WO2014080743A1 - フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品 - Google Patents

フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品 Download PDF

Info

Publication number
WO2014080743A1
WO2014080743A1 PCT/JP2013/079735 JP2013079735W WO2014080743A1 WO 2014080743 A1 WO2014080743 A1 WO 2014080743A1 JP 2013079735 W JP2013079735 W JP 2013079735W WO 2014080743 A1 WO2014080743 A1 WO 2014080743A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
graphite
thermal conductivity
thermally conductive
organic polymer
Prior art date
Application number
PCT/JP2013/079735
Other languages
English (en)
French (fr)
Inventor
紀彰 高木
裕介 永谷
雄太 寺尾
一夫 松山
力 竹市
明彦 松本
Original Assignee
株式会社高木化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高木化学研究所 filed Critical 株式会社高木化学研究所
Priority to US14/404,219 priority Critical patent/US20150259589A1/en
Priority to JP2014548501A priority patent/JP6034876B2/ja
Publication of WO2014080743A1 publication Critical patent/WO2014080743A1/ja
Priority to US16/244,730 priority patent/US10851277B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0207Particles made of materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0221Thermoplastic elastomer particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0242Vinyl halide, e.g. PVC, PVDC, PVF or PVDF (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0264Polyamide particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • B32B2264/0285PET or PBT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a highly-filled and highly thermally conductive material, a method for producing the same, a composition, a coating liquid, and a molded article.
  • thermoelectric conversion elements Peltier cooling, Seebeck power generation
  • light emitting elements lasers, Thermal issues related to semiconductor elements such as LEDs and organic EL, lithium-ion batteries, and fuel cells are a major issue, and the removal of this heat has been studied from various perspectives, including material and structural aspects. Has been made.
  • organic polymers are easy to mold and process, can contribute to weight reduction, and can be easily modified in accordance with usage conditions related to environmental changes. Is leaning.
  • the thermal conductivity of organic polymers is extremely low, 0.1 to 0.5 W / mK, and the thermal expansion coefficient is relatively high, 50 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ° C. ⁇ 1.
  • innovative materials with high thermal conductivity and low thermal expansion coefficient are problematic when used in combination with low-temperature semiconductor elements, ceramics, etc. (3 ⁇ 10 ⁇ 6 to 8 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ). Appearance is anxious.
  • the heat conduction of the material is known in three kinds of conduction forms: (1) electron conduction, (2) phonon conduction (lattice vibration), and (3) photon conduction (radiation).
  • diamond which is one of carbon materials, has a rigid compound structure without heat loss, and has the highest thermal conductivity of 1000 to 2000 W / mK due to phonon conduction. This is because there is no loss of thermal energy due to asymmetric chemical bonds or molecular motion.
  • Graphite (synonymous with graphite) has high thermal conductivity due to electron transfer in the orientation direction of the benzene ring.
  • the PSG graphite sheet is a conductive material having a thermal conductivity close to 8 W / mK in the thickness direction and close to 800 W / mK due to electron transfer in the plane direction perpendicular to the thickness.
  • hexagonal boron nitride has a graphite-like structure and has an anisotropy of thermal conductivity of 200 W / mK in the plane direction and several W / mK in the thickness direction, but is an insulating material.
  • thermal radiation which is photon conduction, generally shows higher values for organic polymer materials and carbon materials than for metals.
  • the thermal expansion coefficient of the carbon material is 1 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 ° C.
  • the metal material has an intermediate 10 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 ° C. ⁇ 1 .
  • metals are excellent in electrical conductivity and thermal conductivity, but have high specific gravity, low thermal emissivity, poor processing into complicated shapes, and ceramics are excellent in electrical insulation. They are brittle and difficult to process into complex shapes, and require high energy during manufacturing and processing.
  • Patent Document 1 discloses a material obtained by bonding a mixture of metal powder and carbon fiber with 0.5 to 20% by weight of a fluororesin, and compression-molding the mixture into a predetermined shape. ing. According to Patent Document 1, it is described that the material obtained above is excellent in thermal expansion controllability, thermal conductivity, and electrical conductivity.
  • Patent Document 2 discloses a resin composition comprising 10 to 60% by weight of a resin such as polyphenylene sulfide and 40 to 90% by weight of graphite having a particle size of 20 to 900 ⁇ m. According to Patent Document 2, it is described that a molded article having a thermal conductivity of 2 to 12 W / mK can be obtained by injection molding of the composition.
  • a resin composition comprising 10 to 60% by weight of a resin such as polyphenylene sulfide and 40 to 90% by weight of graphite having a particle size of 20 to 900 ⁇ m. According to Patent Document 2, it is described that a molded article having a thermal conductivity of 2 to 12 W / mK can be obtained by injection molding of the composition.
  • Patent Document 3 (a) 5 to 50% by weight of a thermoplastic resin and (b) 95 to 50% by weight of an inorganic filler, (a) and (b) with respect to a total amount of 100 parts by weight, c) A highly filled resin composition is disclosed in which 0.5 to 10 parts by weight of any one or more of fatty acid metal salts, ester compounds, amide group-containing compounds, epoxy compounds and phosphate esters are added. Yes. According to Patent Document 3, it is described that a molded article having a thermal conductivity of 2 to 32 W / mK can be obtained by injection molding of the composition.
  • Patent Document 4 in order to suppress breakage of carbon fibers in the kneading process, short carbon fibers having an average fiber diameter of 5 to 20 ⁇ m and an average fiber length of 20 to 500 ⁇ m and a matrix resin are melt-kneaded.
  • the manufacturing method of the highly heat conductive resin composition obtained by this is disclosed.
  • Patent Document 1 contains metal powder as a main component, and the characteristics of carbon fiber and resin are not sufficiently reflected.
  • the resin compositions described in Patent Documents 2 to 4 are basically formed by melt-mixing a heat conductive filler and / or carbon fiber and an organic polymer material. Therefore, when the molten organic polymer material covers the surface of the thermally conductive filler, the formation of the thermally conductive path is hindered, and the characteristics such as the thermal conductivity inherent to the thermally conductive material cannot be sufficiently exhibited.
  • Patent Document 5 includes dry mixing of polymer particles and a carbon filler containing carbon fiber as an essential component, and includes an A phase composed of a polymer and a B phase mainly composed of a carbon filler, Discloses a structure having a three-dimensional network structure and a thermal conductivity of 7 W / mK or more.
  • Patent Document 6 discloses a pitch-based graphitized carbon fiber having an asbestos ratio of 4 to 100 and an average fiber length of 20 to 500 ⁇ m with respect to 100 parts by volume of a matrix component in order to reduce damage to a carbon fiber having high rigidity.
  • a powder molded body having 20 to 1000 parts by volume and excellent in thermal conductivity is disclosed.
  • Patent Documents 5 and 6 both obtain a structure or a molded product by dry blending (dry mixing) -compression molding (press molding).
  • the carbon fiber used in the production of the structure described in Patent Document 5 is a special ultrafine carbon fiber (vapor-phase carbon fiber) usually called a carbon nanofiber, and a special device is required for the production. The use is expensive.
  • the powder molded body described in Patent Document 6 is mixed so that the original fiber length is maintained, the mixing of the matrix resin and the carbon fiber is not uniform, and the physical properties of the carbon fiber are sufficient. Can not be demonstrated.
  • Patent Document 7 discloses a highly heat conductive thermoplastic resin composition in which a heat conductive filler and a crystal nucleating agent are added to a thermoplastic resin composed of a mesogenic group and a spacer.
  • Patent Document 8 discloses that ultrafine carbon fibers having a fiber diameter of 0.0001 to 5 ⁇ m and an aspect ratio of 5 to 15,000 are used as a resin crystallization accelerator.
  • Patent Documents 7 and 8 promote the crystallization of the resin by using a crystal nucleating agent such as talc or a resin crystallization accelerator such as ultrafine carbon fiber, and try to improve the physical properties of the molded product.
  • a crystal nucleating agent such as talc or a resin crystallization accelerator such as ultrafine carbon fiber
  • the resin composition is melt-mixed, the characteristics of the heat conductive filler and carbon fiber cannot be fully utilized. Does not mention.
  • Patent Document 9 discloses a resin composite composition having a benzoxazine derivative, a polycyclic aromatic epoxy resin, and an inorganic filler. The molding method is only melt-mixed and then cast-cured without any particular limitation, and there is no disclosure regarding a resin composite composition containing a thermoplastic resin.
  • Organic polymers have excellent characteristics not found in other materials, but in the composite materials with heat conductive materials (heat conductive fillers and short carbon fibers), the heat conductive materials are inherently high. The physical properties such as thermal conductivity cannot be fully exhibited. This is due to the fact that the thermal conductivity of the organic polymer is extremely low, and because the fluidity at the time of melting is high, a thick thermal conduction inhibiting film is formed around the thermal conductive material (the polymer phase is the sea, the thermal conductive material Is considered to be the island-island structure).
  • the polymer melts and solidifies in a state where the heat conductive material is not sufficiently uniformly dispersed and mixed, the heat conductive path is formed, but the polymer does not sufficiently penetrate the heat conductive material. A part of the phase becomes a sea-island structure, and mechanical properties such as strength of the molded product are remarkably lowered, and even in this case, the advantage of the organic polymer is not sufficiently exhibited.
  • the object of the present invention is to solve this conflicting trade-off problem, exhibit the characteristics of organic polymers and improve the defects, and enable integral molding with ceramics, metals, semiconductor elements, etc., and has a low thermal expansion coefficient.
  • the present invention also provides a highly-filled and highly thermally conductive material with high thermal conductivity, a method for producing the same, a composition, and a molded article.
  • the present inventors have studied in detail the mixing and pulverization method of high thermal conductive filler and organic polymer particles and the relationship between thermal conductivity and resin crystallinity (heat of fusion). Repeated.
  • a highly thermally conductive material having excellent properties can be obtained by forming a path, and the present invention has been completed.
  • the present invention achieves the above object by the following means.
  • thermoly conductive filler having organic polymer particles and a graphite-like structure, and has 5 to 60% by weight of organic polymer particles and 40 to 95% by weight of a graphite-like structure with respect to a total amount of 100% by weight.
  • a composition comprising a thermally conductive filler, obtained by dispersing the thermally conductive filler by delamination while maintaining an average surface particle size of the thermally conductive filler, and forming a thermally conductive infinite cluster
  • a high-filler filler-filled high thermal conductivity formed by press-molding an object at a temperature higher than the deflection temperature under load, melting point, or glass transition temperature of the organic polymer at a pressure of 1 to 1000 kgf / cm 2 , cooling and solidifying.
  • Sex materials (2) A highly-filled and highly thermally conductive material according to (1), wherein a ball mill is used as means for dispersing the thermally conductive filler by delamination while maintaining the average surface particle diameter of the thermally conductive filler; (3)
  • the organic polymer particles include at least one selected from the group consisting of a thermoplastic resin, a thermoplastic elastomer, and an uncrosslinked thermosetting resin having crystallinity and / or aromaticity,
  • the filler high-filling high thermal conductivity according to (1) or (2), wherein the thermally conductive filler having a graphite-like structure includes at least one selected from the group consisting of natural graphite, artificial graphite, and hexagonal boron nitride.
  • the organic polymer particles comprise at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer having crystallinity and / or aromaticity, and an uncrosslinked thermosetting resin.
  • a highly-filled highly thermally conductive material according to (2) (5) The organic polymer particle according to (1) or (2), wherein the organic polymer particle is at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer having crystallinity and / or aromaticity.
  • the average particle size of the organic polymer particles is 1 to 5000 ⁇ m
  • the average particle size of the thermally conductive filler having a graphite-like structure is 0.5 to 2000 ⁇ m
  • the average particle size of the composition Is a filler-filled high thermal conductive material according to any one of (1) to (5), wherein is 0.5 to 1000 ⁇ m
  • the average particle size of the thermally conductive filler having the graphite-like structure is 3 to 200 ⁇ m
  • the thermally conductive filler having a graphite-like structure is natural graphite and / or artificial graphite, has a thermal conductivity of 10 to 150 W / mK, and a thermal expansion coefficient of 3 ⁇ 10 ⁇ 6 to 30 ⁇ 10.
  • the filler-filled high thermal conductivity material according to any one of (1) to (7), which is ⁇ 6 ° C. ⁇ 1 and has a surface electrical conductivity of 5 to 250 ( ⁇ cm) ⁇ 1 ; (9)
  • the thermally conductive filler having the graphite-like structure is hexagonal boron nitride, the thermal conductivity is 5 to 50 W / mK, and the thermal expansion coefficient is 3 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 ° C.
  • the filler-filled high thermal conductivity material according to any one of (1) to (7), which is ⁇ 1 and has a surface electrical conductivity of 10 ⁇ 10 ( ⁇ cm) ⁇ 1 or less;
  • the organic polymer includes at least one selected from the group consisting of polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, and benzoxazine, and the thermally conductive filler having the graphite-like structure is scaly.
  • the filler-filled thermally conductive material according to any one of (1) to (9), comprising graphite and / or hexagonal boron nitride; (11) It includes a thermally conductive filler having organic polymer particles and a graphite-like structure, and has 5 to 60% by weight of organic polymer particles and 40 to 95% by weight of graphite-like structure with respect to a total amount of 100% by weight.
  • a process for producing a highly-filled thermally conductive material comprising: a step (3) for cooling and solidifying the material formed in the step (2); (12) Using the ball mill as a means for dispersing the thermal conductive filler by delamination while maintaining the average surface particle size of the thermal conductive filler, Production method; (13) Provided is a highly filled filler with high thermal conductivity according to any one of claims 1 to 10, or a highly filled filler with high thermal conductivity produced by the method according to (11) or (12). , High filler composition; (14) A coating liquid comprising the highly filled composition according to (13) and a dispersion medium; (15) The coating liquid according to (14), wherein the dispersion medium includes an oil-soluble organic medium and a water-soluble organic medium.
  • the highly filled high thermal conductivity material according to any one of (1) to (10), the highly filled high thermal conductivity material obtained by the production method according to (11) or (12), or ( 14) or a molded article characterized in that it contains a highly-filled highly heat-conductive material obtained by applying and drying the coating liquid according to (15), and is used as a high-heat-conducting / heat-dissipating component;
  • FIG. 2 is a SEM photograph of a graphite-PPS resin composition prepared using a ball mill. It is a SEM photograph of a graphite raw material. It is a SEM photograph of a short carbon fiber-PPS resin composition prepared using a ball mill. It is a SEM photograph of a carbon short fiber raw material.
  • the organic polymer particles and the thermally conductive filler having a graphite-like structure are included, and 5 to 60% by weight of the organic polymer particles and 40 to 95% by weight with respect to the total amount of 100% by weight thereof.
  • a composition containing a thermally conductive filler having a graphite-like structure (hereinafter also simply referred to as “thermally conductive filler”), obtained by a specific mixing and pulverizing method, and forming a thermally conductive infinite cluster Highly filled filler with high heat conductivity formed by press-molding an object at a temperature higher than the deflection temperature, melting point or glass transition temperature of the organic polymer at a pressure of 1 to 1000 kgf / cm 2 , cooling and solidifying. Sex material is provided.
  • the filler high-filling and high thermal conductivity material according to the present invention has a strong entanglement network between the high thermal conductivity filler and the organic polymer, so that the thermal conductivity, electrical characteristics, low heat Not only is it excellent in expansibility and mechanical properties, it is also excellent in lightness, easy processability, integral moldability, durability against temperature cycles, and the like.
  • high-conductivity high-filler materials with high fillers that fully utilize the characteristics of organic polymers, improve defects, can be integrally molded with ceramics, metals, semiconductor elements, etc., have low thermal expansion coefficient, and high thermal conductivity , And its production method, as well as compositions, coating liquids, and molded articles.
  • the highly filled filler high thermal conductivity material according to the present invention is a composite material including an organic polymer and a thermal conductive filler having a graphite-like structure.
  • the high-filler filler material with high thermal conductivity is determined in its formation stage, and it is difficult to uniquely identify the organic polymer and the thermal conductive filler.
  • the reason for this is that, for example, the filler-filled and highly thermally conductive material according to the present embodiment defines the degree of penetration of the organic polymer into the thermally conductive filler, the uniformity of the thermally conductive filler, etc., as will be described later. This is because it has difficult properties.
  • the thermal conductivity of the highly filled high thermal conductivity material according to this embodiment is preferably 10 to 150 W / mK, more preferably 15 to 100 W / mK, and further preferably 15 to 80 W / mK. preferable.
  • the thermal expansion coefficient of the highly filled filler high thermal conductivity material is preferably 3 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 ° C. ⁇ 1 .
  • the thermal expansion coefficient is 3 ⁇ 10 ⁇ 6 to More preferably, it is 20 ⁇ 10 ⁇ 6 ° C. ⁇ 1 .
  • the thermal expansion coefficient is 10 ⁇ 10 ⁇ 6. More preferably, it is ⁇ 30 ⁇ 10 ⁇ 6 ° C. ⁇ 1 .
  • the surface electrical conductivity of the highly-filled and highly thermally conductive conductive material (when the thermally conductive filler is graphite) according to this embodiment is 5 to 250 ( ⁇ cm) ⁇ 1 . It is preferably 10 to 150 ( ⁇ cm) ⁇ 1 , more preferably 20 to 150 ( ⁇ cm) ⁇ 1 .
  • the thermal conductivity of the highly filled high thermal conductivity insulating material is 5 to 50 W / mK.
  • the surface electrical conductivity is preferably 10 ⁇ 10 ( ⁇ cm) ⁇ 1 or less, more preferably 10 ⁇ 15 to 10 ⁇ 11 ( ⁇ cm) ⁇ 1 .
  • composition (Composition and form)
  • the composition used to form the highly filled high thermal conductivity material includes organic polymer particles and a thermally conductive filler having a graphite-like structure, and 5 to 60% by weight of the organic polymer with respect to 100% by weight of these total amount.
  • a thermally conductive filler having a particle and 40-95% by weight graphite-like structure (thermally conductive filler).
  • the composition is obtained by dispersing the thermally conductive filler by delamination while maintaining the average surface particle diameter of the thermally conductive filler.
  • the said composition has the conditions in which a thermally conductive infinite cluster is formed.
  • the thermally conductive filler having a graphite-like structure is a particle having a layered structure, and is an anisotropic substance in which the plane directions of the layers are connected by strong bonds and the layers are connected by weak bonds.
  • the thermally conductive filler having the graphite-like structure can be used as a lubricating / releasing material because it easily shifts in the surface direction.
  • the above-mentioned “delamination” means that the layers connected by weak bonds are peeled off while maintaining the connection state as it is in the surface direction of the thermally conductive filler. Thereby, the average surface particle diameter of a heat conductive filler can be maintained, and a heat conductive filler can be disperse
  • surface particle size means the particle size in the surface direction of particles having a layered structure
  • average surface particle size means the average value of the surface particle size in the surface direction. To do.
  • the average surface particle diameter a value measured by image analysis using an optical microscope, an electron microscope, or the like is adopted. Further, in the present specification, “maintaining the average surface particle size” means that the degree of decrease in the average surface particle size is 1 ⁇ 2 or less.
  • percolation theory is how the target substance is connected in the system, and its characteristics depend on the properties of the system. It is a theory that targets how it is reflected. Specifically, when the fillers sufficiently come into contact with each other and reach the percolation (permeation) threshold value, they aggregate at a specific concentration (threshold value) or more of the conductive filler, and a cluster (infinite cluster) in which the entire system is connected is formed. If it does so, electroconductivity will express over the whole system.
  • the crystallinity, compatibility, and the like of the organic polymer intervening around the thermally conductive filler have a particularly great influence not only on the electrical conductivity but also on the thermal conductivity and the thermal expansibility.
  • a percolation threshold value is dependent on the density
  • electrical conductivity is more sensitive to and more sensitive to the shape of the filler and the polarity of the resin than thermal conductivity.
  • the composition has a condition for forming a thermally conductive infinite cluster.
  • the condition includes the content of the organic polymer particles and the thermally conductive filler in the composition, and each component. This can be realized by controlling the uniform dispersibility, shape, morphology, and the like of the resin.
  • Whether or not the composition according to the present embodiment has a condition for forming an infinite cluster is determined as follows. That is, about the said composition, a filler high filling high heat conductive material is formed by the below-mentioned method, The said filler high filling high heat conductive material is used for a scanning electron microscope (SEM) or a transmission electron microscope (TEM), This can be determined directly by observing the microstructure. In addition, when the thermal conductivity and / or electrical conductivity of the material is plotted against the thermal conductive filler concentration, the physical properties increase rapidly, and the thermal expansion coefficient of the material can be controlled when the thermal expansion coefficient is plotted. Can be judged indirectly.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the average particle diameter of the organic polymer particles used in the present invention is usually 1 to 5000 ⁇ m, preferably 5 to 500 ⁇ m.
  • the average particle diameter of the organic polymer particles is 1 ⁇ m or more, a special device for atomization is not necessary.
  • the average particle diameter of the organic polymer particles is 5000 ⁇ m or less, it becomes difficult to cause poor dispersion.
  • the organic polymer particle containing the lump with a large particle diameter it can pre-process by grinding
  • the organic polymer particles preferably have an aromatic hydrocarbon structure similar to a thermally conductive filler having a graphite-like structure, and can be crystallized around the filler and along the filler surface in the presence of the filler. Particularly preferred.
  • Organic polymer particles that can be used include crystalline and / or aromatic thermoplastic polymers and uncrosslinked elastomers used in the molding field, and uncured thermosetting resins.
  • a thermosetting polymer is mentioned.
  • the crystalline aromatic thermoplastic resin examples include aromatic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and liquid crystal polyester (LCP). , Polyphenylene sulfide (PPS), aromatic polyimide (PI) precursor, phenol (novolak type, etc.) phenoxy resin, polyether ketone (PEK), polyether ether ketone (PEEK), polystyrene, polybenzimidazole, polyphenylene oxide, etc. Examples thereof include thermoplastic polymers having known crystallinity and aromaticity.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • LCP liquid crystal polyester
  • PPS Polyphenylene sulfide
  • PI aromatic polyimide
  • PEK polyether ketone
  • Crystalline thermoplastic resins include polyolefins such as polyethylene (PE) and polypropylene (PP), polyoxymethylene (POM), polyamide (PA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), and polyvinylidene chloride. , Fluoropolymers such as polyketone (PK) and polytetrafluoroethylene (PTFE), thermoplastic polymers having known crystallinity, such as cycloolefin polymers, polyacetals, and ultrahigh molecular weight polyethylene. These resins can be fixed between fillers by crystallization of the polymer grown on the filler surface, increasing the electrical conductivity or insulation, and thermal conductivity without damaging the mechanical properties, and thermal expansion. It is preferable because the coefficient can be controlled.
  • non-crystalline aromatic thermoplastic resin examples include polycarbonate (PC), polyphenylene ether (PPE), polyarylate (PA), polysulfone (PSU), polyethersulfone (PES), polyetherimide (PEI), Examples thereof include thermoplastic polymers having a known aromatic substituent, such as polyamideimide (PAI) and liquid crystal polymer. Since these resins have a structure similar to that of the thermally conductive filler, they do not crystallize or crystallize on and / or around the surface of the thermally conductive filler in the presence of the thermally conductive filler.
  • PC polycarbonate
  • PPE polyphenylene ether
  • PA polyarylate
  • PSU polysulfone
  • PES polyethersulfone
  • PEI polyetherimide
  • thermoplastic polymers having a known aromatic substituent such as polyamideimide (PAI) and liquid crystal polymer. Since these resins have a structure similar to that of the thermally conductive filler, they do not crystallize or crystall
  • thermosetting resin is used in combination with the thermoplastic resin, rather than being used alone, to adjust the viscosity when melted, and to provide adhesion / compatibility between fillers and dissimilar materials. It is preferable in terms of enhancement.
  • uncrosslinked elastomers include, for example, aromatic substituents such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, silicon, and fluorine, and / or crystalline olefin moieties.
  • Aromatic substituents including thermoplastic elastomers having a olefin polymer segment formed from an ⁇ -olefin monomer and a graft copolymer composed of a vinyl polymer segment formed from a vinyl monomer And / or known elastomers such as thermoplastic elastomers having a crystalline olefin moiety.
  • thermosetting resins examples include known thermosetting resins such as unsaturated polyester, vinyl ester, epoxy, phenol (resole type), urea melamine, polyimide, benzoxazine having aromatic substituents.
