WO2014041736A1 - 窒化物半導体構造物 - Google Patents

窒化物半導体構造物 Download PDF

Info

Publication number
WO2014041736A1
WO2014041736A1 PCT/JP2013/004652 JP2013004652W WO2014041736A1 WO 2014041736 A1 WO2014041736 A1 WO 2014041736A1 JP 2013004652 W JP2013004652 W JP 2013004652W WO 2014041736 A1 WO2014041736 A1 WO 2014041736A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
structure according
semiconductor structure
semiconductor substrate
layer
Prior art date
Application number
PCT/JP2013/004652
Other languages
English (en)
French (fr)
Inventor
英和 梅田
石田 昌宏
上田 哲三
上田 大助
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380047498.0A priority Critical patent/CN104704608B/zh
Priority to JP2014535356A priority patent/JPWO2014041736A1/ja
Publication of WO2014041736A1 publication Critical patent/WO2014041736A1/ja
Priority to US14/636,163 priority patent/US9401403B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Definitions

  • the present invention relates to a nitride semiconductor structure applicable to a device such as a power switching element used in a power circuit of a consumer device, for example.
  • a group III nitride semiconductor typified by gallium nitride (GaN) is a wide gap semiconductor in which, for example, the band gaps of gallium nitride (GaN) and aluminum nitride (AlN) are as large as 3.4 eV and 6.2 eV, respectively, at room temperature. .
  • Group III nitride semiconductors are characterized by a large dielectric breakdown electric field and a high electron saturation rate compared to compound semiconductors such as gallium arsenide (GaAs), silicon (Si), and the like.
  • FETs field effect transistors
  • nitride semiconductor materials such as GaN can obtain various mixed crystals with AlN or indium nitride (InN)
  • a heterojunction can be formed in the same manner as conventional arsenic semiconductor materials such as GaAs.
  • a heterojunction made of a nitride semiconductor, for example, an AlGaN / GaN heterostructure, has a feature that high-concentration and high-mobility carriers generated by spontaneous polarization and piezo-polarization occur at the interface even when impurities are not doped. Therefore, high speed operation is possible when a transistor is manufactured using a nitride semiconductor.
  • AlGaN represents Al x Ga 1-x N (where x is 0 ⁇ x ⁇ 1), and InGaN is In y Ga 1-y N (y is 0 ⁇ y ⁇ 1).
  • AlInN represents Al z In 1-z N (z is 0 ⁇ z ⁇ 1), and InAlGaN represents In y Al x Ga 1-xy N (x and y are , 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). This notation also applies to the following.
  • the problem to be solved by the present invention is to suppress current collapse of a device manufactured using a nitride semiconductor structure.
  • a nitride semiconductor structure includes a semiconductor substrate and a layer made of a plurality of nitride semiconductors formed on the semiconductor substrate, and the semiconductor substrate is an epitaxial layer. It has a surface region and an internal region in order from the side, and the resistivity of the surface region is 0.1 ⁇ cm or more, and the resistivity of the internal region is 1000 ⁇ cm or more.
  • nitride semiconductor structure According to the nitride semiconductor structure according to the present invention, current collapse of a device manufactured using the nitride semiconductor structure can be suppressed.
  • FIG. 1 is a cross-sectional view of the nitride semiconductor structure according to the first embodiment.
  • FIG. 2 is a graph showing the relationship between the impurity concentration of silicon and the resistivity of silicon.
  • FIG. 3 is a graph showing the relationship between the impurity concentration of silicon and the maximum depletion layer width.
  • FIG. 4 is a cross-sectional view of the nitride semiconductor structure according to the first modification of the first embodiment.
  • FIG. 5 is a cross-sectional view of a nitride semiconductor structure according to a second modification of the first embodiment.
  • FIG. 6 is a plan view of a semiconductor wafer having a plurality of devices manufactured using the nitride semiconductor structure according to the first embodiment.
  • FIG. 7 is a cross-sectional view of a transistor obtained by dividing a semiconductor wafer.
  • FIG. 8 is a graph showing the evaluation results of the switching characteristics of the transistors.
  • FIG. 9 is a graph showing the analysis results of the elements present near the interface between the semiconductor substrate and the buffer layer.
  • FIG. 10 is a cross-sectional view of a diode obtained by dividing a semiconductor wafer.
  • FIG. 1 shows a cross-sectional view of a nitride semiconductor structure according to the first embodiment of the present invention. According to the nitride semiconductor structure according to this embodiment, it is possible to suppress current collapse of transistors and diodes manufactured using the nitride semiconductor structure, and to manufacture transistors and diodes having high switching characteristics.
  • the nitride semiconductor structure includes, for example, a semiconductor substrate 101 having a resistivity of 1000 ⁇ cm or more, and a plurality of, for example, a plurality of 4 ⁇ m thick layers formed on the semiconductor substrate 101. And an epitaxial layer 102 made of a nitride semiconductor multilayer film.
  • the semiconductor substrate is preferably a silicon substrate.
  • an SOI substrate Silicon on Insulator
  • a germanium substrate may be used.
  • a substrate obtained by epitaxially growing silicon germanium (SiGe) or silicon carbide (SiC) on a silicon substrate or a germanium substrate may be used.
  • the film thickness of the epitaxial layer 102 is preferably at least 1000 nm or more. This is because current collapse can be suppressed when the epitaxial layer is thick.
  • a silicon substrate is formed by the CZ method (Czochralski method) or the MCZ method (Magnetic field applied Czochralski method)
  • a silicon substrate having a high oxygen concentration can be formed. Therefore, the mechanical strength of the silicon substrate can be increased, and even if the film thickness of the epitaxial layer 102 exceeds 1000 nm, cracks do not occur, and the manufacturing yield can be increased.
  • the semiconductor substrate 101 has a surface region 101A and an internal region 101B in order from the epitaxial layer 102 side, the resistivity of the surface region is 0.1 ⁇ cm or more, and the resistivity of the internal region is 1000 ⁇ cm or more. Preferably there is.
  • the epitaxial layer 102 is preferably formed using, for example, a metal organic chemical vapor deposition (MOCVD) method. Alternatively, a molecular beam epitaxy method (Molecular Beam Epitaxy: MBE) or a pulsed laser deposition method (Pulsed Laser Deposition: PLD) may be used.
  • the initial growth layer for forming the epitaxial layer 102 is preferably a nitride semiconductor layer containing a group III element, for example.
  • the group III element is preferably boron, aluminum, gallium, indium, or the like.
  • an AlN layer is used as an initial growth layer for forming the epitaxial layer 102, for example, an AlN layer is formed on the semiconductor substrate 101 which is a silicon substrate. Therefore, Al, which is a group III element, diffuses into the surface region 101A. Then, since the group III element acts as a p-type impurity of silicon, the resistivity of the surface region 101A changes from the resistivity before the epitaxial layer 102 is formed.
  • the depletion layer of the semiconductor substrate 101 extends only to an extremely thin region of the surface region 101A. Therefore, the semiconductor substrate hardly contributes to the withstand voltage.
  • the voltage applied to the device is the sum of the applied voltage of the epitaxial layer 102 and the applied voltage of the semiconductor substrate 101. Therefore, when the depletion layer is formed even inside the semiconductor substrate 101, the voltage applied to the semiconductor substrate 101 increases, and thus the voltage applied to the epitaxial layer 102 decreases. For this reason, the electric field strength inside the epitaxial layer 102 can be reduced.
  • the diffusion amount of the group III element in the surface region 101A is reduced (the concentration of the group III element in the surface region 101A is reduced), or the surface region 101A It is necessary to shorten the thickness, that is, the diffusion distance of the group III element. The reason why it is preferable to shorten the diffusion distance of the group III element will be described later.
  • FIG. 2 shows the relationship between the silicon impurity concentration and the silicon resistivity
  • FIG. 3 shows the relationship between the silicon impurity concentration and the theoretical maximum depletion layer width.
  • FIG. 2 shows that when the resistivity of p-type silicon is 3 to 4 ⁇ cm, for example, the impurity concentration of p-type silicon is 4 ⁇ 10 15 cm ⁇ 3 . 3 that the maximum depletion layer width is about 5 ⁇ m when the impurity concentration of p-type silicon is 4 ⁇ 10 15 cm ⁇ 3 .
  • the theoretical value of the dielectric breakdown electric field strength of silicon is about 0.3 MV / cm
  • a voltage of about 150 V can theoretically be secured by the semiconductor substrate. As a result, the voltage applied to the inside of the epitaxial layer can be reduced by about 150V.
