WO2014125827A1 - 導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜 - Google Patents

導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜 Download PDF

Info

Publication number
WO2014125827A1
WO2014125827A1 PCT/JP2014/000752 JP2014000752W WO2014125827A1 WO 2014125827 A1 WO2014125827 A1 WO 2014125827A1 JP 2014000752 W JP2014000752 W JP 2014000752W WO 2014125827 A1 WO2014125827 A1 WO 2014125827A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conductive composition
polyanion
organic solvent
poly
Prior art date
Application number
PCT/JP2014/000752
Other languages
English (en)
French (fr)
Inventor
藤木 弘直
孝則 鈴木
Original Assignee
信越ポリマー株式会社
日信化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 日信化学工業株式会社 filed Critical 信越ポリマー株式会社
Priority to KR1020157018408A priority Critical patent/KR102024975B1/ko
Priority to CN201480007498.2A priority patent/CN104995256B/zh
Priority to JP2015500150A priority patent/JP6109920B2/ja
Priority to EP14751210.7A priority patent/EP2957597A4/en
Publication of WO2014125827A1 publication Critical patent/WO2014125827A1/ja
Priority to US14/823,652 priority patent/US10483011B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/022Emulsions, e.g. oil in water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers

Definitions

  • the present invention relates to a conductive composition containing a ⁇ -conjugated conductive polymer and dispersed and solubilized in a solvent, a production method thereof, and an antistatic resin composition obtained by mixing the conductive composition and a resin component. And an antistatic resin film obtained by curing the antistatic resin composition.
  • a ⁇ -conjugated conductive polymer whose main chain is composed of a conjugated system containing ⁇ electrons is synthesized by an electrolytic polymerization method or a chemical oxidative polymerization method.
  • electropolymerization method a mixed solution of an electrolyte serving as a dopant and a precursor monomer for forming a ⁇ -conjugated conductive polymer is prepared, an electrode is placed in the solution, and a previously formed electrode material or the like is prepared.
  • a ⁇ -conjugated conductive polymer is formed on the surface of the support in the form of a film.
  • the electrolytic polymerization method is inferior in mass productivity because it requires an apparatus for electrolytic polymerization and batch production.
  • the chemical oxidative polymerization method there is no restriction as described above, and an oxidant and an oxidation polymerization catalyst are added to the precursor monomer that forms the ⁇ -conjugated conductive polymer, and a large amount of ⁇ -conjugated conductive in solution. Can be produced.
  • an oxidizing agent is used in the presence of polystyrene sulfonic acid as an anion group-containing polymer acid having a molecular weight of 2,000 to 500,000.
  • a method for producing a poly (3,4-dialkoxythiophene) aqueous solution by chemical oxidative polymerization of 3,4-dialkoxythiophene is known (see, for example, Patent Document 1).
  • an organic solvent solution of polyaniline and a method for producing the same are known (for example, see Patent Document 3).
  • a solvent replacement method by phase inversion from an aqueous solution containing a polyanion and an intrinsic conductive polymer to an organic solvent is also known (see, for example, Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7).
  • a method of dissolving an intrinsic conductive polymer after lyophilization in an organic solvent is also known (see, for example, Patent Document 8).
  • a conductive polymer solution containing a ⁇ -conjugated conductive polymer has been used as an organic solvent according to the above prior art (the techniques disclosed in Patent Documents 1 to 8), although it is an aqueous solution.
  • a conductive solution in which part or all of the conductive solution is replaced has been proposed.
  • JP-A-7-090060 Japanese Patent Laid-Open No. 7-165892 International Publication WO2005 / 052058 JP 2006-249303 A JP 2007-254730 A JP 2008-050661 A JP 2008-045116 A JP2011-032382A
  • the amine-based compound is used for the conductive polymer, and the phase is changed from the aqueous phase to the organic phase. Therefore, the above-described drawbacks derived from the amine-based compound are overcome. It is not possible.
  • An object of the present invention is to form a transparent conductive film with less problems derived from the above-mentioned amine compound, using a conductive composition that is stably dispersed and soluble in a solvent mainly composed of an organic solvent.
  • a conductive composition according to an embodiment of the present invention is doped with (a) a ⁇ -conjugated conductive polymer and (b) the (a) ⁇ -conjugated conductive polymer.
  • the conductive composition according to another embodiment is obtained by further adding (d) an organic solvent.
  • the conductive composition according to another embodiment further includes (e) a resin that is soluble in an organic solvent.
  • the conductive composition according to another embodiment includes, in particular, (a) a ⁇ -conjugated conductive polymer made of polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophenes. It shall have at least one or more repeating units selected from the group consisting of vinylenes and two or more copolymers thereof.
  • the ⁇ -conjugated conductive polymer is poly (3,4-ethylenedioxythiophene) or polypyrrole.
  • the polyanion is a mixture of one or more selected from a sulfonic acid group, a phosphoric acid group, and a carboxyl group.
  • the conductive composition according to another embodiment also includes (b) a polyanion containing polystyrene sulfonic acid, polyvinyl sulfonic acid, polyacrylic acid alkylene sulfonic acid, poly (2-acrylamido-2-methyl-1-propanesulfone). Acid) or one or more of them as a copolymerized constituent.
  • a method for producing a conductive composition according to an embodiment of the present invention is a method for producing any one of the above-described conductive compositions, wherein water dispersion of a ⁇ -conjugated conductive polymer and a polyanion doped therein And adding an oxirane group and / or oxetane group-containing organic compound to the body, reacting the polyanion with the oxirane group and / or oxetane group-containing organic compound, and removing at least moisture.
  • a method for producing a conductive composition according to an embodiment of the present invention is a method for producing any one of the above-described conductive compositions, wherein an oxirane group and / or oxetane group-containing organic compound is converted into a ⁇ -conjugated conductive material.
  • an oxirane group and / or oxetane group-containing organic compound is converted into a ⁇ -conjugated conductive material.
  • a method for producing a conductive composition according to an embodiment of the present invention is a method for producing any one of the above-described conductive compositions, wherein an organic compound containing an oxirane group and / or an oxetane group is reduced in water in advance. And adding to the dry solid of the ⁇ -conjugated conductive polymer and the polyanion doped therein, and reacting the polyanion with the oxirane group and / or oxetane group-containing organic compound.
  • the antistatic resin composition according to the embodiment of the present invention is obtained by mixing any of the above-described conductive compositions and a resin solution dissolved in an organic solvent.
  • the antistatic resin film according to the embodiment of the present invention is formed by reducing and curing an organic solvent from the above-described antistatic resin composition.
  • the present invention it is possible to form a transparent conductive film with few problems derived from amine compounds by using a conductive composition that is stably dispersed and soluble in a solvent mainly composed of an organic solvent.
  • the conductive composition according to the embodiment of the present invention includes (a) a ⁇ -conjugated conductive polymer, (b) the polyanion doped in the (a) ⁇ -conjugated conductive polymer, (C) It contains a reaction product of an anion in a polyanion and an organic compound containing an oxirane group and / or an oxetane group, and is dispersed and solubilized in a solvent mainly composed of an organic solvent.
  • the intrinsic conductive polymer having a polyanion as a dopant used in the present application is formed from fine particles having a particle size of approximately several tens of nanometers.
  • the solvent is a solvent mainly composed of an organic solvent.
  • “mainly organic solvent” means that the organic solvent in the solvent exceeds 50%.
  • the conductive composition according to this embodiment can be manufactured by the following method as an example.
  • the conductive polymer / polyanion complex aqueous dispersion is an aqueous solution or aqueous dispersion in which a monomer for a conductive polymer and a dopant coexist. Polymerization is carried out in the presence of an oxidizing agent. However, not only polymerization from such a monomer but also a commercially available conductive polymer / dopant aqueous dispersion may be used.
  • Examples of commercially available conductive polymer / dopant aqueous dispersions include Heraeus PEDOT / PSS aqueous dispersion (trade name: Clevios), Agfa PEDOT / PSS aqueous dispersion (trade name: Orgacon), and the like. be able to.
  • the conductive composition is prepared by adding an oxirane group or oxetane group-containing compound together with a solvent to the aqueous dispersion, reacting the anion with an oxirane group or oxetane group, and then concentrating, filtering or drying the reaction solution. Is obtained. Thereafter, the obtained concentrate or solid is preferably dissolved or dispersed in a solvent mainly composed of an organic solvent and used in the form of a paint. Further, after adding the oxirane group or oxetane group-containing compound together with the solvent to the aqueous dispersion, an organic solvent insoluble in water is added during or after the reaction between the anion and the oxirane group or oxetane group.
  • the conductive composition is phase-inverted into an insoluble solvent phase (also referred to as an organic phase), and after passing through steps such as dehydration as necessary, the conductive composition is soluble in a solvent mainly composed of an organic solvent. It may be dispersed.
  • an insoluble solvent phase also referred to as an organic phase
  • the conductive composition is soluble in a solvent mainly composed of an organic solvent. It may be dispersed.
  • the conductive composition after reacting an anion with an oxirane group or oxetane group, an organic solvent insoluble in water is added, and the conductive composition is phase-inverted to a water-insoluble solvent phase, and dehydration is performed as necessary. After going through the steps, the conductive composition may be dissolved or dispersed in a solvent mainly composed of an organic solvent.
  • the time for the concentration step can be shortened.
  • ⁇ -conjugated system conductive polymer is not limited as long as the main chain is an organic polymer composed of ⁇ -conjugated system Can be used without any problem.
  • polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers of two or more thereof can be preferably exemplified.
  • polypyrroles, polythiophenes or polyanilines can be particularly preferably used.
  • the ⁇ -conjugated conductive polymer exhibits sufficiently high conductivity and compatibility with a binder even if it is not substituted.
  • an alkyl group A functional group such as an alkenyl group, a carboxyl group, a sulfo group, an alkoxyl group, a hydroxyl group, or a cyano group may be introduced.
  • Preferred examples of the ⁇ -conjugated conductive polymer include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), and poly (3-n-propylpyrrole). ), Poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4 Dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), Poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly 3-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole),
  • polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methoxythiophene), poly (3,4-ethylenediene) A copolymer composed of one or more selected from oxythiophene) can be used particularly preferably.
  • polypyrrole and poly (3,4-ethylenedioxythiophene) can be preferably used.
  • alkyl-substituted compounds such as poly (N-methylpyrrole) and poly (3-methylthiophene) are soluble in organic solvents, and are compatible and dispersible when a hydrophobic resin is added. In order to improve this, it can use more suitably.
  • alkyl groups a methyl group is more preferable because it hardly affects the conductivity.
  • the polyanion can be used without particular limitation as long as it is an anionic compound.
  • An anionic compound is a compound having in the molecule an anionic group capable of causing chemical oxidation doping to the (a) ⁇ -conjugated conductive polymer.
  • a sulfate ester group, a phosphate ester group, a phosphate group, a carboxyl group, a sulfone group, and the like are preferable from the viewpoint of ease of production and high stability.
  • anionic groups (a) a sulfone group, a sulfate ester group, and a carboxyl group are more preferable because of its excellent doping effect on the ⁇ -conjugated conductive polymer.
