4,6-triaminopyrimidine, 2-aminopyrazine, 3-amino Aminopyrazines such as pyrazine, 2,4-diaminopyrazine, 2,3-diaminopyrazine, diaminopyrazines such as 2,5-diaminopyrazine, triaminopyrazines such as 2,3,5-triaminopyrazine, -Triazines such as aminotriazine, diamino
  • Examples of the nitrogen-containing heterocyclic derivative substituted with a secondary amino group include alkylaminopyridines such as 2-methylaminopyridine, 3-methylaminopyridine, 4-methylaminopyridine, 2-alkylaminopyrrole, and 3-alkyl.
  • Alkylaminopyrroles such as aminopyrrole, 2-alkylaminoquinoline, 3-alkylaminoquinoline, 4-alkylaminoquinoline, 5-alkylaminoquinoline, 6-alkylaminoquinoline, 7-alkylaminoquinoline, 8-alkylaminoquinoline
  • alkylamino quinolines such as alkenylaminoanthracenes, and compounds in which an alkylamino group is substituted on an alkylpyridine such as picolylalkylamine.
  • Examples of the nitrogen-containing heterocyclic derivative substituted with a tertiary amino group include dialkylaminopyridines such as 2-dimethylaminopyridine, 3-dimethylaminopyridine, 4-dimethylaminopyridine, 2-dialkylaminopyrrole, and 3-dialkyl.
  • Dialkylaminopyrroles such as aminopyrrole, 2-dialkylaminoquinoline, 3-dialkylaminoquinoline, 4-dialkylaminoquinoline, 5-dialkylaminoquinoline, 6-dialkylaminoquinoline, 7-dialkylaminoquinoline, 8-dialkylaminoquinoline
  • dialkylaminoquinolines such as dialkylaminoanthracenes, compounds having a dialkylamino group substituted on an alkylpyridine such as picolyldialkylamine, and the like.
  • aminopyridines such as aminopyridine, methylaminopyridine, dimethylaminopyridine, diaminopyridine, aminopyrimidines, diaminopyrimidines, triaminopyrimidines, aminopyrazines, diaminopyrazine , Triaminopyrazine, aminotriazine, diaminotriazine, triaminotriazine, phenanthroline and aminoquinoline are particularly preferred.
  • aminopyridines, alkylaminopyridines, dialkylaminopyridines, aminoquinolines, alkylaminoquinolines, and dialkylaminoquinolines are particularly preferable. These compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them in arbitrary ratios.
  • the conductive composition preferably contains a basic compound (B-4) having two or more nitrogen atoms and two or more nitrogen-containing heterocycles. That is, the basic compound (B-4) is a basic compound having two or more nitrogen atoms and two or more nitrogen-containing heterocycles.
  • the basic compound (B-4) has a lower ionic bond strength in solution than the basic compound (B), which does not have two or more nitrogen-containing heterocycles. It is thought that the stability of things improves.
  • Examples of the basic compound (B-4) include bipyridyl and the like, a polyvalent pyridine compound having two or more pyridine rings in the molecule, a polyvalent quinoline compound having two or more quinoline rings in the molecule, and pyrrole in the molecule.
  • Examples thereof include polyamine compounds such as polyvalent pyrrole and polyvinylpyridine having at least one.
  • compounds having two or more pyridine rings in the molecule are preferable, and specific examples include polyvalent pyridines and polyvinyl pyridine.
  • the content of the basic compound (B) is such that the basic compound (B) is based on 100 mol% of acidic groups of the conductive polymer (A) from the viewpoint of improving the water resistance of the conductor formed from the conductive composition. Is preferably 10 to 150 mol%, more preferably 20 to 130 mol%, and particularly preferably 30 to 130 mol%.
  • the basic compound (C) is a compound having one nitrogen atom.
  • the basic compound (B) forms an ionic cross-linked structure with the acidic group of the conductive polymer (A), but since this cross-linking reaction proceeds even at room temperature, it is partially in the state of the conductive composition. Forms an ionic cross-linked structure.
  • the crosslinked product of the basic compound (B) and the conductive polymer (A) precipitates, and it is difficult to maintain the stability of the conductive composition well. There is a case. If the conductive composition contains the basic compound (C), the generation of precipitates can be suppressed and the stability of the conductive composition can be favorably maintained.
  • the reason why the stability is improved is considered as follows.
  • the basic compound (C) forms an ionic crosslinked structure with the acidic group of the conductive polymer (A) in preference to the basic compound (B).
  • the basic compound (C) hinders the crosslinking reaction between the basic compound (B) and the conductive polymer (A). Therefore, it is thought that generation
  • the crosslinked body of the basic compound (C) and the conductive polymer (A) is difficult to precipitate, even if the basic compound (C) forms an ionic cross-linked structure with the acidic group of the conductive polymer (A). It is considered that the stability of the conductive composition is hardly affected.
  • the conductive composition becomes a conductor or a solid electrolyte layer
  • at least a part of the basic compound (C) is volatilized by heat drying.
  • the acidic group of the conductive polymer (A) that has become free by volatilization of the basic compound (C) and the basic compound (B) undergo a cross-linking reaction to form an ionic cross-linked structure. Sex can be expressed.
  • the boiling point of the basic compound (C) is preferably lower than the boiling point of the basic compound (B).
  • the basic compound (C) is volatilized by heat drying, so that the acidic group of the conductive polymer (A) and the basic compound (B) undergo a crosslinking reaction. It is preferable that it volatilizes easily. If the boiling point of the basic compound (C) is lower than the boiling point of the basic compound (B), the basic compound (C) is likely to volatilize during heat drying.
  • the boiling point of the basic compound (C) is preferably 5 ° C. and more preferably 10 ° C. lower than the boiling point of the basic compound (B).
  • the boiling point of the basic compound (C) is preferably 130 ° C. or lower.
  • the base dissociation constant (pKb) at 25 ° C. of the basic compound (C) is preferably smaller than the base dissociation constant (pKb) at 25 ° C. of the basic compound (B). If the base dissociation constant (pKb) of the basic compound (C) is smaller than the base dissociation constant (pKb) of the basic compound (B), that is, the acid dissociation constant (pKa) of the basic compound (C) is basic. If it is larger than the acid dissociation constant (pKa) of the compound (B), the basic compound (C) can form an ionic crosslinked structure with the acidic group of the conductive polymer (A) more preferentially in the conductive composition. Therefore, the stability of the conductive composition is further improved.
  • Examples of the basic compound (C) include primary alkylamines such as ammonia, methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, isobutylamine, tertiary butylamine; dimethylamine, diethylamine And dialkylamines such as dipropylamine and dibutylamine; trialkylamines such as trimethylamine and triethylamine; and pyridine derivatives such as pyridine, 2-picoline and 3-picoline.
  • ammonia, methylamine, dimethylamine, trimethylamine, and triethylamine which have a high pKa and have a low boiling point, are particularly preferable.
  • the content of the basic compound (C) is such that the basic compound (C) is based on 100 mol% of the acidic group of the conductive polymer (A) from the viewpoint of improving the stability of the conductor formed from the conductive composition. Is preferably 10 to 120 mol%, particularly preferably 20 to 100 mol%.
  • a thermoplastic or thermosetting water-soluble polymer or a polymer compound that forms an emulsion in an aqueous system is used as the water-soluble or water-dispersible polymer (D).
  • the water-soluble or water-dispersible polymer (D) is contained in the conductive composition, the water resistance of the obtained conductor is further improved and the adhesion to the substrate is also improved.
  • the water-soluble or water-dispersible polymer (D) is not particularly limited as long as it dissolves or disperses in the solvent (E) described later, and examples thereof include the following. From the viewpoint of durability, a water-soluble or water-dispersible polymer (D) having a mass average molecular weight of 5000 or more, preferably 10,000 or more is used.
  • water-soluble polymers include polyvinyl alcohols such as polyvinyl alcohol, polyvinyl formal, and polyvinyl butyral, water-soluble nylon resins, water-soluble alkyd resins, water-soluble melamine resins, water-soluble urea resins, water-soluble phenol resins, and water-soluble polymers.
  • Water-soluble epoxy resin water-soluble polybutadiene resin, water-soluble acrylic resin, water-soluble urethane resin, water-soluble acrylic / styrene resin, water-soluble vinyl acetate / acrylic copolymer resin, water-soluble polyester resin, water-soluble styrene / maleic acid copolymer resin , Water-soluble fluororesins, water-soluble polyisocyanate resins, and copolymers thereof.
  • water-dispersible polymers include water-based alkyd resins, water-based melamine resins, water-based urea resins, water-based phenol resins, water-based epoxy resins, water-based polybutadiene resins, water-based acrylic resins, water-based urethane resins, water-based acrylic / styrene resins, water-based polymers.
  • Water-based emulsions such as vinyl acetate / acrylic copolymer resins, water-based polyester resins, water-based styrene / maleic acid copolymer resins, water-based fluororesins, water-based vinyl acetate resins, water-based nylon resins, water-based polyisocyanate resins, and copolymers thereof
  • the high molecular compound which forms is mentioned.
  • the content of the water-soluble or water-dispersible polymer (D) is 100 mass of the solid content of the conductive polymer (A) in terms of solid part from the viewpoint of improving the water resistance, film formability, moldability and strength of the conductor.
  • the amount is preferably 0.1 to 50000 parts by mass, more preferably 0.5 to 10000 parts by mass with respect to parts.
  • the conductive composition preferably includes a solvent (E).
  • the solvent (E) is not particularly limited as long as it dissolves or disperses the conductive polymer (A).
  • Examples of the solvent (E) include alcohols such as water, methanol, ethanol, isopropyl alcohol, propyl alcohol, and butanol; ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, and methyl isobutyl ketone; ethylene glycol, ethylene glycol methyl ether, Ethylene glycols such as ethylene glycol mono-n-propyl ether; propylene glycols such as propylene glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether, propylene glycol propyl ether; amides such as dimethylformamide and dimethylacetamide Pyrrolidones such as N
  • the content of the organic solvent in 100% by mass of the mixed solvent is preferably 1 to 70% by mass, and more preferably 3 to 30% by mass. If content of an organic solvent is in the said range, especially a conductive polymer (A) will melt
  • the content of the solvent (E) is 200 to 100,000 parts by weight with respect to 100 parts by weight of the solid content of the conductive polymer (A). It is preferably 500 to 100,000 parts by mass.
  • content of a solvent (E) is 200 mass parts or more, sufficient solubility will be acquired and it will become easy to obtain the conductor with a flat surface.
  • a conductive polymer other than the conductive polymer (A) hereinafter referred to as “other conductive polymer”
  • a known additive may be optionally contained. Can do.
  • Examples of the other conductive polymer include poly (3,4-ethylenedioxythiophene) or a derivative thereof, polypyrrole or a derivative thereof, polyaniline or a derivative thereof.
  • a dopant for example, polystyrene sulfonic acid etc.
  • Additives include cross-linking agents, plasticizers, dispersants, fluidity modifiers, surfactants, lubricants, surfactants, UV absorbers, storage stabilizers, adhesion aids, thickeners, leveling agents, antistatic agents Agents, inorganic fillers, slip agents, organic fillers and the like.
  • the crosslinking agent include isocyanates such as blocked isocyanate, carbodiimide compounds, epoxy compounds, and melamine compounds.
  • the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, and a fluorine surfactant. These additives such as crosslinking agents and surfactants may be used singly or in combination of two or more at any ratio.
  • the conductive composition of the present invention described above contains the conductive polymer (A) and the basic compound (B) described above, a conductive material having high conductivity and excellent water resistance is obtained. Can be formed.
  • the conductive composition of the present invention is used in the production of a solid electrolytic capacitor, the conductive polymer (A) can be sufficiently impregnated into the anode having the dielectric layer. Therefore, since the solid electrolyte layer can be formed even inside the fine irregularities of the dielectric layer, a solid electrolytic capacitor having a high electric capacity expression rate, high durability, and excellent water resistance can be obtained.
  • the conductive composition of the present invention is suitable for conductive films and fixed electrolytic capacitors.
  • the conductor of the present invention is composed of the conductive composition of the present invention.
  • the conductor is formed, for example, by applying the conductive composition of the present invention on a substrate and drying it.
  • the laminate of the present invention is obtained by laminating the conductor of the present invention on at least one surface of a substrate.
  • plastics and films thereof are preferably used from the viewpoint of adhesion.
  • the polymer compound used in the plastic and the film thereof include polyethylene, polyvinyl chloride, polypropylene, polystyrene, ABS resin, AS resin, methacrylic resin, polybutadiene, polycarbonate, polyarylate, polyvinylidene fluoride, polyester, polyamide, polyimide, Examples thereof include polyaramid, polyphenylene sulfide, polyether ether ketone, polyphenylene ether, polyether nitrile, polyamide imide, polyether sulfone, polysulfone, polyether imide, polyethylene terephthalate, polybutylene terephthalate, and polyurethane.
  • the plastic substrate and its film may be subjected to corona surface treatment or plasma treatment in advance on the surface on which the conductor is formed in order to improve adhesion to the conductor.
  • a conductive material may be formed by applying a conductive composition to the surface of an oxide film such as aluminum, tantalum, or niobium used for a capacitor electrode or the like.
  • a method used in general coating can be adopted, for example, a gravure coater, a roll coater, a curtain flow coater, a spin coater, a bar coater, a reverse coater, a kiss coater, a fan.
  • a coating method such as a ten coater, a rod coater, an air doctor coater, a knife coater, a blade coater, a cast coater and a screen coater, a spraying method such as spray coating, and a dipping method such as dip are used.
  • the coating film may be left to dry at room temperature as it is, or the coating film is heated and dried. Also good. If the coating film is subjected to heat treatment, the basic compound (B) described above can accelerate the cross-linking reaction of the acidic group of the conductive polymer (A) by drying, so that water resistance can be imparted to the conductor in a shorter time. . In particular, when the conductive composition contains the basic compound (C) described above, it is preferable to heat dry. By heating and drying, the basic compound (C) is more easily volatilized, and the basic compound (B) and the acidic group of the conductive polymer (A) easily form an ionic cross-linked structure.
  • the heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and particularly preferably 200 ° C. or lower. If heat processing temperature is 300 degrees C or less, since it can suppress that electroconductive polymer (A) itself decomposes
  • the conductor of the present invention described above is composed of the conductive composition of the present invention. Moreover, the laminated body of this invention laminates
  • the conductivity of the conductor tends to decrease as the film thickness decreases.
  • poly (3,4-ethylenedioxythiophene) generally used as a conductive polymer is expensive, so that it is difficult to increase the film thickness in consideration of the manufacturing cost of the conductor.
  • the conductivity of the conductor also tends to decrease as time passes. This is considered to be affected by humidity.
  • the conductive polymer (A) contained in the conductive composition of the present invention can be produced at a relatively low cost, if the conductive composition of the present invention is used, the thickness of the conductor is increased to about 20 to 100 nm. it can.
  • a highly conductive conductor specifically, a surface resistance value (initial surface resistance value) at a temperature of 25 ° C. and a humidity of 50% when the film thickness is 20 to 100 nm. ) Of 1 ⁇ 10 10 ⁇ / ⁇ or less is easily obtained.
  • the conductor of the present invention is excellent in water resistance, the conductivity can be maintained over time.
  • the surface resistance value after leaving the conductor for one week in an environment of temperature 25 ° C. and humidity 50%, or the surface resistance value after immersing the conductor in water at temperature 25 ° C. for 10 minutes and drying is as follows. It tends to be within 10 times the initial surface resistance value.
  • the conductive composition of the present invention since the conductive composition of the present invention is used, a coating film is formed on a substrate and then heated even if the coating film is left at room temperature. Even if it processes, the conductor which has high electroconductivity and was excellent in water resistance can be manufactured. Moreover, since the electrical conductor obtained from the electrically conductive composition of this invention has water resistance, it is suitable also when forming an electrical conductor by recoating the electrically conductive composition.
  • the conductive film of the present invention includes the conductor of the present invention.
  • the conductive film include a structure in which the conductor of the present invention is laminated on one surface of a base material, and an adhesive layer and a separator are sequentially laminated on the other surface of the base material.
  • a base material the base material illustrated previously in description of a conductor and a laminated body is mentioned.
  • the pressure-sensitive adhesive layer is formed from a known pressure-sensitive adhesive.
  • the separator include polyethylene terephthalate whose surface is peeled.
  • the separator When using a conductive film, the separator may be peeled off, and the adhesive layer may be exposed and attached to a predetermined location.
  • the conductive film of the present invention is suitable as an antistatic protective film, for example.
  • FIG. 1 schematically shows the configuration of the solid electrolytic capacitor of this embodiment.
  • the solid electrolytic capacitor 10 of this example has an anode (film forming metal) 11, a dielectric layer (dielectric oxide film) 12 formed on the anode 11, and a single layer structure formed on the dielectric layer 12.
  • the multilayer solid electrolytic capacitor includes a solid electrolyte layer 13, a graphite layer 14 formed on the solid electrolyte layer 13, and a metal layer 15 formed on the graphite layer 14.
  • the cathode layer is formed by the solid electrolyte layer 13, the graphite layer 14, and the metal layer 15.
  • the anode 11 is made of a porous metal (valve metal) having a valve action, and has conductivity.
  • a valve metal a normal electrode used for a solid electrolytic capacitor can be used, and specifically, an electrode made of a metal material such as aluminum, tantalum, niobium, nickel, and the like can be given. Examples of the form include a metal foil and a metal sintered body.
  • the dielectric layer 12 is a layer formed by oxidizing the surface of the anode 11.
  • Examples of the oxidation method include chemical conversion treatment such as anodic oxidation.
  • the dielectric layer 12 formed by oxidizing the surface of the anode 11 reflects the surface state of the anode 11, as shown in FIG.
  • the period of the unevenness depends on the type of the anode 11 and the like, but is usually about 200 nm or less.
  • the depth of the recesses (micropores) forming the recesses and projections is not particularly determined because it is particularly dependent on the type of the anode 11 and the like, but when using aluminum, for example, the depth of the recesses is several tens of nm It is about 1 ⁇ m.
  • the solid electrolyte layer 13 is a layer formed from the conductive composition of the present invention.
  • the conductive polymer (A) is more sufficiently impregnated into the fine irregularities of the dielectric layer 12, and a solid electrolytic capacitor having a higher electric capacity expression rate can be easily obtained.
  • the conductive polymer (A) preferably satisfies the above-described condition (a).
  • the graphite layer 14 is formed by applying a graphite liquid on the solid electrolyte layer 13 or immersing the anode 11 in which the dielectric layer 12 and the solid electrolyte layer 13 are sequentially formed on the surface in the graphite liquid.
  • the metal layer 15 examples include a silver layer such as adhesive silver, an aluminum electrode, a tantalum electrode, a niobium electrode, a titanium electrode, a zirconium electrode, a magnesium electrode, and a hafnium electrode.
  • the method for producing a solid electrolytic capacitor comprises a step of applying a conductive composition containing the conductive polymer (A) and the basic compound (B) on the dielectric layer 12 formed on the surface of the anode 11 (application). And a step of drying the applied conductive composition to form the solid electrolyte layer 13 (drying step).
  • Processes other than the process of forming the solid electrolyte layer 13 are performed by a known technique.
  • the dielectric layer 12 is formed by anodic oxidation after making the vicinity of the surface of the anode 11 such as an aluminum foil porous by etching.
  • the solid electrolyte layer 13 is formed on the dielectric layer 12, it is immersed in the graphite liquid, or a graphite liquid is applied to form the graphite layer 14 on the solid electrolyte layer 13.
  • a metal layer 15 is formed thereon.
  • an external terminal (not shown) is connected to the metal layer 15 and the anode 11 and is packaged to obtain the solid electrolytic capacitor 10.