  • n-type silicon shown in FIG. 2 is silicon containing phosphorus as an n-type impurity.
  • p-type silicon shown in FIG. 2 is silicon containing boron as a p-type impurity.
  • the resistivity shown in FIG. 2 is the resistivity of silicon when the measurement temperature is 300K.
  • FIG. 2 is an excerpt from the book “Physics of semiconductor devices” by S.M.SZE. The relationship between the impurity concentration of silicon and the resistivity of silicon shown in FIG. 2 can be applied to arsenic and antimony as n-type impurities, and to aluminum, gallium, and indium as p-type impurities.
  • the maximum depletion layer width is 5 ⁇ m, and the impurity diffusion distance at this time can be suppressed to about 2 ⁇ m. Then, the distance from the maximum impurity diffusion position to the maximum depletion layer position is about 3 ⁇ m.
  • the impurity concentration in the inner region is about 20 times the depletion layer width in the surface region.
  • a depletion layer of about 60 ⁇ m (3 ⁇ m ⁇ 20) is formed in the inner region, and a 62 ⁇ m depletion layer is formed on the semiconductor substrate together with a 2 ⁇ m depletion layer (depletion layer due to impurity diffusion) in the surface region.
  • the Rukoto By forming a wide depletion layer, a voltage can be secured by the semiconductor substrate. Therefore, it is necessary to suppress the impurity diffusion distance to a distance shorter than the maximum depletion layer width obtained from the impurity concentration. That is, it is preferable to shorten the impurity diffusion distance.
  • the depletion layer width increases as the impurity concentration, that is, the diffusion amount of the group III element is reduced, so that the electric field strength inside the epitaxial layer 102 can be effectively reduced.
  • the resistivity of the surface region 101A is desirably 0.1 ⁇ cm or more
  • the resistivity of the internal region 101B is desirably 1000 ⁇ cm or more. The reason why the resistivity of the surface region 101A is 0.1 ⁇ cm or more will be described in detail below.
  • FIG. 9 shows an analysis result of elements existing in the vicinity of the interface between the semiconductor substrate and the buffer layer. The experimental conditions in FIG. 9 and the like will be described later in the section ⁇ Description of transistor structure>, so refer to that for details.
  • the diffusion distance of impurities is about 100 nm. Therefore, as described above, the maximum depletion layer width obtained from the impurity concentration is preferably longer than the impurity diffusion distance, and therefore the maximum depletion layer width is preferably 100 nm or more.
  • the impurity concentration of the surface region in order to make the maximum depletion layer width 100 nm or more, the impurity concentration of the surface region must be 2 ⁇ 10 17 cm ⁇ 3 or less.
  • the resistivity of the surface region is 0.1 ⁇ cm when the impurity concentration of the surface region is 2 ⁇ 10 17 cm ⁇ 3 .
  • the resistivity of the surface region 101A is preferably 0.1 ⁇ cm or more. In other words, it is not preferable that the resistivity of the surface region 101A is smaller than 0.1 ⁇ cm.
  • the reason why the lower limit value of the resistivity of the surface region 101A is 0.1 ⁇ cm when silicon is used as the semiconductor substrate has been described.
  • the lower limit value of the resistivity of the surface region 101A is 0.1 ⁇ cm when germanium is used as the semiconductor substrate.
  • the group III element acts as a p-type impurity in the semiconductor substrate 101
  • the magnitude relationship between the resistivity of the surface region 101A and the resistivity of the internal region 101B is as follows when the conductivity type of the semiconductor substrate 101 is p-type. It differs depending on n-type or undoped. The reason will be described below.
  • the conductivity type of the semiconductor substrate 101 is p-type
  • the hole concentration of the surface region 101A in which the group III element is diffused is higher than the hole concentration of the internal region 101B. Therefore, the resistivity of the surface region 101A is the internal region 101B. Lower than the resistivity.
  • the group III element acts to reduce electrons in the semiconductor substrate 101, so that the resistivity of the surface region 101A once becomes higher than the resistivity of the inner region 101B. Subsequently, when the diffusion amount of the group III element into the surface region 101A increases, the surface region 101B changes to p-type and the hole concentration increases. Therefore, the resistivity of the surface region 101A is the resistivity of the internal region 101B. Lower.
  • the resistivity of the surface region 101A is lower than the resistivity of the inner region 101B due to the diffusion of the group III element.
  • the surface region 101A contains a group III element, and the group III element concentration is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the inner region 101B contains a group III element and that the group III element concentration is 1 ⁇ 10 15 cm ⁇ 3 or less.
  • the thickness of the surface region 101A is preferably 10 ⁇ m or less, and the thinner the surface region 101A, the better. Since the surface region 101A contains a group III element, the thinner the surface region 101A, the easier the depletion layer is formed in the surface region 101A and the internal region 101B. The effect of reducing increases. On the other hand, when the thickness of the surface region 101A exceeds 10 ⁇ m, it becomes difficult to obtain the effect of reducing the electric field strength inside the epitaxial layer 102.
  • the oxygen concentration contained in the semiconductor substrate 101 is preferably in the range of 1 ⁇ 10 17 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 .
  • the nitride semiconductor structure according to this modification has a different oxygen concentration distribution inside the semiconductor substrate 101 as compared to the first embodiment.
  • the nitride semiconductor structure according to this modification has a configuration in which the oxygen concentration in the surface region 101A of the semiconductor substrate 101 in FIG. 1 is lower than the oxygen concentration in the internal region 101B (not shown).
  • the mechanical strength of the surface region 101A is lower than the mechanical strength of the inner region 101B.
  • the oxygen concentration in the inner region 101B is preferably in the range of 1 ⁇ 10 17 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 , and the oxygen concentration in the surface region 101A only needs to be lower than the oxygen concentration in the inner region 101B.
  • FIG. 4 is a cross-sectional view of a nitride semiconductor structure according to a second modification of the first embodiment of the present invention.
  • the nitride semiconductor structure according to this modification differs from the first embodiment in the distribution of oxygen concentration inside the semiconductor substrate 101 and the distribution of film thickness of the epitaxial layer 102.
  • the oxygen concentration at the center of the semiconductor substrate 101 is preferably higher than the oxygen concentration at the end of the semiconductor substrate 101. More specifically, as shown in FIG. 4, a high oxygen concentration region 101C and a low oxygen concentration region 101D are provided in the semiconductor substrate 101.
  • the low oxygen concentration region 101D is preferably formed so as to surround the high oxygen concentration region 101C when seen in a plan view.
  • the mechanical strength of the central portion of the semiconductor substrate 101 is higher than the mechanical strength of the end portion of the semiconductor substrate 101. Therefore, as shown in FIG. 4, even when the epitaxial layer 102 having a thick central portion and a thin end portion (or having a convex thickness distribution) is formed, warping and There is an effect that cracks can be suppressed. Therefore, the above oxygen distribution is particularly desirable in the epitaxial layer 102 having a thick central portion and a thin end portion.
  • FIG. 5 shows a cross-sectional view of a nitride semiconductor structure according to a third modification of the first embodiment of the present invention.
  • the nitride semiconductor structure according to this modification differs from the first embodiment in the distribution of oxygen concentration inside the semiconductor substrate 101 and the distribution of film thickness of the epitaxial layer 102.
  • the oxygen concentration at the end of the semiconductor substrate 101 is lower than the oxygen concentration at a portion adjacent to the end of the semiconductor substrate 101. More specifically, as shown in FIG. 5, a low oxygen concentration region 101D is provided at the end of the semiconductor substrate 101, and a high oxygen concentration region 101C is provided in a portion adjacent to the low oxygen concentration region 101D. .
  • the epitaxial layer 102 is preferably formed.