  • the polyanion examples include a polymer in which an anion group-containing polymerizable monomer is polymerized in addition to a polymer in which an anion group is introduced into a polymer by sulfonation with a sulfonating agent using a sulfonating agent. Mention may be made of the polymers obtained. Usually, the polyanion is preferably obtained by polymerizing an anion group-containing polymerizable monomer from the viewpoint of ease of production. Examples of the production method include a method obtained by subjecting an anionic group-containing polymerizable monomer to oxidative polymerization or radical polymerization in a solvent in the presence of an oxidizing agent and / or a polymerization catalyst.
  • a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent and maintained at a constant temperature, and a predetermined amount of an oxidizing agent and / or a polymerization catalyst is previously dissolved in the solvent.
  • the solution was added and allowed to react for a predetermined time.
  • the polymer obtained by the reaction is adjusted to a certain concentration by a catalyst.
  • a polymerizable monomer having no anionic group can be copolymerized with the anionic group-containing polymerizable monomer.
  • the oxidizing agent and / or oxidation catalyst and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer (a) forming the ⁇ -conjugated conductive polymer. .
  • the anionic group-containing polymerizable monomer is a monomer having a functional group capable of polymerizing with an anionic group in the molecule.
  • polymerizable monomers having no anionic group examples include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylstyrene, p -Ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, ⁇ -methylstyrene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 1-vinylimidazole, vinylpyridine, Vinyl acetate, acrylaldehyde, acrylonitrile, N-vinyl-2-pyrrolidone, N-vinylacetamide, N-vinylformamide, N-vinylimidazole, acrylamide, N, N-dimethylacrylamide, acrylic acid, methyl acrylate, Ethyl acrylate,
  • the degree of polymerization of the polyanion thus obtained is not particularly limited, but is usually about 10 to 100,000 monomer units. From the viewpoint of improving solvent solubilization, dispersibility and conductivity, 50 More preferably, it is about 10,000.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly (2-acrylamido-2-methyl-1-propanesulfonic acid) Can be preferably mentioned.
  • the obtained anionic compound is an anionic salt
  • it is preferably transformed into an anionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, and an ultrafiltration method.
  • the ultrafiltration method is preferable from the viewpoint of workability.
  • an ion exchange method is used.
  • ⁇ -conjugated conductive polymer and (b) polyanion those selected from each group of (a) and (b) can be used, but chemical stability, conductivity, storage From the viewpoint of stability, availability, etc., (a) poly (3,4-ethylenedioxythiophene) which is an example of a ⁇ -conjugated conductive polymer, and (b) polystyrene sulfonic acid which is an example of a polyanion, The combination of is preferable.
  • poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid are in the presence of an oxidizing agent in the form of an aqueous solution or aqueous dispersion in which a monomer for a conductive polymer and a dopant coexist.
  • Polymerization may be performed for synthesis.
  • a commercially available conductive polymer / dopant aqueous dispersion may be used.
  • the content of the polyanion is preferably in the range of 0.1 to 10 mol, more preferably in the range of 1 to 7 mol, with respect to 1 mol of the ⁇ -conjugated conductive polymer.
  • the polyanion content is preferably in the range of 0.1 to 10 mol, more preferably in the range of 1 to 7 mol, with respect to 1 mol of the ⁇ -conjugated conductive polymer.
  • the solubility in a solvent becomes high, and it becomes easy to obtain a solution of a conductive polymer in a uniformly dispersed form.
  • the polyanion content is 10 mol or less, the content ratio of the ⁇ -conjugated conductive polymer can be relatively increased, and higher conductivity can be exhibited.
  • reaction product of an anion other than that required for doping in the polyanion and an oxirane group and / or oxetane group-containing organic compound Anion other than that required for doping in the polyanion, and an oxirane group and / or oxetane group
  • a reaction product with an organic compound can be obtained by adding an oxirane group and / or oxetane group-containing organic compound to the aforementioned (a) ⁇ -conjugated conductive polymer and (b) polyanion for reaction.
  • the organic compound containing an oxirane group and / or oxetane group is not particularly limited as long as it is coordinated or bonded to the anion group or electron withdrawing group of the polyanion. It is more preferable to use a compound containing one or less oxirane group or oxetane group in one molecule because aggregation and gelation can be reduced.
  • the molecular weight of the oxirane group and / or oxetane group-containing organic compound is preferably in the range of 50 to 2,000 in view of easy solubility in an organic solvent.
  • the amount of the oxirane group and / or oxetane group-containing organic compound is preferably 0.1 to 50 by weight with respect to the anion group or electron withdrawing group in the polyanion of the ⁇ -conjugated conductive polymer, and more 1.0 to 30.0 is preferred.
  • the amount of the oxirane group and / or oxetane group-containing organic compound is 0.1 or more in the above weight ratio, the oxirane group and / or oxetane group-containing organic compound is modified so that the anion group of the polyanion is dissolved in the solvent. I can do it.
  • the amount of the oxirane group and / or oxetane group-containing organic compound is 50 or less in the above weight ratio, the excess oxirane group and / or oxetane group-containing organic compound is difficult to precipitate in the conductive polymer solution. It is easy to prevent a decrease in the electrical conductivity and mechanical properties of the resulting conductive coating film.
  • the oxirane group and / or oxetane group-containing organic compound may be a compound having any molecular structure as long as it has an oxirane group or oxetane group in the molecule.
  • a compound having a large number of carbons is effective for solubilization in an organic solvent having a low polarity.
  • a compound having 10 or more carbon atoms is preferably used.
  • water is frequently used during the production process, it is preferable to avoid using a compound containing an alkoxysilyl group having a functional group that reacts with hydrolysis or water as much as possible.
  • an alkoxysilyl group-containing compound may also be used because it is dispersed or soluble in a solvent while maintaining its characteristics.
  • a compound having an oxirane group or an oxetane group as a conductivity improver or a crosslinking agent is added to a conductive polymer aqueous solution.
  • 1) a reaction product obtained by reacting a polyanion which is a dopant / dispersant of a conductive polymer and an oxirane group or oxetane group-containing compound is obtained. Is being removed or reduced.
  • organic compounds containing an oxirane group and / or an oxetane group will be exemplified.
  • Monofunctional oxirane group-containing compounds include propylene oxide, 2,3-butylene oxide, isobutylene oxide, 1,2-butylene oxide, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxypentane, 1,2-epoxyoctane, 1,2-epoxydecane, 1,3-butadiene monooxide, 1,2-epoxytetradecane, glycidyl methyl ether, 1,2-epoxy octadecane, 1,2-epoxy hexadecane, ethyl glycidyl ether Glycidyl isopropyl ether, tert-butyl glycidyl ether, 1,2-epoxyeicosane, 2- (chloromethyl) -1,2-epoxypropane, glycidol, epichlorohydrin, epibromohydrin, butyl
  • Polyfunctional oxirane group-containing compounds include 1,7-octadiene diepoxide, neopentyl glycol diglycidyl ether, 4-butanediol diglycidyl ether, 1,2: 3,4-diepoxybutane, 1,2-cyclohexane Diglycidyl dicarboxylate, triglycidyl isocyanurate triglycidyl neopentyl glycol diglycidyl ether, 1,2: 3,4-diepoxybutane, polyethylene glycol # 200 diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether Ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6- Hexanediol diglycidyl
  • Examples of the compound containing a polyfunctional oxetane group include xylylene bisoxetane, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 1,4-benzenedicarboxylic acid, bis ⁇ [3- And ethyl-3-oxetanyl] methyl ⁇ ester.
  • this conductive composition can be solubilized or dispersed at a high concentration in an organic solvent.
  • the organic solvent may or may not be included in the conductive composition according to this embodiment.
  • the organic solvent used as a solvent for solubilizing or dispersing the conductive composition include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylenephosphonium triamide, Polar solvents represented by acetonitrile, benzonitrile, etc .; phenols represented by cresol, phenol, xylenol, etc .; alcohols represented by methanol, ethanol, propanol, butanol, etc .; represented by acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • Ketones esters represented by ethyl acetate, propyl acetate, butyl acetate, etc .; hydrocarbons represented by hexane, heptane, benzene, toluene, xylene, etc .; carboxylic acids represented by formic acid, acetic acid, etc .; Carbonate compounds typified by ethylene carbonate, propylene carbonate, etc .; ether compounds typified by dioxane, diethyl ether, etc .; chains represented by ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.
  • Preferred examples include heterocyclic ethers; heterocyclic compounds represented by 3-methyl-2-oxazolidinone and the like; nitrile compounds represented by acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile and the like.
  • These organic solvents may be used alone or in combination of two or more.
  • alcohols, ketones, ethers, esters, and hydrocarbons can be more suitably used from the viewpoint of easy mixing with various organic substances.
  • a solid conductive composition is dispersed and solubilized in an organic solvent to produce a paint, which is applied to a substrate, and part or all of the organic solvent is removed. Remove. Accordingly, an organic solvent having a low boiling point is preferably selected. Thereby, the drying time at the time of coating film formation can be shortened, and the productivity of a coating film can be improved.
  • the conductive composition is preferably a resin having a binder function (binder or binder resin). Also called). Unlike the components (a) to (c), the binder resin may or may not be included in the conductive composition according to this embodiment.
  • the binder resin may be a thermoplastic resin in addition to a thermosetting resin. Since the ⁇ -conjugated conductive polymer is not hydrophilic but oleophilic, it is particularly easily compatible with a hydrophobic resin.
  • binder resin examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyimides; polyamideimides; polyamides such as polyamide 6, polyamide 6, 6, polyamide 12, and polyamide 11; polyvinylidene fluoride, polyvinyl fluoride , Polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene and other fluororesins; polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride and other vinyl resins; epoxy resins; xylene resins; Polyimide silicone; Polyurethane; Polyurea; Melamine resin; Phenolic resin; Polyether; Acrylic resin; Preferred examples include urethane resins; urethane resins; and copolymers and mixtures thereof.
  • polyesters such as polyethylene terephthalate, polybutylene
  • the binder resin may be dissolved in an organic solvent, may be provided with a functional group such as a sulfonic acid group or a carboxylic acid group, or may be in an aqueous solution, or may be dispersed in water in an emulsified form. Also good.
  • a functional group such as a sulfonic acid group or a carboxylic acid group
  • any of polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, polyimide silicone, silicone resin can be used as a solvent resin or liquid and can be easily mixed with the conductive composition.
  • One or more are preferably used.
  • Acrylic resins are particularly suitable for optical filter applications because of their high hardness and excellent transparency.
  • Examples of the additive to the solvent in which the conductive composition is soluble or dispersed include those that improve conductivity.
  • conductivity improvers include glycidyl compounds, polar solvents, polyhydric aliphatic alcohols, nitrogen-containing aromatic cyclic compounds, compounds having two or more hydroxy groups, compounds having two or more carboxy groups, one Examples thereof include compounds having the above hydroxy group and one or more carboxy groups, and lactam compounds. Among these, those that hardly inhibit the curing of the peelable component are preferable.
  • the release agent is possible to prevent the release agent from being transferred to the pressure-sensitive adhesive layer after the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is superimposed on the release agent layer obtained from the antistatic release agent.
  • the conductivity improver that does not easily inhibit the peelable component include a glycidyl compound, a polar solvent, and a polyhydric aliphatic alcohol.
  • the conductivity improver is preferably in a liquid state at 25 ° C. If it is liquid, the transparency of the release agent layer formed from the antistatic release agent can be improved, and transfer of foreign matter to the pressure-sensitive adhesive layer bonded to the release agent layer can be prevented.
  • glycidyl compounds include ethyl glycidyl ether, n-butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, benzyl glycidyl ether, glycidyl phenyl ether, bisphenol A diglycidyl ether, glycidyl acrylate, glycidyl methacrylate Examples include ether.