  • the solid electrolyte layer 13 is formed by applying the conductive composition of the present invention on the dielectric layer 12 formed on the surface of the anode 11 (application process), and forming a conductive polymer inside the fine irregularities of the dielectric layer 12. It can be formed by impregnating (A) or the like and then drying (drying process). Since the solid electrolyte layer 13 thus formed is sufficiently impregnated with the conductive polymer (A) even inside the fine irregularities of the dielectric layer 12, the electric capacity of the obtained solid electrolytic capacitor 10 is expressed. The rate is improved.
  • “application” refers to forming a coating film (layer), and coating and immersion are also included in the application.
  • content of the electroconductive polymer (A) in 100 mass% of electroconductive compositions is 9 mass% or less, and is 5 mass% or less. More preferably. If the content of the conductive polymer (A) is 9% by mass or less, the wettability with respect to the anode 11 on which the dielectric layer 12 is formed and the separator provided in the winding type solid electrolytic capacitor described later is improved.
  • the conductive polymer (A) can be sufficiently impregnated into the fine irregularities without being deposited on the surface of the dielectric layer 12.
  • the lower limit of the content of the conductive polymer is not particularly limited, but is preferably 0.1% by mass or more in that the solid electrolyte layer 13 having a desired thickness can be easily formed.
  • the content of the surfactant in 100% by mass of the conductive composition is preferably 0.1 to 20% by mass, preferably 0.1 to 5 mass% is more preferable. If content of surfactant is 0.1 mass% or more, the surface tension of an electroconductive composition can be reduced. Therefore, the impregnation property into the fine irregularities of the dielectric layer 12 is further improved, and the conductivity of the solid electrolyte layer 13 is further increased. On the other hand, if the content of the surfactant is 20% by mass or less, the conductivity can be maintained well.
  • the dip coating method As a coating method of the conductive composition, dip coating method, brush coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, spray coating method , Flow coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method and the like.
  • the dip coating method (immersion method) is preferable in terms of easy operation.
  • the immersion time in the conductive composition is preferably 1 to 30 minutes from the viewpoint of workability.
  • it is also effective to dip at the time of depressurization to return to normal pressure, or to pressurize at the time of dip.
  • the conductive polymer (A) can be impregnated inside the fine irregularities of the dielectric layer 12 by an external physical force.
  • the conductive composition is likely to be scattered in portions other than the dielectric layer 12, and the utilization rate of the conductive polymer (A) is likely to be lowered.
  • the conductive composition can be used for coating, the operation is easy and the initial investment is difficult to be applied without using the spray coating method, and the conductive polymer ( A dip coating method that can utilize A) without waste can be used, which is also economically beneficial.
  • Heat drying is preferable as a drying method after applying the conductive composition, but for example, air drying or a method of physically drying by spinning may be used.
  • the conductive composition contains the basic compound (C) described above, heat drying is preferred.
  • the drying conditions are determined depending on the type of the conductive polymer (A) and the solvent. Usually, the drying temperature is preferably 30 to 200 ° C. from the viewpoint of drying properties, and the drying time is preferably 1 to 60 minutes. .
  • the solid electrolyte layer formed from the conductive composition of the present invention is formed on the dielectric layer, so that the conductive layer is conductive even inside the fine irregularities of the dielectric layer.
  • the polymer (A) is sufficiently impregnated. Therefore, since the solid electrolyte layer is formed even inside the fine irregularities of the dielectric layer 12, the solid electrolytic capacitor of the present invention has a high electric capacity expression rate.
  • the solid electrolytic capacitor of the present invention has good durability due to heating, an increase in ESR (equivalent series resistance) of the capacitor due to heating can be suppressed.
  • the solid electrolytic capacitor of the present invention can maintain good conductivity because the solid electrolyte layer 13 is hardly physically deteriorated even by heat treatment, and the acidic group of the conductive polymer (A) is not easily detached. It is considered that the electric capacity is difficult to decrease.
  • the solid electrolytic capacitor of the present invention can be manufactured by applying the conductive composition of the present invention on the dielectric layer formed on the anode to form a solid electrolyte layer. Therefore, the conductive polymer (A) is sufficiently impregnated into the fine irregularities of the dielectric layer.
  • a solid electrolyte layer having a high conductivity can be formed on the dielectric layer, and a solid electrolytic capacitor having a high electric capacity expression rate and good durability can be easily manufactured.
  • the solid electrolytic capacitor of the present invention is not limited to the embodiment described above.
  • the solid electrolyte layer of the solid electrolytic capacitor described above has a single layer structure, but the solid electrolyte layer may have a multilayer structure.
  • at least one of the solid electrolyte layers is a layer formed from the conductive composition of the present invention.
  • at least the layer in contact with the dielectric layer is preferably a layer formed from the conductive composition of the present invention.
  • the solid electrolytic capacitor described above is a multilayer solid electrolytic capacitor
  • the solid electrolytic capacitor of the present invention includes an anode formed with a dielectric layer, a graphite layer, and a metal layer (cathode).
  • a separator can be provided.
  • An example of the solid electrolytic capacitor in which a separator is provided between the anode and the cathode is a wound solid electrolytic capacitor 20 as shown in FIG.
  • reference numeral 21 denotes an “anode”
  • reference numeral 22 denotes a “cathode”
  • reference numeral 23 denotes a “separator”.
  • a separator 23 is provided between an anode 21 and a cathode 22, and these are wound to form a wound body, and then on the anode in the same manner as the above-described laminated solid electrolytic capacitor.
  • a solid electrolyte layer (not shown) is formed on the formed dielectric layer, and an external terminal 24 is connected to the anode 21 and the cathode 22 to provide an exterior.
  • Examples of the material of the separator 23 used in the winding type solid electrolytic capacitor 20 include fiber, paper, polyethylene terephthalate, and the like.
  • a separator soaked with insulating oil may be used as the separator 23, as the separator 23, a separator soaked with insulating oil may be used.
  • the insulating oil include mineral oil, diallyl ethane oil, alkylbenzene oil, aliphatic ester oil (maleic acid ester, fumaric acid ester, etc.), aromatic ester oil (phthalic acid ester, etc.), polycyclic aromatic oil, silicone oil, etc.
  • electrical insulating oil or a mixture thereof are examples of the above-mentioned electrical insulating oil or a mixture thereof.
  • Examples 1-1 to 1-19, Comparative Examples 1-1 to 1-4> Each component was mixed so as to have the blending composition shown in Table 1 to prepare a conductive composition. After applying the conductive composition obtained using wire bar No5 on a polyethylene terephthalate (PET) film as an evaluation substrate so that the film thickness after drying is about 100 nm, and forming a coating film Then, it was dried on a hot plate under the heating conditions shown in Table 1 to obtain a laminate in which a conductor was laminated on a PET film. In addition, the compounding quantity of each component of Table 1 is the quantity (g) converted into solid content. About the obtained laminated body, electroconductivity, water resistance, and moisture resistance were evaluated by the method shown below. The results are shown in Table 2.
  • the surface resistance value of the surface on the conductor side of the laminate was measured by a two-terminal method (distance between electrodes: 20 mm, temperature: 25 ° C., humidity: 50%).
  • the laminate was allowed to stand for 48 hours in an environment of a temperature of 60 ° C. and a humidity of 95% to conduct a moisture resistance test.
  • the surface resistance value of the laminate after the moisture resistance test was measured in the same manner as the electrical conductivity evaluation, and the moisture resistance was evaluated according to the following evaluation criteria.
  • Surface resistance value after moisture resistance test is 8.0 ⁇ 10 8 ⁇ / ⁇ or less
  • Surface resistance value after moisture resistance test is more than 8.0 ⁇ 10 8 ⁇ / ⁇
  • Surface resistance value after moisture resistance test is over 5.0 ⁇ 10 9 ⁇ / ⁇
  • b-3 corresponds to the basic compound (C).
  • Base compound (B) and its substitutes b-1: 4-aminopyridine b-2: 4-dimethylaminopyridine b-3: pyridine b-4: 2,4,6-triaminopyrimidine b-5: 2,4,6-triamino-1,3 , 5-Triazine (melamine) (Water-soluble or water-dispersible polymer (D))
  • d-1 Water-dispersed polyester resin (Nippon Gosei Chemical Co., Ltd .: Polyester WR905)
  • d-2 Water-based urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd .: Elastron)
  • d-3 Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd .: ELEX KX5)
  • d-4 Polyvinyl alcohol (Kuraray Co., Ltd .: Poval
  • the conductive composition of each Example was able to form a conductor having high conductivity and excellent water resistance.
  • the conductors obtained from the conductive compositions of Comparative Examples 1-1 to 1-3 that did not contain the specific basic compound (B) were inferior in water resistance.
  • Comparative Example 1-3 which did not contain the specific basic compound (B) but was heat-treated at a high temperature of 160 ° C., was inferior in conductivity. This is presumably because the sulfonic acid group of the conductive polymer (A) was eliminated by the heat treatment, and the conductivity was lowered.
  • Comparative Example 1-4 containing pyridine as the specific basic compound (C) instead of the specific base compound (B) had poor water resistance.
  • Examples 2-1 to 2-18, Comparative Examples 2-1 to 2-4> Each component was mixed so as to have the blending composition shown in Table 3 to prepare a conductive composition. After forming the coating film by applying the conductive composition obtained using wire bar No5 on the evaluation substrate shown in Table 3 so that the film thickness after drying becomes the value shown in Table 3 Then, it was dried on a hot plate under the heating conditions shown in Table 3 to obtain a laminate in which a conductor was laminated on a PET film. In addition, the compounding quantity of each component of Table 3 is the quantity (g) converted into solid content.
  • stability was evaluated by the method shown below. The results are shown in Table 4.
  • electroconductivity, water resistance, and moisture resistance were evaluated by the method shown below. The results are shown in Table 4.
  • the laminate was left for 1 week in an environment of a temperature of 25 ° C. and a humidity of 50%.
  • the surface resistance value of the laminate after standing was measured. This is the surface resistance value after standing.
  • conductivity was evaluated according to the following evaluation criteria.
  • it means that even if it is left for 1 week in an environment of a temperature of 25 ° C. and a humidity of 50%, it is hardly affected by humidity and the conductivity is stable.
  • The surface resistance value after standing is within 10 times the initial surface resistance value.
  • X The surface resistance value after standing exceeds 10 times the initial surface resistance value.
  • the laminate was immersed in water at a temperature of 25 ° C. for 10 minutes, then dried and subjected to a water resistance test.
  • the surface resistance value of the laminate in the water resistance test was measured in the same manner as in the evaluation of conductivity in Test 1. This is the surface resistance value after the water resistance test.
  • conductivity was evaluated according to the following evaluation criteria. When evaluation is (circle), it means that a conductor is excellent in water resistance.
  • A The surface resistance value after the water resistance test is within 10 times the initial surface resistance value.
  • X The surface resistance value after the water resistance test exceeds 10 times the initial surface resistance value.
  • the conductive composition of each example was able to form a conductor having high conductivity and excellent water resistance.
  • the volume average particle diameter of the conductive polymer was determined as follows. First, a conductive polymer solution having a conductive polymer concentration of 1 mass% was prepared using ultrapure water as a solvent, and a dynamic light scattering particle size measuring device (“Nanotrack UPA-UT” manufactured by Nikkiso Co., Ltd. ) was used to measure the particle distribution by the dynamic light scattering method, and was corrected with the viscosity of ultrapure water.
  • a dynamic light scattering particle size measuring device (“Nanotrack UPA-UT” manufactured by Nikkiso Co., Ltd. ) was used to measure the particle distribution by the dynamic light scattering method, and was corrected with the viscosity of ultrapure water.
  • the volume average particle size of the minimum particle distribution including the peak with the smallest particle size was determined, and this was defined as the volume average particle size of the conductive polymer.
  • the particle distribution by the dynamic light scattering method has only one peak, after correcting with the viscosity of ultrapure water, this particle distribution was directly used as the minimum particle distribution, and the volume average particle diameter was obtained.
  • ⁇ Conductive polymer (A)> (Production of conductive polymer solution (a-4)) 100 mmol of 2-aminoanisole-4-sulfonic acid was dissolved in water containing 100 mmol of triethylamine with stirring at 25 ° C., and an aqueous solution of 100 mmol of ammonium peroxodisulfate was added dropwise. After completion of the dropwise addition, the reaction product was filtered and washed after further stirring at 25 ° C. for 12 hours. Thereafter, it was dried to obtain 15 g of powdery poly (2-sulfo-5-methoxy-1,4-iminophenylene).
  • a-3 5 parts by mass of the obtained poly (2-sulfo-5-methoxy-1,4-iminophenylene) was dissolved in 95 parts by mass of water at room temperature to obtain a conductive polymer solution (a-3).
  • SV means space velocity
  • space velocity (1 / hr) flow velocity (m 3 / hr) / filter medium amount (volume: m 3 ).
  • the volume average particle diameter of the conductive polymer in the conductive polymer solution (a-4) was measured and found to be 0.95 nm.
  • ⁇ Basic compound (B)> The following compounds were used as the basic compound (B) and its substitute.
  • the following b-15 and b-16 correspond to the basic compound (C).
  • Example 3-1 (Preparation of conductive composition) A conductive polymer solution (a-4) as a conductive polymer (A), b-10 as a basic compound (B), and water as a solvent (E) are mixed so that the composition shown in Table 5 is obtained. Then, a conductive composition was prepared. In addition, the compounding quantity of the conductive polymer (A) in Table 5 and a basic compound (B) is the quantity (mass%) converted into solid content. Content of the basic compound (B) in the obtained electroconductive composition was 0.5 mol with respect to 1 mol of monomer units (monomer unit) of electroconductive polymer (A).
  • the aluminum element was immersed in the conductive composition prepared previously for 5 minutes. Thereafter, the aluminum element was taken out and heated and dried at 120 ° C. for 30 minutes to form a solid electrolyte layer (the thickness from the surface of the dielectric layer is about 10 ⁇ m) on the dielectric layer. Next, a graphite layer and an aluminum electrode were formed on the solid electrolyte layer, and a cathode lead terminal was connected to the aluminum electrode to produce a laminated aluminum solid electrolytic capacitor. A film cracking test was performed using the obtained multilayer aluminum solid electrolytic capacitor, and the initial and post-heat treatment electric capacities were measured. The results are shown in Table 6.
  • Examples 3-2 to 3-4 Comparative Examples 3-1 to 3-4> A conductive composition was prepared in the same manner as in Example 3-1, except that the type and blending amount of the basic compound (B) were changed as shown in Table 5 to produce a laminated aluminum solid electrolytic capacitor. . A film cracking test was performed using the obtained multilayer aluminum solid electrolytic capacitor, and the initial and post-heat treatment electric capacities were measured. The results are shown in Table 6.
  • ⁇ Comparative Example 3-5> instead of the conductive polymer solution (a-4), a PEDOT (poly (3,4-ethylenedioxythiophene)) dispersion (manufactured by Clevios, “PH500”, PEDOT volume average particle diameter 26.7 nm, concentration 1 2% by mass), and a conductive composition was prepared in the same manner as in Example 3-1, except that the basic compound (B) was not used, and a laminated aluminum solid electrolytic capacitor was produced. A film cracking test was performed using the obtained multilayer aluminum solid electrolytic capacitor, and the initial and post-heat treatment electric capacities were measured. The results are shown in Table 6.
  • the aluminum element was immersed in the conductive composition prepared previously for 5 minutes. Thereafter, the aluminum element was taken out and heated and dried at 120 ° C. for 20 minutes to form a solid electrolyte layer (the thickness from the surface of the dielectric layer is about 10 ⁇ m) on the dielectric layer.
  • a solid electrolyte layer the thickness from the surface of the dielectric layer is about 10 ⁇ m
  • an aluminum element having a solid electrolyte layer formed on a dielectric layer is immersed in pure water for 1 minute (after washing with water), and then heated and dried at 120 ° C. for 10 minutes. I let you.
  • a graphite layer and an aluminum electrode were formed on the solid electrolyte layer, and a cathode lead terminal was connected to the aluminum electrode to produce a laminated aluminum solid electrolytic capacitor.
  • Examples 3-1 to 3-6 lamination of Examples 3-1 to 3-6 in which a solid electrolyte layer was formed using a conductive composition containing a conductive polymer (A) and a basic compound (B)
  • the type aluminum solid electrolytic capacitor had a high electric capacity expression rate. This is considered to be because the conductive polymer (A) was sufficiently impregnated into the fine irregularities of the dielectric layer.
  • the laminated aluminum solid electrolytic capacitors of Examples 3-1 to 3-4 did not easily decrease in electric capacity even after heat treatment, and the change rate of the electric capacity was small.
  • the laminated aluminum solid electrolytic capacitors of Examples 3-5 to 3-6 remained high in capacity development even when the electrolyte was washed with water, and were excellent in water resistance.
  • Examples 3-1 to 3-4 using a basic compound having two or more basic nitrogen atoms as the basic compound (B) have a high electric capacity at the initial stage and after the heat treatment. It was shown to be excellent. Since the conductive compositions prepared in Examples 3-1 to 3-6 were able to form a coating film that was not easily cracked, in the present invention, the conductive composition was physically deteriorated even by heat treatment. It was shown that a difficult solid electrolyte layer can be formed.
  • the laminated aluminum solid electrolytic capacitors of Comparative Examples 3-1 to 4 that did not use the basic compound (B) having two or more nitrogen atoms had a high initial capacitance. Although the value was shown, the decrease in electric capacity due to the heat treatment was noticeable.
  • the laminated aluminum solid electrolytic capacitor of Comparative Example 3-5 using a PEDOT dispersion instead of the conductive polymer (A) having an acidic group has a fine unevenness on the dielectric layer. Since PEDOT was difficult to be impregnated inside, the electric capacity expression rate was low. Further, the coating films formed from the conductive compositions prepared in Comparative Examples 3-1 to 3-5 were liable to crack.
  • the laminated aluminum solid electrolytic capacitors of Comparative Examples 3-6 to 3-7 had a reduced capacity development rate and poor water resistance when the electrolyte was washed with water.
  • Test 4" The laminates obtained in Examples 2-10 to 2-13 of Test 2 were evaluated for antistatic performance by the following method. Moreover, the antistatic performance was evaluated also about the PET film before forming a conductor as a comparative example. The results are shown in Table 9.
  • the conductive composition of the present invention is a battery, capacitor electrolyte, primer for electrolytic polymerization of capacitor electrolyte, chemical sensor, display element, nonlinear material, anticorrosive, adhesive, fiber, anticorrosive paint, electrodeposition paint, plating primer, etc.
  • Antistatic for conductive materials magnetic cards, magnetic tapes, magnetic disks, photographic films, printing materials, release films, heat seal tapes / films, IC trays, IC carrier tapes, cover tapes, electronic parts packaging materials, etc. As an agent, it is expected to be used in a wide range of fields.
  • Solid Electrolytic Capacitor 11 Anode 12 Dielectric Layer 13 Solid Electrolyte Layer 14 Graphite Layer 15 Metal Layer 20 Solid Electrolytic Capacitor 21 Anode 22 Cathode 23 Separator 24 External Terminal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の導電性組成物は、スルホン酸基及び/又はカルボン酸基を有する導電性ポリマー(A)と、窒素原子を2つ以上有する塩基性化合物(B)とを含有する。本発明の導電体は、前記導電性組成物からなる。本発明の積層体は、基材の少なくとも一方の面上に前記導電体が積層されている。本発明の積層体の製造方法は、前記導電性組成物を基材の少なくとも一方の面上に塗布し、加熱乾燥して導電体を形成する。本発明の導電性フィルムは、前記導電体を備える。本発明の固体電解コンデンサは、弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層表面側に形成された1層以上の固体電解質層とを具備し、前記固体電解質層の少なくとも1層が、前記導電性組成物から形成された層である。

