WO2014081002A1 - チョップド炭素繊維束およびチョップド炭素繊維束の製造方法 - Google Patents

チョップド炭素繊維束およびチョップド炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2014081002A1
WO2014081002A1 PCT/JP2013/081478 JP2013081478W WO2014081002A1 WO 2014081002 A1 WO2014081002 A1 WO 2014081002A1 JP 2013081478 W JP2013081478 W JP 2013081478W WO 2014081002 A1 WO2014081002 A1 WO 2014081002A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
chopped carbon
resin
resins
Prior art date
Application number
PCT/JP2013/081478
Other languages
English (en)
French (fr)
Inventor
忠 大谷
孝之 桐山
幸雄 西本
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50776178&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014081002(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP13856572.6A priority Critical patent/EP2924164B1/en
Priority to JP2013555109A priority patent/JP5772988B2/ja
Priority to US14/647,343 priority patent/US9803066B2/en
Priority to CN201380061480.6A priority patent/CN104812957B/zh
Priority to KR1020157013596A priority patent/KR101754064B1/ko
Publication of WO2014081002A1 publication Critical patent/WO2014081002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a chopped carbon fiber bundle suitable for the production of a carbon fiber reinforced resin using a thermoplastic resin as a matrix, and a method for producing the same.
  • the present invention relates to a chopped carbon fiber bundle made from a carbon fiber bundle (so-called large tow) having a large number of filaments and a large total fineness, and a method for producing the same.
  • the present invention relates to a chopped carbon fiber bundle excellent in handling properties such as fluidity and convergence as a reinforcing material of a short fiber reinforced resin molding material and a method for producing the same.
  • Carbon fiber reinforced resin is widely used in various fields such as office equipment and automobiles because it is far superior in strength, rigidity and dimensional stability compared to non-reinforced resin.
  • Demand for carbon fiber is increasing year by year, and demand is shifting from premium applications such as aircraft and sports to general industrial applications related to construction, civil engineering, and energy.
  • the demand for carbon fiber is also strict, reducing not only performance but also price. Has become a major issue. Therefore, in recent years, carbon fiber bundles having a larger number of filaments and a larger total fineness have been supplied for price reduction.
  • CFRTP carbon fiber reinforced thermoplastic resin
  • a short carbon fiber reinforced thermoplastic resin (hereinafter referred to as “CFRTP”) using a thermoplastic resin as a matrix resin is injection-moldable and has high productivity, and is not a conventional unreinforced thermoplastic resin or short resin.
  • CFRTP thermoplastic resin
  • thermoplastic resin pellet a chopped carbon fiber bundle in which a carbon fiber bundle is cut into 3 to 10 mm and focused with a sizing agent, or a carbon fiber milled fiber pulverized to 1 mm or less is used as a thermoplastic resin pellet or A method is adopted in which the powder is supplied to an extruder together with powder, melt-kneaded and pelletized, and then formed by an injection molding machine or an extrusion molding machine.
  • the sizing agent can increase the flatness of such a carbon fiber bundle as compared with the conventional one.
  • a chopped carbon fiber bundle having a high flatness is produced for the reason that it easily penetrates into the carbon fiber bundle.
  • the shape of the carbon fiber bundle becomes flat, there arises a problem that the chopped carbon fiber bundle has low fluidity and convergence.
  • the cross-sectional shape is made close to a circle, the bulk density of the carbon fiber bundle increases, and the sizing agent does not easily penetrate into the carbon fiber bundle, resulting in uneven convergence.
  • a method of first immersing the carbon fiber bundle in a sizing agent and then cutting the carbon fiber bundle focused in the drying process with a cutter in a continuous or separate process is common.
  • the glass fiber is generally chopped by applying a sizing agent to the melt-spun glass fiber, cutting it in a wet state, and then drying it. According to this glass fiber chopping method, it is easy to obtain a chopped fiber having high bundling properties with a small amount of sizing agent. Examples of employing this method for carbon fiber include Patent Document 1 and Patent Document 2.
  • the number of fibers of the carbon fiber bundle to be chopped in the patent document is about 12,000, and the carbon fiber bundle having a large number of filaments and a large total fineness is not processed.
  • the number of fibers in the fiber bundle in the step of applying the sizing agent is about 4,000, and a thick fiber bundle is not processed.
  • Patent Document 3 provides a chopped carbon fiber bundle that realizes large-scale packaging for mass production and that can simultaneously satisfy stable supply and dispersibility from the hopper to the extruder, and a method for producing the same.
  • the chopped carbon fiber bundle is a chopped carbon fiber bundle having 30,000 to 120,000 carbon fiber filaments constituting the chopped carbon fiber bundle, and the ratio of the major axis (Dmax) to the minor axis (Dmin) of the cross section (Dmax). / Dmin) is 1.0 to 1.8, and is a chopped carbon fiber bundle bundled with 1 to 10% by weight of a sizing agent.
  • the length (L) of the chopped carbon fiber bundle and the shortness of the chopped carbon fiber bundle A diameter (Dmin) ratio (L / Dmin) of 4 or less has been proposed.
  • the carbon fiber chop strand described in Patent Document 3 has a carbon fiber bundle shape with low flatness when producing a chopped carbon fiber bundle, and causes poor drying when dried by applying a sizing agent. There is a problem that it is necessary to reduce the production speed.
  • Patent Document 4 proposes a chopped carbon fiber bundle excellent in fluidity and convergence by using a low-cost carbon fiber bundle having a large number of filaments as a raw material.
  • a chopped carbon fiber characterized in that the fluctuation rate in the distribution of weight per unit length in the fiber length direction is 30 to 60%, and a method for producing the same.
  • Patent Document 4 describes that the chop shape is substantially rectangular and the length of one side is 1.5 to 6 mm.
  • Japanese Patent Laid-Open No. 5-261729 Japanese Patent Laid-Open No. 5-261730 JP 2011-208285 A Japanese Patent Laid-Open No. 11-81146
  • An object of the present invention is to use a carbon fiber bundle having a large number of filaments and a large total fineness as a raw material, and a chopped carbon fiber bundle that exhibits good handleability and high productivity even when the amount of sizing agent attached is low, and the chopped carbon It is to provide a method for producing a fiber bundle.
  • the length (L) of the chopped carbon fiber bundle along the fiber direction of the carbon fiber width is 1 mm or more and 50 mm or less
  • the ratio (Dmax / Dmin) of the major axis (Dmax) and minor axis (Dmin) of the cross section perpendicular to the fiber direction of the chopped carbon fiber bundle is 6.0 or more and 18.0 or less
  • a chopped carbon fiber bundle in which the orientation parameter of single fibers existing on the surface is 4.0 or less.
  • the ratio (L / Dmin) of the length (L) of the chopped carbon fiber bundle to the short diameter (Dmin) in the cross section perpendicular to the fiber direction of the chopped carbon fiber bundle is 5 or more and 30 or less (1)
  • a primary sizing agent having a viscosity at 30 ° C. of 3000 Pa ⁇ s or less is 0.3 wt% or more and 1.5 wt% or less.
  • the width of the carbon fiber bundle per unit basis weight is in a range of 1/440 mm / tex or more and 1/100 mm / tex or less, and a sizing solution containing a secondary sizing agent is applied, and the carbon fiber A method for producing a chopped carbon fiber bundle, in which the bundle is cut and then the sizing liquid is dried.
  • the secondary sizing agent contains one or more thermoplastic resins selected from any of urethane resins, nylon resins, modified olefin resins, modified epoxy resins, and water-soluble nylon resins.
  • the matrix resin is polycarbonate resin, nylon resin, polyethylene terephthalate resin, polybutylene terephthalate resin, ABS resin, polyoxymethylene resin, polypropylene resin, polyphenylene sulfide resin, polyethersulfine resin, and polyetherimide resin.
  • the manufacturing method of the carbon fiber reinforced resin composition as described in (9) containing 1 or more chosen from either the thermoplastic resin to contain, and its alloy type resin.
  • (11) A method for producing a pellet or a molded product using the carbon fiber reinforced resin composition obtained by the production method according to (9) or (10).
  • the total fineness is 25,000 dtex or more and 45,000 dtex or less
  • the ratio of the major axis (Dmax) to the minor axis (Dmin) of the cross section (Dmax / Dmin) is 6.0 or more and 18.0 or less
  • the adhesion amount of the sizing agent is A chopped carbon fiber bundle that is 1% by mass or more and 5% by mass or less.
  • a chopped carbon fiber bundle in which a sizing solution is applied to a carbon fiber bundle having a total fineness of 25,000 dtex or more and 45,000 dtex or less in a twisted state, and the carbon fiber bundle is cut and dried before the sizing agent is dried. Manufacturing method.
  • the chopped carbon fiber bundle of the present invention can exhibit excellent processability and handleability in a composite process with a matrix resin, and when the chopped carbon fiber bundle is used, a molded product having excellent mechanical properties can be obtained. It is done. Moreover, since the chopped carbon fiber bundle of the present invention has a flat shape, the productivity of manufacturing the chopped carbon fiber bundle is greatly improved.
  • the chopped carbon fiber bundle according to an embodiment of the present invention is a chopped carbon fiber bundle that combines high fluidity, that is, stable supply ability, dispersibility, and high productivity with a relatively small amount of sizing agent.
  • the chopped carbon fiber refers to a certain range of length as will be described later, for example, by cutting the carbon fiber.
  • the chopped carbon fiber bundle of this embodiment is obtained by the following method.
  • the carbon fibers used in the present embodiment are each a carbon fiber (including graphite fibers) such as filamentous polyacrylonitrile (PAN), rayon, or pitch, and a carbon fiber having a metal coating on the fibers. Etc. These carbon fibers are produced by a known method, and a bundle of 25,000 dtex to 45,000 dtex is appropriate as the total fineness of the carbon fiber bundle. Here, the total fineness indicates the total thickness of the fibers contained in the fiber bundle, and is expressed in dtex units defined in JIS L 0104 from the weight per length.
  • the production cost of carbon fibers can be reduced, and it is preferable as a reinforcing material for short carbon fiber reinforced thermoplastic resin composition materials that are required to be inexpensive, and more preferably 28,000 dtex or more.
  • the number of constituents is 45,000 dtex or less, the sizing agent is likely to penetrate to the inside when the sizing agent is applied, and the strands are not easily broken when the chopped carbon fiber bundle is cut.
  • the uniformity is less likely to decrease, and is preferably 38,000 dtex or less, and more preferably 35,000 dtex or less.
  • the sizing agent used in the present embodiment is a compound that is added (provided) to fibers and mainly converges between fibers to change their physical properties, and includes, for example, a resin.
  • the resin used for the sizing agent may be either a thermoplastic resin or a thermosetting resin.
  • epoxy resin urethane-modified epoxy resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin Polyamideimide resin, polystilpyridine resin, polyimide resin, bismaleimide resin, polysulfone resin, polyethersulfone resin, epoxy-modified urethane resin, polyvinyl alcohol resin, polyvinylpyrrolidone resin, or a single substance or a mixture of these modified resins Mainly one or more thermoplastic resins selected from urethane resins, nylon resins, modified olefin resins, modified epoxy resins and water-soluble nylon resins because of their excellent flexibility and high convergence. Minute and the sizing agent is preferred.
  • the sizing agent can be used alone or as a mixture of a plurality of these thermoplastic resins, and further used as a mixture to which an epoxy resin, an acrylic ester resin, a methacrylic ester resin, a silane coupling agent or the like is added. It can.
  • silane coupling agents compounds such as epoxy silane, amino silane, and vinyl silane are particularly desirable, and the epoxy group of the silane compound may be either a glycidyl group or an alicyclic epoxy group.
  • the amount of the sizing agent attached to the chopped carbon fiber bundle needs to be 1 to 5% by mass with respect to the total mass of the chopped carbon fiber bundle. If the adhesion amount of the sizing agent is 1% by mass or more, the sizing property of the chopped carbon fiber bundle is good, and the supply property to an extruder or the like is easily stabilized. If it is 5% by weight or less, the dispersibility is good, the mechanical properties are hardly deteriorated, and the amount of cracked gas generated by thermal decomposition is easily suppressed, and at the time of cutting when producing a chopped carbon fiber bundle This is preferable because it is easy to cut. From these viewpoints, the total adhesion amount of the sizing agent is more preferably 2% by mass or more, and more preferably 4% by mass or less.