  • polar solvents include N-methylformamide, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, N, N-diethylmethacrylamide, 2-hydroxyethylacrylamide, 2-hydroxyethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-methyl-2-pyrrolidone, N-methyl Acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, milk Methyl, ethyl lactate, propyl and the like.
  • polyhydric aliphatic alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, glycerin, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1, Examples include 6-hexanediol, 1,9-nonanediol, neopentyl glycol, trimethylol ethane, trimethylol propane, thiodiethanol, and dipropylene glycol.
  • the content of the conductivity improver is preferably 10 to 10,000 parts by mass, more preferably 30 to 5000 parts by mass with respect to 100 parts by mass of the conductive component.
  • the content of the conductivity improver is at least the lower limit, the antistatic property can be further improved. On the other hand, if it is below the said upper limit, peelability can be improved more.
  • Antistatic resin composition which concerns on embodiment of this invention mixes the above-mentioned electroconductive composition and the resin solution melt
  • the resin solution contains the above-mentioned (d) organic solvent and (e) resin. Therefore, the antistatic resin composition contains the components (a) to (e) described above.
  • An antistatic resin film according to an embodiment of the present invention is a film obtained by reducing and curing an organic solvent from the above-described antistatic resin composition.
  • an antistatic resin composition (paint) is prepared from a solution obtained by dissolving or dispersing the conductive composition in a solvent mainly containing an organic solvent.
  • an antistatic resin composition (paint) is prepared as it is or further diluted with an organic solvent. To do.
  • the paint is supplied on a substrate represented by paper, plastic, iron, ceramics, and glass.
  • Examples of the supply method include various methods such as a coating method using a brush or a bar coater, a dipping method in which the substrate is immersed in the paint, and a spin coating method in which the paint is dropped on the substrate to rotate the substrate to spread the paint. it can.
  • Examples of the method for curing the paint on the substrate include a method for removing the organic solvent by heating and a method for curing by irradiating light such as ultraviolet rays or an electron beam.
  • the conductive composition according to this embodiment includes a reaction product of an anion other than that required for doping in the polyanion and an organic compound containing an oxirane group and / or an oxetane group, It is dispersible and soluble in solvents mainly composed of organic solvents.
  • the conductive composition described above is also soluble in various organic resins or organic resin composition solutions, and has the advantage that the resistance value can be reduced or the current can be applied in each composition.
  • the conductive composition has a storage stability, compared to a conventionally known amine compound, a solvent substitution method by reaction with a polyanion residue in a conductive polymer aqueous dispersion using a phase transfer catalyst, It is excellent in the stability of the electric resistance value and can be applied to a field where an amine or the like becomes an obstacle to the reaction.
  • Production Example 2 Production of PEDOT-PSS aqueous solution 14.2 g of 3,4-ethylenedioxythiophene and 36.7 g of polystyrene sulfonic acid obtained in Production Example 1 were dissolved in 2000 ml of ion-exchanged water. The solution was mixed at 20 ° C. While stirring the mixed solution obtained at 20 ° C., 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added. The reaction was stirred for 3 hours. 2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method.
  • Production Example 3 Synthesis of polysulfoethyl methacrylate 1.14 g of ammonium persulfate dissolved in 10 ml of water in advance while dissolving 216 g of sodium sulfoethyl methacrylate in 1000 ml of ion-exchanged water and stirring at 80 ° C. The oxidant solution was added dropwise for 20 minutes and the solution was stirred for 12 hours.
  • Production Example 4 Production of aqueous solution in which PEDOT-polysulfoethyl methacrylate is dispersed About 1.2 mass under the same conditions as Production Example 2 except that the polystyrene sulfonic acid of Production Example 2 is changed to polysulfoethyl methacrylate.
  • Example 1 400 g of methanol and 50 g of C12 and C13 mixed higher alcohol glycidyl ether (Epolite M-1230, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. Next, 100 g of the aqueous solution of PEDOT-PSS obtained in Production Example 2 was added to the mixed solution and stirred at room temperature to obtain an amber-colored precipitate. The precipitate was collected by filtration and dispersed in methyl ethyl ketone to obtain a methyl ethyl ketone solution in which about 1% by mass of PEDOT-PSS was dispersed.
  • Example 2 The amber precipitate of Example 1 was collected by filtration and then dried in an atmosphere at 80 ° C. for 12 hours. The solid substance obtained by drying was dispersed in methyl ethyl ketone to obtain a methyl ethyl ketone solution containing about 1% by mass of PEDOT-PSS dispersion.
  • Example 3 Under the same conditions as in Example 1, except that the C12 and C13 mixed higher alcohol glycidyl ether of Example 1 was changed from 50 g to 25 g, a methyl ethyl ketone solution of about 1% by mass of PEDOT-PSS dispersion was obtained.
  • Example 4 After the amber-colored precipitate of Example 1 was collected by filtration, 100 g of ion exchange water and 100 g of toluene were added thereto, and the mixture was allowed to stand after stirring to separate the solution into an organic phase and an aqueous phase. Next, the aqueous phase was extracted to obtain a toluene-based solution of about 1% by mass of PEDOT-PSS dispersion.
  • Example 5 Under the same conditions as in Example 1, except that the C12 and C13 mixed higher alcohol glycidyl ether in Example 1 was changed to 1,2-epoxyhexadecane, a methyl ethyl ketone solution with about 1% by mass of PEDOT-PSS dispersion was obtained.
  • Example 6 100 g of methanol and the aqueous solution of 100 g of PEDOT-PSS obtained in Production Example 2 were mixed, and the mixture of 100 g of methanol and 9 g of C12 and C13 mixed higher alcohol glycidyl ether was stirred for 60 minutes while stirring at 50 ° C. The solution was added dropwise to obtain an amber colored precipitate. The precipitate was collected by filtration and dispersed in methyl ethyl ketone to obtain a methyl ethyl ketone solution in which about 1% by mass of PEDOT-PSS was dispersed.
  • Example 7 Under the same conditions as in Example 6, except that 100 g of methanol was changed to 200 g and 9 g of C12 and C13 mixed higher alcohol glycidyl ether was changed to 12.5 g, a methyl ethyl ketone solution of about 1% by mass of PEDOT-PSS dispersion was prepared. Obtained.
  • Example 8 A methyl ethyl ketone solution of about 1% by mass of PEDOT-polysulfomethacrylate dispersed under the same conditions as in Example 1 except that the PEDOT-PSS of Example 1 was changed to an aqueous solution of PEDOT doped with the polysulfomethacrylate of Production Example 4. Got.
  • Example 9 Under the same conditions as in Example 1, except that the C12 and C13 mixed higher alcohol glycidyl ether of Example 1 was changed to glycidyl methacrylate, a methyl ethyl ketone solution of about 1% by mass of PEDOT-PSS dispersion was obtained.
  • Example 10 400 g of methanol and 35 g of 3-glycidyloxypropyltrimethoxysilane were mixed.
  • 0.12 g of PEDOT-PSS solid (Agfa Corp., Organcon Dry) previously lyophilized was added to the mixture, and the mixture was stirred at 60 ° C. for 2 hours.
  • the PEDOT-PSS solid was solubilized in methanol to give a blue methanol solution.
  • Example 11 While stirring 100 g of the aqueous solution of PEDOT-PSS obtained in Production Example 2 at 80 ° C., 25 g of 2-ethylhexyloxetane was added dropwise for 60 minutes, and then stirred for 8 hours to obtain an amber-colored precipitate. This precipitate was collected by filtration and dispersed in methanol to obtain a methanol solution containing about 1% by mass of PEDOT-PSS dispersion.
  • This solution was applied on a PET film (Lumirror (registered trademark) T60, manufactured by Toray Industries, Inc.) with a # 4 bar coater, and then dried using a hot air dryer at 100 ° C. for 1 minute.
  • the surface resistance value of the obtained film was measured using a Hiresta (Mitsubishi Chemical Analytech Co., Ltd .: Hiresta GP MCP-HT450) under an applied voltage of 10V.
  • Moisture content is the weight% of water when the organic solvent, water, PEDOT-PSS, and the oxirane compound or oxetane compound are present, including the compound, at 100% by mass. evaluated.
  • the water content was measured using a coulometric Karl Fischer moisture meter CA-100 type automatic moisture vaporizer VA-124S (both manufactured by Mitsubishi Chemical Analytech).
  • Table 1 shows the evaluations of the solutions obtained in the examples and the comparative examples and the films formed using the solutions.
  • Table 2 shows the dispersibility (solution stability) of the precipitates obtained in each Example and each Comparative Example in various solvents.
  • the moisture content (%) in Table 1 means the weight percent of water in the total solution.
  • stable means a state in which there is no sediment or the like that is dispersed and stabilized in a solution
  • “sediment” means a state in which a precipitate is present and is not dispersed and stabilized in a solution. Each means.
  • Example 12 To 5 g of the PEDOT-PSS solution obtained in Example 3, 4 g of methyl ethyl ketone, 1 g of pentaerythritol triacrylate, and 0.02 g of Irgacure 127 were added to prepare a paint. The obtained paint was applied onto a PET film using a # 16 bar coater, dried at 100 ° C. for about 1 minute, and then irradiated with 400 mJ of UV with a high-pressure mercury lamp to form a coating film.
  • Example 12 The coating film produced in Example 12 was excellent in transparency and exhibited a surface resistance value of 5 ⁇ 10 8 ⁇ / ⁇ .
  • Example 13 ⁇ Manufacture of conductive composition> (Example 13) To 100 g of the aqueous solution of PEDOT-PSS obtained in Production Example 2, 2 g of allyl glycidyl ether was added and stirred at room temperature for 4 hours. Next, 200 g of methanol was added and the mixture was warmed to 50 ° C., and a solution in which 5 g of C12 and C13 mixed higher alcohol glycidyl ether was mixed in advance with 100 g of methanol was dropped for 4 hours to obtain an amber colored precipitate.
  • Example 14 Under the same conditions as in Example 13, except that allyl glycidyl ether in Example 13 was changed to 3-glycidyloxypropyltrimethoxysilane, a methyl ethyl ketone solution with about 1% by mass of PEDOT-PSS dispersion was obtained.
  • Example 15 100 g of methanol was added to the aqueous solution of 100 g of PEDOT-PSS obtained in Production Example 2 and warmed to 50 ° C., and a solution of 2 g of propylene oxide mixed in advance with 50 g of methanol was added dropwise for 4 hours. Thereafter, a solution in which 5 g of C12 and C13 mixed higher alcohol glycidyl ether was mixed in advance with 50 g of methanol was dropped for 4 hours to obtain an amber-colored precipitate. The precipitate was collected by filtration and dispersed in methyl ethyl ketone to obtain a methyl ethyl ketone solution in which about 1% by mass of PEDOT-PSS was dispersed.
  • Example 16 Under the same conditions as in Example 13, except that the propylene oxide in Example 15 was changed to the products in Table 3 and Table 4 below, about 1% by mass of a PEDOT-PSS dispersed methyl ethyl ketone solution was obtained.
  • Tables 5 and 6 show the evaluations of the solutions obtained in Examples 13 to 109 and the films formed using the solutions.
  • the water-insoluble reaction product (precipitate) obtained in Example 1 was dissolved in methyl ethyl ketone, and the coating product had a resistance value of 2 ⁇ 10 7 ⁇ / ⁇ .
  • PH was 6.1.
  • a double amount of distilled water was added to the 1.2 mass% PEDOT-PSS dispersion obtained in Production Example 2, and the pH was 1.8 when measured in the same manner.
  • the precipitate is obtained by reacting at least a polyanion and an epoxy compound.
  • Examples 13 to 109 were all dispersed in methanol and methyl ethyl ketone, but were not dispersed in toluene.
  • the precipitates obtained in Examples 2 to 11 and Examples 13 to 109 were also products derived from the reaction of an anion with an oxirane group and / or oxetane group-containing organic compound from the same measurement as the previous measurement. I found out.
  • the conductive composition obtained in the present invention can be converted into a conventional aqueous dispersion in an organic solvent such as methyl ethyl ketone by changing the substituent linked to the glycidyl group even when the amount of water is small.
  • an organic solvent such as methyl ethyl ketone
  • the inventors have found that it is easily dispersible while maintaining performance such as conductivity and transparency.
  • the conductive composition obtained in this example can be miscible with the hydrophobic resin because it has a low moisture content or is practically not included.
  • the present invention can be effectively used for, for example, release paper, antistatic film, conductive paint, touch screen, organic LED, organic EL, lithium secondary battery, organic thin film solar cell, conductive polymer fiber, and the like.