Description

導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ
 本発明は、導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサに関する。
 本願は、2013年5月16日に、日本に出願された特願2013-103649号、2013年6月11日に、日本に出願された特願2013-122623号、2013年8月29日に、日本に出願された特願2013-177945号、2013年10月28日に、日本に出願された特願2013-223630号、及び2014年4月28日に、日本に出願された特願2014-92260号、に基づき優先権を主張し、その内容をここに援用する。
 スルホン酸基及び/又はカルボン酸基(カルボキシ基)等の酸性基を有する導電性ポリマーは、その酸性基の親水性作用により、水や有機溶媒に優れた溶解性を示すことから、種々の合成法が検討されている。
 また、酸性基を有する導電性ポリマーを主成分とする導電体(導電性ポリマー膜)、当該導電体を備えた積層体、及びそれらの製造方法が報告されている(例えば、特許文献1参照)。
 しかし、酸性基を有する導電性ポリマーは、水溶性溶媒に対して優れた溶解性を持つ一方で、該ポリマーを含む導電性組成物より形成された導電体は、耐水性が不十分であった。そのため、該導電体は、耐水性を必要とする用途には適さないという用途上の制約があった。
 また、導電体を製造する際には、通常、導電性組成物を浸漬法などにより基材上に重ね塗りし、複数の塗膜を積み重ねることで所望の厚さの導電体を形成するが、導電体は耐水性が不十分であるため、一旦形成した塗膜がその上に重ね塗りされる導電性組成物に溶解してしまい、重ね塗りすることが困難となる場合があった。
 上記の問題を解決するために、酸性基を有する導電性ポリマーを含む導電性組成物を基材上に塗布して塗膜を形成した後、該導電体を150~280℃で加熱処理する方法が提案されている(例えば、特許文献2参照)。
 この方法によれば、導電体を所定温度で加熱処理することで酸性基が適度に脱離し、その結果、導電体の耐水性が向上する。
 しかしながら、特許文献2に記載のように塗膜を加熱処理する場合、導電体の耐水性を向上させるために酸性基を意図的に脱離させるので、導電性が低下しやすかった。
 また、酸性基の脱離を抑制する為に、特定の塩基化合物を添加した方法が提案されている。(例えば、特許文献3)
 この方法によれば、導電性の低下は抑制されるが、酸性基の脱離を抑制する為、耐水性は付与することが出来なかった。
 ところで、アルミニウム、ニオブ、タンタル、チタン、マグネシウムなどの弁作用を有する金属(弁金属)の多孔質体からなる陽極(被膜形成金属)の表面に形成された誘電体層(誘電体酸化膜)上に、導電性ポリマーを固体電解質として用いてなる固体電解質層、及び陰極が順次形成された固体電解コンデンサが開発されている。
 このような固体電解コンデンサは、固体電解質として二酸化マンガンを用いた従来の固体電解コンデンサと比較して、固体電解質の導電率が10~100倍高く、またESR(等価直列抵抗)を大きく減少させることが可能であり、小型電子機器の高周波ノイズの吸収用など様々な用途への応用が期待されている。
 近年の集積回路の高周波化や大電流化の傾向に伴い、ESRが低く、大容量かつ信頼性の高い固体電解コンデンサが求められている。
 導電性ポリマー材料を構成するモノマー(単量体)としては、ピロール、チオフェン、3,4-エチレンジオキシチオフェン、アニリンなどが知られている。
 また、誘電体層上に固体電解質層を形成する方法としては、化学酸化重合法や電解重合法が一般的である。
 しかし、これら化学酸化重合法や電解重合法は、誘電体層上で重合反応を進行させるため、固体電解質層に不純物が混入しやすく、ショートの原因となることがあった。
 また、製造工程が煩雑になりやすかった。
 この対策として、誘電体層上で化学酸化重合や電解重合を行わずに固体電解質層を形成する方法、具体的にはポリマー懸濁液塗布法が知られている。
 ポリマー懸濁液塗布法は、予めモノマーを重合させて導電性ポリマーとし、該導電性ポリマーを含む分散液を誘電体層上に塗布させて乾燥し、塗膜とすることにより固体電解質層を形成する方法である。
 しかし、ポリマー懸濁液塗布法の場合、導電性ポリマーの分散液が誘電体層の内部まで含浸しにくかった。その結果、誘電体層の微細な凹凸の内部(細孔)には固体電解質層が形成されにくく、表層のみに固体電解質層が形成されるため、得られる固体電解コンデンサの電気容量発現率が低くなるという問題があった。
 そこで、水や有機溶剤に可溶な導電性ポリマーの溶液に誘電体層を含浸させて固体電解質層を形成する方法が提案されている(例えば、特許文献4、5)。
 この方法によれば、誘電体層の内部まで導電性ポリマーを含浸でき、誘電体層の微細な凹凸の内部(細孔)にまで固体電解質層を形成できる。
 特に、導電性ポリマーの溶液に塩基性化合物を添加することでコンデンサ作製工程時の熱による劣化を防ぐことができ、得られる固体電解コンデンサの電気容量発現率をより高くできる。
 しかしながら、近年、固体電解コンデンサの小型化・軽量化・大容量化に伴い、弁金属の多孔質体からなる陽極は微細化され、様々な形態の微細孔を有している。
 したがって、このような陽極の表面に形成された誘電体層の内部もより微細で複雑となっている。そのため、微細な細孔にも導電性ポリマーを十分に含浸させることが求められている。
 また、特許文献4、5に記載の方法で得られる固体電解コンデンサの場合、コンデンサ作製工程時の熱よりも高い温度で加熱処理するなどの耐久性試験を行うと、電気容量が低下することがあった。
特開平7-196791号公報 特開2001-98069号公報 特開2010-116441号公報 特開平9-22833号公報 国際公開第2012/144608号
 本発明の第一の目的は、高い導電性を有し、且つ、耐水性に優れた導電体を形成できる導電性組成物、導電体及び前記導電体が形成された積層体とその製造方法、及び導電性フィルムを提供することである。
 本発明の第二の目的は、誘電体層を有する陽極の内部まで導電性ポリマーが十分に含浸し、且つ、耐久性の高い固体電解コンデンサを提供することである。
 本発明者らは鋭意検討した結果、酸性基を有する導電性ポリマー及び窒素原子を2つ以上有する塩基性化合物を含む導電性組成物によって、導電性を低下させることなく、耐水性に優れた導電体が得られることを見出した。さらに、この導電性組成物を用いれば、誘電体層の微細孔内部への含浸性が改善され、しかも固体電解質層の熱に対する耐久性が向上することも見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
<1> スルホン酸基及び/又はカルボン酸基を有する導電性ポリマー(A)と、窒素原子を2つ以上有する塩基性化合物(B)とを含有する、導電性組成物。
<2> 前記塩基性化合物(B)が含窒素複素環を2つ以上有する、<1>に記載の導電性組成物。
<3> 窒素原子を1つ有する塩基性化合物(C)をさらに含有する、<1>又は<2>に記載の導電性組成物。
<4> 前記塩基性化合物(C)の沸点が、前記塩基性化合物(B)の沸点よりも低い、<3>に記載の導電性組成物。
<5> 前記塩基性化合物(C)の25℃における塩基解離定数(pKb)が、前記塩基性化合物(B)の25℃における塩基解離定数(pKb)よりも小さい、<3>又は<4>に記載の導電性組成物。
<6> 水溶性又は水分散性ポリマー(D)(ただし、前記導電性ポリマー(A)を除く。)をさらに含有する、<1>~<5>のいずれか1つに記載の導電性組成物。
<7> 前記塩基性化合物(B)の25℃における塩基解離定数(pKb)が4.5以上である、<1>~<6>のいずれか1つに記載の導電性組成物。
<8> 前記塩基性化合物(B)が共役構造を有する、<1>~<7>のいずれか1つに記載の導電性組成物。
<9> 前記導電性ポリマー(A)が下記一般式(1)で表される単位を有する、<1>~<8>のいずれか1つのいずれか一項に記載の導電性組成物。
Figure JPOXMLDOC01-appb-C000002
                  
 式(1)中、R~Rは、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、及びハロゲン原子からなる群より選ばれ、R~Rのうちの少なくとも1つは酸性基である。ここで、酸性基とはスルホン酸基又はカルボン酸基である。
<10> <1>~<9>のいずれか1つに記載の導電性組成物からなる、導電体。
<11> 膜厚が20~100nmであり、温度25℃、湿度50%における表面抵抗値が1×1010Ω/□以下であり、かつ温度25℃、湿度50%の環境下にて1週間経過した後の表面抵抗値の変化が10倍以内である、<10>に記載の導電体。
<12> 膜厚が20~100nmであり、温度25℃、湿度50%における表面抵抗値が1×1010Ω/□以下であり、かつ温度25℃の水に10分間浸漬し、乾燥した後の表面抵抗値の変化が10倍以内である、<10>に記載の導電体。
<13> 基材の少なくとも一方の面上に<10>~<12>のいずれか1つに記載の導電体が積層された、積層体。
<14> 基材の少なくとも一方の面上に<3>に記載の導電性組成物を塗布し、加熱乾燥して導電体を形成する、積層体の製造方法。
<15> <10>~<12>のいずれか1つに記載の導電体を備えた、導電性フィルム。
<16> 弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層表面側に形成された1層以上の固体電解質層とを具備する固体電解コンデンサにおいて、前記固体電解質層の少なくとも1層が、<1>~<9>のいずれか1つに記載の導電性組成物から形成された層である、固体電解コンデンサ。
<17> 前記導電性ポリマー(A)が下記条件(a)を満たす、<16>に記載の固体電解コンデンサ。
 条件(a):導電性ポリマー(A)を1質量%含む導電性ポリマー溶液を用い、動的光散乱法により粒子径分布を測定して得られる1つ以上のピークのうち、粒子径が最小となるピークを含む最小粒子径分布の体積平均粒子径が26nm未満である。
 本発明の導電性組成物は、高い導電性を有し、且つ、耐水性に優れた導電体を形成できる。
 また、本発明の固体電解コンデンサは、誘電体層を有する陽極の内部まで導電性ポリマーが十分に含浸しており、かつ耐久性の高い。しかも、本発明の固体電解コンデンサは、固体電解質層の少なくとも1層が本発明の導電性組成物から形成された層であるため、耐水性にも優れる。
本発明の固体電解コンデンサの一例を模式的に示す断面図である。 本発明の固体電解コンデンサの他の一例を模式的に示す斜視図である。 動的光散乱法により測定した導電性ポリマーの粒子分布を模式的に示す図である。
 以下、本発明を詳細に説明する。
 なお、本発明において「可溶性」又は「水溶性」とは、水、塩基及び塩基性塩を含む水、酸を含む水、有機溶媒(例えばメチルアルコール、エチルアルコール、イソプロピルアルコール等)、又はそれらの混合物のうちのいずれか10g(液温25℃)に、0.1g以上均一に溶解することを意味する。
 また、「水分散性」とは、水に分散する性質を有することをいい、平均粒子径が5nm~1000nmの粒子が水、又は含水有機溶媒に浮遊懸濁することを意味する。
 また、「導電性」とは、10-9S/cm以上の電気伝導率を有する、又は膜厚約0.1μmの塗膜が1014Ω/□以下の表面抵抗値を有することである。
 また、本発明において、「導電性ポリマー」とは、導電性ポリマー、又は導電性ポリマー及びそのドーパントを示す。
 また、本発明において、「導電性ポリマー溶液」とは、導電性ポリマー、又は導電性ポリマー及びそのドーパントを溶解若しくは分散した溶液を示すものである。
 また、本発明において、「含浸」とは、導電性ポリマーが誘電体層の微細な凹凸の内部に浸漬(浸透)すること、あるいは、該誘電体層の微細な凹凸の内部にどの程度浸漬(浸透)しているかを示すものである。含浸性は、例えば、コンデンサの断面を走査型電子顕微鏡等で観察することにより、相対的に評価することができる。
 また、本発明において、「体積平均粒子径」とは、動的光散乱法により算出される値であり、「流体力学的径」ともいう。
「導電性組成物」
 本発明の導電性組成物は、スルホン酸基及び/又はカルボン酸基を有する導電性ポリマー(A)と、窒素原子を2つ以上有する塩基性化合物(B)とを含有する。導電性組成物は、窒素原子を1つ有する塩基性化合物(C)や水溶性又は水分散性ポリマー(D)(ただし、前記導電性ポリマー(A)を除く。)をさらに含有することが好ましい。
<導電性ポリマー(A)>
 導電性ポリマー(A)は、スルホン酸基及び/又はカルボン酸基(以下、「カルボキシ基」という場合がある。)を有する。導電性ポリマー(A)がスルホン酸基及び/又はカルボン酸基を有することで、水溶性及び導電性が向上する。
 以下、スルホン酸基、カルボン酸基(カルボキシ基)を総称して「酸性基」という場合がある。
 導電性ポリマー(A)は、水又は有機溶媒に可溶であることが好ましい。
 導電性ポリマー(A)が水又は有機溶媒に可溶であれば、水又は有機溶媒に導電性ポリマー(A)を溶解させて導電性ポリマー溶液とし、基材上に塗布・乾燥するといった簡易な方法で、本発明の導電性組成物からなる導電体を形成できる。また、詳しくは後述するが、固体電解コンデンサの製造において、該導電性ポリマー溶液を誘電体層上に塗布・乾燥するといった簡易な方法で、誘電体層の微細な凹凸の内部にまで十分に導電性ポリマー(A)が含浸した固体電解質層を形成できる。
 前記導電性ポリマー(A)としては酸性基を有していれば特に限定されず、公知の導電性ポリマーを用いることができる。
 具体的には、無置換又は置換基を有するポリフェニレンビニレン、ポリアセチレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリイソチアナフテン、ポリフラン、ポリカルバゾール、ポリジアミノアントラキノン、ポリインドールからなる群より選ばれた少なくとも1種のπ共役系導電性ポリマー中の骨格に、酸性基、好ましくは、スルホン酸基及び/又はカルボキシ基、又はこれらのアルカリ金属塩、アンモニウム塩若しくは置換アンモニウム塩、あるいはスルホン酸基及び/又はカルボキシ基、又はこれらのアルカリ金属塩、アンモニウム塩若しくは置換アンモニウム塩で置換されたアルキル基又はエーテル結合を含むアルキル基を有している導電性ポリマーが挙げられる。
 また、該π共役系導電性ポリマー中の窒素原子上に、酸性基、好ましくは、スルホン酸基及び/又はカルボキシ基、又はこれらのアルカリ金属塩、アンモニウム塩若しくは置換アンモニウム塩、あるいはスルホン酸基及び/又はカルボキシ基、又はこれらのアルカリ金属塩、アンモニウム塩若しくは置換アンモニウム塩で置換されたアルキル基又はエーテル結合を含むアルキル基を有している導電性ポリマーが挙げられる。
 これらの中でも、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、ポリイソチアナフテン骨格を有する導電性ポリマーが好ましい。特に好ましい導電性ポリマーは、下記一般式(2)~(4)で表される単位からなる群より選ばれた少なくとも1種の単位を、ポリマー全体の単位の総数中に20~100mol%含有する導電性ポリマーである。
Figure JPOXMLDOC01-appb-C000003
                  