  • the ratio (Dmax / Dmin) of the major axis (Dmax) to the minor axis (Dmin) of the cross section when the chopped carbon fiber bundle is cut perpendicular to the fiber direction is 6.0. It must be ⁇ 18.0. If it is 6.0 or more, the sizing agent tends to adhere uniformly, and the supply of the chopped carbon fiber bundle at the time of compound production becomes stable. Moreover, if Dmax / Dmin is 18.0 or less, the chopped carbon fiber bundle is difficult to break in the fiber direction, and the feedability is easily stabilized. From these viewpoints, Dmax / Dmin is more preferably 8.0 or more and 15.0 or less, and further preferably 9.0 or more and 12.0 or less.
  • the chopped carbon fiber bundle of this embodiment is further characterized in that the orientation parameter of the single fiber existing on the surface of the chopped carbon fiber bundle is 4.0 or less.
  • the orientation parameter is a value defined by, for example, an expression described later. The smaller the value, the more uniform the single fibers are.
  • the orientation parameter is more preferably 3.0 or less.
  • the orientation parameter in the present embodiment was obtained by fitting a frequency distribution obtained by weighting each angle (unit: degree) of a single fiber constituting a carbon fiber bundle with a length to the following Lorentz function.
  • the value range was defined as the orientation parameter.
  • the ratio (L / Dmin) of the length (L) of the chopped carbon fiber bundle and the short diameter (Dmin) of the chopped carbon fiber bundle of this embodiment is preferably 5 or more and 30 or less. If this ratio is 5 or more, it will be easy to suppress that the physical property of a molding falls. If it is 30 or less, there are few contacts between strands, and since fluidity
  • the bulk density of the chopped carbon fiber bundle represents the weight of the carbon fiber per fixed volume (1 L), and the bulk density is desirably 200 g / L or more and 650 g / L or less. Generally, if it is less than 200 g / L, the frictional resistance with another chop in contact with the chop surface becomes larger than the gravity applied to one chop, and a portion that does not move from the hopper is generated. Moreover, it is generally difficult to produce a chopped carbon fiber bundle having a bulk density of 650 g / L or more. Further, the bulk density may be 200 g / L or more and 300 g / L or less.
  • the length (L) of the chopped carbon fiber bundle of the present embodiment varies depending on the target molding method, but is in the range of 1 mm to 50 mm, preferably 3 mm to 40 mm, more preferably 5 mm to 30 mm. Is desirable. When the length is 1 mm or more, the handling property of the chopped carbon fiber bundle is excellent, and therefore, the productivity when producing a compound from the chopped carbon fiber bundle and the matrix resin is preferable. Moreover, if the said length is 50 mm or less, since the process passability at the time of shape
  • the length of the chopped carbon fiber bundle is in the above range is that the chopped carbon fiber bundle is substantially in the above range. More specifically, for example, 95. It means that 0% or more is within the above range.
  • the method for producing the chopped carbon fiber bundle of the present embodiment is not particularly limited, but after the sizing liquid containing a sizing agent is attached to the carbon fiber bundle, the carbon fiber bundle in which the sizing liquid is in a wet state is subsequently applied.
  • a method of cutting to a predetermined length and drying to produce is preferable from the viewpoint of process passability.
  • a roll method a dipping method in which tow is dipped in a sizing solution, and a nip roller is used to control the amount of sizing solution applied by the squeezing amount can be employed.
  • it is optimal to run the tow on a plurality of touch rolls in terms of controlling the amount of adhesion and the tow width.
  • the concentration of the sizing agent in the sizing solution is preferably 0.5 to 30% by mass.
  • the solvent of the sizing liquid may be water, alcohols such as ethyl alcohol or methyl alcohol, ketones such as acetone or methyl ethyl ketone, xylene, dichloromethane, N-methylpyrrolidone, dimethylformamide, tetrahydrofuran or Toluene or the like, or a mixed system thereof is appropriately selected and used.
  • a primary sizing agent having a viscosity at 30 ° C. of 3000 Pa ⁇ s or less, more preferably 2500 Pa ⁇ s or less is added to the carbon fiber bundle before adhering the sizing solution to 0.3% by weight or more.
  • the sizing liquid a sizing liquid containing a secondary sizing liquid; hereinafter abbreviated as “secondary sizing liquid” as appropriate. If the viscosity and adhesion amount of the primary sizing agent are within this range, the width of the carbon fiber bundle to be described later can be controlled while suppressing fuzz in the step of attaching the secondary sizing liquid.
  • the component of the primary sizing agent is not particularly limited, and an epoxy resin, a polyurethane resin, a nylon resin, a polyolefin resin, a polyester resin, or polyethylene glycol can be used. These may be used alone or in combination of two or more. In some cases, an emulsifier or a surfactant can be included.
  • the width of the carbon fiber bundle per unit basis weight is set to a range of 1/450 mm / tex or more and 1/100 mm / tex or less to perform secondary sizing. It is preferable to apply a liquid. If the width of the carbon fiber bundle is 1/440 mm / tex or more, it becomes easy to control the liquid content and increase the convergence. Further, if it is 1/100 mm / tex or less, the time required for the secondary sizing solution to sufficiently penetrate into the fiber bundle can be shortened, so that impregnation unevenness hardly occurs in the continuous process, and the focusing property becomes high.
  • a more desirable range is 1/370 mm / tex or more and 1/150 mm / tex or less. If it is 1/370 mm / tex or more and 1/150 mm / tex or less, fuzzing when adjusting the carbon fiber bundle can be prevented while promoting the penetration of the secondary sizing liquid, and suitable short fiber orientation can be achieved. A chopped carbon fiber bundle can be produced with high productivity.
  • the carbon fiber bundle before adhering the secondary sizing liquid may be a fiber bundle obtained by connecting fiber bundles taken out from a plurality of packages.
  • the method for connecting the end of the fiber bundle in one carbon fiber package and the end of the fiber bundle of another package is not particularly limited, but it is desirable to connect by air entanglement. This is because the process passability at the time of producing a chopped carbon fiber bundle is significantly deteriorated when the yarns are connected by directly tying them.
  • a connecting portion between two or more fiber bundles by air entanglement is preferable because of good processability and little influence on the quality of the product by the connecting portion.
  • the cutting method for cutting the carbon fiber bundle into a chopped carbon fiber bundle is not particularly limited, but it is preferable to cut the carbon fiber bundle by a rotary cutter method to obtain a chopped carbon fiber bundle.
  • a rotary cutter method When cutting with a rotary cutter, if the thickness of the carbon fiber bundle becomes too thick, it will be broken, the tow will be wrapped around the rotor, making it impossible to operate, and the chopped form will be defective, so the tow thickness is thin Is preferred.
  • the drying of the chopped carbon fiber bundle after being cut is not particularly limited, but is usually performed by a hot air drying method.
  • a method of transferring while vibrating is preferably used.
  • auxiliary means such as infrared radiation can be used in combination in order to increase the drying efficiency. If the vibration conditions at the time of drying are too strong, bundle cracking of the obtained chopped carbon fiber bundle is likely to occur, and the number of chopped carbon fiber bundles having a bundle width / thickness of less than 2 increases. If the vibration condition is too weak, quasi-bonding between chopped carbon fiber bundles occurs.
  • the production method of the carbon fiber reinforced resin composition of the present embodiment is such that the chopped carbon fiber bundle is 5 parts by mass or more and 150 parts by mass or less, preferably 15 parts by mass or more and 40 parts by mass with respect to 100 parts by mass of the matrix resin. It is related with the manufacturing method of a carbon fiber reinforced resin composition including mix
  • the chopped carbon fiber bundle may be mixed in an amount of 5 to 60% by mass, preferably 10 to 30% by mass with respect to the total mass of the matrix resin in terms of the amount of carbon fibers.
  • thermoplastic resin polycarbonate resin, nylon resin, polyester resin, ABS resin, polystyrene resin, polyphenylene ether resin, polyoxyethylene resin, polyolefin resin, polyetherimide resin or other industrially useful engineering
  • thermosetting resin examples include unsaturated polyester resins, vinyl ester resins, and phenol resins.
  • the matrix resin preferably used in the present embodiment includes polycarbonate resin, nylon resin, polyethylene terephthalate resin, polybutylene terephthalate resin, ABS resin, polyoxymethylene resin, polypropylene resin, polyphenylene sulfide resin, and polyethersulfine resin. And one or more selected from thermoplastic resins including polyetherimide resins and alloy resins thereof.
  • the carbon fiber reinforced resin composition of the present embodiment may contain additives such as fillers, elastomers (rubbers), carbon black, metal oxides or ceramics, or flame retardants.
  • additives such as fillers, elastomers (rubbers), carbon black, metal oxides or ceramics, or flame retardants.
  • the additive is contained in an amount of 43% by mass or less, preferably 17% by mass or less, based on 100 parts by mass of the carbon fiber reinforced resin composition of the present embodiment.
  • the carbon fiber reinforced resin composition is prepared by mixing the chopped carbon fiber bundle with a matrix resin and optionally an additive by a known method.
  • This embodiment relates to a method for producing pellets or molded products using the carbon fiber reinforced resin composition obtained by the production method.
  • a well-known method can be used.
  • the matrix resin is a thermoplastic resin
  • an injection molding method is adopted.
  • the matrix resin is a thermosetting resin
  • a high pressure by a press molding method a sheet molding compound or a bulk molding compound is used.
  • a press molding method is adopted.
  • the packing density is a value obtained by dividing the total fineness (dtex) of the fiber bundle by the fiber bundle width (length (mm) perpendicular to the fiber axis).
  • the sizing agent may be applied with the carbon fiber packing density in the carbon fiber bundle in the range of 1,000 to 4,000 dtex / mm. If the filling density of the carbon fiber is 1,000 dtex / mm or more, the liquid content can be controlled to easily increase the convergence. Further, if it is 4,000 dtex / mm or less, the time required for the sizing solution to sufficiently penetrate into the fiber bundle can be shortened, so that impregnation unevenness hardly occurs in the continuous process, and the focusing property becomes high.
  • the end of the fiber bundle in the carbon fiber package and the end of another fiber bundle are not particularly limited as long as they are fluid, but are connected by air entanglement. It is desirable. This is because the process passability at the time of producing a chopped carbon fiber bundle is significantly deteriorated when the yarns are connected by directly tying them.
  • a part of the fiber bundle in the carbon fiber package has a connection part of two or more fiber bundles by air entanglement, so that the process passability is improved and the quality of the product by the connection part is improved. This is preferable because the influence of the is reduced.
  • the orientation parameter (orientation degree) of single fibers existing on the surface of the chopped carbon fiber bundle was measured by the following method.
  • the obtained chopped carbon fiber bundle was observed with an optical microscope (manufactured by KEYENCE, DIGITAL MICROSCOPE VHX-500F) at a reflected light and a magnification of 200 times.
  • an image (1600 ⁇ 1200 pixels) in which all the carbon fiber filaments are in focus within the screen was photographed using a high-quality depth synthesis function.
  • the carbon fiber filament appears white compared to the portion without the filament.
  • the photographed image was analyzed in the following procedure using image analysis software (Mitani Corporation 2D image analysis software, WinROOF).
  • a pixel whose luminance value after grayscale conversion is brighter than the threshold value B is white, and a pixel darker than B is black, and the image is binarized.
  • the threshold value B of the luminance value is set so that the luminance value of all the pixels included in the image is a histogram (frequency distribution), and the total of the frequencies below the luminance value B and the total of the frequencies above the luminance value B are the same value.
  • the white line (indicating carbon fiber filament) in the binarized image is defined as a straight line by the needle-like separation function of the image analysis software, and the coordinates of the start point and end point of all white lines in the screen ( Xs, Ys) and (Xe, Ye) were defined.
  • ⁇ max is the angle with the highest frequency
  • ⁇ new is newly defined as follows with respect to the value ⁇ of the original frequency axis of the frequency distribution.
  • the angle with the highest frequency is 90 degrees.
  • the obtained chopped carbon fiber bundle was put into a 1 kg weight screw feeder having a screw part diameter of 30 mm and conveyed at a speed of 15 kg per hour. When all 1 kg could be conveyed, it was judged that the feed property was good, and when the chopped carbon fiber bundle caused bridging in the screw portion during conveyance and caused poor conveyance, it was judged that feeding was impossible.
  • Example 1 A carbon fiber bundle TRH50 60M (trade name, manufactured by Mitsubishi Rayon, total fineness of 33,000 dtex) to which 1.2% by mass of low-viscosity epoxy A as a primary sizing agent was attached was used.