Abstract

 【課題】 有機溶剤を主とする溶媒に安定的に分散可溶な導電性組成物を用いて、アミン系化合物由来の問題の少ない透明導電膜を形成する。 【解決手段】 本発明は、(a)π共役系導電性高分子と、(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物とを含み、有機溶剤を主とする溶媒に分散可溶な導電性組成物、その製造方法、当該導電性組成物と有機溶剤に溶解した樹脂溶液とを混合してなる帯電防止樹脂組成物、ならびに当該帯電防止樹脂組成物を硬化して成る帯電防止樹脂皮膜に関する。

Description

導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜 クロスレファレンス
 本出願は、2013年2月15日に日本国において出願された特願2013-028166に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。
 本発明は、π共役系導電性高分子を含有し、溶媒中に分散可溶化する導電性組成物、その製造方法、当該導電性組成物と樹脂成分とを混合して成る帯電防止樹脂組成物、ならびに当該帯電防止樹脂組成物を硬化させて成る帯電防止樹脂皮膜に関する。
 一般的に、主鎖がπ電子を含む共役系で構成されるπ共役系導電性高分子は、電解重合法あるいは化学酸化重合法により合成される。電解重合法では、ドーパントとなる電解質と、π共役系導電性高分子を形成するための前駆体モノマーとの混合溶液を用意し、当該溶液中に電極を配置すると共に予め形成した電極材料などの支持体を浸漬しておき、電極間に電圧を印加することによって、π共役系導電性高分子が当該支持体表面にフィルム状に形成される。このように、電解重合法は、電解重合用の装置を必要とし、かつバッチ生産となることから、大量生産性に劣る。一方、化学酸化重合法では、上記のような制約は無く、π共役系導電性高分子を形成する前駆体モノマーに酸化剤と酸化重合触媒とを添加し、溶液中で大量のπ共役系導電性高分子を製造することができる。
 しかし、化学酸化重合法では、π共役系導電性高分子を構成する主鎖の共役系の成長に伴い、溶媒に対する溶解性が乏しくなるため、π共役系導電性高分子は、溶媒に不溶の固体粉末で得られる。このため、塗布等の手法によって、プラスチック等の各種基材上にπ共役系導電性高分子の膜を均一な厚みにて形成することは難しい。かかる理由から、π共役系導電性高分子に官能基を導入して溶媒に可溶にする方法、バインダ樹脂にπ共役系導電性高分子を分散させて溶媒に可溶化する方法、π共役系導電性高分子にアニオン基含有高分子酸を添加して溶媒に可溶化する方法などが試みられている。
 例えば、π共役系導電性高分子の水への溶解性を向上させるため、分子量2,000~500,000のアニオン基含有高分子酸としてのポリスチレンスルホン酸の存在下にて、酸化剤を用いて、3,4-ジアルコキシチオフェンを化学酸化重合し、ポリ(3,4-ジアルコキシチオフェン)水溶液を製造する方法が知られている(例えば、特許文献1を参照)。また、ポリアクリル酸の存在下で、π共役系導電性高分子を形成するための前駆体モノマーを化学酸化重合し、π共役系導電性高分子コロイド水溶液を製造する方法も知られている(例えば、特許文献2を参照)。
 さらに、有機溶剤に可溶若しくは分散して有機樹脂と混合可能な導電性溶液を製造する方法も提案されている。その一例として、ポリアニリンの有機溶剤溶液およびその製造方法が知られている(例えば、特許文献3を参照)。また、ポリアニオンと真性導電性高分子とを含む水溶液から有機溶剤への転相による溶媒置換法も知られている(例えば、特許文献4、特許文献5、特許文献6および特許文献7を参照)。また、凍結乾燥後の真性導電性高分子を有機溶剤に溶解させる方法も知られている(例えば、特許文献8を参照)。しかし、これらの方法では、ポリアニリンの例のように他の有機樹脂との混合が困難であり、加えて、多量の水を含む溶剤系に限られるという問題がある。水が少量若しくは実質的に水を含まない場合であっても、上記文献(例えば、特許文献4、特許文献5、特許文献6および特許文献7を参照)のように、アミン化合物を用いることに起因して、樹脂と混合した場合の経時的な色調劣化、導電性高分子へのポリアニオンのドープがアミンによって徐々に引き抜かれて導電性が経時的に低下するという問題がある。
 また、特徴的な例としてイソシアネート系化合物を用いた樹脂に導電性を付与する場合、アミンによる導電性高分子の凝集が起こるという不具合がある。さらには、付加硬化型シリコーン樹脂に導電性高分子を混合すると、アミンによる硬化阻害が生じ、シリコーン樹脂の硬化が不十分となるという欠点もある。
 上述のように、これまでに、π共役系導電性高分子を含む導電性高分子溶液は、水溶液でありながらも、上記先行技術(特許文献1~8開示の技術)により有機溶剤にその一部若しくは全部を置換した導電性溶液が提案されている。
特開平7-090060号公報 特開平7-165892号公報 国際公開WO2005/052058 特開2006-249303号公報 特開2007-254730号公報 特開2008-045061号公報 特開2008-045116号公報 特開2011-032382号公報
 しかし、上述した従来の技術では、いずれも、導電性高分子に対してアミン系化合物を用い、水相から有機相に転相するものであるため、アミン系化合物に由来する上記欠点を克服することはできない。
 本発明は、有機溶剤を主とする溶媒に安定的に分散可溶な導電性組成物を用いて、上記のアミン系化合物由来の問題の少ない透明導電膜を形成することを目的とする。
 上記目的を達成するために、本発明者らは、アミン系化合物を使用せず、オキシラン系あるいはオキセタン系の化合物を使用して水相から有機相への転相を可能にする全く新しい技術を開発して、本発明の完成に至った。具体的な課題解決手段は、以下のとおりである。
 上記目的を達成するための本発明の実施の形態に係る導電性組成物は、(a)π共役系導電性高分子と、(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物とを含み、有機溶剤を主とする溶媒に分散可溶な組成物である。
 別の実施の形態に係る導電性組成物は、特に、上述の溶媒を重量比にて有機溶剤:水=90:10~100:0の範囲とする組成物である。
 別の実施の形態に係る導電性組成物は、(d)有機溶剤をさらに添加してなる。
 別の実施の形態に係る導電性組成物は、有機溶剤に可溶な(e)樹脂をさらに含む。
 別の実施の形態に係る導電性組成物は、特に、(a)π共役系導電性高分子を、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体からなる群から選択される少なくとも1種以上の繰り返し単位を有するものとする。
 別の実施の形態に係る導電性組成物は、さらに、(a)π共役系導電性高分子を、ポリ(3,4-エチレンジオキシチオフェン)またはポリピロールとする。
 別の実施の形態に係る導電性組成物は、また、(b)ポリアニオンを、スルホン酸基、リン酸基およびカルボキシル基から選択される1種若しくはそれ以上の混合物とする。
 別の実施の形態に係る導電性組成物は、また、(b)ポリアニオンを、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸アルキレンスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)またはそれらの1種以上を共重合構成体として含むものとする。
 本発明の実施の形態に係る導電性組成物の製造方法は、上述のいずれかの導電性組成物を製造する方法であって、π共役系導電性高分子とそれにドープしたポリアニオンとの水分散体に、オキシラン基および/またはオキセタン基含有有機化合物を添加し、ポリアニオンとオキシラン基および/またはオキセタン基含有有機化合物とを反応させ、少なくとも水分を除去する工程を含む。
 本発明の実施の形態に係る導電性組成物の製造方法は、上述のいずれかの導電性組成物を製造する方法であって、オキシラン基および/またはオキセタン基含有有機化合物を、π共役系導電性高分子とそれにドープしたポリアニオンとの水分散体に添加し、ポリアニオンとオキシラン基および/またはオキセタン基含有有機化合物とを反応させ、あるいは反応させながら水に不溶の有機溶媒への転相を行い、少なくとも水分を除去する工程を含む。
 本発明の実施の形態に係る導電性組成物の製造方法は、上述のいずれかの導電性組成物を製造する方法であって、オキシラン基および/またはオキセタン基含有有機化合物を、予め水分を低減したπ共役系導電性高分子とそれにドープしたポリアニオンとの乾燥固体に添加し、ポリアニオンとオキシラン基および/またはオキセタン基含有有機化合物とを反応させる工程を含む。
 本発明の実施の形態に係る帯電防止樹脂組成物は、上述のいずれかの導電性組成物と、有機溶剤に溶解した樹脂溶液とを混合してなる。
 本発明の実施の形態に係る帯電防止樹脂皮膜は、上述の帯電防止樹脂組成物から有機溶剤を低減せしめ硬化して成る。
 本発明によれば、有機溶剤を主とする溶媒に安定的に分散可溶な導電性組成物を用いて、アミン系化合物由来の問題の少ない透明導電膜を形成することができる。
 以下、本発明に係る導電性組成物およびその製造方法、その導電性組成物を含む帯電防止樹脂組成物ならびに帯電防止樹脂皮膜の各実施の形態について説明する。
<A 導電性組成物およびその製造方法の実施の形態>
1.導電性組成物
 本発明の実施の形態に係る導電性組成物は、(a)π共役系導電性高分子と、(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、(c)ポリアニオン中のアニオンとオキシラン基および/またはオキセタン基含有有機化合物との反応生成物とを含み、有機溶剤を主とする溶媒中に分散可溶化して成る。本願で用いられるポリアニオンをドーパントとしている真性導電性高分子は、おおよそ数十ナノメータの粒子径を持つ微粒子から形成される。かかる微粒子は、界面活性剤の作用をも持つポリアニオンの存在によって可視光領域において透明であって、溶媒中に微粒子が溶解しているように見える。実際には、当該微粒子は溶媒中に分散しているが、本願では、この状態を「分散可溶化」の状態と称している。溶媒は、有機溶剤を主とする溶媒である。ここで、「有機溶剤を主とする」とは、溶媒中に占める有機溶剤が50%を超えることを意味する。特に、溶媒は、重量比にて有機溶剤:水=90:10~100:0の範囲であるのが好ましい。
 1.1 製造方法
 この実施の形態に係る導電性組成物は、一例として、以下の方法によって製造することができる。
(1)導電性高分子/ポリアニオン錯体水分散体の溶液からの製造方法
 導電性高分子/ポリアニオン錯体水分散体は、導電性高分子用のモノマーとドーパントとが共存した水溶液または水分散体の状態に、酸化剤の存在下で重合を行う。ただし、このようなモノマーからの重合のみならず、市販の導電性高分子/ドーパント水分散体を用いても良い。市販の導電性高分子/ドーパント水分散体としては、例えば、Heraeus社のPEDOT/PSS水分散体(商品名: Clevios)、アグファ社のPEDOT/PSS水分散体(商品名: Orgacon)などを挙げることができる。
 導電性組成物は、上記水分散体に、オキシラン基若しくはオキセタン基含有化合物を溶剤と共に添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させて、その後に反応液を濃縮、濾別あるいは乾固して得られる。その後、好適には、得られた濃縮物あるいは固体を、有機溶剤を主とする溶媒中に可溶若しくは分散させて、塗料の形態で使用する。また、上記水分散体に、オキシラン基若しくはオキセタン基含有化合物を溶剤と共に添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させている間若しくは反応後に、水に不溶の有機溶剤を加えて、水不溶の溶剤相(有機相ともいう)に導電性組成物を転相させ、必要に応じて脱水などの工程を経た後に、導電性組成物を、有機溶剤を主とする溶媒中に可溶若しくは分散させても良い。
(2)凍結乾燥された導電性高分子/ポリアニオン錯体固形物からの製造方法
 既に固体となっているπ共役系導電性高分子にドープしたポリアニオンの状態の導電性組成物に、水および/またはオキシラン基若しくはオキセタン基含有化合物が溶解する溶剤を適量添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させる。その後、反応液を濃縮、濾別あるいは乾固して、導電性組成物を得る。その後、好適には、得られた濃縮物あるいは固体を、有機溶剤を主とする溶媒中に可溶若しくは分散させて、塗料の形態で使用する。また、上記製造において、アニオンとオキシラン基若しくはオキセタン基とを反応させた後、水に不溶の有機溶剤を加えて、水不溶の溶剤相に導電性組成物を転相させ、必要に応じて脱水などの工程を経た後に、導電性組成物を、有機溶剤を主とする溶媒中に可溶若しくは分散させても良い。このように、(2)の方法では、凍結乾燥された導電性組成物の固体を原料として用いているので、特に、濃縮する工程の時間を短縮できる。
 1.2 導電性組成物用の原料
 (a)π共役系導電性高分子
 π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば、何らの限定もなく用いることができる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体を好適に挙げることができる。重合の容易性、空気中における安定性の観点では、特に、ポリピロール類、ポリチオフェン類あるいはポリアニリン類を好適に用いることができる。π共役系導電性高分子は、無置換のままでも、十分に高い導電性およびバインダへの相溶性を示すが、導電性、バインダへの分散性若しくは溶解性をより高めるためには、アルキル基、アルケニル基、カルボキシル基、スルホ基、アルコキシル基、ヒドロキシル基、シアノ基などの官能基が導入されても良い。
 上記のπ共役系導電性高分子の好適な例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 上記のπ共役系導電性高分子の例において、抵抗値あるいは反応性を考慮すると、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)から選択される1種若しくは2種以上からなる共重合体を、特に好適に用いることができる。高導電性および高耐熱性の面では、さらに、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)を好適に用いることができる。また、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)のようなアルキル置換化合物は、有機溶剤を主とする溶媒への溶解性、疎水性樹脂を添加したときの相溶性および分散性を向上させるために、より好適に用いることができる。アルキル基の中でも、メチル基は、導電性に悪影響を与えることが少ないので、より好ましい。
 (b)ポリアニオン
 ポリアニオンは、アニオン性化合物であれば、特に制約無く用いることができる。アニオン性化合物とは、分子中に、(a)π共役系導電性高分子への化学酸化ドーピングが起こりうるアニオン基を有する化合物である。アニオン基としては、製造の容易さおよび高い安定性の観点から、硫酸エステル基、リン酸エステル基、リン酸基、カルボキシル基、スルホン基、などが好ましい。これらのアニオン基の内、(a)π共役系導電性高分子へのドープ効果に優れる理由から、スルホン基、硫酸エステル基、カルボキシル基がより好ましい。
 ポリアニオンとしては、例えば、アニオン基を有さないポリマーをスルホ化剤によりスルホ化剤によりスルホ化等を行ってポリマー内にアニオン基を導入したポリマーの他、アニオン基含有重合性モノマーを重合して得られたポリマーを挙げることができる。通常、ポリアニオンは、製造の容易さの観点から、好ましくは、アニオン基含有重合性モノマーを重合して得る。かかる製造方法としては、例えば、溶媒中、アニオン基含有重合性モノマーを、酸化剤および/または重合触媒の存在下、酸化重合またはラジカル重合させて得る方法を例示できる。より具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保持し、そこに、予め溶媒に所定量の酸化剤および/または重合触媒を溶解しておいた溶液を添加して、所定時間で反応させる。当該反応により得られたポリマーは、触媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させることもできる。アニオン基含有重合性モノマーの重合に際して使用する酸化剤および/または酸化触媒、溶媒は、(a)π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。