Figure JPOXMLDOC01-appb-C000004
                  
Figure JPOXMLDOC01-appb-C000005
                  
 式(2)~(4)中、Zは硫黄原子又は窒素原子を表し、R~R11は、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、ハロゲン原子、-N(R12)、-NHCOR12、-SR12、-OCOR12、-COOR12、-COR12、-CHO、及び-CNからなる群より選ばれ、R12は炭素数1~24の直鎖若しくは分岐のアルキル基、アリール基又はアラルキル基を表す。
 ただし、式(2)のR~Rのうちの少なくとも1つ、式(3)のR~Rのうちの少なくとも1つ、式(4)のR~R11のうちの少なくとも1つは、それぞれ酸性基である。
 ここで、「酸性基」は、スルホン酸基又はカルボン酸基である。
 スルホン酸基は、酸の状態(-SOH)で含まれていてもよく、イオンの状態(-SO )で含まれていてもよい。また、スルホン酸基には、スルホン酸基を有する置換基(-R13SOH)や、スルホン酸基のアルカリ金属塩、アンモニウム塩、又は置換アンモニウム塩なども含まれる。
 一方、カルボン酸基は、酸の状態(-COOH)で含まれていてもよく、イオンの状態(-COO)で含まれていてもよい。また、カルボン酸基には、カルボン酸基を有する置換基(-R13COOH)や、カルボン酸基のアルカリ金属塩、アンモニウム塩又は置換アンモニウム塩なども含まれる。
 ここで、前記R13は炭素数1~24の直鎖若しくは分岐のアルキレン基、アリーレン基又はアラルキレン基を表す。
 また、アルキル基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ドデシル基、テトラコシル基などが挙げられる。
 アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ヘプトキシ基、ヘクソオキシ基、オクトキシ基、ドデコキシ基、テトラコソキシ基などが挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 導電性ポリマー(A)としては、上記一般式(2)で表される単位を有するポリマーが好ましく、その中でも特に、高い導電性を発現できる観点から、下記一般式(1)で表される単位を有する導電性ポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
                  
 式(1)中、R~Rは、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、及びハロゲン原子からなる群より選ばれ、R~Rのうちの少なくとも1つは酸性基である。
 上記一般式(1)で表される単位としては、製造が容易な点で、R~Rのうち、いずれか1つが炭素数1~4の直鎖又は分岐のアルコキシ基であり、他のいずれか1つがスルホン酸基であり、残りが水素原子であるものが好ましい。
 導電性ポリマー(A)としては、上記一般式(1)で表される単位を、ポリマー全体の単位の総数中に20~100mol%含有することが好ましく、その中でも特に、下記一般式(5)で表される単位を、ポリマー全体の単位の総数中に20~100mol%含有することが好ましい。
Figure JPOXMLDOC01-appb-C000007
                  
 式(5)中、qは0<q<1の任意の数を示し、R14~R31は、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、ハロゲン原子、-N(R12)、-NHCOR12、-SR12、-OCOR12、-COOR12、-COR12、-CHO、及び-CNからなる群より選ばれ、R12は炭素数1~24の直鎖若しくは分岐のアルキル基、アリール基又はアラルキル基を表す。
 ただし、R14~R31のうちの少なくとも1つは酸性基である。
 前記導電性ポリマー(A)のなかでも、溶解性の観点から、スルホン酸基及び/又はカルボン酸基を有する単位の含有量が、ポリマー全体の単位の総数に対して50mol%以上の導電性ポリマーが好ましく、70mol%以上の導電性ポリマーがより好ましく、90mol%以上の導電性ポリマーがさらに好ましく、100mol%の導電性ポリマーが特に好ましい。
 また、導電性ポリマー(A)は、導電性に優れる観点で、上記一般式(1)で表される単位を1分子中に10以上含有することが好ましい。
 また、導電性及び溶解性の点から、芳香環に付加している置換基のうちの少なくとも1つはアルキル基、アルコキシ基、又はハロゲン原子が好ましく、特に電子供与性を有するアルコキシ基が好ましい。これらの組み合わせの中で、最も好ましい導電性ポリマー(A)を下記一般式(6)に示す。
Figure JPOXMLDOC01-appb-C000008
                  
 式(6)中、qは0<q<1の任意の数を示し、mは重合度を示し、3~5000であり、R32は酸性基であり、R33は炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、及びハロゲン原子からなる群より選ばれる。
 なお、式(6)において、導電性の観点から、R32は少なくともその一部が塩を形成していない酸性基であることが好ましい。
 導電性ポリマー(A)は、上記一般式(1)で表される単位以外の構成単位として、可溶性、導電性及び性状に影響を及ぼさない限り、置換又は無置換のアニリン、チオフェン、ピロール、フェニレン、ビニレン、二価の不飽和基、二価の飽和基からなる群より選ばれる1種以上の単位を含んでいてもよい。
 上記一般式(1)で表される単位を有する化合物としては、溶解性に優れる点で、ポリ(2-スルホ-5-メトキシ-1,4-イミノフェニレン)が特に好ましい。
 導電性ポリマー(A)は、化学重合や電解重合等の各種合成法により得られる。例えば、特開平07-324132号公報、特開平07-196791号公報、特開平10-158395号公報に記載の合成方法が適用できる。
 すなわち、下記一般式(7)で表される酸性基置換アニリン、そのアルカリ金属塩、アンモニウム塩、置換アンモニウム塩より選ばれる1つの化合物を、塩基性化合物を含む溶液中、酸化剤の存在下で重合させることにより前記導電性ポリマー(A)を得ることができる。
Figure JPOXMLDOC01-appb-C000009
                  