  • a resin precursor is mentioned. Since the thermosetting resin precursor is usually an oligomer having a small molecular weight, when used in combination with a thermoplastic polymer and / or a thermoplastic elastomer having a large molecular weight, the fluidity in the system is increased before curing, This increases the permeability of the polymer between the filler layers. Moreover, the adhesiveness between fillers and between different materials is improved by the functional group formed with a curing reaction.
  • the molding temperature can be significantly lowered. At this time, it is more effective to use the one in which the thermosetting resin precursor is uniformly dispersed in the engineering plastic once dissolved in a solvent.
  • an infinite cluster of the composition that is, the organic polymer partially builds a crystal structure around the filler in the presence of the thermally conductive filler, and the heat generated by the thermally conductive filler.
  • a conductive infinite cluster is formed can be directly observed using an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) as described above. .
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • FIG. 7 shows the relationship between the thermal conductivity of the aromatic crystalline resin excluding polycarbonate and polyethylene and the heat of fusion per filler. Referring to FIG. 7, it can be seen that the thermal conductivity increases as the heat of fusion per filler increases.
  • Polycarbonate which is an aromatic non-crystalline resin, has a melting point and a low heat of fusion if it is not aged on a molded specimen, but the polycarbonate immediately after the condensation reaction exhibits the same heat of fusion as that of an aromatic crystalline resin. That is, it is considered that high crystallization occurs in the filler surface having a graphite-like structure that induces crystallization of the resin, and exhibits high thermal conductivity.
  • thermosetting resin precursors such as benzoxazine.
  • polyethylene is not an aromatic resin, it exhibits a high heat of fusion, so it is considered that it provides a thermal conductivity close to that of an aromatic resin.
  • the organic polymer particles used in the present invention must be crystallized in the raw material and / or molded product, and must exhibit heat of fusion in some form.
  • thermoplastic resin, uncrosslinked elastomer, and uncured thermosetting resin having crystallinity and / or aromaticity may be a copolymer or a modified body, or a blend of two or more types. Resin may be used. Further, in order to further improve the impact resistance, a resin obtained by adding an elastomer or a rubber component to the thermosetting resin may be used.
  • thermosetting resins in particular, benzoxazine is excellent in heat resistance, does not generate a volatile by-product because curing proceeds by an addition reaction, and the reaction proceeds even without a catalyst. This is preferable because a dense resin phase can be formed.
  • the benzoxazine is a compound having a dihydro-1,3-benzoxazine ring (hereinafter also simply referred to as “oxazine ring”), and is a condensate of amines, phenols, and formaldehydes.
  • the chemical structure of benzoxazine produced depends on the substituents and types of certain phenols and amines.
  • the benzoxazine used in the present invention is not particularly limited as long as it is a derivative of “oxazine ring”, but a compound having at least two oxazine rings in one molecule is preferable. This is because the crosslink density is increased and the heat resistance is improved.
  • Specific examples of benzoxazine include Pd-type benzoxazine and Fa-type benzoxazine manufactured by Shikoku Kasei Co., Ltd.
  • diamines can be used as amines for deriving benzoxazine having at least two oxazine rings.
  • diamines include 4,4′-oxydianiline, 4,4′-diaminodiphenylmethane, paradiaminobenzene, and compounds in which an alkyl group, an alkoxy group, a halogen, an aromatic hydrocarbon group, or the like is substituted. Can be mentioned. Of these, 4,4'-diaminodiphenylmethane is preferably used.
  • Phenols include monohydric phenols such as phenol, cresol, xylenol, and naphthol, and polyhydric phenols include bisphenol, and alkyl groups, alkoxy groups, halogens, aromatic hydrocarbon groups, and the like. Examples include substituted compounds. Specific examples of bisphenol include bisphenol A, bisphenol F, and bisphenol S. Of these, phenol and bisphenol are preferably used.
  • Formaldehydes (formaldehyde (aqueous solution), paraformaldehyde, etc.) are used. Of these, it is preferable to use formaldehyde.
  • Benzoxazine having at least two oxazine rings can be produced by a method of reacting diamines, phenols and formaldehyde, a method of reacting bisphenols, primary amines and formaldehyde.
  • thermoplastic resin made of thermoplastic resin, thermoplastic elastomer or thermosetting resin are uncrosslinked / uncured in the mixture.
  • the thermoplastic resin may be crosslinked when the mixture is thermoformed under pressure.
  • the thermoplastic elastomer or the thermosetting resin is usually used after being crosslinked / cured.
  • Elastomers used for modification purposes include natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, urethane rubber, silicone rubber, acrylic rubber, chlorosulfonated polyethylene rubber, fluorine Examples thereof include rubber, hydrogenated nitrile rubber, epichlorohydrin rubber, polysulfide rubber and the like.
  • the organic polymer particles having high heat resistance and firmly fixing between fillers to improve physical properties such as thermal conductivity and electrical properties include polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polycarbonate and Benzoxazine is preferred, and the characteristics of the organic polymer can be maximized by using the above-mentioned various polymer particles in combination depending on the purpose of use.
  • the thermally conductive filler used in the present invention has a graphite-like structure.
  • the thermally conductive filler include natural graphite such as flaky graphite, lump graphite, and soil graphite, artificial graphite, and expanded graphite such as expanded graphite (synonymous with graphite), hexagonal boron nitride,
  • Known heat conductive fillers used in the molding field which are usually made of heat conductive ceramics such as hexagonal silicon carbide and hexagonal silicon nitride, and mixtures thereof, can be used without particular limitation.
  • scaly graphite and hexagonal boron nitride are particularly preferable because they provide a highly conductive material having high conductivity or insulation, respectively.
  • Graphite is obtained by further pulverizing artificial graphite electrode, powder coke heat treated at 3000 ° C for graphitization, graphite sheet cut and pulverized, flaky graphite spheroidized, etc. Recycled products obtained by heat-treating graphite powder and used or waste carbon fiber can also be used.
  • Natural graphite like oil and coal, is a mineral produced by being buried in the ground before decaying and decaying ancient creatures and plants and undergoing long-term geothermal and earth pressure alteration.
  • the element constituting the majority is carbon, but other impurities include silicon dioxide, aluminum oxide and the like in minute amounts.
  • Examples of the natural graphite include flaky graphite, massive graphite, and soil graphite.
  • Scale-like graphite is scale-like graphite with a large aspect ratio produced mainly from mines such as China, America, India and Brazil. Generally, the larger the scale, the higher the heat resistance. Many products having an average particle size of about 8 to 200 ⁇ m and a carbon content of 85 to 99% are commercially available, and have high thermal conductivity of 200 W / mK or more, although anisotropic.
  • Lumped graphite is a lump natural graphite produced in Sri Lanka. Lumpy graphite is produced from veins with a content of about 95% compared to flaky graphite with a content of 10% in rocks. Since the particles are massive, the aspect ratio is small.
  • Soil graphite is a block of graphite produced mainly in China, South Korea, and North Korea, and is used in many fields because it is more compatible with moisture than flaky graphite.
  • a product having an average particle size of about 5 to 20 ⁇ m and a carbon content of 80 to 90% is commercially available.
  • Artificial graphite is graphite in which coke powder is mixed with pitch and is artificially developed through a high-temperature firing process at about 3000 ° C., and has few impurities and high hardness.
  • Expanded graphite is graphite obtained by applying heat to flaky graphite subjected to acid treatment to expand the interlayer of graphite crystals several hundred times. While having the characteristics of flaky graphite, it has very low specific gravity and few impurities, so it is used as a filler in various fields.
  • Hexagonal boron nitride is a white powder having a flake-like crystal structure similar to graphite, and is a chemically stable material called “white graphite”. Hexagonal boron nitride is widely used as an additive to various matrices as a material excellent in thermal conductivity, heat resistance, corrosion resistance, electrical insulation, lubrication and release properties, and known materials can be used as they are.
  • a scale-like or polygonal plate-like form is common, and there is an aggregated powder in which the primary particles are aggregated together, but a scale-like one is preferred. Although it has anisotropy, the molded body has a high thermal conductivity of about 60 W / mK.
  • Silicon carbide can be broadly divided into two types: hexagonal ⁇ -type silicon carbide and cubic ⁇ -type silicon carbide. Electrically insulating, high hardness, high thermal conductivity, and semi-conducting heating element In addition to applications as varistors and varistors, applications are progressing as structural materials that utilize large hardness. These basic layer structures have a close-packed structure and are distinguished by the difference in layer stacking period. Among these, ⁇ -type silicon carbide is limited to one type of zinc blende (zinc blend) type structure in which half of carbon (C) in the diamond structure is replaced with silicon (Si). On the other hand, ⁇ -type silicon carbide is based on a wurtzite crystal structure. The crystal structure of ⁇ -type silicon carbide can be drawn as a stack of basic layer structures extending along the basal plane, and is preferable as the thermally conductive filler used in the present invention.
  • zinc blend zinc blende
  • Si silicon
  • Silicon nitride is a colorless compound, and it is thought that only those having a composition of Si 3 N 4 are stable phases.
  • Three types of forms, namely, hexagonal crystal ⁇ -type, trigonal crystal ⁇ -type and amorphous Exists. Amorphous is made at a relatively low temperature, the composition is not always constant, and becomes ⁇ -type by heating.
  • the ⁇ form is a low-temperature phase and irreversibly transitions to the ⁇ form at 1400-1600 ° C.
  • ⁇ -type is stable up to high temperature, but thermally decomposes at 1800-1900 ° C.
  • the heat conductive filler used in the present invention is preferably an ⁇ -type hexagonal crystal.
  • the average particle size of the high thermal conductive filler having a graphite-like structure of the present invention is 1 to 2000 ⁇ m, preferably 3 to 200 ⁇ m.
  • the average particle size of the thermally conductive filler is 1 ⁇ m or more, the surface area is reduced, and loss of heat and electrical conduction at the filler interface can be reduced.
  • it is preferable that the average particle size of the thermally conductive filler is 2000 ⁇ m or less because poor dispersion hardly occurs.
  • a filler having a large particle size preliminarily by pulverization and / or crushing, classification, etc. to obtain a desired average particle size.
  • a known method for achieving high thermal conductivity by using a combination of thermally conductive fillers having different particle diameters or controlling the filler shape can also be used.
  • the composition according to this embodiment is prepared by crushing, if necessary, 5 to 60% by weight of organic polymer particles and 40 to 95% by weight of a thermally conductive filler having a graphite-like structure and mixing them. can do. However, when mixing with too much force, pulverization occurs, so that the surface area of the heat conductive filler becomes remarkably large, and heat conduction is inhibited at the particle interface, which is not preferable. Therefore, in this embodiment, it is preferable to mix by a method of uniformly dispersing the heat conductive filler in the composition while maintaining the average surface particle diameter of the heat conductive filler. Examples of the mixing method include a method using delamination. In addition, a well-known additive may be contained in the said composition with an organic polymer particle and a heat conductive filler.
  • the method of mixing the organic polymer particles and the thermally conductive filler is carried out by manually mixing them in a bag or can; using a tumbler or the like; using a powder mixer such as a Henschel mixer, super mixer or high speed mixer Method; Method using pulverizer such as jet mill, impact mill, attrition mill, air classification (ACM) mill, ball mill, roller mill, bead mill, media mill, centrifugal mill, cone mill, disc mill, hammer mill, pin mill, etc .; There are methods that combine these.
  • a powder mixer such as a Henschel mixer, super mixer or high speed mixer Method
  • Method using pulverizer such as jet mill, impact mill, attrition mill, air classification (ACM) mill, ball mill, roller mill, bead mill, media mill, centrifugal mill, cone mill, disc mill, hammer mill, pin mill, etc .; There are methods that combine these.
  • the manual mixing method and the method using a tumbler do not apply a large force such as shear force between the powder particles, so that the powder can be prevented from being damaged or deformed.
  • a large force such as shear force between the powder particles
  • the method using a mixer and / or a pulverizer is preferable for the present invention because it allows uniform mixing because a large force such as compression force, shear force, impact force, friction force, etc. is applied to the powder particles.
  • a ball mill is a device that makes powder dispersed by grinding the material adhering to the ball surface by frictional force or impact force by putting hard balls such as ceramics and powder of material in a cylindrical container and rotating it. Therefore, it can be dispersed by delamination while maintaining the surface particle size of the filler layer as much as possible.
  • FIGS. 9 to 12 show SEM photographs of compositions obtained by mixing scaly graphite and carbon short fibers used as raw materials, these fillers and PPS with a ball mill.
  • the flake graphite with a layer structure maintains high particle size even after being pulverized and mixed with a ball mill, and shows high thermal conductivity.
  • pulverization occurs and the thermal conductivity Is significantly reduced.
  • the size or shape of the raw material used for mixing and pulverization need not be strictly controlled, but it is preferable to use a material in a predetermined range in order to maintain quality.
  • the mixing time is not particularly limited, but is preferably 0.2 to 15 hours, and more preferably 0.5 to 5 hours.
  • the average particle size of the uniform composition (organic polymer particles and thermally conductive filler) obtained by mixing and / or pulverization is preferably 0.5 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m.
  • the average particle size of the composition is 0.5 ⁇ m or more, the contact area between the fillers decreases due to a decrease in the surface area, and a decrease in thermal conductivity and electrical characteristics can be prevented due to loss caused by the contact.
  • the average particle size of the composition is 1000 ⁇ m or less, the resin is uniformly dispersed, and strength reduction due to poor contact between the resin and the filler can be prevented.
  • dynamic light scattering method For measuring the average particle size of organic polymer particles and heat conductive filler used as raw materials, and organic polymer particles and heat conductive filler in the composition, dynamic light scattering method, laser diffraction method, optical microscope / electronic Known methods such as an image imaging method using a microscope and a gravity sedimentation method can be used.
  • the level of delamination can be determined directly with an optical microscope / electron microscope or indirectly by measuring the thermal conductivity, electrical conductivity, thermal expansion coefficient, mechanical properties, etc. of the material.
  • the proportion of the organic polymer particles in the composition of the present invention is 5 to 60% by weight, preferably 10 to 50% by weight.
  • the proportion of the organic polymer particles is less than 5% by weight, the strength decreases due to poor dispersion of the heat conductive filler.
  • the proportion of the organic polymer particles exceeds 60% by weight, it is difficult to form a thermal conductive path (does not reach the percolation threshold), leading to a rapid decrease in thermal conductivity (however, the proportion of organic polymer particles is 60 Even when the amount is less than or equal to the weight percent, an infinite cluster may not be formed depending on the mixed state or the like).
  • the proportion of the thermally conductive filler in the composition is 40 to 95% by weight, preferably 50 to 90% by weight. If the proportion of the thermally conductive filler is less than 40% by weight, it is difficult to form an infinite cluster of thermal conductivity, and physical properties such as thermal conductivity, electrical characteristics, and low thermal expansion are significantly lowered, which is not preferable. On the other hand, if the proportion of the thermally conductive filler is more than 95% by weight, poor dispersion of the thermally conductive filler occurs, and mechanical properties such as strength are remarkably lowered, which is not preferable.
  • additives include mold release agents, flame retardants, antioxidants, emulsifiers, softeners, plasticizers, surfactants, coupling agents, and compatibilizers.
  • examples of the reinforcing material include short fibers made of glass fiber, carbon fiber, metal fiber, and inorganic fiber.
  • Other fillers include heat treatment of calcium carbonate (limestone), glass, talc, silica, mica, metal powder, metal oxides, aluminum nitride, boron nitride, silicon nitride, diamond, and used or waste carbon fiber. The recycled product etc. which are obtained in this way can be mentioned.
  • the highly filled high thermal conductivity material of the present invention is obtained by press-molding the above composition at a temperature equal to or higher than the deflection temperature, melting point, or glass transition temperature of the organic polymer, and a pressure of 1 to 1000 kgf / cm 2. It can be obtained by cooling and solidifying the material.
  • a temperature equal to or higher than the deflection temperature, melting point, or glass transition temperature of the organic polymer and a pressure of 1 to 1000 kgf / cm 2. It can be obtained by cooling and solidifying the material.
  • air or bubbles contained in the raw material composition in the mold and bubbles generated during press molding can be removed.
  • Various physical properties such as thermal conductivity can be improved, which is preferable.
  • a known hot pressing method such as compression molding using a mold and sheet molding using a hot roll can be used.
  • the molten polymer can be impregnated between thermally conductive fillers.
  • the organic polymer can be crystallized to form a highly heat conductive path between the heat conductive fillers.
  • the pressure of press molding 1 ⁇ 1000kgf / cm 2, preferably 10 ⁇ 500kgf / cm 2.
  • the pressure of press molding is 1 kgf / cm 2 or less, voids are not removed and a dense molded product cannot be obtained.
  • the pressure of press molding is 1000 kgf / cm 2 or more, the liquefied or softened polymer leaks into the gaps of the mold and is difficult to release.
  • the difference between the raw material, the composition, the material and the molded product is that the raw material is the raw material, and the composition is an amorphous raw material mixture (powder) in which each raw material is uniformly dispersed and mixed. It is an indeterminately shaped solid matter obtained from the composition, and the molded product refers to a solid matter having a certain shape.
  • the organic polymer particles can be liquefied or softened by heating the composition at a temperature equal to or higher than the deflection temperature under load, the melting point, or the glass transition temperature of the organic polymer. Thereby, the liquefied or softened polymer can be infiltrated into the gap between one filler and the other filler, and the A phase consisting only of the organic polymer and the B phase containing the filler as a main component are intertwined, and the B phase Form a three-dimensional network structure.
  • the thermally conductive fillers are in close contact with each other at the layer end face of the thermally conductive filler, and the thermally conductive filler exists as a cluster spread throughout the system.
  • cooling from the outside proceeds from the phase B containing the filler having a significantly high thermal conductivity, and then solidification and / or crystallization of the surrounding polymer proceeds, and efficient solidification around the filler. ⁇ Immobilization occurs.
  • the filler having a graphite structure and the aromatic crystalline resin which is a preferable organic polymer have a similar structure, crystallization proceeds along the layer surface. Then, by covering the periphery of the filler layer with the crystalline structure of the polymer, the end surfaces of the filler layer, which are thought to be interspersed with the amorphous polymer, are fixed in close contact with each other to form a highly thermally conductive path. be able to.
  • the temperature at the time of press molding is a temperature higher than the melting point for crystalline polymers, the glass transition temperature for amorphous polymers, and the melting point or glass transition temperature when the melting point or glass transition temperature is unknown or absent.
  • the deflection temperature under load, the melting point, and the glass transition temperature vary depending on the type of organic polymer used.
  • the cooling temperature is not particularly limited, but is a temperature at which the organic polymer is solidified based on the melting point, glass transition temperature and deflection temperature under load of the organic polymer, and is preferably 0 to 100 ° C., and preferably 10 to 50 ° C. It is more preferable.
  • the cooling time is not particularly limited, but is preferably 0.05 to 3 hours, and more preferably 0.5 to 1.5 hours.
  • the degree of crystallinity of the organic polymer can be measured with the heat of fusion obtained using a differential scanning calorimeter (DSC) as one scale.
  • the crystallinity of the thermally conductive filler-containing organic polymer can be expressed by the heat of fusion per resin and the heat of fusion per filler, but the former usually decreases as the thermally conductive filler concentration increases. This is because it is expected that a large amount of amorphous polymer is present between the end faces of the thermally conductive filler layer which is difficult to crystallize as the concentration of the thermally conductive filler is increased.
  • the heat of fusion per filler is the heat of fusion per resin corresponding to the filler parts by weight, and is an effective amount of heat of fusion (crystal) that contributes to the thermal conductivity. Even if the organic polymer is classified as an amorphous organic polymer, the raw material of the powder before molding has heat of fusion (when the polymerization from monomer to polymer proceeds, an optimal structure that is easy to crystallize is taken without difficulty. (excellent) causes rearrangement of molecules due to annealing, and shows heat of fusion.
  • a method for producing a highly filled high thermal conductivity material includes a thermally conductive filler having organic polymer particles and a graphite-like structure, and 5 to 60% by weight of organic polymer particles and 40 to 95% by weight of graphite-like structure with respect to a total amount of 100% by weight.
  • the thermal conductive filler is obtained by dispersing the thermal conductive filler by delamination while maintaining the average plane particle size of the thermal conductive filler, and an infinite cluster of thermal conductivity is formed.
  • a highly filled composition as a powder mixture is provided.
  • the said filler high filling composition provides the above-mentioned filler high filling high heat conductive material.
  • a coating liquid is provided.
  • the coating liquid also provides the filler-filled high thermal conductivity material described above.
  • the coating liquid contains a highly filled filler composition and a dispersion medium. After the coating liquid is applied to the substrate, the dispersion medium is removed by using means such as heating and decompression to produce a uniform high thermal conductive material film or a coating layer having a thickness of 10 mm or less. It can be used as an adhesive.
  • Water (boiling point 100 ° C) medium as dispersion medium oil-soluble organic medium such as methyl ethyl ketone (boiling point 80 ° C), toluene (boiling point 111 ° C), phenol (boiling point 182 ° C), tetralin (boiling point 207 ° C); t-butanol ( And water-soluble organic media such as ethylene glycol (boiling point 196 ° C.); and mixed media thereof.
  • oil-soluble organic medium such as methyl ethyl ketone (boiling point 80 ° C), toluene (boiling point 111 ° C), phenol (boiling point 182 ° C), tetralin (boiling point 207 ° C); t-butanol ( And water-soluble organic media such as ethylene glycol (boiling point 196 ° C.); and mixed media thereof.
  • the boiling point of the dispersion solvent used is preferably 70 to 200 ° C. When it is 70 ° C. or higher, there is no fear of fire due to scattering of the dispersion solvent or deterioration of the work environment, and when it is 200 ° C. or lower, the thermal conductivity due to the residual dispersion medium can be prevented from being significantly lowered.
  • a dispersion stabilizer such as an emulsifier or a dispersant is usually used because aggregation or separation of the highly filled composition of the filler tends to occur. Since these dispersion stabilizers often adversely affect physical properties such as electrical characteristics and thermal conductivity, it is preferable to use an organic medium having good dispersion stability.
  • care must be taken that the organic polymer covers the periphery of the thermally conductive filler when used in a dispersion medium and / or dispersion condition in which the organic polymer dissolves, or the organic polymer alone Forms a film and inhibits the formation of thermally conductive clusters.
  • a known method capable of uniform mixing and uniform dispersion such as mechanical dispersion using a homomixer or a homogenizer, or a dispersion method using ultrasonic waves can be used.
  • the concentration of the highly filled composition in the coating liquid is preferably 10 to 50% by weight.
  • concentration of the highly filled composition in the coating liquid is 10% by weight or more, separation of the organic polymer and the thermally conductive filler hardly occurs, and when it is 50% by weight or less, it is easy to produce a uniform thin film by dilution.
  • a known dispersion stabilizer can be used as long as it does not adversely affect the physical properties of the high thermal conductivity material.
  • the said filler high filling composition can be used for manufacture of the molded article containing the sheet
  • the molded product according to the present invention includes a sheet, a film, and the like, and can use a known powder molding method, for example, a hot press molding method, which is shaped in a powder state and heat-molded, and has a desired shape.
  • a hot press molding method which is shaped in a powder state and heat-molded, and has a desired shape.
  • a molded product having a shape corresponding to the application can be easily obtained.
  • a sheet or a film it is preferably used in a state impregnated with a coating liquid or a dispersion medium.
  • a molded product having a multiphase structure or an inclined structure for example, a two-phase structure composed of an insulating phase and a conductive phase, or a conductive phase having a different filler concentration from the insulating phase.
  • An integrally molded product having an inclined structure can be obtained.
  • the composition consisting of each material is shaped separately in a powder state, and finally molded to obtain an integrally molded product.
  • the composition consisting of each material is molded step by step, and finally molded integrally.
  • a known method such as a method for obtaining a product can be used. In this way, the difference in coefficient of thermal expansion between the semiconductor element, the ceramic substrate, and the metal heat dissipation component can be reduced.
  • a molded article can be formed by using a high-filler high-heat conductive material obtained by applying and drying the above-described coating liquid on a substrate.