  • a region having a high oxygen concentration and a region having a low oxygen concentration may be formed inside the semiconductor substrate 101 by heat treatment or the like. Therefore, it is preferable to control the film thickness distribution of the epitaxial layer 102 by changing the crystal growth conditions in accordance with the oxygen concentration distribution. Specifically, the thickness of the epitaxial layer 102 immediately above the high oxygen concentration region 101C is increased, and the thickness of the epitaxial layer 102 immediately above the low oxygen concentration region 101D is decreased.
  • MOCVD the film thickness distribution can be controlled by controlling the gas flow and balance.
  • the mechanical strength of the high oxygen concentration region 101C of the semiconductor substrate 101 is higher than that of the low oxygen concentration region 101D. Therefore, there is an effect that warpage and cracks can be suppressed when the epitaxial layer 102 having a film thickness distribution as shown in FIG. 5 is formed.
  • FIG. 6 is a plan view of a semiconductor wafer 201 having a plurality of devices 202 such as transistors manufactured using the nitride semiconductor structure according to the first embodiment.
  • FIG. 7 shows a cross-sectional view of a transistor obtained by dividing the semiconductor wafer 201.
  • the epitaxial layer 102 includes a buffer layer 103, a channel layer 104 formed on the buffer layer 103, and a barrier layer formed on the channel layer 104 and having a larger band gap energy than the channel layer 104.
  • the buffer layer 103 is preferably composed of, for example, an AlN layer having a thickness of 300 nm and a superlattice layer having a total thickness of 2 ⁇ m made of a periodic multilayer film of AlN and GaN.
  • the channel layer 104 is preferably made of an undoped GaN layer having a thickness of 2 ⁇ m, for example.
  • the barrier layer 105 is preferably made of an undoped AlGaN layer having an Al composition of 20% and a thickness of 20 nm, for example.
  • the film thickness of the epitaxial layer 102 is 4320 nm. The thicker the epitaxial layer 102, the better. This is because as the thickness of the epitaxial layer 102 increases, the electric field strength of the epitaxial layer 102 decreases.
  • the buffer layer 103 preferably contains carbon.
  • the carbon concentration contained in the buffer layer 103 is preferably 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less. Further, it is preferably 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the buffer layer 103 contains carbon, there is an effect that residual carriers in the buffer layer 103 can be reduced.
  • the carbon concentration is preferably 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the channel layer 104 preferably contains carbon.
  • the channel layer 104 contains carbon, and the carbon concentration is preferably 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the carbon concentration of the channel layer 104 is 1 ⁇ 10 18 cm ⁇ 3 or less, the carrier trap density of the channel layer 104 can be reduced, and good switching characteristics can be obtained.
  • the lower the carbon concentration of the channel layer 104 the better the switching characteristics.
  • a source electrode 107 and a drain electrode 108 made of, for example, Ti / Al are formed on the barrier layer 105.
  • a p-type semiconductor layer (semiconductor layer containing a p-type impurity) 106 made of, for example, a 100-nm-thick p-type GaN layer is selectively formed between the source electrode 107 and the drain electrode 108.
  • a gate electrode 109 made of, for example, Ni / Au is formed.
  • the p-type semiconductor layer 106 is provided under the gate electrode 109, the energy potential at the interface between the channel layer 104 and the barrier layer 105 is increased, so that a drain current does not flow even when the gate voltage is 0V. Operation is realized.
  • the source electrode 107 and the semiconductor substrate 101 are preferably electrically connected. Thereby, the potential of the semiconductor substrate 101 is stabilized. Further, instead of connecting the source electrode 107 and the semiconductor substrate 101, the drain electrode 108 and the semiconductor substrate 101 may be connected. By suppressing the diffusion of the group III element into the semiconductor substrate 101, the width of the depletion layer of the semiconductor substrate 101 is widened, and a large voltage can be maintained in the depletion layer. Therefore, voltage distribution in the epitaxial layer 102 can be reduced, and the electric field strength inside the epitaxial layer 102 can be reduced.
  • the film thickness of the epitaxial layer 102 can be increased by setting the oxygen concentration of the semiconductor substrate 101 in the range of 1 ⁇ 10 17 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 . Electric field strength can be reduced. Thereby, current collapse can be suppressed and good switching characteristics can be obtained.
  • a gate electrode that forms a Schottky junction with the barrier layer 105 may be formed without using the p-type semiconductor layer 106. Further, a gate insulating film may be used instead of the p-type semiconductor layer 106.
  • FIG. 8 is a diagram illustrating the evaluation results of the switching characteristics of the transistors.
  • the result of FIG. 8 is a result of performing switching evaluation while changing the drain voltage (switching voltage) under the condition that the gate voltage pulse having the off time of 10 milliseconds and the on time of 1 millisecond is continuously applied.
  • FIG. 8 shows a switching evaluation result of a transistor manufactured using the nitride semiconductor structure according to the first embodiment described above as this example.
  • a switching evaluation result of a transistor in which a high concentration group III element is diffused in the semiconductor substrate 101 is shown.
  • the transistor of this example does not increase the resistance (on-resistance) when turned on until the drain voltage (switching voltage) reaches 550 V, and exhibits good switching characteristics.
  • the transistor of the comparative example has an increased on-resistance when the drain voltage (switching voltage) reaches 475 V, so that it can be seen that the switching characteristics are deteriorated as compared with the transistor of this embodiment. . From this, it can be seen that the transistor manufactured using the nitride semiconductor structure according to the present invention is superior in improving the switching characteristics.
  • the distribution of elements existing in the vicinity of the interface between the semiconductor substrate 101 which is a silicon substrate and the buffer layer 103 (the buffer layer 103 includes an AlN layer) in this embodiment is confirmed.
  • secondary ion mass spectrometry Secondary Ion Mass Spectrometry: SIMS
  • the elements present in the vicinity of the interface between the semiconductor substrate 101 and the buffer layer 103 were analyzed as shown in FIG.
  • Al which is a group III element
  • the Al diffusion distance is about 100 nm.
  • the depletion layer can be extended into the semiconductor substrate.
  • a sufficiently large voltage is distributed to the semiconductor substrate, the electric field strength inside the epitaxial layer is reduced, and current collapse is suppressed.
  • FIG. 9 is merely an example of evaluation of the depth direction distribution of elements, and evaluation may be performed by other analysis methods.
  • FIG. 6 shows a plan view of a semiconductor wafer 201 having a plurality of devices 202 such as diodes manufactured using the nitride semiconductor structure according to the first embodiment.
  • FIG. 10 shows a cross-sectional view of a diode obtained by dividing the semiconductor wafer 201.
  • the layer structure and the material of the epitaxial layer 102 shown in FIG. 10 are the same as the layer structure and the material of the epitaxial layer 102 in the above-described transistor, and thus the description thereof is omitted.
  • an anode electrode 110 made of Ni / Au and a cathode electrode 111 made of Ti / Al are formed on the barrier layer 105 constituting the epitaxial layer 102.
  • an anode electrode 110 made of Ni / Au and a cathode electrode 111 made of Ti / Al are formed on the barrier layer 105.
  • the anode electrode 110 and the semiconductor substrate 101 are electrically connected. Further, instead of connecting the anode electrode 110 and the semiconductor substrate 101, the cathode electrode 111 and the semiconductor substrate 101 may be connected.
  • the potential stabilization effect of the semiconductor substrate 101 due to the electrical connection between the anode electrode 110 and the semiconductor substrate 101 is the same as that of the transistor. Further, the effect of suppressing the diffusion of the group III element into the semiconductor substrate 101 by electrically connecting the cathode electrode 111 and the semiconductor substrate 101 is the same as that of the transistor.
  • the diode may be a PN junction type or a PIN type.
  • the nitride semiconductor structure may be configured by appropriately selecting and combining the first embodiment of the present invention and the first to third modifications thereof within a consistent range. Moreover, you may manufacture devices, such as a transistor, using these nitride semiconductor structures.
  • the present invention can suppress the current collapse of the device, and is useful for a device such as a transistor or a diode used in a power circuit of a consumer device.