 式(7)中、R34~R39は、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、ハロゲン原子、-N(R12)、-NHCOR12、-SR12、-OCOR12、-COOR12、-COR12、-CHO、及び-CNからなる群より選ばれ、R12は炭素数1~24の直鎖若しくは分岐のアルキル基、アリール基又はアラルキル基を表す。
 ただし、R34~R39のうちの少なくとも1つは、酸性基である。
 特に好ましい導電性ポリマー(A)は、アルコキシ基置換アミノベンゼンスルホン酸、又はそのアルカリ金属塩、アンモニウム塩、置換アンモニウム塩を、塩基性化合物を含む溶液中で酸化剤により重合させることにより得られた導電性ポリマーである。
 また、導電性ポリマー(A)の酸性基は、導電性向上の観点から少なくともその一部が遊離酸型であることが望ましい。
 また、導電性ポリマー(A)の質量平均分子量は、溶解性、導電性、製膜性及び膜強度の観点から、2000~300万であることが好ましく、3000~100万であることがより好ましく、5000~50万であることがさらに好ましく、3万~10万であることが特に好ましい。
 ここで、導電性ポリマー(A)の質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される、ポリスチレンスルホン酸ナトリウム換算した質量平均分子量である。
 また、導電性ポリマー(A)は、下記条件(a)を満たすことが好ましい。
 条件(a):導電性ポリマー(A)を1質量%含む導電性ポリマー溶液を用い、動的光散乱法により粒子径分布を測定して得られる1つ以上のピークのうち、粒子径が最小となるピークを含む最小粒子径分布の体積平均粒子径が26nm未満である。
 導電性ポリマー(A)が条件(a)を満たせば、すなわち導電性ポリマー(A)の体積平均粒子径が26nm未満であれば、固体電解コンデンサの製造において、誘電体層の微細な凹凸の内部へ導電性ポリマー(A)がより十分に含浸するので、電気容量発現率がより高い固体電解コンデンサが得られやすくなる。含浸性が向上する点で、導電性ポリマー(A)の体積平均粒子径は、20nm以下がより好ましく、10nm以下がさらに好ましく、5nm以下が特に好ましい。
 条件(a)を満たす導電性ポリマー(A)を含有する導電性組成物は、固体電解コンデンサの固体電解質層の形成用として特に好適である。
 導電性ポリマー(A)の体積平均粒子径は、以下のようにして測定される値である。
 まず、導電性ポリマー(A)の濃度が1質量%の導電性ポリマー溶液を調製し、動的光散乱式粒子径測定装置を用いて動的光散乱法により粒子分布を測定し、純水の粘度で補正する。
 そして、得られた1つ以上のピークのうち、粒子径が最小となるピークを含む最小粒子分布の体積平均粒子径を求め、これを導電性ポリマー(A)の体積平均粒子径とする。
 なお、本発明において「最小粒子分布」とは、動的光散乱法により粒子分布を測定し、純水の粘度で補正した後、これを解析して得られる1つ以上の粒子分布群のうち、最も粒子径の小さい分布のことである。
 具体的には図3に示すように、粒子分布を測定して得られる1つ以上のピークP,P,P,・・・のうち、粒子径が最小となるピークPを含む粒子分布(図3中、符号Sの領域)のことである。動的光散乱法により粒子分布を測定して得られるピークが1つの場合は、この粒子分布が最小粒子分布となる。また、複数の粒子分布が重なった場合は、汎用ソフト等に組み込まれているGauss関数やLorentz関数等を用いる一般的な解析方法により、波形分離すればよい。
<窒素原子を2つ以上有する塩基性化合物(B)>
 塩基性化合物(B)は、窒素原子を2つ以上有する化合物である。
 導電性組成物が塩基性化合物(B)を含むことにより、塩基性化合物(B)が導電性ポリマー(A)の酸性基とイオン架橋構造を形成する。その結果、得られる導電体の耐水性や耐久性が向上する。
 上述したように、従来は、導電体の耐水性を向上させるために、基材上に従来の導電性組成物を塗布して導電体を形成した後に加熱処理していたが、加熱処理により導電性ポリマーの酸性基が脱離するため、導電性が低下しやすかった。
 しかし、本発明の導電性組成物であれば、塩基性化合物(B)が、導電性ポリマー(A)の酸性基とイオン架橋構造を形成することで、導電体の耐水性が向上する。
 この架橋反応は、加熱下はもちろんのこと、常温下でも進行するので、基材上に導電性組成物を塗布して導電体を形成した後に加熱処理する必要がない。
 したがって、導電性ポリマー(A)の酸性基が脱離しにくく、高い導電性を有する導電体を形成できる。
 また、本発明の導電性組成物であれば、導電性ポリマー(A)の酸性基と塩基性化合物(B)の塩基部分とが、イオン結合して塩を形成するので、導電体を加熱処理しても導電性ポリマー(A)の酸性基が脱離しにくい。
 したがって、本発明の導電性組成物は、常温下で放置しても加熱処理しても、導電性を低下させることなく、耐水性に優れた導電体を形成できる。
 さらに、塩基性化合物(B)を含む導電性組成物を用いてコンデンサの固体電解質層を形成すれば、耐久性が向上する。よって、コンデンサ作製工程時の熱よりも高い温度で加熱処理するなどの耐久性試験を行っても電気容量が低下しにくい。
 ここで、耐久性が向上する理由は、以下のように考えられる。
 加熱処理などにより電気容量が低下する理由は、導電性ポリマー(A)の熱による影響、例えば固体電解質層が物理的に劣化(膜割れなど)したり、導電性ポリマー(A)の酸性基が脱離したりして、導電性が低下してしまうことが原因であると考えられる。
 塩基性化合物(B)が2つ以上の窒素原子することで、導電性ポリマー(A)の側鎖と、塩基性化合物(B)の2つ以上の窒素原子とで、分子内及び分子間の少なくとも一方において安定なネットワークを形成する。
 その結果、導電性ポリマー(A)が熱による影響を受けにくくなり、耐熱性が向上すると考えられる。
 塩基性化合物(B)としては、例えば2-アミノピリジン、3-アミノピリジン、4-アミノピリジン;2,6-ジアミノピリジン、2,3-ジアミノピリジン、3,4-ジアミノピリジン;4-ジメチルアミノピリジン、4-ジメチルアミノメチルピリジン、3,4-ビス(ジメチルアミノ)ピリジン等の第3級アミノ基が置換したピリジン誘導体;1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)や、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、ポリビニルピリジン及びこれらの誘導体;ヒドラジン、メチレンジアミン、エチエンジアミン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、ジアミノヘプタン等の脂肪族ジアミン類;ビピリジル等の分子内にピリジン環を2個以上有する多価ピリジン化合物;キノリン環を分子内に2つ以上有する多価キノリン化合物;ピロールを分子内に2つ以上有する多価ピロール;ポリアリルアミン、ポリビニルピリジン等のポリアミン化合物などが挙げられる。
 これら塩基性化合物(B)は、1種単独で用いてもよいし、2種以上を任意の割合で混合して用いてもよい。
 塩基性化合物(B)の沸点は120℃以上が好ましく、130℃以上がより好ましい。沸点が120℃以上であれば、耐熱性が向上する。
 また、塩基性化合物(B)の25℃における塩基解離定数(pKb)は、4.5以上であることが好ましい。塩基解離定数(pKb)が4.5以上であれば、高い導電性を保持したまま耐水性を付与することができる。
 なお、塩基解離定数(pKb)及び後述する酸解離定数(pKa)は「化学便覧 基礎編II」(日本化学会編、丸善、昭和41.9.25発行)に記載されている数値である。
 塩基性化合物(B)は、耐水性や耐久性が向上したり、コンデンサとしたときの性能が向上したりする観点から、共役構造を有することが好ましい。また、塩基性化合物(B)の共役構造は、分子内及び分子間でのネットワーク形成による導電性維持の観点より、環状構造を有することが好ましい。環状構造としては、例えば芳香族構造、脂環構造が挙げられる。
 また、塩基性化合物(B)は、導電性組成物の安定性の観点から、塩基性化合物(B)は含窒素複素環を2つ以上有することが好ましい。
(2つ以上の窒素原子を有し、且つ、共役構造を有する塩基性化合物であって、環状構造を有する塩基性化合物(B-1))
 導電性組成物は、2つ以上の窒素原子を有し、且つ、共役構造を有する塩基性化合物であって、更に環状構造を有する塩基性化合物(B-1)を含むことが好ましい。
 つまり、塩基性化合物(B-1)は、2つ以上の窒素原子と、共役構造及び環状構造を有する塩基性化合物である。
 塩基性化合物(B-1)の窒素原子を有する2つの塩基性基は、前記塩基性化合物(B)のうちの共役構造や環状構造を有さない化合物の塩基性基と比べて、前記導電性ポリマー(A)のドーピングを大きく阻害せずにイオン架橋構造を形成できるため、耐水性、耐久性及びコンデンサ性能が向上すると考えられる。
 また、耐水性、耐久性及びコンデンサ性能の向上の観点から、塩基性化合物(B-1)の中でも、前記環状構造が共役構造を有する塩基性化合物(B-2)がより好ましく、共役構造を有する前記環状構造中に1つ以上の窒素原子を有し、且つ、前記環状構造外に1つ以上の窒素原子を有する塩基性化合物(B-3)が、さらに好ましい。
 また、前記塩基化合物(B)、(B-1)~(B-3)は、同一分子内に、第1,2,3級アミノ基と複素環基を有する化合物であることが好ましく、同一分子内に、第1,2,3級アミノ基と窒素含有複素環基を有するものであることがより好ましい。
 このような化合物としては、具体的に第1,2,3級アミノ基のいずれかが置換した含窒素複素環誘導体が挙げられる。
 第1級アミノ基が置換した含窒素複素環誘導体としては、例えば2-アミノピリジン、3-アミノピリジン、4-アミノピリジン等のアミノピリジン類、2-アミノピリミジン、4-アミノピリミジン、5-アミノピリミジン等のアミノピリミジン類、2,4-ジアミノピリミジン、2,5-ジアミノピリミジン等のジアミノピリミジン類、2,4,6-トリアミノピリミジン等のトリアミノピリミジン類、2-アミノピラジン、3-アミノピラジン等のアミノピラジン類、2,4-ジアミノピラジン、2,3-ジアミノピラジン、2,5-ジアミノピラジン等のジアミノピラジン類、2,3,5-トリアミノピラジン等のトリアミノピラジン類、2-アミノトリアジン等のトリアジン類、2,4-ジアミノトリアジン等のジアミノトリアジン類、2,4,6-トリアミノトリアジン類等のトリアミノトリアジン(慣用名:メラミン)類、アセトグアナミン、ベンゾグアナミン等のグアナミン類、2-アミノピロール、3-アミノピロール等のアミノピロール類、2-アミノキノリン、3-アミノキノリン、4-アミノキノリン、5-アミノキノリン、6-アミノキノリン、7-アミノキノリン、8-アミノキノリン等のアミノキノリン類、アミノアントラセン類、ピコリルアミン等のアルキルピリジンのアルキル基にアミノ基が置換された化合物などが挙げられる。
 第2級アミノ基が置換した含窒素複素環誘導体としては、例えば2-メチルアミノピリジン、3-メチルアミノピリジン、4-メチルアミノピリジン等のアルキルアミノピリジン類、2-アルキルアミノピロール、3-アルキルアミノピロール等のアルキルアミノピロール類、2-アルキルアミノキノリン、3-アルキルアミノキノリン、4-アルキルアミノキノリン、5-アルキルアミノキノリン、6-アルキルアミノキノリン、7-アルキルアミノキノリン、8-アルキルアミノキノリン等のアルキルアミノキノリン類、アリキルアミノアントラセン類、ピコリルアルキルアミン等のアルキルピリジンにアルキルアミノ基が置換された化合物類などが挙げられる。
 第3級アミノ基が置換した含窒素複素環誘導体としては、例えば2-ジメチルアミノピリジン、3-ジメチルアミノピリジン、4-ジメチルアミノピリジン等のジアルキルアミノピリジン類、2-ジアルキルアミノピロール、3-ジアルキルアミノピロール等のジアルキルアミノピロール類、2-ジアルキルアミノキノリン、3-ジアルキルアミノキノリン、4-ジアルキルアミノキノリン、5-ジアルキルアミノキノリン、6-ジアルキルアミノキノリン、7-ジアルキルアミノキノリン、8-ジアルキルアミノキノリン等のジアルキルアミノキノリン類、ジアリキルアミノアントラセン類、ピコリルジアルキルアミン等のアルキルピリジンにジアルキルアミノ基が置換された化合物類などが挙げられる。
 これらの化合物の中でも、耐水性の観点から、アミノピリジン、メチルアミノピリジン、ジメチルアミノピリジン、ジアミノピリジン等のアミノピリジン類、アミノピリミジン類、ジアミノピリミジン類、トリアミノピリミジン類、アミノピラジン類、ジアミノピラジン類、トリアミノピラジン類、アミノトリアジン類、ジアミノトリアジン類、トリアミノトリアジン類、フェナントロリン類、アミノキノリン類が特に好ましい。また、耐久性及びコンデンサ性能の観点から、アミノピリジン類、アルキルアミノピリジン類、ジアルキルアミノピリジン類、アミノキノリン類、アルキルアミノキノリン類、ジアルキルアミノキノリン類が特に好ましい。
 これらの化合物は、1種単独で用いてもよいし、2種以上を任意の割合で混合して用いてもよい。
(2つ以上の窒素原子を有し、且つ、含窒素複素環を2つ以上有する塩基性化合物(B-4))
 導電性組成物は、2つ以上の窒素原子を有し、且つ、含窒素複素環を2つ以上有する塩基性化合物(B-4)を含むことが好ましい。
 つまり、塩基性化合物(B-4)は、2つ以上の窒素原子と、2つ以上の含窒素複素環を有する塩基性化合物である。
 塩基性化合物(B-4)は、前記塩基性化合物(B)のうちの含窒素複素環を2つ以上有さない化合物と比べて、溶液中でのイオン結合力が弱いため、導電性組成物の安定性が向上すると考えられる。
 塩基性化合物(B-4)としては、ビピリジル等の分子内にピリジン環を2個以上有する多価ピリジン化合物、キノリン環を分子内に2つ以上有する多価キノリン化合物、ピロールを分子内に2つ以上有する多価ピロール、ポリビニルピリジン等のポリアミン化合物などが挙げられる。この中でも分子内にピリジン環を2つ以上有する化合物が好ましく、具体的には多価ピリジン類、ポリビニルピリジン等が上げられる。
 塩基性化合物(B)の含有量は、導電性組成物から形成される導電体の耐水性向上の観点から、導電性ポリマー(A)の酸性基100mol%に対して、塩基性化合物(B)が10~150mol%となる量であることが好ましく、より好ましくは20~130mol%であり、特に好ましくは30~130mol%である。
<窒素原子を1つ有する塩基性化合物(C)>
 塩基性化合物(C)は、窒素原子を1つ有する化合物である。
 上述したように、塩基性化合物(B)は導電性ポリマー(A)の酸性基とイオン架橋構造を形成するが、この架橋反応は常温下でも進行するため、導電性組成物の状態でも一部はイオン架橋構造を形成する。その結果、塩基性化合物(B)の種類や含有量によっては、塩基性化合物(B)と導電性ポリマー(A)の架橋体が沈殿し、導電性組成物の安定性を良好に維持しにくくなる場合がある。
 導電性組成物が塩基性化合物(C)を含んでいれば、沈殿物の発生を抑制し、導電性組成物の安定性を良好に維持できる。
 ここで、安定性が向上する理由は、以下のように考えられる。
 塩基性化合物(C)は塩基性化合物(B)よりも優先して導電性ポリマー(A)の酸性基とイオン架橋構造を形成する。導電性組成物中に塩基性化合物(C)が存在していると、塩基性化合物(B)と導電性ポリマー(A)との架橋反応が塩基性化合物(C)により妨げられる。よって、沈殿物の発生が抑制され、導電性組成物の安定性を良好に維持できると考えられる。なお、塩基性化合物(C)と導電性ポリマー(A)との架橋体は沈殿しにくいので、塩基性化合物(C)が導電性ポリマー(A)の酸性基とイオン架橋構造を形成しても導電性組成物の安定性には影響しにくいと考えられる。
 また、詳しくは後述するが、導電性組成物が導電体や固体電解質層となるときには、加熱乾燥により塩基性化合物(C)の少なくとも一部は揮発する。塩基性化合物(C)が揮発することでフリーになった導電性ポリマー(A)の酸性基と、塩基性化合物(B)とが架橋反応し、イオン架橋構造を形成するので、耐水性や耐久性を発現できる。
 塩基性化合物(C)の沸点は、塩基性化合物(B)の沸点よりも低いことが好ましい。上述したように、加熱乾燥により塩基性化合物(C)が揮発することで、導電性ポリマー(A)の酸性基と塩基性化合物(B)とが架橋反応するので、塩基性化合物(C)は揮発しやすいことが好ましい。塩基性化合物(C)の沸点が塩基性化合物(B)の沸点よりも低ければ、加熱乾燥時に塩基性化合物(C)が揮発しやすい。
 塩基性化合物(C)の沸点は、塩基性化合物(B)の沸点よりも5℃低いことが好ましく、10℃低いことがより好ましい。
 塩基性化合物(C)の沸点は、130℃以下が好ましい。
 また、塩基性化合物(C)の25℃における塩基解離定数(pKb)は、塩基性化合物(B)の25℃における塩基解離定数(pKb)よりも小さいことが好ましい。塩基性化合物(C)の塩基解離定数(pKb)が塩基性化合物(B)の塩基解離定数(pKb)よりも小さければ、すなわち、塩基性化合物(C)の酸解離定数(pKa)が塩基性化合物(B)の酸解離定数(pKa)よりも大きければ、導電性組成物中でより優先的に塩基性化合物(C)が導電性ポリマー(A)の酸性基とイオン架橋構造を形成できる。よって、導電性組成物の安定性がより向上する。
 塩基性化合物(C)としては、例えばアンモニア、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、イソブチルアミン、ターシャリーブチルアミン等の第一級アルキルアミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等のジアルキルアミン類;トリメチルアミン、トリエチルアミン等のトリアルキルアミン類;ピリジン、2-ピコリン、3-ピコリン等のピリジン誘導体などが挙げられる。これらのなかでも、pKaが高く、低沸点の塩基であるアンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミンが特に好ましい。
 塩基性化合物(C)の含有量は、導電性組成物から形成される導電体の安定性向上の観点から、導電性ポリマー(A)の酸性基100mol%に対して、塩基性化合物(C)が10~120mol%となる量であることが好ましく、特に好ましくは20~100mol%である。
<導電性ポリマー(A)以外の水溶性又は水分散性ポリマー(D)>
 水溶性又は水分散性ポリマー(D)としては、熱可塑性、熱硬化性の水溶性ポリマー、水系でエマルションを形成する高分子化合物が用いられる。
 導電性組成物に水溶性又は水分散性ポリマー(D)が含まれていれば、得られる導電体の耐水性がより向上すると共に、基材に対する密着性も向上する。
 水溶性又は水分散性ポリマー(D)としては、後述する溶媒(E)に溶解又は分散するものであれば特に限定されないが、例えば以下に示すものが挙げられる。
 また、耐久性の観点で、水溶性又は水分散性ポリマー(D)としては、質量平均分子量が5000以上、好ましくは10000以上のものが用いられる。
 水溶性ポリマーとしては、具体的に、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール等のポリビニルアルコール類、水溶性ナイロン樹脂、水溶性アルキッド樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、水溶性フェノール樹脂、水溶性エポキシ樹脂、水溶性ポリブタジエン樹脂、水溶性アクリル樹脂、水溶性ウレタン樹脂、水溶性アクリル/スチレン樹脂、水溶性酢酸ビニル/アクリル共重合樹脂、水溶性ポリエステル樹脂、水溶性スチレン/マレイン酸共重合樹脂、水溶性フッ素樹脂、水溶性ポリイソシアネート樹脂、及びこれらの共重合体などが挙げられる。
 水分散性ポリマーとしては、具体的に、水系アルキッド樹脂、水系メラミン樹脂、水系尿素樹脂、水系フェノール樹脂、水系エポキシ樹脂、水系ポリブタジエン樹脂、水系アクリル樹脂、水系ウレタン樹脂、水系アクリル/スチレン樹脂、水系酢酸ビニル/アクリル共重合樹脂、水系ポリエステル樹脂、水系スチレン/マレイン酸共重合樹脂、水系フッ素樹脂、水系酢酸ビニル樹脂、水系ナイロン樹脂、水系ポリイソシアネート樹脂、及びこれらの共重合体などの水系でエマルションを形成する高分子化合物が挙げられる。
 水溶性又は水分散性ポリマー(D)の含有量は、導電体の耐水性、成膜性、成形性及び強度向上の観点から、固形部換算で、導電性ポリマー(A)の固形分100質量部に対して、0.1~50000質量部であることが好ましく、より好ましくは0.5~10000質量部である。
<溶媒(E)>
 導電性組成物は、溶媒(E)を含むことが好ましい。
 溶媒(E)は、導電性ポリマー(A)を溶解又は分散するものであれば特に限定されない。
 溶媒(E)としては、例えば水、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル、エチレングリコールモノ-n-プロピルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;N-メチルピロリドン、N-エチルピロリドン等のピロリドン類;乳酸メチル、乳酸エチル、β-メトキシイソ酪酸メチル、α-ヒドロキシイソ酪酸メチル等のヒドロキシエステル類;γ-ブチロラクトンなどが好ましく用いられる。