  • the ratio of the organic polymer and the thermally conductive filler in the molded product is basically the same as that of the composition except for the non-woven fabric used as a reinforcing material during molding.
  • a known additive, reinforcing material, and / or other filler can be contained as necessary within a range not causing wrinkles for the purpose of the invention.
  • additives include mold release agents, flame retardants, antioxidants, emulsifiers, softeners, plasticizers, surfactants, coupling agents, and compatibilizers.
  • the reinforcing material include short fibers made of glass fibers, carbon fibers, metal fibers and inorganic fibers, non-woven fabrics made of these fibers, recycled products obtained by heat treating used or waste carbon fibers, and the like.
  • fillers examples include calcium carbonate (limestone), glass, talc, silica, mica, metal powder, metal oxide, aluminum nitride, boron nitride, silicon nitride, and diamond. These additives, reinforcing agents and / or other fillers are generally added to the raw material mixture and used. However, when used as a reinforcing material, in the case of fibers, non-woven fabrics, etc., they are used in the molding stage. It is desirable.
  • the high thermal conductive material and the molded product of the present invention are configured in this way, for example, when graphite is used while maintaining the mechanical strength despite the high thermal conductive filler high filling material.
  • the thermal expansion coefficient is 3 ⁇ 10 -6 ⁇ 30 ⁇ 10 -6 °C -1, electric conductivity of 10 It is preferably ⁇ 10 ( ⁇ cm) ⁇ 1 or less. Therefore, it is possible to impart other functions such as conductivity, insulation, and electromagnetic shielding properties according to the intended use.
  • the polymer phase has a three-dimensional entangled structure, when a thermoplastic resin and a thermoplastic elastomer are used as the organic polymer, the molded product of the present invention and a molded product made of another polymer-containing material are ultrasonicated.
  • graded materials that is, materials with a low thermal expansion coefficient such as semiconductor elements and ceramic substrates, and aluminum by using a material in which a plurality of materials having different compositions and structures are continuously changed and combined together.
  • the molded article is formed by laminating two layers of an insulating layer and a conductive layer of the highly filled high thermal conductive material.
  • one of the two layers has a thermal conductivity of 15 to 120 W / mK, a thermal expansion coefficient of 3 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , and a surface electrical conductivity of It preferably exhibits a conductivity of 10 to 200 ( ⁇ cm) ⁇ 1 .
  • the other of the two layers has a thermal conductivity of 5 to 50 W / mK or more, a thermal expansion coefficient of 3 ⁇ 10 ⁇ 6 to 10 ⁇ 10 ⁇ 6 ° C.
  • the layer of each filler-filled high thermal conductive material exhibiting conductivity or insulation can be made of a gradient material so that the difference in thermal expansion coefficient at the interface between different materials can be made as small as possible. Since the molded product of the present invention exists in a state in which the organic polymer is uniformly mixed, it is easy to perform drilling and cutting into various shapes, and fine processing with high accuracy can be performed.
  • the high thermal conductivity material and molded product of the present invention are strong without heat conduction loss without using grease, an adhesive, a face change material, a bolt joint or the like in joining with a different material and another molded product. Bonding is possible, and parts can be packaged, and the number of parts and work processes can be greatly reduced. In addition, since it has a high thermal emissivity that is close to that of a black body compared to ceramics and metals, it can exhibit heat dissipation characteristics that far exceed the thermal conductivity inherent to the material itself.
  • the molded product thus obtained can be used for lightness, molding processability, cutting processability, integral moldability, dimensional stability, and applications of organic polymers while making the most of the characteristics of the thermally conductive filler having a graphite-like structure to be used.
  • Features such as improved physical properties can be developed. For example, it is useful for high heat dissipation applications, metal replacement applications, ceramics replacement applications, electromagnetic wave shield applications, high precision parts (low dimensional changes), high conductivity applications, insulation applications, various packings, and the like.
  • Electric parts such as HDD parts and computer related parts; VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / laser disks (registered trademark), Audio and electronic parts such as compact discs and digital bio discs, lighting parts, refrigerator parts, air conditioner parts and other home and office electrical parts; office computer related parts, telephone related parts, mobile phone related parts, facsimile related parts, Parts related to printers and copiers such as around the print head and transfer roll, cleaning jigs, motor parts, microscopes, binoculars, cameras, watches, and other optical equipment and precision machine parts; alternator terminals, alternator connectors, ICs Regulator, Light dimmer potentiometer base, Motor core sealant, Insulator member, Power seat gear housing, Air conditioner thermostat base, Air conditioner panel switch board, Horn terminal, Electrical component insulation board Automobile and vehicle-related parts such as lamp housing, LED lamp heat dissipation parts, lithium ion battery heat dissipation parts, fuel cell separator
  • Raw material [Organic polymer particles]
  • Polyphenylene sulfide (PPS) powder W203A natural, white powder, linear type, Kureha Co., Ltd., particle size 100-500 ⁇ m, melting point 296 ° C., heat of fusion 33 J / g, coefficient of thermal expansion 50 ⁇ 10 ⁇ 6 ° C.
  • Polyphenylene sulfide (PPS) pellets FZ-2100BK manufactured by DIC Corporation, black pellets, cross-linked type, shape ID 1.5 mm ⁇ length 2 mm, melting point 280 ° C., heat of fusion 28 J / g, coefficient of thermal expansion 40 ⁇ 10 ⁇ 6 ° C -1
  • Polyethylene terephthalate (PET) recycled PET bottles, white flakes, particle size 1 to 2 mm, melting point 254 ° C., heat of fusion 31 J / g, coefficient of thermal expansion 60 ⁇ 10 ⁇ 6 ° C.
  • PC Polycarbonate
  • PE Polyethylene
  • Low melting point PE manufactured by Sanyo Chemical Industries, Ltd., sun wax 161-P, white powder, particle size 0.01 to 0.1 mm, melting point 110 ° C., heat of fusion 25 J / g, coefficient of thermal expansion 110 ⁇ 10 -6 ° C -1
  • Benzoxazine Pd-type benzoxazine manufactured by Shikoku Kasei Kogyo Co., Ltd., powder, particle size 0.01-0.1 mm, melting point 242 ° C., heat of fusion 25 J / g
  • the average particle size was measured from the 50% cumulative particle size using a laser diffraction particle size distribution analyzer LA-500, or an approximate value with a range of particle sizes measured by SEM observation and a magnifier.
  • the composition powder was put into a test piece preparation mold so as to have a predetermined thickness, and heated using a desktop hydraulic hot press machine at a predetermined temperature and time to produce a molded product test piece.
  • the density was determined from the weight and volume of the test piece.
  • the density of the molded product test piece obtained using the twin screw extruder was measured by an underwater method.
  • thermophysical property measuring apparatus manufactured by Kyoto Electronics Industry Co., Ltd.
  • TPS 2500S thermophysical property measuring apparatus
  • the heat generated from the hot disk sensor is transmitted through the test piece and is measured in a range where the heat does not reach the end of the test piece. It measures the thermal conductivity near the surface.
  • the electrical conductivity in the surface and the cross section of the test piece was measured based on JISK7194 using Mitsubishi Analytech Co., Ltd. low resistivity meter Lorester GP (four probe method).
  • Measurement of thermal expansion coefficient A molded product test piece obtained by hot press molding is cut to prepare a measurement sample having a length of about 3.6 mm, a width of about 3.6 mm, and a length of 13 mm or less, and a thermal expansion measuring device (TMA60 manufactured by Shimadzu Corporation). ) was measured at a rate of 5 ° C./minute, and the coefficient of thermal expansion at a temperature in increments of 10 minutes was measured from 27 to 180 ° C., and the value of the coefficient of thermal expansion at 160 ° C. was described in the examples and comparative examples. did.
  • Examples 1 to 4, Comparative Examples 1 and 2 A highly-filled composition was prepared, cast in a powder state using a mold and a hot press, and press-molded under pressure and heating to prepare a test piece (molded product). Specifically, the graphite powder and polyphenylene sulfide (PPS) powder of the weight% shown in Table 1 were put in a magnetic pot of a table ball mill BM-10 manufactured by Seiwa Giken Co., Ltd., and pulverized and mixed with a magnetic ball for 5 hours to obtain a uniform composition. Got. Under the present circumstances, the particle size of the obtained composition was calculated
  • PPS polyphenylene sulfide
  • test piece The density, thermal conductivity, and electrical conductivity of the obtained test piece (molded product) were measured by the above methods. Moreover, a test piece was cut out from the molded product, and the linear expansion coefficient, bending strength, flexural modulus, heat of fusion per resin and heat of fusion per filler were measured by the above methods. The obtained results are shown in Table 1 below.
  • the filler-filled high thermal conductivity materials (molded articles) of Examples 1 to 4 are cases in which an organic polymer is contained as compared with the molded article of Comparative Example 1. It was also found that it has excellent thermal conductivity, electrical conductivity, and thermal linear expansion coefficient. Further, the bending strength and the flexural modulus were the same as those of Comparative Example 1 containing a large amount of organic polymer. In Comparative Example 2 in which the content of the organic polymer is extremely low, even if it was able to be shaped, it did not collapse into a molded product with a slight force (the bending strength and the flexural modulus could not be measured). Thus, it can be seen that the example is superior to the comparative example.
  • the thermal expansion coefficient decreased as the concentration of the thermally conductive filler (flaky graphite) increased, and it was found that the thermal expansion coefficient can be controlled by the concentration of the thermally conductive filler.
  • 9 and 10 show an SEM photograph of the scaly graphite-PPS resin mixture and a SEM photograph of the scaly graphite used as a raw material when the powder was mixed by the ball mill of Example 4. It can be seen that even when pulverized and mixed with a ball mill, the flat scale shape of graphite is maintained, and an average surface particle size of 1/2 or more is maintained.
  • Examples 5 to 7, Comparative Examples 3 to 5 The composition is the composition shown in Table 2, except that the raw materials were mixed for 3 minutes with a mixer (swift electric coffee mill), or manually shaken and mixed (hand-mixed) for 5 minutes in a bag.
  • a highly-filled and highly thermally conductive material was obtained.
  • the density, thermal conductivity, electrical conductivity, thermal expansion coefficient, bending strength, flexural modulus, heat of fusion per resin and heat of fusion per filler are measured by the same method as above. did.
  • the obtained results are shown in Table 2.
  • the thermal conductivity increases almost linearly with the concentration of the thermally conductive filler, but the electrical conductivity increases exponentially and is strongly influenced by the properties of the resin and the morphology in the system.
  • the comparative example shows a higher value than the example, but since the shearing force during mixing is weak, there is almost no damage to the filler, and if even a part of the conductive path is formed, a large amount from there. This is thought to be due to the fact that it is easy for current to flow.
  • the electrical conductivity in the comparative example is higher than the electrical conductivity in the examples, there is no practical value because the thermal conductivity and mechanical properties are significantly reduced.
  • the thermal expansion coefficient significantly decreases with the thermal conductive filler concentration in the examples, but the degree of decrease is low in the comparative example. This is because, in the embodiment, the A phase consisting only of the organic polymer and the B phase containing the filler as a main component are intertwined, and the B phase forms a three-dimensional network structure to form a thermally conductive infinite cluster. On the other hand, it is speculated that this is weak in the comparative example.
  • compositions comprising organic polymer particles and a thermally conductive filler, wherein the organic polymer particles and the thermally conductive filler are melt-mixed pelletized or formed into a melt-mixed sheet, and the pelletized or sheeted composition (organic in the composition) Polymer particles are not in the form of particles) to produce a highly-filled and highly thermally conductive material.
  • melt-kneading was performed at a temperature of 280 to 340 ° C. to prepare PPS pellets and PPS sheets having a predetermined concentration.
  • pellets having the compositions shown in Table 3 were prepared using PPS pellets and scaly graphite.
  • a sheet was prepared using a T-die (width 100 mm ⁇ thickness 16 mm) for a sheet having a composition shown in Table 3 using PPS powder and scaly graphite.
  • press molding was performed under pressure and heating in accordance with Comparative Example 6 to produce highly-filled and highly thermally conductive material test pieces (Comparative Examples 9 to 11).
  • Example 8 to 13 Polyethylene terephthalate (PET) powder and polycarbonate (PC) powder were newly prepared, and high-filler filler high-heat conductive materials were obtained in the same manner as in Example 1 with the compositions shown in Table 4 (Examples 8 to 13). .
  • Examples 14 to 19 Low molecular weight polyethylene (PE) powder and benzoxazine were newly prepared, and high filler materials with high filler filling were obtained in the same manner as in Example 1 with the compositions shown in Table 5 (Examples 14 to 19).
  • PE polyethylene
  • benzoxazine which is a thermosetting resin
  • the heat of fusion of the raw material is 25 J / g, which corresponds to the heat of fusion of a molded product using this. No endothermic peak was observed. Except for the periphery of the thermally conductive filler, it is considered that the cured product became amorphous due to the progress of the curing reaction.
  • the density, thermal conductivity, electrical conductivity, heat of fusion per resin, and heat of fusion per filler were measured by the same method as described above. The obtained results are shown in Table 6.
  • the electrical conductivity was measured by a double ring electrode method using a high resistivity meter (high resistivity meter Hirester UX model MCP-T800 manufactured by Mitsubishi Analytech Co., Ltd.).
  • Comparative Examples 12 and 13 Compared with Comparative Examples 12 and 13 in which aluminum nitride having a high thermal conductivity in a single sintered body having no graphite-like structure is used as the heat-conductive filler, the graphite-like structure is used as the heat-conductive filler.
  • the filler-filled high thermal conductivity material of the example using the hexagonal boron nitride had excellent results as in Examples 1 to 4.
  • the mechanical strength of the molded product test piece was weak, a sample for measuring the thermal expansion coefficient could not be prepared, and the thermal expansion coefficient could not be measured.
  • FIG. 11 and 12 show an SEM photograph of the carbon short fiber-PPS resin mixture and an SEM photograph of the carbon short fiber used as a raw material when the powder was mixed with the ball mill of Example 16. From the results of FIG. 11 and FIG. 12, it was found that when carbon short fibers were pulverized and mixed with a PPS resin by a ball mill, the carbon short fibers disappeared and become fine powder. That is, it can be seen that the short carbon fibers cannot maintain the average surface particle diameter of the short carbon fibers by delamination. Moreover, unlike carbon having a flat or scale-like structure, carbon short fibers having a rod-like structure are considered not to overlap well with the plane crystal plane of the PPS resin. The above is considered to have caused a significant decrease in thermal conductivity.
  • the thermal conductivity increases linearly with the filler concentration, and (1)> (10) ⁇ (6)> (2) ⁇ (7) ⁇ (8) ⁇ (9 )> (11) ⁇ (14)> (13) ⁇ (3)> (4) ⁇ (5)> (13). Moreover, if the carbon short fibers (13) and (14) are excluded, it can be seen that the thermal conductivity values of the examples are high and are superior to those of the comparative examples.
  • the surface conductivity increases exponentially in relation to the filler concentration, and almost (14)> (13) ⁇ (6) ⁇ (3)> (1)> (2)> (7) >> (8)> (4) ⁇ (5) >> (11) ⁇ (12).
  • it roughly correlates with thermal conductivity, and the curve rises from a filler concentration of about 40% by weight, indicating that this point is the percolation threshold.
  • the difference between the electrical conductivity and the thermal conductivity was described in the examination of the experimental results of Examples 1 to 7 and Comparative Examples 3 to 5.
  • the heat of fusion per resin also decreases with the filler concentration, and decreases in the order of (1) ⁇ (2) ⁇ (3) >> (13)> (14) ⁇ (4)> (5).
  • the heat of fusion significantly decreases at a high filler concentration.
  • the brittle carbon short fibers have a markedly reduced particle size, which reduces the crystallinity of PPS.
  • the particle size does not decrease, but the strength decreases due to non-uniformity.
  • the increase in the filler concentration from 20 to 50% by weight over the raw material is presumed to increase the crystallinity because of molding under pressure.
  • the heat of fusion per resin decreases in the order of (8)> (6) ⁇ (11) ⁇ (12) >> (7), and the aromatic crystalline resin (1) , (2), (6) >> aromatic amorphous resin (7) >> benzoxazine (9), (10) in this order, and boron nitride was slightly larger than aluminum nitride .
  • the heat of fusion per resin is closely related to the thermal conductivity. That is, the heat of fusion per resin of polyethylene, which is a crystalline non-aromatic resin, is high because it is a low melting point polyethylene and a low molecular weight polymer with a wide molecular weight distribution (wide endothermic peak width). It seems that there is.
  • the raw material in polycarbonate, the raw material has a high heat of fusion (optimal molecular arrangement that is easy to crystallize during condensation polymerization is possible), but in molded products, an endothermic peak finally appears due to aging, and crystallization occurs around the filler. It seems to have happened. Also in benzoxazine, an endothermic peak based on the melting point appears in the raw material, but disappears in the molded product due to thermosetting. It seems that the bulk part away from the filler surface becomes indefinite due to thermosetting.
  • the thermal conductivity can be fixed at the filler end face by crystallization around the thermal conductive filler with graphite structure, especially along the plane direction, and form a high thermal conductive path It seems to be a thing, and is deeply related to resin crystallization.
  • FIG. 7 shows the relationship between the thermal conductivity of the aromatic crystalline resin excluding polycarbonate and polyethylene and the heat of fusion per filler, divided into examples and comparative examples. It can be seen that the thermal conductivity increases with increasing heat of fusion per filler. In addition, the examples are superior to the comparative examples except for a part, indicating that the thermal conductivity is deeply related to the heat of fusion of the resin. What does not become a clean linear relationship is that the bubbles (density) and crystal strength (rigidity) at the filler-resin interface differ slightly depending on the filler concentration, molding conditions and method, resin type, etc. It seems to have a big influence on
  • FIG. 8 shows the relationship between the filler concentration and the thermal expansion coefficient.
  • the thermal expansion coefficients of (1), (2), (6), (7) and (8) decrease with the filler concentration from the value of the resin alone, and the value of the filler alone (graphite is about 2 ⁇ 10 -6 ° C -1 )
  • the filler-filled resin molded product of the example is different from the difference in thermal expansion coefficient (3 ⁇ 10 ⁇ 6 to 8 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ) with the semiconductor element or the ceramic substrate, copper (17 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ), aluminum (24 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ) and other metals can be controlled so as to reduce the difference from the thermal expansion coefficient.
  • (3), (4) and (5) it can be seen that the degree of change is small and it is difficult to control.
  • Example 24 to 27 A composition of BN: PPS (90:10 wt%) and a composition of GF: PPS (90:10 wt%, 60:40 wt% and 40:60 wt%) were newly prepared in the same manner as in Example 1. Got ready.
  • the composition is separately loaded in a volume of 40 mm ⁇ 40 mm in a volume% shown in Table 8 so as to form a 10 mm-thick multilayer structure, and integrally formed with different materials using the same method as in Example 1, or Different types and graded materials were integrally molded to produce molded product test pieces in which insulating and conductive materials were laminated (Examples 24 to 26).
  • the gradient material has a thermal expansion coefficient close to that of the BN-PPS layer (7.63 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ) in order of each GF-PPS layer (2.06 ⁇ 10 ⁇ 6 , 22.4 ⁇ 10 respectively). ⁇ 6 and 40.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 ) were filled into the mold.
  • the conductive material was bonded with an adhesive by forming the BN-PPS layer and the GF-PPS layer separately and bonding them with an adhesive (Aron Alpha®) with the composition shown in Table 8.
  • An adhesive Aron Alpha®
  • Density of the obtained test piece (molded article), thermal conductivity from the BN and GF layer sides, surface electrical conductivity from the GF layer side, electrical conductivity from the BN side, bending strength and bending elasticity from the BN side The rate was measured in the same manner as in Example 1. Table 8 shows the obtained results.
  • Example 24 From the comparison between Example 24 and Example 27, it can be seen that there is a significant difference in the thermal conductivity between the integral molding and the case of joining with an adhesive, and the integrally molded product is superior.
  • the measurement of the thermal conductivity by the hot disk method is to obtain the thermal conductivity in the vicinity of the surface of the test piece having a certain depth. For this reason, the thermal conductivity is different between the BN side and the GF side. Since the thermal conductivity of the BN (90) -PPS (10) layer alone is 24.0 W / mK, the result is almost the same as the thermal conductivity from the BN side of the integrally molded product. No decrease in thermal conductivity at the interface was observed.
  • the thermal conductivity on the bonding surface is remarkably lowered, and as a result, it is presumed that the thermal conductivity is significantly lowered.
  • the thermal conductivity on the GF side in Example 24 almost reflects the thermal conductivity of the GF (60) -PPS (40) layer alone, but the thermal conductivity value in Example 27 is low. It seems to be the influence of the interface.
  • the electrical conductivity is measured with a high resistivity meter from the BN side and is an insulator of the order of 10 ⁇ 14 , and the GF side shows the surface electrical conductivity measured with a low resistivity meter and becomes a conductor. Yes.
  • the electrical conductivity from the BN side is influenced by the BN-PPS layer, is an insulator, and can be used as a semiconductor substrate.
  • the GF-PPS layer is a three-phase gradient material
  • excellent results were obtained as in Example 24, and the difference in thermal expansion coefficient between the BN-PPS layer and the GF-PPS layer was reduced. It can be seen that it is small and can be joined to the GF side with a small difference in thermal expansion coefficient from metals such as aluminum and copper.
  • Example 28 According to Example 1, a GF-PPS resin composition (conductivity) having a GF concentration of 60% by weight was prepared and loaded into a 40 mm ⁇ 40 mm metal mold to produce a molded product having a thickness of 9.5 mm.
  • a BN concentration 90 wt% PPS resin composition prepared according to Example 22 was uniformly dispersed in methyl ethyl ketone (MEK) using ultrasonic waves to prepare a 25 wt% MEK coating liquid, and the GF- After coating and drying on the surface of the PPS molded product, heat-pressing is performed under pressure in the same manner as in Example 1 to produce an insulating / conductive integral molded product with a BN-PPS layer thickness of 0.5 mm.
  • MEK methyl ethyl ketone
  • tetralin was put in a pressure sealed container so that the PPS would be 20% by weight, and heated to 230 ° C. under sealing to dissolve the PPS to prepare a PPS-tetralin solution.
  • An appropriate amount of t-butanol (TBA) is added to a BN-oxazine composition having a weight ratio of 80:20 separately prepared according to Example 1 to prepare a dispersion.
  • Example 29 the PPS-tetralin solution was added so that the ratio of PPS: oxazine was 10:90 by weight, further diluted with TBA, and BN- (PPS-oxazine) (weight ratio 80: (2 18)) produces a 25% by weight TBA-dispersed coating liquid.
  • This coating liquid is uniformly dispersed with ultrasonic waves, applied to the surface of the GF-PPS molded product, dried, and then heated in a vacuum dryer at 250 ° C. under a pressure of 0.5 MPa and under vacuum for 3 hours. Cured and coated with a 0.5 mm thick BN-oxazine layer to produce a molded article.
  • Various physical properties were measured in the same manner as in Example 28 and are shown in Table 9 as Example 29.
  • Example 30 According to Example 28, a 60% by weight GF-PPS resin composition (conductive) was prepared, and using a square mold having a length and width of 150 mm, the length and width were 149.4 mm ⁇ 149.4 mm ⁇ thickness 34.5 mm. A prototype resin molded product block was made.
  • a base part having a length of 149.4 mm and a thickness of 12.0 mm and a rectangular fin having a thickness of 2.5 mm, a depth of 22.5 mm, and a length of 149.4 mm are formed thereon.
  • a GF heat radiating part having a comb fin structure in which 15 sheets were arranged at equal intervals was produced.
  • the weight of the heat dissipation component was 628 g, the surface area was 1544 cm 2 , the specific heat was 1.158 J / gK, and the density was 1.892 g / cm 2 .
  • a 7.68 W heater (Kapton heater HK9BF, manufactured by Japan Marina Co., Ltd.) embedded in a polyimide film in this GF heat radiating component is bonded to a silicone grease (thermal conductivity 3.8 W / mK, Segzhen Halnziey Electronics Co., Ltd.). , Ltd.), tape-bonded, or applied and dried using a TBA-dispersed coating liquid composed of a BN- (PPS-oxazine) composition at a weight ratio of 80: 2: 18 used in Example 29. Thereafter, a heat-dissipating part joined by performing a thermosetting reaction under vacuum at 100 ° C. for 2 hours and then at 230 ° C.
  • Example 24 a resin-integrated molded product block having a length and width of 149.4 mm ⁇ 149.4 mm ⁇ thickness of 34.5 mm, in which the BN: PPS layer was 2 mm thick and the GF: PPS layer was 30 mm thick, was manufactured.
  • a base part having a length of 149.4 mm and a thickness of 12.0 mm and a rectangular fin having a thickness of 2.5 mm, a depth of 22.5 mm, and a length of 149.4 mm are formed thereon.
  • a GF heat radiating part having a comb fin structure in which 15 sheets were arranged at equal intervals was produced.
  • the weight of the heat dissipating part was 664 g and the surface area was 1544 cm 2.
  • the heat dissipating experiment was conducted in the same manner as in Example 30 to obtain the equilibrium temperature and the heat resistance. The results are shown in Table 10 as Example 33.
  • Example 31 when the silicon grease (Example 31), the adhesive (Example 32), and the integral molding (Example 33) are performed as compared with Example 30 without a bonding agent, the equilibrium temperature of the heater part is It turns out that it falls remarkably. Further, from the value of the thermal resistance, the contribution of the heat radiation (R 3 ) at the interface between the heater and the heat radiating component (R 2 ) and the interface between the heat radiating component and the atmosphere rather than the thermal resistance (R 1 ) of the material itself. I found it big.