  • the above carbon fiber bundle was alternately passed through a plurality of open fiber bars and a tow width regulating bar so that the carbon fiber width per unit basis weight was 1/440 mm / tex.
  • the aqueous urethane resin E which is a secondary sizing agent, is attached to the carbon fiber bundle using an aqueous solution (secondary sizing solution) prepared so that the solid content concentration of the aqueous urethane resin E is 6.0% by weight. did.
  • a part of the touch roll was immersed in the secondary sizing liquid tank, and the secondary sizing liquid was applied to the roll surface by rotating the touch roll. Subsequently, the secondary sizing liquid was adhered to the carbon fiber bundle by continuously bringing the carbon fiber bundle into contact with the roll surface (touch roll method). At this time, the secondary sizing solution was applied to the front and back surfaces of the carbon fiber bundle using two touch rolls. Next, before the secondary sizing liquid applied to the carbon fiber bundle was dried, that is, in a state where the carbon fiber bundle was in a wet state, the carbon fiber bundle was cut using a rotary cutter having a cutting blade interval of 6 mm.
  • the cut carbon fiber bundle was continuously charged into a floor vibration type hot air drying furnace (drying temperature 200 ° C.) and dried to obtain a chopped carbon fiber bundle.
  • a floor vibration type hot air drying furnace drying temperature 200 ° C.
  • the adhesion amount of the sizing agent of the chopped carbon fiber bundle was measured.
  • the shape measurement of the chopped carbon fiber bundle was measured.
  • the feed property of the chopped carbon fiber bundle was evaluated. The results are shown in Tables 1 and 2.
  • the details of the composition of each resin used in the sizing agent are shown in Tables 3 and 4. The same applies to the second and subsequent embodiments.
  • Example 2 A chopped carbon fiber bundle was obtained in the same manner as in Example 1 except that the water-soluble nylon resin F was used in place of the aqueous urethane resin E as the secondary sizing agent. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. In the same manner as in Example 1, the adhesion amount, cross-sectional shape, bulk density, and orientation parameter of the sizing agent of the chopped carbon fiber bundle were measured. Moreover, the feed property of the chopped carbon fiber bundle was evaluated. The results are shown in Tables 1 and 2.
  • Example 1 The carbon fiber bundle used in Example 1 (TRH50 60M, low-viscosity epoxy A adhered to 1.2% by mass) was twisted 10 revolutions per meter. Next, the carbon fiber bundle was immersed in an aqueous solution (secondary sizing solution) prepared by adding aqueous urethane resin E to a solid content concentration of 6.0% by weight, passed through a nip roll, and then heated roll (surface temperature 140 ° C.). And dried for 10 seconds to obtain a carbon fiber bundle. The obtained carbon fiber bundle was cut using a rotary cutter having a cutting blade interval of 6 mm to obtain a chopped carbon fiber bundle. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed.
  • aqueous solution secondary sizing solution
  • Example 3 A chopped carbon fiber bundle was obtained in the same manner as in Example 2 except that the width of the carbon fiber per unit basis weight before applying the secondary sizing solution to the carbon fiber bundle was 1/230 mm / tex. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 4 Carbon fiber bundle TRW50 50L (trade name, manufactured by Mitsubishi Rayon Co., Ltd., total fineness: 37,000 dtex) to which 1.2% by mass of low-viscosity epoxy A which is a primary sizing agent is attached is used as a secondary sizing agent, and an aqueous urethane resin E A chopped carbon fiber bundle was obtained in the same manner as in Example 3 except that was used. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 2 A cut carbon fiber bundle was obtained by the same method as in Example 1 except that the width of the carbon fiber per unit basis weight before applying the secondary sizing solution to the carbon fiber bundle was 1/50 mm / tex. It was. Next, when the cut carbon fiber bundle was continuously put into a floor vibration type hot air drying furnace (drying temperature 200 ° C.) and dried, vertical cracks and fluffing occurred in the cut carbon fiber bundle. The intended chopped carbon fiber bundle could not be obtained.
  • Example 3 A chopped carbon fiber bundle was obtained by the same method as in Example 1 except that the width of the carbon fiber per unit basis weight before applying the secondary sizing solution to the carbon fiber bundle was as described in Table 1. It was. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 4 The carbon fiber bundle used in Example 1 (TRH50 60M, low-viscosity epoxy A adhered to 1.2% by mass) was used. Before applying the secondary sizing liquid to the carbon fiber bundle, the width of the carbon fiber per unit basis weight is 1/130 mm / tex so that the solid content concentration of the aqueous urethane resin E is 6.0% by weight. Using the prepared aqueous solution (secondary sizing solution), an aqueous urethane resin E as a secondary sizing agent was attached to the carbon fiber bundle in the same manner as in Example 1. Next, the carbon fiber bundle in a wet state was dried at 200 ° C.
  • Carbon fiber bundle TRH50 60M (trade name, manufactured by Mitsubishi Rayon, total fineness 33,000 dtex) with 1.2% by mass of medium-viscosity urethane B, which is the primary sizing agent, attached to a rotary cutter with a cutting blade interval of 6 mm When cut, a large amount of fluff was generated during cutting, and a chopped carbon fiber bundle could not be produced.
  • Example 9 Using the carbon fiber bundle used in Comparative Example 8 (TRH50 60M, medium-viscosity urethane B attached 1.2% by mass), the carbon fiber per unit weight before applying the secondary sizing solution to the carbon fiber bundle A chopped carbon fiber bundle was obtained by the same method as in Example 1 except that the width was 1/100 mm / tex. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 10 to 11 The same method as in Example 9 except that the width of the carbon fiber per unit basis weight and the adhesion amount of the secondary sizing agent before applying the secondary sizing solution to the carbon fiber bundle are as shown in Table 1. Thus, a chopped carbon fiber bundle was obtained. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 12 A chopped carbon fiber bundle was obtained in the same manner as in Example 7 except that the aqueous polyolefin resin G was used as the secondary sizing solution. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • Example 13 A chopped carbon fiber bundle was obtained in the same manner as in Example 7 except that the aqueous epoxy resin H was used as the secondary sizing solution. About the obtained chopped carbon fiber bundle, the same measurement as Example 1 was performed. The results are shown in Tables 1 and 2.
  • the chopped carbon fiber bundles of the examples have a flat shape with an appropriate cross section, and the single fibers constituting the chopped carbon fiber bundle are highly oriented, so that even if the amount of sizing agent attached is relatively low, it is uniform. A sizing agent is applied, and a good quality chopped carbon fiber bundle is obtained with high productivity.
  • the chopped carbon fiber bundles of Comparative Example 1, Comparative Example 5, and Comparative Example 11 have a low cross-sectional flatness, and further, since the single fibers are not oriented, they are inferior in handling at the time of compound production. Yes.
  • the chopped carbon fiber bundles of Comparative Example 3 and Comparative Example 7 have a moderately flat cross section, but the chopped carbon fiber bundles were rubbed with each other because the single fibers constituting the chopped carbon fiber bundle were not oriented. It is easy to fluff and has poor handleability.
  • the single fibers constituting the carbon fiber bundle are oriented, but the flatness of the cross section is low or the flatness is excessive. Easy to disperse and poor in handling.
  • the chopped carbon fiber bundle of Comparative Example 8 has a flat shape with an appropriate cross section, and the single fibers constituting the chopped carbon fiber bundle are also oriented, but the carbon fiber bundle is too small because the amount of sizing agent attached is too small.
  • Comparative Example 2 Comparative Example 9, and Comparative Example 10 indicate that the chopped carbon fiber bundle cannot be stably produced unless the viscosity of the primary sizing agent and the width of the carbon fiber bundle when applying the sizing liquid are appropriate. ing. From the above results, it was found that according to the present invention, the sizing agent was uniformly applied even when the sizing agent adhesion amount was relatively low, and a chopped carbon fiber bundle showing good handleability and high productivity was obtained. .
  • Example 14 Using a carbon fiber bundle TRH50 60M manufactured by Mitsubishi Rayon with a total fineness of 32,000 dtex, a carbon fiber bundle having a predetermined tow width is obtained by alternately passing through a plurality of open fiber bars and a tow width regulating bar. Adhesion treatment was performed using an aqueous solution (sizing solution) prepared from Hydran HW-930 (aqueous urethane resin manufactured by DIC Corporation) to a solid content concentration of 6.0% by weight.
  • aqueous solution sizing solution
  • Hydran HW-930 aqueous urethane resin manufactured by DIC Corporation
  • Adhesion treatment is a touch roll method in which a part of the roll is immersed in a sizing liquid tank, the sizing liquid is applied to the roll surface, and the sizing liquid is attached to the carbon fiber bundle by bringing the carbon fiber bundle into contact with the roll surface. went.
  • the adhesion treatment was performed at 4,400 dtex / mm.
  • Two touch rolls were used and applied to the two front and back surfaces of the carbon fiber bundle.
  • the wet carbon fiber bundle is cut with a rotary cutter having a cutting blade interval of 6 mm, and the cut carbon fiber bundle is continuously put into a floor vibration type hot air drying furnace and dried at 200 ° C. A carbon fiber bundle was obtained.
  • Example 15 A chopped carbon fiber bundle was obtained in the same manner as in Example 14 except that Sepoljon PA150 (nylon emulsion manufactured by Sumitomo Seika Co., Ltd.) was used as the sizing agent instead of Hydran HW-930. About the obtained chopped carbon fiber bundle, the same measurement as Example 14 was performed.
  • Sepoljon PA150 nylon emulsion manufactured by Sumitomo Seika Co., Ltd.
  • Example 12 A carbon fiber bundle obtained by twisting 10 revolutions per meter in a carbon fiber bundle TRH50 60M manufactured by Mitsubishi Rayon is immersed in an aqueous solution (sizing liquid) prepared with a hydran HW-930 concentration of 6.0% by weight. After passing, the carbon fiber bundle was obtained by contacting with a heating roll having a surface temperature of 140 ° C. for 10 seconds to obtain a carbon fiber bundle. The obtained carbon fiber bundle was cut with a rotary cutter having a cutting blade interval of 6 mm to obtain a chopped carbon fiber bundle. About the obtained chopped carbon fiber bundle, the same measurement as Example 14 was performed.
  • the results are shown in Table 5.
  • the carbon fiber bundles of Examples 14 and 15 have a flat cross section so that the sizing agent is uniformly applied even though the sizing agent adhesion amount is relatively low. It was possible to manufacture the bundle with high productivity.
  • the chopped carbon fiber bundle of Comparative Example 12 containing a twist had a low flatness and a low bulk density.