 特に、溶解性の観点から、水、水と有機溶媒との混合溶媒が好ましく用いられる。
 溶媒(E)として水と有機溶媒との混合溶媒を用いる場合、混合溶媒100質量%中の有機溶媒の含有量は、1~70質量%が好ましく、3~30質量%がより好ましい。有機溶媒の含有量が上記範囲内であれば、特に導電性ポリマー(A)が良好に溶解する。
 ここで、溶解性、導電体の導電性及び平坦性の観点から、溶媒(E)の含有量は、導電性ポリマー(A)の固形分100質量部に対して、200~100000質量部であることが好ましく、500~100000質量部であることがより好ましい。
 ここで、溶媒(E)の含有量が200質量部以上であれば、十分な溶解性が得られ、表面が平坦な導電体が得られやすくなる。
<他の成分>
 導電性組成物には、本発明の効果を損なわない範囲内であれば、上述した導電性ポリマー(A)、塩基性化合物(B)、塩基性化合物(C)、水溶性又は水分散性ポリマー(D)、溶媒(E)の他にも、例えば導電性ポリマー(A)以外の導電性ポリマー(以下、「他の導電性ポリマー」という。)や、公知の添加剤を任意に含有させることができる。
 他の導電性ポリマーとしては、ポリ(3,4-エチレンジオキシチオフェン)又はその誘導体、ポリピロール又はその誘導体、ポリアニリン又はその誘導体などが挙げられる。
 また、他の導電性ポリマーを用いる場合には、ドーパント(例えばポリスチレンスルホン酸など)を併用するのが好ましい。
 添加剤としては、架橋剤、可塑剤、分散剤、流動性調整剤、界面活性剤、滑剤、界面活性剤、紫外線吸収剤、保存安定剤、接着助剤、増粘剤、レベリング剤、帯電防止剤、無機フィラー、スリップ剤、有機フィラーなどが挙げられる。
 架橋剤としては、ブロックイソシアネートなどのイソシアネート類、カルボジイミド化合物、エポキシ化合物、メラミン化合物などが挙げられる。
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、非イオン系界面活性剤、フッ素系界面活性剤などが挙げられる。
 これら架橋剤や界面活性剤などの添加剤は、それぞれ1種単独で用いてもよいし、2種以上を任意の割合で混合して用いてもよい。
<作用効果>
 以上説明した本発明の導電性組成物は、上述した導電性ポリマー(A)と塩基性化合物(B)とを含有するので、高い導電性を有し、且つ、耐水性に優れた導電体を形成できる。
 また、固体電解コンデンサの製造において本発明の導電性組成物を用いれば、誘電体層を有する陽極の内部まで導電性ポリマー(A)を十分に含浸させることができる。よって、誘電体層の微細な凹凸の内部にまで固体電解質層を形成できるので、電気容量発現率が高く、耐久性が高く、耐水性にも優れた固体電解コンデンサが得られる。
 本発明の導電性組成物は、導電性フィルムや固定電解コンデンサ用として好適である。
「導電体、積層体」
 本発明の導電体は、本発明の導電性組成物からなる。導電体は、例えば基材上に本発明の導電性組成物を塗布し、乾燥させることで形成される。
 本発明の積層体は、基材の少なくとも一方の面上に本発明の導電体が積層されたものである。
 基材としては、例えばプラスチック、木材、紙材、セラミックス及びそれらのフィルム、又はガラス板などが用いられる。
 これらの中でも、密着性の観点で、プラスチック及びそのフィルムが好ましく用いられる。
 プラスチック及びそのフィルムに用いられる高分子化合物としては、例えばポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ABS樹脂、AS樹脂、メタクリル樹脂、ポリブタジエン、ポリカーボネート、ポリアリレート、ポリフッ化ビニリデン、ポリエステル、ポリアミド、ポリイミド、ポリアラミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリエーテルニトリル、ポリアミドイミド、ポリエーテルサルホン、ポリサルホン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタンなどが挙げられる。
 プラスチック基材やそのフィルムには、導電体との密着性を向上させるために、導電体が形成される面に、予めコロナ表面処理又はプラズマ処理を施しておいてもよい。
 また、コンデンサの電極等に用いられるアルミニウム、タンタル、ニオブ等の酸化皮膜表面に、導電性組成物を塗布して導電体を形成してもよい。
 基材上に導電性組成物を塗布する方法としては、一般の塗工に用いられる方法を採用でき、例えばグラビアコーター、ロールコーター、カーテンフローコーター、スピンコーター、バーコーター、リバースコーター、キスコーター、ファンテンコーター、ロッドコーター、エアドクターコーター、ナイフコーター、ブレードコーター、キャストコーター、スクリーンコーター等の塗布方法、スプレーコーティング等の噴霧方法、ディップ等の浸漬方法などが用いられる。
 基材上に導電性組成物を塗布し、塗膜を形成した後は、そのまま塗膜を常温下で放置して乾燥してもよいし、塗膜に対して加熱処理を行って乾燥してもよい。
 塗膜を加熱処理すれば、上述した塩基性化合物(B)が、乾燥により導電性ポリマー(A)の酸性基の架橋反応が促進されるので、より短時間で導電体に耐水性を付与できる。特に、導電性組成物が上述した塩基性化合物(C)を含む場合は、加熱乾燥することが好ましい。加熱乾燥することで塩基性化合物(C)がより揮発しやすくなり、塩基性化合物(B)と導電性ポリマー(A)の酸性基とがイオン架橋構造を形成しやすくなる。加えて、溶媒(E)の揮発も促進されるので、導電体の導電性がより向上する。
 ここで、加熱処理温度は300℃以下が好ましく、より好ましくは250℃以下であり、特に好ましくは200℃以下である。
 加熱処理温度が300℃以下であれば、導電性ポリマー(A)自体が分解するのを抑制できるので、導電性を良好に維持できる。
<作用効果>
 以上説明した本発明の導電体は、本発明の導電性組成物からなる。また、本発明の積層体は、基材の少なくとも一方の面上に本発明の導電体が積層したものである。よって、本発明の導電体及び積層体は、高い導電性を有し、且つ、耐水性に優れ、耐水性を必要とする用途にも好適である。
 ところで、導電体はその膜厚が薄いほど導電性が低下する傾向にある。例えば、導電性ポリマーとして一般的に使用されるポリ(3,4-エチレンジオキシチオフェン)は高価であるため、導電体の製造コストを考慮すると膜厚を厚くしにくい。
 また、導電体は時間が経過するほど導電性が低下する傾向にもある。これは、湿度の影響を受けるものと考えられる。
 しかし、本発明の導電性組成物に含まれる導電性ポリマー(A)は、比較的安価に製造できるので、本発明の導電性組成物を用いれば導電体の膜厚を20~100nm程度に厚くできる。
 しかも、本発明の導電性組成物を用いれば高い導電性を有する導電体、具体的には、膜厚が20~100nmのとき、温度25℃、湿度50%における表面抵抗値(初期表面抵抗値)が1×1010Ω/□以下の導電体が得られやすい。
 さらに、本発明の導電体は耐水性に優れるので、時間が経過しても導電性を維持できる。例えば、温度25℃、湿度50%の環境下にて導電体を1週間放置した後の表面抵抗値、あるいは温度25℃の水に導電体を10分間浸漬し、乾燥した後の表面抵抗値が、初期表面抵抗値の10倍以内となりやすい。
 また、上述した導電体の製造方法によれば、本発明の導電性組成物を用いるので、基材上に塗布して塗膜を形成した後、該塗膜を常温下で放置しても加熱処理しても、高い導電性を有し、耐水性に優れた導電体を製造できる。また、本発明の導電性組成物より得られる導電体は耐水性を有するので、導電性組成物を重ね塗りして導電体を形成する場合にも好適である。
「導電性フィルム」
 本発明の導電性フィルムは、本発明の導電体を備える。
 導電性フィルムとしては、例えば基材の一方の面上に本発明の導電体が積層し、基材の他方の面上に粘着層及びセパレータが順次積層した構造のものが挙げられる。
 基材としては、導電体及び積層体の説明において先に例示した基材が挙げられる。
 粘着層は、公知の粘着剤から形成される。
 セパレータは、表面が剥離処理されたポリエチレンテレフタレートなどが挙げられる。
 導電性フィルムを使用する際には、セパレータを剥離し、粘着層を露出させて所定の箇所に貼着すればよい。
 本発明の導電性フィルムは、例えば帯電防止用の保護フィルムとして好適である。
「固体電解質コンデンサ」
 本発明の固体電解コンデンサの一実施形態例について説明する。
 図1に、本実施形態例の固体電解コンデンサの構成を模式的に示す。この例の固体電解コンデンサ10は、陽極(被膜形成金属)11と、陽極11上に形成された誘電体層(誘電体酸化膜)12と、誘電体層12上に形成された単層構造の固体電解質層13と、固体電解質層13上に形成されたグラファイト層14と、グラファイト層14上に形成された金属層15とを備えた、積層型の固体電解コンデンサである。
 なお、図示例の固体電解コンデンサ10において、固体電解質層13、グラファイト層14及び金属層15で陰極の層を形成する。
<陽極>
 陽極11は、弁作用を有する金属(弁金属)の多孔質体からなり、導電性を有する。弁金属としては、固体電解コンデンサに用いられる通常の電極を使用でき、具体的にはアルミニウム、タンタル、ニオブ、ニッケル等の金属材料からなる電極が挙げられる。その形態としては、金属箔、金属焼結体などが挙げられる。
<誘電体層>
 誘電体層12は、陽極11の表面が酸化されて形成された層である。酸化の方法としては、陽極酸化などの化成処理が挙げられる。
 陽極11の表面を酸化して形成される誘電体層12は、図1に示すように陽極11の表面状態を反映し、表面が微細な凹凸状となっている。この凹凸の周期は、陽極11の種類などに依存するが、通常、200nm以下程度である。また、凹凸を形成する凹部(微細孔)の深さは、陽極11の種類などに特に依存しやすいので一概には決められないが、例えばアルミニウムを用いる場合、凹部の深さは数十nm~1μm程度である。
<固体電解質層>
 固体電解質層13は、本発明の導電性組成物から形成された層である。特に、誘電体層12の微細な凹凸の内部へ導電性ポリマー(A)がより十分に含浸し、電気容量発現率がより高い固体電解コンデンサが得られやすくなる点で、導電性組成物中の導電性ポリマー(A)は、上述した条件(a)を満たすことが好ましい。
<グラファイト層>
 グラファイト層14は、グラファイト液を固体電解質層13上に塗布、又は誘電体層12及び固体電解質層13が表面に順次形成された陽極11をグラファイト液に浸漬して形成されたものである。
<金属層>
 金属層15としては、接着銀などの銀層の他、アルミニウム電極、タンタル電極、ニオブ電極、チタン電極、ジルコニウム電極、マグネシウム電極、ハフニウム電極などが挙げられる。
<固体電解コンデンサの製造方法>
 次に、固体電解コンデンサ10の製造方法の一例について説明する。
 固体電解コンデンサの製造方法は、陽極11の表面に形成された誘電体層12上に、前記導電性ポリマー(A)、前記塩基性化合物(B)を含む導電性組成物を塗布する工程(塗布工程)と、塗布した導電性組成物を乾燥して固体電解質層13を形成する工程(乾燥工程)とを有する。
 固体電解質層13を形成する工程以外の工程は、公知の技術により行われる。
 例えば、図1に示す固体電解コンデンサ10を製造する場合、アルミニウム箔などの陽極11の表層近傍をエッチングにより多孔質体化した後、陽極酸化により誘電体層12を形成する。ついで、誘電体層12上に固体電解質層13を形成した後、これをグラファイト液に浸漬させて、又はグラファイト液を塗布して固体電解質層13上にグラファイト層14を形成し、さらにグラファイト層14上に金属層15を形成する。さらに、金属層15及び陽極11に外部端子(図示略)を接続して外装し、固体電解コンデンサ10とする。
 ここで、固体電解質層13を形成する工程について、詳しく説明する。
 固体電解質層13は、陽極11の表面に形成された誘電体層12上に、本発明の導電性組成物を塗布し(塗布工程)、誘電体層12の微細な凹凸の内部に導電性ポリマー(A)等を含浸させた後、乾燥する(乾燥工程)ことで形成できる。
 このようにして形成された固体電解質層13は、誘電体層12の微細な凹凸の内部にまで十分に導電性ポリマー(A)が含浸しているので、得られる固体電解コンデンサ10の電気容量発現率が向上する。
 なお、本発明において「塗布」とは、塗膜(層)を形成させることを指し、塗装や浸漬も塗布に含まれる。
 導電性組成物を固体電解質層13の形成に用いる場合、導電性組成物100質量%中の導電性ポリマー(A)の含有量は、9質量%以下であることが好ましく、5質量%以下であることがより好ましい。導電性ポリマー(A)の含有量が9質量%以下であれば、誘電体層12が形成された陽極11や、後述する巻回型の固体電解コンデンサに備わるセパレータに対する濡れ性が向上するため、導電性ポリマー(A)は誘電体層12の表面に堆積することなく、微細な凹凸の内部へ十分に含浸できる。
 導電性ポリマーの含有量の下限値については特に制限されないが、所望の厚さの固体電解質層13を容易に形成できる点で、0.1質量%以上が好ましい。
 また、導電性組成物が他の成分として界面活性剤を含有する場合、導電性組成物100質量%中の界面活性剤の含有量は、0.1~20質量%が好ましく、0.1~5質量%がより好ましい。界面活性剤の含有量が0.1質量%以上であれば、導電性組成物の表面張力を低下させることができる。よって、誘電体層12の微細な凹凸の内部への含浸性がより向上し、固体電解質層13の導電率がより高まる。一方、界面活性剤の含有量が20質量%以下であれば、導電性を良好に維持できる。
 導電性組成物の塗布方法としては、ディップコート法、刷毛塗り法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、スプレーコート法、フローコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法などが挙げられる。特に、操作が容易である点で、ディップコート法(浸漬法)が好ましい。
 ディップコート法により導電性組成物を塗布する場合、作業性の点で、導電性組成物への浸漬時間は、1~30分が好ましい。
 また、ディップコートする際に、減圧時にディップさせて常圧に戻す、あるいは、ディップ時に加圧するなどの方法も有効である。
 ところで、スプレーコート法などは、外部からの物理的な力によって導電性ポリマー(A)を誘電体層12の微細な凹凸の内部に含浸させることが可能であるが、機械装置の初期投資が嵩んだり、導電性組成物が誘電体層12以外の部分に飛び散りやすく導電性ポリマー(A)の利用率が低下したりしやすい。
 しかし、本発明であれば、前記導電性組成物を用いて塗布を行うことができるので、スプレーコート法などを用いなくても、操作が容易で、初期投資がかかりにくく、しかも導電性ポリマー(A)を無駄なく利用できるディップコート法を使用でき、経済的にも有益である。
 導電性組成物を塗布した後の乾燥方法としては加熱乾燥が好ましいが、例えば、風乾や、スピンさせて物理的に乾燥させる方法などを用いてもよい。特に、導電性組成物が上述した塩基性化合物(C)を含む場合は、加熱乾燥が好ましい。
 また、乾燥条件は、導電性ポリマー(A)や溶媒の種類により決定されるが、通常、乾燥温度は、乾燥性の観点から、30~200℃が好ましく、乾燥時間は1~60分が好ましい。
<作用効果>
 以上説明した本発明の固体電解コンデンサは、本発明の導電性組成物より形成された固体電解質層が誘電体層上に形成されているので、誘電体層の微細な凹凸の内部にまで導電性ポリマー(A)が十分に含浸している。よって、誘電体層12の微細な凹凸の内部にまで固体電解質層が形成されているため、本発明の固体電解コンデンサは電気容量発現率が高い。しかも、本発明の固体電解コンデンサは加熱による耐久性が良好であるため、加熱によるコンデンサのESR(等価直列抵抗)の上昇を抑制できる。
 また、本発明の固体電解コンデンサは、加熱処理しても固体電解質層13が物理的に劣化しにくく、しかも導電性ポリマー(A)の酸性基が脱離しにくいので、導電性を良好に維持でき、電気容量が低下しにくいと考えられる。
 また、本発明の固体電解コンデンサは、上述したように、陽極上に形成された誘電体層上に、本発明の導電性組成物を塗布して固体電解質層を形成することで製造できる。よって、導電性ポリマー(A)が誘電体層の微細な凹凸の内部にまで十分に含浸する。
 このように、本発明であれば、誘電体層上に高導電率の固体電解質層を形成でき、電気容量発現率が高く、耐久性が良好な固体電解コンデンサを容易に製造できる。
<他の実施形態>
 本発明の固体電解コンデンサは、上述した実施形態例に限定されない。
 上述した固体電解コンデンサの固体電解質層は単層構造であるが、固体電解質層は多層構造であってもよい。ただし、固体電解質層の少なくとも1層は、本発明の導電性組成物から形成された層である。また、複数の固体電解質層のうち、少なくとも誘電体層と接する層は、本発明の導電性組成物から形成された層であることが好ましい。
 また、上述した固体電解コンデンサは積層型の固体電解コンデンサであるが、例えば本発明の固体電解コンデンサは、誘電体層が形成された陽極と、グラファイト層及び金属層(陰極)との間に、セパレータを設けることができる。陽極と陰極との間にセパレータが設けられた固体電解コンデンサとしては、図2に示すような巻回型の固体電解コンデンサ20が挙げられる。
 なお、図2において符号21は「陽極」であり、符号22は「陰極」であり、符号23は「セパレータ」である。
 巻回型の固体電解コンデンサ20は、陽極21と陰極22との間にセパレータ23を設け、これらを巻き回して巻回体とした後、上述した積層型の固体電解コンデンサと同様にして陽極上に形成された誘電体層上に固体電解質層(図示略)を形成し、さらに陽極21と陰極22に外部端子24を接続して外装を施すことで得られる。誘電体層上に導電性組成物を塗布する際は、ディップコート法が好適である。
 また、陽極21と陰極22との間にセパレータ23を設けた後、上述した積層型の固体電解コンデンサと同様にして陽極上に形成された誘電体層上に固体電解質層を形成してから、これらを巻き回して巻回体としてもよい。
 巻回型の固体電解コンデンサ20に使用されるセパレータ23の材質としては、繊維、紙、ポリエチレンテレフタレートなどが挙げられる。
 また、セパレータ23として、絶縁油を染み込ませたセパレータが用いられることもある。上記絶縁油としては、鉱油、ジアリルエタン油、アルキルベンゼン油、脂肪族エステル油(マレイン酸エステル、フマル酸エステルなど)、芳香族エステル油(フタル酸エステルなど)、多環芳香族油、シリコーン油等の電気絶縁油又はこれらの混合物などが挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
「試験1」
<製造例>
(導電性ポリマー(A):ポリ(2-メトキシアニリン-5-スルホン酸))
 2-メトキシアニリン-5-スルホン酸100mmolを、25℃で4mol/Lのトリエチルアミン水溶液に攪拌溶解し、これにペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。
 滴下終了後、25℃で12時間さらに攪拌した後に、反応生成物を濾別洗浄後乾燥し、ポリマー粉末(ポリ(2-メトキシアニリン-5-スルホン酸))15gを得た。
 得られた粉末10質量部を100質量部の水に溶解し、陽イオン交換樹脂(オルガノ株式会社製、「アンバーライトIR-120B」)にて陽イオン交換し、ポリ(2-メトキシアニリン-5-スルホン酸)水溶液(a-1)を得た。
<実施例1-1~1-19、比較例1-1~1-4>
 表1に示す配合組成となるように、各成分を混合して導電性組成物を調製した。評価基材としてポリエチレンテレフタレート(PET)フィルム上に、乾燥後の膜厚が100nm程度となるように、ワイヤーバーNo5を用いて得られた導電性組成物を塗布して、塗膜を形成した後、ホットプレート上で、表1に示す加熱条件にて乾燥し、PETフィルム上に導電体が積層した積層体を得た。なお、表1中の各成分の配合量は、固形分換算した量(g)である。
 得られた積層体について、以下に示す方法により、導電性、耐水性及び耐湿性を評価した。結果を表2に示す。
(導電性の評価)
 積層体の導電体側の表面の表面抵抗値を2端子法(電極間距離:20mm、温度:25℃、湿度:50%)により測定した。
(耐水性の評価)
 積層体の導電体側の表面を、純水を染み込ませたウエスにてふき取り、導電体の剥離の具合を目視にて観察し、以下の評価基準にて耐水性の評価を行った。
○:導電体が剥離しない。
△:導電体が一部剥離し、ウエスに導電性ポリマー由来の着色が見える。
×:導電体が完全に剥離した。
(耐湿性の評価)
 積層体を、温度60℃、湿度95%の環境下で48時間放置して耐湿試験を行った。導電性の評価と同様にして、耐湿試験後の積層体の表面抵抗値を測定し、以下の評価基準にて耐湿性の評価を行った。
◎:耐湿試験後の表面抵抗値が8.0×10Ω/□以下
○:耐湿試験後の表面抵抗値が8.0×10Ω/□超、5.0×10Ω/□以下
×:耐湿試験後の表面抵抗値が5.0×10Ω/□超
Figure JPOXMLDOC01-appb-T000010
                  