 アニオン基含有重合性モノマーは、分子内にアニオン基と重合可能な官能基を有するモノマーであり、具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸及びその塩類、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α-メチルスチレンスルホン酸及びその塩類、アクリルアミド-t-ブチルスルホン酸及びその塩類、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩類、シクロブテン-3-スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3-ブタジエン-1-スルホン酸及びその塩類、1-メチル-1,3-ブタジエン-2-スルホン酸及びその塩類、1-メチル-1,3-ブタジエン-4-スルホン酸及びその塩類、アクリル酸エチルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アクリル酸プロピルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アクリル酸-t-ブチルスルホン酸(CHCH-COO-C(CHCH-SOH)及びその塩類、アクリル酸-n-ブチルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アリル酸エチルスルホン酸(CHCHCH-COO-(CH-SOH)及びその塩類、アリル酸-t-ブチルスルホン酸(CHCHCH-COO-C(CHCH-SOH)及びその塩類、4-ペンテン酸エチルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸プロピルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸-n-ブチルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸-t-ブチルスルホン酸(CHCH(CH-COO-C(CHCH-SOH)及びその塩類、4-ペンテン酸フェニレンスルホン酸(CHCH(CH-COO-C-SOH)及びその塩類、4-ペンテン酸ナフタレンスルホン酸(CHCH(CH-COO-C10-SOH)及びその塩類、メタクリル酸エチルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸プロピルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸-t-ブチルスルホン酸(CHC(CH)-COO-C(CHCH-SOH)及びその塩類、メタクリル酸-n-ブチルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸フェニレンスルホン酸(CHC(CH)-COO-C-SOH)及びその塩類、メタクリル酸ナフタレンスルホン酸(CHC(CH)-COO-C10-SOH)及びその塩類等が挙げられる。また、これらを2種以上含む共重合体であってもよい。
 アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、スチレン、p-メチルスチレン、p-エチルスチレン、p-ブチルスチレン、2,4,6-トリメチルスチレン、p-メトキシスチレン、α-メチルスチレン、2-ビニルナフタレン、6-メチル-2-ビニルナフタレン、1-ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルイミダゾ-ル、アクリルアミド、N,N-ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N-ジメチルビニルアミン、N,N-ジエチルビニルアミン、N,N-ジブチルビニルアミン、N,N-ジ-t-ブチルビニルアミン、N,N-ジフェニルビニルアミン、N-ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2-メチルシクロヘキセン、ビニルフェノール、1,3-ブタジエン、1-メチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,4-ジメチル-1,3-ブタジエン、1,2-ジメチル-1,3-ブタジエン、1,3-ジメチル-1,3-ブタジエン、1-オクチル-1,3-ブタジエン、2-オクチル-1,3-ブタジエン、1-フェニル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1-ヒドロキシ-1,3-ブタジエン、2-ヒドロキシ-1,3-ブタジエン等が挙げられる。
 こうして得られるポリアニオンの重合度は、特に限定されるものではないが、通常、モノマーの単位が10~100,000程度であり、溶媒可溶化、分散性および導電性を良好にする観点から、50~10,000程度とするのがより好ましい。
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)を好適に挙げることができる。
 得られたアニオン性化合物がアニオン塩である場合には、アニオン酸に変質させるのが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法などを挙げることができる。これらの方法の中でも、作業容易性の観点から、限外ろ過法が好ましい。ただし、金属イオン濃度を低減することを要する場合には、イオン交換法を用いる。
 (a)π共役系導電性高分子と(b)ポリアニオンとの組み合わせとしては、(a)および(b)の各グループから選択されたものを使用できるが、化学的安定性、導電性、保存安定性、入手容易性などの観点から、(a)π共役系導電性高分子の一例であるポリ(3,4-エチレンジオキシチオフェン)と、(b)ポリアニオンの一例であるポリスチレンスルホン酸との組み合わせが好ましい。ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸とは、前述のように、導電性高分子用のモノマーとドーパントが共存した水溶液または水分散液の状態で酸化剤の存在下にて重合を行い、合成しても良い。また、市販の導電性高分子/ドーパント水分散体を使用しても良い。
 ポリアニオンの含有量は、好ましくはπ共役系導電性高分子1モルに対して0.1~10モルの範囲、より好ましくは1~7モルの範囲である。ポリアニオンの含有量を0.1モル以上とすることにより、π共役系導電性高分子へのドーピング効果を高め、導電性を高めることができる。加えて、溶媒への溶解性が高くなり、均一分散形態の導電性高分子の溶液を得やすくなる。一方、ポリアニオンの含有量を10モル以下にすると、π共役系導電性高分子の含有割合を相対的に多くすることができ、より高い導電性を発揮させることができる。
 (c)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物
 ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物は、前述の(a)π共役系導電性高分子、(b)ポリアニオンに、オキシラン基および/またはオキセタン基含有有機化合物を添加して反応させることにより得られる。
 オキシラン基および/またはオキセタン基含有有機化合物としては、ポリアニオンのアニオン基または電子吸引基に配位あるいは結合するものであれば、特に限定されない。1分子中に1個以下のオキシラン基若しくはオキセタン基を含有する化合物を用いると、凝集やゲル化を低減できる点でより好ましい。オキシラン基および/またはオキセタン基含有有機化合物の分子量は、有機溶剤への易溶解性を考慮すると、好ましくは50~2,000の範囲である。
 オキシラン基および/またはオキセタン基含有有機化合物の量は、好ましくは、π共役系導電性高分子のポリアニオン中のアニオン基あるいは電子吸引基に対して、重量比で0.1~50であり、より好ましくは1.0~30.0である。オキシラン基および/またはオキセタン基含有有機化合物の量を上記重量比で0.1以上とすると、オキシラン基および/またはオキセタン基含有有機化合物を、ポリアニオンのアニオン基が溶剤に溶解する程度に変性することが出来る。一方、オキシラン基および/またはオキセタン基含有有機化合物の量を上記重量比で50以下とすると、余剰のオキシラン基および/またはオキセタン基含有有機化合物が導電性高分子溶液中に析出しにくいので、得られる導電性塗膜の導電率および機械的物性の低下を防止しやすい。
 オキシラン基および/またはオキセタン基含有有機化合物としては、オキシラン基若しくはオキセタン基を分子中に有していればどのような分子構造を持つ化合物でも良い。ただし、極性の低い有機溶剤に可溶化するには、カーボン数の多い化合物が有効である。好適にはカーボン数が10以上の化合物が使用される。また、製造工程中において水を多用する場合には、加水分解や水と反応する官能基を有するアルコキシシリル基を含有する化合物は、なるべく使用しないのが好ましい。一方、凍結乾燥を経由の製造方法の場合には、アルコキシシリル基を含有する化合物もまた、その特徴を維持したまま溶剤に分散あるいは可溶するので、使用しても良い。従来から、導電性向上剤或いは架橋剤としてオキシラン基或いはオキセタン基を有する化合物を、導電性ポリマー水溶液に添加されることが行われている。それら公知の技術と本願との差異は、1)導電性高分子のドーパント兼分散剤であるポリアニオンとオキシラン基或いはオキセタン基含有化合物とを反応させた反応物を得ていること、2)水分を除去若しくは低減していること、にある。これら1)および2)の要件を達成することによって、水分の少ない状態で有機溶剤への可溶化が達成され、有機樹脂との混合も可能であるという効果を発現できる。
 以下、オキシラン基および/またはオキセタン基含有有機化合物を例示する。
  (オキシラン基含有化合物)
 単官能オキシラン基含有化合物としては、プロピレンオキサイド、2,3-ブチレンオキサイド、イソブチレンオキサイド、1,2-ブチレンオキサイド、1,2-エポキシヘキサン、1,2-エポキシヘプタン、1,2-エポキシペンタン、1,2-エポキシオクタン、1,2-エポキシデカン、1,3-ブタジエンモノオキサイド、1,2-エポキシテトラデカン、グリシジルメチルエーテル、1,2-エポキシオクタデカン、1,2-エポキシヘキサデカン、エチルグリシジルエーテル、グリシジルイソプロピルエーテル、tert-ブチルグリシジルエーテル、1,2-エポキシエイコサン、2-(クロロメチル)-1,2-エポキシプロパン、グリシドール、エピクロルヒドリン、エピブロモヒドリン、ブチルグリシジルエーテル、1,2-エポキシヘキサン、1,2-エポキシ-9-デカン、2-(クロロメチル)-1,2-エポキシブタン、2-エチルヘキシルグリシジルエーテル、1,2-エポキシ-1H,1H,2H,2H,3H,3H-トリフルオロブタン、アリルグリシジルエーテル、テトラシアノエチレンオキサイド、グリシジルブチレート、1,2-エポキシシクロオクタン、グリシジルメタクリレート、1,2-エポキシシクロドデカン、1-メチル-1,2-エポキシシクロヘキサン、1,2-エポキシシクロペンタデカン、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシ-1H,1H,2H,2H,3H,3H-ヘプタデカフルオロブタン、3,4-エポキシテトラヒドロフラン、グリシジルステアレート、3-グリシジルオキシプロピルトリメトキシシラン、エポキシ琥珀酸、グリシジルフェニルエーテル、イソホロンオキサイド、α-ピネンオキサイド、2,3-エポキシノルボルネン、ベンジルグリシジルエーテル、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-[2-(パーフルオロヘキシル)エトキシ]-1,2-エポキシプロパン、1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン、9,10-エポキシ-1,5-シクロドデカジエン、4-tert-ブチル安息香酸グリシジル、2,2-ビス(4-グリシジルオキシフェニル)プロパン、2-tert-ブチル-2-[2-(4-クロロフェニル)]エチルオキシラン、スチレンオキサイド、グリシジルトリチルエーテル、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-フェニルプリピレンオキサイド、コレステロール-5α,6α-エポキシド、スチルベンオキサイド、p-トルエンスルホン酸グリシジル、3-メチル-3-フェニルグリシド酸エチル、N-プロピル-N-(2,3-エポキシプロピル)ペルフルオロ-n-オクチルスルホンアミド、(2S,3S)-1,2-エポキシ-3-(tert-ブトキシカルボニルアミノ)-4-フェニルブタン、3-ニトロベンゼンスルホン酸(R)-グリシジル、3-ニトロベンゼンスルホン酸-グリシジル、パルテノリド、N-グリシジルフタルイミド、エンドリン、デイルドリン、4-グリシジルオキシカルバゾール、7,7-ジメチルオクタン酸[オキシラニルメチル]などを例示できる。
 多官能オキシラン基含有化合物としては、1,7-オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、4-ブタンジオールジグリシジルエーテル、1,2:3,4-ジエポキシブタン、1,2-シクロヘキサンジカルボン酸ジグリシジル、イソシアヌル酸トリグリシジルネオペンチルグリコールジグリシジルエーテル、1,2:3,4-ジエポキシブタン、ポリエチレングリコール#200ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテルなどを例示できる。
  (オキセタン基含有化合物)
 単官能オキセタン基含有化合物としては、3-エチル-3-ヒドロキシメチルオキセタン(=オキセタンアルコール)、2-エチルヘキシルオキセタン、(3-エチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メタアクリレートなどを例示できる。
 多官能オキセタン基含有化合物としては、キシリレンビスオキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ベンゼンジカルボン酸,ビス{[3-エチル-3-オキセタニル]メチル}エステルなどを例示できる。
 以上のような導電性組成物は、ポリアニオンのアニオン基にオキシラン基若しくはオキセタン基が反応しているため、ポリアニオンの親水性が失われ、親油性を呈する。したがって、この導電性組成物は、有機溶剤に高濃度に可溶化あるいは分散可能である。
 (d)有機溶剤
 有機溶剤は、上記(a)~(c)の各成分と異なり、この実施の形態に係る導電性組成物に含めても、あるいは含めなくても良い。導電性組成物を可溶化若しくは分散させる溶媒に用いられる有機溶剤としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホニウムトリアミド、アセトニトリル、ベンゾニトリル等に代表される極性溶媒; クレゾール、フェノール、キシレノール等に代表されるフェノール類; メタノール、エタノール、プロパノール、ブタノール等に代表されるアルコール類; アセトン、メチルエチルケトン、メチルイソブチルケトン等に代表されるケトン類; 酢酸エチル、酢酸プロピル、酢酸ブチル等に代表されるエステル類; ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等に代表される炭化水素類; ギ酸、酢酸等に代表されるカルボン酸; エチレンカーボネート、プロピレンカーボネート等に代表されるカーボネート化合物; ジオキサン、ジエチルエーテル等に代表されるエーテル化合物; エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等に代表される鎖状エーテル類; 3-メチル-2-オキサゾリジノン等に代表される複素環化合物; アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等に代表されるニトリル化合物などを好適に例示できる。これらの有機溶剤は、単独で用いても良く、あるいは2種以上を混合して用いても良い。これらの有機溶剤の内、種々の有機物との易混合性の観点から、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類をより好適に用いることができる。導電性組成物を用いて塗膜を形成する場合、固形の導電性組成物を有機溶剤に分散可溶化させて塗料を製造し、それを基材に塗布して有機溶剤の一部若しくは全部を除去する。したがって、有機溶剤としては、沸点の低いものを好適に選択する。これにより、塗膜形成時の乾燥時間を短縮でき、もって塗膜の生産性を高めることができる。
 (e)樹脂(バインダ)
 導電性組成物は、導電性塗膜の耐傷性や硬度を高くし、塗膜と基材との密着性を向上させる観点から、好適には、バインダの機能を持つ樹脂(バインダ、あるいはバインダ樹脂とも称する)を含む。バインダ樹脂は、上記(a)~(c)の各成分と異なり、この実施の形態に係る導電性組成物に含めても、あるいは含めなくても良い。バインダ樹脂としては、熱硬化性樹脂の他、熱可塑性樹脂であっても良い。π共役系導電性高分子は、親水性ではなく、親油性であるため、特に疎水性樹脂と相溶しやすい。バインダ樹脂としては、例えば、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート等のポリエステル; ポリイミド; ポリアミドイミド; ポリアミド6,ポリアミド6,6,ポリアミド12,ポリアミド11等のポリアミド; ポリフッ化ビニリデン,ポリフッ化ビニル,ポリテトラフルオロエチレン,エチレンテトラフルオロエチレンコポリマー,ポリクロロトリフルオロエチレン等のフッ素樹脂; ポリビニルアルコール,ポリビニルエーテル,ポリビニルブチラール,ポリ酢酸ビニル,ポリ塩化ビニル等のビニル樹脂; エポキシ樹脂; キシレン樹脂; アラミド樹脂; ポリイミドシリコーン; ポリウレタン; ポリウレア; メラミン樹脂; フェノール樹脂; ポリエーテル; アクリル樹脂; シリコーン樹脂; ウレタン樹脂; およびこれらの共重合体や混合物などを好適に例示できる。
 上記のバインダ樹脂は、有機溶剤に溶解されていても良く、スルホン酸基やカルボン酸基などの官能基が付与されて水溶液化されていても良く、あるいは乳化の形態で水に分散されていても良い。バインダ樹脂の中でも、溶剤に可能な樹脂若しくは液状であって容易に導電性組成物と混合可能なものとして、ポリウレタン、ポリエステル、アクリル樹脂、ポリアミド、ポリイミド、エポキシ樹脂、ポリイミドシリコーン、シリコーン樹脂のいずれか1種以上を用いるのが好ましい。アクリル樹脂は、高硬度で透明性に優れるため、光学フィルタの用途において特に適している。
 (f)その他
 導電性組成物を可溶あるいは分散させた溶媒への添加剤として、例えば、導電性を向上させるものを挙げることができる。
 (導電性向上剤)
 導電性向上剤としては、グリシジル化合物、極性溶媒、多価脂肪族アルコール、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基と1個以上のカルボキシ基を有する化合物、ラクタム化合物等が挙げられる。これらのなかでも、剥離性成分の硬化を阻害しにくいものが好ましい。剥離性成分の硬化を阻害しにくければ、該帯電防止性剥離剤から得た剥離剤層に、粘着シートの粘着剤層を重ねた後、粘着剤層に剥離剤が転写することを防ぐことができる。剥離性成分の硬化を阻害しにくい導電性向上剤としては、グリシジル化合物、極性溶媒、多価脂肪族アルコールが挙げられる。また、導電性向上剤は、25℃で液状であることが好ましい。液状であれば、該帯電防止性剥離剤から形成した剥離剤層の透明性を向上させることができ、剥離剤層に貼り合わされる粘着剤層への異物の転写を防ぐことができる。