  • the chopped carbon fiber bundle of the present invention can exhibit excellent processability and handleability in a composite process with a matrix resin, and when the chopped carbon fiber bundle is used, a molded product having excellent mechanical properties can be obtained. It is done. Moreover, since the chopped carbon fiber bundle of the present invention has a flat shape, the productivity of manufacturing the chopped carbon fiber bundle is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Abstract

 炭素繊維の分散性や成形物の物性を低下させずに、流動性を高いチョップド炭素繊維束および生産性が良いチョップド炭素繊維束の製造方法を提供する。総繊度が25,000dtex以上45,000dtex以下の炭素繊維束と、チョップド炭素繊維束の全体質量に対して1質量%以上5質量%以下のサイジング剤とを含んでなる、チョップド炭素繊維束であって、前記炭素繊維束の繊維方向に沿うチョップド炭素繊維束の長さ(L)が1mm以上50mm以下、前記チョップド炭素繊維束の繊維方向に対して垂直な断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が6.0以上18.0以下であり、前記チョップド炭素繊維束の表面に存在する単繊維の配向パラメータが4.0以下である、チョップド炭素繊維束である。

Description

チョップド炭素繊維束およびチョップド炭素繊維束の製造方法
 本発明は、熱可塑性樹脂をマトリックスとする炭素繊維強化樹脂の製造に適したチョップド炭素繊維束およびその製造方法に関する。特にフィラメント数が多く総繊度が大きい炭素繊維束(いわゆるラージトウ)を原料とするチョップド炭素繊維束およびその製造方法に関するものである。更に詳しくは、短繊維強化樹脂成形材料の強化材として流動性、集束性等の取扱い性に優れたチョップド炭素繊維束およびその製造方法に関するものである。
 本願は、2012年11月26日に日本に出願された特願2012-257772号に基づき優先権を主張し、その内容をここに援用する。
 炭素繊維強化樹脂は、非強化の樹脂に比べて強度、剛性、寸法安定性がはるかに優れているため、事務機器や自動車分野など様々な分野で広く利用されている。炭素繊維の需要は年々増えており、航空機・スポーツ等のプレミアム用途から建築、土木、エネルギー関係の一般産業用途へ需要がシフトしてきており、炭素繊維に対する要求も厳しく、性能だけでなく価格の低減が大きな課題となっている。そのため近年、価格の低減に向けてよりフィラメント数が多く総繊度が大きい炭素繊維束が供給されるようになってきている。
 従来、熱可塑性樹脂をマトリックス樹脂とする短炭素繊維強化熱可塑性樹脂(以下「CFRTP」と記す)は、射出成形が可能であって生産性が高く、且つ、従来の未強化熱可塑性樹脂や短ガラス繊維強化熱可塑性樹脂と比較して機械特性・摺動特性・電気特性・寸法安定性などが優れているため、高性能なエンジニアリング材料として注目され、その需要が急激に増加している。
 通常、このCFRTPを得るには、炭素繊維束が3~10mmに切断され、サイジング剤で集束されたチョップド炭素繊維束、或いは1mm以下に粉砕された炭素繊維ミルドファイバーを、熱可塑性樹脂のペレット又はパウダーとともに押出機に供給し溶融混練してペレット化した後、射出成形機或いは押出成形機で形成する方法が採用されている。
 従来、チョップド炭素繊維の製造には、フィラメント数が1,000本から30,000本程度の炭素繊維を原料に用いてきた。ところが近年では、チョップド炭素繊維の製造コストを下げるため、チョップド炭素繊維の製造に、従来よりもフィラメント数が多い炭素繊維束を原料に用いる取り組みが行われつつある。すなわち、フィラメント数が多く総繊度が大きい炭素繊維束を用いて、チョップド炭素繊維の製造を行う必要が生じてきている。
 フィラメント数が多く総繊度が大きい炭素繊維束を製造する際には、焼成時の反応熱の除去を円滑に行うため扁平な形態で取り扱われることが一般的である。
 その結果として、フィラメント数が多く総繊度が大きい炭素繊維束を原料としてチョップド炭素繊維束を製造する場合、このような炭素繊維束は従来のものよりも扁平度を高くすることが、サイジング剤が炭素繊維束の内部まで浸透し易い等の理由から、扁平度が高いチョップド炭素繊維束を製造することになる。
 一方、炭素繊維束の形態が扁平になるほど、流動性や集束性の低いチョップ炭素繊維束となってしまうという問題を生じる。また、断面形状を円形に近づけると炭素繊維束の嵩密度が高くなり、炭素繊維束の内部にサイジング剤が浸透しにくくなるため、集束性にむらが生じる。さらにコンパウンド工程で受ける剪断力が大きくなるため解繊しやすくなり、ファイバーボールができやすくなり流動性が低くなるため、コンパウンド工程のホッパーから押出機へ移送するときに閉塞等のトラブルを起こしやすくなる。
 従来、チョップド炭素繊維束を得る方法としては、まず炭素繊維束をサイジング剤に浸漬し、次に、乾燥工程で集束させた炭素繊維束を連続または別工程にてカッターで切断する方法が一般的であった。一方、ガラス繊維をチョップ化する方法は、溶融紡糸されたガラス繊維にサイジング剤を付与した後、濡れた状態で切断し、次いで乾燥する方法が一般的である。このガラス繊維のチョップ化方法によれば、少ないサイジング剤の付着量で高い集束性のチョップドファイバーが得られやすく、この方法を炭素繊維に採用した例としては特許文献1ならびに特許文献2がある。しかし、前記特許文献でチョップ化する炭素繊維束の繊維数は12,000本程度であり、フィラメント数が多く総繊度が大きい炭素繊維束を処理するものでない。なお、前述のチョップドガラス繊維においてもサイジング剤を付与する工程での繊維束の繊維数は4,000本程度であり太い繊維束を処理するものでない。
 広く知られているように、CFRTPの各種特性は、炭素繊維束の長さに関係する。炭素繊維束の長さがきわめて短いミルドファイバーを用いると、成形されたCFRTP中の炭素繊維束の長さが短くなるため、その各種特性はチョップド炭素繊維束に比べて劣る。また、CFRTP中の炭素繊維束の長さを長く保たせるため、カット長と同じ長さを有する長繊維ペレットを用いる場合があるが、成型物の繊維配向制御が難しく量産の安価なCFRTPには不向きである。そのため、一般的には、チョップド炭素繊維束が用いられる。
 一方、特許文献3では大量生産に対応するための大型梱包を実現し、ホッパーから押出機への安定供給性と分散性を同時に満足することのできるチョップド炭素繊維束、及び、その製造法を提供することとして、チョップド炭素繊維束を構成する炭素繊維フィラメントの本数が30,000~120,000本のチョップド炭素繊維束であって、断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、1~10重量%のサイジング剤で集束されたチョップド炭素繊維束であり、チョップド炭素繊維束の長さ(L)とチョップド炭素繊維束の短径(Dmin)の比(L/Dmin)が4以下であるものが提案されている。
 しかし、特許文献3に記載の炭素繊維チョップストランドでは、チョップド炭素繊維束を製造する際にその扁平度が低い炭素繊維束形状であり、サイジング剤を付与して乾燥させる際に乾燥不良を起こすため、生産速度を低下させる必要が生じるという問題点がある。
 また、特許文献4には、フィラメント数が多い低価格の炭素繊維束を原料として、流動性、集束性に優れたチョップド炭素繊維束が提案されている。サイジング剤が付与されたチョップド炭素繊維の集合体であって、その集合体の構成単位である短繊維束片の繊維長方向の単位長さ当たりの平均重量が1.7~4mg/mmの範囲にあり、かつ、その繊維長方向の単位長さ当たりの重量の分布における変動率が30~60%であることを特徴とするチョップド炭素繊維、およびその製造方法が提案されている。
 しかし、特許文献4には、チョップの形状について、略矩形で1辺の長さが1.5~6mmと記載されている。1辺の長さが3mm程度よりも短い距離であると、単位長さ当たりの重量が1.7mgであっても断面は扁平度が低くなり、やはり製造時に乾燥不良を起こして生産速度を低下させる必要が生じるという問題点があった。
 以上の通り、チョップド炭素繊維束において、炭素繊維の分散性や成形物の物性を低下させずに、チョップド炭素繊維束の流動性を高め、大量のチョップド炭素繊維束を生産性良く製造することは困難であった。
特開平5-261729号公報 特開平5-261730号公報 特開2011-208285号公報 特開平11-81146号公報
本発明の目的は、フィラメント数が多く総繊度の大きい炭素繊維束を原料として、サイジング剤の付着量が低くても、良好な取扱い性及び高い生産性を示すチョップド炭素繊維束、およびそのチョップド炭素繊維束の製造方法を提供することである。
 本発明の上記目的は、下記の本発明の各態様によって達成される。
(1)総繊度が25,000dtex以上45,000dtex以下の炭素繊維束と、
チョップド炭素繊維束の全体質量に対して1質量%以上5質量%以下のサイジング剤とを含んでなり、
前記炭素繊維幅の繊維方向に沿うチョップド炭素繊維束の長さ(L)が1mm以上50mm以下、
前記チョップド炭素繊維束の繊維方向に対して垂直な断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が6.0以上18.0以下であり、前記チョップド炭素繊維束の表面に存在する単繊維の配向パラメータが4.0以下である、チョップド炭素繊維束。
(2)チョップド炭素繊維束の長さ(L)とチョップド炭素繊維束の繊維方向に対して垂直な断面における短径(Dmin)の比(L/Dmin)が5以上30以下である(1)に記載のチョップド炭素繊維束。
(3)嵩密度が200g/L以上650g/L以下である(1)または(2)に記載のチョップド炭素繊維束。
(4)前記サイジング剤が、ウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン系樹脂のいずれかから選ばれる1以上の熱可塑性樹脂を主成分とするサイジング剤である(1)~(4)のいずれかに記載のチョップド炭素繊維束。
(5)総繊度が25,000dtex以上45,000dtex以下の炭素繊維束に対して、30℃における粘度が3000Pa・s以下である一次サイジング剤を0.3重量%以上1.5重量%以下の量を付着させた後、単位目付あたりの炭素繊維束の幅が1/440mm/tex以上1/100mm/tex以下の範囲にして、二次サイジング剤を含むサイジング液を付与し、前記前記炭素繊維束を切断し、次いで前記サイジング液を乾燥するチョップド炭素繊維束の製造方法。
(6)前記一次サイジング剤が、エポキシ系樹脂、ポリウレタン系樹脂、ナイロン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂及びポリエチレングリコールのいずれかから選ばれる1以上を含む、(5)に記載のチョップド炭素繊維束の製造方法。
(7)前記二次サイジング剤が、ウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン系樹脂のいずれかから選ばれる1以上の熱可塑性樹脂を含む、(5)に記載のチョップド炭素繊維束の製造方法。
(8)前記一次サイジング剤と前記二次サイジング剤を含むサイジング剤の炭素繊維束に対する付着量が1~5質量%である、(5)~(7)の何れかに記載のチョップド炭素繊維束の製造方法。
(9)マトリックス樹脂100質量部に対して、(1)~(5)のいずれかに記載のチョップド炭素繊維束を炭素繊維量で5質量部以上150質量部以下を配合し、その後、前記マトリックス樹脂と前記チョップド炭素繊維を混合する工程を含む、炭素繊維強化樹脂組成物の製造方法。
(10)前記マトリックス樹脂が、ポリカーボネート樹脂、ナイロン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ABS樹脂、ポリオキシメチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフィン樹脂及びポリエーテルイミド樹脂を含む熱可塑性樹脂、並びにそのアロイ系樹脂のいずれかから選ばれる1以上を含む(9)に記載の炭素繊維強化樹脂組成物の製造方法。
(11)(9)又は(10)に記載の製造方法で得られた炭素繊維強化樹脂組成物を用いた、ペレット又は成型品の製造方法。
 又、本発明の別の観点による側面では、以下のような態様を有する。
(12)総繊度が25,000dtex以上45,000dtex以下、断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が6.0以上18.0以下、サイジング剤の付着量が1質量%以上5質量%以下であるチョップド炭素繊維束。
(13)嵩密度が200g/L以上300g/L以下である(12)に記載のチョップド炭素繊維束。
(14)総繊度が25,000dtex以上45,000dtex以下の炭素繊維束に撚り画ない状態でサイジング液を付与し、サイジング剤が乾燥する前に炭素繊維束を切断し、乾燥するチョップド炭素繊維束の製造方法。
 本発明のチョップド炭素繊維束は、マトリックス樹脂との複合化工程において、優れた加工性及び取り扱い性を発揮することができ、前記チョップド炭素繊維束を使用すると、機械特性の優れた成形物が得られる。また、本発明のチョップド炭素繊維束は、扁平形状のためチョップド炭素繊維束製造の生産性が大幅に向上する。
 本発明の一実施形態に係るチョップド炭素繊維束は、比較的少ないサイジング剤量で、高い流動性、即ち安定供給性と、分散性と高い生産性を兼ね備えたチョップド炭素繊維束である。本実施形態において、チョップド炭素繊維とは例えば炭素繊維を切断することによって後述するような一定範囲の長さとされているものを言う。本実施形態のチョップド炭素繊維束は以下の方法によって得られる。
 本実施形態において用いられる炭素繊維は、フィラメント状のポリアクリロニトリル(PAN)系、レーヨン系若しくはピッチ系等の各炭素繊維(黒鉛繊維を含む)、これらの繊維に金属コーテイングした金属被膜を有する炭素繊維等である。これらの炭素繊維は既知の方法で製造され、炭素繊維束の総繊度としては25,000dtex~45,000dtexの束が適当である。ここで総繊度は繊維束に含まれる繊維の太さの総計を示し、長さあたりの重量からJIS L 0104に定義されるdtex単位で表される。総繊度が25,000dtex以上であれば炭素繊維の製造コストが低減でき、廉価を要求される短炭素繊維強化熱可塑性樹脂組成材料の強化材として好ましく、28,000dtex以上がより好ましい。また、構成本数が45,000dtex以下であれば、サイジング剤の付与の際に、サイジング剤が中まで浸透しやすく、また、チョップド炭素繊維束の裁断時に、ストランドが割れにくくなり、溶融混練時の均一性が低下しにくくなるため好ましく、38,000dtex以下がより好ましく、35,000dtex以下がさらに好ましい。