Abstract

有機ポリマーの特徴を十分に生かしかつ欠点を改良し、セラミックス、金属、半導体素子等との一体成形が可能で、熱膨張係数が低く、かつ熱伝導率が高いフィラー高充填高熱伝導性材料等を提供する。有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られ、かつ、熱伝導性の無限大クラスターが形成される組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力 でプレス成形し、冷却および固化することにより形成されてなる、フィラー高充填高熱伝導性材料。

Description

フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品
 本発明は、フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品に関する。
 電子機器の高性能化、高機能化、小型化、利用範囲の拡大に伴い、使用されているCPUやドライバ素子、電子変換素子、熱電変換素子(ペルチェ冷却、ゼーベック発電)、発光素子(レーザー、LED、有機EL等)などの半導体素子や、リチウムイオン電池、燃料電池等が関係する熱の問題が大きな課題となっており、この熱の除去について、材料面、構造面など様々な視点から検討がなされている。
 また、振動、温度等の環境変化などの苛酷な条件下で使用され、安全性が重視される乗用車においても、電子化および電気化の進展に伴う放熱問題がクローズアップされており、軽量化ニーズと合わせて、従来から用いられている金属、セラミックス、有機・無機複合材料に替わる新しい材料の出現が求められ、ハイブリッド車、電気自動車、燃料電池車等の次世代自動車の出現と普及がこの現象を加速している。
 特に、有機ポリマーは、成形・加工が容易で、軽量化に寄与でき、また、環境変化に係る使用条件に合わせた様々な改質が容易であることから、自動車分野や電子機器分野において大きな期待がもたれている。しかしながら、有機ポリマーの熱伝導率は0.1~0.5W/mKと極端に低く、熱膨張係数は50×10-6~100×10-6-1と比較的高いため、熱膨張係数の低い半導体素子、セラミックスなど(3×10-6~8×10-6-1)と組み合わせて使用する場合には問題となり、熱伝導率が高くかつ熱膨張係数の低い革新的な材料の出現が切望されている。
 ところで、材料の熱伝導は、(1)電子伝導、(2)フォノン伝導(格子振動)、(3)フォトン伝導(輻射)の3種の伝導形態が知られている。例えば、炭素材料の1つであるダイヤモンドは剛直な熱損失のない化合構造をしており、フォノン伝導による1000~2000W/mKの最も高い熱伝導率を有する。これは非対称な化学結合や、分子運動による熱エネルギーの損失がないからである。また、グラファイト(黒鉛類と同義語)はベンゼン環の配向方向の電子伝達により高い熱伝導率を有する。より詳細には、PSGグラファイトシートは、厚さ方向では8W/mK、それに垂直な面方向では電子伝達により800W/mKに近い熱伝導率を有し、導電性材料である。一方、六方晶窒化ホウ素はグラファイト類似構造を有しており、熱伝導率が面方向で200W/mK、厚み方向で数W/mKの異方性を示すが、絶縁材料である。また、フォトン伝導である熱輻射は、一般的に金属に比べ、有機ポリマー材料および炭素材料は高い値を示す。さらに、炭素材料の熱膨張係数は1×10-6~5×10-6-1であり、有機ポリマー材料(50×10-6~100×10-6-1)に比較して低く、セラミックスや半導体素子に近い低熱膨張性材料である。なお、金属材料はその中間の10×10-6~30×10-6-1である。
 従来から用いられている金属類は、導電性および熱伝導性に優れるが、比重が高く、熱輻射率は低く、複雑な形状への加工を不得意とし、セラミックスは、電気絶縁性に優れるが、脆く、複雑な形状への加工が困難であり、かつ製造時、加工時には高エネルギーを必要とする。
 このようなことから、これらの欠点を改良するために、グラファイト類似構造を有する熱伝導性素材と有機ポリマーとからなる複合材料の開発に注目が集まっている。
 例えば、特許文献1では、金属粉末と炭素繊維との混合物を、該混合物に対して0.5~20重量%のフッ素樹脂によって結合し、所定形状に圧縮成形して得られた材料が開示されている。特許文献1によれば、上記で得られた材料は、熱膨張制御性、熱伝導性および電気伝導性に優れていることが記載されている。
 また、特許文献2では、ポリフェニレンスルフィドのような樹脂10~60重量%と粒径20~900μmの黒鉛40~90重量%からなる樹脂組成物が開示されている。特許文献2によれば、該組成物の射出成形などにより2~12W/mKの熱伝導率を有する成形品が得られることが記載されている。
 また、特許文献3では、(a)熱可塑性樹脂5~50重量%および(b)無機フィラー95~50重量%からなり、(a)および(b)の合計量100重量部に対して、(c)脂肪酸金属塩、エステル系化合物、アミド基含有化合物、エポキシ系化合物、リン酸エステルのいずれか1種類以上を0.5~10重量部添加してなるフィラー高充填樹脂組成物が開示されている。特許文献3によれば、該組成物の射出成形により2~32W/mKの熱伝導率を有する成形品が得られことが記載されている。
 さらに、特許文献4には、混練プロセスにおける炭素繊維の折損を抑制するために、平均繊維径が5~20μm、平均繊維長が20~500μmの炭素短繊維と、マトリックス樹脂とを溶融混練りして得られる高熱伝導性樹脂組成物の製造方法が開示されている。
 しかしながら、特許文献1に記載の材料は、金属粉末を主要成分とするものであり、炭素繊維および樹脂の特性が十分に反映されていない。
 また、特許文献2~4に記載の樹脂組成物等は、基本的には熱伝導性フィラーおよび/または炭素繊維と、有機ポリマー材料とを溶融混合し成形するものである。よって、溶融した有機ポリマー材料が熱伝導性フィラーの表面を覆うことにより、熱伝導性パス形成が阻害され、熱伝導性素材が本来有する熱伝導性などの特性を充分に発揮できない。
 これに対し、特許文献5には、ポリマー粒子と、炭素繊維を必須成分とする炭素フィラーとを乾式混合し、ポリマーからなるA相と炭素フィラーを主成分とするB相とを含み、B相が3次元網目構造を形成し、熱伝導率が7W/mK以上である構造体が開示されている。
 また、特許文献6には、剛性の高い炭素繊維のダメージを低減するために、マトリックス成分100体積部に対し、アスベスト比が4~100、平均繊維長が20~500μmのピッチ系黒鉛化炭素繊維20~1000体積部からなる熱伝導性に優れた粉体成形体が開示されている。
 特許文献5および6は、いずれも、ドライブレンド(乾式混合)-圧縮成形(プレス成形)により、構造体または成形品を得るものである。しかしながら、特許文献5に記載の構造体の製造に用いられる炭素繊維は、通常はカーボンナノファイバーと呼ばれる特殊な極細炭素繊維(気相法炭素繊維)であり、製造には特殊な装置を必要とし、用途も限定される高価なものである。また、特許文献6に記載の粉体成形体は、もとの繊維長が維持されるように混合するため、マトリックス樹脂と炭素繊維との混合が均一にならず、該炭素繊維の物性を十分に発揮することができない。
 また、結晶化促進剤を添加して樹脂成形品の結晶化を促進し、成形体の物性を高めようとする試みが報告されている。
 例えば、特許文献7には、メソゲン基およびスペーサーからなる熱可塑性樹脂に、熱伝導性フィラーおよび結晶核剤を添加した高熱伝導性熱可塑性樹脂組成物が開示されている。
 また、特許文献8には、繊維径0.0001~5μm、アスペクト比5~15,000の極細炭素繊維を樹脂結晶化促進剤に使用することが開示されている。
 しかしながら、特許文献7および8は、タルクのような結晶核剤や、極細炭素繊維のような樹脂結晶化促進剤を用いることによって樹脂の結晶化を促進し、成形品の物性を向上させようとするものであるが、樹脂組成物を溶融混合しているために、熱伝導性フィラーや、炭素繊維の特徴を十分生かすことができず、樹脂の結晶化と高度な熱伝導性パスの形成については言及していない。
 一方、結晶性の芳香族熱硬化性樹脂を用いる高熱伝導化について、特許文献9には、ベンゾオキサジン誘導体、多環芳香族型エポキシ樹脂および無機フィラーを有する樹脂複合組成物が開示されているが、成形方法については溶融混合した後、注型硬化とあるのみで特別な限定もなく、熱可塑性樹脂を含む樹脂複合組成物に関しての開示もない。
特開平9-153566号公報 特開2004-339290号公報 特許第4631272号 特開2012-82296号公報 特許第4963831号 特開2010-24343号公報 特開2011-231159号公報 特開2004-339484号公報 特開2011-231196号公報
 有機ポリマーは、他の材料にない優れた特徴を有しているが、熱伝導性素材(熱伝導性フィラーおよび炭素短繊維)との複合材料において、熱伝導性素材が本来有している高い熱伝導率などの物性を十分に発揮することができない。この原因として、有機ポリマーの熱伝導率が極端に低いこと、および融解時の流動性が高いために熱伝導性素材の周りに厚い熱伝導阻害膜が形成(ポリマー相が海、熱伝導性素材が島の海島構造)されることが考えられる。
 これに対し、熱伝導性素材が十分に均一分散・混合されない状態でポリマーが融解-固化する場合、熱伝導性パスは形成されるものの、ポリマーが熱伝導性素材に十分に浸透しないため、ポリマー相の一部が島となった海島構造となり、成形品強度等の機械的物性が著しく低下し、この場合においても有機ポリマーの利点が十分に発揮されない。
 本発明の目的は、この相反するトレードオフな課題を解決し、有機ポリマーの特徴を発揮かつ欠点を改良して、セラミックス、金属、半導体素子などとの一体成形を可能とし、熱膨張係数が低くかつ熱伝導率が高いフィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物および成形品を提供するものである。
 本発明者らは、上記問題点を解決するために、高熱伝導性フィラーと有機ポリマー粒子の混合・粉砕方法や、熱伝導率と樹脂の結晶化度(融解熱)との関係について詳細に検討を重ねた。その結果、グラファイト構造を有する高熱伝導性フィラーおよび有機ポリマー粒子を含み、特定の混合・粉砕方法によって得られる、熱伝導性の無限大クラスターが形成される組成物を、有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度において、所定の加圧下でプレス成形し、モルフォロジーが維持された状態で冷却および固化すると、グラファイト構造面に沿ったポリマーの結晶化を引き起こし、高度な熱伝導性パスの形成により優れた性質を有する高熱伝導性材料が得られることを見出し、本発明の完成に至った。
 すなわち本発明は、上記課題を以下の手段により達成する。
 (1)有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られ、かつ、熱伝導性の無限大クラスターが形成される組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形し、冷却および固化することにより形成されてなる、フィラー高充填高熱伝導性材料;
 (2)前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって、前記熱伝導性フィラーが分散する手段として、ボールミルを用いる、(1)に記載のフィラー高充填高熱伝導性材料;
 (3)前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂、熱可塑性エラストマー、および未架橋の熱硬化性樹脂からなる群から選択される少なくとも1種を含み、前記グラファイト類似構造を有する熱伝導性フィラーが、天然黒鉛、人造黒鉛、および六方晶窒化ホウ素からなる群から選択される少なくとも1種を含む、(1)または(2)に記載のフィラー高充填高熱伝導性材料;
 (4)前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂および熱可塑性エラストマーからなる群から選択される少なくとも1種と、未架橋の熱硬化性樹脂とからなる、(1)または(2)に記載のフィラー高充填高熱伝導性材料;
 (5)前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂および熱可塑性エラストマーからなる群から選択される少なくとも1種である、(1)または(2)に記載のフィラー高充填高熱伝導性材料;
 (6)前記有機ポリマー粒子の平均粒径が、1~5000μmであり、前記グラファイト類似構造を有する熱伝導性フィラーの平均粒径が、0.5~2000μmであり、前記組成物の平均粒径が、0.5~1000μmである、(1)~(5)のいずれか1項に記載のフィラー高充填高熱伝導性材料;
 (7)前記グラファイト類似構造を有する熱伝導性フィラーの平均粒径が、3~200μmであり、
 前記組成物の平均粒径が、1~100μmである、(1)~(5)のいずれか1つに記載のフィラー高充填高熱伝導性材料;
 (8)前記グラファイト類似構造を有する熱伝導性フィラーが、天然黒鉛および/または人造黒鉛であり、熱伝導率が10~150W/mKであり、熱膨張係数が3×10-6~30×10-6-1であり、表面電気伝導度が5~250(Ωcm)-1である、(1)~(7)のいずれかの1つに記載のフィラー高充填高熱伝導性材料;
 (9)前記グラファイト類似構造を有する熱伝導性フィラーが、六方晶窒化ホウ素であり、熱伝導率が5~50W/mKであり、熱膨張係数が3×10-6~30×10-6-1であり、表面電気伝導度が10-10(Ωcm)-1以下である、(1)~(7)のいずれかの1つに記載のフィラー高充填高熱伝導性材料;
 (10)前記有機ポリマーが、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、およびベンゾオキサジンからなる群から選択される少なくとも1種を含み、前記グラファイト類似構造を有する熱伝導性フィラーが、鱗片状黒鉛および/または六方晶窒化ホウ素を含む、(1)~(9)のいずれか1つに記載のフィラー高充填熱伝導性材料;
 (11)有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、かつ、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られる、熱伝導性の無限大クラスターが形成される組成物を調製する工程(1)と、前記組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形する工程(2)と、前記工程(2)で形成された材料を、冷却、固化する工程(3)と、含む、フィラー高充填熱伝導性材料の製造方法;
 (12)前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって、前記熱伝導性フィラーが分散する手段として、ボールミルを用いる、(11)に記載のフィラー高充填高熱伝導性材料の製造方法;
 (13)請求項1~10のいずれか1項に記載のフィラー高充填熱伝導性材料、または(11)または(12)に記載の方法で製造されたフィラー高充填高熱伝導性材料を提供する、フィラー高充填組成物;
 (14)(13)に記載のフィラー高充填組成物および分散媒体を含む、塗料液;
 (15)前記分散媒体が、油溶性有機媒体および水溶性有機媒体を含む、(14)に記載の塗料液。
 (16)(1)~(10)のいずれか1つに記載のフィラー高充填高熱伝導性材料、(11)もしくは(12)に記載の製造方法によって得られる高充填高熱伝導性材料、または(14)もしくは(15)に記載の塗料液を塗布・乾固して得られるフィラー高充填高熱伝導性材料を含み、高熱伝導・放熱部品として用いられることを特徴とする、成形品;
 (17)前記フィラー高充填高熱伝導性材料が2層積層されてなる成形品であって、前記2層の一方の層が、熱伝導率が15~120W/mKであり、熱膨張係数が3×10-6~30×10-6-1であり、表面電気伝導度が10~200(Ωcm)-1の導電性を示し、前記2層のもう一方の層が、熱伝導率が5~50W/mK以上であり、熱膨張係数が3×10-6~10×10-6-1であり、表面電気伝導度が10―11(Ωcm)-1以下の絶縁性を示す、(16)に記載の成形品;
 (18)前記フィラー高充填高熱伝導性材料の層が、傾斜材料である、(16)または(17)に記載の成形品。
フィラー濃度と熱伝導率との関係を示すグラフである。 フィラー濃度と熱伝導率との関係を示すグラフである。 フィラー濃度と熱伝導率との関係を示すグラフである。 フィラー濃度と電気伝導度との関係を示すグラフである。 フィラー濃度と融解熱との関係を示すグラフである。 フィラー濃度と融解熱との関係を示すグラフである。 フィラー当たりの融解熱と熱伝導率との関係を示すグラフである。 フィラー濃度と熱膨張係数との関係を示すグラフである。 ボールミルを用いて作成したグラファイト-PPS樹脂組成物のSEM写真である。 グラファイト原料のSEM写真である。 ボールミルを用いて作成した炭素短繊維-PPS樹脂組成物のSEM写真である。 炭素短繊維原料のSEM写真である。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明の一形態によれば、有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラー(以下、単に「熱伝導性フィラー」とも称する)を含み、特定の混合・粉砕方法によって得られ、かつ、熱伝導性の無限大クラスターが形成される組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形し、冷却、固化することにより形成されてなる、フィラー高充填高熱伝導性材料が提供される。
 本発明に係るフィラー高充填高熱伝導性材料は、高熱伝導性フィラーと有機ポリマーとの強固な絡み合いネットワークが構築されているため、有機ポリマーを含むにもかかわらず、熱伝導性、電気特性、低熱膨張性および機械的物性に優れるのみならず、軽量性、易加工性、一体成形性、温度サイクルに対する耐久性などにも優れる。すなわち、有機ポリマーの特徴を十分に生かしかつ欠点を改良し、セラミックス、金属、半導体素子等との一体成形が可能で、熱膨張係数が低く、かつ熱伝導率が高いフィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品が提供できる。
 <フィラー高充填高熱伝導性材料>
 本発明に係るフィラー高充填高熱伝導性材料は、有機ポリマーと、グラファイト類似構造を有する熱伝導性フィラーとを含む、複合材料である。この際、フィラー高充填高熱伝導性材料は、その形成段階によって構成が定まるものであり、前記有機ポリマーおよび前記熱伝導性フィラー等を規定することにより一義的に特定することは困難である。この理由としては、例えば、本形態に係るフィラー高充填高熱伝導性材料は、後述するように熱伝導性フィラー内への有機ポリマーの浸透の度合い、熱伝導性フィラーの均一性等の規定することが困難な性質を有するからである。
 本形態に係るフィラー高充填高熱伝導性材料の熱伝導率は、10~150W/mKであることが好ましく、15~100W/mKであることがより好ましく、15~80W/mKであることがさらに好ましい。
 また、本形態に係るフィラー高充填高熱伝導性材料の熱膨張係数は、3×10-6~30×10-6-1であることが好ましい。本発明の一実施形態において、前記フィラー高充填高熱伝導性材料を半導体素子、セラミックス基板などの熱膨張係数の小さな材料と接する用途に用いる場合には、前記熱膨張係数は3×10-6~20×10-6-1であることがより好ましい。また、本発明の別の一実施形態において、前記フィラー高充填高熱伝導性材料をアルミニウム、銅などの金属類からなる放熱部品と接する用途に用いる場合には、熱膨張係数は10×10-6~30×10-6-1であることがより好ましい。
 さらに、本発明の別の一実施形態において、本形態に係るフィラー高充填高熱伝導性導電材料(熱伝導性フィラーが黒鉛の場合)の表面電気伝導度は、5~250(Ωcm)-1であることが好ましく、10~150(Ωcm)-1であることがより好ましく、20~150(Ωcm)-1であることがさらに好ましい。
 さらに、本発明の別の一実施形態において、フィラー高充填高熱伝導性絶縁材料(熱伝導性フィラーが六方晶窒化ホウ素の場合)の熱伝導率は、5~50W/mKであることが好ましい。また、表面電気伝導度は、10-10(Ωcm)-1以下であることが好ましく、10-15~10-11(Ωcm)-1であることがさらに好ましい。
 [組成物]
 (組成および形態)
 フィラー高充填高熱伝導性材料の形成に用いられる組成物は、有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラー(熱伝導性フィラー)を含む。この際、前記組成物は、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られる。また、前記組成物は、熱伝導性の無限大クラスターが形成される条件を有している。さらに、前記組成物には、その他、必要に応じて、公知の添加剤を添加してもよい。
 グラファイト類似構造を有する熱伝導性フィラーは、層状構造を有する粒子であり、層の面方向は強い結合で連結し、層間は弱い結合で連結している異方性物質である。当該グラファイト類似構造を有する熱伝導性フィラーは、面方向にずれ易いため潤滑・離型材として用いられうる。ここで、上記「層間剥離」とは、熱伝導性フィラーの面方向はそのままの連結状態を維持したまま、弱い結合で連結している層間が剥がれることを意味する。これにより、熱伝導性フィラーの平均面粒径を維持することができ、熱伝導性フィラーを組成物中に分散させることができる。なお、本明細書において、「面粒径」とは、層状構造を有する粒子の面方向の粒径を意味し、「平均面粒径」とは、面方向の面粒径の平均値を意味する。当該平均面粒径は、光学顕微鏡、電子顕微鏡などによる画像解析によって測定する値を採用するものとする。また、本明細書において、「平均面粒径を維持する」とは、平均面粒径の減少度が1/2以下であることを意味する。
 また、上記「無限大クラスター」とは、パーコレーション理論に基づくものであり、一般に、「パーコレーション理論」とは、対象とする物質が系内においてどのように繋がっているか、その特徴が系の性質にどのように反映しているかを対象とする理論である。具体的には、フィラー同士が十分に接触しパーコレーション(浸透)閾値に達すると、導電性フィラーの特定濃度(閾値)以上で凝集し、系全体が連なるクラスター(無限大クラスター)が形成される。そうすると、系全体にわたって、導電性が発現する。
 本発明では、熱伝導性フィラー周辺に介在する有機ポリマーの結晶性、相溶性等の形態が、電気伝導性だけでなく、熱伝導性や熱膨張性に特に大きく影響していることを見出した。なお、パーコレーション閾値は、熱伝導性フィラーの濃度、形状、有機ポリマー粒子との混合状態、熱伝導性フィラー間の結合状態に依存すると考えられる。ただし、電気伝導性は、熱伝導性に比べ、フィラーの形状や、樹脂の極性の影響を強く受け、それらにより一層敏感である。
 本形態において、前記組成物は、熱伝導性の無限大クラスターが形成される条件を有しており、当該条件は、組成物中の有機ポリマー粒子や熱伝導性フィラーの含有量、ならびに各成分の均一分散性、形状、モルフォロジー等を制御することによって実現できる。