 グリシジル化合物の具体例としては、エチルグリシジルエーテル、n-ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、アリルグリシジルエーテル、ベンジルグリシジルエーテル、グリシジルフェニルエーテル、ビスフェノールAジグリシジルエーテル、アクリル酸グリシジルエーテル、メタクリル酸グリシジルエーテル等が挙げられる。極性溶媒の具体例としては、N-メチルホルムアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-エチルアクリルアミド、N-エチルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N-メチル-2-ピロリドン、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、乳酸メチル、乳酸エチル、乳酸プロピル等が挙げられる。多価脂肪族アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、グリセリン、ジグリセリン、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、チオジエタノール、ジプロピレングリコール等が挙げられる。
 導電性向上剤の含有量は、導電性成分100質量部に対して10~10000質量部であることが好ましく、30~5000質量部であることがより好ましい。導電性向上剤の含有量が前記下限値以上であれば、帯電防止性をより向上させることができる。一方、前記上限値以下であれば、剥離性をより向上できる。
<B 帯電防止樹脂組成物ならびに帯電防止樹脂皮膜の実施の形態>
1.帯電防止樹脂組成物
 本発明の実施の形態に係る帯電防止樹脂組成物は、上述の導電性組成物と、有機溶剤に溶解した樹脂溶液とを混合してなる。当該樹脂溶液は、上述の(d)有機溶剤と(e)樹脂とを含む。したがって、帯電防止樹脂組成物は、上述の(a)~(e)の成分を含む。
2.帯電防止樹脂皮膜
 本発明の実施の形態に係る帯電防止樹脂皮膜は、上述の帯電防止樹脂組成物から有機溶剤を低減せしめ硬化して成る膜である。導電性組成物が固形の場合には、それを、有機溶剤を主とする溶媒中に可溶若しくは分散させた溶液から帯電防止樹脂組成物(塗料)を用意する。また、導電性組成物が既に有機溶剤を主とする溶媒中に可溶若しくは分散させた状態の溶液である場合にはそのまま若しくは有機溶剤でさらに希釈して帯電防止樹脂組成物(塗料)を用意する。塗料は、紙、プラスチック、鉄、セラミックス、ガラスに代表される基体上に供給される。供給方法としては、刷毛やバーコーターを使う塗布法、塗料中に基体を浸漬するディップ法、塗料を基体上に滴下して基体を回転させて塗料を拡げるスピンコート法などの種々の手法を例示できる。基体上の塗料の硬化法は、加熱により有機溶剤を除去する方法の他、紫外線などの光や電子線を照射して硬化する方法などを例示できる。
 以上のように、この実施の形態に係る導電性組成物は、ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物を含むため、種々な有機溶剤を主とする溶媒中に分散、可溶なものである。また、上述の導電性組成物は、種々の有機樹脂あるいは有機樹脂組成物溶液にも可溶であり、それぞれの組成物において抵抗値を減ずるあるいは通電できるという利点を有する。また、導電性組成物は、従来から知られているアミン系化合物、相間移動触媒を用いた導電性高分子水分散液におけるポリアニオン残渣との反応によって溶剤置換する方法に比べて、保存安定性、電気抵抗値の安定性に優れると共に、アミンなどが反応の障害になる分野にも適用可能である。
 次に、本発明の製造例および実施例について説明する。ただし、本発明は、以下の実施例に限定されるものではない。
<製造例>
 (製造例1)・・・ポリスチレンスルホン酸の製造
 1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃にて攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、その溶液を12時間攪拌した。得られたスチレンスルホン酸ナトリウム含有溶液に、10質量%に希釈した硫酸を1000ml添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の1000ml溶液を除去し、残液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に約2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000mlの溶液を除去した。この限外ろ過操作を3回繰り返した。得られた溶液中の水を減圧除去して、無色の固形物を得た。得られたポリスチレンスルホン酸についてGPC(ゲル濾過クロマトグラフィー)カラムを用いたHPLC(高速液体クロマトグラフィー)システムを用いて、昭和電工製プルランを標準物質として重量平均分子量を測定した結果、分子量は30万であった。
 (製造例2)・・・PEDOT-PSS水溶液の製造
 14.2gの3,4-エチレンジオキシチオフェンと、製造例1で得た36.7gのポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。これにより得られた混合溶液を20℃に保ち攪拌を行いながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくりと添加し、3時間攪拌して反応させた。得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。次に、得られた溶液に、200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法を用いて約2000mlの溶液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。この操作を3回繰り返した。さらに、得られた溶液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。この操作を5回繰り返し、約1.2質量%の青色のPEDOT-PSSの水溶液を得た。
 (製造例3)・・・ポリスルホエチルメタクリレートの合成
 1000mlのイオン交換水に216gのスルホエチルメタクリレートナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、その溶液を12時間攪拌した。得られたスルホエチルメタクリレートナトリウム含有溶液に、10質量%に希釈した硫酸を1000ml添加し、限外ろ過法を用いてポリスルホエチルメタクリレート含有溶液の1000ml溶液を除去し、残液に1000mlのイオン交換水を加え、限外ろ過法を用いて約1000mlの溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に1000mlのイオン交換水を添加し、限外ろ過法を用いて約1000mlの溶液を除去した。この限外ろ過操作を3回繰り返して、無色の固形物を得た。得られたポリスルホエチルメタクリレートについてGPC(ゲル濾過クロマトグラフィー)カラムを用いたHPLC(高速液体クロマトグラフィー)システムを用いて、昭和電工製プルランを標準物質として重量平均分子量を測定した結果、分子量は30万であった。
 (製造例4)・・・PEDOT-ポリスルホエチルメタクリレートの分散した水溶液の製造
 製造例2のポリスチレンスルホン酸をポリスルホエチルメタクリレートに変えた以外、製造例2と同一条件にて約1.2質量%の青色のポリスルホエチルメタクリレートがドープしたPEDOTの水溶液(PEDOT-ポリスルホエチルメタクリレートの水溶液)を得た。
<導電性組成物の製造>
 (実施例1)
 400gのメタノールと50gのC12、C13混合高級アルコールグリシジルエーテル(共栄社化学株式会社製、エポライトM-1230)とを混合した。次に、その混合液に、製造例2で得られた100gのPEDOT-PSSの水溶液を加え、室温で攪拌して紺色の析出物を得た。この析出物を濾過回収し、メチルエチルケトンに分散させ、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例2)
 実施例1の紺色の析出物を濾過回収した後に、80℃の雰囲気下で12時間乾燥した。乾燥によって得られた固形物をメチルエチルケトンに分散させ、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例3)
 実施例1のC12、C13混合高級アルコールグリシジルエーテルを50gから25gに変えた以外、実施例1と同じ条件にて、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例4)
 実施例1の紺色の析出物を濾過回収した後に、そこに100gのイオン交換水および100gのトルエンを加え、攪拌後に静置し、溶液を有機相と水相に分離した。次に、水相を抜き取り、約1質量%のPEDOT-PSS分散のトルエン主体の溶液を得た。
 (実施例5)
 実施例1のC12、C13混合高級アルコールグリシジルエーテルを1,2-エポキシヘキサデカンに変えた以外、実施例1と同じ条件にて、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例6)
 100gのメタノールと製造例2で得た100gのPEDOT-PSSの水溶液とを混合し、50℃で攪拌しながら、100gのメタノールと9gのC12、C13混合高級アルコールグリシジルエーテルとの混合液を60分間滴下して、紺色の析出物を得た。この析出物を濾過回収し、メチルエチルケトンに分散させ、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例7)
 100gのメタノールを200gに変え、かつ9gのC12、C13混合高級アルコールグリシジルエーテルを12.5gに変えた以外、実施例6と同じ条件にて、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例8)
 実施例1のPEDOT-PSSを、製造例4のポリスルホメタクリレートがドープしたPEDOTの水溶液に変えた以外、実施例1と同じ条件にて、約1質量%のPEDOT-ポリスルホメタクリレート分散のメチルエチルケトン溶液を得た。
 (実施例9)
 実施例1のC12、C13混合高級アルコールグリシジルエーテルをグリシジルメタクリレートに変えた以外、実施例1と同じ条件にて、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例10)
 400gのメタノールと35gの3-グリシジルオキシプロピルトリメトキシシランとを混合した。次に、その混合液に予め凍結乾燥されたPEDOT-PSS固体(アグファ社製、オルガコンドライ)を0.12g添加し60℃で2時間攪拌を行った。PEDOT-PSS固体はメタノールに可溶化し青色メタノール溶液となった。
 (実施例11)
 製造例2で得た100gのPEDOT-PSSの水溶液を80℃で撹拌しながら25gの2-エチルヘキシルオキセタンを60分間滴下し、次いで8時間撹拌し紺色の析出物を得た。この析出物を濾過回収し、メタノールに分散させ、約1質量%のPEDOT-PSS分散のメタノール溶液を得た。
 (比較例1)
 400gのメタノールに予め凍結乾燥されたPEDOT-PSS固体(アグファ社製、オルガコンドライ)を0.12g添加し60℃で二時間攪拌を行った。PEDOT-PSS固体はメタノールに可溶化せず、沈降物が多く認められた。
 (比較例2)
 100gのメタノールと100gの水を混合し、この混合液に予め凍結乾燥されたPEDOT-PSS固体(アグファ社製、オルガコンドライ)0.12gを添加した。この溶液は均一に可溶化し青色になった。この溶液をPETフィルム(東レ株式会社製、ルミラー(登録商標)T60)上に#4バーコーターで塗布した後、熱風乾燥機を用いて100℃×1分間の条件で乾燥した。得られたフィルムの表面抵抗値は、ハイレスタ(三菱化学アナリテック社製: ハイレスタGP MCP-HT450)を用いて、印加電圧10Vの条件で測定した。
<実施例1~109及び比較例1,2の導電性組成物とそれらを用いて形成した皮膜の評価方法>
(1)表面抵抗率
 各1%溶液をメチルエチルケトンにて倍量に希釈し、PETフィルム(東レ株式会社製、ルミラー(登録商標)T60)上に#4バーコーターで上記希釈した液を塗布した後、熱風乾燥機を用いて100℃×1分間の条件で乾燥した。得られたフィルムの表面抵抗値は、ハイレスタ(三菱化学アナリテック社製: ハイレスタGP MCP-HT450)を用いて、印加電圧10Vの条件で測定した。
(2)透過率
 表面抵抗値の測定に用いたフィルムの透過率を、ヘイズメーターNDH5000(日本電色社製)を用いて測定した。
(3)密着性
 表面抵抗値の測定に用いたフィルムにセロハンテープ(3M製 610-1PK)を用いて基盤目剥離試験を行い、判定は100マスの内、剥離しないマス目の数で評価した。
(4)溶液安定性
 各1%溶液を23℃の環境下で24時間静置後、沈降の有無で評価した。
(5)水分含有量
 水分含有量は、有機溶剤、水、PEDOT-PSSの他、オキシラン化合物若しくはオキセタン化合物が存在する場合には当該化合物も含めて100質量%としたときの水の重量%で評価した。水分含有量は、電量法カールフィッシャー水分計CA-100型 自動水分気化装置VA-124S(いずれも三菱化学アナリテック社製)を用いて測定した。
<評価結果>
 表1に、各実施例および各比較例にて得られた溶液およびそれを用いて形成した皮膜の評価を示す。また、表2に、各実施例および各比較例で得られた析出物の各種溶媒への分散性(溶液安定性)を示す。表1中の水分(%)は、全溶液中の水の重量%を意味する。表1中、「安定」とは、沈降物等が無く溶液中で分散安定化している状態を、「沈降」とは、沈降物が存在しており溶液中で分散安定化してしない状態を、それぞれ意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<塗膜の作製>
 (実施例12)
 実施例3にて得られたPEDOT-PSS溶液5gに、メチルエチルケトン4g、ペンタエリスリトールトリアクリレート1g、イルガキュア127を0.02g添加し、塗料を作製した。得られた塗料を、#16のバーコーターを用いてPETフィルム上に塗布して、100℃にて約1分間乾燥後、高圧水銀灯にて400mJのUV照射を行い、塗膜を形成した。
<評価結果>
 実施例12にて作製した塗膜は、透明性に優れ、かつ5×10Ω/□の表面抵抗値を示した。
<導電性組成物の製造>
 (実施例13)
 製造例2で得られた100gのPEDOT-PSSの水溶液に2gのアリルグリシジルエーテルを添加し室温で4時間攪拌した。次いで200gのメタノールを添加し50℃に温め、予め100gのメタノールに5gのC12、C13混合高級アルコールグリシジルエーテルを混合した溶液を4時間滴下して、紺色の析出物を得た。この析出物を濾過回収し、メチルエチルケトンに分散させ、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例14)
 実施例13のアリルグリシジルエーテルを3-グリシジルオキシプロピルトリメトキシシランに変えた以外、実施例13と同じ条件にて、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例15)
 製造例2で得られた100gのPEDOT-PSSの水溶液に100gのメタノールを添加し50℃に温め、予め50gのメタノールに2gのプロピレンオキサイドを混合した溶液を4時間滴下した。その後、予め50gのメタノールに5gのC12、C13混合高級アルコールグリシジルエーテルを混合した溶液を4時間滴下して、紺色の析出物を得た。この析出物を濾過回収し、メチルエチルケトンに分散させ、約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
 (実施例16)
 実施例15のプロピレンオキサイドを下記表3及び表4の品に変えた以外、実施例13と同じ条件にて、それぞれ約1質量%のPEDOT-PSS分散のメチルエチルケトン溶液を得た。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<評価結果>
 表5及び表6に、実施例13~109にて得られた溶液およびそれを用いて形成した皮膜の評価を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1で得られた水不溶の反応物(沈降物)はメチルエチルケトンに溶解し、そのコーティング物は、2×10Ω/□という抵抗値を有していた。また、この沈降物をMEKに溶解させた約1質量%のPEDOT-PSS分散液を、倍量の蒸留水にて希釈し、簡易PHメーターAS-212(堀場製作所社製)にて測定したところ、PHは6.1であった。一方、製造例2で得られた1.2質量%のPEDOT-PSS分散液に倍量の蒸留水を加え、同様に測定したところ、PHは1.8であった。このことから、上記沈降物は、少なくともポリアニオンとエポキシ化合物が反応して得られたものと解される。実施例13~109については、全て、メタノール及びメチルエチルケトンに分散したが、トルエンには分散しなかった。実施例2~11及び実施例13~109で得られた沈降物も、先の測定と同様の測定から、アニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応に由来する生成物であることがわかった。
 表1~6から、本発明において得られた導電性組成物は、水分の少ない場合にもグリシジル基に繋がった置換基を変化させることでメチルエチルケトンをはじめとする有機溶剤に従来の水分散体に比して導電性や透明性などの性能を維持しながら、容易に分散可能であることを見出した。また、本実施例において得られた導電性組成物は、水分含有量が少ない或いは実用上含まないレベルである事で疎水性樹脂との混和性を持たせる事が可能となった。
 本発明は、例えば、剥離紙、帯電防止フィルム、導電性塗料、タッチスクリーン、有機LED、有機EL、リチウム二次電池、有機薄膜太陽電池、導電性高分子繊維などに有効に利用できる。