 本実施形態において用いられるサイジング剤は、繊維に添加(付与)され、主に繊維間で繊維同士を収束させてその物理的性質を変化させるための化合物で、例えば樹脂からなるものが挙げられる。サイジング剤に用いる前記樹脂は、熱可塑性樹脂、熱硬化性樹脂の何れでもよく、例えば、エポキシ樹脂、ウレタン変性エポキシ樹脂、ポリエステル樹脂、フエノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリスチルピリジン樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、エポキシ変性ウレタン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂若しくはこれらの変性樹脂の単体又は混合物等が使用でき、特に柔軟性と高収束性に優れることからウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン樹脂より選ばれるいずれか1以上の熱可塑性樹脂を主成分とするサイジング剤が好ましい。
 またサイジング剤は、これら熱可塑性樹脂の単独でも、又は複数混合したものでも用いることができ、更にエポキシ樹脂、アクリルエステル樹脂、メタクリルエステル樹脂、又はシランカップリング剤等を添加した混合物として用いることができる。シランカップリング剤の中でも、特にエポキシシラン系、アミノシラン系又はビニルシラン系等の化合物が望ましく、シラン化合物のエポキシ基は、グリシジル基又は脂環式エポキシ基のいずれでもよい。
 本実施形態において、チョップド炭素繊維束へのサイジング剤の付着量は、チョップド炭素繊維束の全体質量に対して1~5質量%であることが必要である。
 サイジング剤の付着量が1質量%以上であれば、チョップド炭素繊維束の集束性が良好であり、押出し機等への供給性が安定しやすい。5重量%以下であれば、分散性が良好であり、機械特性が低下しにくく、また、熱分解により発生する分解ガスの量も抑制しやすくなり、チョップド炭素繊維束を製造する際の裁断時に裁断しやすくなるため好ましい。これらの観点から、サイジング剤の総付着量は、2質量%以上がより好ましく、4質量%以下がより好ましい。
 本実施形態のチョップド炭素繊維束は、このチョップド炭素繊維束を繊維方向に対して垂直に切断した際の断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が6.0~18.0であることが必要である。6.0以上であれば、サイジング剤が均一に付着し易くなり、コンパウンド製造時のチョップド炭素繊維束の供給性が安定になる。また、Dmax/Dminが18.0以下であれば、チョップド炭素繊維束が繊維方向に割れ難く、供給性が安定しやすくなる。これらの観点から、Dmax/Dminは、8.0以上、15.0以下がより好ましく、9.0以上、12.0以下がさらに好ましい。
 本実施形態のチョップド炭素繊維束は、さらに、チョップド炭素繊維束の表面に存在する単繊維の配向パラメータが4.0以下であることを特徴とする。前記配向パラメータは、例えば後述の式で定義される値で、値が小さいほど前記単繊維の配向が揃っていることを示す。前述の断面形状に加えて、配向パラメータを4.0以下とすることで、サイジング剤の付着量が少なくても、チョップド炭素繊維束の表面に存在する単繊維の集束性が良好となる。さらに、個々のチョップド炭素繊維束間の相互作用が小さくなることで、チョップド炭素繊維束とマトリックス樹脂を混合して、コンパウンドを製造する時の、チョップド炭素繊維束の供給性が安定になる。配向パラメータは3.0以下であることがより望ましい。
 なお、本実施形態における配向パラメータは、炭素繊維束を構成する単繊維のそれぞれの角度(単位は度)を長さで重みづけした度数分布を、以下のローレンツ関数にフィッティングし、得られた半値幅を配向パラメータと定義した。
f(x)=h/(1+[(x-u)]/w)+b 
(x:変数、h:ピークの高さ、u:ピークの位置、w:ピークの半値幅、b:ベースラインの高さ)
 また、本実施形態のチョップド炭素繊維束の長さ(L)とチョップド炭素繊維束の短径(Dmin)の比(L/Dmin)は、5以上、30以下であることが好ましい。この比が5以上であれば、成型物の物性が低下することを抑制しやすくなる。30以下であればストランド同士の接点が少なく、流動性が低下しないため好ましい。これらの観点から、L/Dminは、8以上、20以下がより好ましく、10以上、15以下がさらに好ましい。
 チョップド炭素繊維束の嵩密度は、一定体積(1L)あたりの炭素繊維の重さを表しており、前記嵩密度は、200g/L以上650g/L以下が望ましい。一般的に、200g/L未満であると、チョップ1粒にかかる重力よりチョップ表面で接する別のチョップとの摩擦抵抗が大きくなり、ホッパーから動かない部分が発生する。また、650g/L以上の嵩密度を持つチョップド炭素繊維束を製造するのは一般に困難である。さらに、前記嵩密度は、200g/L以上300g/L以下であってもよい。
 本実施形態のチョップド炭素繊維束の長さ(L)は、対象とする成形方法によっても異なるが、1mm以上50mm以下、好ましくは3mm以上40mm以下、さらに好ましくは5mm以上30mm以下の範囲であることが望ましい。前記長さが1mm以上であれば、チョップド炭素繊維束の取り扱い性が優れるため、チョップド炭素繊維束とマトリックス樹脂からコンパウンドを製造する時の生産性が低下することがないので好ましい。また前記長さが50mm以下であれば、チョップド炭素繊維束とマトリックス樹脂から得られたコンパウンドを用いて成形する時の工程通過性が低下することがないので好ましい。なお、ここでチョップド炭素繊維束の長さを上記範囲とするとは、チョップド炭素繊維束が実質的に上記範囲の長さである、さらに具体的には例えばチョップド炭素繊維束の総量のうち95.0%以上が上記範囲内であることを指す。
 本実施形態のチョップド炭素繊維束を製造する方法としては、特に限定はないが、前記炭素繊維束にサイジング剤を含むサイジング液を付着させた後、引き続きサイジング液が湿潤状態にある炭素繊維束を所定長さに切断し、乾燥して製造する方法が工程通過性の点から好ましい。チョップド炭素繊維束を得る際のサイジング剤の付着方法には、特に限定はなく、サイジング液中に一部浸漬したロールの表面にサイジング液を塗布させた後、前記ロールにトウに接触付着させるタッチロール方式や、トウをサイジング液中に浸漬付与し、場合によりニップローラーを用いてその絞り量でしてサイジング液の付着量を制御する浸漬方式等を採用することができる。このなかで、複数のタッチロール上にトウを走行させるのが、付着量とトウ幅の制御の面で最適である。
 前記サイジング液中のサイジング剤の濃度は0.5~30質量%であることが好ましい。サイジング液の溶剤は、サイジング剤の種類に応じて、水、エチルアルコール若しくはメチルアルコール等のアルコール類、アセトン若しくはメチルエチルケトン等のケトン類などや、キシレン、ジクロロメタン、N‐メチルピロリドン、ジメチルホルムアミド、テトラヒドロフラン若しくはトルエンなど、又は、これらの混合系から適宜選択して用いられる。
 また、前記製造方法においては、前記サイジング液を付着させる前の炭素繊維束に、30℃における粘度が3000Pa・s以下、より望ましくは2500Pa・s以下である一次サイジング剤を0.3重量%以上1.5重量%以下付着させた後、前記サイジング液(二次サイジング液を含むサイジング液。以下適宜「二次サイジング液」と略す)を付着させることが望ましい。前記一次サイジング剤の粘度と付着量がこの範囲であれば、前記二次サイジング液を付着させる工程での毛羽立ちを抑えながら、後述する炭素繊維束の幅の制御することができる。
 一次サイジング剤の成分としては、特に限定はないが、エポキシ系樹脂、ポリウレタン系樹脂、ナイロン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂又はポリエチレングリコールなどを用いることができる。これらは1種または2種以上を併用してもよい。場合によっては、乳化剤あるいは界面活性剤などを含めることができる。
 さらに、前記の製造する方法において、前記二次サイジング液を付着させる前に、単位目付あたりの炭素繊維束の幅が1/450mm/tex以上1/100mm/tex以下の範囲にして、二次サイジング液を付与することが好ましい。炭素繊維束の幅が1/440mm/tex以上であれば含液量を制御して集束性を高くしやすくなる。また1/100mm/tex以下であれば、二次サイジング液が繊維束内部まで十分浸透するのに時間が短くできるため、連続のプロセスでは含浸むらが生じ難く、集束性が高くなる。より望ましい範囲は、1/370mm/tex以上1/150mm/tex以下である。1/370mm/tex以上1/150mm/tex以下であれば、二次サイジング液の浸透を促進させながら、炭素繊維束の調整するときの毛羽立ちを防止することができ、好適な短繊維の配向を持つチョップド炭素繊維束を生産性良く製造することができる。
 二次サイジング液を付着させる前の炭素繊維束は、複数のパッケージから取り出した繊維束を接続した繊維束であってもよい。ある炭素繊維パッケージ内の繊維束の端部と、別のパッケージの繊維束の端部を接続するさいの方法は、特に限定されるものではないが、エア絡合により接続することが望ましい。これは糸を直接結ぶなどして接続した場合にチョップド炭素繊維束を製造する際の工程通過性が著しく悪化するためである。エア絡合による2本以上の繊維束同士の接続部は、良好な工程通過性と、かつその接続部による製品の品質への影響が少ないために好ましい。
 また、炭素繊維束を切断してチョップド炭素繊維束とする際の切断方式としては、特に制限はないが、ロータリーカッター方式で切断しチョップド炭素繊維束にするのが好ましい。ロータリーカッターで切断する際は、炭素繊維束の厚みが厚くなり過ぎると切り損じを生じたり、ロータにトウが巻き付いて操作不能になったり、チョップド形態に不具合が生じたりするので、トウ厚みは薄い方が好ましい。
 切断された後のチョップド炭素繊維束の乾燥は、特に制限はないが、通常熱風乾燥法で行われる。この場合、水分の蒸発効率を上げるために、またチョップド炭素繊維束同士の接着を防止するために、振動させながら移送される方式が好ましく用いられる。この時、乾燥効率を上げるために、赤外線放射等の補助手段を併用することもできる。乾燥時の振動条件が強過ぎれば、得られたチョップド炭素繊維束の束割れが発生し易く、束幅/厚みが2未満になるチョップド炭素繊維束が多くなる。また、振動条件が弱すぎると、チョップド炭素繊維束同士の擬似接着が起こる。
 本実施形態の炭素繊維強化樹脂組成物の製造方法は、マトリックス樹脂100質量部に対して、前記チョップド炭素繊維束を炭素繊維量で5質量部以上150質量部以下、好ましくは15質量部以上40質量部以下を配合し、その後、前記マトリックス樹脂と前記チョップド炭素繊維を混合することを含む、炭素繊維強化樹脂組成物の製造方法に関する。このようなチョップド炭素繊維束の状態での炭素繊維の含有量範囲であれば、炭素繊維の添加による導電性、機械物性の向上が顕著である。又は、チョップド炭素繊維束を炭素繊維量でマトリックス樹脂の全体質量に対して5~60質量%、好ましくは、10~30質量%混合してもよい。
 本実施形態の炭素繊維強化樹脂組成物の製造方法におけるマトリックス樹脂としては、公知の熱可塑性樹脂又は熱硬化性樹脂等が用いられる。例えば、熱可塑性樹脂としては、ポリカーボネート樹脂、ナイロン樹脂、ポリエステル樹脂、ABS樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリオキシエチレン樹脂、ポリオレフィン樹脂、ポリエーテルイミド樹脂又はその他の工業的に有用なエンジニアリング樹脂及びこれらのポリマーアロイ樹脂等が挙げられ、熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂又はフェノール樹脂等が挙げられる。
 特に本実施形態で好ましく用いられるマトリックス樹脂としては、ポリカーボネート樹脂、ナイロン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ABS樹脂、ポリオキシメチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルィド樹脂、ポリエーテルサルフィン樹脂及びポリエーテルイミド樹脂を含む熱可塑性樹脂並びにそのアロイ系樹脂から選ばれる1以上である。
 本実施形態の炭素繊維強化樹脂組成物には、フィラー、エラストマー(ゴム)、カーボンブラック、金属酸化物若しくはセラミックス等の粒状物、又は、難燃剤等の添加剤が含有されていてもよい。添加剤を含有させる場合は、本実施形態の炭素繊維強化樹脂組成物100質量部に対し、43質量%以下、好ましくは17質量%以下で添加剤を含有させる。
 前記の炭素繊維強化樹脂組成物は、前記のチョップド炭素繊維束と、マトリックス樹脂、場合により添加剤とを、公知の方法により混合することにより調製される。
 本実施形態は、前記製造方法により得られた炭素繊維強化樹脂組成物を用いて、ペレット又は成型品を製造する方法に関する。前記ペレット又は成型品の製造方法については、特に制限はなく、公知の方法を用いていることができる。一般的には、マトリックス樹脂が熱可塑性樹脂である場合においては、射出成形法が採用され、マトリックス樹脂が熱硬化性樹脂である場合においては、プレス成形法、シートモールディングコンパウンド又はバルクモールディングコンパウンドによる高圧プレス成形法が採用される。
 サイジング液を繊維束に含浸させた後カットされるまで、繊維束の張力と形状、特に繊維束の幅の制御は、チョップド炭素繊維の流動性や集束性に影響するので重要である。そのため、種々のガイド、溝付きローラー等を配して5,000~20,000dtex/mmの範囲において目標の充填密度に調整した後カットしてもよい。ここで充填密度は繊維束の総繊度(dtex)を繊維束幅(繊維軸と直角方向の長さ(mm))で除した値である。
 本実施形態においては、炭素繊維束における炭素繊維の充填密度を1,000~4,000dtex/mmの範囲にしてサイジング剤を付与してもよい。炭素繊維の充填密度を1,000dtex/mm以上であれば含液量を制御して集束性を高くしやすくなる。また4,000dtex/mm以下であれば、サイジング液が繊維束内部まで十分浸透するのに時間が短くできるため、連続のプロセスでは含浸むらが生じ難く、集束性が高くなる。