 本形態に係る組成物が、無限大クラスターが形成される条件を有するか否かは、以下のように判断する。すなわち、前記組成物について、後述の方法でフィラー高充填高熱伝導性材料を形成し、当該フィラー高充填高熱伝導性材料を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて、微細構造を観察することにより直接的に判断できる。また、熱伝導性フィラー濃度に対して、材料の熱伝導率および/または電気伝導度をプロットしたときの物性の急激な上昇や、熱膨張係数をプロットしたときの材料の熱膨張係数の制御性から間接的に判断できる。
 (有機ポリマー粒子)
 本発明に用いる有機ポリマー粒子の平均粒子径は、通常1~5000μm、好ましくは5~500μmである。有機ポリマー粒子の平均粒子径が1μm以上であると、微粒化のための特別な装置が不要となる。一方、有機ポリマー粒子の平均粒子径が5000μm以下であると、分散不良を起こしにくくなる。粒子径の大きな塊状物を含む有機ポリマー粒子については、予め粉砕および/または破砕、分級等によって前処理して所望の平均粒子径にして使用することができる。
 有機ポリマー粒子は、好ましくは、グラファイト類似構造を有する熱伝導性フィラーに類似した芳香族炭化水素構造を有するものであり、該フィラー存在下でフィラー周辺、フィラー面方向に沿って結晶化することが特に好ましい。
 用いられうる有機ポリマー粒子としては、成形分野で使用されている結晶性および/または芳香族性を有する、熱可塑性樹脂および未架橋エラストマーからなる熱可塑性ポリマー、ならびに未硬化の熱硬化性樹脂からなる熱硬化性ポリマーが挙げられる。
 結晶性芳香族熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル(LCP)などの芳香族ポリエステル、ポリフェニレンスルフィド(PPS)、芳香族ポリイミド(PI)前駆体、フェノール(ノボラック型など)フェノキシ樹脂、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン、ポリベンズイミダゾール、ポリフェニレンオキサイドなど、公知の結晶性および芳香族性を有する熱可塑性ポリマーが挙げられる。これらの樹脂はフィラー間を、フィラー面上に成長したポリマーの結晶性および/またはフィラーとの相溶性によって強固に固定することができ、機械的物性を著しく損なうことなく、導電性または絶縁性、および熱伝導性を著しく高めること、ならびに熱膨張係数の適切な制御ができるため、特に好ましい。
 結晶性熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリケトン(PK)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、シクロオレフィンポリマー、ポリアセタール、超高分子ポリエチレン等、公知の結晶性を有する熱可塑性ポリマーが挙げられる。これらの樹脂はフィラー間を、フィラー面上に成長したポリマーの結晶化よって固定することができ、機械的物性を損なうことなく、導電性または絶縁性、および熱伝導性を高めること、ならびに熱膨張係数の制御ができるために好ましい。
 非結晶性芳香族熱可塑性樹脂としては、例えば、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリアリレート(PA)、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、液晶ポリマーなど、公知の芳香族置換基を有する熱可塑性ポリマーが挙げられる。これらの樹脂は、熱伝導性フィラーと類似した構造を有しているために、熱伝導性フィラー存在下に熱伝導性フィラーの面上および/またはその周辺で結晶化、または結晶化に至らなくとも類似構造を有する熱伝導性フィラーとの相溶性が高いことから、フィラー間を、フィラーの面上および/またはその周辺で固定することによって、機械的物性を著しく損なうことなく、導電性または絶縁性、および熱伝導性を高めること、ならびに熱膨張係数の制御ができるために好ましい。未硬化の熱硬化性樹脂は、単独で用いるよりは、前記熱可塑性樹脂と併用して用いる方が、溶融した際の粘度調整や、フィラー間や、異種材料間での接着性・相溶性を高める上で好ましい。
 未架橋エラストマーとしては、例えば、ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、シリコン系、フッ素系などの芳香族性置換基および/または結晶性オレフィン部分を有する熱可塑性エラストマーや、α-オレフィン単量体より形成されるオレフィン系重合体セグメントおよびビニル系単量体より形成されるビニル系重合体セグメントからなるグラフト共重合体を含む、芳香族性置換基および/または結晶性オレフィン部分を有する熱可塑性エラストマーなど、公知のエラストマーを挙げることができる。
 未硬化の熱硬化性樹脂としては、例えば、芳香族性置換基を有する、不飽和ポリエスエル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド、ベンゾオキサジンなど、公知の熱硬化性樹脂前駆体が挙げられる。熱硬化性樹脂前駆体は、通常、分子量の小さなオリゴマーであるため、分子量の大きな熱可塑性ポリマーおよび/または熱可塑性エラストマーと併用して用いた場合、硬化前には系内の流動性を高め、そのことによりフィラー層間へのポリマーの浸透性を高める。また、硬化反応と共に形成される官能基によって、フィラー間や、異種材料間の接着性を向上させる。さらに、融点の高いエンジニアリングプラスチックと併用すれば、成形温度を著しく下げることができる。この際、エンジニアリングプラスチックを溶媒で一度溶解したものに、熱硬化性樹脂前駆体を均一に分散したものを用いるとより効果的である。
 組成物の無限大クラスターが形成される条件を有するか否か、すなわち、有機ポリマーが熱伝導性フィラーの存在下に当該フィラーの周辺において部分的に結晶構造を構築し、熱伝導性フィラーによる熱伝導性の無限大クラスターを形成しているかどうかは、上述のように、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)などの電子顕微鏡を用いて、直接的に観察することができる。また、成形試験片の融解熱を測定することによって間接的に判断することができる。例えば、図7には、ポリカーボネートおよびポリエチレンを除いた芳香族結晶性樹脂の熱伝導率とフィラー当たりの融解熱の関係を示す。図7を参照すると、フィラー当たりの融解熱の増加と共に熱伝導率が増加することが分かる。芳香族非結晶性樹脂であるポリカーボネートは、成形試験片ではエージングしないと融点が現れず融解熱も小さいが、縮合反応で得られた直後のポリカーボネートは芳香族結晶性樹脂並みの融解熱を示す。すなわち、樹脂の結晶化を誘発するような、グラファイト類似構造を有するフィラー表面状では高い結晶化が起り、高い熱伝導率を示すものと思われる。ベンゾオキサジンのような熱硬化性樹脂前駆体についても同様なことが言える。ポリエチレンは、芳香族性樹脂ではないが高い融解熱を示すため、芳香族性樹脂に近い熱伝導率を与えるものと思われる。このように、フィラー周辺での樹脂の結晶化は材料の熱伝導率に大きな影響を及ぼしている。本発明に用いる有機ポリマー粒子としては、原料および/または成形品において結晶化することが必須であり、何らかの形において融解熱を示すことが必要である。
 上述の結晶性および/または芳香族性を有する、熱可塑性樹脂、未架橋エラストマー、ならびに未硬化の熱硬化性樹脂は、共重合体や変性体であってもよいし、2種類以上をブレンドした樹脂であってもよい。また、更に耐衝撃性向上のために、上記熱硬化性樹脂にエラストマーもしくはゴム成分を添加した樹脂であってもよい。
 これらの熱硬化性樹脂のなかで、特に、ベンゾオキサジンは、耐熱性に優れ、付加反応によって硬化が進むために揮発性副生成物が発生せず、かつ無触媒においても反応が進み、均一で緻密な樹脂相を形成できるので好ましい。
 前記ベンゾオキサジンは、ジヒドロ-1,3-ベンゾオキサジン環(以下、単に「オキサジン環」とも称する)を有する化合物であり、アミン類、フェノール類、ホルムアルデヒド類の縮合物で、通常、これら反応原料であるフェノール類、アミン類等の置換基、種類などによって生成するベンゾオキサジンの化学構造が決まる。本発明で用いられるベンゾオキサジンは、「オキサジン環」の誘導体であればよく、特に制限されないが、1分子中に少なくとも2個オキサジン環を有する化合物が好ましい。これは、架橋密度が高くなり、耐熱性の向上などの面で優れるからである。ベンゾオキサジンの具体例としては、四国化成社製Pd型ベンゾオキサジン、Fa型ベンゾオキサジンなどが挙げられる。
 オキサジン環を少なくとも2個有するベンゾオキサジンを誘導するためのアミン類としては、ジアミンを用いることができる。ジアミンとしては、例えば、4,4’-オキシジアニリン、4,4’-ジアミノジフェニルメタン、パラジアミノベンゼン、およびこれらにアルキル基、アルコキシ基、ハロゲン、芳香族炭化水素基などが置換した化合物などが挙げられる。これらのうち、4,4’-ジアミノジフェニルメタンを用いることが好ましい。
 フェノール類は、1価フェノール類としては、フェノール、クレゾール、キシレノール、ナフトールなどが挙げられ、多価フェノール類としては、ビスフェノール、およびこれらにアルキル基、アルコキシ基、ハロゲン、芳香族炭化水素基などが置換した化合物が挙げられる。ビスフェノールは、具体的にビスフェノールA、ビスフェノールF、ビスフェノールSなどが挙げられる。これらのうち、フェノールおよびビスフェノールを用いることが好ましい。
 ホルムアルデヒド類は、ホルムアルデヒド(水溶液)、パラホルムアルデヒドなどが用いられる。これらのうち、ホルムアルデヒドを用いることが好ましい。
 上記のようなアミン類、フェノール類、ホルムアルデヒド類からベンゾオキサジンを得るには、公知の方法を広く採用することができる。
 オキサジン環を少なくとも2個有するベンゾオキサジンは、ジアミン類、フェノール類およびホルムアルデヒド類を反応させる方法、ビスフェノール類、1級アミンおよびホルムアルデヒド類を反応させる方法などにより製造することができる。
 熱可塑性樹脂、熱可塑性エラストマーまたは熱硬化性樹脂からなる前記有機ポリマー粒子は混合物中では未架橋/未硬化のものである。そして、後述するように混合物を加圧下に加熱成形する際に熱可塑性樹脂を架橋してもよく、熱可塑性エラストマーまたは熱硬化性樹脂については、通常は架橋/硬化して利用する。
 改質目的に用いるエラストマーとしては、天然ゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコンゴム、アクリルゴム、クロルスルホン化ポリエチレンゴム、フッ素ゴム、水素化ニトリルゴム、エピクロルヒドリンゴム、多硫化ゴム等が挙げられる。
 これら有機ポリマー粒子のうち、耐熱性が高く、フィラー間を強固に固定して熱伝導性および電気特性などの諸物性を高める有機ポリマー粒子としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリカーボネートおよびベンゾオキサジンが好適であり、使用目的により、上記の様々なポリマー粒子を組み合わせ使用することによって、有機ポリマーの特徴を最大限に発揮できる。
 (グラファイト類似構造を有する熱伝導性フィラー)
 本発明に用いる熱伝導性フィラーは、グラファイト類似構造を有する。当該熱伝導性フィラーとしては、鱗片状黒鉛、塊状黒鉛、土壌黒鉛などの天然黒鉛、人造黒鉛、膨張黒鉛などの通常は導電性を有する黒鉛類(グラファイトと同義語)や、六方晶窒化ホウ素、六方晶炭化ケイ素、六方晶窒化珪素などの通常は絶縁性を有する熱伝導性セラミックス、ならびにこれらの混合物からなる成形分野で使用されている公知の熱伝導性フィラーを、特に制限なく使用できる。これらのなかで、鱗片状黒鉛および六方晶窒化ホウ素が、それぞれ、導電性または絶縁性の高い高熱伝導性材料を与えることから特に好ましい。
 黒鉛類としては、さらに、人造黒鉛電極を粉砕したもの、粉末コークスを3000℃で熱処理して黒鉛化を行ったもの、グラファイトシートを裁断・粉砕したもの、鱗片状黒鉛を球状化などして得られる黒鉛粉末、使用済みまたは廃材となった炭素繊維を熱処理して得られるリサイクル品も用いることができる。
 天然黒鉛はもともと石油・石炭と同じく、古代の生物・植物が腐敗分解する前に地中に埋もれ長い期間地熱や地圧を受けて変質されることにより生成された鉱物である。大部分を構成する元素は炭素であるがそれ以外の不純物としては二酸化ケイ素、酸化アルミニウムなどが微量に含まれている。当該天然黒鉛としては、鱗片状黒鉛、塊状黒鉛、および土壌黒鉛等が挙げられる。
 鱗片状黒鉛は、主に、中国・アメリカ・インド・ブラジルなどの鉱山から産出されるアスペクト比が大きいウロコ状の黒鉛であり、一般的に鱗片が大きいほど耐熱性が高い。平均粒径8~200μm程度、炭素分85~99%のものが多く市販され、異方性ではあるが200W/mK以上の高い熱伝導率を有する。
 塊状黒鉛は、スリランカにて産出される塊状の天然黒鉛であり、岩石中10数%の含有率である鱗片状黒鉛に対し、塊状黒鉛は95%程度の含有率の鉱脈から産出される。粒子は塊状であるためアスペクト比は小さい。
 土壌黒鉛は、主に中国・韓国・北朝鮮にて産出される土塊状の黒鉛類であり、鱗片状黒鉛と比べ水分とのなじみが良いため、多くの分野で使用されている。平均粒径5~20μm程度、炭素分80~90%のものが市販されている。
 人造黒鉛は、コークス粉末にピッチを混ぜ合わせたものを成型し、3000℃程度の高温焼成工程を経て人工的に結晶を発達させた黒鉛類であり、不純物が少なく硬度が高い。
 膨張黒鉛は、酸処理した鱗片状黒鉛に熱を加え黒鉛結晶の層間を数百倍に膨張させた黒鉛類である。鱗片状黒鉛の特性を兼ね備えながらも比重が大変軽く不純物も少ないので、様々な分野でのフィラーに利用がされている。
 六方晶窒化ホウ素とは、黒鉛類に似た燐片状結晶構造を有する白色粉末で、「白い黒鉛」とも呼ばれる化学的に安定な材料である。六方晶窒化ホウ素は、熱伝導性、耐熱性、耐食性、電気絶縁性、潤滑・離型性に優れた材料として各種マトリックスへの添加材として広く使用されており、公知のものがそのまま利用できる。鱗片状又は多角板状の形態が一般的で、その一次粒子を複合集合させた凝集粉末もあるが、鱗片状のものが好ましい。異方性を有しているが、成形体では約60W/mKの高い熱伝導率を有している。
 炭化ケイ素は、六方晶系のα型炭化ケイ素と立方晶系のβ型炭化ケイ素の二種類に大別でき、電気絶縁性で硬度も大きく熱伝導率も高く、半導性を利用した発熱体やバリスタとしての応用のほかに、大きい硬度を利用した構造材料として応用が進んでいる。これらの基本層構造は、最密充填構造をとっており、層の積み重ね周期の違いによって区別される。これらのうち、β型炭化ケイ素は、ダイヤモンド構造における炭素(C)の半分をケイ素(Si)に置換した閃亜鉛鉱(ジンクブレンド)型構造の1種類に限られる。一方、α型炭化ケイ素は、ウルツ鉱(ウルツァイト)型の結晶構造を基本としている。α型炭化ケイ素の結晶構造は基底面に沿って拡がった基本の層構造を積み重ねたものとして描くことができ、本発明に用いる熱伝導性フィラーとして好ましい。
 窒化ケイ素は無色の化合物で、組成がSiのものだけが安定相であると考えられており、六方晶系結晶のα型、三方晶系結晶のβ型及びアモルファスの3種類の形態が存在する。アモルファスは比較的低温で作られ、組成は必ずしも一定しておらず、加熱によりα型になる。α型は低温相であり、1400~1600℃でβ型へ非可逆的に転移する。β型は高温まで安定だが、1800~1900℃で熱分解する。非常に硬く、摺動性に優れ、耐熱性・耐食性にも優れた材料で、各種耐磨耗部材、摺動部材、高温構造部材、耐食部材として卓越した性能を発揮する。また、鉄以上の高い熱伝導性と、組成によっては電気伝導性を持たせることもでき、各種機能部材への応用も可能な非常にユニークなハイテクセラミックスである。本発明に用いる熱伝導性フィラーとしては六方晶系結晶のα型が好ましい。
 本発明のグラファイト類似構造を有する高熱伝導性フィラーの平均粒径は、1~2000μm、好ましくは3~200μmである。熱伝導性フィラーの平均粒径が1μm以上であると、表面積が低下し、フィラー界面での熱および電気伝導の損失を低減しうる。一方、熱伝導性フィラーの平均粒径が2000μm以下であると、分散不良が起こりにくいことから好ましい。
 粒径の大きな塊状物を含むフィラーについては、予め粉砕および/または破砕、分級等により前処理し、所望の平均粒子径にして使用することが望ましい。粒径の異なる熱伝導性フィラーの併用や、フィラー形状の制御によって高熱伝導化を図る公知の方法も利用できる。
 (組成物の調製方法)
 本形態に係る組成物は、5~60重量%の有機ポリマー粒子と、40~95重量%のグラファイト類似構造を有する熱伝導性フィラーと、を必要に応じて破砕した後、混合することにより調製することができる。しかし、あまりにも大きな力を用いて混合すると微粉化が起り、このため熱伝導性フィラーの表面積が著しく大きくなり、粒子界面において熱伝導の阻害が起こり好ましくない。そこで、本形態では、熱伝導性フィラーの平均面粒径を維持しつつ、組成物中で熱伝導性フィラーを均一に分散させる方法で混合することが好ましい。当該混合方法として、層間剥離を用いた方法が挙げられる。なお、前記組成物には、有機ポリマー粒子および熱伝導性フィラーとともに、公知の添加剤が含まれうる。
 有機ポリマー粒子および熱伝導性フィラー等を混合する方法は、袋または缶に入れて手動で混合する方法;タンブラーなどを用いる方法;ヘンシェルミキサー、スーパーミキサー、ハイスピードミキサーなどの粉体混合機を用いる方法;ジェットミル、インパクトミル、アトリションミル、空気分級(ACM)ミル、ボールミル、ローラーミル、ビーズミル、メディアミル、遠心ミル、コーンミル、ディスクミル、ハンマーミル、ピンミルなどの粉砕機を用いる方法;およびこれらを組み合わせた方法などがある。
 手動で混ぜる方法や、タンブラーを用いる方法は、粉体粒子間にせん断力などの大きな力がかからないので粉体の損傷や変形を防止することができるが、有機ポリマー粒子と熱伝導性フィラーとのそれぞれの微細粒子を十分に均一に混合し、有機ポリマーが該フィラー間に十分に浸透させることで、該フィラー間の空隙(ボイド)を除くことにより(そのため密度が向上)、熱伝導性の無限大クラスターが十分に形成させる観点からは、手動で混ぜる方法およびタンブラーを用いる方法以外の方法で混合を行うことが好ましい。
 混合機および/または粉砕機を用いる方法は、粉体粒子に圧縮力、せん断力、衝撃力、摩擦力などの大きな力がかかるため均一混合ができ、本発明には好ましい。これらの混合機および/または粉砕機のうち、ボールミルを用いることが好ましい。ボールミルは、セラミックなどの硬質のボールと、材料の粉体を円筒形の容器に入れて回転させることによって、摩擦力や、衝撃力によりボール表面に付着した材料をすりつぶして分散した粉末を作る装置であることから、できるだけフィラー層の面粒径を維持しながら層間剥離により分散することができる。その結果、層構造を有する本発明の熱伝導性フィラーの混合および/または粉砕には特に好ましい。例えば、図9~12には、原料として用いた鱗片状黒鉛および炭素短繊維と、これらのフィラーとPPSとをボールミルで混合した組成物のSEM写真を示す。層構造を有する鱗片状黒鉛はボールミルで粉砕混合した後も、原料の粒径をほぼ維持し高い熱伝導率を示すが、棒状の炭素短繊維の場合には、微粉化が起り、熱伝導率は著しく低下する。
 混合および粉砕する際に用いる原料のサイズまたは形状は、特に厳密に制御する必要はないが、品質を維持するために予め決められた範囲のものを用いることが好ましい。
 混合時間は、特に制限されないが、0.2~15時間であることが好ましく、0.5~5時間であることがより好ましい。
 また、混合および/または粉砕によって得られた均一組成物(有機ポリマー粒子および熱伝導性フィラー)の平均粒径は、好ましくは0.5~1000μm、より好ましくは1~500μmである。組成物の平均粒径が0.5μm以上であると、表面積の低下によりフィラー間の接触面積が減少し、接触によって生じる損失により熱伝導率および電気特性の低下を防止できる。一方、組成物の平均粒径が1000μm以下であると、樹脂が均一に分散し、樹脂-フィラー間の接触不良による強度低下を防止できる。
 原料として用いる有機ポリマー粒子および熱伝導性フィラー、ならびに組成物中での有機ポリマー粒子および熱伝導性フィラーの平均粒径の測定には、動的光散乱法、レーザー回析法、光学顕微鏡・電子顕微鏡を用いる画像イメージング法、重力沈降法などの公知の方法を用いることができる。また、層間剥離のレベルは、光学顕微鏡・電子顕微鏡で直接的に、または材料の熱伝導率、電気伝導度、熱膨張係数、機械的物性などの測定によって間接的に求めることができる。
 本発明の組成物中での有機ポリマー粒子の割合は、5~60重量%、好ましくは10~50重量%である。有機ポリマー粒子の割合が5重量%未満であると熱伝導性フィラーの分散不良による強度低下などが起こる。一方、有機ポリマー粒子の割合が60重量%を超えると、熱伝導性パスが形成し難く(パーコレーション閾値に達しない)、熱伝導率の急激な減少に繋がる(ただし、有機ポリマー粒子の割合が60重量%以下となる場合であっても、混合状態等によっては、無限大クラスターが形成されない場合がありうる)。
 一方、組成物中での熱伝導性フィラーの割合は、40~95重量%、好ましくは50~90重量%である。熱伝導性フィラーの割合が40重量%未満であると、熱伝導性の無限大クラスターが生成し難く、熱伝導性、電気特性、低熱膨張性などの物性の著しい低下が起こり好ましくない。一方、熱伝導性フィラーの割合が95重量%超であると、熱伝導性フィラーの分散不良が起り、強度などの機械的物性が著しく低下し好ましくない。
 本発明の組成物には、本発明の目的に齟齬を来たさない範囲で、必要に応じて公知の添加剤、補強剤および/またはフィラーを適宜使用することができる。添加剤としては離型剤、難燃剤、酸化防止剤、乳化剤、軟化剤、可塑剤、界面活性剤、カップリング剤、相溶化剤等を挙げることができる。補強材としては、ガラス繊維、炭素繊維、金属繊維および無機繊維からなる短繊維を挙げることができる。他のフィラーとしては、炭酸カルシウム(石灰石)、ガラス、タルク、シリカ、マイカ、金属粉、金属酸化物、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ダイヤモンド、使用済みまたは廃材となった炭素繊維を熱処理して得られるリサイクル品等を挙げることができる。
 [組成物のプレス成形、および冷却、固化]
 本発明のフィラー高充填高熱伝導性材料は、上述の組成物を、有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形し、得られた材料を冷却、固化することにより、得ることができる。なお、熱プレス成形の際に金型内を真空または減圧にすることによって、金型内の原料組成物に含まれる空気または気泡や、プレス成形時に発生する気泡を除くことができ、成形品の熱伝導率等の諸物性を高めることができ好ましい。
 前記プレス成形は、金型を用いる圧縮成形および熱ロールを用いるシート成形など公知の熱プレス方法を用いることができる。この際、溶融混合されていない原料組成物を用い、金型内またはロール加熱によって溶融する必要であり、熱伝導性フィラー間に溶融ポリマーをしみ込ませることができる。また、冷却・固化により、有機ポリマーを結晶化させて、熱伝導性フィラー間に高度な熱伝導性パスを形成することができる。