Claims (13)

  1. (a)π共役系導電性高分子と、
    (b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、
    (c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物と、
    を含み、有機溶剤を主とする溶媒に分散可溶な導電性組成物。
  2.  前記溶媒が、重量比にて有機溶剤:水=90:10~100:0の範囲であることを特徴とする請求項1に記載の導電性組成物。
  3.  (d)有機溶剤をさらに添加してなる請求項1または請求項2に記載の導電性組成物。
  4.  有機溶剤に可溶な(e)樹脂をさらに含む請求項1から請求項3のいずれか1項に記載の導電性組成物。
  5.  前記(a)π共役系導電性高分子が、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体からなる群から選択される少なくとも1種以上の繰り返し単位を有することを特徴とする請求項1から請求項4のいずれか1項に記載の導電性組成物。
  6.  前記(a)π共役系導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)またはポリピロールであることを特徴とする請求項5に記載の導電性組成物。
  7.  前記(b)ポリアニオンが、スルホン酸基、リン酸基およびカルボキシル基から選択される1種若しくはそれ以上の混合物であることを特徴とする請求項1から請求項6のいずれか1項に記載の導電性組成物。
  8.  前記(b)ポリアニオンが、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸アルキレンスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)またはそれらの1種以上を共重合構成体として含むものであることを特徴とする請求項1から請求項7のいずれか1項に記載の導電性組成物。
  9.  請求項1から請求項8のいずれか1項に記載の導電性組成物を製造する方法であって、
     π共役系導電性高分子とそれにドープしたポリアニオンとの水分散体に、オキシラン基および/またはオキセタン基含有有機化合物を添加し、上記ポリアニオンと上記オキシラン基および/またはオキセタン基含有有機化合物とを反応させ、少なくとも水分を除去する工程を含む導電性組成物の製造方法。
  10.  請求項1から請求項8のいずれか1項に記載の導電性組成物を製造する方法であって、
     オキシラン基および/またはオキセタン基含有有機化合物を、π共役系導電性高分子とそれにドープしたポリアニオンとの水分散体に添加し、上記ポリアニオンと上記オキシラン基および/またはオキセタン基含有有機化合物とを反応させ、あるいは反応させながら水に不溶の有機溶媒への転相を行い、少なくとも水分を除去する工程を含む導電性組成物の製造方法。
  11.  請求項1から請求項8のいずれか1項に記載の導電性組成物を製造する方法であって、
     オキシラン基および/またはオキセタン基含有有機化合物を、予め水分を低減したπ共役系導電性高分子とそれにドープしたポリアニオンとの乾燥固体に添加し、上記ポリアニオンと上記オキシラン基および/またはオキセタン基含有有機化合物とを反応させる工程を含む導電性組成物の製造方法。
  12.  請求項1から請求項8のいずれか1項に記載の導電性組成物と、有機溶剤に溶解した樹脂溶液とを混合してなる帯電防止樹脂組成物。
  13.  請求項12に記載の帯電防止樹脂組成物から有機溶剤を低減せしめ硬化して成る帯電防止樹脂皮膜。
PCT/JP2014/000752 2013-02-15 2014-02-14 導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜 WO2014125827A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157018408A KR102024975B1 (ko) 2013-02-15 2014-02-14 도전성 조성물, 도전성 조성물의 제조 방법, 대전방지 수지 조성물 및 대전방지 수지 피막
CN201480007498.2A CN104995256B (zh) 2013-02-15 2014-02-14 导电性组合物、导电性组合物的制造方法、防带电树脂组合物及防带电树脂皮膜
JP2015500150A JP6109920B2 (ja) 2013-02-15 2014-02-14 導電性組成物の製造方法
EP14751210.7A EP2957597A4 (en) 2013-02-15 2014-02-14 ELECTROCONDUCTIVE COMPOSITION, METHOD FOR MANUFACTURING ELECTROCONDUCTIVE COMPOSITION, ANTISTATIC RESIN COMPOSITION, AND ANTISTATIC RESIN FILM
US14/823,652 US10483011B2 (en) 2013-02-15 2015-08-11 Conductive composition, conductive composition production method, anti-static resin composition and antistatic resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013028166 2013-02-15
JP2013-028166 2013-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/823,652 Continuation-In-Part US10483011B2 (en) 2013-02-15 2015-08-11 Conductive composition, conductive composition production method, anti-static resin composition and antistatic resin film

Publications (1)

Publication Number Publication Date
WO2014125827A1 true WO2014125827A1 (ja) 2014-08-21

Family

ID=51353838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000752 WO2014125827A1 (ja) 2013-02-15 2014-02-14 導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜

Country Status (8)

Country Link
US (1) US10483011B2 (ja)
EP (1) EP2957597A4 (ja)
JP (3) JP6109920B2 (ja)
KR (1) KR102024975B1 (ja)
CN (2) CN108841097A (ja)
DE (1) DE202014011119U1 (ja)
TW (1) TWI512000B (ja)
WO (1) WO2014125827A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105385313A (zh) * 2014-08-27 2016-03-09 信越聚合物株式会社 防带电膜的制造方法
JP2016145319A (ja) * 2015-01-30 2016-08-12 信越化学工業株式会社 導電性高分子組成物、被覆品、パターン形成方法、及び基板
JP2016169269A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 導電性材料及び基板
US20170058167A1 (en) * 2015-08-26 2017-03-02 Shin-Etsu Polymer Co., Ltd. Method for producing antistatic molded article
JP2017052850A (ja) * 2015-09-08 2017-03-16 信越ポリマー株式会社 導電性高分子溶液及び導電性塗膜
WO2017043183A1 (ja) * 2015-09-08 2017-03-16 信越ポリマー株式会社 導電性高分子溶液、キャパシタ及びキャパシタの製造方法
JPWO2016098597A1 (ja) * 2014-12-17 2017-06-08 三井化学株式会社 積層体
WO2017122662A1 (ja) * 2016-01-12 2017-07-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2017133022A (ja) * 2013-02-15 2017-08-03 信越ポリマー株式会社 導電性組成物、帯電防止樹脂組成物および帯電防止樹脂皮膜
JP2018002777A (ja) * 2016-06-28 2018-01-11 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2018009051A (ja) * 2016-07-11 2018-01-18 信越ポリマー株式会社 帯電防止フィルムの製造方法
JP2018505542A (ja) * 2014-11-21 2018-02-22 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー ペロブスカイト太陽電池におけるpedot
JP2018203868A (ja) * 2017-06-02 2018-12-27 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2018203858A (ja) * 2017-06-02 2018-12-27 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019001940A (ja) * 2017-06-16 2019-01-10 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019038877A (ja) * 2017-08-22 2019-03-14 信越ポリマー株式会社 硬化性組成物および帯電防止シリコーン皮膜
JP2019038876A (ja) * 2017-08-22 2019-03-14 信越ポリマー株式会社 導電性高分子組成物、その製造方法、帯電防止樹脂組成物、および帯電防止樹脂皮膜
JP2019083159A (ja) * 2017-10-31 2019-05-30 信越ポリマー株式会社 電極及びその製造方法、並びに電池
JP2019099982A (ja) * 2018-04-09 2019-06-24 ユニチカ株式会社 不燃性シート、該不燃性シートを含む防煙垂壁
JP2019214637A (ja) * 2018-06-11 2019-12-19 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019214638A (ja) * 2018-06-11 2019-12-19 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2020111647A (ja) * 2019-01-09 2020-07-27 信越ポリマー株式会社 導電性高分子水系分散液、導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、及び導電性フィルムの製造方法
JP2020111650A (ja) * 2019-01-09 2020-07-27 信越ポリマー株式会社 導電性高分子複合体、導電性高分子含有液、導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、導電性フィルムの製造方法、及び導電性フィルム
US10854357B2 (en) * 2016-07-11 2020-12-01 Shin-Etsu Polymer Co., Ltd. Coating material for forming conductive release layer, method for producing same, conductive release film, and method for producing same
JP2021038343A (ja) * 2019-09-05 2021-03-11 信越ポリマー株式会社 高導電性複合体の製造方法、高導電性複合体の有機溶剤分散液の製造方法、導電性フィルム及びその製造方法
JP2021038361A (ja) * 2019-09-05 2021-03-11 信越ポリマー株式会社 高導電性複合体の有機溶剤分散液の製造方法、導電性フィルム及びその製造方法
JP2021095459A (ja) * 2019-12-13 2021-06-24 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418829B2 (ja) * 2014-07-24 2018-11-07 信越ポリマー株式会社 導電性ポリマー溶液および導電性塗膜
EP3434177B1 (en) * 2017-07-27 2022-01-26 Heraeus Deutschland GmbH & Co. KG Self-adhesive electrode patch
BE1025728B1 (de) * 2017-11-22 2019-06-24 Shin-Etsu Polymer Co., Ltd. Leitfähige zusammensetzung, herstellungsverfahren für eine leitfähige zusammensetzung, antistatische harzzusammensetzung und antistatischer harzfilm
DE102017129353A1 (de) 2017-12-08 2019-06-13 Ensinger Gmbh Polymer-basierendes Substrat sowie Verfahren zu dessen Herstellung
JP6948272B2 (ja) * 2018-01-30 2021-10-13 信越ポリマー株式会社 導電性布帛の製造方法
US11087899B2 (en) * 2018-12-06 2021-08-10 The Board Of Trustees Of The University Of Alabama Self-healing and stretchable polymeric compositions
EP3901192A4 (en) 2018-12-19 2022-03-16 Soken Chemical & Engineering Co., Ltd. CONDUCTIVE POLYMER COMPOSITION
CN110783472B (zh) * 2019-09-30 2022-01-04 长安大学 一种含PMOT:PPV/ZnO:Cu/ZnO:Al异质结的LED及其制备方法
JP7462425B2 (ja) 2020-01-28 2024-04-05 信越ポリマー株式会社 修飾型導電性複合体の製造方法、修飾型導電性複合体分散液の製造方法、及び導電性フィルムの製造方法
JP7462426B2 (ja) 2020-01-28 2024-04-05 信越ポリマー株式会社 修飾型導電性複合体の製造方法、修飾型導電性複合体分散液の製造方法、及び導電性フィルムの製造方法
CN113345620B (zh) * 2021-05-21 2022-11-04 四川大学 一种均相导电高分子溶液及其制备方法
CN114605959B (zh) * 2022-03-09 2023-10-24 南京工大光电材料研究院有限公司 一种聚邻环氧基-n-甲基苯胺导电有机载体及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790060A (ja) 1990-02-08 1995-04-04 Bayer Ag 新規ポリチオフエン分散体及びその製造方法
JPH07165892A (ja) 1993-12-10 1995-06-27 Marubishi Yuka Kogyo Kk 導電性高分子コロイド水溶液の製造方法
JP2004502004A (ja) * 2000-06-26 2004-01-22 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンを含む再分散可能なラテックス
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
WO2006033388A1 (ja) * 2004-09-22 2006-03-30 Shin-Etsu Polymer Co., Ltd. 導電性組成物及びその製造方法、帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体、並びにコンデンサ及びその製造方法
JP2006249303A (ja) 2005-03-11 2006-09-21 Shin Etsu Polymer Co Ltd 導電性高分子溶液およびその製造方法
JP2007254730A (ja) 2006-02-24 2007-10-04 Toyo Ink Mfg Co Ltd 導電性組成物
JP2008045061A (ja) 2006-08-18 2008-02-28 Shin Etsu Polymer Co Ltd 導電性固形物ならびにその製造方法、および導電性高分子溶液
JP2008045116A (ja) 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd 導電性高分子/ドーパント錯体有機溶媒分散体、その製造方法および当該導電性高分子/ドーパント錯体有機溶媒分散体を含有する組成物
JP2008133415A (ja) * 2006-11-01 2008-06-12 Shin Etsu Polymer Co Ltd 導電性高分子溶液の製造方法
JP2010095580A (ja) * 2008-10-15 2010-04-30 Nec Tokin Corp 導電性高分子組成物およびそれを用いた固体電解コンデンサ
JP2011032382A (ja) 2009-08-03 2011-02-17 Shin Etsu Polymer Co Ltd 導電性高分子溶液およびその製造方法
JP2012097227A (ja) * 2010-11-04 2012-05-24 Shin Etsu Polymer Co Ltd 導電性高分子溶液、導電性塗膜および入力デバイス