 本実施形態においては、炭素繊維パッケージ内の繊維束の端部と、別の繊維束の端部を接続する場合は、流体であれば特に限定されるものではないが、エア絡合により接続することが望ましい。これは糸を直接結ぶなどして接続した場合にチョップド炭素繊維束を製造する際の工程通過性が著しく悪化するためである。炭素繊維パッケージ内の繊維束の一部に、エア絡合による2本以上の繊維束同士の接続部を有していることにより工程通過性が良好になり、かつその接続部による製品の品質への影響が低減されるために好ましい。
 以下に、本発明の実施形態を実施例により、さらに詳細に説明するが、本発明はこれら実施例によって限定されるものではない。
(サイジング剤の付着量測定)
 チョップド炭素繊維束を約2g採取し重量(W1)を測定した。その後、炭素繊維束を50リットル/分の窒素気流中、温度450℃に設定したマッフル炉(ヤマト科学株式会社製、製品名:FP410)に15分間静置し、サイジング剤を完全に熱分解させた。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)して、次式よりサイジング剤の付着量を求めた。
 サイジング剤付着量(重量%)=(W1-W2)/W1×100 (i)
(チョップド炭素繊維束の断面形状の測定)
 得られたチョップド炭素繊維束を無作為に50個摘出し、チョップド炭素繊維束の長さ、及び断面の長径をノギスによって、また断面の短径をフラットポイントのマイクロメータによって測定した。50個の測定値の数平均値を算出し、チョップド炭素繊維束の長さL、断面の長径Dmax、断面の短径Dminとした。
(嵩密度の測定)
 2Lのメスシリンダーに、300gのチョップド炭素繊維束を充填し、軽く衝撃を与えてチョップド炭素繊維束の体積に変化が無くなったときの体積を求め、この体積とチョップド炭素繊維束の重量とを用いて嵩密度を算出した。
(配向パラメータの測定)
 チョップド炭素繊維束の表面に存在する単繊維の配向パラメータ(配向度)を、以下の方法で測定した。
 得られたチョップド炭素繊維束を光学顕微鏡(キーエンス製、DIGITAL MICROSCOPE VHX―500F)を用いて、反射光・倍率200倍で観察した。観察には、高画質深度合成機能を用いて、画面内ですべての炭素繊維フィラメントに焦点が合っている画像(1600×1200ピクセル)を撮影した。なお、反射光で観察した場合、炭素繊維フィラメントはフィラメントが無い部分と比較して白く写る。
撮影した画像を、画像解析ソフト(三谷商事株式会社製二次元画像解析ソフトウェア、WinROOF)を用いて以下の手順で解析した。
 グレースケール変換後の輝度値が閾値Bより明るいピクセルを白、Bよりも暗いピクセルを黒として、画像を二値化した。輝度値の閾値Bは、画像に含まれるすべてのピクセルの輝度値をヒストグラム(度数分布)とした後に、輝度値B以下の度数の合計と輝度値B以上の度数の合計が同じ値になるように定義した。
さらに、二値化された画像における白線(炭素繊維フィラメントを示す)を画像解析ソフトの針状分離機能によって、白線を直線であると規定し、画面内のすべての白線の始点と終点の座標(Xs、Ys)、(Xe、Ye)を定義した。
 画像解析で得られた白線の始点と終点の座標(Xs、Ys)、(Xe、Ye)より、以下の数式を用いて、各線分の角度θ度及び長さLを算出した。
 θ=ArcTan((Ys-Ye)/(Xs―Xe))+90
 L=√([(Xs-Xe)]+[(Ys-Ye)] )
画像内のすべての白線について、線分の角度θ及び長さLを算出し、角度θが0度から180度まで1度ごとの度数に含まれる線分の長さを和した度数分布を作成した。
 次に、得られた度数分布において、最も度数の多い角度をθmaxとし、度数分布の元の度数の軸の値θに対して、新しくθnewを以下のごとく定義した。
θnew=θ+(90-θmax) 但し0≦θ+(90-θmax)≦180の場合
θnew=θ+(90-θmax)-180  但しθ+(90-θmax)>180の場合
θnew=θ+(90-θmax)+180  但しθ+(90-θmax)<180の場合
θnewを横軸に用いた度数分布では、最も度数の多い角度が90度となる。
 次に、θnewを横軸に用いた度数分布を以下のローレンツ関数
f(x)=h/(1+[(x-u)]/w)+b
(x:変数、h:ピークの高さ、u:ピークの位置、w:ピークの半値幅、b:ベースラインの高さ)
に最小二乗法を用いてフィッティングし、得られた半値幅のパラメータを配向度と定義した。
 一つのチョップド炭素繊維束につき、サンプル数3点、各サンプルにつき3か所の顕微鏡写真を撮影し、これらの値の平均値を、チョップド炭素繊維束の表面に存在する単繊維の配向パラメータ(配向度)とした。
(フィード性の評価)
 得られたチョップド炭素繊維束を1kg、スクリュー部の直径が30mmの重量式スクリューフィーダーに投入し、毎時15kgの速度で搬送した。1kgすべてを搬送できた場合はフィード性良好、搬送中にチョップド炭素繊維束がスクリュー部にブリッジングを起こして搬送不良を起こした場合は、フィード不可であると判断した。
<実施例1>
 一次サイジング剤である低粘度エポキシAが、1.2質量%付着した炭素繊維束TRH50 60M(商品名、三菱レイヨン製、総繊度33,000dtex)を用いた。
 上記の炭素繊維束を、複数個よりなる開繊バーへの擦過とトウ幅規制バーを交互に通過させ、単位目付あたりの炭素繊維の幅が1/440mm/texとした。その後、水性ウレタン樹脂Eの固形分濃度が6.0重量%となるように調製した水溶液(二次サイジング液)を用いて、二次サイジング剤である水性ウレタン樹脂Eを、炭素繊維束に付着した。
 二次サイジング液槽にタッチロールの一部を浸漬して、タッチロールを回転することにより、ロール表面に二次サイジング液を塗布した。次いで、炭素繊維束を前記ロール表面に連続的に接触させることにより、炭素繊維束に二次サイジング液を付着した(タッチロール方式)。この際、2個のタッチロールを用いて、炭素繊維束の表面と裏面に二次サイジング液を塗布した。
 次いで、炭素繊維束に塗布された二次サイジング液が乾燥する前、すなわち炭素繊維束が湿潤状態にある状態で、切断刃の間隔が6mmのロータリーカッターを用いて炭素繊維束を切断した。その後、切断した炭素繊維束を、床振動式熱風乾燥炉(乾燥温度200℃)に連続的に投入し、乾燥して、チョップド炭素繊維束を得た。
 得られたチョップド炭素繊維束を用いて、チョップド炭素繊維束のサイジング剤の付着量、チョップド炭素繊維束の形状測定、嵩密度、配向パラメータを測定した。また、同チョップド炭素繊維束のフィード性の評価を行った。その結果を表1及び2に示す。なお、サイジング剤に用いた各樹脂の組成の詳細については表3及び4に示す。以下の実施例2以降についても同様である。
<実施例2>
 二次サイジング剤として、水性ウレタン樹脂Eの代わりに水溶性ナイロン樹脂Fを用いた以外は実施例1と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。実施例1と同様に、チョップド炭素繊維束のサイジング剤の付着量、断面形状、嵩密度、配向パラメータを測定した。また、同チョップド炭素繊維束のフィード性の評価を行った。結果を表1及び2に示す。
<比較例1>
 実施例1で用いた炭素繊維束(TRH50 60M、低粘度エポキシAが1.2質量%付着)に、1mあたり10回転の加撚を施した。次いで、前記炭素繊維束を、水性ウレタン樹脂Eを固形分濃度6.0重量%に調製した水溶液(二次サイジング液)に浸漬させ、ニップロールを通過させた後に、加熱ロール(表面温度140℃)に10秒間接触させる事により乾燥し、炭素繊維束を得た。得られた炭素繊維束を、切断刃の間隔が6mmのロータリーカッターを用いて切断して、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。
<実施例3>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/230mm/texとした以外は、実施例2と同様の方法により、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<実施例4>
 一次サイジング剤である低粘度エポキシAが、1.2質量%付着した炭素繊維束TRW50 50L(商品名、三菱レイヨン製、総繊度37,000dtex)を使用し、二次サイジング剤に水性ウレタン樹脂Eを用いた以外は、実施例3と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<比較例2>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/50mm/texとした以外は、実施例1と同様の方法により、切断された炭素繊維束を得た。次いで、切断された炭素繊維束を、床振動式熱風乾燥炉(乾燥温度200℃)に連続的に投入して乾燥したところ、切断された炭素繊維束には、縦割れと毛羽立ちが発生した。目的とするチョップド炭素繊維束を得ることはできなかった。
<実施例5~8、比較例3>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を、表1の記載の通りとした以外は、実施例1と同様の方法により、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<比較例4>
 実施例1で用いた炭素繊維束(TRH50 60M、低粘度エポキシAが1.2質量%付着)を用いた。二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/130mm/texとした後に、水性ウレタン樹脂Eの固形分濃度が6.0重量%となるように調製した水溶液(二次サイジング液)を用いて、実施例1と同様の方法で、二次サイジング剤である水性ウレタン樹脂Eを炭素繊維束に付着した。次いで、湿潤状態にある炭素繊維束を熱風乾燥炉で2分間、200℃にて乾燥し、その後、切断刃の間隔が6mmのロータリーカッターにて切断してチョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<比較例5>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/410mm/texとした以外は、比較例4と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。
<比較例6~7>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を、表1に記載の通りとした以外は、比較例1と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<比較例8>
 一次サイジング剤である中粘度ウレタンBが、1.2質量%付着した炭素繊維束TRH50 60M(商品名、三菱レイヨン製、総繊度33,000dtex)を、切断刃の間隔が6mmのロータリーカッターにて切断したところ、切断時に毛羽が大量に発生してしまい、チョップド炭素繊維束を製造することはできなかった。
<実施例9>
 比較例8で用いた炭素繊維束(TRH50 60M、中粘度ウレタンBが1.2質量%付着)を用いて、二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/100mm/texとした以外は、実施例1と同様の方法により、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<実施例10~11>
 二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅と、二次サイジング剤の付着量を表1に記載の通りとした以外は、実施例9と同様の方法により、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<比較例9>
 一次サイジング剤である高粘度ウレタンCが、1.2質量%付着した炭素繊維束TRH50 60M(商品名、三菱レイヨン製、総繊度33,000dtex)を、複数個よりなる開繊バーへの擦過とトウ幅規制バーを交互に通過させ、単位目付あたりの炭素繊維の幅を1/440mm/texにしようとしたが、開繊バー及びトウ幅規制バーで毛羽が発生してしまい、チョップド炭素繊維束を製造することはできなかった。
<比較例10>
 一次サイジング剤である高粘度エポキシDが、1.2質量%付着した炭素繊維束TRH50 60M(商品名、三菱レイヨン製、総繊度33,000dtex)を、複数個よりなる開繊バーへの擦過とトウ幅規制バーを交互に通過させ、単位目付あたりの炭素繊維の幅を1/440mm/texにしようとしたが、開繊バー及びトウ幅規制バーで毛羽が発生してしまい、チョップド炭素繊維束を製造することはできなかった。
<比較例11>
 比較例10で用いた炭素繊維束(TRH50 60M、高粘度エポキシDが1.2質量%付着)を用いて、二次サイジング液を炭素繊維束に塗布する前の、単位目付あたりの炭素繊維の幅を1/600mm/texとした以外は、実施例1と同様の方法により、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<実施例12>
 二次サイジング液として、水性ポリオレフィン樹脂Gを用いた以外は実施例7と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
<実施例13>
 二次サイジング液として、水性エポキシ樹脂Hを用いた以外は実施例7と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例1と同様の測定を行った。結果を表1及び2に示す。
 実施例のチョップド炭素繊維束は、断面が適度な扁平形状であり、かつチョップド炭素繊維束を構成する単繊維が高度に配向していることにより、サイジング剤付着量が比較的低くても均一にサイジング剤が付与されており、良好な品質のチョップド炭素繊維束が生産性良く得られている。
それに対して、比較例1、比較例5、比較例11のチョップド炭素繊維束は、断面の扁平度が低く、さらに、単繊維が配向していないために、コンパウンド製造時の取扱い性に劣っている。
 比較例3、比較例7のチョップド炭素繊維束は、断面は適度な扁平形状であるが、チョップド炭素繊維束を構成する単繊維が配向していないために、チョップド炭素繊維束同士が擦れあった際に毛羽立ちやすく、取扱い性に劣っている。
比較例4、比較例6のチョップド炭素繊維束は、炭素繊維束を構成する単繊維は配向しているが、断面の扁平度が低い、あるいは扁平度が過剰であるために、炭素繊維束がばらけやすく、取扱い性に劣っている。
 比較例8のチョップド炭素繊維束は、断面が適度な扁平形状であり、かつチョップド炭素繊維束を構成する単繊維も配向しているが、サイジング剤の付着量が少なすぎるために、炭素繊維束がばらけやすく、取扱い性に劣っている。
 また、比較例2、比較例9、比較例10は一次サイジング剤の粘度やサイジング液を付与する際の炭素繊維束の幅が適正でないと、安定してチョップド炭素繊維束を生産できないことを示している。
 以上の結果より、本発明によって、サイジング剤付着量が比較的低くても均一にサイジング剤が付与されており、良好な取扱い性及び高い生産性を示すチョップド炭素繊維束が得られることがわかった。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