 前記プレス成形の圧力は、1~1000kgf/cm、好ましくは10~500kgf/cmである。プレス成形の圧力が1kgf/cm以下であるとボイドが抜けず密な成形品が得られない。一方、プレス成形の圧力が1000kgf/cm以上であると、液化または軟化したポリマーが金型の間隙に液漏れして離型し難くなる。
 ここで、原料、組成物、材料および成形品の違いは、原料は原材料のことであり、組成物とは各原料が均一に分散混合した不定形の原料混合物(粉体)あり、材料とは組成物から得られる形状に拘らない不定形の固形物であり、成形品とは一定の形状を有する固形物のことを言う。
 組成物を有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度で加熱することにより、有機ポリマー粒子を液化または軟化させることができる。これにより、ひとつのフィラーと他のフィラーとの隙間に液化または軟化ポリマーを浸み込ませることができ、有機ポリマーだけからなるA相とフィラーを主成分として含有するB相とが絡み合い、B相が3次元網目構造を形成する。熱伝導性フィラー濃度がパーコレーション閾値以上であることから、熱伝導性フィラーの層端面において熱伝導性フィラー同士は十分密に接触し、熱伝導性フィラーが系全体に広がったクラスターとして存在する。冷却段階では、外部からの冷気は熱伝導性が著しく高いフィラーを含有するB相から冷却が進行し、次いで周辺のポリマーの固化および/または結晶化が進行し、フィラー周辺での効率的な固化・固定化が起る。
 特に、グラファイト構造を有するフィラーと、好ましい有機ポリマーである芳香族結晶性樹脂とは類似した構造を有しているため、層面に沿って結晶化が進行する。そうすると、ポリマーの結晶構造によりフィラー層周辺を覆うことにより、非晶性ポリマーが介在していると思われるフィラー層端面間を十分密に接触した状態で固定化し高度な熱伝導性パスを形成することができる。
 プレス成形時の温度は、結晶性ポリマーでは融点を、非結晶性ポリマーではガラス転移温度を、融点またはガラス転移温度が不明または無い場合は、荷重たわみ温度を尺度として、それ以上の温度とする。なお、荷重たわみ温度、融点、およびガラス転移温度は、用いる有機ポリマーの種類に応じて異なる。
 次に、プレス成形により得られた材料を冷却、固化する。
 冷却温度は、特に制限されないが、有機ポリマーの融点、ガラス転移温度および荷重たわみ温度を目安として、有機ポリマーが固化する温度であり、0~100℃であることが好ましく、10~50℃であることがより好ましい。
 また、冷却時間は、特に制限されないが、0.05~3時間であることが好ましく、0.5~1.5時間であることがより好ましい。
 有機ポリマーの結晶化度は、示差走査熱量分析装置(DSC)を用いて得られる融解熱を1つの尺度とすることができる。熱伝導性フィラー含有有機ポリマーの結晶化度は、樹脂当たりの融解熱およびフィラー当たりの融解熱によって表わすことができるが、前者は、通常は熱伝導性フィラー濃度が増加すると共に減少する。これは熱伝導性フィラー濃度の増加と共に、結晶化し難い熱伝導性フィラー層端面間に非晶性ポリマーが多く存在するものと予想されるからである。フィラー当たりの融解熱は、フィラー重量部に相当する樹脂当たりの融解熱であり、熱伝導率に寄与する有効な融解熱(結晶)量である。非晶性有機ポリマーと分類される有機ポリマーであっても、成形前の粉体原料が融解熱を有するもの(モノマーからポリマーへの重合が進行する時には、結晶化し易い最適な構造が無理なく取り易い)は、アニーリングにより分子の再配列が起こり、融解熱を示すようになる。すなわち、非晶性有機ポリマーと分類されるものでも、芳香族基を有するものは、グラファイト類似構造を有する熱伝導性フィラー面上では結晶化が起こり、熱伝導性フィラー層端面間を固定できることを示す。
 <フィラー高充填高熱伝導性材料の製造方法>
 本発明の一形態によれば、フィラー高充填高熱伝導性材料の製造方法が提供される。当該製造方法は、有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、前記熱伝導性フィラーの平均平面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られ、かつ、熱伝導性の無限大クラスターが形成される組成物を調製する工程(1)と、前記組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形する工程(2)と、前記工程(2)で形成された材料を、冷却、固化する工程(3)と、を含む。
 上記工程(1)~(3)は、上述の方法が適宜採用されうる。
 <フィラー高充填組成物>
 本発明の一実施形態によれば、粉体混合物としてのフィラー高充填組成物が提供される。当該フィラー高充填組成物は、上述のフィラー高充填高熱伝導性材料を提供する。その他、前述の公知の添加剤、補強剤および/またはフィラー、例えば、離型剤、難燃剤、酸化防止剤、乳化剤、軟化剤、可塑剤、界面活性剤、カップリング剤、相溶化剤、ガラス繊維、炭素繊維、金属繊維および無機繊維からなる短繊維、炭酸カルシウム(石灰石)、ガラス、タルク、シリカ、マイカ、金属粉、金属酸化物、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ダイヤモンド、使用済みまたは廃材となった炭素繊維を熱処理して得られるリサイクル品等を含んでいてもよい。当該フィラー高充填組成物については、上述の組成物に係る記載が適宜採用される。
 <塗料液>
 本発明の別の実施形態によれば、塗料液が提供される。当該塗料液もまた、上述のフィラー高充填高熱伝導性材料を提供する。前記塗料液は、フィラー高充填組成物および分散媒体を含む。当該塗料液は、基材への塗付後、分散媒体を加熱、減圧などの手段を用い取り除くことによって、膜厚10mm以下の均一な高熱伝導性材料のフィルムや、コーティグ層を作製することができ、接着剤としても利用できる。
 分散媒体としては水(沸点100℃)媒体;メチルエチルケトン(沸点80℃)、トルエン(沸点111℃)、フェノール(沸点182℃)、テトラリン(沸点207℃)などの油溶性有機媒体;t-ブタノール(沸点82℃)、エチレングリコール(沸点196℃)などの水溶性有機媒体;およびこれらの混合媒体を挙げることができる。
 用いる分散溶媒の沸点は、70~200℃であることが好ましい。70℃以上であると、分散溶媒の飛散による火災や、職場環境の悪化の心配がなく、200℃以下であると、分散媒体の残留による熱伝導率を著しく低下を防ぐことができる。
 水媒体を用いる場合にはフィラー高充填組成物の凝集や、分離が起り易いため、通常は乳化剤、分散剤などの分散安定剤を用いる。これらの分散安定剤は、電気特性、熱伝導性などの物性に悪影響を及ぼすことが多いため、分散安定性の良い有機媒体を用いる方が好ましい。有機媒体を用いる場合に注意しなければならないことは、有機ポリマーが溶解するような分散媒体および/または分散条件で用いると、有機ポリマーが熱伝導性フィラーの周辺を被覆し、または有機ポリマーの単独膜を形成し、熱伝導性のクラスター形成を阻害する。このため、適切な有機媒体およびこれらの組み合わせや、分散温度、分散方法などの分散条件を適切に選択する必要があり、特に、油溶性媒体と水溶性媒体の組み合わせにより、組成物の均一分散を維持しつつ有機ポリマーの溶解を防ぐことができ好ましい。有機ポリマー粒子を油溶性媒体に溶解したものを熱伝導性フィラーを分散した水溶性媒体中に滴下して有機ポリマーを析出させた混合媒体分散液を用いることが特に好ましい。
 フィラー高充填組成物と分散媒体との分散方法については、ホモミキサー、ホモジナイザーなどの機械的分散や、超音波を用いる分散方法など、均一混合・均一分散できる公知の方法を用いることができる。塗料液中のフィラー高充填組成物の濃度は、10~50重量%であることが好ましい。塗料液中のフィラー高充填組成物の濃度が10重量%以上であると、有機ポリマーと当該熱伝導性フィラーの分離が起り難く、50重量%以下であると希釈による均一な薄膜を作製し易い。有機媒体を用いる場合にも、高熱伝導性材料の物性に悪影響を及ぼさない範囲において公知の分散安定剤を用いることができる。
 また、前記フィラー高充填組成物は、後述するシート、フィルム等を含む成形品の製造に使用されうる。
 <成形品>
 本発明に係る成形品は、シート、フィルム等を含むもので、粉体の状態で賦形し加熱成形する公知の粉体成形方法、例えば熱プレス成形方法を用いることができ、所望の形状になるような金型を用いることによって、用途に応じた形状の成形品を容易に得ることができる。特にシートや、フィルムを製造する際には、塗料液または分散媒体が含浸した状態で用いることが好ましい。また、成形原料として異なった素材を用いることにより多相構造や、傾斜構造を有する成形品、例えば、絶縁相および導電相からなる2相構造、または、絶縁相とフィラー濃度の異なる導電相とからなる傾斜構造を有する一体成形品を得ることができる。この際に、各素材からなる組成物を粉体の状態で別々に賦形し、最後に成形し一体成形品を得る方法、各素材からなる組成物を段階ごとに成形し、最後に一体成形品を得る方法などの公知の方法を用いることができる。このようにして、半導体素子や、セラミックス基板あるいは金属放熱部品との熱膨張係数の差を小さくできる。
 また、上述の塗料液を基材に塗布・乾固する方法によって得られたフィラー高充填高熱伝導性材料を用いて成形品を形成することもできる。
 成形品中での有機ポリマーおよび熱伝導性フィラーの割合は、成形の際に補強材として用いる不織布を除いて、基本的には組成物と同じであり、また組成物の場合と同様に、本発明の目的に齟齬を来たさない範囲で、必要に応じて公知の添加剤、補強剤材、および/またはその他のフィラーを含有することができる。添加剤としては離型剤、難燃剤、酸化防止剤、乳化剤、軟化剤、可塑剤、界面活性剤、カップリング剤、相溶化剤等を挙げることができる。補強材としては、ガラス繊維、炭素繊維、金属繊維および無機繊維からなる短繊維、ならびにこれらの繊維からなる不織布、使用済みのまたは廃材となった炭素繊維を熱処理して得られるリサイクル品等を挙げることができる。その他のフィラーとしては、炭酸カルシウム(石灰石)、ガラス、タルク、シリカ、マイカ、金属粉、金属酸化物、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ダイヤモンド等を挙げることができる。これらの添加剤、補強剤および/またはその他のフィラーは、原料混合物に添加して使用するのが一般的であるが、補強材として用いるとき、繊維、不織布などの場合は、成形段階において使用することが望ましい。
 本発明の高熱伝導性材料および成形品は、このように構成されているために、熱伝導性フィラー高充填材料にもかかわらず、機械的強度を維持しつつ、例えば、黒鉛を使用する場合には、熱伝導率が10~150W/mKであり、熱膨張係数が3×10-6~30×10-6―1であり、表面電気伝導度が5~200(Ωcm)-1であることが好ましい。一方、六方晶窒化ホウ素を用いる場合には、熱伝導率が5~50W/mKであり、熱膨張係数が3×10-6~30×10-6―1であり、電気伝導度が10-10(Ωcm)-1以下であることが好ましい。従って、使用用途に合わせて導電性、絶縁性、電磁波シールド性など他の機能をも付与させることが可能である。また、ポリマー相が3次元絡み合い構造を有するため、有機ポリマーとして、熱可塑性樹脂および熱可塑性エラストマーを用いる場合には、本発明の成形品と他のポリマー含有材料からなる成形品とを、超音波溶着またはスピン溶着によって容易に接合することができる。さらに材料間の熱膨張係数の差を極力小さくできるため、低温から高温、高温から低温に至る熱サイクルに対する安定性が良く、使用用途に合った様々な形状および性能を有する各種製品の製造を可能とする。特に、傾斜材料、すなわち、組成、組織が異なる複数の素材が連続的に変化し一体的に組み合わされた材料とすることで、半導体素子やセラミックス基板のような熱膨張係数の小さな材料と、アルミニウム、銅のような熱膨張係数の大きな材料との一体成形によって、材料間の歪の少ない成形品を提供できる。
 好ましい実施形態において、前記成形品は、前記フィラー高充填高熱伝導性材料が絶縁性を有する層と導電性を有する層とが、2層積層されてなることが好ましい。この際、前記2層の一方の層が、熱伝導率が15~120W/mKであり、熱膨張係数が3×10-6~30×10-6-1であり、表面電気伝導度が10~200(Ωcm)-1の導電性を示すことが好ましい。また、前記2層のもう一方の層が、熱伝導率が5~50W/mK以上であり、熱膨張係数が3×10-6~10×10-6-1であり、電気伝導度が10―11(Ωcm)-1以下の絶縁性を示すことが好ましい。この際、前記導電性または絶縁性を示す各フィラー高充填高熱伝導性材料の層は、傾斜材料にして、異種材料界面での熱膨張係数の差をできるだけ小さくすることができる。本発明の成形品は、有機ポリマーが均一に混合した状態で存在するため、穴あけや、様々な形状への切削加工がし易く、精度の高い微細加工を施すことができる。
 このように本発明の高熱伝導性材料および成形品は、異種材料および別の成形品との接合において、グリース、接着剤、フェースチェンジ材、ボルト接合等を用いないで、熱伝導損失のない強固な接合が可能となり、部品のパッケージ化が可能となり、部品点数および作業工程を大幅に削減できる。また、セラミックスや、金属に比較して、黒体に近い高い熱放射率を有しているため、材料自身が本来持っている熱伝導性をかなり超えた放熱特性を発揮できる。
 かくして得られる成形品は、用いるグラファイト類似構造を有する熱伝導性フィラーの特徴を極限まで生かしつつ、有機ポリマーの有する軽量性、成形加工性、切削加工性、一体成形性、寸法安定性、用途に合わせた物性の改良などの特徴を発現できる。例えば、高放熱用途、金属代替用途、セラミックス代替用途、電磁波シールド用途、高精度部品(低寸法変化)、高導電用途、絶縁用途、各種パッキン等に有用である。具体的には、各種ケース、ギヤーケース、LEDランプ関連部品、リチウムイオン電池関連部品、燃料電池関連部品、コネクター、リレーケース、スイッチ、バリコンケース、光ピックアップレンズホルダー、光ピックアップスライドベース、各種端子板、変成器、プリント配線板、液晶パネル枠、パワーモジュールおよびそのハウジング、プラスチック磁石、半導体素子基板および関連放熱部品、液晶ディスプレー部品、投影機等のランプカバー、FDDキャリッジ、FDDシャーシ、アクチュエーター、シャーシ等のHDD部品、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)、コンパクトディスク・デジタルビオディスクなどの音声器部品、照明部品、冷蔵庫部品、エアコン部品などに代表される家庭および事務電気製品部品;オフィスコンピューター関連部品、電話機関連部品、携帯電話関連部品、ファクシミリ関連部品、印字ヘッドまわりおよび転写ロール等のプリンター・複写機関連部品、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器・精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、モーターコア封止材、インシューレーター用部材、パワーシートギアハウジング、エアコン用サーモスタットベース、エアコンパネルスイッチ基板、ホーンターミナル、電装部品絶縁板、ランプハウジング、LEDランプ放熱部品、リチウムイオン電池放熱部品、燃料電池セパレータ、点火装置ケースなどの自動車・車両関連部品;パソコンハウジング、携帯電話ハウジング、その他情報通信分野におけるチップアンテナ、電磁波などの遮蔽性を必要とする設置アンテナ等の部品などの筐体用途等幅広い分野;その他、高寸法精度、電磁波シールド性、気体・液体等のバリアー性を必要とする隔壁板、熱および電気伝導性もしくは絶縁性を必要とする用途、屋外設置用機器あるいは建築部材に有用に用いられ、特に軽量化、形状自由度が要求され、金属代替が切望されている自動車部品用途、航空機部品分野、電気・電子部品用途、熱機器部品用途等に有用である。
 以下、実施例、比較例および参考例を挙げて本発明を具体的に説明するが、本発明の範囲はこれに限定されるものではない。なお、原料、試験片の作成および評価は以下のように行った。
 (1)原料:
 [有機ポリマー粒子]
 ポリフェニレンスルフィド(PPS)粉末:株式会社クレハ製W203Aナチュラル、白色粉末、リニアー型、粒径100~500μm、融点296℃、融解熱33J/g、熱膨張係数50×10-6-1
 ポリフェニレンスルフィド(PPS)ペレット:DIC株式会社製FZ-2100BK、黒色ペレット、架橋型、形状 内径約1.5mm×長さ約2mm、融点280℃、融解熱28J/g、熱膨張係数40×10-6-1
 ポリエチレンテレフタレート(PET):廃PETボトルリサイクル品、白色フレーク、粒径1~2mm、融点254℃、融解熱31J/g、熱膨張係数60×10-6-1
 ポリカーボネート(PC):鹿島ポリマー株式会社製ナチュラル、白色フレーク、粒径0.1~0.5mm、融点236℃、融解熱26J/g、熱膨張係数70×10-6-1
 ポリエチレン(PE):三洋化成工業株式会社製低融点PE、サンワックス161-P、白色粉末、粒径0.01~0.1mm、融点110℃、融解熱25J/g、熱膨張係数110×10-6-1
 ベンゾオキサジン:四国化成工業株式会社製P-d型ベンゾオキサジン、粉末、粒径0.01~0.1mm、融点242℃、融解熱25J/g
 [グラファイト類似構造を有する熱伝導性フィラー]
 鱗片状黒鉛(GF):(株式会社中越黒鉛工業所製BF-40K、鱗片状黒色粉末、平均粒径40μm、熱伝導率150~200W/mK
 窒化ホウ素(BN):昭和電工株式会社製六方晶窒化ホウ素単粒タイプUHP-2、平均粒径9~12μm、成形品熱伝導率60W/mK
 [その他の熱伝導性部材]
 炭素短繊維:三菱樹脂株式会社製ダイアリードK223HE、ピッチ系炭素繊維、円柱状、平均繊維長6mm、繊維径11μm、熱伝導率550W/mK
 [他のフィラー]
 窒化アルミニウム:株式会社トクヤマ製高純度Hグレード、白色粉末、平均粒径約3μm、熱伝導率180~200W/mK、熱膨張係数4.2×10-1-6
 (2)ポリマーの融点および融解熱の測定:
 Rigaku社製示差走査熱量分析装置DSC8230を用いて、原料および金型で作製した成形品試験片の一部を採取し発熱挙動を測定し、吸熱ピーク温度(℃)および樹脂当たりの融解熱(J/g樹脂)を求め、それぞれ融点(℃)および結晶化度の目安とした。さらに、樹脂当たりの融解熱(J/g樹脂)に熱伝導性フィラーの重量割合(重量%÷100)を乗じて、フィラー重量部に相当する樹脂当たりの融解熱を求め、フィラー当たりの融解熱(Jg樹脂)とし、フィラー周辺に存在する樹脂の結晶部分の尺度とした。
 (3)原料および組成物の平均粒径の測定:
 レーザー回析式粒度分布測定装置LA-500を用いた、累積度50%粒度から平均粒径の測定、またはSEM観察および拡大鏡による粒径の幅のある概算値で示した。
 (4)走査型電子顕微鏡(SEM)観察:
 日立製作所製走査型電子顕微鏡(SEM)S-4800(分解能:1.0nm、加速電圧:0.5~30kV、倍率:×20~800,000)を用いて、原料および組成物の粒径および形状を観察した。
 (5)密度の測定:
 所定の厚さになるように組成物粉末を試験片作成用金型に入れ、卓上油圧式熱プレス機を用い、加圧下に所定の温度および時間加熱して、成形品試験片を作製した。試験片の重量および体積から密度を求めた。一方、2軸押出機を用い得られた成形品試験片の密度については水中法で測定した。
 (6)熱伝導率および電気伝導度の測定:
 成形品試験片の熱伝導率は、京都電子工業社製ホットディスク法熱物性測定装置(TPS2500S)を用いて測定した。ホットディスク法は、ホットディスクセンサーから発した熱が試験片内を伝わり、その熱が試験片の末端まで届かない範囲で測定することを念頭に置くものであり、ある一定の深さの試験片表面近辺の熱伝導性を測定するものである。また、三菱アナリテック社製低抵抗率計ロレスターGP(四探針法)を用いて、JISK7194に準拠して同試験片の表面および断面での電気伝導度を測定した。電気伝導度が10-7(Ωcm)-1以下の場合(測定限界)には、三菱アナリテック社製高抵抗率計ハイレスターUX型式MCP-T800(二重リング電極法)を用いて、JISK6271に準じて体積抵抗率を測定し、電気伝導度(Ωcm)-1(断面電気伝導度に相当)に換算し用いた(測定限界10-15(Ωcm)-1)。
 (7)熱膨張係数の測定:
 熱プレス成形により得られた成形品試験片をカットして、縦約3.6mm×横約3.6mm×長さ13mm以下の測定試料を作成し、株式会社島津製作所製熱膨張測定装置(TMA60)を用い、5℃/分の速度で加熱し、27~180℃まで10分刻みでの温度の熱膨張係数を測定し、実施例および比較例には160℃における熱膨張係数の値を記載した。
 (8)曲げ試験
 熱プレス成形により得られた成形品試験片をカットして、幅約10mm×厚さ約10mm×長さ約40mmの測定試料を作成し、株式会社島津製作所製万能試験機(AG-100kNE型)を用いて、JISK7171に準拠し、曲げ強度および曲げ弾性率を測定した。ただし、2軸押出機を用いて得られた成形試験での測定試料(比較例3~8)の寸法は、幅10mm×厚さ4mm×長さ80mmである。
 (9)放熱試験
 雰囲気温度30℃に設定した恒温槽中において、くし型のフィン構造をした放熱部品のフィン部分を上にして設置した。ヒーター部分がポリイミドで封止されている7.68Wの加熱ヒーターを、加熱ヒーターと放熱部品の間には市販の熱伝導性シリコングリースまたは高熱伝導性絶縁材料を用い固定した。恒温槽内ではヒーター部分が下になるように設置し、ヒーター部分と雰囲気が接する界面、ヒーター真上直近の放熱部品基礎部と雰囲気とが接する界面および放熱部品フィンの先端部と雰囲気とが接する界面の3箇所に熱電対を、同じポリイミドテープで固定し、温度を測定した。温度測定値をデータロガーに取り組み、温度変化を測定し、平衡状態に達した時間、そのときのヒーター部の温度(T)、ヒーター真上直近部の温度(T)、フィン先端部の温度(T)および恒温槽雰囲気温度(T)を測定し、各温度間の熱抵抗(R=ΔT/W)を求め、放熱特性の目安とした。
 [実施例1~4、比較例1および2]
 フィラー高充填組成物を作製し、金型および熱プレス機を用い、粉体状態で注型し、加圧・加熱下にプレス成形を行い、試験片(成形品)を作製した。具体的には、表1の重量%の鱗片状黒鉛およびポリフェニレンスルフィド(PPS)粉末を株式会社セイワ技研製卓上ボールミルBM-10の磁性ポットに入れ、磁性ボールにより5時間粉砕混合し均一な組成物を得た。この際、得られた組成物の粒径をSEMによる微小観察により求めた。
 次いで、縦横40mm×40mmの金型に成形品厚みが約10mmになるように該組成物約20~30gを測り入れ、熱プレス機を用い、液漏れがないように圧力を調整しながら、5~10MPa(51~102kgf/cm)の加圧下において、5℃/分の速度で金型設定温度340℃まで加熱、次いで30分間保持しプレス成形を行った。その後、20℃で0.5時間冷却して、固化し、フィラー高充填高熱伝導性材料試験片を得た。