Abstract

 窒化物半導体構造物を用いて製造されるデバイスの電流コラプスを抑制する。窒化物半導体構造物は、シリコン基板と、シリコン基板の上に形成された、複数の窒化物半導体からなる層とを備えている。シリコン基板は、複数の窒化物半導体からなる層側より順に表面領域および内部領域を有している。表面領域の抵抗率は0.1Ωcm以上であり、内部領域の抵抗率は1000Ωcm以上である。

Description

窒化物半導体構造物
 本発明は、例えば民生機器の電源回路等に用いられるパワースイッチング素子などのデバイスに適用できる窒化物半導体構造物に関するものである。
 窒化ガリウム(GaN)に代表されるIII族窒化物半導体は、例えば窒化ガリウム(GaN)及び窒化アルミニウム(AlN)の禁止帯幅が室温でそれぞれ3.4eV及び6.2eVと大きいワイドギャップ半導体である。そして、III族窒化物半導体は、絶縁破壊電界が大きく且つ電子飽和速度が砒化ガリウム(GaAs)等の化合物半導体やシリコン(Si)等と比べて大きいという特徴を有している。
 そこで、高周波用電子デバイス又は高出力電子デバイスとして、GaN系の化合物半導体材料を用いた電界効果トランジスタ(Field Effect Transistor:FET)の研究開発が活発に行われている。
 GaN等の窒化物半導体材料は、AlN又は窒化インジウム(InN)と種々の混晶を得られるため、従来のGaAs等の砒素系半導体材料と同様にヘテロ接合を形成することが可能である。窒化物半導体によるヘテロ接合、例えばAlGaN/GaNヘテロ構造においては、その界面に自発分極及びピエゾ分極によって生じる高濃度かつ高移動度のキャリアが不純物をドーピングしない状態でも発生するという特徴を有する。このため、窒化物半導体を用いてトランジスタを作製すると高速動作が可能となる。
 なお、ここで、AlGaNはAlGa1-xN(但し、xは、0<x<1である。)を表し、InGaNはInGa1-yN(yは、0<y<1である。)を表し、AlInNはAlIn1-zN(zは、0<z<1である。)を表し、InAlGaNはInAlGa1-x-yN(x、yは、0<x<1、0<y<1、0<x+y<1である。)を表す。この表記は以下についても同様である。
 そして、シリコン基板上に複数の窒化物半導体層を形成する技術が、例えば、特許文献1、2に開示されている。
特開2008-251704号公報 特開2011-103380号公報
 特許文献1、2に開示されているような窒化物半導体層を用いてトランジスタなどのデバイスを製造した場合、トランジスタの表面や内部に存在するトラップによりキャリアが捕獲され、スイッチング特性が悪化する電流コラプスという課題がある。そして、本願発明者らはスイッチングに用いる電圧が大きくなるほど、電流コラプスが悪化することを見出した。
 本発明が解決しようとする課題は、窒化物半導体構造物を用いて製造されるデバイスの電流コラプスを抑制することである。
 上記課題を解決するために、本発明に係る窒化物半導体構造物は、半導体基板と、半導体基板の上に形成された、複数の窒化物半導体からなる層とを備え、半導体基板は、エピタキシャル層側より順に表面領域および内部領域を有し、表面領域の抵抗率は0.1Ωcm以上であり、内部領域の抵抗率は1000Ωcm以上であることを特徴とする。
 本発明に係る窒化物半導体構造物によると、窒化物半導体構造物を用いて製造されるデバイスの電流コラプスを抑制できる。
図1は、第1の実施形態に係る窒化物半導体構造物の断面図である。 図2は、シリコンの不純物濃度とシリコンの抵抗率との関係を示すグラフである。 図3は、シリコンの不純物濃度と最大空乏層幅との関係を示すグラフである。 図4は、第1の実施形態の第1の変形例に係る窒化物半導体構造物の断面図である。 図5は、第1の実施形態の第2の変形例に係る窒化物半導体構造物の断面図である。 図6は、第1の実施形態に係る窒化物半導体構造物を用いて製造されたデバイスを複数有する半導体ウェハの平面図である。 図7は、半導体ウェハを分割して得られたトランジスタの断面図である。 図8は、トランジスタのスイッチング特性の評価結果を示すグラフである。 図9は、半導体基板とバッファ層との界面付近に存在する元素の分析結果を示すグラフである。 図10は、半導体ウェハを分割して得られたダイオードの断面図である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る窒化物半導体構造物の断面図を示す。本実施形態に係る窒化物半導体構造物によると、窒化物半導体構造物を用いて製造されるトランジスタやダイオードの電流コラプスを抑制し、スイッチング特性の高いトランジスタやダイオードを製造することが可能となる。
 -構造物の基本構成についての説明-
 図1に示すように、本実施形態に係る窒化物半導体構造物は、例えば、抵抗率が1000Ωcm以上の半導体基板101と、半導体基板101の上に形成された、例えば、厚さ4μmの複数の窒化物半導体の多層膜からなるエピタキシャル層102とにより構成されている。ここで、半導体基板は、シリコン基板であることが好ましい。また、SOI基板(Silicon on Insulator)又はゲルマニウム基板であっても構わない。また、シリコン基板やゲルマニウム基板の上にシリコンゲルマニウム(SiGe)や炭化ケイ素(SiC)をエピタキシャル成長した基板であっても構わない。また、エピタキシャル層102の膜厚は少なくとも1000nm以上であることが好ましい。エピタキシャル層の膜厚が厚いと電流コラプスを抑制することができるからである。CZ法(Czochralski法)又はMCZ法(Magnetic field applied Czochralski法)でシリコン基板を作成すると酸素濃度の高いシリコン基板を作成できる。そのため、シリコン基板の機械的強度を高めることができ、エピタキシャル層102の膜厚が1000nmを超えてもクラックが発生せず、製造歩留まりを高めることが可能となる。
 ここで、半導体基板101は、エピタキシャル層102側から順に表面領域101Aと内部領域101Bとを有しており、表面領域の抵抗率は0.1Ωcm以上であり、内部領域の抵抗率は1000Ωcm以上であることが好ましい。
 また、エピタキシャル層102は、例えば有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)を用いて形成されることが好ましい。また、分子線エピタキシー法(Molecular Beam Epitaxiy:MBE)やパルスレーザー堆積法(Pulsed Laser Deposition:PLD)を用いても良い。そして、エピタキシャル層102を形成するための初期成長層としては、例えば、III族元素を含む窒化物半導体層であることが好ましい。なお、III族元素は、ホウ素、アルミニウム、ガリウム又はインジウムなどであることが好ましい。そして、初期成長層として、例えば、III族元素を含む窒化物半導体層を用いてエピタキシャル成長させることにより、多層膜からなるエピタキシャル層102を形成することが好ましい。
 -原理の説明-
 まず、エピタキシャル層102の初期成長層から表面領域101Aに拡散する不純物の濃度を下げることの必要性について説明する。
 エピタキシャル層102を形成するための初期成長層として例えばAlN層を用いると、例えば、シリコン基板である半導体基板101の上にAlN層が形成される。そのため、III族元素であるAlが表面領域101Aに拡散する。そして、III族元素はシリコンのp型不純物として作用するため、表面領域101Aの抵抗率はエピタキシャル層102形成前の抵抗率から変化する。
 ここで、表面領域101Aに多くのIII族元素が拡散し、表面領域101Aの抵抗率が低下し過ぎると、半導体基板101の空乏層が表面領域101Aの極薄い領域にしか伸びない。そのため、半導体基板はほとんど耐圧に対して寄与しないことになる。
 本実施形態に係る窒化物半導体構造物を用いてトランジスタやダイオードなどのデバイスを製造すると、デバイスに印加される電圧は、エピタキシャル層102の印加電圧と半導体基板101の印加電圧との合計となる。そのため、半導体基板101の内部にまで空乏層を形成した場合、半導体基板101にかかる電圧が大きくなるため、エピタキシャル層102に印加される電圧が低下する。このため、エピタキシャル層102内部の電界強度を低減することが可能となる。
 一方、半導体基板101の表面領域にしか空乏層が形成されない場合、半導体基板101の内部にまで空乏層を形成する場合と比較して、エピタキシャル層102内部の電界強度を低減しにくくなる。そのため、エピタキシャル層102内部の電界強度を低減するためには、表面領域101AのIII族元素の拡散量を減らすこと(表面領域101AのIII族元素の濃度を下げること)、又は、表面領域101Aの厚さ、すなわちIII族元素の拡散距離を短くすることが必要となる。なお、III族元素の拡散距離を短くすることが好ましい理由については、後述する。
 次に、表面領域101Aに拡散する不純物の濃度と表面領域101Aの抵抗率との関係について説明する。
 図2はシリコンの不純物濃度とシリコンの抵抗率との関係を示しており、図3はシリコンの不純物濃度と理論的な最大空乏層幅との関係を示している。図2からp型シリコンの抵抗率が例えば、3~4Ωcmのとき、p型シリコンの不純物濃度は4×1015cm-3であることが分かる。また、図3より、p型シリコンの不純物濃度が4×1015cm-3のときの最大空乏層幅は約5μmであることが分かる。シリコンの絶縁破壊電界強度の理論値は0.3MV/cm程度であるため、p型シリコンの抵抗率が3~4Ωcmのとき、理論的には半導体基板によって約150Vの電圧を確保することができ、その結果、エピタキシャル層内部にかかる電圧を約150V低減することが可能となる。