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211461A1 (de) * 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatische Kunststoffteile
US6632472B2 (en) * 2000-06-26 2003-10-14 Agfa-Gevaert Redispersable latex comprising a polythiophene
JP3628263B2 (ja) 2001-02-20 2005-03-09 ソニーケミカル株式会社 帯電防止能を有する剥離剤組成物
KR100978825B1 (ko) 2001-12-04 2010-08-30 아그파-게바에르트 엔.브이. 3,4-디알콕시티오펜의 중합체 또는 공중합체 및 비수계용매를 포함하는 조성물
JP3628303B2 (ja) 2002-02-28 2005-03-09 ソニーケミカル株式会社 帯電防止能を有する剥離フィルム
JP2005170996A (ja) 2003-12-09 2005-06-30 Clariant Internatl Ltd 放射線硬化型導電性組成物
JP2006028439A (ja) 2004-07-21 2006-02-02 Shin Etsu Polymer Co Ltd 導電性高分子溶液及び導電性塗膜
EP1857504B1 (en) * 2005-03-11 2015-10-28 Shin-Etsu Polymer Co. Ltd. Electroconductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, electroconductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same
JP5027164B2 (ja) * 2006-02-21 2012-09-19 エスケーシー カンパニー,リミテッド 高導電性、透明性及び耐湿性を有するポリチオフェン系導電性高分子組成物、並びにこれを利用した高分子膜
JP5031264B2 (ja) 2006-05-17 2012-09-19 信越ポリマー株式会社 帯電防止塗料、帯電防止膜及び帯電防止フィルム、光学フィルタ、光情報記録媒体
JP5972511B2 (ja) 2008-03-31 2016-08-17 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物およびその硬化物
KR20110003547A (ko) * 2008-04-25 2011-01-12 메르크 파텐트 게엠베하 인위적인 단백질 스캐폴드
JP5612814B2 (ja) * 2008-09-22 2014-10-22 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
JP5460007B2 (ja) * 2008-09-24 2014-04-02 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
JP2010159365A (ja) 2009-01-09 2010-07-22 Shin Etsu Polymer Co Ltd 導電性高分子溶液、導電性積層体および入力デバイス
JP5409134B2 (ja) 2009-06-16 2014-02-05 信越ポリマー株式会社 導電性高分子溶液およびその製造方法、帯電防止性シート
JP2011048359A (ja) 2009-07-31 2011-03-10 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
JP5380211B2 (ja) 2009-09-02 2014-01-08 富士フイルム株式会社 帯電防止層を有する光学フィルム、反射防止フィルム、偏光板、及び画像表示装置
JP5945881B2 (ja) 2011-05-20 2016-07-05 ナガセケムテックス株式会社 帯電防止離型剤組成物及び離型フィルム
JP5590686B2 (ja) 2012-07-25 2014-09-17 独立行政法人国立高等専門学校機構 熱防御複合材の製造方法
WO2014125826A1 (ja) 2013-02-15 2014-08-21 信越ポリマー株式会社 硬化性帯電防止オルガノポリシロキサン組成物および帯電防止シリコーン皮膜
CN108841097A (zh) 2013-02-15 2018-11-20 信越聚合物株式会社 导电性高分子分散液及导电性膜
CN105431918B (zh) 2013-07-24 2019-08-27 凯米特电子公司 用于电容器的具有双交联剂体系的导电聚合物组合物
JP6324242B2 (ja) 2014-07-07 2018-05-16 信越ポリマー株式会社 導電性高分子溶液およびその製造方法ならびに塗膜
JP6353299B2 (ja) 2014-07-07 2018-07-04 信越ポリマー株式会社 硬化性帯電防止フッ素含有樹脂組成物および帯電防止フッ素含有樹脂皮膜
JP6258142B2 (ja) 2014-07-17 2018-01-10 信越ポリマー株式会社 導電性高分子溶液および導電性塗膜
JP6324250B2 (ja) 2014-07-24 2018-05-16 信越ポリマー株式会社 硬化性シリコーン組成物および剥離シート
JP6418829B2 (ja) 2014-07-24 2018-11-07 信越ポリマー株式会社 導電性ポリマー溶液および導電性塗膜
JP6504843B2 (ja) 2015-02-09 2019-04-24 信越ポリマー株式会社 導電性高分子組成物および剥離フィルム
JP6562548B2 (ja) 2015-07-28 2019-08-21 信越ポリマー株式会社 導電性高分子分散液及び導電性フィルム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790060A (ja) 1990-02-08 1995-04-04 Bayer Ag 新規ポリチオフエン分散体及びその製造方法
JPH07165892A (ja) 1993-12-10 1995-06-27 Marubishi Yuka Kogyo Kk 導電性高分子コロイド水溶液の製造方法
JP2004502004A (ja) * 2000-06-26 2004-01-22 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンを含む再分散可能なラテックス
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
WO2006033388A1 (ja) * 2004-09-22 2006-03-30 Shin-Etsu Polymer Co., Ltd. 導電性組成物及びその製造方法、帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体、並びにコンデンサ及びその製造方法
JP2006249303A (ja) 2005-03-11 2006-09-21 Shin Etsu Polymer Co Ltd 導電性高分子溶液およびその製造方法
JP2007254730A (ja) 2006-02-24 2007-10-04 Toyo Ink Mfg Co Ltd 導電性組成物
JP2008045116A (ja) 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd 導電性高分子/ドーパント錯体有機溶媒分散体、その製造方法および当該導電性高分子/ドーパント錯体有機溶媒分散体を含有する組成物
JP2008045061A (ja) 2006-08-18 2008-02-28 Shin Etsu Polymer Co Ltd 導電性固形物ならびにその製造方法、および導電性高分子溶液
JP2008133415A (ja) * 2006-11-01 2008-06-12 Shin Etsu Polymer Co Ltd 導電性高分子溶液の製造方法
JP2010095580A (ja) * 2008-10-15 2010-04-30 Nec Tokin Corp 導電性高分子組成物およびそれを用いた固体電解コンデンサ
JP2011032382A (ja) 2009-08-03 2011-02-17 Shin Etsu Polymer Co Ltd 導電性高分子溶液およびその製造方法
JP2012097227A (ja) * 2010-11-04 2012-05-24 Shin Etsu Polymer Co Ltd 導電性高分子溶液、導電性塗膜および入力デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957597A4

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483011B2 (en) 2013-02-15 2019-11-19 Shin-Etsu Polymer Co., Ltd. Conductive composition, conductive composition production method, anti-static resin composition and antistatic resin film
JP2017133022A (ja) * 2013-02-15 2017-08-03 信越ポリマー株式会社 導電性組成物、帯電防止樹脂組成物および帯電防止樹脂皮膜
US9546310B2 (en) 2014-08-27 2017-01-17 Shin-Etsu Polymer Co., Ltd. Method of manufacturing antistatic film
CN105385313A (zh) * 2014-08-27 2016-03-09 信越聚合物株式会社 防带电膜的制造方法
CN105385313B (zh) * 2014-08-27 2017-09-15 信越聚合物株式会社 防带电膜的制造方法
JP2018505542A (ja) * 2014-11-21 2018-02-22 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー ペロブスカイト太陽電池におけるpedot
JPWO2016098597A1 (ja) * 2014-12-17 2017-06-08 三井化学株式会社 積層体
JP2016145319A (ja) * 2015-01-30 2016-08-12 信越化学工業株式会社 導電性高分子組成物、被覆品、パターン形成方法、及び基板
JP2016169269A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 導電性材料及び基板
US20170058167A1 (en) * 2015-08-26 2017-03-02 Shin-Etsu Polymer Co., Ltd. Method for producing antistatic molded article
JP2017043765A (ja) * 2015-08-26 2017-03-02 信越ポリマー株式会社 帯電防止性成形体の製造方法
US10836926B2 (en) 2015-08-26 2020-11-17 Shin-Etsu Polymer Co., Ltd. Method for producing antistatic molded article
WO2017043183A1 (ja) * 2015-09-08 2017-03-16 信越ポリマー株式会社 導電性高分子溶液、キャパシタ及びキャパシタの製造方法
JP2017052850A (ja) * 2015-09-08 2017-03-16 信越ポリマー株式会社 導電性高分子溶液及び導電性塗膜
EP3349228A4 (en) * 2015-09-08 2019-05-29 Shin-Etsu Polymer Co., Ltd. ELECTROCONDUCTIVE POLYMER SOLUTION, CAPACITOR AND METHOD FOR PRODUCING CAPACITOR
JP2019014895A (ja) * 2015-09-08 2019-01-31 信越ポリマー株式会社 導電性高分子溶液、キャパシタ及びキャパシタの製造方法
JPWO2017043183A1 (ja) * 2015-09-08 2018-02-15 信越ポリマー株式会社 導電性高分子溶液、キャパシタ及びキャパシタの製造方法
US11236238B2 (en) 2016-01-12 2022-02-01 Shin-Etsu Polymer Co., Ltd. Conductive polymer dispersion and method for preparing same, and method for manufacturing conductive film
EP3404069A4 (en) * 2016-01-12 2019-09-18 Shin-Etsu Polymer Co. Ltd. CONDUCTIVE POLYMER DISPERSION AND PROCESS FOR PREPARING THE SAME, AND METHOD FOR MANUFACTURING CONDUCTIVE FILM
JPWO2017122662A1 (ja) * 2016-01-12 2018-08-30 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
KR20180093024A (ko) * 2016-01-12 2018-08-20 신에츠 폴리머 가부시키가이샤 도전성 고분자 분산액과 그 제조 방법 및 도전성 필름의 제조 방법
US11814545B2 (en) 2016-01-12 2023-11-14 Shin-Etsu Polymer Co., Ltd. Conductive polymer dispersion and method for preparing same, and method for manufacturing conductive film
US10647858B2 (en) 2016-01-12 2020-05-12 Shin-Etsu Polymer Co., Ltd. Conductive polymer dispersion and method for preparing same, and method for manufacturing conductive film
KR102049236B1 (ko) 2016-01-12 2019-11-28 신에츠 폴리머 가부시키가이샤 도전성 고분자 분산액과 그 제조 방법 및 도전성 필름의 제조 방법
WO2017122662A1 (ja) * 2016-01-12 2017-07-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2018002777A (ja) * 2016-06-28 2018-01-11 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
US10854357B2 (en) * 2016-07-11 2020-12-01 Shin-Etsu Polymer Co., Ltd. Coating material for forming conductive release layer, method for producing same, conductive release film, and method for producing same
JP2018009051A (ja) * 2016-07-11 2018-01-18 信越ポリマー株式会社 帯電防止フィルムの製造方法
JP2018203868A (ja) * 2017-06-02 2018-12-27 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP7002224B2 (ja) 2017-06-02 2022-01-20 信越ポリマー株式会社 導電性高分子分散液の製造方法
JP2018203858A (ja) * 2017-06-02 2018-12-27 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019001940A (ja) * 2017-06-16 2019-01-10 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019038876A (ja) * 2017-08-22 2019-03-14 信越ポリマー株式会社 導電性高分子組成物、その製造方法、帯電防止樹脂組成物、および帯電防止樹脂皮膜
JP2019038877A (ja) * 2017-08-22 2019-03-14 信越ポリマー株式会社 硬化性組成物および帯電防止シリコーン皮膜
JP2019083159A (ja) * 2017-10-31 2019-05-30 信越ポリマー株式会社 電極及びその製造方法、並びに電池
JP2019099982A (ja) * 2018-04-09 2019-06-24 ユニチカ株式会社 不燃性シート、該不燃性シートを含む防煙垂壁
JP2022063275A (ja) * 2018-04-09 2022-04-21 ユニチカ株式会社 不燃性シート、該不燃性シートを含む防煙垂壁
JP7090885B2 (ja) 2018-04-09 2022-06-27 ユニチカ株式会社 不燃性シート、該不燃性シートを含む防煙垂壁
JP7265841B2 (ja) 2018-06-11 2023-04-27 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP7265840B2 (ja) 2018-06-11 2023-04-27 信越ポリマー株式会社 導電性高分子分散液及び、導電性フィルムの製造方法
JP2019214638A (ja) * 2018-06-11 2019-12-19 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2019214637A (ja) * 2018-06-11 2019-12-19 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2020111647A (ja) * 2019-01-09 2020-07-27 信越ポリマー株式会社 導電性高分子水系分散液、導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、及び導電性フィルムの製造方法
JP7190357B2 (ja) 2019-01-09 2022-12-15 信越ポリマー株式会社 導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、及び導電性フィルムの製造方法
JP2020111650A (ja) * 2019-01-09 2020-07-27 信越ポリマー株式会社 導電性高分子複合体、導電性高分子含有液、導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、導電性フィルムの製造方法、及び導電性フィルム
JP2021038361A (ja) * 2019-09-05 2021-03-11 信越ポリマー株式会社 高導電性複合体の有機溶剤分散液の製造方法、導電性フィルム及びその製造方法
JP2021038343A (ja) * 2019-09-05 2021-03-11 信越ポリマー株式会社 高導電性複合体の製造方法、高導電性複合体の有機溶剤分散液の製造方法、導電性フィルム及びその製造方法
JP7269844B2 (ja) 2019-09-05 2023-05-09 信越ポリマー株式会社 高導電性複合体の製造方法、高導電性複合体の有機溶剤分散液の製造方法、導電性フィルムの製造方法
JP7269845B2 (ja) 2019-09-05 2023-05-09 信越ポリマー株式会社 高導電性複合体の有機溶剤分散液の製造方法、導電性フィルムの製造方法
JP2021095459A (ja) * 2019-12-13 2021-06-24 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP7269870B2 (ja) 2019-12-13 2023-05-09 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法

Also Published As

Publication number Publication date
US20150348671A1 (en) 2015-12-03
TW201439141A (zh) 2014-10-16
JP6454367B2 (ja) 2019-01-16
CN104995256A (zh) 2015-10-21
JP2019039019A (ja) 2019-03-14
CN108841097A (zh) 2018-11-20
US10483011B2 (en) 2019-11-19
DE202014011119U1 (de) 2017-12-15
JP2017133022A (ja) 2017-08-03
KR102024975B1 (ko) 2019-09-24
EP2957597A4 (en) 2016-08-03
TWI512000B (zh) 2015-12-11
JPWO2014125827A1 (ja) 2017-02-02
JP6109920B2 (ja) 2017-04-05
CN104995256B (zh) 2018-06-22
KR20150118585A (ko) 2015-10-22
EP2957597A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6454367B2 (ja) 導電性組成物
JP6005832B2 (ja) 硬化性帯電防止オルガノポリシロキサン組成物および帯電防止シリコーン皮膜
JP6258142B2 (ja) 導電性高分子溶液および導電性塗膜
JP6324250B2 (ja) 硬化性シリコーン組成物および剥離シート
JP6418829B2 (ja) 導電性ポリマー溶液および導電性塗膜
JP6504843B2 (ja) 導電性高分子組成物および剥離フィルム
JP2020100689A (ja) 導電性高分子含有液及びその製造方法、並びに導電性フィルム及びその製造方法
JP2020031013A (ja) 導電性高分子分散液の製造方法、及び導電性フィルムの製造方法
JP7462425B2 (ja) 修飾型導電性複合体の製造方法、修飾型導電性複合体分散液の製造方法、及び導電性フィルムの製造方法
JP2019214638A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP7455027B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
BE1025728B1 (de) Leitfähige zusammensetzung, herstellungsverfahren für eine leitfähige zusammensetzung, antistatische harzzusammensetzung und antistatischer harzfilm
JP7116695B2 (ja) 導電性高分子含有液及びその製造方法、並びに導電性フィルムの製造方法
JP7178295B2 (ja) 導電性高分子含有液及びその製造方法、並びに導電性フィルム及びその製造方法
JP7097802B2 (ja) 導電性高分子含有液及びその製造方法、並びに導電性フィルム及びその製造方法
JP7190357B2 (ja) 導電性高分子複合体の製造方法、導電性高分子含有液の製造方法、及び導電性フィルムの製造方法
JP7097803B2 (ja) 導電性高分子含有液及びその製造方法、並びに導電性フィルム及びその製造方法
JP6932582B2 (ja) 導電性高分子組成物、その製造方法、帯電防止樹脂組成物、および帯電防止樹脂皮膜
JP2021038361A (ja) 高導電性複合体の有機溶剤分散液の製造方法、導電性フィルム及びその製造方法
JP2022050974A (ja) 硫黄含有導電性複合体及びその製造方法、導電性高分子分散液、並びに、導電性積層体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018408

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014751210

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014751210

Country of ref document: EP