 得られた試験片(成形品)の密度、熱伝導率、および電気伝導度を上記の方法により測定した。また、該成形物から試験片を切り出し、線膨張係数、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱の測定を上記の方法により行った。得られた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果からも明らかなように、実施例1~4のフィラー高充填高熱伝導性材料(成形品)は、比較例1の成形品と対比して、有機ポリマーを含む場合であっても、優れた熱伝導率、電気伝導度、熱線膨張係数を有していることが分かった。また、曲げ強度および曲げ弾性率は、有機ポリマーを多量に含有する比較例1と同等の結果が得られた。有機ポリマーの含有量が極めて低い比較例2では、賦形できても、僅かな力で崩れ成形品とならなかった(曲げ強度および曲げ弾性率が測定できない)。このように比較例に比べ実施例が優れていることがわかる。また、熱膨張係数は、熱伝導性フィラー(鱗片状黒鉛)の濃度が高くなると低下し、熱伝導性フィラーの濃度により熱膨張係数を制御できることがわかった。なお、実施例4のボールミルで粉体混合した際の、鱗片状黒鉛-PPS樹脂混合物のSEM写真と、原料に用いた鱗片状黒鉛のSEM写真を図9および図10に示した。ボールミルで粉砕混合しても、黒鉛の扁平な鱗片形状が維持され、1/2以上の平均面粒径を維持していることがわかる。上記結果および下記の比較例3~5の熱伝導率、電気伝導度、熱膨張係数、曲げ強度および曲げ弾性率の比較から、実施例4においてボールミルで粉体混合して得られた鱗片状黒鉛-PPS樹脂混合物は、平均面粒径を維持しながら層間剥離によって、鱗片状黒鉛が分散してなることが理解される。
 [実施例5~7、比較例3~5]
 組成物を表2の組成とし、原料をミキサー(スイフト電動コーヒーミル)で3分間混合し、または袋に入れて5分間十分に混ざるように手動で振って混合(手混ぜ)したことを除いては、実施例1と同様の方法で、フィラー高充填高熱伝導性材料を得た。得られた試験片(成形品)の密度、熱伝導率、電気伝導度、熱膨張係数、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~7および比較例3~5の結果から、熱伝導率の値は、比較例5を除いて熱伝導性フィラー(鱗片状黒鉛)濃度が高くなると共に向上していることが分かる。また、実施例は、比較例に対して優れた結果となった。また、実施例1~6および比較例1の結果を参照すると、曲げ強度および曲げ弾性率は、ほぼ同じ値となった。混合力は、ボールミル>ミキサー>>手混ぜであり、これらの結果は、曲げ強度および曲げ弾性率が、混合時の均一混合性に強く依存していることを示している。なお、特にフィラー濃度の高い実施例7、比較例4および比較例5では曲げ強度および曲げ弾性率の値が顕著に低下した。
 さらに、比較例3~5の結果を参照すると、手混ぜでは、ほとんど混合時のせん断力が働かないため、有機ポリマー粒子と熱伝導性フィラーとの微細粒子間での混合が不十分となり、有機ポリマーが該フィラー間に十分に浸透せず、同一フィラー濃度での密度の低下となって現れている。このため、該フィラー間の空隙(ボイド)を十分に除くことができず、熱伝導率、曲げ強度および曲げ弾性率の著しい低下として現れた。
 熱伝導率は、熱伝導性フィラーの濃度と共に、ほぼ直線的に増加するが、電気伝導度は指数関数的に増加し、樹脂の性質や、系内のモルフォロジーによる影響を強く受ける。実施例よりも、比較例の方が、高い値を示しているが、混合時のせん断力が弱いのでフィラーの破損がほとんどないことと、一部でも導電性パスが形成すれば、そこから多量の電流が流れやすくなることが理由として考えられる。比較例における電気伝導度は実施例における電気伝導度よりも高くなっているが、熱伝導率や機械的物性が著しく低下しているので実用的価値がない。
 また、熱膨張係数については、実施例では熱伝導性フィラー濃度と共に著しく低下するが、比較例ではその低下の度合いが低い。これは、実施例では、有機ポリマーだけからなるA相とフィラーを主成分として含有するB相とが絡み合い、B相が3次元網目構造を形成し、熱伝導性の無限大クラスターを形成するのに対し、比較例ではその程度が弱いからであると推測される。
 [比較例6~11]
 有機ポリマー粒子および熱伝導性フィラーを含む組成物において、前記有機ポリマー粒子および前記熱伝導性フィラーを溶融混合ペレット化または溶融混合シート化して、ペレット化またはシート化した組成物(組成物中の有機ポリマー粒子は粒子形態でない)を作製することで、フィラー高充填高熱伝導性材料を作成した。
 具体的には、2軸押出機(株式会社テクノベル製KZW20-30MG)を用いて、280~340℃の温度で溶融混練し、所定濃度のPPSペレットおよびPPSシートを作製した。具体的には、PPSペレットおよび鱗片状黒鉛を用い、表3の組成のペレットを作製した。次いで、縦120mm×横70mm×厚さ5mmの金型と熱プレス機を用い、プレス設定温度320℃、予熱時間10分、加圧条件3.6MPa(36.7kgf/cm)で0.1時間冷却、固化して、フィラー高充填高熱伝導性材料試験片を作製した(比較例6~8)。
 また、PPS粉末および鱗片状黒鉛を用い表3の組成としシート用のT-ダイ(幅100mm×厚さ16mm)を用いてシートを作製した。次いで、金型と熱プレス機を用い、比較例6に準じて加圧・加熱下にプレス成形し、フィラー高充填高熱伝導性材料試験片を作製した(比較例9~11)。
 得られた試験片(成形品)の密度、熱伝導率、電気伝導度、線膨張係数、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例6~11の結果から、2軸押出機を用いた溶融混合では、実施例1~7に比べ、熱伝導率および電気伝導度値は著しく低く、熱膨張係数のフィラー濃度による制御性も劣り、熱伝導性の無限大クラスターが形成していないことが分かる。曲げ強度および曲げ弾性率の値が高いのは、有機ポリマー・フィラーの海島構造で、有機ポリマー相が海を形成しているからであると推測される。
 [実施例8~13]
 ポリエチレンテレフタレート(PET)粉末およびポリカーボネート(PC)粉末を新たに準備し、表4の組成として、実施例1と同様の方法で、フィラー高充填高熱伝導性材料を得た(実施例8~13)。
 得られた試験片(成形品)の密度、熱伝導率、電気伝導度、線膨張係数、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表4に示す。
 なお、非結晶性芳香族樹脂であるPCについては、原料粉末の融解熱は26J/g樹脂と高い値を示したが、成形品には融点を示す吸熱ピークは現れなかった。そこで、成形品を180~240℃で2時間アニーリングを行ったところ、融点に相当する吸熱ピークが現れたので、それを融解熱として求めた。表4にはこの値を示す。
Figure JPOXMLDOC01-appb-T000004
 実施例8~13の結果を参照すると、実施例1~4と同様の結果が得られ、比較例よりも優れていることがわかる。
 [実施例14~19]
 低分子量ポリエチレン(PE)粉末およびベンゾオキサジンを新たに準備し、表5の組成として、実施例1と同様の方法で、フィラー高充填高熱伝導性材料を得た(実施例14~19)。
 得られた試験片(成形品)の密度、熱伝導率、電気伝導度、線膨張係数、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表5に示す。
 なお、熱硬化性樹脂であるベンゾオキサジンは、ポリベンゾオキサジンの前駆体(低分子量体)であり、原料の融解熱は25J/gであるが、これを用いた成形品の融解熱に相当する吸熱ピークは見られなかった。熱伝導性フィラー周辺を除き、硬化反応の進行により硬化物がアモルファス状態になったものと考えられる。
Figure JPOXMLDOC01-appb-T000005
 実施例14~19の結果を参照すると、実施例1~4と同様の結果が得られ、比較例よりも優れていることがわかる。
 [実施例20~23、比較例12および13]
 窒化ホウ素(BN)粉末および窒化アルミニウム(AlN)粉末を新たに準備し、表6の組成として、実施例1と同様の方法で、フィラー高充填高熱伝導性材料を得た(実施例20~23、比較例12および13)。
 得られた試験片(成形品)の密度、熱伝導率、電気伝導度、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表6に示す。電気伝導度は、高抵抗率計(三菱アナリテック社製高抵抗率計ハイレスターUX型式MCP-T800)を用いて二重リング電極法により測定した。
Figure JPOXMLDOC01-appb-T000006
 グラファイト類似構造を有していない、単一焼結体では高い熱伝導率を有する窒化アルミニウムを熱伝導性フィラーとして用いた比較例12および13と対比すると、熱伝導性フィラーとして、グラファイト類似構造を有する六方晶窒化ホウ素を用いた実施例のフィラー高充填高熱伝導性材料は、実施例1~4と同様に優れた結果となった。なお、比較例13では、成形品試験片の機械的強度が弱く、熱膨張係数測定試料を作成することができず、熱膨張係数を測定できなかった。
 [比較例14~19]
 炭素短繊維を新たに準備し、表7の組成として、実施例1と同様の方法で、フィラー高充填高熱伝導性材料を得た(比較例14~19)。
 得られた成形品試験片の密度、熱伝導率、電気伝導度、曲げ強度、曲げ弾性率、樹脂当たりの融解熱およびフィラー当たりの融解熱を上記と同様の方法で測定した。得られた結果を表7に示す。なお、表7では、組成物の粒径の代わりに繊維サイズを示している。
Figure JPOXMLDOC01-appb-T000007
 表7の結果から、黒鉛と同じようなグラファイト構造を有する炭素繊維は、PPSと混合する際にボールミルを用いると、繊維は著しく破損し、サイズも極端に小さくなり、熱伝導率および機械的強度は、高充填のときに特に著しく低下した。一方、手混ぜ混合では、形状は維持されるが、それでも、実施例1~4と比較すると、熱伝導率は著しく低下している。このように、炭素短繊維単独での使用は、本発明の実施例よりも全体的として劣る結果となった。なお、炭素短繊維の含有量が90重量%である比較例19を除くと、機械的強度を高める効果があり、本発明の目的に齟齬を来たさない範囲で、補強材として併用して利用することが可能である。なお、実施例16のボールミルで粉体混合した際の、炭素短繊維-PPS樹脂混合物のSEM写真と、原料に用いた炭素短繊維のSEM写真を図11および図12に示した。図11および図12の結果から、炭素短繊維をPPS樹脂と共にボールミルで粉砕混合すると、炭素短繊維は棒状構造が消えて微粉化されることがわかった。すなわち、炭素短繊維は、層間剥離によって炭素短繊維の平均面粒径を維持することができないことが分かる。また、棒状の構造を有する炭素短繊維は、扁平状、鱗片状等の構造を有する黒鉛と異なり、PPS樹脂の平面結晶面とうまく重ならないと考えられる。以上のことが、熱伝導率を著しく低下させる原因になったものと考えられる。
 [参考例1~7]
 実施例1~23および比較例1~19の結果から、(1)PPS粉末-GF・ボールミル、(2)PPS粉末-GF・ミキサー、(3)PPS粉末-GF・手混ぜ、(4)PPS粉末-GF・2軸押出、(5)PPSペレット-GF・2軸押出、(6)PET粉末-GF・ボールミル、(7)PC粉末-GF・ボールミル、(8)PE粉末-GF・ボールミル、(9)ベンゾオキサジン-GF・ボールミル、(10)ベンゾオキサジン-PPS粉末-GF・ボールミル、(11)PPS粉末-BN・ボールミル、(12)PP粉末-窒化アルミニウム・ボールミル、(13)PPS粉末-炭素繊維・ボールミルおよび(14)PPS粉末-炭素繊維・手混ぜ混合のデータに基づいて、フィラー濃度と熱伝導率の関係、フィラー濃度と電気伝導度の関係、フィラー濃度と樹脂当たりの融解熱の関係、熱伝導率とフィラー当たりの融解熱の関係、およびフィラー濃度と熱膨張係数の関係をプロットし、それぞれを参考例1~8として図1~8に示した。なお、図中には、分かり易くするために実施例および比較例に記載されていない実験データを含んでいる。
 図1~3において、比較例を除き、熱伝導率はフィラー濃度と共に直線的に高くなり、(1)>(10)≒(6)>(2)≒(7)≒(8)≒(9)>(11)≒(14)>(13)≒(3)>(4)≒(5)>(13)の順となった。また、炭素短繊維(13)および(14)を除けば、実施例の熱伝導率の値は高く、比較例の熱伝導率よりも優れていることがわかる。
 図4を参照すると、表面電気伝導度はフィラー濃度との関係で指数関数的に増加し、ほぼ、(14)>(13)≒(6)≒(3)>(1)>(2)>(7)>(8)>(4)≒(5)>>(11)≒(12)の順となる。一部異なるものもあるが、概略、熱伝導率とは相関し、曲線はフィラー濃度約40重量%から立ち上がり、この点がパーコレーション閾値であることを示している。また、電気伝導度と熱伝導率との相違については、実施例1~7および比較例3~5の実験結果の考察において記載した。
 図5を参照すると、樹脂当たりの融解熱もフィラー濃度と共に減少し、(1)≒(2)≒(3)>>(13)>(14)≒(4)>(5)の順に低下し、ボールミル≒ミキサー>手混ぜ>2軸押出の順となる。また、炭素繊維の場合(13)および(14)では、フィラー高濃度において、融解熱が顕著に低下する。ボールミルで粉砕混合したときには、脆い炭素短繊維は粒径が著しく低下し、そのためにPPSの結晶化度が低下する。それに比べてミキサーの場合には粒径の低下はないが、不均一化によって強度が低下する。フィラー濃度20~50重量%で原料よりも増加するのは、加圧下に成形するため結晶化度が高まるものと推測される。
 図6および表5からは、樹脂当たりの融解熱は、ほぼ、(8)>(6)≒(11)≒(12)>>(7)の順に低下し、芳香族結晶性樹脂(1)、(2)、(6)>>芳香族非結晶性樹脂(7)>>ベンゾオキサジン(9)、(10)の順、また、窒化ホウ素はわずかであるが窒化アルミニウムの場合より大きくなった。特殊な場合を除いて、樹脂当たりの融解熱は、熱伝導率との関係が深いことが分かった。すなわち、結晶性非芳香族性樹脂であるポリエチレンの樹脂当たりの融解熱が高いのは、低融点ポリエチレンであり分子量分布の広い低分子量ポリマー(吸熱ピークの幅も広い)であることに起因しているものと思われる。一方、ポリカーボネートにおいては、原料が高い融解熱を有するが(縮合重合する際に、結晶化し易い最適な分子配置が可能)、成形品では、エージングによりやっと吸熱ピークが現れ、フィラー周辺では結晶化が起こっているものと思われる。また、ベンゾオキサジンにおいても、原料では融点に基づく吸熱ピークが現れるが、熱硬化によって成形品では消失する。熱硬化によってフィラー面から離れたバルクな部分が不定形になるからと思われる。結論として、熱伝導率の大小は、グラファイト構造を有する熱伝導性フィラーの周辺、特に面方向に沿って、結晶化が起こることによって、フィラー端面を固定でき、高度な熱伝導性パスを形成するものと思われ、樹脂の結晶化と深く関わっている。
 図7には、ポリカーボネートおよびポリエチレンを除いた芳香族結晶性樹脂の熱伝導率とフィラー当たりの融解熱の関係を、実施例と比較例に分けて示した。フィラー当たりの融解熱の増加と共に熱伝導率が増加することが分かる。また、一部を除き比較例に比べて実施例が優れ、熱伝導率が樹脂の融解熱と深く係っていることを示している。きれいな直線関係にならないのは、フィラー-樹脂界面における気泡(密度)、結晶の強さ(剛直さ)などがフィラー濃度、成形条件および方法、樹脂の種類などによって微妙に異なり、それが熱伝導率に大きく影響するためと思われる。
 図8には、フィラー濃度と熱膨張係数との関係を示す。(1)、(2)、(6)、(7)および(8)の熱膨張係数は樹脂単独での値から、フィラー濃度と共に低下し、フィラー単独での値(黒鉛は、約2×10-6-1)に近づく。このことから、実施例のフィラー充填樹脂成形品は、半導体素子や、セラミックス基板との熱膨張係数(3×10-6~8×10-6-1)との差や、銅(17×10-6-1)、アルミニウム(24×10-6-1)等の金属の熱膨張係数との差を少なくするように制御できる。これに反して、(3)、(4)および(5)では、変化度合が少なく、制御し難いことがわかる。
 [実施例24~27]
 BN:PPS(90:10重量%)の組成物およびGF:PPS(90:10重量%、60:40重量%および40:60重量%)の組成物を実施例1と同様の方法で新たに準備した。
 当該組成物を表8に示す容量%で別々に縦横40mm×40mmの金型に10mm厚の多層構造になるように装填し、実施例1と同様の方法を用いて異種材料の一体成形、または異種・傾斜材料の一体成形を行い、絶縁および導電性材料が積層された成形品試験片を作成した(実施例24~26)。なお、傾斜材料は熱膨張係数がBN-PPS層(7.63×10-6-1)に近い順に、各GF-PPS層(それぞれ、2.06×10-6、22.4×10-6および40.5×10-6-1)を金型に充填した。
 また、表8の組成とし、BN-PPS層およびGF-PPS層を別々に成形し、両者を接着剤(アロンアルファー・登録商標)で接合することで、導電性材料が接着剤で接合された試験片(成形品)を作製した(実施例27)。
 得られた試験片(成形品)の密度、BNおよびGF層側からの熱伝導率、GF層側からの表面電気伝導度BN側からの電気伝導度、およびBN側からの曲げ強度および曲げ弾性率の測定を実施例1と同様の方法で測定した。得られた結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例24と実施例27との対比により、一体成形と、接着剤により接合した場合とでは、熱伝導率に著しい差が現れ、一体成形した製品が優れていることがわかる。ホットディスク法での熱伝導率の測定は、ある深さをもった試験片表面近辺の熱伝導性を求めるものであり、そのためにBN側と、GF側とでは、熱伝導率が異なる。BN(90)-PPS(10)層単独での熱伝導率は、24.0W/mKであるので、一体成形品のBN側からの熱伝導率とほぼ一致した結果となり、GF-PPS層との界面での熱伝導率の低下は見られなかった。接着剤で接合した場合には、接着面での熱伝導性が著しく低下するために、結果として著しい熱伝導率の低下に繋がったものと推測される。実施例24のGF側の熱伝導率は、GF(60)-PPS(40)層単独での熱伝導率をほぼ反映しているが、実施例27の熱伝導率の値が低いのは接着界面の影響と思われる。電気伝導度については、BN側からは高抵抗率計で測定し、10-14オーダーの絶縁体であり、GF側は低抵抗率計で測定した表面電気伝導度を示し、導電体となっている。BN側からの電気伝導度はBN-PPS層の影響を受け、絶縁体となっており、半導体基板として利用できることを示している。GF-PPS層を、3相の傾斜材料とした実施例25および26でも、実施例24と同様に優れた結果が得られ、BN-PPS層およびGF-PPS層間での熱膨張係数の差を小さく、また、GF側には、アルミニウム、銅などの金属類との熱膨張係数の差を小さくして接合できることがわかる。
 [実施例28および29]
 実施例1に準じて、GF濃度60重量%のGF-PPS樹脂組成物(導電性)を作製し、縦横40mm×40mmの金型に装填し、厚み9.5mm厚の成形品を作製した。別途、実施例22に準じて作製したBN濃度90重量%PPS樹脂組成物をメチルエチルケトン(MEK)に、超音波を用いて均一に分散して25重量%のMEK塗料液を作製し、前記GF-PPS成形品の表面に塗布・乾燥した後、実施例1と同様に加圧下加熱してプレス成形を行い、BN-PPS層が0.5mm厚となる絶縁/導電性の一体成形品を作製し、実施例24に準じて、密度、熱伝導率、電気伝導度、曲げ強度および曲げ弾性率を測定し、実施例28として表9に示した。
 一方、加圧密閉容器に、PPSが20重量%になるようにテトラリンを入れ、密閉下に230℃まで加熱してPPSを溶解させ、PPS-テトラリン溶液を作製した。実施例1に準じて別途作製した重量比80:20のBN-オキサジン組成物に適量のt-ブタノール(TBA)を加え分散液を作製する。この分散液にPPS:オキサジンの比率が重量比で、10:90になるように、前記PPS-テトラリン溶液を加え、さらにTBAで希釈し、BN-(PPS-オキサジン)(重量比80:(2:18))が25重量%のTBA分散塗料液を作製する。この塗料液を超音波で均一に分散し、前記GF-PPS成形品の表面に塗布し乾燥した後、250℃の真空乾燥器中において、0.5MPaの加圧下、かつ真空下において3時間加熱硬化して、0.5mm厚のBN-オキサジン層で被覆され成形品を作製した。実施例28と同様に諸物性を測定し、実施例29として表9に示した。
Figure JPOXMLDOC01-appb-T000009
 [実施例30~33]
 実施例28に準じて、60重量%のGF-PPS樹脂組成物(導電性)を作製し、縦横150mmの正方形の金型を用いて、縦横149.4mm×149.4mm×厚さ34.5mmの樹脂成形品ブロックを試作した。
 この成形品ブロックを切削加工によって、縦横149.4mm、厚さ12.0mmの基礎部と、その上に、厚さ2.5mm、深さ22.5mm、長さ149.4mmの長方形のフィンを等間隔に15枚並べたくし型フィン構造のGF放熱部品を作製した。放熱部品の重量は628g、表面積は1544cm、比熱1.158J/gKおよび密度1.892g/cmあった。このGF放熱部品にポリイミドフィルムに埋め込んだ7.68Wのヒーター(ジャパンマリーナー株式会社製、カプトンヒーターHK9BF)を、接合剤なし、シリコングリース(熱伝導率3.8W/mK、Shegzhen Halnziye Electronics Co.,Ltd製)でテープ止め接合、または実施例29で用いた重量比で80:2:18のBN-(PPS-オキサジン)組成物からなるTBA分散塗料液を用いて塗付・乾固し、その後、真空下、100℃2時間、次いで、230℃3時間熱硬化反応を行い接合した放熱部品を作製し、30℃の恒温槽中で放熱実験を行った。ヒーター部、フィン根元基礎部およびフィン先端の3箇所に熱電対を取り付け、放熱挙動を測定した。平衡状態になった時の温度から、熱抵抗を求め、その結果を実施例30、31、および32として、表10に示した。平衡になった時点では、恒温槽内の温度は37.0℃まで上昇したのでその時点を平衡点と考えた。
 さらに、BN:PPS(80:20重量%)の組成物88.7gおよびGF:PPS(60:40重量%)の組成物1189.1gを準備し、縦横150mmの正方形の金型を用いて、実施例24に準じて、BN:PPS層が2mm厚およびGF:PPS層が30mm厚になるような縦横149.4mm×149.4mm×厚さ34.5mmの樹脂一体成形品ブロックを試作した。この成形品ブロックを切削加工によって、縦横149.4mm、厚さ12.0mmの基礎部と、その上に、厚さ2.5mm、深さ22.5mm、長さ149.4mmの長方形のフィンを等間隔に15枚並べたくし型フィン構造のGF放熱部品を作製した。放熱部品の重量は664gおよぶ表面積は1544cmであり、実施例30と同様に放熱実験を行い、平衡温度および熱抵抗を求め、その結果を実施例33として表10に示した。
Figure JPOXMLDOC01-appb-T000010
 表10より、接合剤なしの実施例30と比較して、シリコングリース(実施例31)、接着剤(実施例32)および一体成形(実施例33)を行った場合、ヒーター部の平衡温度は著しく低下することがわかる。また、熱抵抗の値からは、材料自身の熱抵抗(R)よりも、ヒーターと放熱部品との界面(R)および放熱部品と大気との界面での放熱(R)の寄与の大きいことがわかった。