 なお、図2に示すn型シリコンは、n型不純物としてリン(Phosphrus)を含むシリコンである。一方、図2に示すp型シリコンは、p型不純物としてボロン(Boron)を含むシリコンである。図2に示す抵抗率は、測定温度が300Kの時のシリコンの抵抗率である。図2は、S.M.SZE著の書籍「Physics of semiconductor devices」から抜粋した図である。図2に示すシリコンの不純物濃度とシリコンの抵抗率の関係は、n型不純物としてはヒ素やアンチモンに対しても適用でき、p型不純物としてはアルミニウム、ガリウム、インジウムに対しても適用できる。
 電界強度は、近似的に、電圧を膜厚で除算すれば求められる。そのため、エピタキシャル層の膜厚が4μmの場合には、エピタキシャル層102内部の電界強度を150V/4μm=37.5V/μm=0.375MV/cmだけ低減することが可能となる。また、III族元素の拡散距離を5μm以下に抑えることで、内部領域101Bにも空乏層が伸び、空乏層幅を5μm以上にすることができるため、エピタキシャル層102内部の電界強度をより一層低減することが可能となる。以下、もう少し詳細に説明することとする。例えば、半導体基板の表面領域の不純物濃度が4×1015cm-3のとき、最大空乏層幅は5μmであり、このときの不純物の拡散距離を2μm程度に抑えることができたとする。そうすると、不純物の最大拡散位置から最大空乏層位置までの距離は3μm程度となる。ここで、シリコンの抵抗率が1000Ωcmになると、不純物濃度はn型およびp型共に1×1013cm-3程度であり、内部領域の不純物濃度は、表面領域の不純物濃度の400分の1であるため、内部領域の空乏層幅は、表面領域の空乏層幅の20倍くらいとなる。従って、内部領域で約60μm(3μm×20)の空乏層が形成されることとなり、表面領域の空乏層(不純物の拡散による空乏層)2μmと合わせて、62μmの空乏層が半導体基板に形成されることとなる。幅広の空乏層を形成することで、半導体基板による電圧確保を実現できるので、不純物濃度から求められる最大空乏層幅よりも短い距離に不純物の拡散距離を抑えることが必要である。つまり、不純物の拡散距離を短くすることが好ましい。
 -表面領域の抵抗率についての説明-
 以上の説明から表面領域の抵抗率をどのように設定するのが好ましいかについて説明する。
 図3から分かるように、不純物濃度すなわちIII族元素の拡散量を低減するほど、空乏層幅が広くなるため、効果的にエピタキシャル層102内部の電界強度を低減することが可能となる。具体的には、表面領域101Aの抵抗率を0.1Ωcm以上にすることが望ましく、内部領域101Bの抵抗率を1000Ωcm以上にすることが望ましい。表面領域101Aの抵抗率を0.1Ωcm以上とする理由について、以下で詳細に説明する。図9は、半導体基板とバッファ層との界面付近に存在する元素の分析結果を示している。なお、図9の実験条件などは<トランジスタ構造の説明>の項目において後述するので、詳細はそちらを参照されたい。図9の実験結果から分かるように、不純物の拡散距離は約100nmである。そのため、上述したように、不純物濃度から求められる最大空乏層幅は不純物の拡散距離よりも長くする方が好ましいので、最大空乏層幅を100nm以上にすることが好ましい。図3から分かるように、最大空乏層幅を100nm以上とするためには、表面領域の不純物濃度を2×1017cm-3以下にしなければならない。図2から分かるように、表面領域の不純物濃度が2×1017cm-3のときの表面領域の抵抗率は、0.1Ωcmである。従って、表面領域101Aの抵抗率が0.1Ωcm以上となることが好ましいのである。逆に言えば、表面領域101Aの抵抗率は、0.1Ωcmより小さいと好ましくない。なお、上記では、半導体基板としてシリコンを用いたときに、表面領域101Aの抵抗率の下限値を0.1Ωcmとする理由について説明した。一方、例えば、他にも半導体基板としてゲルマニウムを用いたときにおいても、表面領域101Aの抵抗率の下限値を0.1Ωcmと設定することが好ましい。
 半導体基板101内において、III族元素はp型不純物として作用するため、表面領域101Aの抵抗率と内部領域101Bの抵抗率との大小関係は、半導体基板101の導電型が、p型の場合、n型の場合、又はアンドープの場合で異なる。以下にその理由を説明する。
 半導体基板101の導電型がp型の場合、III族元素が拡散した表面領域101Aの正孔濃度は、内部領域101Bの正孔濃度より高くなるため、表面領域101Aの抵抗率は、内部領域101Bの抵抗率より低くなる。
 半導体基板101の導電型がn型の場合、III族元素は半導体基板101内の電子を減少させる作用をするため、表面領域101Aの抵抗率は、内部領域101Bの抵抗率より一旦高くなる。続いて、表面領域101AへのIII族元素の拡散量が増加すると、表面領域101Bがp型に変化し、正孔濃度が増大するため、表面領域101Aの抵抗率は、内部領域101Bの抵抗率より低くなる。
 半導体基板101がアンドープの場合は、III族元素の拡散により、表面領域101Aの抵抗率は、内部領域101Bの抵抗率より低くなる。
 -その他の特徴の説明-
 以上のように、エピタキシャル層102の初期成長層から表面領域101Aに拡散する不純物の濃度を下げることが必要となる。そのため、表面領域101AはIII族元素が含まれ、かつ、III族元素濃度を1×1018cm-3以下にすることが望ましい。また、内部領域101BはIII族元素が含まれ、かつ、III族元素濃度を1×1015cm-3以下にすることが望ましい。
 また、表面領域101Aの厚さは10μm以下であることが望ましく、表面領域101Aの厚さは、薄ければ薄いほど良い。表面領域101AにはIII族元素が含まれているため、表面領域101Aの厚さが薄いほど、表面領域101Aおよび内部領域101Bに空乏層が形成されやすくなるため、エピタキシャル層102内部の電界強度を低減する効果が増大する。一方、表面領域101Aの厚さが10μmより大きくなるとエピタキシャル層102内部の電界強度を低減する効果を得ることが難しくなってしまう。
 また、半導体基板101内部に含まれる酸素濃度は1×1017cm-3から5×1018cm-3の範囲にあることが望ましい。これにより、半導体基板101の機械的強度を高くすることができるため、エピタキシャル層102の膜厚を厚くすることが可能となり、エピタキシャル層102内部の電界強度を低減することが可能となる。
 以上のように、本実施形態に係る窒化物半導体構造物を用いて製造されたトランジスタやダイオードなどのデバイスによると、電流コラプスを抑制し、スイッチング特性を向上することが可能となる。
 (第1の実施形態の第1の変形例)
 本変形例に係る窒化物半導体構造物は、第1の実施形態と比較して、半導体基板101内部の酸素濃度の分布が異なる。具体的には、本変形例に係る窒化物半導体構造物は、図1の半導体基板101の表面領域101Aの酸素濃度が内部領域101Bの酸素濃度より低い構成となっている(図示せず)。このような構成にすることにより、表面領域101Aの機械的強度が内部領域101Bの機械的強度より低くなる。これにより、エピタキシャル層102を形成した際の格子不整合に起因する歪を表面領域101Aで吸収することが可能となる。内部領域101Bの酸素濃度は1×1017cm-3から5×1018cm-3の範囲であることが好ましく、表面領域101Aの酸素濃度は、内部領域101Bの酸素濃度より低ければ良い。
 (第1の実施形態の第2の変形例)
 図4は、本発明の第1の実施形態の第2の変形例に係る窒化物半導体構造物の断面図を示す。
 本変形例に係る窒化物半導体構造物は、第1の実施形態と比較して、半導体基板101内部の酸素濃度の分布およびエピタキシャル層102の膜厚の分布が異なる。具体的には、半導体基板101の中心部の酸素濃度が半導体基板101の端部の酸素濃度よりも高いことが好ましい。より具体的には、図4に示すように、半導体基板101内には、高酸素濃度領域101Cと低酸素濃度領域101Dとが設けられることとなる。なお、平面視したときに、低酸素濃度領域101Dが高酸素濃度領域101Cを囲むように形成されていることが好ましい。また、中心部の膜厚が厚く、端部の膜厚が薄い(もしくは、凸状の膜厚分布を持つような)エピタキシャル層102を形成することが好ましい。より具体的には、図4に例示されている。
 上記のような構成とすることにより、半導体基板101の中心部の機械的強度は、半導体基板101の端部の機械的強度より高くなる。そのため、図4に示すように、中心部の膜厚が厚く、端部の膜厚が薄い(もしくは、凸状の膜厚分布を持つような)エピタキシャル層102を形成した際においても、反りやクラックを抑制することが可能となるという効果がある。従って、中心部の膜厚が厚く、端部の膜厚が薄いエピタキシャル層102において、特に、上記のような酸素分布は望ましいということになる。
 以上のような構成により、本変形例に係る窒化物半導体構造物を用いて製造されたトランジスタやダイオードなどのデバイスによると、スイッチング特性を向上することが可能となるだけでなく、製造歩留りを高めることができる。
 (第1の実施形態の第3の変形例)
 図5は、本発明の第1の実施形態の第3の変形例に係る窒化物半導体構造物の断面図を示す。
 本変形例に係る窒化物半導体構造物は、第1の実施形態と比較して、半導体基板101内部の酸素濃度の分布およびエピタキシャル層102の膜厚の分布が異なる。具体的には、半導体基板101の端部における酸素濃度が半導体基板101の端部に隣接する部分における酸素濃度よりも低い。より具体的には、図5に示すように、半導体基板101の端部には低酸素濃度領域101Dを設け、低酸素濃度領域101Dに隣接する部分には高酸素濃度領域101Cを設けることとなる。また、端部の膜厚が薄く、端部に隣接する部分の膜厚が厚いエピタキシャル層102を形成することが好ましい。より具体的には、図5に例示されているように、低酸素濃度領域101Dの上のエピタキシャル層の膜厚は薄く、高酸素濃度領域101Cの上のエピタキシャル層の膜厚は厚くなるように、エピタキシャル層102を形成することが好ましい。