 表1中の略号は以下の通りである。なお、下記b-3は、塩基性化合物(C)に相当する。
(塩基性化合物(B)及びその代替品)
b-1:4-アミノピリジン
b-2:4-ジメチルアミノピリジン
b-3:ピリジン
b-4:2,4,6-トリアミノピリミジン
b-5:2,4,6-トリアミノ-1,3,5-トリアジン(メラミン)
(水溶性又は水分散性ポリマー(D))
d-1:水分散型ポリエステル樹脂(日本合成化学社製:ポリエスターWR905)
d-2:水系ウレタンエマルション(第一工業製薬社製:エラストロン)
d-3:ポリビニルブチラール(積水化学社製:エレックスKX5)
d-4:ポリビニルアルコール(クラレ社製:ポバール)
(その他の成分)
f-1:デュラネート(旭化成ケミカル社製:ブロックイソシアネート)
f-2:ペレックス(花王社製:アニオン系界面活性剤)
Figure JPOXMLDOC01-appb-T000011
                  
 表2から明らかなように、各実施例の導電性組成物は、高い導電性を有し、かつ耐水性に優れた導電体を形成できた。
 一方、特定の塩基性化合物(B)を含有しない比較例1-1~1-3の導電性組成物より得られた導電体は、耐水性に劣っていた。
 また、特定の塩基性化合物(B)を含有しないが、該導電体を160℃の高温で加熱処理した比較例1-3は、導電性にも劣るものであった。これは、加熱処理したことにより、導電性ポリマー(A)のスルホン酸基が脱離したため、導電性が低下したものと考えられる。
 さらに、特定の塩基化合物(B)の代わりに、特定の塩基性化合物(C)であるピリジンを含有した比較例1-4では、耐水性が劣っていた。
「試験2」
<製造例>
(導電性ポリマー(A):ポリ(2-メトキシアニリン-5-スルホン酸))
 試験1の製造例と同様にして、ポリ(2-メトキシアニリン-5-スルホン酸)水溶液(a-1)を得た。
<実施例2-1~2-18、比較例2-1~2-4>
 表3に示す配合組成となるように、各成分を混合して導電性組成物を調製した。表3に示す評価基材上に、乾燥後の膜厚が表3に示す値になるように、ワイヤーバーNo5を用いて得られた導電性組成物を塗布して、塗膜を形成した後、ホットプレート上で、表3に示す加熱条件にて乾燥し、PETフィルム上に導電体が積層した積層体を得た。なお、表3中の各成分の配合量は、固形分換算した量(g)である。
 得られた導電性組成物について、以下に示す方法により、安定性を評価した。結果を表4に示す。
 また、得られた積層体について、以下に示す方法により、導電性、耐水性及び耐湿性を評価した。結果を表4に示す。
(安定性の評価)
 導電性組成物を室温で放置し、1週間後の沈殿や凝集物の発生を目視にて確認した。
○:わずかに凝集物が発生した。
△:凝集物が発生した。
×:沈殿した。
(導電性の評価1)
 試験1の導電性の評価と同様にして、表面抵抗値を測定した。これを、初期表面抵抗値とする。
(導電性の評価2)
 積層体を、温度25℃、湿度50%の環境下で1週間放置した。試験1の導電性の評価と同様にして、放置後の積層体の表面抵抗値を測定した。これを放置後の表面抵抗値とする。また、以下の評価基準にて導電性の評価を行った。評価が○の場合は、温度25℃、湿度50%の環境下で1週間放置しても湿度の影響を受けにくく、導電性が安定していることを意味する。
○:放置後の表面抵抗値が、初期表面抵抗値の10倍以内である。
×:放置後の表面抵抗値が、初期表面抵抗値の10倍を超える。
(導電性の評価3)
 積層体を、温度25℃の水に10分間浸漬させた後、乾燥して耐水試験を行った。試験1の導電性の評価と同様にして、耐水試験の積層体の表面抵抗値を測定した。これを耐水試験後の表面抵抗値とする。また、以下の評価基準にて導電性の評価を行った。評価が○の場合は、導電体が耐水性に優れることを意味する。
○:耐水試験後の表面抵抗値が、初期表面抵抗値の10倍以内である。
×:耐水試験後の表面抵抗値が、初期表面抵抗値の10倍を超える。
(耐水性の評価)
 試験1の耐水性の評価と同様にして、耐水性を評価した。
(耐湿性の評価)
 試験1の耐湿性の評価と同様にして、耐湿試験を行い、耐水性を評価した。
Figure JPOXMLDOC01-appb-T000012
                  
 表3中の略号は以下の通りである。
(導電性ポリマー(A)の代替品)
a-2:PEDOT(ポリ(3,4-エチレンジオキシチオフェン))分散液(Clevios社製:CLEVIOUS-P)
(塩基性化合物(B))
b-6:ビピリジル(ピリジンのpka=5.18)
b-7: ジアミノエタン(pka=9.96)
b-8:ポリビニルピリジン(平均分子量16万、pka=4.9)
b-9:ポリアリルアミン(pka=9.9)
(塩基性化合物(C))
c-1:アンモニア(pka=9.245、沸点-33.3℃)
c-2:2-ピコリン(pka=6.20、沸点128℃)
c-3:トリエチルアミン(pka=10.87、沸点89.7℃)
c-4:デシルアミン(pka=10.64、沸点217℃)
c-5:ピリジン(pka=5.18、沸点115℃)
(水溶性又は水分散性ポリマー(D))
d-1:水分散型ポリエステル樹脂(日本合成化学社製:ポリエスターWR905)
d-2:水系ウレタンエマルション(第一工業製薬社製:エラストロン)
d-3:ポリビニルブチラール(積水化学社製:エレックスKX5)
d-4:ポリビニルアルコール(クラレ社製:ポバール)
(その他の成分)
f-1:デュラネート(旭化成ケミカル社製:ブロックイソシアネート)
f-2:ペレックス(花王社製:アニオン系界面活性剤)
f-3:AQUACER(BYK社製:すべり性向上剤)
f-4:4-アミノピリジン(東京化成工業社製)
Figure JPOXMLDOC01-appb-T000013
                  
 表4から明らかなように、各実施例の導電性組成物は、高い導電性を有し、かつ耐水性に優れた導電体を形成できた。
「試験3」
<測定・評価方法>
(体積平均粒子径の測定)
 導電性ポリマーの体積平均粒子径は、以下のようにして求めた。
 まず、溶媒として超純水を用いて、導電性ポリマー濃度が1質量%の導電性ポリマー溶液を調製し、動的光散乱式粒子径測定装置(日機装株式会社製、「ナノトラックUPA-UT」)を用いて動的光散乱法により粒子分布を測定し、超純水の粘度で補正した。
 ここで、得られたピークが1つ以上存在する場合は、粒子径が最小となるピークを含む最小粒子分布の体積平均粒子径を求め、これを導電性ポリマーの体積平均粒子径とした。
 なお、動的光散乱法による粒子分布が1つのピークのみの場合は、超純水の粘度で補正した後、この粒子分布をそのまま最小粒子分布として、体積平均粒子径を求めた。
(膜割れ試験)
 導電性組成物をアルミニウム皿に0.5g滴下し、160℃の乾燥機の中で30分間加熱して塗膜(膜厚50μm)を形成した。得られた塗膜の状態を目視にて観察し、以下の評価基準にて塗膜の膜割れ(劣化)を評価した。
○:塗膜にクラックが生じていない。
×:塗膜にクラックが生じた。
(初期の電気容量の測定)
 積層型のアルミニウム固体電解コンデンサについて、LCRメーター(アジレント・テクノロジー株式会社製、「E4980A プレシジョンLCRメーター」)を用い、120Hzでの電気容量(C1)を測定した。これを初期の電気容量とする。
 積層型のアルミニウム固体電解コンデンサに用いたアルミニウム素子のもつ電気容量が2.8μFであったため、下記式(i)より、積層型のアルミニウム固体電解コンデンサの電気容量発現率を求めた。電気容量発現率が90%以上の場合を「○」とし、電気容量発現率が90%未満の場合を「×」とした。
 電気容量発現率(%)=(C1/2.8)×100  ・・・(i)
(加熱処理後の電気容量の測定)
 積層型のアルミニウム固体電解コンデンサを160℃の乾燥機の中で30分間加熱をした後、室温に冷ました。冷却後の積層型のアルミニウム固体電解コンデンサについて、LCRメーターを用い、120Hzでの電気容量(C2)を測定した。これを加熱処理後の電気容量とする。
 下記式(ii)より、積層型のアルミニウム固体電解コンデンサの電気容量の変化率を求めた。変化率が5%未満の場合を「○」とし、変化率が5%以上の場合を「×」とした。
 変化率(%)={(C1-C2)/C1)}×100  ・・・(ii)
<導電性ポリマー(A)>
(導電性ポリマー溶液(a-4)の製造)
 2-アミノアニソール-4-スルホン酸100mmolを、25℃で100mmolのトリエチルアミンを含む水に攪拌溶解し、ペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後、25℃で12時間更に攪拌した後に反応生成物を濾別洗浄した。その後、乾燥し、粉末状のポリ(2-スルホ-5-メトキシ-1,4-イミノフェニレン)15gを得た。
 得られたポリ(2-スルホ-5-メトキシ-1,4-イミノフェニレン)5質量部を水95質量部に室温で溶解させて、導電性ポリマー溶液(a-3)を得た。
 得られた導電性ポリマー溶液(a-3)100質量部に対して、50質量部となるように酸性陽イオン交換樹脂(オルガノ株式会社製、「アンバーライト」)をカラムに充填し、該カラムに導電性ポリマー溶液(a-3)をSV=8の流量で通過させて陽イオン交換処理を行い、精製された導電性ポリマー溶液(a-4)を得た。
 ここで、「SV」とは、空間速度のことであり、空間速度(1/hr)=流速(m/hr)/濾材量(体積:m)である。
 導電性ポリマー溶液(a-4)中の導電性ポリマーの体積平均粒子径を測定したところ、0.95nmであった。
<塩基性化合物(B)>
 塩基性化合物(B)及びその代替品として、下記化合物を用いた。なお、下記b-15、b-16は、塩基性化合物(C)に相当する。
・b-10:4-アミノピリジン(沸点:273℃)
・b-11:4-ジメチルアミノピリジン(沸点:240℃)
・b-12:2,6-ジアミノピリジン(沸点:285℃)
・b-13:1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)(沸点:220℃)
・b-14:水酸化リチウム(沸点:920℃)
・b-15:アンモニア水(沸点:-33℃)
・b-16:ピリジン(沸点:115℃)
・b-17:ポリビニルピリジン
<実施例3-1>
(導電性組成物の調製)
 表5に示す配合組成となるように、導電性ポリマー(A)として導電性ポリマー溶液(a-4)と、塩基性化合物(B)としてb-10と、溶媒(E)として水とを混合し、導電性組成物を調製した。なお、表5中の導電性ポリマー(A)と、塩基性化合物(B)の配合量は固形分換算した量(質量%)である。
 得られた導電性組成物中の塩基性化合物(B)の含有量は、導電性ポリマー(A)のモノマー単位(モノマーユニット)1モルに対して、0.5モルであった。
(アルミニウム素子の作製)
 単位面積あたりの電気容量が2.8μFのアルミニウム箔を用い、濃度3質量%のアジピン酸アンモニウム水溶液中で、電圧121V、温度70℃の条件で120分間陽極酸化を行い、アルミニウム箔表面に誘電体層を形成し、アルミニウム素子を得た。
(積層型のアルミニウム固体電解コンデンサの製造)
 前記アルミニウム素子を、先に調製した導電性組成物に5分間浸漬させた。その後、アルミニウム素子を取出し、120℃で30分間加熱乾燥させて、誘電体層上に固体電解質層(誘電体層の表面からの厚さは10μm程度)を形成した。
 ついで、固体電解質層上にグラファイト層及びアルミニウム電極を形成し、アルミニウム電極に陰極リード端子を接続し、積層型のアルミニウム固体電解コンデンサを製造した。
 得られた積層型のアルミニウム固体電解コンデンサを用いて膜割れ試験を行い、初期と加熱処理後の電気容量を測定した。結果を表6に示す。
<実施例3-2~3-4、比較例3-1~3-4>
 塩基性化合物(B)の種類と配合量を表5に示すように変更した以外は、実施例3-1と同様にして導電性組成物を調製し、積層型のアルミニウム固体電解コンデンサを製造した。
 得られた積層型のアルミニウム固体電解コンデンサを用いて膜割れ試験を行い、初期と加熱処理後の電気容量を測定した。結果を表6に示す。
<比較例3-5>
 導電性ポリマー溶液(a-4)の代わりに、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))分散液(Clevios社製、「PH500」、PEDOTの体積平均粒子径26.7nm、濃度1.2質量%)を用い、塩基性化合物(B)を用いなかった以外は、実施例3-1と同様にして導電性組成物を調製し、積層型のアルミニウム固体電解コンデンサを製造した。
 得られた積層型のアルミニウム固体電解コンデンサを用いて膜割れ試験を行い、初期と加熱処理後の電気容量を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000014
                  
Figure JPOXMLDOC01-appb-T000015
                  
<実施例3-5~3-6、比較例3-6~3-7>
(導電性組成物の調製)
 表7に示す配合組成となるように、導電性ポリマー(A)として導電性ポリマー溶液(a-4)と、表7に示す種類の塩基性化合物(B)及び溶媒(E)とを混合し、導電性組成物を調製した。なお、アルコールとしては、メタノールを用いた。また、表7中の導電性ポリマー(A)と、塩基性化合物(B)の配合量は固形分換算した量(質量%)である。
 得られた導電性組成物中の塩基性化合物(B)の含有量は、導電性ポリマー(A)のモノマー単位(モノマーユニット)1モルに対して、0.5モルであった。
Figure JPOXMLDOC01-appb-T000016
                  
(アルミニウム素子の作製)
 単位面積あたりの電気容量が2.8μFのアルミニウム箔を用い、濃度3質量%のアジピン酸アンモニウム水溶液中で、電圧121V、温度70℃の条件で120分間陽極酸化を行い、アルミニウム箔表面に誘電体層を形成し、アルミニウム素子を得た。
(積層型のアルミニウム固体電解コンデンサの製造)
 前記アルミニウム素子を、先に調製した導電性組成物に5分間浸漬させた。その後、アルミニウム素子を取出し、120℃で20分間加熱乾燥させて、誘電体層上に固体電解質層(誘電体層の表面からの厚さは10μm程度)を形成した。次に、電界重合や洗浄等を想定して、誘電体層上に固体電解質層が形成されたアルミニウム素子を、純水に1分間浸漬してから(水洗した後)、120℃10分間加熱乾燥させた。
 ついで、固体電解質層上にグラファイト層及びアルミニウム電極を形成し、アルミニウム電極に陰極リード端子を接続し、積層型のアルミニウム固体電解コンデンサを製造した。
(水洗後の電気容量の測定)
 得られた積層型のアルミニウム固体電解コンデンサについて、LCRメーターを用い、120Hzでの電気容量(C3)を測定した。結果を表8に示す。
 また、積層型のアルミニウム固体電解コンデンサに用いたアルミニウム素子のもつ電気容量が2.8μFであったため、下記式(iii)より、積層型のアルミニウム固体電解コンデンサの電気容量発現率を求めた。電気容量発現率が70%以上の場合を耐水性が良好であると判断し、「○」とした。電気容量発現率が70%未満の場合を耐水性が不良であると判断し、「×」とした。
 電気容量発現率(%)=(C3/2.8)×100  ・・・(iii)
Figure JPOXMLDOC01-appb-T000017
                  
 表6、8から明らかなように、導電性ポリマー(A)と塩基性化合物(B)とを含む導電性組成物を用いて固体電解質層を形成した実施例3-1~3-6の積層型のアルミニウム固体電解コンデンサは、電気容量発現率が高かった。これは、導電性ポリマー(A)が誘電体層の微細な凹凸の内部まで十分に含浸したことによるものと考えられる。
 また、実施例3-1~3-4の積層型のアルミニウム固体電解コンデンサは、加熱処理しても電気容量が低下しにくく、電気容量の変化率が小さかった。また、実施例3-5~3-6の積層型のアルミニウム固体電解コンデンサは、水で電解質を洗浄しても、容量発現率が高いままであり、耐水性に優れていた。
 特に、塩基性化合物(B)として、2つ以上の塩基性の窒素原子を有する塩基性化合物を用いた実施例3-1~3-4は、初期及び加熱処理後の電気容量が高く、より優れていることが示された。
 実施例3-1~3-6で調製した導電性組成物は、膜割れしにくい塗膜を形成することができたことから、本発明であれば、加熱処理しても物理的に劣化しにくい固体電解質層を形成できることが示された。
 一方、固体電解質層の形成において、2つ以上の窒素原子を有する塩基性化合物(B)を用いなかった比較例3-1~4の積層型のアルミニウム固体電解コンデンサは、初期の電気容量は高い値を示したが、加熱処理による電気容量の低下が顕著に見られた。
 固体電解質層の形成において、酸性基を有する導電性ポリマー(A)の代わりに、PEDOT分散液を用いた比較例3-5の積層型のアルミニウム固体電解コンデンサは、誘電体層の微細な凹凸の内部にPEDOTが含浸しにくいため、電気容量発現率が低かった。
 また、比較例3-1~3-5で調製した導電性組成物より形成された塗膜は、膜割れしやすかった。
 また、比較例3-6~3-7の積層型のアルミニウム固体電解コンデンサは、水で電解質を洗浄すると、容量発現率が低下し、耐水性に劣っていた。
「試験4」
 試験2の実施例2-10~2-13で得られた積層体について、以下に示す方法により、帯電防止性能を評価した。また、比較例として導電体を形成する前のPETフィルムについても、帯電防止性能を評価した。結果を表9に示す。
<帯電防止性能の評価>
 積層体またはPETフィルムを5cm×5cmの大きさに切断し、JIS L 1094-1992に準じ、以下の測定条件で電荷減衰測定を行い、減衰曲線を得た。得られた減衰曲線より半減期を求め、以下の評価基準にて帯電防止性能の評価を行った。
(測定条件)
測定環境:環境温度20℃±2℃、環境湿度40%±2%
測定装置:シシド社製のオネストメータH0110型
測定装置の設定:
・印加部の針電極の先端からターンテーブル面までの距離:20mm
・受電部の電極板からターンテーブル面までの距離:15mm
・印加電圧:(+)10kV
・電圧印加時間:30s
(評価)
〇:半減期が1sec以下
×:半減期が1secを超える。
Figure JPOXMLDOC01-appb-T000018
                  
 表9から明らかなように、実施例2-10~2-13で得られた積層体は、帯電防止性能に優れていた。
 一方、導電体を形成する前のPETフィルムの表面抵抗値を測定したところ、1016Ω/□を超えており、表面抵抗値が高かった。また、帯電防止性能にも劣っていた。
 本発明の導電性組成物は、電池、コンデンサ電解質、コンデンサ電解質の電解重合用プライマー、化学センサー、表示素子、非線形材料、防食剤、接着剤、繊維、防食塗料、電着塗料、メッキプライマー等の導電性材料として、また、磁気カード、磁気テープ、磁気ディスク、写真フィルム、印刷材料、離形フィルム、ヒートシールテープ・フィルム、ICトレイ、ICキャリアテープ、カバーテープ、電子部品包装材等の帯電防止剤として、広い分野での利用が期待される。
 10固体電解コンデンサ
 11陽極
 12誘電体層
 13固体電解質層
 14グラファイト層
 15金属層
 20固体電解コンデンサ
 21陽極
 22陰極
 23セパレータ
 24外部端子

Claims (17)