(実施例14)
 総繊度が32,000dtexである三菱レイヨン製炭素繊維束TRH50 60Mを用い、複数個よりなる開繊バーへの擦過とトウ幅規制バーを交互に通過させ、所定のトウ幅とした炭素繊維束に、ハイドランHW-930(DIC株式会社製水性ウレタン樹脂)を固形分濃度6.0重量%に調製した水溶液(サイジング液)を用いて付着処理を施した。付着処理は、サイジング液槽にロールの一部を浸漬し、ロール表面にサイジング液を塗布し、そのロール表面に炭素繊維束を接触させることにより炭素繊維束にサイジング液を付着させるタッチロール方式で行った。また付着処理は4,400dtex/mmで処理を行った。タッチロールは、2個用い、炭素繊維束の表裏2面に塗布を施した。湿潤状態にある炭素繊維束の切断は切断刃の間隔が6mmのロータリーカッターにて行い、切断した炭素繊維束を床振動式熱風乾燥炉に連続的に投入して200℃にて乾燥し、チョップド炭素繊維束を得た。
(実施例15)
 サイジング剤として、ハイドランHW-930の代わりにセポルジョンPA150(住友精化株式会社製ナイロンエマルジョン)を用いた以外は実施例14と同様にして、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例14と同様の測定を行った。
(比較例12)
 三菱レイヨン製炭素繊維束TRH50 60Mに1mあたり10回転の加撚を施した炭素繊維束を、ハイドランHW-930を固形分濃度6.0重量%に調製した水溶液(サイジング液)に浸漬させ、ニップロールを通過させた後に、表面の温度を140℃とした加熱ロールに10秒間接触させる事により乾燥し、炭素繊維束を得た。得られた炭素繊維束を、切断刃の間隔が6mmのロータリーカッターにて切断し、チョップド炭素繊維束を得た。得られたチョップド炭素繊維束について、実施例14と同様の測定を行った。
 以上の結果を表5に示す。実施例14及び15の炭素繊維束は、断面を扁平形状にすることにより、サイジング剤付着量が比較的低いにもかかわらず、均一にサイジング剤が付与されており、良好な品質のチョップド炭素繊維束を生産性良く製造することが可能であった。
 一方、撚りが入った比較例12のチョップド炭素繊維束は、扁平度が小さくなり、嵩密度が低いものとなった。
Figure JPOXMLDOC01-appb-T000005
 本発明のチョップド炭素繊維束は、マトリックス樹脂との複合化工程において、優れた加工性及び取り扱い性を発揮することができ、前記チョップド炭素繊維束を使用すると、機械特性の優れた成形物が得られる。また、本発明のチョップド炭素繊維束は、扁平形状のためチョップド炭素繊維束製造の生産性が大幅に向上する。

Claims (12)

  1.  総繊度が25,000dtex以上45,000dtex以下の炭素繊維束と、チョップド炭素繊維束の全体質量に対して1質量%以上5質量%以下のサイジング剤とを含んでなる、チョップド炭素繊維束であって、
     前記炭素繊維束の繊維方向に沿うチョップド炭素繊維束の長さ(L)が1mm以上50mm以下、
     前記チョップド炭素繊維束の繊維方向に対して垂直な断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が6.0以上18.0以下であり、
     前記チョップド炭素繊維束の表面に存在する単繊維の配向パラメータが4.0以下である、チョップド炭素繊維束。
  2.  前記チョップド炭素繊維束の繊維方向に沿う長さ(L)と、前記チョップド炭素繊維束の繊維方向に対して垂直な断面における短径(Dmin)の比(L/Dmin)が5以上30以下である、請求項1に記載のチョップド炭素繊維束。
  3.  前記チョップド炭素繊維束の嵩密度が200g/L以上650g/L以下である、請求項1または2に記載のチョップド炭素繊維束。
  4.  前記サイジング剤が、ウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン系樹脂のいずれかから選ばれる1以上の熱可塑性樹脂を含むサイジング剤である、請求項1または2に記載のチョップド炭素繊維束。
  5.  前記サイジング剤が、ウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン系樹脂のいずれかから選ばれる1以上の熱可塑性樹脂を含むサイジング剤である、請求項3に記載のチョップド炭素繊維束。
  6.  総繊度が25,000dtex以上45,000dtex以下の炭素繊維束に対して、30℃における粘度が3000Pa・s以下である一次サイジング剤を0.3重量%以上1.5重量%以下の量を付着させた後、
     単位目付あたりの炭素繊維束の幅を1/440mm/tex以上1/100mm/tex以下の範囲にして、二次サイジング剤を含むサイジング液を付与し、
     前記炭素繊維束を切断し、次いで前記サイジング液を乾燥する、
    チョップド炭素繊維束の製造方法。
  7.  前記一次サイジング剤が、エポキシ系樹脂、ポリウレタン系樹脂、ナイロン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂及びポリエチレングリコールのいずれかから選ばれる1以上を含む、請求項6に記載のチョップド炭素繊維束の製造方法。
  8.  前記二次サイジング剤が、ウレタン系樹脂、ナイロン系樹脂、変性オレフィン系樹脂、変性エポキシ系樹脂及び水溶性ナイロン系樹脂のいずれかから選ばれる1以上の熱可塑性樹脂を含む、請求項6に記載のチョップド炭素繊維束の製造方法。
  9.  前記一次サイジング剤と前記二次サイジング剤を含むサイジング剤の炭素繊維束に対する付着量が1~5質量%である、請求項6~8の何れか一項に記載のチョップド炭素繊維束の製造方法。
  10.  マトリックス樹脂100質量部に対して、請求項1~5のいずれか一項に記載のチョップド炭素繊維束を炭素繊維量で5質量部以上150質量部以下を配合し、その後、前記マトリックス樹脂と前記チョップド炭素繊維を混合する工程を含む、炭素繊維強化樹脂組成物の製造方法。
  11.  前記マトリックス樹脂が、ポリカーボネート樹脂、ナイロン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ABS樹脂、ポリオキシメチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフィン樹脂及びポリエーテルイミド樹脂を含む熱可塑性樹脂、並びにそのアロイ系樹脂のいずれかから選ばれる1以上を含む請求項10に記載の炭素繊維強化樹脂組成物の製造方法。
  12.  請求項10又は11に記載の製造方法で得られた炭素繊維強化樹脂組成物を用いた、ペレット又は成型品の製造方法。
PCT/JP2013/081478 2012-11-26 2013-11-22 チョップド炭素繊維束およびチョップド炭素繊維束の製造方法 WO2014081002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13856572.6A EP2924164B1 (en) 2012-11-26 2013-11-22 Chopped carbon fiber bundles and method for producing chopped carbon fiber bundles
JP2013555109A JP5772988B2 (ja) 2012-11-26 2013-11-22 チョップド炭素繊維束およびチョップド炭素繊維束の製造方法
US14/647,343 US9803066B2 (en) 2012-11-26 2013-11-22 Chopped carbon fiber bundles and method for producing chopped carbon fiber bundles
CN201380061480.6A CN104812957B (zh) 2012-11-26 2013-11-22 短切碳纤维束及短切碳纤维束的制造方法
KR1020157013596A KR101754064B1 (ko) 2012-11-26 2013-11-22 촙드 탄소섬유속 및 촙드 탄소섬유속의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257772 2012-11-26
JP2012-257772 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014081002A1 true WO2014081002A1 (ja) 2014-05-30

Family

ID=50776178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081478 WO2014081002A1 (ja) 2012-11-26 2013-11-22 チョップド炭素繊維束およびチョップド炭素繊維束の製造方法

Country Status (9)

Country Link
US (1) US9803066B2 (ja)
EP (1) EP2924164B1 (ja)
JP (1) JP5772988B2 (ja)
KR (1) KR101754064B1 (ja)
CN (1) CN104812957B (ja)
HU (1) HUE039053T2 (ja)
TR (1) TR201806982T4 (ja)
TW (1) TWI494360B (ja)
WO (1) WO2014081002A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108021A1 (ja) * 2014-01-17 2015-07-23 東レ株式会社 スタンパブルシート
JPWO2016080103A1 (ja) * 2014-11-21 2017-08-31 株式会社カネカ アクリル系繊維の製造方法
EP3291257A4 (en) * 2015-04-28 2018-12-05 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
JP2019015013A (ja) * 2017-06-05 2019-01-31 ザ・ボーイング・カンパニーThe Boeing Company 炭素繊維を製造するための方法及び装置
JPWO2018062139A1 (ja) * 2016-09-30 2019-07-11 ダイセルポリマー株式会社 樹脂組成物
WO2019146485A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 強化繊維束基材およびその製造方法、ならびにそれを用いた繊維強化熱可塑性樹脂材料およびその製造方法
JP2019155634A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 複合材中間材料の製造方法
WO2019220846A1 (ja) * 2018-05-14 2019-11-21 三菱ケミカル株式会社 シートモールディングコンパウンドの製造方法、炭素繊維束、及び炭素繊維束の使用
JP2020128101A (ja) * 2016-03-11 2020-08-27 ダイセルポリマー株式会社 圧縮成形品用の樹脂含浸繊維束
CN115011133A (zh) * 2022-05-27 2022-09-06 广东简一(集团)陶瓷有限公司 一种适用于发热瓷砖的发热纸及其制备方法
CN115385707A (zh) * 2021-05-20 2022-11-25 中国科学院上海硅酸盐研究所 一种高体积分数碳粘结短切碳纤维复合材料的制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059903B2 (ja) * 2012-08-06 2017-01-11 ダイセルポリマー株式会社 熱可塑性樹脂組成物
US9283447B1 (en) * 2013-09-23 2016-03-15 Callaway Golf Company Golf club head with composite face
DE102013222426A1 (de) * 2013-11-05 2015-05-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Halbzeugs zur Verarbeitung zu einem CFK-Bauteil aus Kohlefaserabfällen
EP3204222A1 (en) * 2014-10-08 2017-08-16 OCV Intellectual Capital, LLC Hybrid reinforcement assemblies
CN108350645A (zh) * 2015-11-05 2018-07-31 三菱化学株式会社 连续碳纤维束、片状模塑料和使用其进行成型的纤维增强复合材料
CN105420966A (zh) * 2015-12-04 2016-03-23 镇江奥立特机械制造有限公司 一种新型的上浆方法
EP3408434A4 (en) 2016-01-26 2019-11-13 Continental Structural Plastics, Inc. METHOD AND SYSTEM FOR DISMANTLING FIBER CUTTER FOR USE IN PREFORM MATS, AND MOLDING COMPOSITIONS CONTAINING SUCH FIBERS
CN108004776B (zh) * 2016-10-28 2021-12-07 中国石油化工股份有限公司 一种碳纤维用聚酯树脂基悬浮液上浆剂及其制备方法
US20180179464A1 (en) * 2016-12-23 2018-06-28 Uht Unitech Co., Ltd Carbon fiber surface oiling agent changing metod
CN106884330B (zh) * 2017-03-24 2019-07-26 东华大学 一种乳液型碳纤维用上浆剂及其制备方法和应用
CN109722901B (zh) * 2017-10-27 2021-12-07 中国石油化工股份有限公司 一种聚砜树脂基碳纤维悬浮液上浆剂及其制备方法
CN109722743B (zh) * 2017-10-27 2022-02-11 中国石油化工股份有限公司 一种聚烯烃树脂基复合材料用碳纤维及其制备方法
CN109722894B (zh) * 2017-10-27 2022-01-21 中国石油化工股份有限公司 一种聚烯烃树脂基碳纤维悬浮液上浆剂及其制备方法
CN109722899B (zh) * 2017-10-27 2022-02-11 中国石油化工股份有限公司 一种聚醚酰亚胺树脂基碳纤维悬浮液上浆剂及其制备方法
KR20200108411A (ko) * 2018-01-26 2020-09-18 도레이 카부시키가이샤 강화 섬유 다발
CN110344252B (zh) * 2019-07-04 2021-11-23 湖州艾历克工业材料有限公司 一种用于增强热塑性树脂的碳纤维表面处理方法