Claims (18)

  1.  有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られ、かつ、熱伝導性の無限大クラスターが形成される組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形し、冷却および固化することにより形成されてなる、フィラー高充填高熱伝導性材料。
  2.  前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって、前記熱伝導性フィラーが分散する手段として、ボールミルを用いる、請求項1に記載のフィラー高充填高熱伝導性材料。
  3.  前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂、熱可塑性エラストマー、および未架橋の熱硬化性樹脂からなる群から選択される少なくとも1種を含み、
     前記グラファイト類似構造を有する熱伝導性フィラーが、天然黒鉛、人造黒鉛、および六方晶窒化ホウ素からなる群から選択される少なくとも1種を含む、請求項1または2に記載のフィラー高充填高熱伝導性材料。
  4.  前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂および熱可塑性エラストマーからなる群から選択される少なくとも1種と、未架橋の熱硬化性樹脂とからなる、請求項1または2に記載のフィラー高充填高熱伝導性材料。
  5.  前記有機ポリマー粒子が、結晶性および/または芳香族性を有する、熱可塑性樹脂および熱可塑性エラストマーからなる群から選択される少なくとも1種である、請求項1または2に記載のフィラー高充填高熱伝導性材料。
  6.  前記有機ポリマー粒子の平均粒径が、1~5000μmであり、
     前記グラファイト類似構造を有する熱伝導性フィラーの平均粒径が、0.5~2000μmであり、
     前記組成物の平均粒径が、0.5~1000μmである、請求項1~5のいずれか1項に記載のフィラー高充填高熱伝導性材料。
  7.  前記グラファイト類似構造を有する熱伝導性フィラーの平均粒径が、3~200μmであり、
     前記組成物の平均粒径が、1~100μmである、請求項1~5のいずれか1項に記載のフィラー高充填高熱伝導性材料。
  8.  前記グラファイト類似構造を有する熱伝導性フィラーが、天然黒鉛および/または人造黒鉛であり、
     熱伝導率が10~150W/mKであり、
     熱膨張係数が3×10-6~30×10-6-1であり、
     表面電気伝導度が5~250(Ωcm)-1である、請求項1~7のいずれかの1項に記載のフィラー高充填高熱伝導性材料。
  9.  前記グラファイト類似構造を有する熱伝導性フィラーが、六方晶窒化ホウ素であり、
     熱伝導率が5~50W/mKであり、
     熱膨張係数が3×10-6~30×10-6-1であり、
     表面電気伝導度が10-10(Ωcm)-1以下である、請求項1~7のいずれかの1項に記載のフィラー高充填高熱伝導性材料。
  10.  前記有機ポリマーが、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、およびベンゾオキサジンからなる群から選択される少なくとも1種を含み、
     前記グラファイト類似構造を有する熱伝導性フィラーが、鱗片状黒鉛および/または六方晶窒化ホウ素を含む、請求項1~9のいずれか1項に記載のフィラー高充填熱伝導性材料。
  11.  有機ポリマー粒子およびグラファイト類似構造を有する熱伝導性フィラーを含み、これらの総量100重量%に対して、5~60重量%の有機ポリマー粒子および40~95重量%のグラファイト類似構造を有する熱伝導性フィラーを含み、かつ、前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって前記熱伝導性フィラーが分散して得られる、熱伝導性の無限大クラスターが形成される組成物を調製する工程(1)と、
     前記組成物を、前記有機ポリマーの荷重たわみ温度、融点、またはガラス転移温度以上の温度、1~1000kgf/cmの圧力でプレス成形する工程(2)と、
     前記工程(2)で形成された材料を、冷却、固化する工程(3)と、
    を含む、フィラー高充填熱伝導性材料の製造方法。
  12.  前記熱伝導性フィラーの平均面粒径を維持しながら層間剥離によって、前記熱伝導性フィラーが分散する手段として、ボールミルを用いる、請求項11に記載のフィラー高充填高熱伝導性材料の製造方法。
  13.  請求項1~10のいずれか1項に記載のフィラー高充填熱伝導性材料、または請求項11または12に記載の方法で製造されたフィラー高充填高熱伝導性材料を提供する、フィラー高充填組成物。
  14.  請求項13に記載のフィラー高充填組成物および分散媒体を含む、塗料液。
  15.  前記分散媒体が、油溶性有機媒体および水溶性有機媒体を含む、請求項14に記載の塗料液。
  16.  請求項1~10のいずれか1項に記載のフィラー高充填高熱伝導性材料、請求項11もしくは12に記載の製造方法によって得られる高充填高熱伝導性材料、または請求項14もしくは15に記載の塗料液を塗布・乾固して得られるフィラー高充填高熱伝導性材料を含み、高熱伝導・放熱部品として用いられることを特徴とする、成形品。
  17.  前記フィラー高充填高熱伝導性材料が2層積層されてなる成形品であって、
     前記2層の一方の層が、熱伝導率が15~120W/mKであり、熱膨張係数が3×10-6~30×10-6-1であり、表面電気伝導度が10~200(Ωcm)-1の導電性を示し、
     前記2層のもう一方の層が、熱伝導率が5~50W/mK以上であり、熱膨張係数が3×10-6~10×10-6-1であり、表面電気伝導度が10―11(Ωcm)-1以下の絶縁性を示す、請求項16に記載の成形品。
  18.  前記フィラー高充填高熱伝導性材料の層が、傾斜材料である、請求項16または17に記載の成形品。
PCT/JP2013/079735 2012-11-21 2013-11-01 フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品 WO2014080743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/404,219 US20150259589A1 (en) 2012-11-21 2013-11-01 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
JP2014548501A JP6034876B2 (ja) 2012-11-21 2013-11-01 フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品
US16/244,730 US10851277B2 (en) 2012-11-21 2019-01-10 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255704 2012-11-21
JP2012-255704 2012-11-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/404,219 A-371-Of-International US20150259589A1 (en) 2012-11-21 2013-11-01 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
US16/244,730 Division US10851277B2 (en) 2012-11-21 2019-01-10 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Publications (1)

Publication Number Publication Date
WO2014080743A1 true WO2014080743A1 (ja) 2014-05-30

Family

ID=50775929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079735 WO2014080743A1 (ja) 2012-11-21 2013-11-01 フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品

Country Status (3)

Country Link
US (2) US20150259589A1 (ja)
JP (2) JP6034876B2 (ja)
WO (1) WO2014080743A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016584A (ja) * 2014-07-08 2016-02-01 株式会社神戸製鋼所 アルミニウム複合材、複合構造体及びその製造方法
JP2016089052A (ja) * 2014-11-05 2016-05-23 株式会社豊田中央研究所 複合材料及びその製造方法
JP2016193600A (ja) * 2015-03-31 2016-11-17 三菱樹脂株式会社 積層体
JP2018012822A (ja) * 2016-07-22 2018-01-25 日本ゼオン株式会社 熱伝導シート用複合粒子およびその製造方法、熱伝導一次シートおよび熱伝導二次シートの製造方法、熱伝導一次シート付き発熱体の製造方法、並びに、積層シート付き発熱体の製造方法
CN109280377A (zh) * 2018-10-19 2019-01-29 上海日之升科技有限公司 二级结构材料及其制备方法
CN109280385A (zh) * 2017-07-21 2019-01-29 达胜科技股份有限公司 含有人工石墨的复合材料、石墨片及其制造方法
EP2816083B1 (de) * 2013-06-19 2019-02-20 3M Innovative Properties Company Bauteil hergestellt aus einem Polymer-Bornitrid-Compound, Polymer-Bornitrid-Compound zur Herstellung eines solchen Bauteils sowie dessen Verwendung
JP2019067687A (ja) * 2017-10-04 2019-04-25 信越ポリマー株式会社 燃料電池用セパレータ
WO2019097852A1 (ja) * 2017-11-14 2019-05-23 株式会社高木化学研究所 分離安定性に優れたフィラー充填高熱伝導性分散液組成物、前記分散液組成物の製造方法、前記分散液組成物を用いたフィラー充填高熱伝導性材料、前記材料の製造方法、及び前記材料を用いて得られる成形品
JP2020164637A (ja) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 熱伝導材料
JP2021503724A (ja) * 2017-11-20 2021-02-12 ティコナ・エルエルシー 自動車において用いるための電子モジュール
EP3064560B1 (en) 2015-03-05 2022-05-04 Henkel AG & Co. KGaA Thermally conductive adhesive
WO2022176838A1 (ja) * 2021-02-18 2022-08-25 株式会社高木化学研究所 電気的特性に優れるフィラー高充填高熱伝導性薄物シート、その連続製造方法及び連続製造装置並びに当該薄物シートを用いて得られる成形加工品

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166835A1 (ja) * 2015-04-15 2016-10-20 三菱電機株式会社 半導体装置
US20180312650A1 (en) * 2015-10-30 2018-11-01 Sabic Global Technologies B.V. Thermally conductive composition via coating on plastics
DE102015222657A1 (de) * 2015-11-17 2016-05-04 Schaeffler Technologies AG & Co. KG Wärmeleitfähige Elastomermischung mit guten Gleiteigenschaften und Dichtung aus einer derartigen Elastomermischung
US20190275775A1 (en) * 2016-07-20 2019-09-12 Massachusetts Institute Of Technology Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit
JP6774329B2 (ja) * 2016-12-28 2020-10-21 住友化学株式会社 液晶ポリエステル樹脂組成物
JP6897129B2 (ja) * 2017-02-07 2021-06-30 日本ゼオン株式会社 熱伝導シート
US10870749B2 (en) 2017-07-05 2020-12-22 The University Of Akron Thermally conductive polymers and methods for making
CN107513217B (zh) * 2017-08-31 2019-11-22 四川大学 一种聚丙烯基高分子梯度功能材料及其制备方法
TWI650358B (zh) * 2017-09-14 2019-02-11 佳勝科技股份有限公司 液晶高分子組成物及高頻複合基板
EP3714003A4 (en) * 2017-11-20 2021-08-04 Ticona LLC FIBER REINFORCED POLYMER COMPOSITION FOR USE IN AN ELECTRONIC MODULE
EP3517283A1 (de) * 2018-01-30 2019-07-31 Siemens Aktiengesellschaft Thermisch leitfähiges schaummaterial
CN108681619B (zh) * 2018-04-03 2022-03-04 哈尔滨工业大学 方形软包锂离子电池热物性参数辨识方法
CN112041612A (zh) * 2018-05-01 2020-12-04 沙特基础工业全球技术公司 导热涂层
KR102054332B1 (ko) * 2018-06-26 2019-12-10 엘에스산전 주식회사 배선용 차단기의 아크 소호실 베이스
WO2020023995A1 (en) * 2018-08-02 2020-02-06 Axis Innovation Pty Ltd Heat generating compositions
WO2020100482A1 (ja) * 2018-11-16 2020-05-22 富士高分子工業株式会社 熱伝導性シート及びその製造方法
CN109777113B (zh) * 2018-12-07 2020-05-22 华南理工大学 一种绝缘导热硅橡胶复合材料及其制备方法
CN113261398A (zh) * 2019-01-03 2021-08-13 阿莫绿色技术有限公司 散热片的制备方法
CN113025135A (zh) * 2019-12-09 2021-06-25 广东三和化工科技有限公司 一种气雾型底盘涂料及其制备方法
EP3949003A4 (en) * 2019-12-20 2023-09-20 Dynamic Material Systems LLC ELECTRODES AND PROCESS FOR RECONDITIONING CONTAMINATED ELECTRODE MATERIALS FOR USE IN BATTERIES
JP7393279B2 (ja) * 2020-03-31 2023-12-06 日鉄ケミカル&マテリアル株式会社 導電性樹脂組成物及び該組成物を用いた電磁波シールド材
KR20210131179A (ko) * 2020-04-23 2021-11-02 삼성전자주식회사 방열 시트를 포함하는 전자 장치
CN111635574B (zh) * 2020-06-19 2022-08-09 中北大学 一种pp/pe/bn/epdm导热绝缘材料及其制备方法
KR20230007830A (ko) * 2021-07-06 2023-01-13 현대자동차주식회사 고강성 저선팽창 열가소성 수지 조성물 및 이를 포함하는 성형체
CN113817189A (zh) * 2021-08-26 2021-12-21 四川大学 一种聚合物基导热复合材料的制备方法
WO2023157829A1 (ja) 2022-02-16 2023-08-24 デンカ株式会社 放熱シートの製造方法及び放熱シート

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111621A (ja) * 1996-05-03 1999-01-06 Advanced Ceramics Corp 高熱伝導性複合材料および方法
JP2006282678A (ja) * 2001-05-24 2006-10-19 Toray Ind Inc フィラー高充填熱可塑性樹脂組成物
JP2007106902A (ja) * 2005-10-14 2007-04-26 Showa Denko Kk 熱伝導性樹脂組成物、その構造体及びその用途
JP2011162642A (ja) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP2011231196A (ja) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk 樹脂複合組成物及びその用途
WO2011158565A1 (ja) * 2010-06-17 2011-12-22 日立化成工業株式会社 伝熱シート、伝熱シートの作製方法、及び放熱装置
JP2012087193A (ja) * 2010-10-18 2012-05-10 C I Kasei Co Ltd 熱伝導シートおよびその製造方法
WO2013099089A1 (ja) * 2011-12-27 2013-07-04 パナソニック株式会社 異方性熱伝導組成物およびその成形品

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595396B2 (ja) 1991-10-15 1997-04-02 矢崎総業株式会社 導電性複合材の製造法
JP3450894B2 (ja) * 1994-03-28 2003-09-29 松下電器産業株式会社 アルカリマンガン電池
EP0745571B1 (en) * 1995-05-29 2000-08-09 Nisshinbo Industries, Inc. Carbon composite material and process for production thereof
JPH09153566A (ja) 1995-09-26 1997-06-10 Furukawa Electric Co Ltd:The 熱膨張制御熱・電気伝導体及びその製造方法
WO2001043964A1 (en) * 1999-12-17 2001-06-21 Loctite Corporation Impregnation of a graphite sheet with a sealant
DE60110250T2 (de) * 2000-10-26 2006-03-09 Zanden, Rosemarie Johanna Van Der Autogen-rotor
JP3705211B2 (ja) * 2001-02-26 2005-10-12 新神戸電機株式会社 炭素質粉末成形材料及び炭素質成形品
DE10112394A1 (de) * 2001-03-13 2002-10-02 Ticona Gmbh Leitfähige Kunststofformmasse, ihre Verwendung und daraus hergestellte Formkörper
WO2004094520A1 (en) 2003-04-24 2004-11-04 Showa Denko K.K. Resin crystallization promoter and resin composition
JP2004339484A (ja) 2003-04-24 2004-12-02 Showa Denko Kk 樹脂結晶化促進剤及び樹脂組成物
JP2004339290A (ja) 2003-05-13 2004-12-02 Polyplastics Co 樹脂組成物、成形品及び記録用光ピックアップベース
JP4631272B2 (ja) 2003-11-14 2011-02-16 東レ株式会社 フィラー高充填樹脂組成物およびそれから得られる成形品
JP4963831B2 (ja) * 2005-12-22 2012-06-27 昭和電工株式会社 半導電性構造体、導電性及び/又は熱伝導性構造体、該構造体の製造方法、およびその用途
CN101102655A (zh) * 2006-07-07 2008-01-09 富准精密工业(深圳)有限公司 散热装置
JP4277036B2 (ja) 2006-09-29 2009-06-10 Tdk株式会社 半導体内蔵基板及びその製造方法
CN101535176A (zh) * 2006-10-07 2009-09-16 迈图高新材料公司 混合的氮化硼组合物及其制备方法
GB0622060D0 (en) * 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
JP2010024343A (ja) 2008-07-18 2010-02-04 Teijin Ltd 熱伝導性に優れた粉体成形体を得るための組成物
JP5476203B2 (ja) 2010-04-26 2014-04-23 株式会社カネカ 高熱伝導性熱可塑性樹脂組成物
JP2012082296A (ja) 2010-10-08 2012-04-26 Teijin Ltd 熱伝導性樹脂組成物の製造方法
EP2875169A4 (en) * 2012-07-23 2016-04-06 Emerson Climate Technologies ANTI-WEAR COATINGS FOR COMPRESSOR WEAR SURFACES

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111621A (ja) * 1996-05-03 1999-01-06 Advanced Ceramics Corp 高熱伝導性複合材料および方法
JP2006282678A (ja) * 2001-05-24 2006-10-19 Toray Ind Inc フィラー高充填熱可塑性樹脂組成物
JP2007106902A (ja) * 2005-10-14 2007-04-26 Showa Denko Kk 熱伝導性樹脂組成物、その構造体及びその用途
JP2011162642A (ja) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP2011231196A (ja) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk 樹脂複合組成物及びその用途
WO2011158565A1 (ja) * 2010-06-17 2011-12-22 日立化成工業株式会社 伝熱シート、伝熱シートの作製方法、及び放熱装置
JP2012087193A (ja) * 2010-10-18 2012-05-10 C I Kasei Co Ltd 熱伝導シートおよびその製造方法
WO2013099089A1 (ja) * 2011-12-27 2013-07-04 パナソニック株式会社 異方性熱伝導組成物およびその成形品

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816083B1 (de) * 2013-06-19 2019-02-20 3M Innovative Properties Company Bauteil hergestellt aus einem Polymer-Bornitrid-Compound, Polymer-Bornitrid-Compound zur Herstellung eines solchen Bauteils sowie dessen Verwendung
JP2016016584A (ja) * 2014-07-08 2016-02-01 株式会社神戸製鋼所 アルミニウム複合材、複合構造体及びその製造方法
JP2016089052A (ja) * 2014-11-05 2016-05-23 株式会社豊田中央研究所 複合材料及びその製造方法
EP3064560B1 (en) 2015-03-05 2022-05-04 Henkel AG & Co. KGaA Thermally conductive adhesive
JP2016193600A (ja) * 2015-03-31 2016-11-17 三菱樹脂株式会社 積層体
JP2018012822A (ja) * 2016-07-22 2018-01-25 日本ゼオン株式会社 熱伝導シート用複合粒子およびその製造方法、熱伝導一次シートおよび熱伝導二次シートの製造方法、熱伝導一次シート付き発熱体の製造方法、並びに、積層シート付き発熱体の製造方法
CN109280385A (zh) * 2017-07-21 2019-01-29 达胜科技股份有限公司 含有人工石墨的复合材料、石墨片及其制造方法
JP2019023285A (ja) * 2017-07-21 2019-02-14 達勝科技股▲ふん▼有限公司 人造グラファイトを含む複合材料、グラファイトシート及びこれらの製造方法
JP2019067687A (ja) * 2017-10-04 2019-04-25 信越ポリマー株式会社 燃料電池用セパレータ
WO2019097852A1 (ja) * 2017-11-14 2019-05-23 株式会社高木化学研究所 分離安定性に優れたフィラー充填高熱伝導性分散液組成物、前記分散液組成物の製造方法、前記分散液組成物を用いたフィラー充填高熱伝導性材料、前記材料の製造方法、及び前記材料を用いて得られる成形品
JPWO2019097852A1 (ja) * 2017-11-14 2020-07-02 株式会社高木化学研究所 分離安定性に優れたフィラー充填高熱伝導性分散液組成物、前記分散液組成物の製造方法、前記分散液組成物を用いたフィラー充填高熱伝導性材料、前記材料の製造方法、及び前記材料を用いて得られる成形品
JP2021503724A (ja) * 2017-11-20 2021-02-12 ティコナ・エルエルシー 自動車において用いるための電子モジュール
CN109280377B (zh) * 2018-10-19 2021-03-02 上海日之升科技有限公司 二级结构材料及其制备方法
CN109280377A (zh) * 2018-10-19 2019-01-29 上海日之升科技有限公司 二级结构材料及其制备方法
JP2020164637A (ja) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 熱伝導材料
JP7451088B2 (ja) 2019-03-29 2024-03-18 大阪瓦斯株式会社 熱伝導材料
WO2022176838A1 (ja) * 2021-02-18 2022-08-25 株式会社高木化学研究所 電気的特性に優れるフィラー高充填高熱伝導性薄物シート、その連続製造方法及び連続製造装置並びに当該薄物シートを用いて得られる成形加工品
JP7351581B2 (ja) 2021-02-18 2023-09-27 株式会社高木化学研究所 電気的特性に優れるフィラー高充填高熱伝導性薄物シート、その連続製造方法及び連続製造装置並びに当該薄物シートを用いて得られる成形加工品

Also Published As

Publication number Publication date
JP6034876B2 (ja) 2016-12-07
JPWO2014080743A1 (ja) 2017-01-05
JP2017008321A (ja) 2017-01-12
US10851277B2 (en) 2020-12-01
US20190309204A1 (en) 2019-10-10
US20150259589A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6034876B2 (ja) フィラー高充填高熱伝導性材料、およびその製造方法、並びに組成物、塗料液、および成形品
US10964620B2 (en) Thermally conductive sheet
Yao et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity
Feng et al. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression
Zhong et al. The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites
TWI273118B (en) Electroconductive curable composition, cured product thereof and process for producing the same
TW201927689A (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
CN101045822B (zh) 低导电性高散热性高分子材料及成型体
JP2008266586A (ja) 低電気伝導性高放熱性高分子材料及び成形体
US11084965B2 (en) Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
US11180625B2 (en) Thermally and/or electrically conductive materials and method for the production thereof
Yang et al. Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes
Gao et al. Structure, thermal conductive, dielectric and electrical insulating properties of UHMWPE/BN composites with a segregated structure
Zhang et al. Poly (ethylene terephthalate)/expanded graphite conductive composites: Structure, properties, and transport behavior
CN112313795A (zh) 热传导性片
WO2019097852A1 (ja) 分離安定性に優れたフィラー充填高熱伝導性分散液組成物、前記分散液組成物の製造方法、前記分散液組成物を用いたフィラー充填高熱伝導性材料、前記材料の製造方法、及び前記材料を用いて得られる成形品
JP5353379B2 (ja) 異方性形状の窒化アルミニウムフィラーを含有する熱硬化性樹脂組成物
Kumar et al. Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet
JP7333914B2 (ja) 熱伝導性樹脂成形体とその製造方法
Ghahramani et al. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride
Ye et al. Vitrimer-assisted construction of boron nitride vertically aligned nacre-mimetic composites for highly thermally conductive thermal interface materials
JP5082304B2 (ja) 熱伝導性樹脂材料およびその成形体
Nakamura et al. Factors affecting the magnitudes and anisotropies of the thermal and electrical conductivities of poly (l-lactic) acid composites with carbon fibers of various sizes
Chi et al. Simultaneously enhanced in-plane and out-of-plane thermal conductivity of a PI composite film by Tetraneedle-like ZnO whiskers and BN nanosheets
WO2022176838A1 (ja) 電気的特性に優れるフィラー高充填高熱伝導性薄物シート、その連続製造方法及び連続製造装置並びに当該薄物シートを用いて得られる成形加工品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14404219

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014548501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856521

Country of ref document: EP

Kind code of ref document: A1