 熱処理などによって、半導体基板101内部には、酸素濃度が高い領域と酸素濃度が低い領域とが形成されることがある。そのため、酸素濃度分布に応じて結晶成長の条件を変化させることによりエピタキシャル層102の膜厚分布を制御することが好ましい。具体的には、高酸素濃度領域101Cの直上のエピタキシャル層102の膜厚を厚くし、低酸素濃度領域101Dの直上のエピタキシャル層102の膜厚を薄くする。膜厚分布の制御は、例えばMOCVDを用いる場合、ガスのフローやバランスを制御することで実現できる。半導体基板101の高酸素濃度領域101Cの機械的強度は、低酸素濃度領域101Dより高くなる。そのため、図5のような膜厚分布を持つエピタキシャル層102を形成した際に反りやクラックを抑制することが可能となるという効果がある。
 以上のような構成により、本変形例に係る窒化物半導体構造物を用いて製造されたトランジスタやダイオードなどのデバイスによると、スイッチング特性を向上することが可能となるだけでなく、製造歩留りを高めることができる。
 <トランジスタ構造の説明>
 次に、第1の実施形態に係る窒化物半導体構造物を用いて製造されたトランジスタについて図6および図7を用いて説明する。
 図6は、第1の実施形態に係る窒化物半導体構造物を用いて製造されたトランジスタなどのデバイス202を複数有する半導体ウェハ201の平面図を示している。図7は、半導体ウェハ201を分割して得られたトランジスタの断面図を示している。
 図7に示すように、エピタキシャル層102は、バッファ層103、バッファ層103の上に形成されたチャネル層104、およびチャネル層104の上に形成され、チャネル層104よりバンドギャップエネルギーの大きいバリア層105から構成されている。ここで、バッファ層103は、例えば膜厚300nmのAlN層と、AlNとGaNの周期的多層膜からなる総膜厚2μmの超格子層とからなることが好ましい。また、チャネル層104は、例えば膜厚2μmのアンドープGaN層からなることが好ましい。また、バリア層105は、例えばAl組成20%、膜厚20nmのアンドープAlGaN層からなることが好ましい。このとき、エピタキシャル層102の膜厚は、4320nmとなっている。エピタキシャル層102の膜厚は、厚ければ厚いほど良い。エピタキシャル層102の膜厚が厚くなると、エピタキシャル層102の電界強度が低減するためである。
 なお、バッファ層103は炭素を含有していることが好ましく、特に、バッファ層103に含まれる炭素濃度は1×1018cm-3以上かつ1×1020cm-3以下であることが好ましく、さらに、1×1019cm-3以上であることが好ましい。バッファ層103が炭素を含有することにより、バッファ層103の残留キャリアを低減できるという効果がある。ただし、炭素濃度が1×1020cm-3より大きくなると、エピタキシャル層102の結晶性が悪化するため、炭素濃度は1×1020cm-3以下であることが好ましい。
 また、チャネル層104は炭素を含有していることが好ましく、特に、チャネル層104は炭素が含まれ、かつ、炭素濃度は1×1018cm-3以下であることが好ましい。チャネル層104の炭素濃度が1×1018cm-3以下であると、チャネル層104のキャリアトラップ密度を低減でき、良好なスイッチング特性を得ることが可能となる。チャネル層104の炭素濃度が低ければ低いほど、スイッチング特性が向上する。
 また、バリア層105の上には、例えばTi/Alからなるソース電極107とドレイン電極108とが形成されている。ソース電極107とドレイン電極108との間には例えば膜厚100nmのp型GaN層からなるp型半導体層(p型不純物を含む半導体層)106が選択的に形成され、p型半導体層106の上には例えばNi/Auからなるゲート電極109が形成されている。このような構成にすることにより、チャネル層104とバリア層105との界面に高濃度の2次元電子ガスが形成されるため、大電流化と低オン抵抗化とが可能となる。
 また、p型半導体層106がゲート電極109の下に設けられているため、チャネル層104とバリア層105との界面のエネルギーポテンシャルが上昇し、ゲート電圧が0Vでもドレイン電流が流れない、いわゆるノーマリオフ動作を実現している。
 また、ソース電極107と半導体基板101とが電気的に接続されていることが好ましい。これにより、半導体基板101の電位が安定する。また、ソース電極107と半導体基板101とを接続する代わりにドレイン電極108と半導体基板101とを接続してもよい。半導体基板101へのIII族元素の拡散を抑制することにより、半導体基板101の空乏層幅が広がり、空乏層で大きな電圧を保持できる。そのため、エピタキシャル層102の電圧分配を低減することができ、エピタキシャル層102内部の電界強度を低減することができる。また、半導体基板101の酸素濃度を1×1017cm-3から5×1018cm-3の範囲にすることにより、エピタキシャル層102の膜厚を大きくすることができるため、エピタキシャル層102内部の電界強度を低減することができる。これにより、電流コラプスを抑制し、良好なスイッチング特性を得ることが可能となる。
 また、p型半導体層106を介さずに、バリア層105にショットキー接合するゲート電極を形成してもよい。また、p型半導体層106の代わりにゲート絶縁膜を用いても良い。
 <トランジスタの特性について>
 次に、トランジスタのスイッチング特性について説明する。図8は、トランジスタのスイッチング特性の評価結果を示す図である。図8の結果は、オフ時間10ミリ秒、オン時間1ミリ秒のゲート電圧パルスを連続印加した条件下で、ドレイン電圧(スイッチング電圧)を変化させながらスイッチング評価を行った結果である。
 ここで、図8には、本実施例として、上述した第1の実施形態に係る窒化物半導体構造物を用いて製造されたトランジスタのスイッチング評価結果を示している。一方、比較例として、半導体基板101に高濃度のIII族元素が拡散したトランジスタのスイッチング評価結果を示している。
 本実施例のトランジスタは、ドレイン電圧(スイッチング電圧)が550Vとなるまでオン状態になったときの抵抗(オン抵抗)が増加せず、良好なスイッチング特性を示している。それに対し、比較例のトランジスタは、ドレイン電圧(スイッチング電圧)が475Vとなったときにオン抵抗が上昇しているため、本実施例のトランジスタと比較してスイッチング特性が悪化していることが分かる。このことから、本発明に係る窒化物半導体構造物を用いて製造されたトランジスタは、スイッチング特性の向上に関して優位であることが分かる。
 ここで、本実施例における、シリコン基板である半導体基板101とバッファ層103(バッファ層103はAlN層を含む)との界面付近に存在する元素の分布を確認する。2次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)を用いることにより、図9に示すように、半導体基板101とバッファ層103との界面付近に存在する元素の分析を行った。
 図9に示すように、III族元素であるAlが、半導体基板表面から約100nm程度の深さだけ半導体基板内に拡散していることが分かる(つまり、Alの拡散距離が約100nm程度であると言える)。このように、III族元素であるAlの拡散を抑制できているため、半導体基板内部へと空乏層を伸ばすことができていると考えられる。その結果、半導体基板に十分な大きさの電圧が分配され、エピタキシャル層内部の電界強度が低減し、電流コラプスが抑制されたと考えられる。
 なお、図9は、元素の深さ方向分布の評価の一例にすぎず、他の分析手法で評価を行ってもよい。
 <ダイオード構造の説明>
 次に、第1の実施形態に係る窒化物半導体構造物を用いて製造されたダイオードについて図6および図10を用いて説明する。
 図6は、第1の実施形態に係る窒化物半導体構造物を用いて製造されたダイオードなどのデバイス202を複数有する半導体ウェハ201の平面図を示している。図10は、半導体ウェハ201を分割して得られたダイオードの断面図を示している。
 ここで、図10に示すエピタキシャル層102の層構造および材料などについては、上述のトランジスタにおけるエピタキシャル層102の層構造および材料などと同様であるので、説明を省略する。
 ここで、図10に示すように、エピタキシャル層102を構成するバリア層105の上には、例えばNi/Auからなるアノード電極110とTi/Alからなるカソード電極111とが形成されている。このような構成にすることにより、チャネル層104とバリア層105との界面に高濃度の2次元電子ガスが形成されるため、大電流化と低オン抵抗化とが可能となる。
 また、アノード電極110と半導体基板101とが電気的に接続されていることが好ましい。また、アノード電極110と半導体基板101とを接続する代わりに、カソード電極111と半導体基板101とを接続してもよい。アノード電極110と半導体基板101とが電気的に接続することによる、半導体基板101の電位安定の効果は、トランジスタのときと同様である。また、カソード電極111と半導体基板101とを電気的に接続することによる、半導体基板101へのIII族元素の拡散を抑制することによる効果についても、トランジスタのときと同様である。
 なお、ダイオードはPN接合型やPIN型にしても構わない。
 本発明の第1の実施形態およびその第1~第3の変形例のうち、矛盾の無い範囲で適宜選択して組み合わせて窒化物半導体構造物を構成しても構わない。また、これらの窒化物半導体構造物を用いてトランジスタなどのデバイスを製造しても構わない。
 また、明細書中で開示している材料および数値については、好ましい材料および数値を記載しており、これらの材料および数値に必ずしも限定されることはない。
 本発明は、デバイスの電流コラプスを抑制でき、民生機器の電源回路等に用いられるトランジスタやダイオードなどのデバイスに有用である。
101  半導体基板
101A 表面領域
101B 内部領域
101C 高酸素濃度領域
101D 低酸素濃度領域
102  エピタキシャル層
103  バッファ層
104  チャネル層
105  バリア層
106  p型半導体層
107  ソース電極
108  ドレイン電極
109  ゲート電極
110  アノード電極
111  カソード電極
201  半導体ウェハ
202  デバイス