CN110615988B (zh) * 2019-08-29 2022-03-11 江苏沃特新材料科技有限公司 高耐磨聚苯硫醚材料及其制备方法
CN112048854B (zh) * 2020-09-11 2021-05-11 江苏恒神股份有限公司 缠绕成型用碳纤维束及其制备方法和应用
TWI784693B (zh) * 2021-08-27 2022-11-21 臺灣塑膠工業股份有限公司 用於碳纖維的上漿劑
US20230087214A1 (en) * 2021-09-22 2023-03-23 Hao-Chia WU Method for splitting carbon fiber tow
KR102667302B1 (ko) * 2022-08-25 2024-05-27 홍미경 촙드 탄소섬유를 포함하는 심재 및 이의 제조방법
CN115404697A (zh) * 2022-11-02 2022-11-29 常州市宏发纵横新材料科技股份有限公司 一种热塑用短切碳纤维的生产方法及装置
TWI836945B (zh) * 2023-03-27 2024-03-21 安能聚綠能股份有限公司 再生碳纖維裁切分篩及分析方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261730A (ja) 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 形態の優れた炭素繊維チョップ及びその製造方法
JPH05261729A (ja) 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 炭素繊維チョップ及びその製造方法
JPH1181146A (ja) 1997-05-23 1999-03-26 Toray Ind Inc チョップド炭素繊維およびその製造方法
JP2001271230A (ja) * 2000-03-23 2001-10-02 Mitsubishi Rayon Co Ltd 炭素繊維チョップドストランド及びその製造方法
JP2003165849A (ja) * 2001-11-30 2003-06-10 Toho Tenax Co Ltd 炭素繊維チョップドストランド、及びその製造方法
JP2003268674A (ja) * 2002-03-08 2003-09-25 Toray Ind Inc サイズされた炭素繊維束の製造方法およびチョップド炭素繊維
JP2006144168A (ja) * 2004-11-19 2006-06-08 Toray Ind Inc 炭素繊維束
JP2010126841A (ja) * 2008-11-27 2010-06-10 Toho Tenax Co Ltd 炭素繊維チョップ、及びその製造方法
JP2011208285A (ja) 2010-03-08 2011-10-20 Toho Tenax Co Ltd 炭素繊維チョップドストランド及びその製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066395A (en) * 1997-05-23 2000-05-23 Toray Industries, Inc. Chopped carbon fibers and a production process there of
JPH11200160A (ja) * 1998-01-19 1999-07-27 Toray Ind Inc チョップド炭素繊維およびその製造方法
JP4370652B2 (ja) * 1999-02-18 2009-11-25 東レ株式会社 サイジング剤、及び該サイジング剤で処理されたチョップド炭素繊維
JP4270810B2 (ja) * 2002-06-03 2009-06-03 三菱レイヨン株式会社 チョップド炭素繊維束の製造方法
JP2004084133A (ja) 2002-08-28 2004-03-18 Toray Ind Inc 炭素繊維チョップドストランドおよびその製造方法
DE602005022281D1 (de) * 2004-02-13 2010-08-26 Mitsubishi Rayon Co Carbonfaservorgängerfaserbündel, produktionsverfahren und produktions-vorrichtung dafür sowie carbonfaser und produktionsverfahren dafür
CN101313106A (zh) * 2005-11-25 2008-11-26 东丽株式会社 碳纤维束、预成型料及碳纤维强化复合材料
US8674045B2 (en) * 2008-04-11 2014-03-18 Toray Industries, Inc. Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
CN103154336B (zh) * 2010-10-13 2015-08-12 三菱丽阳株式会社 碳纤维前体纤维束、碳纤维束以及它们的用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261730A (ja) 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 形態の優れた炭素繊維チョップ及びその製造方法
JPH05261729A (ja) 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 炭素繊維チョップ及びその製造方法
JPH1181146A (ja) 1997-05-23 1999-03-26 Toray Ind Inc チョップド炭素繊維およびその製造方法
JP2001271230A (ja) * 2000-03-23 2001-10-02 Mitsubishi Rayon Co Ltd 炭素繊維チョップドストランド及びその製造方法
JP2003165849A (ja) * 2001-11-30 2003-06-10 Toho Tenax Co Ltd 炭素繊維チョップドストランド、及びその製造方法
JP2003268674A (ja) * 2002-03-08 2003-09-25 Toray Ind Inc サイズされた炭素繊維束の製造方法およびチョップド炭素繊維
JP2006144168A (ja) * 2004-11-19 2006-06-08 Toray Ind Inc 炭素繊維束
JP2010126841A (ja) * 2008-11-27 2010-06-10 Toho Tenax Co Ltd 炭素繊維チョップ、及びその製造方法
JP2011208285A (ja) 2010-03-08 2011-10-20 Toho Tenax Co Ltd 炭素繊維チョップドストランド及びその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924164A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843048B1 (ja) * 2014-01-17 2016-01-13 東レ株式会社 スタンパブルシート
WO2015108021A1 (ja) * 2014-01-17 2015-07-23 東レ株式会社 スタンパブルシート
JPWO2016080103A1 (ja) * 2014-11-21 2017-08-31 株式会社カネカ アクリル系繊維の製造方法
EP3291257A4 (en) * 2015-04-28 2018-12-05 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10916372B2 (en) 2015-04-28 2021-02-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
JP2020128101A (ja) * 2016-03-11 2020-08-27 ダイセルポリマー株式会社 圧縮成形品用の樹脂含浸繊維束
JPWO2018062139A1 (ja) * 2016-09-30 2019-07-11 ダイセルポリマー株式会社 樹脂組成物
JP7096159B2 (ja) 2016-09-30 2022-07-05 ダイセルポリマー株式会社 樹脂組成物
JP2019015013A (ja) * 2017-06-05 2019-01-31 ザ・ボーイング・カンパニーThe Boeing Company 炭素繊維を製造するための方法及び装置
US11525193B2 (en) 2017-06-05 2022-12-13 The Boeing Company Method and apparatus for manufacturing carbon fibers
JP7169774B2 (ja) 2017-06-05 2022-11-11 ザ・ボーイング・カンパニー 炭素繊維を製造するための方法及び装置
WO2019146485A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 強化繊維束基材およびその製造方法、ならびにそれを用いた繊維強化熱可塑性樹脂材料およびその製造方法
JPWO2019146485A1 (ja) * 2018-01-26 2020-11-19 東レ株式会社 強化繊維束基材およびその製造方法、ならびにそれを用いた繊維強化熱可塑性樹脂材料およびその製造方法
JP7310602B2 (ja) 2018-01-26 2023-07-19 東レ株式会社 強化繊維束基材およびその製造方法、ならびにそれを用いた繊維強化熱可塑性樹脂材料およびその製造方法
JP2019155634A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 複合材中間材料の製造方法
JPWO2019220846A1 (ja) * 2018-05-14 2020-05-28 三菱ケミカル株式会社 シートモールディングコンパウンドの製造方法、炭素繊維束、及び炭素繊維束の使用
WO2019220846A1 (ja) * 2018-05-14 2019-11-21 三菱ケミカル株式会社 シートモールディングコンパウンドの製造方法、炭素繊維束、及び炭素繊維束の使用
CN115385707A (zh) * 2021-05-20 2022-11-25 中国科学院上海硅酸盐研究所 一种高体积分数碳粘结短切碳纤维复合材料的制备方法
CN115385707B (zh) * 2021-05-20 2023-08-08 中国科学院上海硅酸盐研究所 一种高体积分数碳粘结短切碳纤维复合材料的制备方法
CN115011133A (zh) * 2022-05-27 2022-09-06 广东简一(集团)陶瓷有限公司 一种适用于发热瓷砖的发热纸及其制备方法

Also Published As

Publication number Publication date
KR101754064B1 (ko) 2017-07-05
JP5772988B2 (ja) 2015-09-02
JPWO2014081002A1 (ja) 2017-01-05
TR201806982T4 (tr) 2018-06-21
HUE039053T2 (hu) 2018-12-28
KR20150074162A (ko) 2015-07-01
CN104812957A (zh) 2015-07-29
EP2924164A1 (en) 2015-09-30
EP2924164A4 (en) 2015-12-02
TW201434902A (zh) 2014-09-16
US9803066B2 (en) 2017-10-31
US20150315364A1 (en) 2015-11-05
TWI494360B (zh) 2015-08-01
EP2924164B1 (en) 2018-04-25
CN104812957B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP5772988B2 (ja) チョップド炭素繊維束およびチョップド炭素繊維束の製造方法
KR101578236B1 (ko) 긴 유리섬유 강화된 열가소성 조성물의 생산방법
KR101965470B1 (ko) 탄소섬유 다발 및 그 제조 방법
EP2546409B1 (en) Carbon-fiber chopped strand and manufacturing method of the same
EP3204218A1 (en) Hybrid long fiber thermoplastic composites
JP2009114332A (ja) 長繊維強化複合樹脂組成物および成形品
JP4443148B2 (ja) 炭素繊維束及びチョップド炭素繊維束及びその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物及びその成形品
CN105036572A (zh) 一种稳定型玄武岩连续纤维浸润剂的制备方法
WO2016158436A1 (ja) 繊維強化樹脂成形材料およびその製造方法
JP2003268674A (ja) サイズされた炭素繊維束の製造方法およびチョップド炭素繊維
JP4161409B2 (ja) チョップド炭素繊維およびその製造方法
JP2009013331A (ja) 長繊維強化複合樹脂組成物および成形品
WO2007008633A2 (en) Electrically conductive long fiber thermoplastic concentrate and method for its preparation
CN113601808B (zh) 一种纤维增强聚酯复合材料的制备方法
CN215882663U (zh) 一种纤维增强聚酯复合材料的加工设备
CN110358185A (zh) 改性玄武岩纤维增强聚丙烯及其制备方法
JP2012193480A (ja) 樹脂補強用短繊維束
JPH02203901A (ja) 集束された補強用繊維又は短繊維チップの製造法
WO2024090237A1 (ja) ガラスロービング
JPH01282364A (ja) 集束された補強用繊維及び短繊維チップの製造法
JP2004084133A (ja) 炭素繊維チョップドストランドおよびその製造方法
JP5304085B2 (ja) 抄紙基材の製造方法
CN117924874A (zh) 电磁波吸收材料、线材及其制备方法和应用
JP2019019193A (ja) 樹脂組成物及びガラス樹脂一体成形品
JP2013155456A (ja) 全芳香族ポリアミド短繊維束およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157013596

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14647343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013856572

Country of ref document: EP