  1.  スルホン酸基及び/又はカルボン酸基を有する導電性ポリマー(A)と、窒素原子を2つ以上有する塩基性化合物(B)とを含有する、導電性組成物。
  2.  前記塩基性化合物(B)が含窒素複素環を2つ以上有する、請求項1に記載の導電性組成物。
  3.  窒素原子を1つ有する塩基性化合物(C)をさらに含有する、請求項1又は2に記載の導電性組成物。
  4.  前記塩基性化合物(C)の沸点が、前記塩基性化合物(B)の沸点よりも低い、請求項3に記載の導電性組成物。
  5.  前記塩基性化合物(C)の25℃における塩基解離定数(pKb)が、前記塩基性化合物(B)の25℃における塩基解離定数(pKb)よりも小さい、請求項3又は4に記載の導電性組成物。
  6.  水溶性又は水分散性ポリマー(D)(ただし、前記導電性ポリマー(A)を除く。)をさらに含有する、請求項1~5のいずれか一項に記載の導電性組成物。
  7.  前記塩基性化合物(B)の25℃における塩基解離定数(pKb)が4.5以上である、請求項1~6のいずれか一項に記載の導電性組成物。
  8.  前記塩基性化合物(B)が共役構造を有する、請求項1~7のいずれか一項に記載の導電性組成物。
  9.  前記導電性ポリマー(A)が下記一般式(1)で表される単位を有する、請求項1~8のいずれか一項に記載の導電性組成物。
    Figure JPOXMLDOC01-appb-C000001
                      
    (式(1)中、R~Rは、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐のアルキル基、炭素数1~24の直鎖若しくは分岐のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、及びハロゲン原子からなる群より選ばれ、R~Rのうちの少なくとも1つは酸性基である。ここで、酸性基とはスルホン酸基又はカルボン酸基である。)
  10.  請求項1~9のいずれか一項に記載の導電性組成物からなる、導電体。
  11.  膜厚が20~100nmであり、
     温度25℃、湿度50%における表面抵抗値が1×1010Ω/□以下であり、 かつ温度25℃、湿度50%の環境下にて1週間経過した後の表面抵抗値の変化が10倍以内である、請求項10に記載の導電体。
  12.  膜厚が20~100nmであり、
     温度25℃、湿度50%における表面抵抗値が1×1010Ω/□以下であり、 かつ温度25℃の水に10分間浸漬し、乾燥した後の表面抵抗値の変化が10倍以内である、請求項10に記載の導電体。
  13.  基材の少なくとも一方の面上に請求項10~12のいずれか一項に記載の導電体が積層された、積層体。
  14.  基材の少なくとも一方の面上に請求項3に記載の導電性組成物を塗布し、加熱乾燥して導電体を形成する、積層体の製造方法。
  15.  請求項10~12のいずれか一項に記載の導電体を備えた、導電性フィルム。
  16.  弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層表面側に形成された1層以上の固体電解質層とを具備する固体電解コンデンサにおいて、
     前記固体電解質層の少なくとも1層が、請求項1~9のいずれか一項に記載の導電性組成物から形成された層である、固体電解コンデンサ。
  17.  前記導電性ポリマー(A)が下記条件(a)を満たす、請求項16に記載の固体電解コンデンサ。
     条件(a):導電性ポリマー(A)を1質量%含む導電性ポリマー溶液を用い、動的光散乱法により粒子径分布を測定して得られる1つ以上のピークのうち、粒子径が最小となるピークを含む最小粒子径分布の体積平均粒子径が26nm未満である。
PCT/JP2014/063069 2013-05-16 2014-05-16 導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ WO2014185522A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014525652A JP6613565B2 (ja) 2013-05-16 2014-05-16 導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ
KR1020157034988A KR102188125B1 (ko) 2013-05-16 2014-05-16 도전성 조성물, 도전체, 적층체와 그의 제조 방법, 도전성 필름, 및 고체 전해 콘덴서
CN201480040552.3A CN105392846B (zh) 2013-05-16 2014-05-16 导电性组合物、导电体、层压体及其制造方法、导电性薄膜、以及固体电解电容器
US14/890,763 US10049780B2 (en) 2013-05-16 2014-05-16 Electroconductive composition, electrical conductor, laminate and method for producing same, electroconductive film, and solid electrolyte condenser

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013103649 2013-05-16
JP2013-103649 2013-05-16
JP2013-122623 2013-06-11
JP2013122623 2013-06-11
JP2013-177945 2013-08-29
JP2013177945 2013-08-29
JP2013223630 2013-10-28
JP2013-223630 2013-10-28
JP2014-092260 2014-04-28
JP2014092260 2014-04-28

Publications (1)

Publication Number Publication Date
WO2014185522A1 true WO2014185522A1 (ja) 2014-11-20

Family

ID=51898496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063069 WO2014185522A1 (ja) 2013-05-16 2014-05-16 導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ

Country Status (6)

Country Link
US (1) US10049780B2 (ja)
JP (1) JP6613565B2 (ja)
KR (1) KR102188125B1 (ja)
CN (1) CN105392846B (ja)
TW (1) TWI545156B (ja)
WO (1) WO2014185522A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086247A (ja) * 2013-10-28 2015-05-07 三菱レイヨン株式会社 導電性組成物、導電体及び前記導電体が形成された積層体
WO2015174453A1 (ja) * 2014-05-14 2015-11-19 三菱レイヨン株式会社 導電性組成物、帯電防止膜、積層体とその製造方法、およびフォトマスクの製造方法
JP2016102148A (ja) * 2014-11-27 2016-06-02 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP2016121308A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
JP2016121309A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
JP2016121310A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
JP2016172802A (ja) * 2015-03-17 2016-09-29 信越ポリマー株式会社 帯電防止性成形品の製造方法
JP2017039851A (ja) * 2015-08-20 2017-02-23 三菱レイヨン株式会社 導電性組成物、導電体及び前記導電体が形成された積層体
JP2017224646A (ja) * 2016-06-13 2017-12-21 サン電子工業株式会社 電解コンデンサ及び電解コンデンサ用電解液
JP2018012815A (ja) * 2016-07-22 2018-01-25 信越ポリマー株式会社 導電性高分子含有液及び帯電防止フィルムの製造方法
JP2018085420A (ja) * 2016-11-22 2018-05-31 信越ポリマー株式会社 キャパシタ及びその製造方法
JPWO2018123255A1 (ja) * 2016-12-28 2019-10-31 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2020007519A (ja) * 2018-07-02 2020-01-16 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP2020026495A (ja) * 2018-08-14 2020-02-20 三菱ケミカル株式会社 導電性組成物、導電体の製造方法及びレジストパターンの形成方法
JP2020186348A (ja) * 2019-05-17 2020-11-19 三菱ケミカル株式会社 導電性組成物、塗膜、レジストパターンの形成方法
JP2021038358A (ja) * 2019-09-05 2021-03-11 三菱ケミカル株式会社 導電性組成物
JP7392379B2 (ja) 2019-10-16 2023-12-06 株式会社村田製作所 固体電解コンデンサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170191336A1 (en) * 2015-12-31 2017-07-06 Cameron International Corporation Closure member including a replaceable insert
CN106571232A (zh) * 2016-10-31 2017-04-19 丰宾电子(深圳)有限公司 导电高分子悬浮液及具有其的固态电解电容
TWI802677B (zh) * 2018-04-10 2023-05-21 日商三菱化學股份有限公司 導電性組成物、導電膜及積層體
WO2021107063A1 (ja) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 電解コンデンサ用陰極箔、電解コンデンサ、および、これらの製造方法
CN113764193A (zh) * 2021-09-30 2021-12-07 电子科技大学长三角研究院(湖州) 一种固态电容器及其制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007167A1 (fr) * 1995-08-11 1997-02-27 Nitto Chemical Industry Co., Ltd. Composition conductrice reticulable, conducteur et procede de fabrication
JP2000079662A (ja) * 1998-06-22 2000-03-21 Toyobo Co Ltd 高制電性積層体およびそれを用いた成形品
JP2003213148A (ja) * 2002-01-18 2003-07-30 Mitsubishi Rayon Co Ltd 導電性組成物、導電体形成方法及び静電塗装方法
JP2007264118A (ja) * 2006-03-27 2007-10-11 Fujitsu Ltd レジスト組成物、レジストパターンの形成方法、半導体装置及びその製造方法
WO2008114411A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Limited 導電性反射防止膜形成用材料、導電性反射防止膜の形成方法、レジストパターン形成方法、半導体装置、及び磁気ヘッド
JP2010067448A (ja) * 2008-09-10 2010-03-25 Mitsubishi Rayon Co Ltd 導電体の製造方法
JP2010116441A (ja) * 2008-11-11 2010-05-27 Mitsubishi Rayon Co Ltd コンデンサ電極用導電性組成物
JP2011126957A (ja) * 2009-12-16 2011-06-30 Toyobo Co Ltd 易接着性熱可塑性樹脂フィルム
JP2011131409A (ja) * 2009-12-22 2011-07-07 Toyobo Co Ltd 成型用ポリエステルフィルムおよび成型用ハードコートフィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959968B2 (ja) 1994-04-04 1999-10-06 三菱レイヨン株式会社 可溶性アニリン系導電性ポリマーの製造方法
JP3154460B2 (ja) 1993-12-29 2001-04-09 三菱レイヨン株式会社 水溶性アニリン系導電性ポリマーとその製造方法
JP3464733B2 (ja) 1995-07-04 2003-11-10 三菱レイヨン株式会社 固体電解コンデンサ及びその製造方法
US6024895A (en) 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
JP3364416B2 (ja) 1996-10-02 2003-01-08 三菱レイヨン株式会社 酸性基を有する可溶性導電ポリマーの製造方法
JP2001098069A (ja) 1999-09-30 2001-04-10 Mitsubishi Rayon Co Ltd 耐水性導電体の形成方法
DE10024576A1 (de) 2000-05-19 2001-11-22 Univ Stuttgart Kovalent und ionisch vernetzte Polymere und Polymermembranen
AU2007310044B8 (en) * 2006-10-24 2012-06-28 Mitsubishi Chemical Corporation Method for giving electrical conductivity to material, method for producing conductive material, and conductive material
US8004825B2 (en) * 2007-09-21 2011-08-23 Sanyo Electric Co., Ltd. Solid electrolyte capacitor
TWI509633B (zh) 2011-04-20 2015-11-21 Mitsubishi Rayon Co 導電性組成物以及使用前述導電性組成物的導電體與固體電解電容器
WO2012173148A1 (ja) 2011-06-14 2012-12-20 三菱レイヨン株式会社 導電性ポリマー前駆体、導電性ポリマー、及び固体電解コンデンサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007167A1 (fr) * 1995-08-11 1997-02-27 Nitto Chemical Industry Co., Ltd. Composition conductrice reticulable, conducteur et procede de fabrication
JP2000079662A (ja) * 1998-06-22 2000-03-21 Toyobo Co Ltd 高制電性積層体およびそれを用いた成形品
JP2003213148A (ja) * 2002-01-18 2003-07-30 Mitsubishi Rayon Co Ltd 導電性組成物、導電体形成方法及び静電塗装方法
JP2007264118A (ja) * 2006-03-27 2007-10-11 Fujitsu Ltd レジスト組成物、レジストパターンの形成方法、半導体装置及びその製造方法
WO2008114411A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Limited 導電性反射防止膜形成用材料、導電性反射防止膜の形成方法、レジストパターン形成方法、半導体装置、及び磁気ヘッド
JP2010067448A (ja) * 2008-09-10 2010-03-25 Mitsubishi Rayon Co Ltd 導電体の製造方法
JP2010116441A (ja) * 2008-11-11 2010-05-27 Mitsubishi Rayon Co Ltd コンデンサ電極用導電性組成物
JP2011126957A (ja) * 2009-12-16 2011-06-30 Toyobo Co Ltd 易接着性熱可塑性樹脂フィルム
JP2011131409A (ja) * 2009-12-22 2011-07-07 Toyobo Co Ltd 成型用ポリエステルフィルムおよび成型用ハードコートフィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENNIS E. TALLMAN ET AL.: "Preparation and preliminary characterization of a poly(4-vinylpyridine) complex of a water- soluble polyaniline", SYNTHETIC METALS, vol. 90, no. 1, 1997, pages 13 - 18 *
ISAO YAMAGUCHI ET AL.: "Synthesis of 4,4'-bipyridinium salts of poly(2-methoxyaniline-5-sulfonic acid) and their self-doping and chemical properties", REACTIVE & FUNCTIONAL POLYMERS, vol. 69, no. 2, 2009, pages 91 - 96, XP025937559, DOI: doi:10.1016/j.reactfunctpolym.2008.11.005 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086247A (ja) * 2013-10-28 2015-05-07 三菱レイヨン株式会社 導電性組成物、導電体及び前記導電体が形成された積層体
WO2015174453A1 (ja) * 2014-05-14 2015-11-19 三菱レイヨン株式会社 導電性組成物、帯電防止膜、積層体とその製造方法、およびフォトマスクの製造方法
US10488757B2 (en) 2014-05-14 2019-11-26 Mitsubishi Chemical Corporation Conductive composition, antistatic film, laminate and production therefor, and production method for photomask
JPWO2015174453A1 (ja) * 2014-05-14 2017-04-20 三菱レイヨン株式会社 導電性組成物、帯電防止膜、積層体とその製造方法、およびフォトマスクの製造方法
JP2016102148A (ja) * 2014-11-27 2016-06-02 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP2016121308A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
JP2016121309A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
JP2016121310A (ja) * 2014-12-25 2016-07-07 日東電工株式会社 粘着シート、および、光学部材
TWI688634B (zh) * 2014-12-25 2020-03-21 日商日東電工股份有限公司 黏著片材及光學構件
JP2016172802A (ja) * 2015-03-17 2016-09-29 信越ポリマー株式会社 帯電防止性成形品の製造方法
JP2017039851A (ja) * 2015-08-20 2017-02-23 三菱レイヨン株式会社 導電性組成物、導電体及び前記導電体が形成された積層体
JP2017224646A (ja) * 2016-06-13 2017-12-21 サン電子工業株式会社 電解コンデンサ及び電解コンデンサ用電解液
JP2018012815A (ja) * 2016-07-22 2018-01-25 信越ポリマー株式会社 導電性高分子含有液及び帯電防止フィルムの製造方法
JP2018085420A (ja) * 2016-11-22 2018-05-31 信越ポリマー株式会社 キャパシタ及びその製造方法
JPWO2018123255A1 (ja) * 2016-12-28 2019-10-31 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP7233003B2 (ja) 2016-12-28 2023-03-06 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2020007519A (ja) * 2018-07-02 2020-01-16 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP7206730B2 (ja) 2018-07-02 2023-01-18 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP2020026495A (ja) * 2018-08-14 2020-02-20 三菱ケミカル株式会社 導電性組成物、導電体の製造方法及びレジストパターンの形成方法
JP7135570B2 (ja) 2018-08-14 2022-09-13 三菱ケミカル株式会社 導電性組成物、導電体の製造方法及びレジストパターンの形成方法
JP2020186348A (ja) * 2019-05-17 2020-11-19 三菱ケミカル株式会社 導電性組成物、塗膜、レジストパターンの形成方法
JP7298291B2 (ja) 2019-05-17 2023-06-27 三菱ケミカル株式会社 導電性組成物、塗膜、レジストパターンの形成方法
JP2021038358A (ja) * 2019-09-05 2021-03-11 三菱ケミカル株式会社 導電性組成物
JP7415382B2 (ja) 2019-09-05 2024-01-17 三菱ケミカル株式会社 導電性組成物
JP7392379B2 (ja) 2019-10-16 2023-12-06 株式会社村田製作所 固体電解コンデンサ

Also Published As

Publication number Publication date
KR102188125B1 (ko) 2020-12-07
TW201444915A (zh) 2014-12-01
TWI545156B (zh) 2016-08-11
US20160093413A1 (en) 2016-03-31
US10049780B2 (en) 2018-08-14
CN105392846B (zh) 2018-09-11
JPWO2014185522A1 (ja) 2017-02-23
KR20160009625A (ko) 2016-01-26
JP6613565B2 (ja) 2019-12-04
CN105392846A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6613565B2 (ja) 導電性組成物、導電体、積層体とその製造方法、導電性フィルム、及び固体電解コンデンサ
US11600449B2 (en) Layer compositions with improved electrical parameters comprising PEDOT/PSS and a stabilizer
US8940191B2 (en) Electroconductive polymer solution, electroconductive polymer composition, and solid electrolytic capacitor therewith and method for producing same
KR101012901B1 (ko) 도전성 고분자 용액, 도전성 도막, 콘덴서 및 콘덴서의 제조 방법
CN101385105B (zh) 电容器以及电容器制造方法
RU2417472C2 (ru) Способ получения электролитических конденсаторов
CN103254643B (zh) 固体电解电容器及其制备方法,以及导电高分子组合物
US9076590B2 (en) Electroconductive polymer suspension solution, electroconductive polymer material, and electrolytic capacitor and method for producing the same
TW201609613A (zh) 作爲用於導電聚合物的黏合底漆的單官能胺
JP2014011222A (ja) 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP5902926B2 (ja) 導電性高分子組成物、導電性高分子材料、導電性基材、電極および固体電解コンデンサ
JP6446771B2 (ja) 導電性組成物、導電体及び前記導電体が形成された積層体
JP2017174915A (ja) 導電性高分子分散液及びそれを用いた固体電解コンデンサの製造方法
JP6520559B2 (ja) 導電性組成物、導電体及び前記導電体が形成された積層体
EP3996119A1 (en) Layer composition and process for its production
JP2013249435A (ja) 導電性組成物、導電体とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040552.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014525652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157034988

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14797399

Country of ref document: EP

Kind code of ref document: A1