Claims (20)

  1.  半導体基板と、
     前記半導体基板の上に形成された、複数の窒化物半導体からなる層とを備え、
     前記半導体基板は、前記複数の窒化物半導体からなる層側より順に表面領域および内部領域を有し、
     前記表面領域の抵抗率は0.1Ωcm以上であり、前記内部領域の抵抗率は1000Ωcm以上であることを特徴とする窒化物半導体構造物。
  2.  前記表面領域の導電性不純物の濃度が1×1018cm-3以下であり、
     前記内部領域の導電性不純物の濃度が1×1015cm-3以下であることを特徴とする請求項1に記載の窒化物半導体構造物。
  3.  前記表面領域に含まれる導電性不純物がIII族元素であることを特徴とする請求項2に記載の窒化物半導体構造物。
  4.  前記III族元素が、ホウ素、アルミニウム、ガリウムまたはインジウムであることを特徴とする請求項3に記載の窒化物半導体構造物。
  5.  前記表面領域の厚さが10μm以下であることを特徴とする請求項1~4のいずれか1つに記載の窒化物半導体構造物。
  6.  前記半導体基板の酸素濃度が1×1017cm-3から5×1018cm-3の範囲であることを特徴とする請求項1~5のいずれか1つに記載の窒化物半導体構造物。
  7.  前記半導体基板の中心部の酸素濃度が、前記半導体基板の端部の酸素濃度より高いことを特徴とする請求項1~6のいずれか1つに記載の窒化物半導体構造物。
  8.  前記半導体基板は酸素濃度分布を持ち、酸素濃度の高い領域上の前記複数の窒化物半導体からなる層の膜厚が、酸素濃度の低い領域上の前記複数の窒化物半導体からなる層の膜厚より厚いことを特徴とする請求項1~7のいずれか1つに記載の窒化物半導体構造物。
  9.  前記表面領域の酸素濃度が前記内部領域の酸素濃度より低いことを特徴とする請求項1~8のいずれか1つに記載の窒化物半導体構造物。
  10.  前記複数の窒化物半導体からなる層の膜厚が1000nm以上であることを特徴とする請求項1~9のいずれか1つに記載の窒化物半導体構造物。
  11.  前記複数の窒化物半導体からなる層の上には、ソース電極、ドレイン電極およびゲート電極が形成されていることを特徴とする請求項1~10のいずれか1つに記載の窒化物半導体構造物。
  12.  前記ゲート電極と前記複数の窒化物半導体からなる層との間には、p型不純物を含む半導体層が形成されていることを特徴とする請求項11に記載の窒化物半導体構造物。
  13.  前記半導体基板と、前記ソース電極または前記ドレイン電極とが電気的に接続されていることを特徴とする請求項11又は12に記載の窒化物半導体構造物。
  14.  前記複数の窒化物半導体からなる層の上には、アノード電極およびカソード電極が形成されていることを特徴とする請求項1~10のいずれか1つに記載の窒化物半導体構造物。
  15.  前記半導体基板と、前記アノード電極または前記カソード電極とが電気的に接続されていることを特徴とする請求項14に記載の窒化物半導体構造物。
  16.  前記複数の窒化物半導体からなる層が、バッファ層と、前記バッファ層の上に形成されたチャネル層と、前記チャネル層の上に形成され前記チャネル層よりバンドギャップエネルギーの大きいバリア層とを含むことを特徴とする請求項1~15のいずれか1つに記載の窒化物半導体構造物。
  17.  前記バッファ層には炭素が含有されていることを特徴とする請求項16に記載の窒化物半導体構造物。
  18.  前記バッファ層に含まれる炭素濃度が1×1018cm-3以上かつ1×1020cm-3以下であることを特徴とする請求項17に記載の窒化物半導体構造物。
  19.  前記チャネル層には炭素が含有されていることを特徴とする請求項16~18のいずれか1つに記載の窒化物半導体構造物。
  20.  前記チャネル層に含まれる炭素濃度が1×1018cm-3以下であることを特徴とすることを特徴とする請求項19に記載の窒化物半導体構造物。
PCT/JP2013/004652 2012-09-13 2013-08-01 窒化物半導体構造物 WO2014041736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380047498.0A CN104704608B (zh) 2012-09-13 2013-08-01 氮化物半导体结构物
JP2014535356A JPWO2014041736A1 (ja) 2012-09-13 2013-08-01 窒化物半導体構造物
US14/636,163 US9401403B2 (en) 2012-09-13 2015-03-02 Nitride semiconductor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201433 2012-09-13
JP2012201433 2012-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/636,163 Continuation US9401403B2 (en) 2012-09-13 2015-03-02 Nitride semiconductor structure

Publications (1)

Publication Number Publication Date
WO2014041736A1 true WO2014041736A1 (ja) 2014-03-20

Family

ID=50277883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004652 WO2014041736A1 (ja) 2012-09-13 2013-08-01 窒化物半導体構造物

Country Status (4)

Country Link
US (1) US9401403B2 (ja)
JP (2) JPWO2014041736A1 (ja)
CN (1) CN104704608B (ja)
WO (1) WO2014041736A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002329A (ja) * 2013-06-18 2015-01-05 シャープ株式会社 エピタキシャルウェハおよびその製造方法並びに窒化物半導体装置
JP2016092169A (ja) * 2014-11-04 2016-05-23 エア・ウォーター株式会社 半導体装置およびその製造方法
JP2016167554A (ja) * 2015-03-10 2016-09-15 住友電気工業株式会社 高電子移動度トランジスタ及び高電子移動度トランジスタの製造方法
JP2017024965A (ja) * 2015-07-28 2017-02-02 株式会社Sumco エピタキシャルシリコンウェーハ
JP2019057588A (ja) * 2017-09-20 2019-04-11 株式会社東芝 半導体基板及び半導体装置
WO2019123763A1 (ja) * 2017-12-19 2019-06-27 株式会社Sumco Iii族窒化物半導体基板の製造方法
JPWO2022038826A1 (ja) * 2020-08-18 2022-02-24
WO2022044942A1 (ja) * 2020-08-24 2022-03-03 エア・ウォーター株式会社 化合物半導体基板および化合物半導体デバイス
WO2023218800A1 (ja) * 2022-05-10 2023-11-16 信越半導体株式会社 エピタキシャルウェーハ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386454B2 (ja) * 2013-06-06 2018-09-05 日本碍子株式会社 13族窒化物複合基板、半導体素子、および13族窒化物複合基板の製造方法
JP2017055008A (ja) * 2015-09-11 2017-03-16 株式会社東芝 半導体装置
KR102513746B1 (ko) 2018-05-17 2023-03-24 가부시키가이샤 사무코 석영 도가니의 투과율 측정 방법 및 장치
JP7364997B2 (ja) * 2019-03-13 2023-10-19 テキサス インスツルメンツ インコーポレイテッド 窒化物半導体基板
JP7400663B2 (ja) * 2020-08-17 2023-12-19 信越半導体株式会社 シリコン単結晶基板中の水素濃度の評価方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048799A (ja) * 2001-08-01 2003-02-21 Ngk Insulators Ltd Iii族窒化物膜の製造方法
WO2007116517A1 (ja) * 2006-04-10 2007-10-18 Fujitsu Limited 化合物半導体構造とその製造方法
JP2008251704A (ja) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The シリコン基板及びその製造方法
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
JP2010150133A (ja) * 2008-12-24 2010-07-08 Sicrystal Ag 均一ドーピングされたSiCバルク単結晶の製造方法および均一ドーピングされたSiC基板
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
JP2012502478A (ja) * 2008-09-04 2012-01-26 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 調整可能な電気抵抗率を有するウェーハ処理装置
JP2012099706A (ja) * 2010-11-04 2012-05-24 Panasonic Corp 窒化物半導体装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725460B2 (ja) * 1991-01-22 1998-03-11 日本電気株式会社 エピタキシャルウェハーの製造方法
JP3113156B2 (ja) * 1994-08-31 2000-11-27 信越半導体株式会社 半導体基板の製造方法
US6188090B1 (en) * 1995-08-31 2001-02-13 Fujitsu Limited Semiconductor device having a heteroepitaxial substrate
JP3601340B2 (ja) * 1999-02-01 2004-12-15 信越半導体株式会社 エピタキシャルシリコンウエーハおよびその製造方法並びにエピタキシャルシリコンウエーハ用基板
DE10004623A1 (de) * 1999-03-04 2000-09-14 Wacker Siltronic Halbleitermat Halbleiterscheibe mit dünner epitaktischer Schicht und Verfahren zur Herstellung der Halbleiterscheibe
DE60041309D1 (de) * 1999-03-16 2009-02-26 Shinetsu Handotai Kk Herstellungsverfahren für siliziumwafer und siliziumwafer
JP3589119B2 (ja) * 1999-10-07 2004-11-17 三菱住友シリコン株式会社 エピタキシャルウェーハの製造方法
JP4463957B2 (ja) * 2000-09-20 2010-05-19 信越半導体株式会社 シリコンウエーハの製造方法およびシリコンウエーハ
WO2004008521A1 (ja) * 2002-07-17 2004-01-22 Sumitomo Mitsubishi Silicon Corporation 高抵抗シリコンウエーハ及びその製造方法
JP2004273486A (ja) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
TWI244117B (en) * 2003-03-26 2005-11-21 Komatsu Denshi Kinzoku Kk Semiconductor epitaxy wafer
US7112509B2 (en) * 2003-05-09 2006-09-26 Ibis Technology Corporation Method of producing a high resistivity SIMOX silicon substrate
JP3960957B2 (ja) * 2003-09-05 2007-08-15 古河電気工業株式会社 半導体電子デバイス
US8575651B2 (en) * 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
WO2006125069A2 (en) * 2005-05-19 2006-11-23 Memc Electronic Materials, Inc. A high resistivity silicon structure and a process for the preparation thereof
JP4821178B2 (ja) * 2005-06-15 2011-11-24 住友電気工業株式会社 電界効果トランジスタ
JP5158833B2 (ja) * 2006-03-31 2013-03-06 古河電気工業株式会社 窒化物系化合物半導体装置および窒化物系化合物半導体装置の製造方法。
JP2008034411A (ja) * 2006-07-26 2008-02-14 Toshiba Corp 窒化物半導体素子
US7863710B2 (en) * 2008-02-15 2011-01-04 Intel Corporation Dislocation removal from a group III-V film grown on a semiconductor substrate
JP4519196B2 (ja) * 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP4677499B2 (ja) * 2008-12-15 2011-04-27 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP2010153748A (ja) * 2008-12-26 2010-07-08 Sanken Electric Co Ltd 電界効果半導体装置の製造方法
JP4685953B2 (ja) * 2009-07-17 2011-05-18 Dowaエレクトロニクス株式会社 横方向を電流導通方向とする電子デバイス用エピタキシャル基板およびその製造方法
WO2011016219A1 (ja) * 2009-08-04 2011-02-10 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP2011054734A (ja) * 2009-09-01 2011-03-17 Sumco Corp 裏面照射型イメージセンサ用エピタキシャル基板およびその製造方法。
JP5636183B2 (ja) 2009-11-11 2014-12-03 コバレントマテリアル株式会社 化合物半導体基板
JP2011166067A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 窒化物半導体装置
JP2011245504A (ja) * 2010-05-25 2011-12-08 Nippon Steel Engineering Co Ltd 圧延機の胴幅可変ロールおよびロール胴幅可変方法
JP2012038973A (ja) * 2010-08-09 2012-02-23 Siltronic Ag シリコンウエハ及びその製造方法
US9142448B2 (en) * 2011-11-04 2015-09-22 The Silanna Group Pty Ltd Method of producing a silicon-on-insulator article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048799A (ja) * 2001-08-01 2003-02-21 Ngk Insulators Ltd Iii族窒化物膜の製造方法
WO2007116517A1 (ja) * 2006-04-10 2007-10-18 Fujitsu Limited 化合物半導体構造とその製造方法
JP2008251704A (ja) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The シリコン基板及びその製造方法
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
JP2012502478A (ja) * 2008-09-04 2012-01-26 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 調整可能な電気抵抗率を有するウェーハ処理装置
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
JP2010150133A (ja) * 2008-12-24 2010-07-08 Sicrystal Ag 均一ドーピングされたSiCバルク単結晶の製造方法および均一ドーピングされたSiC基板
JP2012099706A (ja) * 2010-11-04 2012-05-24 Panasonic Corp 窒化物半導体装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002329A (ja) * 2013-06-18 2015-01-05 シャープ株式会社 エピタキシャルウェハおよびその製造方法並びに窒化物半導体装置
JP2016092169A (ja) * 2014-11-04 2016-05-23 エア・ウォーター株式会社 半導体装置およびその製造方法
JP2016167554A (ja) * 2015-03-10 2016-09-15 住友電気工業株式会社 高電子移動度トランジスタ及び高電子移動度トランジスタの製造方法
JP2017024965A (ja) * 2015-07-28 2017-02-02 株式会社Sumco エピタキシャルシリコンウェーハ
US10861990B2 (en) 2015-07-28 2020-12-08 Sumco Corporation Epitaxial silicon wafer
KR102057086B1 (ko) * 2015-07-28 2019-12-18 가부시키가이샤 사무코 에피택셜 실리콘 웨이퍼의 제조 방법
JP2019057588A (ja) * 2017-09-20 2019-04-11 株式会社東芝 半導体基板及び半導体装置
CN111527587A (zh) * 2017-12-19 2020-08-11 胜高股份有限公司 第iii族氮化物半导体基板的制备方法
KR20200069377A (ko) * 2017-12-19 2020-06-16 가부시키가이샤 사무코 Ⅲ족 질화물 반도체 기판의 제조 방법
WO2019123763A1 (ja) * 2017-12-19 2019-06-27 株式会社Sumco Iii族窒化物半導体基板の製造方法
JPWO2019123763A1 (ja) * 2017-12-19 2020-12-17 株式会社Sumco Iii族窒化物半導体基板の製造方法
KR102374879B1 (ko) * 2017-12-19 2022-03-15 가부시키가이샤 사무코 Ⅲ족 질화물 반도체 기판의 제조 방법
CN111527587B (zh) * 2017-12-19 2023-11-21 胜高股份有限公司 第iii族氮化物半导体基板的制备方法
JPWO2022038826A1 (ja) * 2020-08-18 2022-02-24
WO2022038826A1 (ja) * 2020-08-18 2022-02-24 信越半導体株式会社 窒化物半導体ウェーハの製造方法及び窒化物半導体ウェーハ
JP7142184B2 (ja) 2020-08-18 2022-09-26 信越半導体株式会社 窒化物半導体ウェーハの製造方法及び窒化物半導体ウェーハ
WO2022044942A1 (ja) * 2020-08-24 2022-03-03 エア・ウォーター株式会社 化合物半導体基板および化合物半導体デバイス
GB2612558A (en) * 2020-08-24 2023-05-03 Air Water Inc Compound semiconductor substrate and compound semiconductor device
WO2023218800A1 (ja) * 2022-05-10 2023-11-16 信越半導体株式会社 エピタキシャルウェーハ

Also Published As

Publication number Publication date
CN104704608A (zh) 2015-06-10
JP2018011060A (ja) 2018-01-18
US9401403B2 (en) 2016-07-26
JP6371986B2 (ja) 2018-08-15
US20150171173A1 (en) 2015-06-18
JPWO2014041736A1 (ja) 2016-08-12
CN104704608B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6371986B2 (ja) 窒化物半導体構造物
JP5468768B2 (ja) 電界効果トランジスタ及びその製造方法
JP6174874B2 (ja) 半導体装置
JP4705481B2 (ja) 窒化物半導体装置
JP5564842B2 (ja) 半導体装置
US20140110759A1 (en) Semiconductor device
KR102174546B1 (ko) 반도체 디바이스 및 반도체 디바이스를 설계하는 방법
WO2009116223A1 (ja) 半導体装置
WO2009110254A1 (ja) 電界効果トランジスタ及びその製造方法
JP2011029506A (ja) 半導体装置
JP5997234B2 (ja) 半導体装置、電界効果トランジスタおよび電子装置
US9680001B2 (en) Nitride semiconductor device
JP2011029507A (ja) 半導体装置
US9087890B2 (en) Semiconductor device
JP2012227456A (ja) 半導体装置
JP2011040676A (ja) 半導体装置及びその製造方法
JP2010258313A (ja) 電界効果トランジスタ及びその製造方法
JP5721782B2 (ja) 半導体装置
US9627489B2 (en) Semiconductor device
US9331169B2 (en) Nitride semiconductor Schottky diode and method for manufacturing same
JP6096523B2 (ja) 半導体装置とその製造方法
JP2010177416A (ja) 窒化物半導体装置
JP6185508B2 (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836723

Country of ref document: EP

Kind code of ref document: A1